Science.gov

Sample records for multi-mode fiber coarse

  1. Selection of energy optimized pump concepts for multi core and multi mode erbium doped fiber amplifiers.

    PubMed

    Krummrich, Peter M; Akhtari, Simon

    2014-12-01

    The selection of an appropriate pump concept has a major impact on amplifier cost and power consumption. The energy efficiency of different pump concepts is compared for multi core and multi mode active fibers. In preamplifier stages, pump power density requirements derived from full C-band low noise WDM operation result in superior energy efficiency of direct pumping of individual cores in a multi core fiber with single mode pump lasers compared to cladding pumping with uncooled multi mode lasers. Even better energy efficiency is achieved by direct pumping of the core in multi mode active fibers. Complexity of pump signal combiners for direct pumping of multi core fibers can be reduced by deploying integrated components. PMID:25606957

  2. Nonlinear processes in multi-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Pourbeyram Kaleibar, Hamed

    Nonlinear processes in optical fibers can affect data transmission and power carried by optical fibers and can limit the bandwidth and the capacity of optical communications. On the other hand nonlinear phenomena could be utilized to build in-fiber all-optical light sources and amplifiers. In this thesis new peaks inside an optical fiber have been generated using nonlinear processes. An intense green pump laser has been launched into a short fiber and specific modes have been excited to generate two new peaks in red and blue wavelengths, where two pump photons are annihilated to create two new photons in red and blue. The generated peaks are shifted far from pump; therefore they are less polluted by pump and Raman induced noises. The phase matching condition and the photon-flux rate for spontaneous and stimulated FWM have been studied both theoretically and experimentally for a commercial grade SMF-28 fiber. In low power and spontaneous regime new peaks are generated from quantum vacuum noise. Using the same pump laser for a long fiber, up to 21 new peaks spanning from green to Infrared have been generated. These peaks are equally spaced by 13THz. Generation of a Raman cascade spanning the wavelength range of 523 to 1750 nm wavelength range, in a standard telecommunication graded-index multimode optical fiber has been reported. Despite the highly multimode nature of the pump, the Raman peaks are generated in specific modes of the fiber, confirming substantial beam cleanup during the stimulated Raman scattering process.

  3. LLNL Measurements of Graded-Index Multi-Mode Fiber (ITF 47)

    SciTech Connect

    Saito, T.T.

    2000-05-01

    The Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, located in the Nuclear City of Snezhinsk, east of the Ural mountains and the Lawrence Livermore National Laboratories have been investigating the possibility of establishing a commercial optical fiber manufacturing facility. These discussions began in the summer of 1998. At that time three samples (single mode and multi-mode) of optical fiber were left at the Sandia National Laboratory. Sandia measured two of the segments and sent them to LLNL. The optical loss at 1550 nm and 1300 nm were higher than commercially available fiber. The measurements were complicated because the geometry of the fibers also did not meet specification. Since the core was not adequately centered coupling of optical energy into the fiber being tested varied widely depending on which end of the fiber was used for insertion. The results of these measurements were summarized in the informal report dated June 11, 1999, which was hand carried by Dr. Paul Herman during his July 1999 visit. During the July visit a 1.2-km long section of graded-index multimode fiber, ITF 47, was given to Herman. We had requested samples longer than the earlier ones (which were {approx}0.1 km long) in order that a cutback method could be used for the transmission measurements. The optical loss using the cutback technique and the transmission spectral measurements in the 600-1700 mn region are reported. Also physical measurements are reported of the fiber's diameter, concentricity, ellipticity and tensile strength (proof test). The test results are summarized in Table 1, ''Comparative Data for Multi-mode Optical Fiber.'' The table includes the values from the Industrial specification TIA/EIA 402AAAB, the commercial specification for Corning's 50/125 CPC6, the values measured on ITF-47 and provided by C-70, and LLNL's values for ITF-47 as well as the multimode values from the June 1999 samples.

  4. Refractive index sensors based on the fused tapered special multi-mode fiber

    NASA Astrophysics Data System (ADS)

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  5. Generation of multi-mode squeezed vacuum using pulse pumped fiber optical parametric amplifiers.

    PubMed

    Liu, Nannan; Liu, Yuhong; Li, Jiamin; Yang, Lei; Li, Xiaoying

    2016-02-01

    Multimode squeezed states are essential resources in quantum information processing and quantum metrology with continuous variables. Here we present the experimental generation of squeezed vacuum via the degenerate four wave mixing realized by pumping a piece of dispersion shifted fiber with mode-locked ultrafast pulse trains. The noise fluctuation is lower than the shot noise limit by 1.1 ± 0.08 dB (1.95 ± 0.17 dB after correction for detection losses). The detailed investigation illustrates that the results can be further improved by suppressing Raman scattering and by reshaping the spectrum of the local oscillator to achieve the required mode-matching of the homodyne detection system. Our study is useful for developing a compact fiber source of multi-mode squeezed vacuum. PMID:26906788

  6. All-fiber Tm-doped double-clad fiber laser with multi-mode FBG as cavity

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Yao, B. Q.; Song, S. F.; Ju, Y. L.

    2009-05-01

    An all-fiber LD-clad-pumped Tm-doped fiber laser was reported, and the CW maximal output power reached 24 W at nearly 1.94 μm. The double-clad Tm-doped fiber had a demission of 25/250 μm with the core NA 0.1 and inner-clad NA 0.46. A matched passive multi-mode FBG acted as the front cavity. Cooling by the water, the 56% high slope efficiency was achieved and threshold was 6.4 W, respected to the launched pump power. At the low power pump, the fiber laser spectrum had only one peak at 1.936 μm. Increasing the launched pump power, the output laser wavelength grew to 3-4 peaks. Because the multi-mode FBG reflectivity was not very high, both ends of the fiber laser had laser output power, and the ratio was nearly 10:1.

  7. LLNL Measurements of Graded-Index Multi-Mode Optical Fiber (ITF 47)

    NASA Astrophysics Data System (ADS)

    Saito, T. T.

    2000-05-01

    The Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, located in the Nuclear City of Snezhinsk, east of the Ural mountains and the Lawrence Livermore National Laboratories have been investigating the possibility of establishing a commercial optical fiber manufacturing facility. These discussions began in the summer of 1998. At that time three samples (single mode and multi-mode) of optical fiber were left at the Sandia National Laboratory. Sandia measured two of the segments and sent them to LLNL. The optical loss at 1550 nm and 1300 nm were higher than commercially available fiber. The measurements were complicated because the geometry of the fibers also did not meet specification. Since the core was not adequately centered coupling of optical energy into the fiber being tested varied widely depending on which end of the fiber was used for insertion. The results of these measurements were summarized in the informal report dated June 11, 1999, which was hand carried by Dr. Paul Herman during his July 1999 visit. During the July visit a 1.2-km long section of graded-index multimode fiber, ITF 47, was given to Herman. We had requested samples longer than the earlier ones (which were (approx) 0.1 km long) in order that a cutback method could be used for the transmission measurements. The optical loss using the cutback technique and the transmission spectral measurements in the 600-1700 mn region are reported. Also physical measurements are reported of the fiber's diameter, concentricity, ellipticity and tensile strength (proof test).

  8. Label free imaging system for measuring blood flow speeds using a single multi-mode optical fiber (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sigal, Iliya; Caravaca Aguirre, Antonio M.; Gad, Raanan; Piestun, Rafael; Levi, Ofer

    2016-03-01

    We demonstrate a single multi-mode fiber-based micro-endoscope for measuring blood flow speeds. We use the transmission-matrix wavefront shaping approach to calibrate the multi-mode fiber and raster-scan a focal spot across the distal fiber facet, imaging the cross-polarized back-reflected light at the proximal facet using a camera. This setup allows assessment of the backscattered photon statistics: by computing the mean speckle contrast values across the proximal fiber facet we show that spatially-resolved flow speed maps can be inferred by selecting an appropriate camera integration time. The proposed system is promising for minimally-invasive studies of neurovascular coupling in deep brain structures.

  9. Full-vector multi-mode fiber modeling for short reach serdes links of 112Gbps and beyond.

    PubMed

    Lu, Yu-Chun; Wong, Henry; Tonietto, Davide; Zang, Da-Jun; Zhai, Su-Ping; Li, Liang

    2016-07-11

    A rigorous full-vector multi-mode fiber (MMF) model is proposed. It is believed to be the first comparative study of vector and scalar MMF model in terms of differential mode delay (DMD), mode power distribution (MPD), transfer functions as well as eye diagrams. It shows that the vector nature of fiber modes cannot be ignored even though the refractive index difference can be as small as 1%. A standard-compliant methodology for MMF characterization is introduced. The impact of fiber parameters on bandwidth is studied. The statistical transfer function model of OM3 and OM4 fiber is provided. These transfer functions can be applied to the MMF link modeling. Rigorous full-vector MMF model is an essential tool for research and development of MMF link transceivers and standard development of 112Gbps and beyond. PMID:27410880

  10. Blade tip clearance measurement of the turbine engines based on a multi-mode fiber coupled laser ranging system

    SciTech Connect

    Guo, Haotian; Duan, Fajie; Wu, Guoxiu; Zhang, Jilong

    2014-11-15

    The blade tip clearance is a parameter of great importance to guarantee the efficiency and safety of the turbine engines. In this article, a laser ranging system designed for blade tip clearance measurement is presented. Multi-mode fiber is utilized for optical transmission to guarantee that enough optical power is received by the sensor probe. The model of the tiny sensor probe is presented. The error brought by the optical path difference of different modes of the fiber is estimated and the length of the fiber is limited to reduce this error. The measurement range in which the optical power received by the probe remains essentially unchanged is analyzed. Calibration experiments and dynamic experiments are conducted. The results of the calibration experiments indicate that the resolution of the system is about 0.02 mm and the range of the system is about 9 mm.

  11. Deep optical access on multi-core and multi-mode fiber for integrated wireless applications

    NASA Astrophysics Data System (ADS)

    Llorente, Roberto; Morant, Maria; Beltrán, Marta; Macho, Andrés.

    2015-01-01

    Deep integrated optical access networks target to provide great capillarity and multiple ONTs for cost- and energy-efficient pervasive connectivity seamless supporting integrated wireless. Several key optical technologies are herein reported supporting integrated deep optical access: Bundled radio-over-fiber transmission is proposed and demonstrated for the provision of quintuple-play services achieving 125 km SSMF optical reach. Bend-insensitive fiber in-building distribution is also proposed and demonstrated supporting joint legacy coaxial transmission. Multimode POF is also proposed and demonstrated suitable for joint in-building distribution of MATV and SMATV broadcasting signals. Optical comb technology us is also demonstrated suitable for mm-wave radio generation of multiband OFDM wireless signals. Finally, multicore fiber transmission is also proposed and demonstrated suitable for the transmission of LTE and WIMAX in wireless fronthaul applications in a minimized inter-core crosstalk penalty configuration.

  12. Tm3+-doped silica fiber laser output at 1.94μm with multi-mode FBG as cavity

    NASA Astrophysics Data System (ADS)

    Wang, Hanbin; Jing, Tao; Zhang, Yunjun

    2008-11-01

    An all-fiber LD-clad-pumped Tm-doped fiber laser was reported, and the CW maximal output power reached 24W at nearly 1.94µm. The homemade double-clad Tm3+-doped fiber had a demission of 25/250µm with the core NA 0.13 and inner-clad NA 0.46. A matched passive multi-mode FBG acted as the front cavity. The cavity was build-up by the high reflectivity FBG and fiber end Fresnel reflectivity. The all-fiber scheme was build-up by splicing the pigtail fiber, FBG fiber and Tm3+-doped fiber. Cooling by the water, the 56% high slope efficiency was achieved and threshold was 6.4W, respected to the launched pump power. When the output power was less-than 3W, the output laser was single-peak operating at 1936.4 nm with a very narrow linewidth (50 pm) laser output. Increasing the launched pump power, the output laser wavelength grew to 3~4 peaks. The multimode fiber Bragg grating (FBG) transmission spectrum was also measured with a matched 82cm Nufern Tm3+-doped fiber as fluorescent sources. With the dichroic and the FBG building up cavity, the output laser characteristics were also investigated. Because the multi-mode FBG reflectivity was not very high, both ends of the fiber laser had laser output power, and the ratio was nearly 10:1. As we know, it was the first time to report the multi-mode FBG all-fiber laser. Under this simple Tm3+-doped fiber laser scheme, we estimated that the maximal output power could reach several ten watts.

  13. Delivery of 800 W of nearly diffraction-limited laser power through a 100 m long multi-mode fiber

    NASA Astrophysics Data System (ADS)

    Negel, Jan-Philipp; Austerschulte, Armin; Vogel, Moritz M.; Rataj, Thomas; Voss, Andreas; Abdou Ahmed, Marwan; Graf, Thomas

    2014-05-01

    We present the efficient propagation of a nearly diffraction-limited laser beam with a continuous wave power of 800 W through a multi-mode step-index delivery fiber with a core diameter of 30 µm and a numerical aperture of 0.056. The M2-value was measured to be 1.35 after 100 m of this passive fiber. This is an important advance as the delivery fiber length for high-brightness beams in the kilowatt range is usually limited to a few meters by the onset of nonlinear effects. For this demonstration a single-mode MOPA system was set-up consisting of a fiber oscillator and two amplifier stages. This source was coupled into the delivery fiber through a 500 mm long mode field adapter.

  14. Characterization of corn fiber gums from coarse and fine fiber and a study of their emulsifying properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stabilities of orange oil emulsions stabilized with various concentrations of two different types of corn fiber gum (CFG-1 and 2) isolated from coarse (pericarp) and fine (endosperm) fiber from corn wet milling have been studied. CFG-1 and 2 were isolated from coarse and fine corn fiber by (a) ...

  15. Development of a cable reel development system using a rotary joint for kilometer lengths of two-fiber multi-mode fiber optic cable

    SciTech Connect

    Curtiss, J.A.; Jahelka, J.R.

    1995-08-11

    Brookhaven National Laboratory (BNL) recently developed a two-component system for use during remote inspections. The system consists of a mobile unit with television cameras and other equipment and a stationary base station. A variety of signals must be continually transmitted between the two system components as the mobile unit is moved from the location to another. Two channels of broadband (10MHz) NTSC video are transmitted from the mobile unit to the base station, and a bi-directional ``talk set`` provides audio communication between personnel at each location. In addition, several channels of RS-232 are required to support present and future instruments used at the mobile unit and controlled by personnel at the base station. Brookhaven developed a mobile unit which communicated with a base station over a 2-fiber multimode fiber optic cable. One of the design requirements was maintaining constant communication with the base station during the time the mobile unit was moved about. To provide uninterrupted communications, deployment of the 1-km long fiber optic cable was initially performed with a ``spinning reel`` mechanism. The spinning reel mechanism proved to be mechanically unsuitable, and so the cable deployment mechanism was redesigned to spool the cable off the reel. The requirement for uninterrupted communications required a two-channel fiber optic rotary joint in the design. Incorporation of the rotary joint into the design is described, and appropriate reference material is included.

  16. Modeling the self-assembly of peptide amphiphiles into fibers using coarse-grained molecular dynamics.

    PubMed

    Lee, One-Sun; Cho, Vince; Schatz, George C

    2012-09-12

    We have studied the self-assembly of peptide amphiphiles (PAs) into a cylindrical micelle fiber starting from a homogeneous mixture of PAs in water using coarse-grained molecular dynamics simulations. Nine independent 16 μs runs all show spontaneous fiber formation in which the PA molecules first form spherical micelles, and then micelles form a three-dimensional network via van der Waals interactions. As the hydrophobic core belonging to the different micelles merge, the three-dimensional network disappears and a fiber having a diameter of ∼80 Å appears. In agreement with atomistic simulation results, water molecules are excluded from the hydrophobic core and penetrate to ∼15 Å away from the axis of fiber. About 66% of the surface of fiber is covered with the IKVAV epitope, and ∼92% of the epitope is exposed to water molecules. PMID:22924639

  17. Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System

    PubMed Central

    Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei

    2015-01-01

    Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm. PMID:26121614

  18. Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System.

    PubMed

    Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei

    2015-01-01

    Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm. PMID:26121614

  19. Multi-Mode Broadband Patch Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor)

    2001-01-01

    A multi-mode broad band patch antenna is provided that allows for the same aperture to be used at independent frequencies such as reception at 19 GHz and transmission at 29 GHz. Furthermore, the multi-mode broadband patch antenna provides a ferroelectric film that allows for tuning capability of the multi-mode broadband patch antenna over a relatively large tuning range. The alternative use of a semiconductor substrate permits reduced control voltages since the semiconductor functions as a counter electrode.

  20. Study on coarse wavelength division multiplexing using polymer optical fiber transmission window

    NASA Astrophysics Data System (ADS)

    Zhang, Yongsheng; Ma, Hui; Zhang, Tao; Wang, Zhuo; Wang, Dong; Zheng, Rongsheng; Yang, Haipeng; Ming, Hai

    2005-01-01

    Inexpensive PMMA based Polymer Optical Fiber (POF) has the feature of a large core diameter, high numerical aperture and great flexibility, thus allow low connection cost and cheap LED source. These advantages make it a promising candidate for short distance communication. In this article, coarse wavelength division multiplexing (CWDM) test was performed with commercially available POF using its low loss transmission window. Light of two different wavelengths (650nm and 530nm) were sending on a single POF. Here 650nm red light was used for duplex IP data digital signal transmission and 530nm green light was used for voice signal transmission. Light sources are LEDs. A POF Coupler (Splitter) of 1:1 ratio was employed as multiplexer and prisms were used for demultiplexing. The channel isolation and insert loss of both channels were measured, for 650nm channel they are 20.5dB and 17.65dB, for 530nm channel they are 19.16dB and 20.55dB.

  1. Interactive multi-mode blade impact analysis

    NASA Technical Reports Server (NTRS)

    Alexander, A.; Cornell, R. W.

    1978-01-01

    The theoretical methodology used in developing an analysis for the response of turbine engine fan blades subjected to soft-body (bird) impacts is reported, and the computer program developed using this methodology as its basis is described. This computer program is an outgrowth of two programs that were previously developed for the purpose of studying problems of a similar nature (a 3-mode beam impact analysis and a multi-mode beam impact analysis). The present program utilizes an improved missile model that is interactively coupled with blade motion which is more consistent with actual observations. It takes into account local deformation at the impact area, blade camber effects, and the spreading of the impacted missile mass on the blade surface. In addition, it accommodates plate-type mode shapes. The analysis capability in this computer program represents a significant improvement in the development of the methodology for evaluating potential fan blade materials and designs with regard to foreign object impact resistance.

  2. Coarse WDM networking of self-referenced fiber-optic intensity sensors with reconfigurable characteristics.

    PubMed

    Montero, D S; Vázquez, C; Baptista, J M; Santos, J L; Montalvo, J

    2010-03-01

    A CWDM network operating in reflective configuration for multiplexing remote Radio-Frequency (RF) self-referenced fiber-optic intensity sensors is analyzed and experimentally investigated. In the described approach, the use of fiber Bragg gratings as spectral selective mirrors allows to implement delay lines in the electrical domain, achieving more compact sensor-heads and easy-reconfigurable sensing points. Two measurement parameters for the sensing heads are defined and comparatively studied in terms of design parameters, linearity, sensitivity and resolution. The proposed sensor configuration is modeled following the Z-transform formalism, which permits an easy analysis of the system frequency response. Experimental results are presented, showing the characterization of the network performance and considering the properties of sensor self-referencing as well as sensor crosstalk. PMID:20389452

  3. Simultaneous measurement of dynamic displacement and strain in a single fiber using coarse wavelength-division multiplexing and fiber Bragg-grating filter-based sensing system.

    PubMed

    Chuang, Kuo-Chih; Ma, Chien-Ching; Wang, Hwa-Chun

    2016-03-20

    Displacement and strain, two of the most important physical quantities in experimental solid mechanics, are seldomly measured simultaneously in a single experimental configuration. In order to provide and improve corresponding sensing techniques, an experimental setup system for simultaneous measurement of dynamic displacement and strain on a flexible cantilever beam using two fiber Bragg gratings (FBGs) in a single fiber is proposed. To realize high-speed multiplexing and demodulation, a configuration incorporating a coarse wavelength-division multiplexing (CWDM) technique and an FBG transmission filter is implemented. The cantilever beam is subjected to steel-ball impact from which the dynamic multipoint displacement/strain sensing performances of the CWDM and FBG filter-based sensing system are demonstrated. Experimental results in temporal and frequency domain are compared with those obtained by the finite element method (FEM) predictions based on identification of the impact-loading history. A noncontact Fotonic displacement sensor and a polyvinylidene-fluoride film (PVDF) strain sensor are also used for comparison. With transient and resonant frequency simulations conducted by the FEM, loading effects of the sensing system are examined. The results obtained in this study indicate that the proposed CWDM and FBG filter-based sensing system is capable of performing simultaneous multipoint displacement/strain measurements in a single fiber with large bandwidth, high sensitivity, and low intensity loss. PMID:27140584

  4. Multi-mode entangled states represented as Grassmannian polynomials

    NASA Astrophysics Data System (ADS)

    Maleki, Y.

    2016-06-01

    We introduce generalized Grassmannian representatives of multi-mode state vectors. By implementing the fundamental properties of Grassmann coherent states, we map the Hilbert space of the finite-dimensional multi-mode states to the space of some Grassmannian polynomial functions. These Grassmannian polynomials form a well-defined space in the framework of Grassmann variables; namely Grassmannian representative space. Therefore, a quantum state can be uniquely defined and determined by an element of Grassmannian representative space. Furthermore, the Grassmannian representatives of some maximally entangled states are considered, and it is shown that there is a tight connection between the entanglement of the states and their Grassmannian representatives.

  5. Active multi-mode-interferometer broadband superluminescent diodes

    NASA Astrophysics Data System (ADS)

    Feifei, Wang; Peng, Jin; Ju, Wu; Yanhua, Wu; Fajie, Hu; Zhanguo, Wang

    2016-01-01

    We report a new quantum dot superluminescent diode with a new device structure. In this device, a multi-mode-interferometer configuration and a J-bend structure were monolithically integrated. Owing to the multi-mode-interferometer structure, the superluminescent diode exhibits 60% increase in output power and 43% reduction in the differential resistance compared with the uniform waveguide width superluminescent diode fabricated from the same wafer. Our device produces an emission spectrum as wide as 103.7 nm with an output power of 2.5 mW at 600 mA continue-wave injection current. This broadband emission spectrum makes the axial resolution of the optical coherence tomography system employing the superluminescent diode to 6 μm in theory, which is high enough for most tissue imaging. Project supported by the National Natural Science Foundation of China (No. 61274072) and the National High Technology Research and Development Program of China (No. 2013AA014201).

  6. Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm

    NASA Astrophysics Data System (ADS)

    Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning

    2016-03-01

    We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.

  7. Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field.

    PubMed

    Rojas, Ana; Liwo, Adam; Browne, Dana; Scheraga, Harold A

    2010-12-01

    The growth mechanism of β-amyloid (Aβ) peptide fibrils was studied by a physics-based coarse-grained united-residue model and molecular dynamics (MD) simulations. To identify the mechanism of monomer addition to an Aβ(1-40) fibril, we placed an unstructured monomer at a distance of 20 Å from a fibril template and allowed it to interact freely with the latter. The monomer was not biased towards fibril conformation by either the force field or the MD algorithm. With the use of a coarse-grained model with replica-exchange molecular dynamics, a longer timescale was accessible, making it possible to observe how the monomers probe different binding modes during their search for the fibril conformation. Although different assembly pathways were seen, they all follow a dock-lock mechanism with two distinct locking stages, consistent with experimental data on fibril elongation. Whereas these experiments have not been able to characterize the conformations populating the different stages, we have been able to describe these different stages explicitly by following free monomers as they dock onto a fibril template and to adopt the fibril conformation (i.e., we describe fibril elongation step by step at the molecular level). During the first stage of the assembly ("docking"), the monomer tries different conformations. After docking, the monomer is locked into the fibril through two different locking stages. In the first stage, the monomer forms hydrogen bonds with the fibril template along one of the strands in a two-stranded β-hairpin; in the second stage, hydrogen bonds are formed along the second strand, locking the monomer into the fibril structure. The data reveal a free-energy barrier separating the two locking stages. The importance of hydrophobic interactions and hydrogen bonds in the stability of the Aβ fibril structure was examined by carrying out additional canonical MD simulations of oligomers with different numbers of chains (4-16 chains), with the fibril

  8. Optical fiber lasers and amplifiers

    SciTech Connect

    Snitzer, E.; Po, H.; Tumminelli, R.P.; Hakimi, F.

    1989-03-21

    An optical fiber is described, which comprises: a substantially single-mode core having an index of refraction n/sub 1/ comprised of laser material disposed within a multi-mode cladding having an index of refraction n/sub 2/; and a further cladding having an index of refraction n/sub 3/ surrounding the multi-mode cladding with substantially no space between the further cladding and the multi-mode cladding; wherein the single-mode core is disposed at an offset from the geometric center of the multi-mode cladding.

  9. Multi-mode reliability-based design of horizontal curves.

    PubMed

    Essa, Mohamed; Sayed, Tarek; Hussein, Mohamed

    2016-08-01

    Recently, reliability analysis has been advocated as an effective approach to account for uncertainty in the geometric design process and to evaluate the risk associated with a particular design. In this approach, a risk measure (e.g. probability of noncompliance) is calculated to represent the probability that a specific design would not meet standard requirements. The majority of previous applications of reliability analysis in geometric design focused on evaluating the probability of noncompliance for only one mode of noncompliance such as insufficient sight distance. However, in many design situations, more than one mode of noncompliance may be present (e.g. insufficient sight distance and vehicle skidding at horizontal curves). In these situations, utilizing a multi-mode reliability approach that considers more than one failure (noncompliance) mode is required. The main objective of this paper is to demonstrate the application of multi-mode (system) reliability analysis to the design of horizontal curves. The process is demonstrated by a case study of Sea-to-Sky Highway located between Vancouver and Whistler, in southern British Columbia, Canada. Two noncompliance modes were considered: insufficient sight distance and vehicle skidding. The results show the importance of accounting for several noncompliance modes in the reliability model. The system reliability concept could be used in future studies to calibrate the design of various design elements in order to achieve consistent safety levels based on all possible modes of noncompliance. PMID:27180287

  10. Tip Based Nanofabrication Using Multi-mode Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Hu, Weihua

    Scanning probe microscopy (SPM) based nanotechnology is a promising technology in nano-device fabrication. It is able to both manipulate nanostructures and characterize the created nanopatterns using the nano-tip of the scanning probe on a mechanical basis or electrical basis. With the tip and device on similar scales, nano-tip based fabrication permits accurate control over the device geometry through tip manipulation with nanometer (or better) accuracy. However, SPM based nanofabrication is a slow process because the scanning velocity of the microscopy is low. Large, multi-tip arrays offer the possibility for parallel device fabrication, allowing mass fabrication with nanometer control. The goal of Tip-directed Field-emission Assisted Nanofabrication (TFAN) project was to realize parallel fabrication using our probe arrays. We started by fabricating nanodevice using one single probe. In this work, we investigated the study of fabricating single electron transistor (SET) using one single SPM probe. There were four stages we went through toward fabricating a SET. The first stage was to accomplish atomic-precision lithography in TFAN system. Atomic level lithography was achieved by desorbing hydrogen atoms, which were previously adsorbed to the Si(100)-2 × 1 surface, in ultrahigh vacuum scanning tunneling microscopy (UHV-STM). The second stage was to develop method for fabricating SET. SPM based local oxidation was chosen as the method to fabricate a SET on a thin titanium (Ti) film. A multi-mode SPM oxidation method was developed, in which both scanning tunneling microscopy (STM) mode and atomic microscopy (AFM) mode local oxidation were used to fabricated Ti-TiOx-Ti structures with the same conductive AFM probe. This multi-mode method enabled significantly fine feature size control by STM mode, working on insulating SiO2 substrates needed to isolate the device by AFM mode and in situ electrical characterization with conductive AFM mode. After developing the multi-mode

  11. A Novel Atomic Force Microscope with Multi-Mode Scanner

    NASA Astrophysics Data System (ADS)

    Qin, Chun; Zhang, Haijun; Xu, Rui; Han, Xu; Wang, Shuying

    2016-01-01

    A new type of atomic force microscope (AFM) with multi-mode scanner is proposed. The AFM system provides more than four scanning modes using a specially designed scanner with three tube piezoelectric ceramics and three stack piezoelectric ceramics. Sample scanning of small range with high resolution can be realized by using tube piezos, meanwhile, large range scanning can be achieved by stack piezos. Furthermore, the combination with tube piezos and stack piezos not only realizes high-resolution scanning of small samples with large- scale fluctuation structure, but also achieves small range area-selecting scanning. Corresponding experiments are carried out in terms of four different scanning modes showing that the AFM is of reliable stability, high resolution and can be widely applied in the fields of micro/nano-technology.

  12. Mode Launcher Design for the Multi-moded DLDS

    SciTech Connect

    Li, Zenghai

    2003-04-30

    The DLDS (Delay Line Distribution System) power delivery system proposed by KEK combines several klystrons to obtain the high peak power required to drive a TeV scale linear collider. In this system the combined klystron output is subdivided into shorter pulses by proper phasing of the sources, and each subpulse is delivered to various accelerator sections via separate waveguides. A cost-saving improvement suggested by SLAC is to use a single multimoded waveguide to deliver the power of all the subpulses. This scheme requires a mode launcher that can deliver each subpulse by way of a different waveguide mode through selective phasing of the sources when combining their power. We present a compact design for such a mode launcher that converts the power from four rectangular waveguide feeds to separate modes in a multi-moded circular guide through coupling slots. Such a design has been simulated and found to satisfy the requirements for high efficiency and low surface fields.

  13. Multi-mode ultrasonic welding control and optimization

    DOEpatents

    Tang, Jason C.H.; Cai, Wayne W

    2013-05-28

    A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.

  14. Multi-mode multistatics for passive/active airborne surveillance

    NASA Astrophysics Data System (ADS)

    Ogrodnik, Robert F.

    1986-07-01

    The increasing performance demands for air surveillance assets, as well as the necessity for continued surveillance operations in the presence of enemy jamming anti-radiation missile (ARM) attacks, have increased interest in passive surveillance, in particular multi-mode passive/active multistatic sensing. The use of noncooperative radiation as illuminators of opportunity combined with passive surveillance electromagnetic support measurement (ESM) sensors opens new horizons to multistatic surveillance from a passive airborne platform. Research and field tests have been conducted on ESM augmented bistatics as well as noncooperative multistatics which support the development of airborne multi-mode passive surveillance technology. This work has been conducted under such programs as the Bistatic Enhanced Altimeter Detection (BEAD) and the noncooperative multistatic Passive Coherent Location (PCL). Both BEAD and PCL technology directly support the receiver, signal processing and target location/tracking operations necessary for passive surveillance. The demonstrated technologies for EM interference rejection and multistatic multi-target tracking and location under PCL provide a promising performance bench mark for passive surveillance in the presence of a complex electromagnetic environment. Passive receiver intercept performance under BEAD has provided a receiver design baseline for both look-down and look-up surveillance applications. The technologies under development in BEAD and PCL are presented along with the field test results and the sensor concepts. In particular, spin-off data such as bistatic look-down clutter, noise-floor limitation of noncooperative multistatics and sensitivity limitations set by passive surveillance using signal intercept techniques and illuminators of opportunity are provided.

  15. Mid-infrared multi-mode absorption spectroscopy, MUMAS, using difference frequency generation

    NASA Astrophysics Data System (ADS)

    Northern, Henry; O'Hagan, Seamus; Hamilton, Michelle L.; Ewart, Paul

    2015-03-01

    Multi-mode absorption spectroscopy of ammonia and methane at 3.3 μm has been demonstrated using a source of multi-mode mid-infrared radiation based on difference frequency generation. Multi-mode radiation at 1.56 μm from a diode-pumped Er:Yb:glass laser was mixed with a single-mode Nd:YAG laser at 1.06 μm in a periodically poled lithium niobate crystal to produce multi-mode radiation in the region of 3.3 μm. Detection, by direct multi-mode absorption, of NH3 and CH4 is reported for each species individually and also simultaneously in mixtures allowing measurements of partial pressures of each species.

  16. Physics basis of Multi-Mode anomalous transport module

    SciTech Connect

    Rafiq, T.; Kritz, A. H.; Luo, L.; Weiland, J.; Pankin, A. Y.

    2013-03-15

    The derivation of Multi-Mode anomalous transport module version 8.1 (MMM8.1) is presented. The MMM8.1 module is advanced, relative to MMM7.1, by the inclusion of peeling modes, dependence of turbulence correlation length on flow shear, electromagnetic effects in the toroidal momentum diffusivity, and the option to compute poloidal momentum diffusivity. The MMM8.1 model includes a model for ion temperature gradient, trapped electron, kinetic ballooning, peeling, collisionless and collision dominated magnetohydrodynamics modes as well as model for electron temperature gradient modes, and a model for drift resistive inertial ballooning modes. In the derivation of the MMM8.1 module, effects of collisions, fast ion and impurity dilution, non-circular flux surfaces, finite beta, and Shafranov shift are included. The MMM8.1 is used to compute thermal, particle, toroidal, and poloidal angular momentum transports. The fluid approach which underlies the derivation of MMM8.1 is expected to reliably predict, on an energy transport time scale, the evolution of temperature, density, and momentum profiles in plasma discharges for a wide range of plasma conditions.

  17. Real-time multi-mode neutron multiplicity counter

    DOEpatents

    Rowland, Mark S; Alvarez, Raymond A

    2013-02-26

    Embodiments are directed to a digital data acquisition method that collects data regarding nuclear fission at high rates and performs real-time preprocessing of large volumes of data into directly useable forms for use in a system that performs non-destructive assaying of nuclear material and assemblies for mass and multiplication of special nuclear material (SNM). Pulses from a multi-detector array are fed in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel, to reduce the latency associated with current shift-register systems. The word is read at regular intervals, all bits simultaneously, with no manipulation. The word is passed to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup. The word is used simultaneously in several internal processing schemes that assemble the data in a number of more directly useable forms. The detector includes a multi-mode counter that executes a number of different count algorithms in parallel to determine different attributes of the count data.

  18. Helical Fiber Amplifier

    DOEpatents

    Koplow, Jeffrey P.; Kliner, Dahy; Goldberg, Lew

    2002-12-17

    A multi-mode gain fiber is provided which affords substantial improvements in the maximum pulse energy, peak power handling capabilities, average output power, and/or pumping efficiency of fiber amplifier and laser sources while maintaining good beam quality (comparable to that of a conventional single-mode fiber source). These benefits are realized by coiling the multimode gain fiber to induce significant bend loss for all but the lowest-order mode(s).

  19. Computation of multi-mode heat transfer using an unstructured finite volume method

    SciTech Connect

    Mathur, S.R.; Murthy, J.Y.

    1999-07-01

    The finite volume method for radiative heat transfer is extended to compute multi-mode heat transfer problems in complex domains. The calculation domain is discretized into unstructured polyhedral control volumes over which the radiative transfer equation (RTE) and the energy equation are integrated. Implicit discretization of volumetric sources and coupling between temperature and radiation at conjugate interfaces and external boundaries is addressed. The scheme is applied to a variety of multi-mode heat transfer problems and shown to perform well.

  20. Accelerating the Convergence Speed of Precise Point Positioning by Using Multi-mode GNSS

    NASA Astrophysics Data System (ADS)

    Chao, Song; Jin-ming, Hao

    2016-04-01

    The Precise Point Positioning (PPP) does not need the support of base stations, and it has broad application prospects. However, the convergence time of PPP is long. In order to accelerate the convergence speed of PPP, the PPP model using multi-mode GNSS (Global Navigation Satellite System) is discussed. The experiments show that the convergence speed becomes faster by using the multi-mode GNSS, the mean percentage of time reduction for converging to different precisions (10 cm, 15 cm, and 20 cm) is 42%, 78%, and 74%, respectively; meanwhile, in the severe regions, such as in the mountainous regions, the number of observable satellites becomes fewer, and the PPP sometimes cannot achieve positioning using a simple system. But the PPP using multi-mode GNSS can achieve positioning and accelerate the convergence.

  1. Generalized full-vector multi-mode matching analysis of whispering gallery microcavities

    NASA Astrophysics Data System (ADS)

    Du, Xuan; Vincent, Serge; Faucher, Mathieu; Picard, Marie-Josée; Lu, Tao

    2014-06-01

    We outline a full-vectorial three-dimensional multi-mode matching technique in a cylindrical coordinate system that addresses the mutual coupling among multiple modes copropagating in a perturbed whispering-gallery-mode microcavity. In addition to its superior accuracy in respect to our previously implemented single-mode matching technique, this current technique is suitable for modelling waveguide-to-cavity coupling where the influence of multi-mode coupling is non-negligible. Using this methodology, a robust scheme for hybrid integration of a microcavity onto a silicon-on-insulator platform is proposed.

  2. Multi-mode TES Bolometer Optimization for the LSPE-SWIPE Instrument

    NASA Astrophysics Data System (ADS)

    Gualtieri, R.; Battistelli, E. S.; Cruciani, A.; de Bernardis, P.; Biasotti, M.; Corsini, D.; Gatti, F.; Lamagna, L.; Masi, S.

    2016-08-01

    In this paper, we explore the possibility of using transition edge sensor (TES) detectors in multi-mode configuration in the focal plane of the Short Wavelength Instrument for the Polarization Explorer (SWIPE) of the balloon-borne polarimeter Large-Scale Polarization Explorer (LSPE) for the Cosmic Microwave Background (CMB) polarization. This study is motivated by the fact that maximizing the sensitivity of TES bolometers, under the augmented background due to the multi-mode design, requires a non-trivial choice of detector parameters. We evaluate the best parameter combination taking into account scanning strategy, noise constraints, saturation power, and operating temperature of the cryostat during the flight.

  3. Multi-mode TES Bolometer Optimization for the LSPE-SWIPE Instrument

    NASA Astrophysics Data System (ADS)

    Gualtieri, R.; Battistelli, E. S.; Cruciani, A.; de Bernardis, P.; Biasotti, M.; Corsini, D.; Gatti, F.; Lamagna, L.; Masi, S.

    2016-01-01

    In this paper, we explore the possibility of using transition edge sensor (TES) detectors in multi-mode configuration in the focal plane of the Short Wavelength Instrument for the Polarization Explorer (SWIPE) of the balloon-borne polarimeter Large-Scale Polarization Explorer (LSPE) for the Cosmic Microwave Background (CMB) polarization. This study is motivated by the fact that maximizing the sensitivity of TES bolometers, under the augmented background due to the multi-mode design, requires a non-trivial choice of detector parameters. We evaluate the best parameter combination taking into account scanning strategy, noise constraints, saturation power, and operating temperature of the cryostat during the flight.

  4. Fiber

    MedlinePlus

    ... it can help with weight control. Fiber aids digestion and helps prevent constipation . It is sometimes used ... fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  5. WET-NZ Multi-Mode Wave Energy Converter Advancement Project

    SciTech Connect

    Klure, Justin

    2011-11-01

    Presentation from the 2011 Water Peer Review in which the principal investigator discussed the next steps to verify a multi-mode functionality of the WET-NZ device. This included overview of the approaches taken to perform wave tank testing, open ocean deployment, synthesis and analysis.

  6. Heralded source of bright multi-mode mesoscopic sub-Poissonian light.

    PubMed

    Iskhakov, T Sh; Usenko, V C; Andersen, U L; Filip, R; Chekhova, M V; Leuchs, G

    2016-05-15

    In a direct detection scheme, we observed 7.8 dB of twin-beam squeezing for multi-mode two-color squeezed vacuum generated via parametric downconversion. Applying post-selection, we conditionally prepared a sub-Poissonian state of light containing 6.3·105 photons per pulse on the average with the Fano factor 0.63±0.01. The scheme can be considered as the heralded preparation of pulses with the mean energy varying between tens and hundreds of fJ and the uncertainty considerably below the shot-noise level. Such pulses can be used in metrology (for instance, for radiometer calibration), as well as for probing multi-mode nonlinear optical effects. PMID:27176949

  7. Pipe Attrition Acoustic Locater (PAAL) from multi-mode dispersion analysis.

    PubMed

    Vogelaar, Bouko; Golombok, Michael; Campman, Xander

    2016-05-01

    Multi-mode dispersion imaging shows that pure dispersion-free torsional waves are reflected at a pipe end and flexural wave modes are suppressed. This effect can be used to locate and assess internal damage. The end reflection coefficient of this single propagating mode decreases with increasing wear. The pipe damage is located from the travel time of the torsional wave component reflected from the damage point. PMID:26922401

  8. Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations

    SciTech Connect

    Ramakrishnan, Raghunathan; Rauhut, Guntram

    2015-04-21

    Semi-quartic force fields (QFF) rely on a Taylor-expansion of the multi-dimensional Born-Oppenheimer potential energy surface (PES) and are frequently used within the calculation of anharmonic vibrational frequencies based on 2nd order vibrational perturbation theory (VPT2). As such they are usually determined by differentiation of the electronic energy with respect to the nuclear coordinates. Alternatively, potential energy surfaces can be expanded in terms of multi-mode expansions, which typically do not require any derivative techniques. The computational effort to retrieve QFF from size-reduced multi-mode expansions has been studied and has been compared with standard Taylor-expansions. As multi-mode expansions allow for the convenient introduction of subtle approximations, these will be discussed in some detail. In addition, a preliminary study about the applicability of a generalized Duschinsky transformation to QFFs is provided. This transformation allows for the efficient evaluation of VPT2 frequencies of isotopologues from the PES of the parent compound and thus avoids the recalculation of PESs in different axes systems.

  9. Fiber optic applications for laser polarized targets

    SciTech Connect

    Cummings, W.J.; Kowalczyk, R.S.

    1997-10-01

    For the past two years, the laser polarized target group at Argonne has been used multi-mode fiber optic patch cords for a variety of applications. In this paper, the authors describe the design for transporting high power laser beams with optical fibers currently in use at IUCF.

  10. A study of the multi-mode pumping of terahertz parametric oscillators

    NASA Astrophysics Data System (ADS)

    Li, J. Q.; Wang, Y. Y.; Xu, D. G.; Li, Z. X.; Yan, C.; Liu, P. X.; Yao, J. Q.

    2014-10-01

    We experimentally study the influence of multi-transverse-mode pumping on the output characteristics of terahertz parametric oscillators (TPO). We show in our experiments that the quality of the pumping beam affected the output power significantly. The terahertz output energy varied from 172 nJ to 17 nJ when the M2 value of the pump beam varied from 4.21 to 11.1 under the same pumping energy of 120 mJ/pulse. The experimental results were explained by the gain enhancement effect in stimulated Raman emission under multi-mode pumping.

  11. Design and implementation of software defined radio based multi-mode transceiver

    NASA Astrophysics Data System (ADS)

    Fang, Yixiang; Zhou, Jinhe

    2013-03-01

    In this paper, we aim at the study on multi-mode transceiver based on software defined radio(SDR). Multi-rate signal processing and polyphase filtering technique are both applied in the design and implementation of the transceiver. Simplified FFT butterfly algorithm has been employed in the polyphase filter design as well. Simulation results illustrate that BER performance can be improved by adopting the SDR proposed in this paper. Especially, it has obvious advantages at low SNR. Meanwhile, improved filter design scheme has much more predominant in-band and out-ofband performance.

  12. Fiber

    MedlinePlus

    ... broccoli, spinach, and artichokes legumes (split peas, soy, lentils, etc.) almonds Look for the fiber content of ... salsa, taco sauce, and cheese for dinner. Add lentils or whole-grain barley to your favorite soups. ...

  13. Fiber

    MedlinePlus

    ... short period of time can cause intestinal gas ( flatulence ), bloating , and abdominal cramps . This problem often goes ... 213. National Research Council. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and ...

  14. An efficient vibration energy harvester with a multi-mode dynamic magnifier

    NASA Astrophysics Data System (ADS)

    Zhou, Wanlu; Reddy Penamalli, Gopinath; Zuo, Lei

    2012-01-01

    A novel piezoelectric energy harvester with a multi-mode dynamic magnifier, which is capable of significantly increasing the bandwidth and the energy harvested from the ambient vibration, is proposed and investigated in this paper. The design comprises a multi-mode intermediate beam with a tip mass, called a ‘dynamic magnifier’, and an ‘energy harvesting beam’ with a tip mass. The piezoelectric film is adhered to the harvesting beam to harvest the vibration energy. By properly designing the parameters, such as the length, width and thickness of the two beams and the weight of the two tip masses, we can magnify the motion virtually in all the resonance frequencies of the energy harvesting beam, in a similar way as designing a new beam-type tuned mass damper (TMD) to damp the resonance frequencies of all the modes of the primary beam. Theoretical analysis, finite element simulation, and the experiment study are carried out. The results show that voltage produced by the harvesting beam is amplified for efficient energy harvesting over a broader frequency range, while the peaks of the first three modes of the primary beam can be effectively mitigated simultaneously. The experiment demonstrates 25.5 times more energy harvesting capacity than the conventional cantilever type harvester in the frequency range 3-300 Hz, and 100-1000 times more energy around all the first three resonances of the harvesting beam.

  15. TeraSCREEN: multi-frequency multi-mode Terahertz screening for border checks

    NASA Astrophysics Data System (ADS)

    Alexander, Naomi E.; Alderman, Byron; Allona, Fernando; Frijlink, Peter; Gonzalo, Ramón; Hägelen, Manfred; Ibáñez, Asier; Krozer, Viktor; Langford, Marian L.; Limiti, Ernesto; Platt, Duncan; Schikora, Marek; Wang, Hui; Weber, Marc Andree

    2014-06-01

    The challenge for any security screening system is to identify potentially harmful objects such as weapons and explosives concealed under clothing. Classical border and security checkpoints are no longer capable of fulfilling the demands of today's ever growing security requirements, especially with respect to the high throughput generally required which entails a high detection rate of threat material and a low false alarm rate. TeraSCREEN proposes to develop an innovative concept of multi-frequency multi-mode Terahertz and millimeter-wave detection with new automatic detection and classification functionalities. The system developed will demonstrate, at a live control point, the safe automatic detection and classification of objects concealed under clothing, whilst respecting privacy and increasing current throughput rates. This innovative screening system will combine multi-frequency, multi-mode images taken by passive and active subsystems which will scan the subjects and obtain complementary spatial and spectral information, thus allowing for automatic threat recognition. The TeraSCREEN project, which will run from 2013 to 2016, has received funding from the European Union's Seventh Framework Programme under the Security Call. This paper will describe the project objectives and approach.

  16. A multi-mode sensing system for corrosion detection using piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Giurgiutiu, Victor; Pollock, Patrick

    2008-03-01

    As an emerging technology for in-situ damage detection and nondestructive evaluation, structural health monitoring with active sensors (active SHM) plays as a promising candidate for the pipeline inspection and diagnosis. Piezoelectric wafer active sensor (PWAS), as an active sensing device, can be permanently attached to the structure to interrogate it at will and can operate in propagating wave mode or electromechanical impedance mode. Its small size and low cost (about $10 each) make itself a potential and unique technology for in-situ SHM application. The objective of the research in this paper is to develop a permanently installed in-situ "multi-mode" sensing system for the corrosion monitoring and prediction of critical pipeline systems. Such a system is used during in-service period, recording and monitoring the changes of the pipelines over time, such as corrosion, wall thickness, etc. Having the real-time data available, maintenance strategies based on these data can then be developed to ensure a safe and less expensive operation of the pipeline systems. After a detailed review of PWAS SHM methods, including ultrasonic, impedance, and thickness measurement, we introduce the concept of PWAS-based multi-mode sensing approach for corrosion detection in pipelines. Particularly, we investigate the potential for using PWAS waves for in thickness mode experimentally. Finally, experiments are conducted to verify the corrosion detection ability of the PWAS network in both metallic plate and pipe in a laboratory setting. Results show successful corrosion localization in both tests.

  17. Integration of geospatial multi-mode transportation Systems in Kuala Lumpur

    NASA Astrophysics Data System (ADS)

    Ismail, M. A.; Said, M. N.

    2014-06-01

    Public transportation serves people with mobility and accessibility to workplaces, health facilities, community resources, and recreational areas across the country. Development in the application of Geographical Information Systems (GIS) to transportation problems represents one of the most important areas of GIS-technology today. To show the importance of GIS network analysis, this paper highlights the determination of the optimal path between two or more destinations based on multi-mode concepts. The abstract connector is introduced in this research as an approach to integrate urban public transportation in Kuala Lumpur, Malaysia including facilities such as Light Rapid Transit (LRT), Keretapi Tanah Melayu (KTM) Komuter, Express Rail Link (ERL), KL Monorail, road driving as well as pedestrian modes into a single intelligent data model. To assist such analysis, ArcGIS's Network Analyst functions are used whereby the final output includes the total distance, total travelled time, directional maps produced to find the quickest, shortest paths, and closest facilities based on either time or distance impedance for multi-mode route analysis.

  18. A baseband LPF for GSM, TD-SCDMA and WCDMA multi-mode transmitters

    NASA Astrophysics Data System (ADS)

    Yongchang, Yu; Kefeng, Han; Lifang, Wang; Xi, Tan; Hao, Min

    2011-02-01

    This paper describes a low-pass reconfigurable baseband filter for GSM, TD-SCDMA and WCDMA multi-mode transmitters. To comply with 3GPP emission mask and limit TX leakage at the RX band, the out-of-band noise performance is optimized. Due to the distortion caused by the subthreshold leakage current of the switches used in capacitor array, a capacitor bypass technique is proposed to improve the filter's linearity. An automatic frequency tuning circuit is adopted to compensate the cut-off frequency variation. Simulation results show that the filter achieves an in-band input-referred third-order intercept point (IIP3) of 47 dBm at 1.2-V power supply and the out-of-band noise can meet TX SAW-less requirement for WCDMA & TD-SCDMA. The baseband filter incorporates -40 to 0 dB programmable gain control that is accurately variable in 0.5 dB steps. The filter's cut-off frequency can be reconfigured for GSM/TD-SCDMA/WCDMA multi-mode transmitter. The implemented baseband filter draws 3.6 mA from a 1.2-V supply in a 0.13 μm CMOS process.

  19. A Multi-Mode Blade Damping Control using Shunted Piezoelectric Transducers with Active Feedback Structure

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Morrison, Carlos; Min, James

    2009-01-01

    The Structural Dynamics and. Mechanics branch (RXS) is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this presentation, only one shunted PE transducer was used to demonstrate active control of multi-mode blade resonance damping on a titanium alloy (Ti-6A1-4V) flat plate model, regardless of bending, torsion, and 2-stripe modes. This work would have a significant impact on the conventional passive shunt damping world because the standard feedback control design tools can now be used to design and implement electric shunt for vibration control. In other words, the passive shunt circuit components using massive inductors and. resistors for multi-mode resonance control can be replaced with digital codes. Furthermore, this active approach with multi patches can simultaneously control several modes in the engine operating range. Dr. Benjamin Choi presented the analytical and experimental results from this work at the Propulsion-Safety and. Affordable Readiness (P-SAR) Conference in March, 2009.

  20. Characteristics and reliability of high power multi-mode InGaAs strained quantum well single emitters with CW output powers of over 5W

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Mason, Maribeth; Moss, Steven C.

    2006-02-01

    High-power multi-mode broad area InGaAs strained quantum well (QW) single emitters (λ ~ 920-980nm) have been mainly used for industrial applications. Recently, these broad area lasers with CW output powers >5W have also found applications in communications as pump lasers for Er-Yb co-doped fiber amplifiers. This application requires very demanding characteristics including higher reliability than industrial applications. In contrast to 980nm single mode InGaAs strained QW lasers that are widely employed in both terrestrial and submarine applications, the fact that multimode lasers have never been used in optical communications necessitates careful study of these lasers. We report investigations of performance characteristics, reliability, and failure modes of high-power multi-mode single emitters. The lasers studied were broad area strained InGaAs-GaAs single QW lasers grown either by MOCVD or MBE. Typical apertures were around 100μm wide and cavity lengths were <=4.2mm. AR-HR coated laser diode chips were mounted on carriers with junction down configuration to reduce thermal impedance. Laser thresholds were <=453mA at RT. At 6A injection current typical CW output powers were over 5W at 25°C with wall-plug efficiency of ~60%. Characteristics measured included thermal impedance and optical beam profiles that are critical in understanding performance and reliability. Automatic current control burn-in tests with different stress conditions were performed and log (I)-V characteristics were measured at RT to correlate degradation in optical output power and an increase in trap density estimated from the 2κ•T term in bulk recombination current. We also report initial analysis of lifetest results and failure modes from these lasers.

  1. Generation and entanglement of multi-dimensional multi-mode coherent fields in cavity QED

    NASA Astrophysics Data System (ADS)

    Maleki, Y.

    2016-08-01

    We introduce generalized multi-mode superposition of multi-dimensional coherent field states and propose a generation scheme of such states in a cavity QED scenario. An appropriate encoding of information on these states is employed, which maps the states to the Hilbert space of some multi-qudit states. The entanglement of these states is characterized based on such proper encodings. A detailed study of entanglement in general multi-qudit coherent states is presented, and in addition to establishing some explicit expressions for quantifying entanglement of such systems, several important features of entanglement in these system states are exposed. Furthermore, the effects of both cavity decay and channel noise on these system states are studied and their properties are illustrated.

  2. Multi-mode sliding mode control for precision linear stage based on fixed or floating stator

    NASA Astrophysics Data System (ADS)

    Fang, Jiwen; Long, Zhili; Wang, Michael Yu; Zhang, Lufan; Dai, Xufei

    2016-02-01

    This paper presents the control performance of a linear motion stage driven by Voice Coil Motor (VCM). Unlike the conventional VCM, the stator of this VCM is regulated, which means it can be adjusted as a floating-stator or fixed-stator. A Multi-Mode Sliding Mode Control (MMSMC), including a conventional Sliding Mode Control (SMC) and an Integral Sliding Mode Control (ISMC), is designed to control the linear motion stage. The control is switched between SMC and IMSC based on the error threshold. To eliminate the chattering, a smooth function is adopted instead of a signum function. The experimental results with the floating stator show that the positioning accuracy and tracking performance of the linear motion stage are improved with the MMSMC approach.

  3. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring

    SciTech Connect

    Dhote, Sharvari Zu, Jean; Zhu, Yang

    2015-04-20

    In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.

  4. Thermal rate constants of multi-mode systems for the price of one: aziridine

    NASA Astrophysics Data System (ADS)

    Rom, Naomi; Ryaboy, Victor; Moiseyev, Nimrod

    1993-03-01

    An accurate and highly efficient method for calculating thermal rate constants in the automerization reaction of aziridine is presented. Theoretical results are in good agreement with available experimental data obtained by Borchardt and Bauer. The kinetics of aziridine inversion involve strong coupling of the reaction coordinate with other internal modes. Therefore, it is expected that in order to account for the energy redistribution processes in aziridine, the multi-mode Schrödinger equation should be solved. We show, however, that accurate rate constants for this system can be obtained by performing only one- (or two-) dimensional calculations. The key point in our approach is the insertion of absorbing boundary conditions in the products region of the potential surface, which prevent reflections from the products well to the reactants well, and thereby replace the role of the "neglected" internal modes in the dynamics.

  5. A multi-mode manipulator display system for controlling remote robotic systems

    NASA Technical Reports Server (NTRS)

    Massimino, Michael J.; Meschler, Michael F.; Rodriguez, Alberto A.

    1994-01-01

    The objective and contribution of the research presented in this paper is to provide a Multi-Mode Manipulator Display System (MMDS) to assist a human operator with the control of remote manipulator systems. Such systems include space based manipulators such as the space shuttle remote manipulator system (SRMS) and future ground controlled teleoperated and telescience space systems. The MMDS contains a number of display modes and submodes which display position control cues position data in graphical formats, based primarily on manipulator position and joint angle data. Therefore the MMDS is not dependent on visual information for input and can assist the operator especially when visual feedback is inadequate. This paper provides descriptions of the new modes and experiment results to date.

  6. Multi-Mode Lamb Wave Arrival Time Extraction for Improved Tomographic Reconstruction

    SciTech Connect

    Hinders, Mark K.; Hou Jidong; Leonard, Kevin R.

    2005-04-09

    An ultrasonic signal processing technique is applied to multi-mode arrival time estimation from Lamb waveforms. The basic tool is a simplified time-scale projection called a dynamic wavelet fingerprint (DWFP) which enables direct observation of the variation of features of interest in non-stationary ultrasonic signals. The DWFP technique was used to automatically detect and evaluate each candidate through-transmitted Lamb mode. The area of the dynamic wavelet fingerprint was then used as a feature to distinguish false modes caused by noise and other interference from the true modes of interest. The set of estimated arrival times were then used as inputs for tomographic reconstruction. The Lamb wave tomography images generated with these estimated arrival times were able to indicate different defects in aluminum plates.

  7. Method and apparatus for controlling a powertrain system including a multi-mode transmission

    SciTech Connect

    Hessell, Steven M.; Morris, Robert L.; McGrogan, Sean W.; Heap, Anthony H.; Mendoza, Gil J.

    2015-09-08

    A powertrain including an engine and torque machines is configured to transfer torque through a multi-mode transmission to an output member. A method for controlling the powertrain includes employing a closed-loop speed control system to control torque commands for the torque machines in response to a desired input speed. Upon approaching a power limit of a power storage device transferring power to the torque machines, power limited torque commands are determined for the torque machines in response to the power limit and the closed-loop speed control system is employed to determine an engine torque command in response to the desired input speed and the power limited torque commands for the torque machines.

  8. Multi-mode spectrographs for small telescopes: design, operation, performances and results

    NASA Astrophysics Data System (ADS)

    Munari, U.; Valisa, P.

    2014-03-01

    We present three generations (Mark.I, II and III) of spectrographs we put into operation with ANS Collaboration 0.61m, 0.70m and 0.84m telescopes. These spectrographs are of the Multi-Mode type, allowing for rapid interchange between Echelle high dispersion and two separate single dispersion modes (low and medium resolution). All three modes are long-slit, rotate to any angle (including parallactic compensation for atmospheric dispersion), allow to select among different comparison lamps, and are auto-guided by TV imaging the slit, which is continuously adjustable in width and by a step decker in height. The latest Mark.III model adds many new features including remote operation, spatial splitting of order overlap in single dispersion modes, interchange between prism and grating cross-dispersion in the Echelle mode, spectropolarimetry, a coronagraphic mode and direct filtered imaging without removing the spectrograph from the Cassegrain focus.

  9. Heralded source of bright multi-mode mesoscopic sub-Poissonian light

    NASA Astrophysics Data System (ADS)

    Iskhakov, T. Sh.; Usenko, V. C.; Andersen, U. L.; Filip, R.; Chekhova, M. V.; Leuchs, G.

    2016-05-01

    In a direct detection scheme we observed 7.8 dB of twin-beam squeezing for multi-mode two-color squeezed vacuum generated via parametric down conversion. Applying post-selection, we conditionally prepared a Sub-Poissonian state of light containing $6.3\\cdot10^5$ photons per pulse on the average with the Fano factor $0.63\\pm0.01$. The scheme can be considered as the heralded preparation of pulses with the mean energy varying between tens and hundreds of fJ and the uncertainty considerably below the shot-noise level. Such pulses can be used in metrology (for instance, for radiometers calibration) as well as for probing nonlinear optical effects.

  10. Localization in a disordered multi-mode waveguide with absorption or amplification

    NASA Astrophysics Data System (ADS)

    Misirpashaev, T. Sh.; Paasschens, J. C. J.; Beenakker, C. W. J.

    1997-02-01

    An analytical and numerical study of transmission of radiation through a multi-mode waveguide containing a random medium with a complex dielectric constant ε = ε‧ + iε″ is presented. Depending on the sign of ε″, the medium is absorbing or amplifying. The transmitted intensity decays exponentially ∝ exp(- L/ ξ) as the waveguide length L → ∞, regardless of the sign of ε″. The localization length ξ is computed as a function of the mean free path l, the absorption or amplification length | σ| -1, and the number of modes in the waveguide N. The method used is an extension of the Fokker-Planck approach of Dorokhov, Mello, Pereyra and Kumar to non-unitary scattering matrices. Asymptotically exact results are obtained for N≫1 and | σ|≫1/ N2l. An approximate interpolation formula for all σ agrees reasonably well either numerical simulations.

  11. Design of a Multi-mode Flight Deck Decision Support System for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Krishnamurthy, Karthik

    2004-01-01

    NASA Langley has developed a multi-mode decision support system for pilots operating in a Distributed Air-Ground Traffic Management (DAG-TM) environment. An Autonomous Operations Planner (AOP) assists pilots in performing separation assurance functions, including conflict detection, prevention, and resolution. Ongoing AOP design has been based on a comprehensive human factors analysis and evaluation results from previous human-in-the-loop experiments with airline pilot test subjects. AOP considers complex flight mode interactions and provides flight guidance to pilots consistent with the current aircraft control state. Pilots communicate goals to AOP by setting system preferences and actively probing potential trajectories for conflicts. To minimize training requirements and improve operational use, AOP design leverages existing alerting philosophies, displays, and crew interfaces common on commercial aircraft. Future work will consider trajectory prediction uncertainties, integration with the TCAS collision avoidance system, and will incorporate enhancements based on an upcoming air-ground coordination experiment.

  12. A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury

    PubMed Central

    Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.

    2011-01-01

    Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave

  13. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.

    PubMed

    Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components

  14. Multi-mode absorption spectroscopy using a quantum cascade laser for simultaneous detection of NO and H2O

    NASA Astrophysics Data System (ADS)

    O'Hagan, S.; Pinto, T.; Ewart, P.; Ritchie, G. A. D.

    2016-08-01

    Detection of multiple transitions in NO and H2O using multi-mode absorption spectroscopy, MUMAS, with a quantum cascade laser, QCL, operating at 5.3 μm at scan rates up to 10 kHz is reported. The linewidth of longitudinal modes of the QCL is derived from pressure-dependent fits to experimental MUMAS data. Variations in the spectral structure of the broadband, multi-mode, output of the commercially available QCL employed are analysed to provide accurate fits of modelled MUMAS signatures to the experimental data.

  15. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates.

    PubMed

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-01-01

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect's thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method. PMID:27144571

  16. Multi-Mode Electromagnetic Ultrasonic Lamb Wave Tomography Imaging for Variable-Depth Defects in Metal Plates

    PubMed Central

    Huang, Songling; Zhang, Yu; Wang, Shen; Zhao, Wei

    2016-01-01

    This paper proposes a new cross-hole tomography imaging (CTI) method for variable-depth defects in metal plates based on multi-mode electromagnetic ultrasonic Lamb waves (LWs). The dispersion characteristics determine that different modes of LWs are sensitive to different thicknesses of metal plates. In this work, the sensitivities to thickness variation of A0- and S0-mode LWs are theoretically studied. The principles and procedures for the cooperation of A0- and S0-mode LW CTI are proposed. Moreover, the experimental LW imaging system on an aluminum plate with a variable-depth defect is set up, based on A0- and S0-mode EMAT (electromagnetic acoustic transducer) arrays. For comparison, the traditional single-mode LW CTI method is used in the same experimental platform. The imaging results show that the computed thickness distribution by the proposed multi-mode method more accurately reflects the actual thickness variation of the defect, while neither the S0 nor the A0 single-mode method was able to distinguish thickness variation in the defect region. Moreover, the quantification of the defect’s thickness variation is more accurate with the multi-mode method. Therefore, theoretical and practical results prove that the variable-depth defect in metal plates can be successfully quantified and visualized by the proposed multi-mode electromagnetic ultrasonic LW CTI method. PMID:27144571

  17. Coarse graining in micromagnetics.

    PubMed

    Grinstein, G; Koch, R H

    2003-05-23

    Numerical solutions of the micromagnetic Landau-Lifshitz-Gilbert equations provide valuable information at low temperatures (T), but produce egregious errors at higher T. For example, Curie temperatures are often overestimated by an order of magnitude. We show that these errors result from the use of block or coarse-grained variables, without a concomitant renormalization of the system parameters to account for the block size. Renormalization solves the problem of the Curie-point anomaly and improves the accuracy of more complicated micromagnetic simulations, even at low T. PMID:12785922

  18. Novel optical fiber design for DTS measurement purposes

    NASA Astrophysics Data System (ADS)

    Siska, Petr; Hajek, Lukas; Vasinek, Vladimir; Koudelka, Petr; Latal, Jan

    2015-07-01

    This article is dealing with an optical fiber refractive index design optimized for utilization in DTS (Distributed Temperature Sensing) measurements. Presented optical fiber uses wavelength of 850 nm for communication purposes and 1060 nm for sensory operation. The aim of this work is to design an optical fiber with redistribution of the optical field at 850 nm similar to communication multi-mode optical fiber 50/125 μm and for wavelength of 1060 nm the redistribution of the optical field will be shifted closer to the core-cladding boundary to increase its sensitivity to temperature. Optical properties obtained from fiber design are compared with standard multi-mode optical fiber with graded refractive index to ensure that new optical fiber design has better sensing characteristics, but still keeps good enough communication properties at the same time.

  19. An inductorless multi-mode RF front end for GNSS receiver in 55 nm CMOS

    NASA Astrophysics Data System (ADS)

    Yanbin, Luo; Chengyan, Ma; Yebing, Gan; Min, Qian; Tianchun, Ye

    2015-10-01

    An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise-canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further amplifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down-converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than -26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is -43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220 × 280 μm2.

  20. A low power dual-band multi-mode RF front-end for GNSS applications

    NASA Astrophysics Data System (ADS)

    Hao, Zhang; Zhiqun, Li; Zhigong, Wang

    2010-11-01

    A CMOS dual-band multi-mode RF front-end for the global navigation satellite system receivers of all GPS, Bei-Dou, Galileo and Glonass systems is presented. It consists of a reconfigurable low noise amplifier (LNA), a broadband active balun, a high linearity mixer and a bandgap reference (BGR) circuit. The effect of the input parasitic capacitance on the input impedance of the inductively degenerated common source LNA is analyzed in detail. By using two different LC networks at the input port and the switched capacitor at the output port, the LNA can work at two different frequency bands (1.2 GHz and 1.5 GHz) under low power consumption. The active balun uses a hybrid-connection structure to achieve high bandwidth. The mixer uses the multiple gated transistors technique to acquire a high linearity under low power consumption but does not deteriorate other performances. The measurement results of the proposed front-end achieve a noise figure of 2.1/2.0 dB, again of 33.9/33.8 dB and an input 1-dB compression point of 0/1 dBm at 1227.6/1575.42 MHz. The power consumption is about 16 mW under a 1.8 V power supply.

  1. Grating assisted optical waveguide coupler to excite individual modes of a multi-mode waveguide

    NASA Astrophysics Data System (ADS)

    Bremer, K.; Lochmann, S.; Roth, B.

    2015-12-01

    Spatial division multiplexing (SDM) in the form of mode division multiplexing (MDM) in multi-mode (MM) waveguides is currently explored to overcome the capacity limitation of single-mode (SM) waveguides in data transmission technology. In this work a new approach towards mode selective optical waveguide couplers to multiplex and demultiplex individual modes of MM waveguides is presented. We discuss a grating assisted mode selective optical waveguide coupler and evaluate numerically its coupling efficiency. The approach relies on a grating structure in a SM waveguide which is used to excite individual modes of an adjacent unmodified MM waveguide via evanescent field coupling. The simulations verify that by using the grating structure and tailoring the grating period, light from the SM waveguide can be coupled selectively into the fundamental mode or any higher-order mode of a MM waveguide with high efficiency and low crosstalk to adjacent mode-channels. The results indicate the potential of the grating assisted waveguide coupler approach for future applications in on-chip photonic networks and the (de)multiplexing of individual modes of MM waveguides.

  2. A Multi-Moded RF Delay Line Distribution System (MDLDS) for the Next Linear Collider

    SciTech Connect

    Nantista, Christopher D.

    2002-01-17

    The Delay Line Distribution System (DLDS) is an alternative to conventional pulse compression, which enhances the peak power of rf sources while matching the long pulse of those sources to the shorter filling time of accelerator structures. We present an implementation of this scheme that combines pairs of parallel delay lines of the system into single lines. The power of several sources is combined into a single waveguide delay line using a multi-mode launcher. The output mode of the launcher is determined by the phase coding of the input signals. The combined power is extracted from the delay line using mode-selective extractors, each of which extracts a single mode. Hence, the phase coding of the sources controls the output port of the combined power. The power is then fed to the local accelerator structures. We present a detailed design of such a system, including several implementation methods for the launchers, extractors, and ancillary high power rf components. The system is designed so that it can handle the 600 MW peak power required by the NLC design while maintaining high efficiency.

  3. Energy-efficient multi-mode compressed sensing system for implantable neural recordings.

    PubMed

    Suo, Yuanming; Zhang, Jie; Xiong, Tao; Chin, Peter S; Etienne-Cummings, Ralph; Tran, Trac D

    2014-10-01

    Widely utilized in the field of Neuroscience, implantable neural recording devices could capture neuron activities with an acquisition rate on the order of megabytes per second. In order to efficiently transmit neural signals through wireless channels, these devices require compression methods that reduce power consumption. Although recent Compressed Sensing (CS) approaches have successfully demonstrated their power, their full potential is yet to be explored. Built upon our previous on-chip CS implementation, we propose an energy efficient multi-mode CS framework that focuses on improving the off-chip components, including (i) a two-stage sensing strategy, (ii) a sparsifying dictionary directly using data, (iii) enhanced compression performance from Full Signal CS mode and Spike Restoration mode to Spike CS + Restoration mode and; (iv) extension of our framework to the Tetrode CS recovery using joint sparsity. This new framework achieves energy efficiency, implementation simplicity and system flexibility simultaneously. Extensive experiments are performed on simulation and real datasets. For our Spike CS + Restoration mode, we achieve a compression ratio of 6% with a reconstruction SNDR > 10 dB and a classification accuracy > 95% for synthetic datasets. For real datasets, we get a 10% compression ratio with  ∼  10 dB for Spike CS + Restoration mode. PMID:25343768

  4. Lynx multi-mode SAR in support of NATO Unified Vision 2012 trial

    NASA Astrophysics Data System (ADS)

    Dunkel, R.; Verge, T.; Linnehan, R.; Doerry, A.

    2013-05-01

    In June 2012, General Atomics Aeronautical Systems, Inc. (GA-ASI) Reconnaissance Systems Group participated in the NATO Unified Vision 2012 (UV12) Joint ISR (JISR) Trial at Orland Main Air Station in Brekstad, Norway. GA-ASI supplied a modified King Air 200 as a Predator B/MQ-9 Reaper Remotely Piloted Aircraft (RPA) surrogate outfitted with a Lynx Block 30 Multi-mode Synthetic Aperture Radar/Ground Moving Target Indicator (SAR/GMTI), a FLIR Star SAFIRE 3800HD Electro-optical/Infrared (EO/IR) sensor, and a L-3 Tactical Common Data Link. This airborne platform was combined with GA-ASI's new System for Tactical Archival, Retrieval, and Exploitation (STARE) for full integration into the NATO ISR exploitation community. UV12 was an event sponsored by the NATO Joint Capability Group on Intelligence, Surveillance, and Reconnaissance (ISR) to focus on the interoperability of national ISR assets and improving JISR concept of operations. The Predator B RPA surrogate flew alongside multiple NATO ISR assets in nine missions that showcased the platform's all-weather ISR capabilities focusing on the Lynx SAR/GMTI and Maritime Wide Area Search (MWAS) modes. The inclusion of the STARE technology allowed GA-ASI's radar and Full Motion Video (FMV) data to be seamlessly processed and passed to joint networks where the data was fused with other NATO ISR products, resulting in a full battlefield reconnaissance picture.

  5. Development of multi-mode diabatic spin-orbit models at arbitrary order

    NASA Astrophysics Data System (ADS)

    Weike, Thomas; Eisfeld, Wolfgang

    2016-03-01

    The derivation of diabatic spin-orbit (SO) Hamiltonians is presented, which are expanded in terms of nuclear coordinates to arbitrary order including the treatment of multi-mode systems, having more than one mode of the same symmetry. The derivation is based on the microscopic Breit-Pauli SO operator and the consequent utilization of time reversal and spatial symmetry transformation properties of basis functions and coordinates. The method is demonstrated for a set of 2E and 2A1 states in C3 v ∗ (double group) symmetry, once for a 3D case of one a1 and one e mode and once for a 9D case of three a1 and three e coordinates. It is shown that the general structure of the diabatic SO Hamiltonian only depends on the basis states and is strictly imposed by time reversal symmetry. The resulting matrix can be expressed easily by a power series using six parametrized structure matrices as expansion coefficients multiplied by the associated monomials in terms of symmetrized coordinates. The explicit example presented here provides a full-dimensional diabatic SO model for methyl halide cations, which will be studied in the future.

  6. Multi-mode coupling analysis of a sub-terahertz band planar corrugated Bragg reflector

    NASA Astrophysics Data System (ADS)

    Liu, Guo; Luo, Yong; Wang, Jian-Xun; Shu, Guo-Xiang

    2015-11-01

    Planar Bragg reflector operating in the sub-terahertz wavelength installed at the upstream end of a sheet beam backward wave oscillator (BWO) is very promising to minimize the whole circuit structure and make it more compact. In this paper, a sub-terahertz wavelength (0.18-0.22 THz) tunable planar Bragg reflector is numerically analyzed by using multi-mode coupling theory (MCT). The operating mode TE10 and dominant coupling mode TE01 are mainly considered in this theory. Reflection and transmission performance of the reflector are demonstrated in detail and the results, in excellent agreement with the theoretical analysis and simulation, are also presented in this paper. Self- and cross-coupling coefficients between these two modes are presented as well. The reflector behaviors with different Bragg dimensions are discussed and analyzed in the 0.16-0.22 THz range. The analysis in this paper can be of benefit to the design and fabrication of the whole BWO circuit. Project supported by the National Natural Science Foundation of China (Grant No. G0501040161101040).

  7. Multi-mode multi-band power amplifier module with high low-power efficiency

    NASA Astrophysics Data System (ADS)

    Xuguang, Zhang; Jie, Jin

    2015-10-01

    Increasingly, mobile communications standards require high power efficiency and low currents in the low power mode. This paper proposes a fully-integrated multi-mode and multi-band power amplifier module (PAM) to meet these requirements. A dual-path PAM is designed for high-power mode (HPM), medium-power mode (MPM), and low-power mode (LPM) operations without any series switches for different mode selection. Good performance and significant current saving can be achieved by using an optimized load impedance design for each power mode. The PAM is tapeout with the InGaP/GaAs heterojunction bipolar transistor (HBT) process and the 0.18-μm complementary metal-oxide semiconductor (CMOS) process. The test results show that the PAM achieves a very low quiescent current of 3 mA in LPM. Meanwhile, across the 1.7-2.0 GHz frequency, the PAM performs well. In HPM, the output power is 28 dBm with at least 39.4% PAE and -40 dBc adjacent channel leakage ratio 1 (ACLR1). In MPM, the output power is 17 dBm, with at least 21.3% PAE and -43 dBc ACLR1. In LPM, the output power is 8 dBm, with at least 18.2% PAE and -40 dBc ACLR1. Project supported by the National Natural Science Foundation of China (No. 61201244).

  8. Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array

    NASA Astrophysics Data System (ADS)

    Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul

    2008-04-01

    This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.

  9. Improved resistive shunt by means of negative capacitance: new circuit, performances and multi-mode control

    NASA Astrophysics Data System (ADS)

    Berardengo, M.; Thomas, O.; Giraud-Audine, C.; Manzoni, S.

    2016-07-01

    This paper deals with vibration control by means of piezoelectric patches shunted with electrical impedances made up by a resistance and a negative capacitance. The paper analyses most of the possible layouts by which a negative capacitance can be built and shows that a common mathematical description is possible. This allows closed formulations to be found in order to optimise the electrical network for mono- and multi-mode control. General analytical formulations are obtained to estimate the performance of the shunt in terms of vibration reduction. In particular, it is highlighted that the main effect of a negative capacitance is to artificially enhance the electromechanical coupling factor, which is the basis of performance estimation. Stability issues relating to the use of negative capacitances are especially addressed using refined models for the piezoelectric patch capacitance. Furthermore, a new circuit based on a couple of negative capacitances is proposed and tested, showing better performances than those provided by the usual layouts with a single negative capacitance. Finally, guidelines and analytical formulations to deal with the practical implementation of negative capacitance circuits are provided.

  10. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Ld-Clad-Pumped All-Fiber Tm3+-Doped Silica Fiber Laser

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Jun; Song, Shi-Fei; Tian, Yi; Wang, Yue-Zhu

    2009-08-01

    The CW 39.4 W all-fiber LD-clad-pumped Tm3+-doped fiber laser output is reported with a slope efficiency of 34% in respect to the pump power. The all-fiber laser is made up by progressively splicing the pigtail fiber, matched FBG fiber and Tm-doped fiber. The reflective FBG and Tm-doped fiber end fresnel reflection build up the laser resonance cavity. Due to the multi-mode FBG as the reflective mirror, the output laser spectrum is multi-peaks at high power output, whereas the total spectrum width is less than 2nm at nearly 1.94 μm.

  11. Top-hat beam Tm3+-doped fiber laser using an intracavity abrupt taper

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Zhong, F. F.; Wang, Y. Z.

    2011-01-01

    The top-hat beam clad-pumped Tm3+-doped fiber laser was realized simply using an intracavity multi-mode abrupt taper. The ratio of the flat-top diameter to the spot diameter reaches 53%, with a small intensity variation less than 6%, and the top-hat beam's half-divergence angle is only 5.3°. The fiber laser has a maximal output power of 5 W with slope efficiency of 39.7%, pumped by the 792 nm diode laser (LD). The abrupt taper is directly made on the multi-mode double-clad Tm3+-doped fiber near the fiber laser output end with the 0.45 ratio of taper waist diameter to fiber clad diameter, and this fiber end 4% Fresnel reflection is used to be the output coupler. The fiber laser's high reflective coupler is an intracore multi-mode FBG, which is directly written into the multi-mode Tm3+-doped fiber core using femtosecond laser and phase mask, at the other fiber end. The abrupt taper has no obviously influence on the fiber laser output power, and the output laser spectrum.

  12. The Aerosol Coarse Mode Initiative

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Adhikari, N.; Air, D.; Kassianov, E.; Barnard, J.

    2014-12-01

    Many areas of the world show an aerosol volume distribution with a significant coarse mode and sometimes a dominant coarse mode. The large coarse mode is usually due to dust, but sea salt aerosol can also play an important role. However, in many field campaigns, the coarse mode tends to be ignored, because it is difficult to measure. This lack of measurements leads directly to a concomitant "lack of analysis" of this mode. Because, coarse mode aerosols can have significant effects on radiative forcing, both in the shortwave and longwave spectrum, the coarse mode -- and these forcings -- should be accounted for in atmospheric models. Forcings based only on fine mode aerosols have the potential to be misleading. In this paper we describe examples of large coarse modes that occur in areas of large aerosol loading (Mexico City, Barnard et al., 2010) as well as small loadings (Sacramento, CA; Kassianov et al., 2012; and Reno, NV). We then demonstrate that: (1) the coarse mode can contribute significantly to radiative forcing, relative to the fine mode, and (2) neglecting the coarse mode may result in poor comparisons between measurements and models. Next we describe -- in general terms -- the limitations of instrumentation to measure the coarse mode. Finally, we suggest a new initiative aimed at examining coarse mode aerosol generation mechanisms; transport and deposition; chemical composition; visible and thermal IR refractive indices; morphology; microphysical behavior when deposited on snow and ice; and specific instrumentation needs. Barnard, J. C., J. D. Fast, G. Paredes-Miranda, W. P. Arnott, and A. Laskin, 2010: Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign, Atmospheric Chemistry and Physics, 10, 7325-7340. Kassianov, E. I., M. S. Pekour, and J. C. Barnard, 2012: Aerosols in Central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing

  13. MULTI-MODE ERROR FIELD CORRECTION ON THE DIII-D TOKAMAK

    SciTech Connect

    SCOVILLE, JT; LAHAYE, RJ

    2002-10-01

    OAK A271 MULTI-MODE ERROR FIELD CORRECTION ON THE DIII-D TOKAMAK. Error field optimization on DIII-D tokamak plasma discharges has routinely been done for the last ten years with the use of the external ''n = 1 coil'' or the ''C-coil''. The optimum level of correction coil current is determined by the ability to avoid the locked mode instability and access previously unstable parameter space at low densities. The locked mode typically has toroidal and poloidal mode numbers n = 1 and m = 2, respectively, and it is this component that initially determined the correction coil current and phase. Realization of the importance of nearby n = 1 mode components m = 1 and m = 3 has led to a revision of the error field correction algorithm. Viscous and toroidal mode coupling effects suggested the need for additional terms in the expression for the radial ''penetration'' field B{sub pen} that can induce a locked mode. To incorporate these effects, the low density locked mode threshold database was expanded. A database of discharges at various toroidal fields, plasma currents, and safety factors was supplement4ed with data from an experiment in which the fields of the n = 1 coil and C-coil were combined, allowing the poloidal mode spectrum of the error field to be varied. A multivariate regression analysis of this new low density locked mode database was done to determine the low density locked mode threshold scaling relationship n{sub e} {proportional_to} B{sub T}{sup -0.01} q{sub 95}{sup -0.79} B{sub pen} and the coefficients of the poloidal mode components in the expression for B{sub pen}. Improved plasma performance is achieved by optimizing B{sub pen} by varying the applied correction coil currents.

  14. Converting 10 kW Multi-Mode Fields Into a Single Spatial Mode with a Semilinear Phase Conjugate Mirror

    NASA Astrophysics Data System (ADS)

    Jaatinen, E.; Luther-Davies, B.

    We report on the use of a semilinear phase conjugate mirror to convert 20 % of the power contained in the 10 kW 20 ns pulses emerging from a multi-mode fibre back into a single spatial mode. This use of a phase conjugate mirror to unscramble phase distortions is unusual as only a single pass of the phase aberrating object is required. We also discuss the limitations of the technique that were encountered at high intensities (MW/cm2).

  15. Optical techniques: using coarse and detailed scans for the preventive acquisition of fingerprints with chromatic white-light sensors

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus

    2011-11-01

    The preventive application of automated latent fingerprint acquisition devices can enhance the Homeland Defence, e.g. by improving the border security. Here, contact-less optical acquisition techniques for the capture of traces are subject to research; chromatic white light sensors allow for multi-mode operation using coarse or detailed scans. The presence of potential fingerprints could be detected using fast coarse scans. Those Regions-of- Interest can be acquired afterwards with high-resolution detailed scans to allow for a verification or identification of individuals. An acquisition and analysis of fingerprint traces on different objects that are imported or pass borders might be a great enhancement for security. Additionally, if suspicious objects require a further investigation, an initial securing of potential fingerprints could be very useful. In this paper we show current research results for the coarse detection of fingerprints to prepare the detailed acquisition from various surface materials that are relevant for preventive applications.

  16. Hybrid UWB and WiMAX radio-over-multi-mode fibre for in-building optical networks

    NASA Astrophysics Data System (ADS)

    Perez, J.; Llorente, R.

    2014-01-01

    In this paper the use of hybrid WiMedia-defined ultra-wideband (UWB) and IEEE 802.16d WiMAX radio-over-fibre is proposed and experimentally demonstrated for multi-mode based in-building optical networks with the advantage of great immunity to optical transmission impairments. In the proposed approach, spectral coexistence of both signals must be achieved with negligible mutual interference. The experimental study performed addressed an indoor configuration with 50 μm multi-mode fibres (MMF) and 850 nm vertical-cavity surface-emitting laser (VCSEL) transmitters. The results indicate that the impact of the wireless convergence in radio-over-multi-mode fibre (RoMMF) is significant for UWB transmissions, mainly due to MMF dispersion and electrooptical (EO) devices with limited bandwidth. On the other hand, WiMAX transmission is feasible for a 300 m MMF and 30 m wireless link in the presence of UWB, with -31 dBm WiMAX EVM.

  17. Multi-mode combustion facility for thermal treatment studies of wastes and biomass

    NASA Astrophysics Data System (ADS)

    Eldabbagh, Fadi; Kozinski, Janusz A.; Bourassa, Michael; Farant, Jean-Pierre; Gangli, Peter; Groves, Michael; Rosen, Eric; Uloth, Vic; Hawari, Jalal; Hutny, Wes

    2004-12-01

    This article describes newly built Multi-Mode Combustion Facility (MCF) used for investigating thermal destruction of industrial wastes and combustion of biomass. A flexible, refractory-lined combustion chamber consists of individual sections of various heights and diameter of 0.5 m. The MCF can be used either as a fluidized bed combustor (FBC) to study the combustion of solid residues or as a single-burner furnace (SBF) to study cofiring of biomass and natural gas. The facility is designed such that the outer wall temperature should not exceed 327 K with the use of water-cooling system and refractory materials. The inner temperature of each section is independent of the rest of the sections and controlled individually. This arrangement allows for the combustion process to be carried out in a multizone manner called low-high-low (LHL) temperature approach. The LHL approach means that the waste/biomass is initially fed into a low temperature zone (<1060 K) and then subjected to the high temperature treatment (˜1500 K) that is followed by another low temperature zone (<1160 K). The LHL setup allows for heavy metals encapsulation and immobilization within the fly ash particles. The facility has 25 openings for sampling of solids and gases at different stages of the combustion process, as well as in situ observation. Experiments reported in this article were performed in the bubbling FBC mode with the purpose of testing the leachability of heavy metals (Cd, Cr, and Pb) from fly ash generated during two different combustion approaches: (1) multi-zone LHL treatment, and (2) no-LHL. Baseline fluidization properties of different bed materials were tested. Axial profiles of temperature and gas concentration (CO2, NO, and NOx) were compared. The results show that the leachability of the heavy metals (Cd, Cr, and Pb) contained in the LHL-generated ash particles was negligible (0.14, 0.061, and 1.55 ppm, respectively), while the leachability data from the no-LHL technique

  18. Coarse frequency comb interferometry

    NASA Astrophysics Data System (ADS)

    Schwider, J.

    2008-08-01

    Real wedge interferometers of the Fizeau-type do not allow for fringes in case of a spectral broad band source - or in short: for white light fringes. Here, the use of a suitable frequency comb source will help to overcome this limitation on the one hand and on the other will offer the capability for enhanced phase sensitivity in high precision measurements of surface deviations. Frequency combs can be produced either by using a pulse train from a fs-laser or by passive filtering of the light emitted by a broad band source as a superlum-diode or a fs-laser. The frequency comb produced by a common fs-laser is extremely fine, i.e., the frequency difference of consecutive peaks is very small or the distance of consecutive pulses of the pulse train might be of the order of 1m. Therefore, the coarse pulse train produced by passive filtering of a broad band source is better adapted to the needs of surface testing interferometers. White light fringes are either applied for the profiling of discontinuous surfaces and/or can serve as an indication for the correct choice of multiplication factors in superposition interferometry. During the last decennium it became more and more clear that spatially incoherent sources provide better measuring accuracy in surface measurements due to the reduced influence of dust diffraction patterns. The advantage of laser illumination can nevertheless be maintained if the laser light is made spatially incoherent through moving scatterers in the light path. Here, we will discuss the application of spatially incoherent broad band light frequency filtered through a Fabry-Perot filter. The main applications are in the following fields: (1) surface profiling applications using two-beam Fizeau interferometers, (2) selection of single cavities out of a series of interlaced cavities, and (3) sensitivity enhancement for multi-beam interferometers for planeness or sphericity measurements. Some of the discussed possibilities will be experimentally

  19. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  20. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  1. On the relation between incident and emergent light beams of optical fibers. II. Single-mode fibers.

    NASA Astrophysics Data System (ADS)

    Imai, H.; Sakurai, T.

    1999-03-01

    The change in F-ratio when a beam of light goes through an optical fiber is examined for a single-mode fiber (core radius = 9 μm). A previous study (Makita and Imai 1988) showed that, for multi-mode fibers, the F-ratio of the output beam is smaller (i.e. the beam spreads) than the F-ratio of the input beam. Such degradation in F-ratio is not seen in a single-mode fiber because the output beam's F-ratio is fixed by the mode propagating in the fiber.

  2. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    PubMed

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. PMID:26686458

  3. COMPARATIVE TOXICITY OF COARSE PARTICLES

    EPA Science Inventory

    As determined in preliminary studies, we expect that coarse particle toxicity will be influenced by a variety of factors including particle components (e.g., crustal material vs. metals vs. biologics), particle concentration, and the differing composition of urban and ru...

  4. Simultaneous PIV/PLIF measurements of Richtmyer-Meshkov Instabilities from single- and multi-mode perturbed interfaces

    NASA Astrophysics Data System (ADS)

    Mejia-Alvarez, Ricardo; Wilson, Brandon; Prestridge, Kathy; Extreme Fluids Team

    2013-11-01

    To support validation of RANS and LES codes for single-interface Richtmyer-Meshkov mixing, the Extreme Fluids Team at Los Alamos National Laboratory commissioned a Vertical Shock Tube. This facility has the capability of generating statistically stationary single- and multi-mode spatial perturbations on the fluid interface prior to shock-interface interaction. The present study focuses on comparing the evolution of shock-driven mixing under two different spatial perturbation conditions after interacting with a M = 1.2 shock wave. High resolution simultaneous PIV and PLIF are used for capturing 2D instantaneous realizations of velocity and density at different stages of the evolving interface. Multiple realizations of the flow at each one of these evolution stages are obtained to characterize the flow statistically. Also, a modal analysis via Singular Value Decomposition is performed on the density and velocity fields to elucidate the role of initial flow scales content on the transition to turbulent mixing.

  5. Asymmetrically infiltrated twin core photonic crystal fiber for dual-parameter sensing

    NASA Astrophysics Data System (ADS)

    Liu, Shuhui; Wang, Zhe; Hou, Maoxiang; Tian, Jie; Xia, Jujiang

    2016-08-01

    We demonstrate a fiber-optic dual parameter sensor based on a water filled Mach-Zehnder interferometer. Such a sensor is fabricated by asymmetrically infiltrating a twin core photonic crystal fiber with water, and splicing it between single mode fibers. Two sets of interference fringes which result from multi-mode interference are obtained by such a structure. By measuring the wavelength shift of the small fringe and the big envelop of the spectrum, strain and temperature can be determined simultaneously.

  6. CW single transverse mode all-fiber Tm3+-doped silica fiber laser

    NASA Astrophysics Data System (ADS)

    Song, E. Z.; Li, W. H.; You, L.

    2012-04-01

    The CW 25.6 W output power with a slope efficiency of 30.6% respected to the pump power from a CW single transverse mode all-fiber Tm3+-doped Silica Fiber Laser is reported. The all-fiber laser is made up by progressively splicing the pigtail fiber, matched FBG fiber and Tm fiber. The reflective FBG and Tm3+-doped fiber end Fresnel reflection build up the laser resonance cavity. Due to the multi-mode FBG as the reflective mirror, the output laser spectrum is multi-peaks at high output power, but the spectrum width is less than 2 nm at 1.94 μm. We estimate the beam quality to be M 2 = 2.39, clearly indicating nearly diffraction-limited beam propagation.

  7. Coarse-graining in peridynamics.

    SciTech Connect

    Silling, Stewart Andrew

    2010-11-01

    The peridynamic theory is an extension of traditional solid mechanics that treats discontinuous media, including the evolution of discontinuities due to fracture, on the same mathematical basis as classically smooth media. A recent advance in the linearized peridynamic theory permits the reduction of the number of degrees of freedom modeled within a body. Under equilibrium conditions, this coarse graining method exactly reproduces the internal forces on the coarsened degrees of freedom, including the effect of the omitted material that is no longer explicitly modeled. The method applies to heterogeneous as well as homogeneous media and accounts for defects in the material. The coarse graining procedure can be repeated over and over, resulting in a hierarchically coarsened description that, at each stage, continues to reproduce the exact internal forces present in the original, detailed model. Each coarsening step results in reduced computational cost. This talk will describe the new peridynamic coarsening method and show computational examples.

  8. Continuous coarse ash depressurization system

    DOEpatents

    Liu, Guohai; Peng, Wan Wang; Vimalchand, Pannalal

    2012-11-13

    A system for depressurizing and cooling a high pressure, high temperature dense phase solids stream having coarse solid particles with entrained gas therein. In one aspect, the system has an apparatus for at least partially depressurizing and cooling the high pressure, high temperature dense phase solids stream having gas entrained therein and a pressure letdown device for further depressurization and separating cooled coarse solid particles from a portion of the entrained gas, resulting in a lower temperature, lower pressure outlet of solid particles for downstream processing or discharge to a storage silo for future use and/or disposal. There are no moving parts in the flow path of the solids stream in the system.

  9. Impact into Coarse Grained Spheres

    NASA Technical Reports Server (NTRS)

    Barnouin-Jha, O. S.; Cintala, M.; Crawford, D. A.

    2005-01-01

    Several experimental studies [1,2,3] indicate that differences in the grain size of the target relative to the projectile could influence the cratering process. Impacts into coarse sand grains of size comparable to the projectile show some discrepancies with existing relationships for crater growth [e.g. 4]. Similarly, targets of ne grained, uniform in diameter glass spheres show differences in crater depth, transient crater diameter, and volume of ejecta excavated as a function of grain size [2,3]. The purpose of this work is to continue investigating how the relative grain size may influence early time coupling between a projectile and target, with implications for subsequent ejecta excavation and crater growth. In previous efforts we used numerical techniques to focus on the propagation of shock waves in coarse, granular media emphasizing the influence of relative grain size on crater growth, ejecta production, cratering efficiency, target strength, and crater shape [5,6,7]. In this study, we use experimental techniques - in part as a reality check for the numerical studies - to report on how coarse grained targets might influence ejecta excavation and crater shape. This body of work possesses important implications for ejecta excavation and cratering efficiency on asteroids that may possess rubble pile-like structures, and on planets that may possess either pre-fractured surfaces or large-scale heterogeneities in shock impedance.

  10. How coarse is too coarse for salmon spawning substrates?

    NASA Astrophysics Data System (ADS)

    Wooster, J. K.; Riebe, C. S.; Ligon, F. K.; Overstreet, B. T.

    2009-12-01

    Populations of Pacific salmon species have declined sharply in many rivers of the western US. Reversing these declines is a top priority and expense of many river restoration projects. To help restore salmon populations, managers often inject gravel into rivers, to supplement spawning habitat that has been depleted by gravel mining and the effects of dams—which block sediment and thus impair habitat downstream by coarsening the bed where salmon historically spawned. However, there is little quantitative understanding nor a methodology for determining when a river bed has become too coarse for salmon spawning. Hence there is little scientific basis for selecting sites that would optimize the restoration benefits of gravel injection (e.g., sites where flow velocities are suitable but bed materials are too coarse for spawning). To develop a quantitative understanding of what makes river beds too coarse for salmon spawning, we studied redds and spawning use in a series of California and Washington rivers where salmon spawning ability appears to be affected by coarse bed material. Our working hypothesis is that for a given flow condition, there is a maximum “threshold” particle size that a salmon of a given size is able to excavate and/or move as she builds her redd. A second, related hypothesis is that spawning use should decrease and eventually become impossible with increasing percent coverage by immovable particles. To test these hypotheses, we quantified the sizes and spatial distributions of immovably coarse particles in a series of salmon redds in each river during the peak of spawning. We also quantified spawning use and how it relates to percent coverage by immovable particles. Results from our studies of fall-run chinook salmon (Oncorhynchus tshawytsha) in the Feather River suggest that immovable particle size varies as a function of flow velocity over the redd, implying that faster water helps fish move bigger particles. Our Feather River study also

  11. Coarse Layering at 'Home Plate'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image shows coarse-grained layers from around the edge of a low plateau called 'Home Plate' inside Mars' Gusev Crater. One possible origin is material falling to the ground after being thrown aloft by an explosion such as a volcanic eruption or meteorite impact.

    The panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit acquired the exposures for this image on Spirit's 749th Martian day (Feb. 10, 2006). This view is an approximately true-color rendering mathematically generated from separate images taken through all of the left Pancam's 432-nanometer to 753-nanometer filters.

  12. Semi-active damping with negative stiffness for multi-mode cable vibration mitigation: approximate collocated control solution

    NASA Astrophysics Data System (ADS)

    Weber, F.; Distl, H.

    2015-11-01

    This paper derives an approximate collocated control solution for the mitigation of multi-mode cable vibration by semi-active damping with negative stiffness based on the control force characteristics of clipped linear quadratic regulator (LQR). The control parameters are derived from optimal modal viscous damping and corrected in order to guarantee that both the equivalent viscous damping coefficient and the equivalent stiffness coefficient of the semi-active cable damper force are equal to their desired counterparts. The collocated control solution with corrected control parameters is numerically validated by free decay tests of the first four cable modes and combinations of these modes. The results of the single-harmonic tests demonstrate that the novel approach yields 1.86 times more cable damping than optimal modal viscous damping and 1.87 to 2.33 times more damping compared to a passive oil damper whose viscous damper coefficient is optimally tuned to the targeted mode range of the first four modes. The improvement in case of the multi-harmonic vibration tests, i.e. when modes 1 and 3 and modes 2 and 4 are vibrating at the same time, is between 1.55 and 3.81. The results also show that these improvements are obtained almost independent of the cable anti-node amplitude. Thus, the proposed approximate real-time applicable collocated semi-active control solution which can be realized by magnetorheological dampers represents a promising tool for the efficient mitigation of stay cable vibrations.

  13. Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers

    NASA Astrophysics Data System (ADS)

    O'Hagan, S.; Northern, J. H.; Gras, B.; Ewart, P.; Kim, C. S.; Kim, M.; Merritt, C. D.; Bewley, W. W.; Canedy, C. L.; Vurgaftman, I.; Meyer, J. R.

    2016-06-01

    The application of an interband cascade laser, ICL, to multi-mode absorption spectroscopy, MUMAS, in the mid-infrared region is reported. Measurements of individual mode linewidths of the ICL, derived from the pressure dependence of lineshapes in MUMAS signatures of single, isolated, lines in the spectrum of HCl, were found to be in the range 10-80 MHz. Multi-line spectra of methane were recorded using spectrally limited bandwidths, of approximate width 27 cm-1, defined by an interference filter, and consist of approximately 80 modes at spectral locations spanning the 100 cm-1 bandwidth of the ICL output. Calibration of the methane pressures derived from MUMAS data using a capacitance manometer provided measurements with an uncertainty of 1.1 %. Multi-species sensing is demonstrated by the simultaneous detection of methane, acetylene and formaldehyde in a gas mixture. Individual partial pressures of the three gases are derived from best fits of model MUMAS signatures to the data with an experimental error of 10 %. Using an ICL, with an inter-mode interval of ~10 GHz, MUMAS spectra were recorded at pressures in the range 1-10 mbar, and, based on the data, a potential minimum detection limit of the order of 100 ppmv is estimated for MUMAS at atmospheric pressure using an inter-mode interval of 80 GHz.

  14. Monte Carlo simulation for Multi-Mode Elastic Peak Electron Spectroscopy of crystalline materials: Effects of surface structure and excitation

    NASA Astrophysics Data System (ADS)

    Gruzza, B.; Chelda, S.; Robert-Goumet, C.; Bideux, L.; Monier, G.

    2010-01-01

    The Multi-Mode Elastic Peak Electron Spectroscopy (MM-EPES) analysis is confined to incoherent electron elastic scattering and the use of variable primary energy. This experimental method is very sensitive to the surface region of the sample. However, for quantitative interpretation, the MM-EPES method needs jointly a Monte Carlo (MC) computer simulation of electron trajectories in the solid. In the present work, we proposed a new approach to calculate the percentage η e of elastic reflected electrons by the surface of a sample. This simulation takes into account the surface effects (i.e. surface plasmon), and the atoms arrangement in the substrate. The concept of the surface excitation parameter (SEP) is also presented. Computer simulations were performed on the three low index single crystals of Cu, Au, Si and Ag. The results confirm that the distribution of substrate atoms, according to the crystallographic structure, influences the intensity measured by EPES. A simple prediction formula was proposed to calculate η e for elastic electrons entering in a Retarding Field Analyzer (RFA) spectrometer which is the apparatus giving experimentally numerical values of the percentage η e.

  15. A reconfigurable multi-mode multi-band transmitter with integrated frequency synthesizer for short-range wireless communication

    NASA Astrophysics Data System (ADS)

    Nan, Qi; Fan, Chen; Lingwei, Zhang; Xiaoman, Wang; Baoyong, Chi

    2013-09-01

    A reconfigurable multi-mode direct-conversion transmitter (TX) with integrated frequency synthesizer (FS) is presented. The TX as well as the FS is designed with a flexible architecture and frequency plan, which helps to support all the 433/868/915 MHz ISM band signals, with the reconfigurable bandwidth from 250 kHz to 2 MHz. In order to save power and chip area, only one 1.8 GHz VCO is adopted to cover the whole frequency range. All the operation modes can be regulated in real time by configuring the integrated register-bank through an SPI interface. Implemented in 180 nm CMOS, the FS achieves a frequency coverage of 320-460 MHz and 620-920 MHz. The lowest phase noise can be -107 dBc/Hz at a 100 kHz offset and -126 dBc/Hz at a 1 MHz offset. The transmitter features a + 10.2 dBm peak output power with a +9.5 dBm 1-dB-compression point and 250 kHz/500 kHz/1 MHz/2 MHz reconfigurable signal bandwidth.

  16. Large-eddy simulations of the multi-mode Richtmyer-Meshkov instability and turbulent mixing under reshock

    NASA Astrophysics Data System (ADS)

    Wang, T.; Bai, J. S.; Li, P.; Wang, B.; Du, L.; Tao, G.

    2016-06-01

    The multi-mode Richtmyer-Meshkov instability under reshock and the induced turbulent mixing are numerically investigated by using our parallel large-eddy simulation code MVFT (multi-viscous-flow and turbulence), in which the third-order Godonov scheme is used based on the finite volume method. The one-dimensional wave diagram of wave-interface interaction is presented. The turbulent mixing zone (TMZ) width is in good agreement with experiments. The TMZ width grows in time as a power law before reshock and an exponential law after reshock. The time scaling laws of statistics show the evolution of TMZ has a statistics similarity behavior. The turbulent kinetic energy and dissipation rate, whether they are the resolved-scales or subgrid-scales, all decay with time as a power law before reshock and an exponential law after reshock, so does the enstrophy. The modal analysis shows that the evolution of TMZ is still dominated by the initial perturbation modes during a long time after the first shock. The kinetic energy and enstrophy spectra are amplified extremely by the reshock. After reshock, the energy spectrum moves toward the low wave numbers, which illustrates that larger and larger spatial structures develop in the TMZ. It is also shown that the global spectra exhibit a k-3 scaling law after the reshock and a k-3.5 scaling law at the very late times in three-dimension.

  17. The power of coarse graining in biomolecular simulations

    PubMed Central

    Ingólfsson, Helgi I; Lopez, Cesar A; Uusitalo, Jaakko J; de Jong, Djurre H; Gopal, Srinivasa M; Periole, Xavier; Marrink, Siewert J

    2014-01-01

    Computational modeling of biological systems is challenging because of the multitude of spatial and temporal scales involved. Replacing atomistic detail with lower resolution, coarse grained (CG), beads has opened the way to simulate large-scale biomolecular processes on time scales inaccessible to all-atom models. We provide an overview of some of the more popular CG models used in biomolecular applications to date, focusing on models that retain chemical specificity. A few state-of-the-art examples of protein folding, membrane protein gating and self-assembly, DNA hybridization, and modeling of carbohydrate fibers are used to illustrate the power and diversity of current CG modeling. PMID:25309628

  18. Characterization of coarse particulate matter in school gyms

    SciTech Connect

    Branis, Martin; Safranek, Jiri

    2011-05-15

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM{sub 10-2.5} and PM{sub 2.5-1.0}) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM{sub 10-2.5} 4.1-7.4 {mu}g m{sup -3} and PM{sub 2.5-1.0} 2.0-3.3 {mu}g m{sup -3}) than indoors (average PM{sub 10-2.5} 13.6-26.7 {mu}g m{sup -3} and PM{sub 2.5-1.0} 3.7-7.4 {mu}g m{sup -3}). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM{sub 10-2.5} and 1.4-4.8 for the PM{sub 2.5-1.0} values. Under extreme conditions, the I/O ratios reached 180 (PM{sub 10-2.5}) and 19.1 (PM{sub 2.5-1.0}). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school

  19. Coarse-graining stiff bonds

    NASA Astrophysics Data System (ADS)

    Español, P.; de la Torre, J. A.; Ferrario, M.; Ciccotti, G.

    2011-11-01

    The method of constraints in molecular dynamics is useful because it avoids the resolution of high frequency motions with very small time steps. However, the price to pay is that both the dynamics and the statistics of a constrained system differ from those of the unconstrained one. Instead of using constraints, we propose to dispose of high frequency motions by a coarse-graining procedure in which fast variables are eliminated. These fast variables are thus modeled as friction and thermal fluctuations. We illustrate the methodology with a simple model case, a diatomic molecule in a monoatomic solvent, in which the bond between the atoms of a diatomic molecule is stiff. Although the example is very simple and does not display the interesting effects of "wrong" statistics of the constrained system (i.e. the well-known issue connected to the Fixman potential), it is well suited to give the proof of concept of the whole procedure.

  20. Multi-mode horn

    NASA Technical Reports Server (NTRS)

    Neilson, Jeffrey M. (Inventor)

    2002-01-01

    A horn has an input aperture and an output aperture, and comprises a conductive inner surface formed by rotating a curve about a central axis. The curve comprises a first arc having an input aperture end and a transition end, and a second arc having a transition end and an output aperture end. When rotated about the central axis, the first arc input aperture end forms an input aperture, and the second arc output aperture end forms an output aperture. The curve is then optimized to provide a mode conversion which maximizes the power transfer of input energy to the Gaussian mode at the output aperture.

  1. Lithosphere-Asthenosphere Transition, Mid-Lithosphere Discontinuity and Radial Anisotropy from Multi-mode Surface Wave Tomography

    NASA Astrophysics Data System (ADS)

    Yoshizawa, K.; Kennett, B. L. N.

    2015-12-01

    Seismic surface waves are the major source of information to delineate the lateral heterogeneity and anisotropy in the upper mantle. S-wave radial anisotropy representing the difference between SV and SH velocities is often discussed with the seismic properties of the lithosphere-asthenosphere transition (LAT) and the mid-lithosphere discontinuity (MLD). Such boundaries have been studied well by body-wave receiver functions, which have a good sensitivity to the sharpness of boundaries. Surface waves are rather insensitive to the boundary sharpness, but can delineate the spatial distributions of shear wave speeds and radial anisotropy in the upper mantle, which can be alternative constraints on LAT and MLD. We have recently constructed a radially anisotropic 3-D S wave speed model of the Australian continent from multi-mode Love and Rayleigh waves with enhanced ray coverage. In the inversions for S-wave radial anisotropy, we can use either parameterizations for SH and SV velocities, or for dimensionless radially anisotropic parameter ξ=(Vsh/Vsv)2. Both are theoretically the same, but this difference causes non-negligible effects on the estimated radial anisotropy, mainly due to the different sensitivities of Love-wave phase speeds to the structural parameters. Synthetic experiments and data variance reductions suggest the former is the better choice. The LAT throughout the continent can be estimated by the vertical velocity gradient of the isotropic S-wave model. The radial anisotropy with the suitable model parameterization shows strong anisotropy with faster SH velocity in the asthenosphere, suggesting the influence of strong shear beneath the fast drifting Australian continent. We can also identify the clear vertical changes in the radial anisotropy profiles at the MLD depth estimated from earlier receiver function studies in cratonic regions, which can be a key to elucidate the enigmatic MLD in the continental lithosphere.

  2. The backscattering characteristics of wetland vegetation and water-level changes detection using multi-mode SAR: A case study

    NASA Astrophysics Data System (ADS)

    Zhang, Meimei; Li, Zhen; Tian, Bangsen; Zhou, Jianmin; Tang, Panpan

    2016-03-01

    A full understanding of the backscattering characteristics of wetlands is necessary for the analysis of the hydrological conditions. In this study, a temporal set of synthetic aperture radar (SAR) imagery, acquired at different frequencies, polarizations and incidence angles over the coastal wetlands of the Liaohe River Delta, China, were used to characterize seasonal variations in radar backscattering coefficient for reed marshes and rice fields. The combination of SAR backscattering intensity and an optical-based normalized difference vegetation index (NDVI) for long time series can provide additional insight into vegetation structural and its hydrological states. After identifying the factors that induce the backscattering and scattering mechanism changes, detailed analysis of L-band ALOS PALSAR interferometric SAR (InSAR) imagery was conducted to study water-level changes under different environmental conditions. In addition, ENVISAT altimetry was used to validate the accuracy of the water-level changes estimated using the InSAR technique-this is an effective tool instead of sparsely distributed gauge stations for the validation. Our study demonstrates that L-band SAR data with horizontal polarization is particularly suitable for the extraction of water-level changes in the study area; however, vertically-polarized C-band data may also be useful where the density of herbaceous vegetation is low at the initial stage. It is also shown that integrated analysis of the backscattering mechanism and interferometric characteristics using multi-mode SAR can considerably enhance the reliability of the water-level retrieval scheme and better capture the spatial distribution of hydrological patterns.

  3. Hybrid PD and effective multi-mode positive position feedback control for slewing and vibration suppression of a smart flexible manipulator

    NASA Astrophysics Data System (ADS)

    Lou, Jun-qiang; Wei, Yan-ding; Yang, Yi-ling; Xie, Feng-ran

    2015-03-01

    A hybrid control strategy for slewing and vibration suppression of a smart flexible manipulator is presented in this paper. It consists of a proportional derivative controller to realize motion control, and an effective multi-mode positive position feedback (EMPPF) controller to suppress the multi-mode vibration. Rather than treat each mode equally as the standard multi-mode PPF, the essence of the EMPPF is that control forces of different modes are applied according to the mode parameters of the respective modes, so the vibration modes with less vibration energy receive fewer control forces. Stability conditions for the close loop system are established through stability analysis. Optimal parameters of the EMPPF controller are obtained using the method of root locus analysis. The performance of the proposed strategy is demonstrated by simulation and experiments. Experimental results show that the first two vibration modes of the manipulator are effectively suppressed. The setting time of the setup descends approximately 55%, reaching 3.12 s from 5.67 s.

  4. FAST FLOW IN UNSATURATED COARSE SEDIMENTS

    EPA Science Inventory

    This research proposal was developed to improve our understanding of the physics of unsaturated flow in coarse- to very coarse-textured sediments, and through this meet practical needs related to contaminant transport in such vadose environments. This is a critical area for impr...

  5. Numerical modeling of multi-mode active control of turbofan tonal noise using a boundary element method

    NASA Astrophysics Data System (ADS)

    Ireland, Laralee Gordon

    A numerical model was developed to investigate the possibility of implementing active control (ANC) to minimize noise radiation from high-bypass turbofan engines. Previous experimental work on the NASA Glenn Research Center active noise control fan (ANCF) was encouraging, but the question remained whether the modal approach investigated could be effective on real engines. The engine model developed for this research project uses an indirect boundary element method, implemented with Sysnoise, and a multi-mode Newton's algorithm, implemented with MATLAB(TM), to simulate the active control. Noise from the inlet was targeted. Both the experimental and numerical results based on the NASA ANCF simplified cylindrical engine geometry indicate overall reductions in the m = 2 component of the noise. Reductions obtained at the numerical sensor rings range from 17 dB to 63 dB and at a plane in the duct inlet, -8 dB to 33 dB. Rings mounted on the inlet duct are unable to accurately predict the total reduction of the inlet field, but the controller is still able to effectively reduce the total acoustic field. Generally, one sensor ring and one actuator ring per propagating mode were necessary to control the inlet field. At frequencies close to the cut-off frequency of a mode, an additional sensor and actuator ring were needed to adequately control the inlet field due to the evanescent mode. A more realistic, but still axisymmetric, engine geometry based on the GE CF6-80C engine was developed and the same algorithm used. Reductions obtained at the sensor rings range from 4 dB to 56 dB and at the duct inlet plane, from 12 dB to 26 dB. The overall far field noise radiation from the engine remained unchanged (0.4 dB) or decreased slightly (3.6 dB). The inlet noise was controlled at all frequencies but the noise from the exhaust was increased. The effect of inlet control on the exhaust radiation suggests the need for a controller that targets both the inlet and exhaust noise

  6. All-fiber ultra-narrow linewidth 50 pm Tm3+-doped double-clad fiber laser at 1948 nm

    NASA Astrophysics Data System (ADS)

    Jing, T.; Zhang, Y. J.; Zhong, F. F.

    2011-01-01

    A high stability all-fiber LD-clad-pumped Tm3+-doped fiber laser was reported. The fiber laser had the ultra-narrow linewidth 50 pm at 1.948 μm with the maximal output power of 12.8 W. The slope efficiency was 28.9%, and threshold was 5.7 W. The double-clad Tm3+-doped fiber core was multi-mode, which had a demission of 25/250 μm with the core NA of 0.1 and inner-clad NA of 0.46. The high reflectivity coupler FBG was directly written into the single-mode passive photosensitive optical fiber core, which had a core diameter of 15 μm and NA of 0.1. The cavity was build-up by the high reflectivity FBG and the output fiber end Fresnel reflectivity.

  7. Pump and signal combiner for bi-directional pumping of all-fiber lasers and amplifiers.

    PubMed

    Theeg, Thomas; Sayinc, Hakan; Neumann, Jörg; Overmeyer, Ludger; Kracht, Dietmar

    2012-12-17

    We developed an all-fiber component with a signal feedthrough capable of combining up to 6 fiber-coupled multi-mode pump sources to a maximum pump power of 400 W at efficiencies in the range of 89 to 95%, providing the possibility of transmitting a high power signal in forward and in reverse direction. Hence, the fiber combiner can be implemented in almost any fiber laser or amplifier architecture. The complete optical design of the combiner was developed based on ray tracing simulations and confirmed by experimental results. PMID:23263048

  8. Development of an instrumentation system for measurement of degradation of lubricating oil using optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Laskar, S.; Bordoloi, S.

    2016-01-01

    This paper presents an instrumentation system to measure the degradation in lubricating oil using a bare, tapered and bent multi-mode optical fiber (BTBMOF) sensor probe and a temperature probe. The sensor system consists of (i) a bare, tapered and bent multi-mode optical fiber (BTBMOF) as optical sensor along with a laser source and a LDR (Light Dependent Resistor) as detector (ii) a temperature sensor (iii) a ATmega microcontroller based data acquisition system and (iv) a trained ANN for processing and calibration. The BTBMOF sensor and the temperature sensor are used to provide the measure of refractive index (RI) and the temperature of a lubricating oil sample. A microcontroller based instrumentation system with trained ANN algorithm has been developed to determine the degradation of the lubricating oil sample by sampling the readings of the optical fiber sensor, and the temperature sensor.

  9. SU-E-I-23: Design and Clinical Application of External Marking Body in Multi- Mode Medical Images Registration and Fusion

    SciTech Connect

    Chen, Z; Gong, G

    2014-06-01

    Purpose: To design an external marking body (EMB) that could be visible on computed tomography (CT), magnetic resonance (MR), positron emission tomography (PET) and single-photon emission computed tomography (SPECT) images and to investigate the use of the EMB for multiple medical images registration and fusion in the clinic. Methods: We generated a solution containing paramagnetic metal ions and iodide ions (CT'MR dual-visible solution) that could be viewed on CT and MR images and multi-mode image visible solution (MIVS) that could be obtained by mixing radioactive nuclear material. A globular plastic theca (diameter: 3–6 mm) that mothball the MIVS and the EMB was brought by filling MIVS. The EMBs were fixed on the patient surface and CT, MR, PET and SPECT scans were obtained. The feasibility of clinical application and the display and registration error of EMB among different image modalities were investigated. Results: The dual-visible solution was highly dense on CT images (HU>700). A high signal was also found in all MR scanning (T1, T2, STIR and FLAIR) images, and the signal was higher than subcutaneous fat. EMB with radioactive nuclear material caused a radionuclide concentration area on PET and SPECT images, and the signal of EMB was similar to or higher than tumor signals. The theca with MIVS was clearly visible on all the images without artifact, and the shape was round or oval with a sharp edge. The maximum diameter display error was 0.3 ± 0.2mm on CT and MRI images, and 1.0 ± 0.3mm on PET and SPECT images. In addition, the registration accuracy of the theca center among multi-mode images was less than 1mm. Conclusion: The application of EMB with MIVS improves the registration and fusion accuracy of multi-mode medical images. Furthermore, it has the potential to ameliorate disease diagnosis and treatment outcome.

  10. Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide.

    PubMed

    Tanaka, Daiki; Shoji, Yuya; Kuwahara, Masashi; Wang, Xiaomin; Kintaka, Kenji; Kawashima, Hitoshi; Toyosaki, Tatsuya; Ikuma, Yuichiro; Tsuda, Hiroyuki

    2012-04-23

    We report a multi-mode interference-based optical gate switch using a Ge(2)Sb(2)Te(5) thin film with a diameter of only 1 µm. The switching operation was demonstrated by laser pulse irradiation. This switch had a very wide operating wavelength range of 100 nm at around 1575 nm, with an average extinction ratio of 12.6 dB. Repetitive switching over 2,000 irradiation cycles was also successfully demonstrated. In addition, self-holding characteristics were confirmed by observing the dynamic responses, and the rise and fall times were 130 ns and 400 ns, respectively. PMID:22535118

  11. Thermodynamically Consistent Coarse-Graining of Polymers

    NASA Astrophysics Data System (ADS)

    Guenza, Marina

    2015-03-01

    Structural and dynamical properties of macromolecular liquids, melts and mixtures, bridge an extensive range of length- and time-scales. For these systems, the computational limitations of the atomistic description prevent the study of the properties of interest and coarse-grained models remain the only viable approach. In coarse-grained models, structural and thermodynamic consistency across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. This talk presents a coarse-graining approach that conserves structural and thermodynamic quantities independent of the extent of coarse-graining, and describes a model for the reconstruction of the dynamics measured in mesoscale simulations of the coarse-grained system. Some of the general challenges of preserving structural and thermodynamic consistency in coarse-grained models are discussed together with the conditions by which the problem is lessened. This material is based upon work partially supported by the National Science Foundation under Grant No. CHE-1362500.

  12. Coarse-graining methods for computational biology.

    PubMed

    Saunders, Marissa G; Voth, Gregory A

    2013-01-01

    Connecting the molecular world to biology requires understanding how molecular-scale dynamics propagate upward in scale to define the function of biological structures. To address this challenge, multiscale approaches, including coarse-graining methods, become necessary. We discuss here the theoretical underpinnings and history of coarse-graining and summarize the state of the field, organizing key methodologies based on an emerging paradigm for multiscale theory and modeling of biomolecular systems. This framework involves an integrated, iterative approach to couple information from different scales. The primary steps, which coincide with key areas of method development, include developing first-pass coarse-grained models guided by experimental results, performing numerous large-scale coarse-grained simulations, identifying important interactions that drive emergent behaviors, and finally reconnecting to the molecular scale by performing all-atom molecular dynamics simulations guided by the coarse-grained results. The coarse-grained modeling can then be extended and refined, with the entire loop repeated iteratively if necessary. PMID:23451897

  13. High-resolution low-frequency fluctuation map of a multimode laser diode subject to filtered optical feedback via a fiber Bragg grating.

    PubMed

    Baladi, Fadwa; Lee, Min Won; Burie, Jean-René; Bettiati, Mauro A; Boudrioua, Azzedine; Fischer, Alexis P A

    2016-07-01

    A highly detailed and extended map of low-frequency fluctuations is established for a high-power multi-mode 980 nm laser diode subject to filtered optical feedback from a fiber Bragg grating. The low-frequency fluctuations limits and substructures exhibit substantial differences with previous works. PMID:27367073

  14. 10 Spatial mode transmission using low differential mode delay 6-LP fiber using all-fiber photonic lanterns.

    PubMed

    van Weerdenburg, John; Velàzquez-Benitez, Amado; van Uden, Roy; Sillard, Pierre; Molin, Denis; Amezcua-Correa, Adrian; Antonio-Lopez, Enrique; Kuschnerov, Maxim; Huijskens, Frans; de Waardt, Hugo; Koonen, Ton; Amezcua-Correa, Rodrigo; Okonkwo, Chigo

    2015-09-21

    To unlock the cost benefits of space division multiplexing transmission systems, higher spatial multiplicity is required. Here, we investigate a potential route to increasing the number of spatial mode channels within a single core few-mode fiber. Key for longer transmission distances and low computational complexity is the fabrication of fibers with low differential mode group delays. As such in this work, we combine wavelength and mode-division multiplexed transmission over a 4.45 km low-DMGD 6-LP-mode fiber by employing low-loss all-fiber 10-port photonic lanterns to couple light in and out of the fiber. Hence, a minimum DMGD of 0.2 ns (maximum 0.357 ns) is measured after 4.45 km. Instrumental to the multi-mode transmission system is the employed time-domain-SDM receiver, allowing 10 spatial mode channels (over both polarizations) to be captured using only 3 coherent receivers and real-time oscilloscopes in comparison with 10 for conventional methods. The spatial channels were unraveled using 20 × 20 multiple-input multiple-output digital signal processing. By employing a novel round-robin encoding technique, stable performance over a long measurement period demonstrates the feasibility of 10x increase in single-core multi-mode transmission. PMID:26406677

  15. Quasiclassical coarse graining and thermodynamic entropy

    SciTech Connect

    Gell-Mann, Murray; Hartle, James B.

    2007-08-15

    Our everyday descriptions of the universe are highly coarse grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no nontrivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact. Quantum theory allows for various coarse-grained descriptions, some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of 'quasiclassical descriptions' defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibrium, leading to closed sets of equations of motion. In any description, information is sacrificed through the coarse graining that yields decoherence and gives rise to probabilities for histories. In quasiclassical descriptions, further information is sacrificed in exhibiting the emergent regularities summarized by classical equations of motion. An appropriate entropy measures the loss of information. For a 'quasiclassical realm' this is connected with the usual thermodynamic entropy as obtained from statistical mechanics. It was low for the initial state of our universe and has been increasing since.

  16. Convergent Coarseness Regulation for Segmented Images

    SciTech Connect

    Paglieroni, D W

    2004-05-27

    In segmentation of remotely sensed images, the number of pixel classes and their spectral representations are often unknown a priori. Even with prior knowledge, pixels with spectral components from multiple classes lead to classification errors and undesired small region artifacts. Coarseness regulation for segmented images is proposed as an efficient novel technique for handling these problems. Beginning with an over-segmented image, perceptually similar connected regions are iteratively merged using a method reminiscent of region growing, except the primitives are regions, not pixels. Interactive coarseness regulation is achieved by specifying the area {alpha} of the largest region eligible for merging. A region with area less than {alpha} is merged with the most spectrally similar connected region, unless the regions are perceived as spectrally dissimilar. In convergent coarseness regulation, which requires no user interaction, {alpha} is specified as the total number of pixels in the image, and the coarseness regulation output converges to a steady-state segmentation that remains unchanged as {alpha} is further increased. By applying convergent coarseness regulation to AVIRIS, IKONOS and DigitalGlobe images, and quantitatively comparing computer-generated segmentations to segmentations generated manually by a human analyst, it was found that the quality of the input segmentations was consistently and dramatically improved.

  17. Multi-modal label-free imaging based on a femtosecond fiber laser

    PubMed Central

    Xie, Ruxin; Su, Jue; Rentchler, Eric C.; Zhang, Ziyan; Johnson, Carey K.; Shi, Honglian; Hui, Rongqing

    2014-01-01

    We demonstrate multi-mode microscopy based on a single femtosecond fiber laser. Coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS) and photothermal images can be obtained simultaneously with this simplified setup. Distributions of lipid and hemoglobin in sliced mouse brain samples and blood cells are imaged. The dependency of signal amplitude on the pump power and pump modulation frequency is characterized, which allows to isolate the impact from different contributions. PMID:25071972

  18. Multi-modal label-free imaging based on a femtosecond fiber laser.

    PubMed

    Xie, Ruxin; Su, Jue; Rentchler, Eric C; Zhang, Ziyan; Johnson, Carey K; Shi, Honglian; Hui, Rongqing

    2014-07-01

    We demonstrate multi-mode microscopy based on a single femtosecond fiber laser. Coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS) and photothermal images can be obtained simultaneously with this simplified setup. Distributions of lipid and hemoglobin in sliced mouse brain samples and blood cells are imaged. The dependency of signal amplitude on the pump power and pump modulation frequency is characterized, which allows to isolate the impact from different contributions. PMID:25071972

  19. Rayleigh backscattering theory for single-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Nakazawa, M.

    1983-09-01

    The theory of backscattering in single-mode optical fibers is described through use of a correlation function for the refractive-index fluctuation in the fiber. A simple formula for the backscattered power is derived using two correlation functions for the Booker-Gordon and Gaussian models. The zeroth-order approximation of the formula, in which the correlation length is much smaller than the spot size of the waveguide mode, coincides with Brinkmeyer's model. The backscattered power at the input end of single-mode fiber is compared with that for multi-mode fiber. It is also shown that the backscattered power level at the input end is lower by approximately 55 dB than the input power level.

  20. Implementation and flight-test of a multi-mode rotorcraft flight-control system for single-pilot use in poor visibility

    NASA Technical Reports Server (NTRS)

    Hindson, William S.

    1987-01-01

    A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.

  1. Observation of multi-mode: Upconversion, downshifting and quantum-cutting emission in Tm3+/Yb3+ co-doped Y2O3 phosphor

    NASA Astrophysics Data System (ADS)

    Yadav, Ranvijay; Singh, S. K.; Verma, R. K.; Rai, S. B.

    2014-04-01

    Micro-crystalline Y2O3 phosphor co-doped with Yb3+/Tm3+ has been synthesized and characterized. The phosphor material gives efficient multimodal emission via downshifting (DS), upconversion (UC), and downconversion (DC)/quantum cutting (QC) luminescence processes. Cross relaxation and co-operative energy transfer (CET) have been ascribed as the possible mechanism for QC; as result of which a UV/blue photon absorbed by Tm3+ splits into two near infrared photons (wavelength range 950-1050 nm) emitted by Yb3+. The Yb3+ concentration dependent ET efficiency and QC efficiency has also been evaluated. Such multi-mode emitting phosphors could have potential applications in increasing the conversion efficiency of solar cells via spectral modification.

  2. Vibration damping with active carbon fiber structures

    NASA Astrophysics Data System (ADS)

    Neugebauer, Reimund; Kunze, Holger; Riedel, Mathias; Roscher, Hans-Jürgen

    2007-04-01

    This paper presents a mechatronic strategy for active reduction of vibrations on machine tool struts or car shafts. The active structure is built from a carbon fiber composite with embedded piezofiber actuators that are composed of piezopatches based on the Macro Fiber Composite (MFC) technology, licensed by NASA and produced by Smart Material GmbH in Dresden, Germany. The structure of these actuators allows separate or selectively combined bending and torsion, meaning that both bending and torsion vibrations can be actively absorbed. Initial simulation work was done with a finite element model (ANSYS). This paper describes how state space models are generated out of a structure based on the finite element model and how controller codes are integrated into finite element models for transient analysis and the model-based control design. Finally, it showcases initial experimental findings and provides an outlook for damping multi-mode resonances with a parallel combination of resonant controllers.

  3. Advanced manufacturing technologies for reduced cost and weight in portable ruggedized VIS-IR and multi-mode optical systems for land, sea, and air

    NASA Astrophysics Data System (ADS)

    Sweeney, Michael; Spinazzola, Robert; Morrison, Donald; Macklin, Dennis; Marion, Jared

    2011-06-01

    Homeland security systems, special forces, unmanned aerial vehicles (UAV), and marine patrols require low cost, high performance, multi-mode visible through infrared (VIS-IR) wavelength optical systems to identify and neutralize potential threats that often arise at long ranges and under poor visibility conditions. Long range and wide spectral performance requirements favor reflective optical system design solutions. The limited field of view of such designs can be significantly enhanced by the use of catadioptric optical solutions that utilize molded or diamond point machined VIS-IR lenses downstream from reflective objective optics. A common optical aperture that services multiple modes of field-of-view, operating wavelength, and includes laser ranging and spotting, provides the highest utility and is most ideal for size and weight. Such a design also often requires fast, highly aspheric, reflective, refractive, and sometimes diffractive surfaces using high performance and aggressively light-weighted materials that demand the finest of manufacturing technologies. Visible wavelength performance sets the bar for component optical surface irregularity on the order of 20 nm RMS and surface finishes less than 3.0 nm RMS. Aluminum mirrors and structures can also be precision machined to yield "snap together alignment" or limited compensation assembly approaches to reduce cost and enhance interchangeability. Diamond point turning, die cast and investment cast mirror substrates and structures, computerized optical polishing, mirror replication, lens molding and other advanced manufacturing technologies can all be used to minimize the cost of this type of optical equipment. This paper discusses the tradeoffs among materials and process selection for catadioptric, multi-mode systems that are under development for a variety of DoD and Homeland Security applications. Several examples are profiled to illuminate the confluence of applicable design and manufacturing

  4. Radiation effects on ytterbium-doped optical fibers

    NASA Astrophysics Data System (ADS)

    Singleton, Briana J.

    Assuming on-board satellite high-bandwidth communications will utilize passive optical fibers as a communication channel, this work focused on the impact of gamma and mixed gamma/neutron radiation on transmission through single-mode and multi-mode ytterbium-doped single-mode fibers operated as amplifiers for a 1060-nm light source. Standard optical patch cables were evaluated along with active ytterbium -doped double-clad fibers in the same radiation environment. Exposure times and signal transmission wavelength variations were used to investigate the degradation of the fibers exposed to total doses above 100 krad(Si). Further, the effect on the amplified signal gain was studied for the ytterbium -doped fibers. The increased attenuation in the fibers across a broad wavelength range in response to multiple levels of gamma radiation exposure, along with the effect that increased attenuation has on the actively pumped ytterbium -doped fiber amplifier performance was evaluated. Ytterbium-doped optical fibers demonstrate sensitivity to gamma and mixed neutron/gamma radiation exposures that is independent of the operational configuration of the fiber during irradiation. No identifiable dose rate damage production mechanism was encountered. However, fiber damage recovery following irradiation was found to be dependent on the radiation dose rate.

  5. Coarse-graining Landau-Lifshitz damping

    NASA Astrophysics Data System (ADS)

    Feng, Xuebing; Visscher, P. B.

    2001-06-01

    High speed switching in magnetic materials is usually studied with the Landau-Lifshitz (LL) equation, which describes damping through a phenomenological coefficient. The results of micromagnetic calculations based on the LL equation have been observed to depend strongly on the cell size. We take a coarse-graining or renormalization-group approach to this cell size dependence: from a simulation using cell size L, we look at the dynamics of a cell of size 2L and determine an effective damping coefficient that describes the larger-scale dynamics. This can be thought of as a Green-Kubo calculation of the effective damping coefficient. In principle, this makes it possible to coarse grain from the atomic scale to determine the micromagnetic damping coefficient.

  6. On the evolution of coarse categories.

    PubMed

    Mengel, Friederike

    2012-08-21

    We compare the evolutionary fitness of different cultures (or populations), where we think of culture as partitioning a set of decision situations into categories of situations treated the same. Information about optimal behavior in each category is passed on via a process of noisy cultural transmission. We show that coarse partitions (distinguishing less situations) can provide higher evolutionary fitness even if there are no explicit costs to holding finer partitions. PMID:22659044

  7. Measuring Crack Length in Coarse Grain Ceramics

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  8. Pedagogical Comparison of Five Reactions Performed under Microwave Heating in Multi-Mode versus Mono-Mode Ovens: Diels-Alder Cycloaddition, Wittig Salt Formation, E2 Dehydrohalogenation to Form an Alkyne, Williamson Ether Synthesis, and Fischer Esterification

    ERIC Educational Resources Information Center

    Baar, Marsha R.; Gammerdinger, William; Leap, Jennifer; Morales, Erin; Shikora, Jonathan; Weber, Michael H.

    2014-01-01

    Five reactions were rate-accelerated relative to the standard reflux workup in both multi-mode and mono-mode microwave ovens, and the results were compared to determine whether the sequential processing of a mono-mode unit could provide for better lab logistics and pedagogy. Conditions were optimized so that yields matched in both types of…

  9. Novel optical fiber sensor for deformation measurement

    NASA Astrophysics Data System (ADS)

    Di, Haiting; Sun, Suping; Yu, Jianqiang; Liu, Renqiang

    2010-10-01

    A light intensity modulation optical fiber sensor, which can measure deformation directly, has been developed. A light leakage zone is introduced on one side of fiber to increase the sensitivity of fiber under deformation. The machining process of sensor is considered. Hand carving, milling and embossing methods are introduced to produce the light leakage zone respectively, and the comparison between these methods is carried out. To obtain the static curve of sensor, cantilevered beam, simple support beam and cylinders are used respectively to measure little and large deformation. The static characters of sensor, such as sensitivity and measurement range, are analyzed from the static curve. The experimental results show that the sensor can distinguish the direction of deformation (positive bending and negative bending). Positive bending increases the throughput of light, and is distinguishable from negative bending, which decreases the throughput. The output of sensor is linear with curvature when the curvature radius is larger than 60mm. The response of sensor is a cosine function with the direction of deformation and there is a maximum sensitivity direction (perpendicular to the light leakage zone plane and passing through the axis of the fiber) and a minimum sensitivity direction (parallel to light leakage zone plane and pass through the axis of the fiber). The dynamic responds of attenuation vibration and sawtooth input signal are studied. Comparison between the optical fiber sensor, untreated fiber and strain gauge shows that the sensor is 400 times of untreated fiber in sensitivity and is more advantageous in measurement of thin structures. The sensor is easily made by multi-mode plastic optical fiber and the detection equipments are very simple, therefore it is small in size, simple in structure and low in cost, which make the sensor can be widely used in various fields.

  10. Critical time scale of coarse-graining entropy production

    NASA Astrophysics Data System (ADS)

    Sohn, Jang-il

    2016-04-01

    We study coarse-grained entropy production in an asymmetric random walk system on a periodic one-dimensional lattice. In coarse-grained systems, the original dynamics are unavoidably destroyed, but the coarse-grained entropy production is not hidden below the critical time-scale separation. The hidden entropy production is rapidly increasing near the critical time-scale separation.

  11. Beam profile of laser pointer (VFL-350) after launching in telecommunication fiber optic

    NASA Astrophysics Data System (ADS)

    Sarollahi, Mir Saeed

    2009-11-01

    VFL-350 (Visual Fault Locator) Light Source is used to check single-mode and multimode optical fiber cables and components for faults or to locate individual fibers in a bundle. Loss as intrinsic loss (absorbsion and scattering), mechanical loss (splices and connections) are important to estimate the amount of errors in data transmission process (both in single as well as multimode fibers). That is one of the most important parameter of change intensity profile of laser beam. Standard light source that used in this project is an optical pen that have semi guassian beam with out put power 1 mw(class 1) & λ=635 nm that make follow result: Beam propagated from this light source have semi guassian shape and result of some transverse mode. Beam intensity profile of this light source after launching in multimode fiber optics (length=2m & connector: have 20% loss compared by beam intensity profile of optical pen.(connector loss). Situating a filter in path of multi mode fiber optic, don't any change in beam intensity profile of multi mode fiber optics.

  12. Three dimensional hydrodynamic calculations with adaptive mesh refinement of the evolution of Rayleigh Taylor and Richtmyer Meshkov instabilities in converging geometry: Multi-mode perturbations

    SciTech Connect

    Klein, R.I. |; Bell, J.; Pember, R.; Kelleher, T.

    1993-04-01

    The authors present results for high resolution hydrodynamic calculations of the growth and development of instabilities in shock driven imploding spherical geometries in both 2D and 3D. They solve the Eulerian equations of hydrodynamics with a high order Godunov approach using local adaptive mesh refinement to study the temporal and spatial development of the turbulent mixing layer resulting from both Richtmyer Meshkov and Rayleigh Taylor instabilities. The use of a high resolution Eulerian discretization with adaptive mesh refinement permits them to study the detailed three-dimensional growth of multi-mode perturbations far into the non-linear regime for converging geometries. They discuss convergence properties of the simulations by calculating global properties of the flow. They discuss the time evolution of the turbulent mixing layer and compare its development to a simple theory for a turbulent mix model in spherical geometry based on Plesset`s equation. Their 3D calculations show that the constant found in the planar incompressible experiments of Read and Young`s may not be universal for converging compressible flow. They show the 3D time trace of transitional onset to a mixing state using the temporal evolution of volume rendered imaging. Their preliminary results suggest that the turbulent mixing layer loses memory of its initial perturbations for classical Richtmyer Meshkov and Rayleigh Taylor instabilities in spherically imploding shells. They discuss the time evolution of mixed volume fraction and the role of vorticity in converging 3D flows in enhancing the growth of a turbulent mixing layer.

  13. A wide load range, multi-mode synchronous buck DC—DC converter with a dynamic mode controller and adaptive slope compensation

    NASA Astrophysics Data System (ADS)

    Chunhong, Zhang; Haigang, Yang; Shi, Richard

    2013-06-01

    A synchronous buck DC—DC converter with an adaptive multi-mode controller is proposed. In order to achieve high efficiency over its entire load range, pulse-width modulation (PWM), pulse-skip modulation (PSM) and pulse-frequency modulation (PFM) modes were integrated in the proposed DC—DC converter. With a highly accurate current sensor and a dynamic mode controller on chip, the converter can dynamically change among PWM, PSM and PFM control according to the load requirements. In addition, to avoid power device damage caused by inrush current at the start up state, a soft-start circuit is presented to suppress the inrush current. Furthermore, an adaptive slope compensation (SC) technique is proposed to stabilize the current programmed PWM controller for duty cycle passes over 50%, and improve the degraded load capability due to traditional slope compensation. The buck converter chip was simulated and manufactured under a 0.35 μm standard CMOS process. Experimental results show that the chip can achieve 79% to 91% efficiency over the load range of 0.1 to 1000 mA

  14. Multi-mode technique for the determination of the biaxial Y2SiO5 permittivity tensor from 300 to 6 K

    NASA Astrophysics Data System (ADS)

    Carvalho, N. C.; Le Floch, J.-M.; Krupka, J.; Tobar, M. E.

    2015-05-01

    The Y2SiO5 (YSO) crystal is a dielectric material with biaxial anisotropy with known values of refractive index at optical frequencies. It is a well-known rare-earth (RE) host material for optical research and more recently has shown promising performance for quantum-engineered devices. In this paper, we report the first microwave characterization of the real permittivity tensor of a bulk YSO sample, as well as an investigation of the temperature dependence of the tensor components from 296 K down to 6 K. Estimated uncertainties were below 0.26%, limited by the precision of machining the cylindrical dielectric. Also, the electrical Q-factors of a few electromagnetic modes were recorded as a way to provide some information about the crystal losses over the temperature range. To solve the tensor components necessary for a biaxial crystal, we developed the multi-mode technique, which uses simultaneous measurement of low order whispering gallery modes. Knowledge of the permittivity tensor offers important data, essential for the design of technologies involving YSO, such as microwave coupling to electron and hyperfine transitions in RE doped samples at low temperatures.

  15. Multi-mode to single-mode switching caused by self-heating in bottom-emitting intra-cavity contacted 960 nm VCSELs

    NASA Astrophysics Data System (ADS)

    Blokhin, Sergey A.; Maleev, Nikolai A.; Kuzmenkov, Alexander G.; Lott, James A.; Kulagina, Marina M.; Zadiranov, Yurii M.; Gladyshev, Andrey G.; Nadtochiy, Alexey M.; Nikitina, Ekaterina V.; Tikhomirov, Vladimir G.; Ledentsov, Nikolai N.; Ustinov, Viktor M.

    2012-03-01

    Detailed investigation of anomalous modal behavior in fabricated bottom-emitting intra-cavity contacted 960 nm range vertical cavity surface emitting lasers (VCSELs) have been performed. At low currents the broad-aperture VCSELs show multi-mode operation at 945 nm via whispering gallery-like modes. Subsequent increase of pump current results in rapid increase of fundamental mode intensity and switching to a pure single transverse mode lasing regime at 960 nm with the higher slope efficiency. As a result record single transverse mode output power of 15 mW with a side-mode-suppressionratio (SMSR) above 30 dB was achieved. The observed phenomena cannot be explained by oxide-index guiding or changes in current pumping. 2D heat transport simulations show a strong temperature gradient inside the microcavity due to an effective lateral heat-sinking. This creates an effective waveguide and results in lower optical losses for the fundamental mode. At fixed pump current in pulsed regime (pulse width < 400 ns) high-order modes dominate, however the subsequent increase of pulse width leads to a rapid rise of optical power for the fundamental mode and SMSR increasing. Thus the self-heating phenomena play a crucial role in observed VCSEL unusual modal behavior.

  16. Multi-mode technique for the determination of the biaxial Y{sub 2}SiO{sub 5} permittivity tensor from 300 to 6 K

    SciTech Connect

    Carvalho, N. C. Le Floch, J-M.; Tobar, M. E.; Krupka, J.

    2015-05-11

    The Y{sub 2}SiO{sub 5} (YSO) crystal is a dielectric material with biaxial anisotropy with known values of refractive index at optical frequencies. It is a well-known rare-earth (RE) host material for optical research and more recently has shown promising performance for quantum-engineered devices. In this paper, we report the first microwave characterization of the real permittivity tensor of a bulk YSO sample, as well as an investigation of the temperature dependence of the tensor components from 296 K down to 6 K. Estimated uncertainties were below 0.26%, limited by the precision of machining the cylindrical dielectric. Also, the electrical Q-factors of a few electromagnetic modes were recorded as a way to provide some information about the crystal losses over the temperature range. To solve the tensor components necessary for a biaxial crystal, we developed the multi-mode technique, which uses simultaneous measurement of low order whispering gallery modes. Knowledge of the permittivity tensor offers important data, essential for the design of technologies involving YSO, such as microwave coupling to electron and hyperfine transitions in RE doped samples at low temperatures.

  17. Dietary Fiber

    MedlinePlus

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble fiber or insoluble fiber. Both types have important health benefits. Good sources of dietary fiber include Whole grains Nuts ...

  18. Coarse mode aerosols in the High Arctic

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  19. A Coarse Pointing Assembly for Optical Communication

    NASA Technical Reports Server (NTRS)

    Szekely, G.; Blum, D.; Humphries, M.; Koller, A.; Mussett, D.; Schuler, S.; Vogt, P.

    2010-01-01

    In the framework of a contract with the European Space Agency, RUAG Space are developing a Coarse Pointing Assembly for an Optical Communication Terminal with the goal to enable high-bandwidth data exchange between GEO and/or LEO satellites as well as to earth-bound ground stations. This paper describes some development and testing aspects of such a high precision opto-mechanical device, with emphasis on the influence of requirements on the final design, the usage of a Bearing Active Preload System, some of the lessons learned on the BAPS implementation, the selection of a flex print design as rotary harness and some aspects of functional and environmental testing.

  20. Coarse-grained modelling of supercoiled RNA

    NASA Astrophysics Data System (ADS)

    Matek, Christian; Šulc, Petr; Randisi, Ferdinando; Doye, Jonathan P. K.; Louis, Ard A.

    2015-12-01

    We study the behaviour of double-stranded RNA under twist and tension using oxRNA, a recently developed coarse-grained model of RNA. Introducing explicit salt-dependence into the model allows us to directly compare our results to data from recent single-molecule experiments. The model reproduces extension curves as a function of twist and stretching force, including the buckling transition and the behaviour of plectoneme structures. For negative supercoiling, we predict denaturation bubble formation in plectoneme end-loops, suggesting preferential plectoneme localisation in weak base sequences. OxRNA exhibits a positive twist-stretch coupling constant, in agreement with recent experimental observations.

  1. Coarse grained open system quantum dynamics

    SciTech Connect

    Thanopulos, Ioannis; Brumer, Paul; Shapiro, Moshe

    2008-11-21

    We show that the quantum dynamics of a system comprised of a subspace Q coupled to a larger subspace P can be recast as a reduced set of 'coarse grained' ordinary differential equations with constant coefficients. These equations can be solved by a single diagonalization of a general complex matrix. The method makes no assumptions about the strength of the couplings between the Q and the P subspaces, nor is there any limitation on the initial population in P. The utility of the method is demonstrated via computations in three following areas: molecular compounds, photonic materials, and condensed phases.

  2. Coarse-grained modelling of surface nanobubbles

    NASA Astrophysics Data System (ADS)

    Grosfils, Patrick

    2013-05-01

    Surface nanobubbles are nanoscale gaseous objects that form on hydrophobic surfaces in contact with water. Understanding nanobubble formation and stability remains challenging due to the lack of appropriate theoretical framework and adequate modelling. Here we present a non-equilibrium coarse-grained model for nanobubbles at hydrophobic surfaces. The model is based on a lattice-gas model that has been proposed to understand the hydrophobic effect to which dynamical properties are added. The results presented demonstrate the ability of the model to reproduce the basic features of stable surface nanobubbles, which, thereby, supports the dynamical origin of these objects.

  3. FOCEX: A fiber-optic extender for a high speed parallel RS485 data cable

    NASA Astrophysics Data System (ADS)

    Meadows, J. T.; Anderson, J. T.; Cooper, P. S.; Engelfried, J.; Franzen, J. W.; Forster, B. G.; Levinson, F.; Rawls, J.; Haber, S.

    1995-05-01

    For longer-distant, high speed data links, optical fiber becomes most cost-effective than copper or other hard wire cable systems. Fermilab supplied to Finisar Corp. of Menlo Park, CA, a set of specifications for card functions, sizes and interconnector pin assignments. Finisar designed and assembled a set of fiber optical P.C. cards using 100 megabyte/sec commercial optoelectronics and a serialization and deserialization HOT-ROD chipset designed by GAZELLE Microcircuits, Inc. (A Tri Quint Semiconductors company). The cooperative effort between Fermilab and Finisar has allowed Fermilab to created a reliable 50 Megabytes/sec (40 bit parallel RS485 DART data bus) cable to cable extender using a virtually invisible Fiber Channel point-to-point(FC-0) fiber optical single-simplex system. The system is easily capable of sustaining a 50 megabytes/sec of data, control and status line throughput at distances of 1625 feet (500 meters) using standard multi-mode fiber.

  4. Coarse-grained distributions and superstatistics

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2006-01-01

    We show an interesting connection between non-standard (non-Boltzmannian) distribution functions arising in the theory of violent relaxation for collisionless stellar systems [D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136 (1967) 101.] and the notion of superstatistics recently introduced by [Beck and Cohen Physica A 322 (2003) 267]. The common link between these two theories is the emergence of coarse-grained distributions arising out of fine-grained distributions. The coarse-grained distribution functions are written as a superposition of Boltzmann factors weighted by a non-universal function. Even more general distributions can arise in case of incomplete violent relaxation (non-ergodicity). They are stable stationary solutions of the Vlasov equation. We also discuss analogies and differences between the statistical equilibrium state of a multi-components self-gravitating system and the metaequilibrium (or quasi-equilibrium) states of a collisionless stellar system. Finally, we stress the important distinction between entropies, generalized entropies, relative entropies and H-functions. We discuss applications of these ideas in two-dimensional turbulence and for other systems with long-range interactions.

  5. Coarse-Grain Modeling of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Brennan, John

    2015-06-01

    Mechanical and thermal loading of energetic materials can incite responses over a wide range of spatial and temporal scales due to inherent nano- and microscale features. Many energy transfer processes within these materials are atomistically governed, yet the material response is manifested at the micro- and mesoscale. The existing state-of-the-art computational methods include continuum level approaches that rely on idealized field-based formulations that are empirically based. Our goal is to bridge the spatial and temporal modeling regimes while ensuring multiscale consistency. However, significant technical challenges exist, including that the multiscale methods linking the atomistic and microscales for molecular crystals are immature or nonexistent. To begin addressing these challenges, we have implemented a bottom-up approach for deriving microscale coarse-grain models directly from quantum mechanics-derived atomistic models. In this talk, a suite of computational tools is described for particle-based microscale simulations of the nonequilibrium response of energetic solids. Our approach builds upon recent advances both in generating coarse-grain models under high strains and in developing a variant of dissipative particle dynamics that includes chemical reactions.

  6. A novel method to couple light into an optical fiber avoiding fiber optic connectors

    NASA Astrophysics Data System (ADS)

    Maggi, Luca; Delrosso, Giovanni

    2008-04-01

    We present a new method for realizing optical connections to multi mode fiber, which eliminates the need for standard connectors. With such a device the fiber termination can be avoided, so that dramatically reducing the cost of installation of an optical network. Moreover the optical connection can be carry out by not specialized personnel. Its main application is in the new deployment of the local area networks (LAN) and the emerging market of the home area networks (HAN). The basic idea is to use advantageously the principle of bending losses for extracting signal from multimode fiber. Conversely the same effect can be used for inserting light into fiber without the need of connector or even without any controlled splicing and polishing operation. Studying the variation of losses versus bending radius, evaluating the reliability of a fiber under stress and considering the fabrication tolerances it's possible to determine the right position and angle for effectively inserting and extracting light. The focusing lenses have been implemented into a mechanical holder. Some prototypes have been realized by plastic molding technique. The optical study, the realization process and the first results are presented in this paper.

  7. Optical fiber core diameter mismatched in-fiber Mach-Zehnder interferometer for strain sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Fu, Haiwei; Qiao, Xueguang; Shao, Min; Li, Huidong; Liu, Qinpeng; Gao, Hong; Yan, Xu; Zhang, Yunshan

    2015-02-01

    A novel strain sensor based on in-fiber Mach-Zehnder interferometer (MZI) is proposed in this paper. The sensor is with the structure of single mode-thin core-multimode-thin core-single mode (STMTS) fiber structures fabricated by splicing two short sections of thin core fiber (TCF) among lead-in single mode fiber (SMF), multi-mode fiber (MMF) and lead-out SMF. The first section of TCF excites the core mode and high-order modes in the core of MMF and the second section of TCF couples the core mode and high-order modes into lead-out SMF to procedure inter-modes interferences. The sensor with MMF length of 20mm and TCFs length of 1mm is fabricated. The transmission spectrum of the sensor with respect to external strain has been studied by experiment. The result shows that the central wavelength respects to external strain with a good linearity. The strain sensitivity of the sensor is -2 pm/ue; over a strain range of 0 to 4500ue;. The temperature response of the sensor is also studied by experiment. The results indicate that the central wavelength of the transmission spectrum is insensitive to external temperature change. The proposed sensor features the advantages of easy fabrication, low cost and high sensitivity, and it exhibits great potential in single parameter measurement.

  8. Multi Mode Optical Sensor MMOS

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development of a multimode optical sensor (MMOS) is reported. The objectives, accomplishments, and history of the program are presented along with a description of the MMOS. A collection of design studies, tradeoff studies, and test results are included.

  9. The multi-mode gyrotron

    SciTech Connect

    Savilov, A. V.; Glyavin, M. Yu.; Philippov, V. N.

    2011-10-15

    It is possible to provide a situation in the gyrotron when it possesses a dense spectrum of axial eigenmodes having different frequencies but almost similar Q-factors. In this case, the single-frequency operation of the gyrotron is provided due to non-linear competition of the eigenmodes. It is shown that such an approach opens a way to provide in gyrotrons a close-to-continuous frequency tuning.

  10. Failure mode analysis of degraded InGaAs-AlGaAs strained quantum well multi-mode vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Lingley, Zachary; Brodie, Miles; Huang, Michael; Bushmaker, Adam; Theiss, Jesse; Presser, Nathan; Foran, Brendan; Moss, Steven C.

    2016-03-01

    Remarkable progress made in vertical cavity surface emitting lasers (VCSELs) emitting at 850 and 980 nm has led them to find an increasing number of applications in high speed data communications as well as in potential space satellite systems. However, little has been reported on reliability and failure modes of InGaAs VCSELs emitting at ~980 nm although it is crucial to understand failure modes and underlying degradation mechanisms in developing these VCSELs that exceed lifetime requirements for space missions. The active layer of commercial VCSELs that we studied consisted of two or three InGaAs quantum wells. The laser structures were fabricated into deep mesas followed by a steam oxidation process to form oxide-apertures for current and optical confinements. Our multi- mode VCSELs showed a laser threshold of ~ 0.5 mA at RT. Failures were generated via accelerated life-testing of VCSELs. For the present study, we report on failure mode analysis of degraded oxide-VCSELs using various techniques. We employed nondestructive techniques including electroluminescence (EL), optical beam induced current (OBIC), and electron beam induced current (EBIC) techniques as well as destructive techniques including focused ion beam (FIB) and high-resolution TEM techniques to study VCSELs that showed different degradation behaviors. Especially, we employed FIB systems to locally remove a portion of top-DBR mirrors of degraded VCSELs, which made it possible for our subsequent EBIC and OBIC techniques to locate damaged areas that were generated as a result of degradation processes and also for our HR-TEM technique to prepare TEM cross sections from damaged areas. Our nondestructive and destructive physical analysis results are reported including defect and structural analysis results from pre-aged VCSELs as well as from degraded VCSELs life-tested under different test conditions.

  11. Effect of Coarse Materials Percentage in the Shear Strength

    NASA Astrophysics Data System (ADS)

    Alshameri, B.; Bakar, I.; Madun, A.; Abdeldjouad, L.; Haimi Dahlan, S.

    2016-07-01

    There are several factors that affecting the shear strength and shear strength parameters (i.e. cohesion and friction angle). In this study, the effect of coarse material percentage was tested. Six different mixtures of soils (clay and sand) with different coarse material percentages (i.e. from 80% to 30% of coarse material percentage) were tested via using direct shear test under different moisture content percentage. The results indicated that the shear strength and friction angle were decreased by the increment of the percentage of coarse materials (sand). However, the cohesion results showed unique behavior. The cohesion (at every moisture content values) increased with the increment of the percentage of coarse materials until specific point then it started to decrease with the increment of the percentage of coarse materials.

  12. Breaking the glass ceiling: hollow OmniGuide fibers

    NASA Astrophysics Data System (ADS)

    Johnson, Steven G.; Ibanescu, Mihai; Skorobogatiy, Maksim A.; Weisberg, Ori; Engeness, Torkel D.; Soljacic, Marin; Jacobs, Steven A.; Joannopoulos, John D.; Fink, Yoel

    2002-04-01

    We argue that OmniGuide fibers, which guide light within a hollow core by concentric multilayer films having the property of omnidirectional reflection, have the potential to lift several physical limitations of silica fibers. We show how the strong confinement in OmniGuide fibers greatly suppresses the properties of the cladding materials: even if highly lossy and nonlinear materials are employed, both the intrinsic losses and nonlinearities of silica fibers can be surpassed by orders of magnitude. This feat, impossible to duplicate in an index-guided fiber with existing materials, would open up new regimes for long-distance propagation and dense wavelength-division multiplexing (DWDM). The OmniGuide-fiber modes bear a strong analogy to those of hollow metallic waveguides; from this analogy, we are able to derive several general scaling laws with core radius. Moreover, there is strong loss discrimination between guided modes, depending upon their degree of confinement in the hollow core: this allows large, ostensibly multi-mode cores to be used, with the lowest-loss TE01 mode propagating in an effectively single-mode fashion. Finally, because this TE01 mode is a cylindrically symmetrical ('azimuthally' polarized) singlet state, it is immune to polarization-mode dispersion (PMD), unlike the doubly-degenerate linearly-polarized modes in silica fibers that are vulnerable to birefringence.

  13. Coarse-grained modeling of DNA curvature

    NASA Astrophysics Data System (ADS)

    Freeman, Gordon S.; Hinckley, Daniel M.; Lequieu, Joshua P.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2014-10-01

    The interaction of DNA with proteins occurs over a wide range of length scales, and depends critically on its local structure. In particular, recent experimental work suggests that the intrinsic curvature of DNA plays a significant role on its protein-binding properties. In this work, we present a coarse grained model of DNA that is capable of describing base-pairing, hybridization, major and minor groove widths, and local curvature. The model represents an extension of the recently proposed 3SPN.2 description of DNA [D. M. Hinckley, G. S. Freeman, J. K. Whitmer, and J. J. de Pablo, J. Chem. Phys. 139, 144903 (2013)], into which sequence-dependent shape and mechanical properties are incorporated. The proposed model is validated against experimental data including melting temperatures, local flexibilities, dsDNA persistence lengths, and minor groove width profiles.

  14. Fiber biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber cells arising from seed epidermis is the most important agricultural textile commodity in the world. To produce fully mature fibers, approximately two months of fiber developmental process are required. The timing of four distinctive fiber development stages consisting of initiation, ...

  15. A novel periodic macrobending hetero-core fiber optic sensor embedded in textile for respiratory movements' analysis

    NASA Astrophysics Data System (ADS)

    Alemdar, Kubra; Likoglu, Sumeyra; Fidanboylu, Kemal; Toker, Onur

    2014-03-01

    This paper presents the design of a novel periodic macrobending hetero-core fiber optic sensor embedded in textile for respiratory movements' analysis. We report on several different designs based on textiles which have different loop periodicity and configuration of optical fiber types. In all experiments, the changes of textile elongation are measured during breathing movements. In order to demonstrate the superiority of the proposed sensor, experiments were done on a macrobending sensor constructed from 62.5-50-62.5 hetero-core fiber and a macrobending sensor constructed from 62.5/125 μm multi-mode fiber having different loops. Experimental results show that the sensitivity of the proposed macrobending sensor constructed using hetero-core optical fiber is much higher than the sensor constructed from plain multi-mode optical fiber. It is also shown that, the sensitivity of the sensor increases as the number of loops is increased. On the other hand, several experiments were performed for periodic macrobending sensors having different bending radius by changing the lengths of loops amplitude and period. We demonstrate that the sensors tested on different patients' morphology can successfully sense respiratory movements.

  16. Building polymer fiber optic network

    NASA Astrophysics Data System (ADS)

    Bienias, P.; Bereś-Pawlik, E.

    2015-09-01

    The paper describes an investigation of transmission in LAN with using polymer optical fiber (POF). There were used two kinds of POF, step index plastic optical fiber (SI-POF) and graded index plastic optical fiber (GI-POF). Furthermore, the paper include a comparison between SI-POF and GI-POF and possibilities of using them. For the project's needs, new type of couplers has been designed and built, optimization has been performed to obtain the best parameters for designed couplers. Additionally, the coupler has been built from the same material, which GI-POF - PMMA is made of. Moreover, CWDM (Coarse Wavelength Division Multiplexing) transmissions is investigated to improve the network capacity.

  17. FOCEX: A fiber-optic extender for a high speed parallel RS485 data cable

    SciTech Connect

    Meadows, J.T.; Anderson, J.T.; Cooper, P.S.; Engelfried, J.; Franzen, J.W.; Forster, B.G.; Levinson, F.; Rawls, J.; Haber, S.

    1995-05-01

    For longer-distant, high speed data links, optical fibre becomes most cost-effective than copper or other hard wire cable systems. Fermilab supplied to Finisar Corp. of Menlo Park, CA., a set of specifications for card functions, sizes and interconnector pin assignments. Finisar designed and assembled a set of fiber optical P.C. cards using 100 megabyte/sec commercial optoelectronics and a serialization and deserialization HOT-ROD chipset designed by GAZELLE Microcircuits, Inc. (A Tri Quint Semiconductors company). The cooperative effort between Fermilab and Finisar has allowed Fermilab to created a reliable 50 Megabytes/sec (40 bit parallel RS485 DART data bus) cable to cable extender using a virtually invisible Fiber Channel point-to-point(FC-0) fiber optical single-simplex system. The system is easily capable of sustaining a 50 megabytes/sec of data, control and status line throughput at distances of 1625 feet (500 meters) using standard multi-mode fiber.

  18. All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings.

    PubMed

    Zhang, W L; Ma, R; Tang, C H; Rao, Y J; Zeng, X P; Yang, Z J; Wang, Z N; Gong, Y; Wang, Y S

    2015-07-01

    An all-optical method to control the lasing modes of Er-doped random fiber lasers (RFLs) is proposed and demonstrated. In the RFL, an Er-doped fiber (EDF) recoded with randomly separated fiber Bragg gratings (FBG) is used as the gain medium and randomly distributed reflectors, as well as the controllable element. By combining random feedback of the FBG array and Fresnel feedback of a cleaved fiber end, multi-mode coherent random lasing is obtained with a threshold of 14 mW and power efficiency of 14.4%. Moreover, a laterally-injected control light is used to induce local gain perturbation, providing additional gain for certain random resonance modes. As a result, active mode selection of the RFL is realized by changing locations of the laser cavity that is exposed to the control light. PMID:26125397

  19. Impact of Transverse Spatial-Hole Burning on Beam Quality in Large-Mode-Area Yb-Doped Fibers

    SciTech Connect

    Jiang, Z.; Marciante, J.R.

    2008-01-30

    The beam-quality factor of an amplified spontaneous emission source based on an ytterbium-doped, large-mode-area, multi-mode fiber was found to be optimized when the gain became saturated. A model using spatially resolved gain and transverse-mode decomposition of the optical field showed that transverse spatial-hole burning was responsible for the observed behavior. A simplified model without transverse spatial-hole burning failed to predict the observed behavior of beam quality. A comparison of both models shows transverse spatial-hole burning is also critical for properly modeling beam quality in LMA fiber amplifiers.

  20. Reliability, failure modes, and degradation mechanisms in high power single- and multi-mode InGaAs-AlGaAs strained quantum well lasers

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Lingley, Zachary; Brodie, Miles; Foran, Brendan; Moss, Steven C.

    2016-03-01

    High power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both telecommunications and potential space satellite communications systems. However, little has been reported on failure modes of state-of-the-art SM InGaAs-AlGaAs strained QW lasers although it is crucial to understand failure modes and underlying degradation mechanisms in developing these lasers that meet lifetime requirements for space satellite systems, where extremely high reliability of these lasers is required. Our present study addresses the aforementioned issues by performing long-term life tests under different test conditions followed by failure mode analysis (FMA) and physics of failure investigation. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs-AlGaAs strained QW lasers under ACC (automatic current control) mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. FMA was performed on failed SM lasers using electron beam induced current (EBIC). This technique allowed us to identify failure types by observing dark line defects. All the SM failures we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Our group previously reported that bulk failure or COBD (catastrophic optical bulk damage) is the dominant failure mode of MM InGaAs-AlGaAs strained QW lasers. To the best of our knowledge, this is the first report demonstrating that the dominant failure mode of both SM and MM InGaAs-AlGaAs strained QW lasers is the bulk failure. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) processing and high-resolution TEM to further study dark line defects and dislocations in post-aged SM and MM lasers. Our long-term life test results and FMA results are reported.

  1. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  2. Enhanced optical fiber fluorometer using a periodic perturbation in the fiber core

    NASA Astrophysics Data System (ADS)

    Chiniforooshan, Yasser; Bock, Wojtek J.; Ma, Jianjun

    2013-10-01

    Tracing of the specific chemicals and biological agents in a solution is becoming a vital interest in health, security and safety industries. Although a number of standard laboratory-based testing systems exists for detecting such targets, but the fast, real-time and on-site methods could be more efficient and cost-effective. One of the most common ways to detect a target in the solution is to use the fluorophore molecules which will be selectively attached to the targets and will emit or quench the fluorescence in presence of the target. The fiber-optic fluorometers are developed for inexpensive and portable detection. In this paper, we explain a novel multi-segment fiber structure which uses the periodic perturbation on the side-wall of a highly multi-mode fiber to enhance collecting the fluorescent light. This periodic perturbation is fabricated and optimized on the core of the fiber using a CO2 laser. The theoretical explanation to show the physical principle of the structure is followed by the experimental evidence of its functioning.

  3. Utilizing ytterbium- and erbium-doped fibers for a selectable and stable single-longitudinal-mode fiber ring laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong

    2016-05-01

    In this paper, a stable and wavelength-tunable C-band erbium-doped fiber (EDF) ring laser is experimentally demonstrated. Here, utilizing an unpumped ytterbium-doped fiber with a length of 0.6 m inside the ring cavity serving as a spatial multi-mode interference is proposed to suppress the multi-longitudinal-mode for single-longitudinal-mode output. Therefore, the output powers and optical signal-to-noise ratios of the proposed EDF ring laser are between  ‑11.74 and  ‑4.65 dBm and 34.3 and 26.9 dB, respectively. Moreover, the output performance of stability is also analyzed and discussed.

  4. Coarse grained dynamics in the glass phase

    NASA Astrophysics Data System (ADS)

    Smessaert, Anton; Rottler, Jörg

    2013-03-01

    Atomic scale dynamics in glasses is dominated by extended periods of localized vibration, where the crowded surroundings of a particle act as a cage. Collective motion is necessary to escape the cage, and the succession of particle jumps or hops leads to diffusion. Each jump is an elementary relaxation event since the local structure is stable until a jump occurs. The link between local dynamics and structural properties has become of increasing interest in recent years. Aging of the mechanical response has been tied to a power-law distribution of persistence times in the cages, and concentration of hops into dynamical heterogeneities (DH) was observed in granular media and simulations of supercooled liquids in 2D. These studies were limited to small systems or hop detection in subsets, because of the post processing requirements. We present results based on a new algorithm that allows us to detect the hops of all particles during a molecular dynamics simulation. This complete coarse-grained ``map'' of the dynamics allows us to directly investigate temporal and spatial correlations between relaxation events. Furthermore, we can readily identify DH using a cluster algorithm and we explore the impact of aging and deformation on the size and shape of DH.

  5. Coarse-grained models for biological simulations

    NASA Astrophysics Data System (ADS)

    Wu, Zhe; Cui, Qiang; Yethiraj, Arun

    2011-03-01

    The large timescales and length-scales of interest in biophysics preclude atomistic study of many systems and processes. One appealing approach is to use coarse-grained (CG) models where several atoms are grouped into a single CG site. In this work we describe a new CG force field for lipids, surfactants, and amino acids. The topology of CG sites is the same as in the MARTINI force field, but the new model is compatible with a recently developed CG electrostatic water (Big Multiple Water, BMW) model. The model not only gives correct structural, elastic properties and phase behavior for lipid and surfactants, but also reproduces electrostatic properties at water-membrane interface that agree with experiment and atomistic simulations, including the potential of mean force for charged amino acid residuals at membrane. Consequently, the model predicts stable attachment of cationic peptides (i.e., poly-Arg) on lipid bilayer surface, which is not shown in previous models with non-electrostatic water.

  6. Fiber coupling and field mixing of coherent free-space optical beams in satellite communications

    NASA Astrophysics Data System (ADS)

    Poliak, J.; Giggenbach, D.; Mata Calvo, R.; Bok, D.

    2016-03-01

    Effective coupling of the optical field from free-space to optical fiber is an essential prerequisite for modern free-space optical communications systems. It allows for easier system integration with active and passive optical fiber-coupled components as well as for efficient optical field mixing for coherent communications. While coupling into single-mode fiber provides the advantage of using low-noise erbium-doped fiber preamplifiers, its relatively small mode field diameter limits achievable fiber coupling efficiency. Coupling into multimode fiber (MMF) increases the fiber coupling efficiency while introducing other spurious effects the authors have set out to analyze. The study of free-space optical beam coupling in the context of satellite communications will be presented. Here, we assume satellite link scenarios with different elevations, which correspond to different index-of-refraction turbulence (IRT) conditions. IRT gives rise to both intensity and phase aberration of the received optical field, which then causes extended speckle patterns in the focus of the receiver telescope. The speckle field at the fiber input is calculated by means of Fourier transform of the received field. Using dedicated modelling software, study of the fiber coupling efficiency, polarization preservation and high-order mode coupling in different multi-mode fibers is carried out.

  7. A 1-Joule laser for a 16-fiber injection system

    SciTech Connect

    Honig, J

    2004-04-06

    A 1-J laser was designed to launch light down 16, multi-mode fibers (400-{micro}m-core dia.). A diffractive-optic splitter was designed in collaboration with Digital Optics Corporation (DOC), and was delivered by DOC. Using this splitter, the energy injected into each fiber varied <1%. The spatial profile out of each fiber was such that there were no ''hot spots,'' a flyer could successfully be launched and a PETN pellet could be initiated. Preliminary designs of the system were driven by system efficiency where a pristine TEM{sub 00} laser beam would be required. The laser is a master oscillator, power amplifier (MOPA) consisting of a 4-mm-dia. Nd:YLF rod in the stable, q-switched oscillator and a 9.5-mm-dia. Nd:YLF rod in the double-passed amplifier. Using a TEM{sub 00} oscillator beam resulted in excellent transmission efficiencies through the fibers at lower energies but proved to be quite unreliable at higher energies, causing premature fiber damage, flyer plate rupture, stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS). Upon further investigation, it was found that both temporal and spatial beam formatting of the laser were required to successfully initiate the PETN. Results from the single-mode experiments, including fiber damage, SRS and SBS losses, will be presented. In addition, results showing the improvement that can be obtained by proper laser beam formatting will also be presented.

  8. Development of a numerical tool to study the mixing phenomenon occurring during mode one operation of a multi-mode ejector-augmented pulsed detonation rocket engine

    NASA Astrophysics Data System (ADS)

    Dawson, Joshua

    A novel multi-mode implementation of a pulsed detonation engine, put forth by Wilson et al., consists of four modes; each specifically designed to capitalize on flow features unique to the various flow regimes. This design enables the propulsion system to generate thrust through the entire flow regime. The Multi-Mode Ejector-Augmented Pulsed Detonation Rocket Engine operates in mode one during take-off conditions through the acceleration to supersonic speeds. Once the mixing chamber internal flow exceeds supersonic speed, the propulsion system transitions to mode two. While operating in mode two, supersonic air is compressed in the mixing chamber by an upstream propagating detonation wave and then exhausted through the convergent-divergent nozzle. Once the velocity of the air flow within the mixing chamber exceeds the Chapman-Jouguet Mach number, the upstream propagating detonation wave no longer has sufficient energy to propagate upstream and consequently the propulsive system shifts to mode three. As a result of the inability of the detonation wave to propagate upstream, a steady oblique shock system is established just upstream of the convergent-divergent nozzle to initiate combustion. And finally, the propulsion system progresses on to mode four operation, consisting purely of a pulsed detonation rocket for high Mach number flight and use in the upper atmosphere as is needed for orbital insertion. Modes three and four appear to be a fairly significant challenge to implement, while the challenge of implementing modes one and two may prove to be a more practical goal in the near future. A vast number of potential applications exist for a propulsion system that would utilize modes one and two, namely a high Mach number hypersonic cruise vehicle. There is particular interest in the dynamics of mode one operation, which is the subject of this research paper. Several advantages can be obtained by use of this technology. Geometrically the propulsion system is fairly

  9. Group delay and dispersion tailoring in nonadiabatic tapered fibers

    NASA Astrophysics Data System (ADS)

    Mas, Sara; Palací, Jesús; Martí, Javier

    2016-09-01

    The dispersion profile of a nonadiabatic tapered singlemode fiber is characterized and dynamically tuned. Its group delay and dispersion parameters are measured and compared to those of a standard singlemode fiber. The dispersion profile can be tuned by introducing a phase shift through mechanical stretching. Coarse tuning is also obtained by varying the surrounding medium of the tapered fiber. Dispersion values up to 700 ps/nm·km in nonadiabatic tapered fibers are obtained for the first time. Dynamic tuning exposed here can be very useful in applications such as nonlinearities or soliton generation.

  10. Dietary Fiber

    MedlinePlus

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble ... types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and ...

  11. Interlaced coarse-graining for the dynamic cluster approximation

    NASA Astrophysics Data System (ADS)

    Staar, P.; Jiang, M.; Hähner, U. R.; Schulthess, T. C.; Maier, T. A.

    2016-04-01

    The dynamical cluster approximation (DCA) and its DCA+ extension use coarse-graining of the momentum space to reduce the complexity of quantum many-body problems, thereby mapping the bulk lattice to a cluster embedded in a dynamical mean-field host. Here, we introduce a new form of an interlaced coarse-graining and compare it with the traditional coarse-graining. While it gives a more localized self-energy for a given cluster size, we show that it leads to more controlled results with weaker cluster shape and smoother cluster size dependence, which converge to the results obtained from the standard coarse-graining with increasing cluster size. Most importantly, the new coarse-graining reduces the severity of the fermionic sign problem of the underlying quantum Monte Carlo cluster solver and thus allows for calculations on larger clusters. This enables the treatment of correlations longer ranged than those accessible with the standard coarse-graining and thus can allow for the evaluation of the exact infinite cluster size result via finite size scaling. As a demonstration, we study the hole-doped two-dimensional Hubbard model and show that the interlaced coarse-graining in combination with the extended DCA+ algorithm permits the determination of the superconducting Tc on cluster sizes for which the results can be fit with a Kosterlitz-Thouless scaling law.

  12. Molecular Approaches to Understand Nutritional Potential of Coarse Cereals.

    PubMed

    Singh, Amit Kumar; Singh, Rakesh; Subramani, Rajkumar; Kumar, Rajesh; Wankhede, Dhammaprakash P

    2016-06-01

    Coarse grains are important group of crops that constitutes staple food for large population residing primarily in the arid and semi-arid regions of the world. Coarse grains are designated as nutri-cereals as they are rich in essential amino acids, minerals and vitamins. In spite of having several nutritional virtues in coarse grain as mentioned above, there is still scope for improvement in quality parameters such as cooking qualities, modulation of nutritional constituents and reduction or elimination of anti-nutritional factors. Besides its use in traditional cooking, coarse grains have been used mainly in the weaning food preparation and other malted food production. Improvement in quality parameters will certainly increase consumer's preference for coarse grains and increase their demand. The overall genetic gain in quality traits of economic importance in the cultivated varieties will enhance their industrial value and simultaneously increase income of farmers growing these varieties. The urgent step for improvement of quality traits in coarse grains requires a detailed understanding of molecular mechanisms responsible for varied level of different nutritional contents in different genotypes of these crops. In this review we have discussed the progresses made in understanding of coarse grain biology with various omics tool coupled with modern breeding approaches and the current status with regard to our effort towards dissecting traits related to improvement of quality and nutritional constituents of grains. PMID:27252585

  13. Non-Galerkin Coarse Grids for Algebraic Multigrid

    SciTech Connect

    Falgout, Robert D.; Schroder, Jacob B.

    2014-06-26

    Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. And while AMG has been effectively implemented on large scale parallel machines, challenges remain, especially when moving to exascale. Particularly, stencil sizes (the number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy, and this growth leads to more communication. Therefore, as problem size increases and the number of levels in the hierarchy grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth in stencil size is due to the standard Galerkin coarse grid operator, $P^T A P$, where $P$ is the prolongation (i.e., interpolation) operator. For example, the coarse grid stencil size for a simple three-dimensional (3D) seven-point finite differencing approximation to diffusion can increase into the thousands on present day machines, causing an associated increase in communication costs. We therefore consider algebraically truncating coarse grid stencils to obtain a non-Galerkin coarse grid. First, the sparsity pattern of the non-Galerkin coarse grid is determined by employing a heuristic minimal “safe” pattern together with strength-of-connection ideas. Second, the nonzero entries are determined by collapsing the stencils in the Galerkin operator using traditional AMG techniques. The result is a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG solve phase times.

  14. High power modal instability measurements of very large mode area (VLMA) step index fibers

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Lu, Wei; Verdun, Horacio; Gupta, Shantanu

    2013-05-01

    High power (<0.5kW) experiments using low NA (~0.07), very large mode area (VLMA) step index fibers (SI) (with core/clad diameters: 45/375, 60/500um) and gain tailored step index (GT-SI) fibers (with doped-core/core/clad diameters: 38/60/400, 50/80/533um) are presented. In fiber amplifier experiments with multi-moded beam (M2 1.5- 3) outputs, Stimulated Thermal Rayleigh scattering (STRS) threshold is determined by comparing gain dependence of output mode quality between high power (<200W) and low power (<100W) experiments for a given fiber layout. Beam quality degradation with signal power is characterized well above the instability threshold where a saturation of the phenomena is observed. For SI fibers degree of beam quality degradation is found to be significantly worse for tighter fiber coil diameters. GT-SI fibers exhibit significantly less modal degradation compared to SI fibers. STRS instability threshold is further verified with signal power dependent multi-path interference spectrum (MPI) measurements which exhibited exponential broadening above the threshold. Strength of STRS nonlinear coupling coefficients are estimated from experimental data using a comprehensive 3-dimensional transverse spatial hole burning (TSHB) fiber MOPA numerical model, phenomenologicaly extended to include STRS.

  15. Coarse-grained Simulations of Viral Assembly

    NASA Astrophysics Data System (ADS)

    Elrad, Oren M.

    2011-12-01

    The formation of viral capsids is a marvel of natural engineering and design. A large number (from 60 to thousands) of protein subunits assemble into complete, reproducible structures under a variety of conditions while avoiding kinetic and thermodynamic traps. Small single-stranded RNA viruses not only assemble their coat proteins in this fashion but also package their genome during the self-assembly process. Recent experiments have shown that the coat proteins are competent to assemble not merely around their own genomes but heterologous RNA, synthetic polyanions and even functionalized gold nanoparticles. Remarkably these viruses can even assemble around cargo not commensurate with their native state by adopting different morphologies. Understanding the properties that confer such exquisite precision and flexibility to the assembly process could aid biomedical research in the search for novel antiviral remedies, drug-delivery vehicles and contrast agents used in bioimaging. At the same time, viral assembly provides an excellent model system for the development of a statistical mechanical understanding of biological self-assembly, in the hopes of that we will identify some universal principles that underly such processes. This work consists of computational studies using coarse-grained representations of viral coat proteins and their cargoes. We find the relative strength of protein-cargo and protein-protein interactions has a profound effect on the assembly pathway, in some cases leading to assembly mechanisms that are markedly different from those found in previous work on the assembly of empty capsids. In the case of polymeric cargo, we find the first evidence for a previously theorized mechanism in which the polymer actively participates in recruiting free subunits to the assembly process through cooperative polymer-protein motions. We find that successful assembly is non-monotonic in protein-cargo affinity, such affinity can be detrimental to assembly if it

  16. Small form factor optical fiber connector evaluation for harsh environments

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Thomes, W. Joe, Jr.; Chuska, Richard F.; Switzer, Robert; Blair, Diana E.

    2011-09-01

    For the past decade NASA programs have utilized the Diamond AVIM connector for optical fiber assemblies on space flight instrumentation. These connectors have been used in communications, sensing and LIDAR systems where repeatability and high performance are required. Recently Diamond has released a smaller form factor optical fiber connector called the "Mini-AVIM" which although more compact still includes the tight tolerances and the ratcheting feature of the heritage AVIM. NASA Goddard Space Flight Center Photonics Group in the Parts, Packaging and Assembly Technologies Office has been performing evaluations of this connector to determine how it compares to the performance of the AVIM connector and to assess its feasibility for harsh environmental applications. Vibration and thermal testing were performed on the Mini-AVIM with both multi-mode and single-mode optical fiber using insitu optical transmission monitoring. Random vibration testing was performed using typical launch condition profiles for most NASA missions but extended to 35 Grms, which is much higher than most requirements. Thermal testing was performed incrementally up to a range of -55°C to +125°C. The test results include both unjacketed fiber and cabled assembly evaluations. The data presented here indicate that the Mini-AVIM provides a viable option for small form factor applications that require a high performance optical fiber connector.

  17. Coarse-grained dynamics of alignment in animal group models

    NASA Astrophysics Data System (ADS)

    Moon, Sung Joon; Levin, Simon; Kevrekidis, Yannis

    2006-03-01

    Coordinated motion in animal groups, such as bird flocks and fish schools, and their models gives rise to remarkable coherent structures. Using equation-free computational tools we explore the coarse-grained dynamics of a model for the orientational movement decision in animal groups, consisting of a small number of informed "leaders" and a large number of uninformed, nonidentical ``followers.'' The direction in which each group member is headed is characterized by a phase angle of a limit-cycle oscillator, whose dynamics are nonlinearly coupled with those of all the other group members. We identify a small number of proper coarse-grained variables (using uncertainty quantification methods) that describe the collective dynamics, and perform coarse projective integration and equation-free bifurcation analysis of the coarse-grained model behavior in these variables.

  18. Two-level method with coarse space size independent convergence

    SciTech Connect

    Vanek, P.; Brezina, M.; Tezaur, R.; Krizkova, J.

    1996-12-31

    The basic disadvantage of the standard two-level method is the strong dependence of its convergence rate on the size of the coarse-level problem. In order to obtain the optimal convergence result, one is limited to using a coarse space which is only a few times smaller than the size of the fine-level one. Consequently, the asymptotic cost of the resulting method is the same as in the case of using a coarse-level solver for the original problem. Today`s two-level domain decomposition methods typically offer an improvement by yielding a rate of convergence which depends on the ratio of fine and coarse level only polylogarithmically. However, these methods require the use of local subdomain solvers for which straightforward application of iterative methods is problematic, while the usual application of direct solvers is expensive. We suggest a method diminishing significantly these difficulties.

  19. Strength degradation of SiC fiber during manufacture of titanium matrix composites by plasma spraying and hot pressing

    NASA Astrophysics Data System (ADS)

    Baik, K. H.; Grant, P. S.

    2001-12-01

    Titanium matrix composites (TMCs) reinforced with Sigma 1140+ SiC fiber have been manufactured by a combination of low pressure plasma spraying (LPPS spray/wind) and simultaneous fiber winding, followed by vacuum hot pressing (VHP). Fiber damage during TMC manufacture has been evaluated by measuring fiber tensile strength after fiber extraction from the TMCs at various processing stages, followed by fitting of these data to a Weibull distribution function. The LPPS spray/wind processing caused a decrease in mean fiber strength and Weibull modulus in comparison with as-received fibers. A number of fiber surface flaws, primarily in the outer C layer of the fiber, formed as a result of mechanical impact of poorly melted particles from the plasma spray. Coarse feedstock powders promoted an increase in the population of fiber surface flaws, leading to significant reduction in fiber strength. The VHP consolidation promoted further development of fiber surface flaws by fiber bending and stress localization because of nonuniform matrix shrinkage, resulting in further degradation in fiber strength. In the extreme case of fibers touching, the stress concentration on the fibers was sufficient to cause fiber cracking. Fractographic studies revealed that low strength fibers failed by surface flaw induced failure and contained a large fracture mirror zone. Compared with the more widely investigated foil-fiber-foil route to manufacture TMCs, LPPS/VHP resulted in less degradation in fiber strength for Sigma 1140+ fiber. Preliminary results for Textron SCS-6 fiber indicated a much greater tolerance to LPPS/VHP damage.

  20. Polarisation mode dispersion correlations with the coarse-step method

    NASA Astrophysics Data System (ADS)

    Braimiotis, Christos; Eberhard, Marc; Blow, Keith

    2006-06-01

    Having a fixed differential-group delay (DGD) term b‧ in the coarse-step method results in a repetitive pattern in the autocorrelation function (ACF). We solve this problem by inserting a varying DGD term at each integration step. Furthermore we compute the range of values needed for b‧ and simulate the phenomenon of polarisation mode dispersion for different statistical distributions of b‧. We examine systematically the modified coarse-step method compared to the analytical model, through our simulation results.

  1. Fiber sensing with photorefractive fiber

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Guo, Ruyan; Wang, Bo; Liu, Yuexin

    2002-11-01

    Optical fibers have been widely used for transmitting temporal signal. However, the transmission of spatial signal has not been fully exploited. Although multimode fiber has a large space-bandwidth product, transmitting spatial signals by using a fiber is rather difficult. When a laser beam is lached into a multimode fiber, the exit light field produces a complicated speckle pattern caused by the modal phasing of the fiber. It is difficult to recover the transmitted informati from the speckle field. However, the fiber speckle field can be used to fiber sensing with a hologrpahic method. In other words, if a hologram is made with the speckle fiber field, the information of the fiber status can be recovered. Thus by reading the hologram by the same speckle field, the reference beam can be reconstructed, which represents the detection of the speckle field. In other words, instead of exploiting the temporal content, the spatial content from a multimode fiber can be exploited for sensing. Our analyses and experimentations have shown that the fiber specklegram sensor (FSS) is highly senstiive to perturbation, and it is less vulnerable to the environment factors. Applications of the FSS to temperature, transversal displacement, and dynamic sensing are also included.

  2. Interlaced coarse-graining for the dynamical cluster approximation

    NASA Astrophysics Data System (ADS)

    Haehner, Urs; Staar, Peter; Jiang, Mi; Maier, Thomas; Schulthess, Thomas

    The negative sign problem remains a challenging limiting factor in quantum Monte Carlo simulations of strongly correlated fermionic many-body systems. The dynamical cluster approximation (DCA) makes this problem less severe by coarse-graining the momentum space to map the bulk lattice to a cluster embedded in a dynamical mean-field host. Here, we introduce a new form of an interlaced coarse-graining and compare it with the traditional coarse-graining. We show that it leads to more controlled results with weaker cluster shape and smoother cluster size dependence, which with increasing cluster size converge to the results obtained using the standard coarse-graining. In addition, the new coarse-graining reduces the severity of the fermionic sign problem. Therefore, it enables calculations on much larger clusters and can allow the evaluation of the exact infinite cluster size result via finite size scaling. To demonstrate this, we study the hole-doped two-dimensional Hubbard model and show that the interlaced coarse-graining in combination with the DCA+ algorithm permits the determination of the superconducting Tc on cluster sizes, for which the results can be fitted with the Kosterlitz-Thouless scaling law. This research used resources of the Oak Ridge Leadership Computing Facility (OLCF) awarded by the INCITE program, and of the Swiss National Supercomputing Center. OLCF is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  3. Energy-conserving coarse-graining of complex molecules.

    PubMed

    Español, Pep; Serrano, Mar; Pagonabarraga, Ignacio; Zúñiga, Ignacio

    2016-05-25

    Coarse-graining (CG) of complex molecules is a method to reach time scales that would be impossible to access through brute force molecular simulations. In this paper, we formulate a coarse-grained model for complex molecules using first principles caculations that ensures energy conservation. Each molecule is described in a coarse way by a thermal blob characterized by the position and momentum of the center of mass of the molecule, together with its internal energy as an additional degree of freedom. This level of description gives rise to an entropy-based framework instead of the usual one based on the configurational free energy (i.e. potential of mean force). The resulting dynamic equations, which account for an appropriate description of heat transfer at the coarse-grained level, have the structure of the dissipative particle dynamics with energy conservation (DPDE) model but with a clear microscopic underpinning. Under suitable approximations, we provide explicit microscopic expressions for each component (entropy, mean force, friction and conductivity coefficients) appearing in the coarse-grained model. These quantities can be computed directly using MD simulations. The proposed non-isothermal coarse-grained model is thermodynamically consistent and opens up a first principles CG strategy for the study of energy transport issues that are not accessible using current isothermal models. PMID:27127809

  4. Bayesian parametrization of coarse-grain dissipative dynamics models

    NASA Astrophysics Data System (ADS)

    Dequidt, Alain; Solano Canchaya, Jose G.

    2015-08-01

    We introduce a new bottom-up method for the optimization of dissipative coarse-grain models. The method is based on Bayesian optimization of the likelihood to reproduce a coarse-grained reference trajectory obtained from analysis of a higher resolution molecular dynamics trajectory. This new method is related to force matching techniques, but using the total force on each grain averaged on a coarse time step instead of instantaneous forces. It has the advantage of not being limited to pairwise short-range interactions in the coarse-grain model and also yields an estimation of the friction parameter controlling the dynamics. The theory supporting the method is exposed in a practical perspective, with an analytical solution for the optimal set of parameters. The method was first validated by using it on a system with a known optimum. The new method was then tested on a simple system: n-pentane. The local molecular structure of the optimized model is in excellent agreement with the reference system. An extension of the method allows to get also an excellent agreement for the equilibrium density. As for the dynamic properties, they are also very satisfactory, but more sensitive to the choice of the coarse-grain representation. The quality of the final force field depends on the definition of the coarse grain degrees of freedom and interactions. We consider this method as a serious alternative to other methods like iterative Boltzmann inversion, force matching, and Green-Kubo formulae.

  5. Material dispersion measurements on fiber optic cables used at the Nevada test site

    SciTech Connect

    Smiley, V.N.; Peressini, M.A.; Whitaker, D.E.

    1984-01-01

    We describe results obtained for material dispersion measurements on multi-mode optical fibers. The instrumentation used a phase shift method in which a phase change was produced by a change in selected wavelength of a filtered, RF-modulated LED after the light passed through a fiber. This measurement was repeated for several wavelengths over the spectral width of the LED emission. Typically an LED centered at 820 nm is useful from about 790 to 850 nm. The wavelength coverage can be extended further by using LEDs with different central wavelengths. Material dispersion values for high-bandwidth fibers measured fell in the range 100 to 108 ps/(nm x km) at a wavelength of 825 nm. 10 references.

  6. Advances in high-power 9XXnm laser diodes for pumping fiber lasers

    NASA Astrophysics Data System (ADS)

    Skidmore, Jay; Peters, Matthew; Rossin, Victor; Guo, James; Xiao, Yan; Cheng, Jane; Shieh, Allen; Srinivasan, Raman; Singh, Jaspreet; Wei, Cailin; Duesterberg, Richard; Morehead, James J.; Zucker, Erik

    2016-03-01

    A multi-mode 9XXnm-wavelength laser diode was developed to optimize the divergence angle and reliable ex-facet power. Lasers diodes were assembled into a multi-emitter pump package that is fiber coupled via spatial and polarization multiplexing. The pump package has a 135μm diameter output fiber that leverages the same optical train and mechanical design qualified previously. Up to ~ 270W CW power at 22A is achieved at a case temperature ~ 30ºC. Power conversion efficiency is 60% (peak) that drops to 53% at 22A with little thermal roll over. Greater than 90% of the light is collected at < 0.12NA at 16A drive current that produces 3.0W/(mm-mr)2 radiance from the output fiber.

  7. Silicon-on-sapphire fiber optic transceiver technology for space applications

    NASA Astrophysics Data System (ADS)

    Kuznia, C. P.; Ahadian, J. F.; Pommer, R. J.; Hagan, R.

    2007-09-01

    We present Single Event Upset (SEU) testing of a parallel fiber optic transceiver designed for communicating data using commercial Fibre Channel and GbE protocols at data rates up to 2.5 Gbps per channel (on eight parallel channels). This transceiver was developed for aircraft applications, such as the Joint Strike Fighter (JSF), Raptor and F/A-18 aircraft, that deploy fiber optic networks using multi-mode fiber operating at 850 nm wavelength. However, this transceiver may also have applications in space environments. This paper describes the underlying transceiver component technology, which utilizes complementary metal-oxide semiconductor (CMOS) silicon-onsapphire circuitry and GaAs VCSEL and PIN devices. We also present results of SEU testing of this transceiver using heavy ions at Brookhaven National Labs.

  8. Wavelets as basis functions to represent the coarse-graining potential in multiscale coarse graining approach

    NASA Astrophysics Data System (ADS)

    Maiolo, M.; Vancheri, A.; Krause, R.; Danani, A.

    2015-11-01

    In this paper, we apply Multiresolution Analysis (MRA) to develop sparse but accurate representations for the Multiscale Coarse-Graining (MSCG) approximation to the many-body potential of mean force. We rigorously framed the MSCG method into MRA so that all the instruments of this theory become available together with a multitude of new basis functions, namely the wavelets. The coarse-grained (CG) force field is hierarchically decomposed at different resolution levels enabling to choose the most appropriate wavelet family for each physical interaction without requiring an a priori knowledge of the details localization. The representation of the CG potential in this new efficient orthonormal basis leads to a compression of the signal information in few large expansion coefficients. The multiresolution property of the wavelet transform allows to isolate and remove the noise from the CG force-field reconstruction by thresholding the basis function coefficients from each frequency band independently. We discuss the implementation of our wavelet-based MSCG approach and demonstrate its accuracy using two different condensed-phase systems, i.e. liquid water and methanol. Simulations of liquid argon have also been performed using a one-to-one mapping between atomistic and CG sites. The latter model allows to verify the accuracy of the method and to test different choices of wavelet families. Furthermore, the results of the computer simulations show that the efficiency and sparsity of the representation of the CG force field can be traced back to the mathematical properties of the chosen family of wavelets. This result is in agreement with what is known from the theory of multiresolution analysis of signals.

  9. Theoretical study of mode evolution properties in a 3×1 adiabatic tapered single-mode fiber combiner

    NASA Astrophysics Data System (ADS)

    Zhou, Xuanfeng; Chen, Zilun; Zhou, Hang; Hou, Jing

    2015-02-01

    We study the mode evolution properties in a 3 x 1 adiabatic tapered single-mode fiber combiner (ATSMFC) in theory. The fabrication of the combiner for single mode fibers based on adiabatic tapered fused bundle (TFB) technique with the assistant of low index glass capillary is introduced. The whole taper region can be seen as three phase: single-mode fibers, multi-core fiber and multi-mode fiber. Supermodes of three-core fiber with scalar mode results are derived based on coupling mode theory. The analysis is verified with numerical examples by fully vectorial finite element mode solver (Cosmol Multiphysics). Simulation results show that the three input core modes in single-mode fibers gradually evolve into three supermodes in three-core fiber and then evolve into three low-order modes in the multi-core fiber. Effective indices for different modes are calculated which can depict the evolution process vividly. The results may be useful for practical high power fiber laser systems.

  10. Coarse-grained interaction potentials for anisotropic molecules.

    PubMed

    Babadi, M; Everaers, R; Ejtehadi, M R

    2006-05-01

    We have proposed an efficient parametrization method for a recent variant of the Gay Berne potential for dissimilar and biaxial particles [Phys. Rev. E 67, 041710 (2003)] and demonstrated it for a set of small organic molecules. Compared with the previously proposed coarse-grained models, the new potential exhibits a superior performance in close contact and large distant interactions. The repercussions of thermal vibrations and elasticity have been studied through a statistical method. The study justifies that the potential of mean force is representable with the same functional form, extending the application of this coarse-grained description to a broader range of molecules. Moreover, the advantage of employing coarse-grained models over truncated atomistic summations with large distance cutoffs has been briefly studied. PMID:16689591

  11. A Transferable Coarse-Grained Model for Hydrogen Bonding Liquids

    PubMed Central

    Golubkov, Pavel A.; Wu, Johnny C.; Ren, Pengyu

    2008-01-01

    We present here a recent development of a generalized coarse-grained model for use in molecular simulations. In this model, interactions between coarse-grained particles consist of both van der Waals and explicit electrostatic components. As a result, the coarse-grained model offers the transferability that is lacked by most current effectivepotential based approaches. The previous center-of-mass framework1 is generalized here to include arbitrary off-center interaction sites for both Gay-Berne and multipoles. The new model has been applied to molecular dynamic simulations of neat methanol liquid. By placing a single point multipole at the oxygen atom rather than at the center of mass of methanol, there is a significant improvement in the ability to capture hydrogen-bonding. The critical issue of transferability of the coarse-grained model is verified on methanol-water mixtures, using parameters derived from neat liquids without any modification. The mixture density and internal energy from coarse-grained molecular dynamics simulations show good agreement with experimental measurements, on a par with what has been obtained from more detailed atomic models. By mapping the dynamics trajectory from the coarse-grained simulation into the all-atom counterpart, we are able to investigate atomic .level structure and interaction. Atomic radial distribution functions of neat methanol, neat water and mixtures compare favorably to experimental measurements. Furthermore, hydrogen-bonded 6- and 7-molecule chains of water and methanol observed in the mixture are in agreement with previous atomic simulations. PMID:18688358

  12. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  13. Coarse-grid selection for parallel algebraic multigrid

    SciTech Connect

    Cleary, A. J., LLNL

    1998-06-01

    The need to solve linear systems arising from problems posed on extremely large, unstructured grids has sparked great interest in parallelizing algebraic multigrid (AMG) To date, however, no parallel AMG algorithms exist We introduce a parallel algorithm for the selection of coarse-grid points, a crucial component of AMG, based on modifications of certain paallel independent set algorithms and the application of heuristics designed to insure the quality of the coarse grids A prototype serial version of the algorithm is implemented, and tests are conducted to determine its effect on multigrid convergence, and AMG complexity

  14. Fiber-optic evanescent-field laser sensor for in-situ gas diagnostics.

    PubMed

    Willer, Ulrike; Scheel, Dirk; Kostjucenko, Irina; Bohling, Christian; Schade, Wolfgang; Faber, Eckhard

    2002-09-01

    A compact, rugged and portable fiber-optic evanescent-field laser sensor is developed for the detection of gaseous species in harsh environments such as volcano fumaroles or industrial combustion of glass furnaces. The sensor consists of an optical multi-mode fused silica fiber with jacket and cladding removed and the bare fiber core in direct contact with the surrounding molecules. The beam of a single-mode DFB diode laser with an emission wavelength centered at 1.5705 microm is coupled into the fiber. At the other end of the fiber an infrared detector is used to record the transmitted infrared laser light intensity. Due to the frustrated total reflection (FTR) and the attenuated total reflection (ATR) the laser intensity is attenuated when passing through the fiber. The FTR is related to a change of the index of refraction while the latter one is related to a change of the absorption coefficient. While tuning the DFB laser wavelength across absorption lines of molecules surrounding the fiber a spectral intensity profile is measured. Voigt functions are fitted to the recorded intensity profiles to estimate relative molecule concentrations. In this paper results from first field measurements at the volcano site 'Solfatara' in Italy are reported that use such a sensor device for simultaneous detection of H2S, CO2 and H2O directly in the gas stream of a volcano fumarole. PMID:12353692

  15. Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  16. Development of functional spaghetti enriched in bioactive compounds using barley coarse fraction obtained by air classification.

    PubMed

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Messia, Maria Cristina; Marconi, Emanuele; Caboni, Maria Fiorenza

    2011-09-14

    Barley byproducts obtained by air classification have been used to produce a different barley functional spaghetti, which were compared to different commercial whole semolina samples. Total, insoluble, and soluble fiber and β-glucan contents of the barley spaghetti were found to be greater than those of commercial samples. Furthermore, it was proved that barley spaghetti reached the FDA requirements, which could allow these pastas to deserve the health claims "good source of dietary fiber" and "may reduce the risk of heart disease". When the barley coarse fraction was used, a flavan-3-ols enrichment and an increase of antioxidant activity were reported, while commercial samples showed the absence of flavan-3-ols and a higher presence of phenolic acids and tannins. Whole semolina commercial spaghetti had a significantly higher content of phenolic acids than semolina spaghetti samples. Besides, it was observed that when vital gluten was added to the spaghetti formulation, phenolic compounds were blocked in the gluten network and were partially released during the cooking process. PMID:21806068

  17. The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models

    PubMed Central

    Noid, W. G.; Liu, Pu; Wang, Yanting; Chu, Jhih-Wei; Ayton, Gary S.; Izvekov, Sergei; Andersen, Hans C.; Voth, Gregory A.

    2008-01-01

    The multiscale coarse-graining (MS-CG) method [S. Izvekov and G. A. Voth, J. Phys. Chem. B 109, 2469 (2005);J. Chem. Phys. 123, 134105 (2005)] employs a variational principle to determine an interaction potential for a CG model from simulations of an atomically detailed model of the same system. The companion paper proved that, if no restrictions regarding the form of the CG interaction potential are introduced and if the equilibrium distribution of the atomistic model has been adequately sampled, then the MS-CG variational principle determines the exact many-body potential of mean force (PMF) governing the equilibrium distribution of CG sites generated by the atomistic model. In practice, though, CG force fields are not completely flexible, but only include particular types of interactions between CG sites, e.g., nonbonded forces between pairs of sites. If the CG force field depends linearly on the force field parameters, then the vector valued functions that relate the CG forces to these parameters determine a set of basis vectors that span a vector subspace of CG force fields. The companion paper introduced a distance metric for the vector space of CG force fields and proved that the MS-CG variational principle determines the CG force force field that is within that vector subspace and that is closest to the force field determined by the many-body PMF. The present paper applies the MS-CG variational principle for parametrizing molecular CG force fields and derives a linear least squares problem for the parameter set determining the optimal approximation to this many-body PMF. Linear systems of equations for these CG force field parameters are derived and analyzed in terms of equilibrium structural correlation functions. Numerical calculations for a one-site CG model of methanol and a molecular CG model of the EMIM+∕NO3− ionic liquid are provided to illustrate the method. PMID:18601325

  18. Quantum particles from coarse grained classical probabilities in phase space

    SciTech Connect

    Wetterich, C.

    2010-07-15

    Quantum particles can be obtained from a classical probability distribution in phase space by a suitable coarse graining, whereby simultaneous classical information about position and momentum can be lost. For a suitable time evolution of the classical probabilities and choice of observables all features of a quantum particle in a potential follow from classical statistics. This includes interference, tunneling and the uncertainty relation.

  19. Coarse-graining stochastic biochemical networks: adiabaticity and fast simulations

    SciTech Connect

    Nemenman, Ilya; Sinitsyn, Nikolai; Hengartner, Nick

    2008-01-01

    We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical kinetics networks, which rests on elimination of fast chemical species without a loss of information about mesoscoplc, non-Poissonian fluctuations of the slow ones. Our approach, which is similar to the Born-Oppenhelmer approximation in quantum mechanics, follows from the stochastic path Integral representation of the cumulant generating function of reaction events. In applications with a small number of chemIcal reactions, It produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, Interpretable representation and can be used for coarse-grained numerical simulation schemes with a small computational complexity and yet high accuracy. As an example, we derive the coarse-grained description for a chain of biochemical reactions, and show that the coarse-grained and the microscopic simulations are in an agreement, but the coarse-gralned simulations are three orders of magnitude faster.

  20. Terrain aided navigation for autonomous underwater vehicles with coarse maps

    NASA Astrophysics Data System (ADS)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian

    2016-09-01

    Terrain aided navigation (TAN) is a form of geophysical localization technique for autonomous underwater vehicles (AUVs) operating in GPS-denied environments. TAN performance on sensor-rich AUVs has been evaluated in sea trials. However, many challenges remain before TAN can be successfully implemented on sensor-limited AUVs, especially with coarse maps. To improve TAN performance over coarse maps, a Gaussian process (GP) is proposed for the modeling of bathymetric terrain and integrated into the particle filter (GP-PF). GP is applied to provide not only the bathymetric value prediction through learning a set of bathymetric data from coarse maps but also the variance of the prediction. As a measurement update, calculated on bathymetric deviation is performed through the PF to obtain absolute and bounded positioning accuracy. Through the analysis of TAN performance on experimental data for two different terrains with map resolutions of 10–50 m, both the ability of the proposed model to represent the actual bathymetric terrain with accuracy and the effect of the GP-PF for TAN on sensor-limited systems in suited terrain are demonstrated. The experiment results further verify that there is an inverse relationship between the coarseness of the map and the overall TAN accuracy in rough terrains, but there is hardly any relationship between them in relatively flat terrains.

  1. On coarse projective integration for atomic deposition in amorphous systems

    NASA Astrophysics Data System (ADS)

    Chuang, Claire Y.; Han, Sang M.; Zepeda-Ruiz, Luis A.; Sinno, Talid

    2015-10-01

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of time scales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity, and computational efficiency. Coarse projective integration, an example application of the "equation-free" framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute time derivatives of slowly evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to the application of this technique in realistic settings is the "lifting" operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO2 substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO2 using only a few measures of the island size distribution. The approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system.

  2. On coarse projective integration for atomic deposition in amorphous systems.

    PubMed

    Chuang, Claire Y; Han, Sang M; Zepeda-Ruiz, Luis A; Sinno, Talid

    2015-10-01

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of time scales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity, and computational efficiency. Coarse projective integration, an example application of the "equation-free" framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute time derivatives of slowly evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to the application of this technique in realistic settings is the "lifting" operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO2 substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO2 using only a few measures of the island size distribution. The approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system. PMID:26450324

  3. Multiscale coarse graining of liquid-state systems

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Voth, Gregory A.

    2005-10-01

    A methodology is described to systematically derive coarse-grained (CG) force fields for molecular liquids from the underlying atomistic-scale forces. The coarse graining of an interparticle force field is accomplished by the application of a force-matching method to the trajectories and forces obtained from the atomistic trajectory and force data for the CG sites of the targeted system. The CG sites can be associated with the centers of mass of atomic groups because of the simplicity in the evaluation of forces acting on these sites from the atomistic data. The resulting system is called a multiscale coarse-grained (MS-CG) representation. The MS-CG method for liquids is applied here to water and methanol. For both liquids one-site and two-site CG representations without an explicit treatment of the long-ranged electrostatics have been derived. In addition, for water a two-site model having the explicit long-ranged electrostatics has been developed. To improve the thermodynamic properties (e.g., pressure and density) for the MS-CG models, the constraint for the instantaneous virial was included into the force-match procedure. The performance of the resulting models was evaluated against the underlying atomistic simulations and experiment. In contrast with existing approaches for coarse graining of liquid systems, the MS-CG approach is general, relies only on the interatomic interactions in the reference atomistic system.

  4. Personal Coarse Particulate Matter Exposures in an Adult Cohort

    EPA Science Inventory

    Volunteers associated with the North Carolina Adult Asthma and Environment Study (NCAAES) participated in an investigation of personal daily exposures to coarse and fine particulate matter size fractions (PM10-2.5, PM2.5). Data from these personal measuremen...

  5. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grains Crop Provisions 1. Definitions Coarse grains. Corn, grain sorghum, and soybeans. Grain sorghum... cash grain price per bushel for the U.S. No. 2 yellow corn, U.S. No. 2 grain sorghum, or U.S. No. 1... yellow corn and grain sorghum, or U.S. No. 1 grade for soybeans. Factors not associated with...

  6. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Grains Crop Provisions 1. Definitions Coarse grains. Corn, grain sorghum, and soybeans. Grain sorghum... cash grain price per bushel for the U.S. No. 2 yellow corn, U.S. No. 2 grain sorghum, or U.S. No. 1... yellow corn and grain sorghum, or U.S. No. 1 grade for soybeans. Factors not associated with...

  7. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Grains Crop Provisions 1. Definitions Coarse grains— Corn, grain sorghum, and soybeans. Grain sorghum... cash grain price per bushel for the U.S. No. 2 yellow corn, U.S. No. 2 grain sorghum, or U.S. No. 1... yellow corn and grain sorghum, or U.S. No. 1 grade for soybeans. Factors not associated with...

  8. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Grains Crop Provisions 1. Definitions Coarse grains. Corn, grain sorghum, and soybeans. Grain sorghum... cash grain price per bushel for the U.S. No. 2 yellow corn, U.S. No. 2 grain sorghum, or U.S. No. 1... yellow corn and grain sorghum, or U.S. No. 1 grade for soybeans. Factors not associated with...

  9. Evaluation of a Direct Personal Coarse Particulate Matter Monitor

    EPA Science Inventory

    One aspect of the North Carolina Adult Asthma and Environment study (NCAAES) was to evaluate personal exposures to coarse particulate matter (PM 10-2.5) and their associated variability. As part of this, we examined the ability of a community-based monitor to act as...

  10. On coarse projective integration for atomic deposition in amorphous systems

    SciTech Connect

    Chuang, Claire Y. E-mail: meister@unm.edu Sinno, Talid; Han, Sang M. E-mail: meister@unm.edu; Zepeda-Ruiz, Luis A. E-mail: meister@unm.edu

    2015-10-07

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of time scales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity, and computational efficiency. Coarse projective integration, an example application of the “equation-free” framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute time derivatives of slowly evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to the application of this technique in realistic settings is the “lifting” operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO{sub 2} substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO{sub 2} using only a few measures of the island size distribution. The approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system.

  11. 7. DETAIL OF ROOM BELOW GRIZZLY SHOWING BOTTOM OF COARSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF ROOM BELOW GRIZZLY SHOWING BOTTOM OF COARSE ORE BIN AND CHUTE TO BEGINNING OF CONVEYOR BELT, SOUTH VIEW. - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  12. COARSE PM EMISSIONS MODEL DEVELOPMENT AND INVENTORY VALIDATION

    EPA Science Inventory

    The proposed research will contribute to our understanding of the sources and controlling variables of coarse PM. This greater understanding, along with an increase in our ability to predict these emissions, will enable more efficient pollution control strategy development. Ad...

  13. Coarse-Grained and Atomistic Modeling of Polyimides

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Hinkley, Jeffrey A.

    2004-01-01

    A coarse-grained model for a set of three polyimide isomers is developed. Each polyimide is comprised of BPDA (3,3,4,4' - biphenyltetracarboxylic dianhydride) and one of three APB isomers: 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene or 1,3-bis(3-aminophenoxy)benzene. The coarse-grained model is constructed as a series of linked vectors following the contour of the polymer backbone. Beads located at the midpoint of each vector define centers for long range interaction energy between monomer subunits. A bulk simulation of each coarse-grained polyimide model is performed with a dynamic Monte Carlo procedure. These coarsegrained models are then reverse-mapped to fully atomistic models. The coarse-grained models show the expected trends in decreasing chain dimensions with increasing meta linkage in the APB section of the repeat unit, although these differences were minor due to the relatively short chains simulated here. Considerable differences are seen among the dynamic Monte Carlo properties of the three polyimide isomers. Decreasing relaxation times are seen with increasing meta linkage in the APB section of the repeat unit.

  14. Fireblocking Fibers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    PBI was originally developed for space suits. In 1980, the need for an alternative to asbestos and stricter government anti-pollution standards led to commercialization of the fire blocking fiber. PBI is used for auto racing driver suits and aircraft seat covers. The fiber does not burn in air, is durable and easily maintained. It has been specified by a number of airliners and is manufactured by Hoechst-Celanese Corporation.

  15. Coarse-Grained Clustering Dynamics of Heterogeneously Coupled Neurons.

    PubMed

    Moon, Sung Joon; Cook, Katherine A; Rajendran, Karthikeyan; Kevrekidis, Ioannis G; Cisternas, Jaime; Laing, Carlo R

    2015-12-01

    The formation of oscillating phase clusters in a network of identical Hodgkin-Huxley neurons is studied, along with their dynamic behavior. The neurons are synaptically coupled in an all-to-all manner, yet the synaptic coupling characteristic time is heterogeneous across the connections. In a network of N neurons where this heterogeneity is characterized by a prescribed random variable, the oscillatory single-cluster state can transition-through [Formula: see text] (possibly perturbed) period-doubling and subsequent bifurcations-to a variety of multiple-cluster states. The clustering dynamic behavior is computationally studied both at the detailed and the coarse-grained levels, and a numerical approach that can enable studying the coarse-grained dynamics in a network of arbitrarily large size is suggested. Among a number of cluster states formed, double clusters, composed of nearly equal sub-network sizes are seen to be stable; interestingly, the heterogeneity parameter in each of the double-cluster components tends to be consistent with the random variable over the entire network: Given a double-cluster state, permuting the dynamical variables of the neurons can lead to a combinatorially large number of different, yet similar "fine" states that appear practically identical at the coarse-grained level. For weak heterogeneity we find that correlations rapidly develop, within each cluster, between the neuron's "identity" (its own value of the heterogeneity parameter) and its dynamical state. For single- and double-cluster states we demonstrate an effective coarse-graining approach that uses the Polynomial Chaos expansion to succinctly describe the dynamics by these quickly established "identity-state" correlations. This coarse-graining approach is utilized, within the equation-free framework, to perform efficient computations of the neuron ensemble dynamics. PMID:26458901

  16. Chemical-mineralogical characterisation of coarse recycled concrete aggregate

    SciTech Connect

    Limbachiya, M.C. . E-mail: m.limbachiya@kingston.ac.uk; Marrocchino, E.; Koulouris, A.

    2007-07-01

    The construction industry is now putting greater emphasis than ever before on increasing recycling and promoting more sustainable waste management practices. In keeping with this approach, many sectors of the industry have actively sought to encourage the use of recycled concrete aggregate (RCA) as an alternative to primary aggregates in concrete production. The results of a laboratory experimental programme aimed at establishing chemical and mineralogical characteristics of coarse RCA and its likely influence on concrete performance are reported in this paper. Commercially produced coarse RCA and natural aggregates (16-4 mm size fraction) were tested. Results of X-ray fluorescence (XRF) analyses showed that original source of RCA had a negligible effect on the major elements and a comparable chemical composition between recycled and natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, portlandite and minor peaks of muscovite/illite in recycled aggregates, although they were directly proportioned to their original composition. The influence of 30%, 50%, and 100% coarse RCA on the chemical composition of equal design strength concrete has been established, and its suitability for use in a concrete application has been assessed. In this work, coarse RCA was used as a direct replacement for natural gravel in concrete production. Test results indicated that up to 30% coarse RCA had no effect on the main three oxides (SiO{sub 2}, Al{sub 2}O{sub 3} and CaO) of concrete, but thereafter there was a marginal decrease in SiO{sub 2} and increase in Al{sub 2}O{sub 3} and CaO contents with increase in RCA content in the mix, reflecting the original constituent's composition.

  17. Hollow core fiber optics for mid-wave and long-wave infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kriesel, Jason M.; Gat, Nahum; Bernacki, Bruce E.; Erikson, Rebecca L.; Cannon, Bret D.; Myers, Tanya L.; Bledt, Carlos M.; Harrington, James A.

    2011-05-01

    We describe the development and testing of hollow core glass waveguides (i.e., fiber optics) for use in Mid-Wave Infrared (MWIR) and Long-Wave Infrared (LWIR) spectroscopy systems. Spectroscopy measurements in these wavelength regions (i.e., from 3 to 14 μm) are useful for detecting trace chemical compounds for a variety of security and defense related applications, and fiber optics are a key enabling technology needed to improve the utility and effectiveness of detection and calibration systems. Hollow glass fibers have the advantage over solid-core fibers (e.g., chalcogenide) in that they are less fragile, do not produce cladding modes, do not require angle cleaving or antireflection coatings to minimize laser feedback effects, and effectively transmit deeper into the infrared. This paper focuses on recent developments in hollow fiber technology geared specifically for infrared spectroscopy, including single mode beam delivery with relatively low bending loss. Results are presented from tests conducted using both Quantum Cascade Lasers (QCL) and CO2 lasers operating in the LWIR wavelength regime. Single-mode waveguides are shown to effectively deliver beams with relatively low loss (~ 1 dB/m) and relatively high beam quality. The fibers are also shown to effectively mode-filter the "raw" multi-mode output from a QCL, in effect damping out the higher order modes to produce a circularly symmetric Gaussian-like beam profile.

  18. A nucleotide-level coarse-grained model of RNA

    SciTech Connect

    Šulc, Petr; Ouldridge, Thomas E.; Louis, Ard A.; Romano, Flavio; Doye, Jonathan P. K.

    2014-06-21

    We present a new, nucleotide-level model for RNA, oxRNA, based on the coarse-graining methodology recently developed for the oxDNA model of DNA. The model is designed to reproduce structural, mechanical, and thermodynamic properties of RNA, and the coarse-graining level aims to retain the relevant physics for RNA hybridization and the structure of single- and double-stranded RNA. In order to explore its strengths and weaknesses, we test the model in a range of nanotechnological and biological settings. Applications explored include the folding thermodynamics of a pseudoknot, the formation of a kissing loop complex, the structure of a hexagonal RNA nanoring, and the unzipping of a hairpin motif. We argue that the model can be used for efficient simulations of the structure of systems with thousands of base pairs, and for the assembly of systems of up to hundreds of base pairs. The source code implementing the model is released for public use.

  19. Coarse-graining of proteins based on elastic network models

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Voth, Gregory A.

    2013-08-01

    To simulate molecular processes on biologically relevant length- and timescales, coarse-grained (CG) models of biomolecular systems with tens to even hundreds of residues per CG site are required. One possible way to build such models is explored in this article: an elastic network model (ENM) is employed to define the CG variables. Free energy surfaces are approximated by Taylor series, with the coefficients found by force-matching. CG potentials are shown to undergo renormalization due to roughness of the energy landscape and smoothing of it under coarse-graining. In the case study of hen egg-white lysozyme, the entropy factor is shown to be of critical importance for maintaining the native structure, and a relationship between the proposed ENM-mode-based CG models and traditional CG-bead-based models is discussed. The proposed approach uncovers the renormalizable character of CG models and offers new opportunities for automated and computationally efficient studies of complex free energy surfaces.

  20. A nucleotide-level coarse-grained model of RNA

    NASA Astrophysics Data System (ADS)

    Šulc, Petr; Romano, Flavio; Ouldridge, Thomas E.; Doye, Jonathan P. K.; Louis, Ard A.

    2014-06-01

    We present a new, nucleotide-level model for RNA, oxRNA, based on the coarse-graining methodology recently developed for the oxDNA model of DNA. The model is designed to reproduce structural, mechanical, and thermodynamic properties of RNA, and the coarse-graining level aims to retain the relevant physics for RNA hybridization and the structure of single- and double-stranded RNA. In order to explore its strengths and weaknesses, we test the model in a range of nanotechnological and biological settings. Applications explored include the folding thermodynamics of a pseudoknot, the formation of a kissing loop complex, the structure of a hexagonal RNA nanoring, and the unzipping of a hairpin motif. We argue that the model can be used for efficient simulations of the structure of systems with thousands of base pairs, and for the assembly of systems of up to hundreds of base pairs. The source code implementing the model is released for public use.

  1. Linear mixing model applied to coarse resolution satellite data

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1992-01-01

    A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.

  2. Photovoltaic fibers

    NASA Astrophysics Data System (ADS)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  3. Enhancing physiologic simulations using supervised learning on coarse mesh solutions.

    PubMed

    Kolandaivelu, Kumaran; O'Brien, Caroline C; Shazly, Tarek; Edelman, Elazer R; Kolachalama, Vijaya B

    2015-03-01

    Computational modelling of physical and biochemical processes has emerged as a means of evaluating medical devices, offering new insights that explain current performance, inform future designs and even enable personalized use. Yet resource limitations force one to compromise with reduced order computational models and idealized assumptions that yield either qualitative descriptions or approximate, quantitative solutions to problems of interest. Considering endovascular drug delivery as an exemplary scenario, we used a supervised machine learning framework to process data generated from low fidelity coarse meshes and predict high fidelity solutions on refined mesh configurations. We considered two models simulating drug delivery to the arterial wall: (i) two-dimensional drug-coated balloons and (ii) three-dimensional drug-eluting stents. Simulations were performed on computational mesh configurations of increasing density. Supervised learners based on Gaussian process modelling were constructed from combinations of coarse mesh setting solutions of drug concentrations and nearest neighbourhood distance information as inputs, and higher fidelity mesh solutions as outputs. These learners were then used as computationally inexpensive surrogates to extend predictions using low fidelity information to higher levels of mesh refinement. The cross-validated, supervised learner-based predictions improved fidelity as compared with computational simulations performed at coarse level meshes--a result consistent across all outputs and computational models considered. Supervised learning on coarse mesh solutions can augment traditional physics-based modelling of complex physiologic phenomena. By obtaining efficient solutions at a fraction of the computational cost, this framework has the potential to transform how modelling approaches can be applied in the evaluation of medical technologies and their real-time administration in an increasingly personalized fashion. PMID:25652458

  4. Coarse pointing mechanism assembly for satellite interlink experiment

    NASA Technical Reports Server (NTRS)

    Maeusli, P. A.; Ivorra, M. T.; Gass, V.; Berthoud, J. F.

    1996-01-01

    Since 1975, MECANEX S.A. has been manufacturing components for solar array drives and mechanisms used in space applications. In 1991, work was started in an early phase C (Engineering Model) on a Coarse Pointing Mechanism Assembly (CPMA) for the Semiconductor-laser Inter-satellite Link EXperiment (SILEX). This paper deals with the history, the evolution, and the lessons learned from taking over a pre-design in 1991 to the delivery of last flight models (FM 5 & 6) in 1995.

  5. Coarse-Grained Molecular Dynamics: Dissipation Due to Internal Modes

    SciTech Connect

    Rudd, R E

    2001-12-21

    We describe progress on the issue of pathological elastic wave reflection in atomistic and multiscale simulation. First we briefly review Coarse-Grained Molecular Dynamics (CGMD). Originally CGMD was formulated as a Hamiltonian system in which energy is conserved. This formulation is useful for many applications, but recently CGMD has been extended to include generalized Langevin forces. Here we describe how Langevin dynamics arise naturally in CGMD, and we examine the implication for elastic wave scattering.

  6. Enhancing physiologic simulations using supervised learning on coarse mesh solutions

    PubMed Central

    Kolandaivelu, Kumaran; O'Brien, Caroline C.; Shazly, Tarek; Edelman, Elazer R.; Kolachalama, Vijaya B.

    2015-01-01

    Computational modelling of physical and biochemical processes has emerged as a means of evaluating medical devices, offering new insights that explain current performance, inform future designs and even enable personalized use. Yet resource limitations force one to compromise with reduced order computational models and idealized assumptions that yield either qualitative descriptions or approximate, quantitative solutions to problems of interest. Considering endovascular drug delivery as an exemplary scenario, we used a supervised machine learning framework to process data generated from low fidelity coarse meshes and predict high fidelity solutions on refined mesh configurations. We considered two models simulating drug delivery to the arterial wall: (i) two-dimensional drug-coated balloons and (ii) three-dimensional drug-eluting stents. Simulations were performed on computational mesh configurations of increasing density. Supervised learners based on Gaussian process modelling were constructed from combinations of coarse mesh setting solutions of drug concentrations and nearest neighbourhood distance information as inputs, and higher fidelity mesh solutions as outputs. These learners were then used as computationally inexpensive surrogates to extend predictions using low fidelity information to higher levels of mesh refinement. The cross-validated, supervised learner-based predictions improved fidelity as compared with computational simulations performed at coarse level meshes—a result consistent across all outputs and computational models considered. Supervised learning on coarse mesh solutions can augment traditional physics-based modelling of complex physiologic phenomena. By obtaining efficient solutions at a fraction of the computational cost, this framework has the potential to transform how modelling approaches can be applied in the evaluation of medical technologies and their real-time administration in an increasingly personalized fashion. PMID:25652458

  7. Coarse graining of force fields for metal-organic frameworks.

    PubMed

    Dürholt, Johannes P; Galvelis, Raimondas; Schmid, Rochus

    2016-03-14

    We have adapted our genetic algorithm based optimization approach, originally developed to generate force field parameters from quantum mechanic reference data, to derive a first coarse grained force field for a MOF, taking the atomistic MOF-FF as a reference. On the example of the copper paddle-wheel based HKUST-1, a maximally coarse grained model, using a single bead for each three and four coordinated vertex, was developed as a proof of concept. By adding non-bonded interactions with a modified Buckingham potential, the resulting MOF-FF-CGNB is able to predict local deformation energies of the building blocks as well as bulk properties like the tbovs.pto energy difference or elastic constants in a semi-quantitative way. As expected, the negative thermal expansion of HKUST-1 is not reproduced by the maximally coarse grained model. At the expense of atomic resolution, substantially larger systems (up to tens of nanometers in size) can be simulated with respect to structural and mechanical properties, bridging the gap to the mesoscale. As an example the deformation of the [111] surface of HKUST-1 by a "tip" could be computed without artifacts from periodic images. PMID:26732756

  8. Coarse Point Cloud Registration by Egi Matching of Voxel Clusters

    NASA Astrophysics Data System (ADS)

    Wang, Jinhu; Lindenbergh, Roderik; Shen, Yueqian; Menenti, Massimo

    2016-06-01

    Laser scanning samples the surface geometry of objects efficiently and records versatile information as point clouds. However, often more scans are required to fully cover a scene. Therefore, a registration step is required that transforms the different scans into a common coordinate system. The registration of point clouds is usually conducted in two steps, i.e. coarse registration followed by fine registration. In this study an automatic marker-free coarse registration method for pair-wise scans is presented. First the two input point clouds are re-sampled as voxels and dimensionality features of the voxels are determined by principal component analysis (PCA). Then voxel cells with the same dimensionality are clustered. Next, the Extended Gaussian Image (EGI) descriptor of those voxel clusters are constructed using significant eigenvectors of each voxel in the cluster. Correspondences between clusters in source and target data are obtained according to the similarity between their EGI descriptors. The random sampling consensus (RANSAC) algorithm is employed to remove outlying correspondences until a coarse alignment is obtained. If necessary, a fine registration is performed in a final step. This new method is illustrated on scan data sampling two indoor scenarios. The results of the tests are evaluated by computing the point to point distance between the two input point clouds. The presented two tests resulted in mean distances of 7.6 mm and 9.5 mm respectively, which are adequate for fine registration.

  9. Moving Beyond Watson-Crick Models of Coarse Grained DNA

    NASA Astrophysics Data System (ADS)

    Dorfman, Kevin; Linak, Margaret; Tourdot, Richard

    2012-02-01

    DNA structure possesses several levels of complexity, ranging from the sequence of bases (primary structure) to base pairing (secondary structure) to its three-dimensional shape (tertiary structure) and can produce a wide variety of conformations in addition to canonical double stranded DNA. By including non-Watson-Crick interactions in a coarse-grained model, we developed a system that not only can capture the traditional B-form double helix, but also can adopt a wide variety of other DNA conformations. In our experimentally parameterized, coarse-grained DNA model we are able to reproduce the microscopic features of double-stranded DNA without the need for explicit constraints and capture experimental melting curves for a number of short DNA hairpins. We demonstrate the utility of the model by simulating more complex tertiary structures such as the folding of the thrombin aptamer, which includes G-quartets, and strand invasion during triplex formation. Our results highlight the importance of non-canonical interactions in DNA coarse- grained models.

  10. Bayesian calibration of coarse-grained forces: Efficiently addressing transferability

    NASA Astrophysics Data System (ADS)

    Patrone, Paul N.; Rosch, Thomas W.; Phelan, Frederick R.

    2016-04-01

    Generating and calibrating forces that are transferable across a range of state-points remains a challenging task in coarse-grained (CG) molecular dynamics. In this work, we present a coarse-graining workflow, inspired by ideas from uncertainty quantification and numerical analysis, to address this problem. The key idea behind our approach is to introduce a Bayesian correction algorithm that uses functional derivatives of CG simulations to rapidly and inexpensively recalibrate initial estimates f0 of forces anchored by standard methods such as force-matching. Taking density-temperature relationships as a running example, we demonstrate that this algorithm, in concert with various interpolation schemes, can be used to efficiently compute physically reasonable force curves on a fine grid of state-points. Importantly, we show that our workflow is robust to several choices available to the modeler, including the interpolation schemes and tools used to construct f0. In a related vein, we also demonstrate that our approach can speed up coarse-graining by reducing the number of atomistic simulations needed as inputs to standard methods for generating CG forces.

  11. Components and activity of polysaccharides from coarse tea.

    PubMed

    Wang Dongfeng, W; Wang Chenghong, W; Li Jun, L; Zhao Guiwen, Z

    2001-01-01

    Coarse tea contained a high content of polysaccharide complex. Composed of polysaccharide and protein, the polysaccharide complex from tea (TPS) belonged to glycoprotein with the molecular weight () of (10.7-11.0) x 10(4). When mice (7 weeks old, C57BL/8) were injected with TPS, the levels of blood glucose (BG) in normal mice and model mice with high BG were decreased significantly by averages of 13.54 and 22.18%, respectively. The antibody concentration (OD(413 nm)) in the mice injected with 2.4 mg/mL TPS was increased evidently by 44.93% (p < 0.01). TPS treatment was beneficial not only for the subsequent production of interleukin (IL) 2 in spleen cells of adjuvant arthritis (AA) rats but also because it prohibited the body from producing too much IL-1 in AA rats. Treatment of diabetes with coarse tea in both China and Japan may be related to TPS and the content of TPS in coarse tea. PMID:11170619

  12. High capacitance of coarse-grained carbide derived carbon electrodes

    NASA Astrophysics Data System (ADS)

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-02-01

    We report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. Using a titanium carbide (TiC) precursor, we synthesized 70-250 μm sized particles with high surface area and a narrow pore size distribution. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. The material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250-1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  13. Coarse-Grained Model of SNARE-Mediated Docking

    PubMed Central

    Fortoul, Nicole; Singh, Pankaj; Hui, Chung-Yuen; Bykhovskaia, Maria; Jagota, Anand

    2015-01-01

    Synaptic transmission requires that vesicles filled with neurotransmitter molecules be docked to the plasma membrane by the SNARE protein complex. The SNARE complex applies attractive forces to overcome the long-range repulsion between the vesicle and membrane. To understand how the balance between the attractive and repulsive forces defines the equilibrium docked state we have developed a model that combines the mechanics of vesicle/membrane deformation with an apparently new coarse-grained model of the SNARE complex. The coarse-grained model of the SNARE complex is calibrated by comparison with all-atom molecular dynamics simulations as well as by force measurements in laser tweezer experiments. The model for vesicle/membrane interactions includes the forces produced by membrane deformation and hydration or electrostatic repulsion. Combining these two parts, the coarse-grained model of the SNARE complex with membrane mechanics, we study how the equilibrium docked state varies with the number of SNARE complexes. We find that a single SNARE complex is able to bring a typical synaptic vesicle to within a distance of ∼3 nm from the membrane. Further addition of SNARE complexes shortens this distance, but an overdocked state of >4–6 SNAREs actually increases the equilibrium distance. PMID:25954883

  14. Biomolecular pleiomorphism probed by spatial interpolation of coarse models.

    PubMed

    Rusu, Mirabela; Birmanns, Stefan; Wriggers, Willy

    2008-11-01

    In low resolution structures of biological assemblies one can often observe conformational deviations that require a flexible rearrangement of structural domains fitted at the atomic level. We are evaluating interpolation methods for the flexible alignment of atomic models based on coarse models. Spatial interpolation is well established in image-processing and visualization to describe the overall deformation or warping of an object or an image. Combined with a coarse representation of the biological system by feature vectors, such methods can provide a flexible approximation of the molecular structure. We have compared three well-known interpolation techniques and evaluated the results by comparing them with constrained molecular dynamics. One method, inverse distance weighting interpolation, consistently produced models that were nearly indistinguishable on the alpha carbon level from the molecular dynamics results. The method is simple to apply and enables flexing of structures by non-expert modelers. This is useful for the basic interpretation of volumetric data in biological applications such as electron microscopy. The method can be used as a general interpretation tool for sparsely sampled motions derived from coarse models. PMID:18757874

  15. The Theory of Ultra-Coarse-Graining. 2. Numerical Implementation.

    PubMed

    Davtyan, Aram; Dama, James F; Sinitskiy, Anton V; Voth, Gregory A

    2014-12-01

    The increasing interest in the modeling of complex macromolecular systems in recent years has spurred the development of numerous coarse-graining (CG) techniques. However, many of the CG models are constructed assuming that all details beneath the resolution of CG degrees of freedom are fast and average out, which sets limits on the resolution of feasible coarse-grainings and on the range of applications of the CG models. Ultra-coarse-graining (UCG) makes it possible to construct models at any desired resolution while accounting for discrete conformational or chemical changes within the CG sites that can modulate the interactions between them. Here, we discuss the UCG methodology and its numerical implementation. We pay particular attention to the numerical mechanism for including state transitions between different conformations within CG sites because this has not been discussed previously. Using a simple example of 1,2-dichloroethane, we demonstrate the ability of the UCG model to reproduce the multiconfigurational behavior of this molecular liquid, even when each molecule is modeled with only one CG site. The methodology can also be applied to other molecular liquids and macromolecular systems with time scale separation between conformational transitions and other intramolecular motions and rotations. PMID:26583210

  16. Is Coarse-to-Fine Strategy Sensitive to Normal Aging?

    PubMed Central

    Musel, Benoit; Chauvin, Alan; Guyader, Nathalie; Chokron, Sylvie; Peyrin, Carole

    2012-01-01

    Theories on visual perception agree that visual recognition begins with global analysis and ends with detailed analysis. Different results from neurophysiological, computational, and behavioral studies all indicate that the totality of visual information is not immediately conveyed, but that information analysis follows a predominantly coarse-to-fine processing sequence (low spatial frequencies are extracted first, followed by high spatial frequencies). We tested whether such processing continues to occur in normally aging subjects. Young and aged participants performed a categorization task (indoor vs. outdoor scenes), using dynamic natural scene stimuli, in which they resorted to either a coarse-to-fine (CtF) sequence or a reverse fine-to-coarse sequence (FtC). The results show that young participants categorized CtF sequences more quickly than FtC sequences. However, sequence processing interacts with semantic category only for aged participants. The present data support the notion that CtF categorization is effective even in aged participants, but is constrained by the spatial features of the scenes, thus highlighting new perspectives in visual models. PMID:22675568

  17. Coarse bedload routing and dispersion through tributary confluences

    NASA Astrophysics Data System (ADS)

    Imhoff, Kurt S.; Wilcox, Andrew C.

    2016-07-01

    Sediment routing fundamentally influences channel morphology and the propagation of disturbances such as debris flows. The transport and storage of bedload particles across headwater channel confluences, which may be significant nodes of the channel network in terms of sediment routing, morphology, and habitat, are poorly understood, however. We investigated patterns and processes of sediment routing through headwater confluences by comparing them to published results from lower-gradient confluences and by comparing the dispersive behavior of coarse bedload particles between headwater confluence and non-confluence reaches. We addressed these questions with a field tracer experiment using passive-integrated transponder and radio-frequency identification technology in the East Fork Bitterroot River basin, Montana, USA. Within the confluence zone, tracers tended to be deposited towards scour-hole and channel margins, suggesting narrow, efficient transport corridors that mirror those observed in prior studies, many of which are from finer-grained systems. Coarse particles in some confluence reaches experienced reduced depositional probabilities within the confluence relative to upstream and downstream of the confluence. Analysis of particle transport data suggests that variation in the spatial distribution of coarse-sediment particles may be enhanced by passing through confluences, though further study is needed to evaluate confluence effects on dispersive regimes and sediment routing on broader spatial and temporal scales.

  18. Coarse-graining the electrostatic potential via distributed multipole expansions

    PubMed Central

    Gramada, Apostol; Bourne, Philip E.

    2011-01-01

    Multipole expansions offer a natural path to coarse-graining the electrostatic potential. However, the validity of the expansion is restricted to regions outside a spherical enclosure of the distribution of charge and, therefore, not suitable for most applications that demand accurate representation at arbitrary positions around the molecule. We propose and demonstrate a distributed multipole expansion approach that resolves this limitation. We also provide a practical algorithm for the computational implementation of this approach. The method allows the partitioning of the charge distribution into subsystems so that the multipole expansion of each component of the partition, and therefore of their superposition, is valid outside an enclosing surface of the molecule of arbitrary shape. The complexity of the resulting coarse-grained model of electrostatic potential is dictated by the area of the molecular surface and therefore, for a typical three-dimensional molecule, it scale as N2/3 with N, the number of charges in the system. This makes the method especially useful for coarse-grained studies of biological systems consisting of many large macromolecules provided that the configuration of the individual molecules can be approximated as fixed. PMID:21572587

  19. Insights on protein-DNA recognition by coarse grain modelling

    PubMed Central

    Poulain, Pierre; Saladin, Adrien; Hartmann, Brigitte; Prévost, Chantal

    2008-01-01

    Coarse grain modelling of macromolecules is a new approach potentially well adapted to answer numerous issues, ranging from physics to biology. We propose here an original DNA coarse grain model specifically dedicated to protein–DNA docking, a crucial, but still largely unresolved, question in molecular biology. Using a representative set of protein–DNA complexes, we first show that our model is able to predict the interaction surface between the macromolecular partners taken in their bound form. In a second part, the impact of the DNA sequence and electrostatics, together with the DNA and protein conformations on docking is investigated. Our results strongly suggest that the overall DNA structure mainly contributes in discriminating the interaction site on cognate proteins. Direct electrostatic interactions between phosphate groups and amino acids side chains strengthen the binding. Overall, this work demonstrates that coarse grain modelling can reveal itself a precious auxiliary for a general and complete description and understanding of protein–DNA association mechanisms. PMID:18478582

  20. High capacitance of coarse-grained carbide derived carbon electrodes

    DOE PAGESBeta

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-01-01

    Here, we report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. We synthesized 70–250 μm sized particles with high surface area and a narrow pore size distribution, using a titanium carbide (TiC) precursor. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. Moreover, the material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250–1000 micron thick dense CDC films withmore » up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.« less

  1. High capacitance of coarse-grained carbide derived carbon electrodes

    SciTech Connect

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-01-01

    Here, we report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. We synthesized 70–250 μm sized particles with high surface area and a narrow pore size distribution, using a titanium carbide (TiC) precursor. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. Moreover, the material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250–1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  2. Penetration Test Modelling in a Coarse Granular Medium

    NASA Astrophysics Data System (ADS)

    Breul, P.; Benz, M.; Gourvès, R.; Saussine, G.

    2009-06-01

    Penetration test is a simple and useful test to characterize soils and granular materials. Several studies have shown the link between cone penetration resistance and density for a given material if the relation connecting these two parameters has been established beforehand. A granular materials bank currently including more than 35 granular materials has been developed to this end. Unfortunately, to be able to generalize and cover the broadest possible material range, it would be necessary to multiply the tests and the number of materials. Moreover in coarse granular media, it is necessary to carry out a large number of tests in order to achieve a reliable relation between density and cone resistance.Consequently, being able to model this test in a realistic way will enable increasing the number of tests on a material and carry out more precise parametric studies to evaluate the influence of any parameter on the test response. This article presents the work carried out to model a penetration test within a coarse granular medium. The penetrometer used is a light penetrometer with a 2 cm2 cone. The first part will present the experimental protocol developed with the material bank in order to establish the relation between cone resistance and material density. The results obtained on a coarse material of a railway ballast type will be presented. The second part will present the test modelling using discrete elements and parameter identification to obtain the relation found in the experimental tests and connecting cone resistance to material density.

  3. Optimization of Analytical Potentials for Coarse-Grained Biopolymer Models.

    PubMed

    Mereghetti, Paolo; Maccari, Giuseppe; Spampinato, Giulia Lia Beatrice; Tozzini, Valentina

    2016-08-25

    The increasing trend in the recent literature on coarse grained (CG) models testifies their impact in the study of complex systems. However, the CG model landscape is variegated: even considering a given resolution level, the force fields are very heterogeneous and optimized with very different parametrization procedures. Along the road for standardization of CG models for biopolymers, here we describe a strategy to aid building and optimization of statistics based analytical force fields and its implementation in the software package AsParaGS (Assisted Parameterization platform for coarse Grained modelS). Our method is based on the use and optimization of analytical potentials, optimized by targeting internal variables statistical distributions by means of the combination of different algorithms (i.e., relative entropy driven stochastic exploration of the parameter space and iterative Boltzmann inversion). This allows designing a custom model that endows the force field terms with a physically sound meaning. Furthermore, the level of transferability and accuracy can be tuned through the choice of statistical data set composition. The method-illustrated by means of applications to helical polypeptides-also involves the analysis of two and three variable distributions, and allows handling issues related to the FF term correlations. AsParaGS is interfaced with general-purpose molecular dynamics codes and currently implements the "minimalist" subclass of CG models (i.e., one bead per amino acid, Cα based). Extensions to nucleic acids and different levels of coarse graining are in the course. PMID:27150459

  4. Coarse-Grained Model of SNARE-Mediated Docking.

    PubMed

    Fortoul, Nicole; Singh, Pankaj; Hui, Chung-Yuen; Bykhovskaia, Maria; Jagota, Anand

    2015-05-01

    Synaptic transmission requires that vesicles filled with neurotransmitter molecules be docked to the plasma membrane by the SNARE protein complex. The SNARE complex applies attractive forces to overcome the long-range repulsion between the vesicle and membrane. To understand how the balance between the attractive and repulsive forces defines the equilibrium docked state we have developed a model that combines the mechanics of vesicle/membrane deformation with an apparently new coarse-grained model of the SNARE complex. The coarse-grained model of the SNARE complex is calibrated by comparison with all-atom molecular dynamics simulations as well as by force measurements in laser tweezer experiments. The model for vesicle/membrane interactions includes the forces produced by membrane deformation and hydration or electrostatic repulsion. Combining these two parts, the coarse-grained model of the SNARE complex with membrane mechanics, we study how the equilibrium docked state varies with the number of SNARE complexes. We find that a single SNARE complex is able to bring a typical synaptic vesicle to within a distance of ∼ 3 nm from the membrane. Further addition of SNARE complexes shortens this distance, but an overdocked state of >4-6 SNAREs actually increases the equilibrium distance. PMID:25954883

  5. Coarse-grained models for aqueous polyethylene glycol solutions.

    PubMed

    Choi, Eunsong; Mondal, Jagannath; Yethiraj, Arun

    2014-01-01

    A new coarse-grained force field is developed for polyethylene glycol (PEG) in water. The force field is based on the MARTINI model but with the big multipole water (BMW) model for the solvent. The polymer force field is reparameterized using the MARTINI protocol. The new force field removes the ring-like conformations seen in simulations of short chains with the MARTINI force field; these conformations are not observed in atomistic simulations. We also investigate the effect of using parameters for the end-group that are different from those for the repeat units, with the MARTINI and BMW/MARTINI models. We find that the new BMW/MARTINI force field removes the ring-like conformations seen in the MARTINI models and has more accurate predictions for the density of neat PEG. However, solvent-separated-pairs between chain ends and slow dynamics of the PEG reflect its own artifacts. We also carry out fine-grained simulations of PEG with bundled water clusters and show that the water bundling can lead to ring-like conformations of the polymer molecules. The simulations emphasize the pitfalls of coarse-graining several molecules into one site and suggest that polymer-solvent systems might be a stringent test for coarse-grained force fields. PMID:24350686

  6. Lung Response to Coarse PM: Bioassay in Mice

    PubMed Central

    Wegesser, Teresa C.; Last, Jerold A.

    2008-01-01

    Particulate matter (PM) elicits inflammatory and toxic responses in the lung specific to its constituents, which can vary by region, time, and particle size. To identify the mechanism of toxicity in PM collected in a rural area in the San Joaquin Valley of Central California, we studied coarse particles of 2.5 – 10 μm diameter (PM2.5-PM10). Potential pro-inflammatory and toxic effects of PM2.5-PM10 in the lung were investigated using intratracheally instilled mice. We determined total and differential cell profiles and inflammatory chemokines in lung lavage fluid, and biomarkers of toxicity resulting from coarse PM exposure. Responses of the mice were readily observed with total doses of 25–50 ug of PM per mouse. Changes in pro-inflammatory cellular profiles and chemokines showed both dose and time response; peak responses were observed 24 hours after PM instillation, with recovery as early as 48 hours. Furthermore, macrophage inflammatory protein (MIP-2) profiles following PM exposures were correlated to levels of measured macrophages and neutrophils recovered from lung lavage fluid of PM treated animals. Our data suggest that pro-inflammatory effects observed from coarse PM collected during the summer months from California’s hot and dry Central Valley are driven largely by the insoluble components of the PM mixture, and are not caused by endotoxin. PMID:18384828

  7. Experimental investigation of coarse particle conveying in pipes

    NASA Astrophysics Data System (ADS)

    Vlasak, Pavel; Chara, Zdenek; Konfrst, Jiri; Krupička, Jan

    2015-05-01

    The advanced knowledge of particle-water mixture flow behaviour is important for safe, reliable, and economical design and operation of the freight pipelines. The effect of the mixture velocity and concentration on the coarse particle - water mixtures flow behaviour was experimentally investigated on an experimental pipe loop of inner diameter D = 100 mm with horizontal, vertical, and inclined pipe sections. Narrow particle size distribution basalt pebbles were used as model of coarse-grained solid particles. The radiometric method was used to measure particle concentration distribution in pipe cross-section. Mixture flow behaviour and particles motion along the pipe invert were studied in a pipe viewing section. The study revealed that the coarse particlewater mixtures in the horizontal and inclined pipe sections were significantly stratified. The particles moved principally in a layer close to the pipe invert. However, for higher and moderate flow velocities the particles moved also in the central part of the pipe cross-section, and particle saltation was found to be dominant mode of particle conveying.

  8. Lung response to coarse PM: Bioassay in mice

    SciTech Connect

    Wegesser, Teresa C.; Last, Jerold A.

    2008-07-15

    Particulate matter (PM) elicits inflammatory and toxic responses in the lung specific to its constituents, which can vary by region, time, and particle size. To identify the mechanism of toxicity in PM collected in a rural area in the San Joaquin Valley of Central California, we studied coarse particles of 2.5-10 {mu}m diameter (PM{sub 2.5}-PM{sub 10}). Potential pro-inflammatory and toxic effects of PM{sub 2.5}-PM{sub 10} in the lung were investigated using intratracheally instilled mice. We determined total and differential cell profiles and inflammatory chemokines in lung lavage fluid, and biomarkers of toxicity resulting from coarse PM exposure. Responses of the mice were readily observed with total doses of 25-50 {mu}g of PM per mouse. Changes in pro-inflammatory cellular profiles and chemokines showed both dose and time responses; peak responses were observed 24 h after PM instillation, with recovery as early as 48 h. Furthermore, macrophage inflammatory protein (MIP-2) profiles following PM exposures were correlated to levels of measured macrophages and neutrophils recovered from lung lavage fluid of PM-treated animals. Our data suggest that pro-inflammatory effects observed from coarse PM collected during the summer months from California's hot and dry Central Valley are driven largely by the insoluble components of the PM mixture, and are not caused by endotoxin.

  9. Fiber crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much research continues to develop renewable, recyclable, sustainable, and bio-based products from agricultural feed stocks such as cotton and flax fiber. Primary requirements are sustainable production, low cost, and consistent and known quality. To better understand these products, research contin...

  10. The multiscale coarse-graining method. XI. Accurate interactions based on the centers of charge of coarse-grained sites

    SciTech Connect

    Cao, Zhen; Voth, Gregory A.

    2015-12-28

    It is essential to be able to systematically construct coarse-grained (CG) models that can efficiently and accurately reproduce key properties of higher-resolution models such as all-atom. To fulfill this goal, a mapping operator is needed to transform the higher-resolution configuration to a CG configuration. Certain mapping operators, however, may lose information related to the underlying electrostatic properties. In this paper, a new mapping operator based on the centers of charge of CG sites is proposed to address this issue. Four example systems are chosen to demonstrate this concept. Within the multiscale coarse-graining framework, CG models that use this mapping operator are found to better reproduce the structural correlations of atomistic models. The present work also demonstrates the flexibility of the mapping operator and the robustness of the force matching method. For instance, important functional groups can be isolated and emphasized in the CG model.

  11. Efficient coarse simulation of a growing avascular tumor

    PubMed Central

    Kavousanakis, Michail E.; Liu, Ping; Boudouvis, Andreas G.; Lowengrub, John; Kevrekidis, Ioannis G.

    2013-01-01

    The subject of this work is the development and implementation of algorithms which accelerate the simulation of early stage tumor growth models. Among the different computational approaches used for the simulation of tumor progression, discrete stochastic models (e.g., cellular automata) have been widely used to describe processes occurring at the cell and subcell scales (e.g., cell-cell interactions and signaling processes). To describe macroscopic characteristics (e.g., morphology) of growing tumors, large numbers of interacting cells must be simulated. However, the high computational demands of stochastic models make the simulation of large-scale systems impractical. Alternatively, continuum models, which can describe behavior at the tumor scale, often rely on phenomenological assumptions in place of rigorous upscaling of microscopic models. This limits their predictive power. In this work, we circumvent the derivation of closed macroscopic equations for the growing cancer cell populations; instead, we construct, based on the so-called “equation-free” framework, a computational superstructure, which wraps around the individual-based cell-level simulator and accelerates the computations required for the study of the long-time behavior of systems involving many interacting cells. The microscopic model, e.g., a cellular automaton, which simulates the evolution of cancer cell populations, is executed for relatively short time intervals, at the end of which coarse-scale information is obtained. These coarse variables evolve on slower time scales than each individual cell in the population, enabling the application of forward projection schemes, which extrapolate their values at later times. This technique is referred to as coarse projective integration. Increasing the ratio of projection times to microscopic simulator execution times enhances the computational savings. Crucial accuracy issues arising for growing tumors with radial symmetry are addressed by

  12. A multi-mode multi-band RF receiver front-end for a TD-SCDMA/LTE/LTE-advanced in 0.18-μm CMOS process

    NASA Astrophysics Data System (ADS)

    Rui, Guo; Haiying, Zhang

    2012-09-01

    A fully integrated multi-mode multi-band directed-conversion radio frequency (RF) receiver front-end for a TD-SCDMA/LTE/LTE-advanced is presented. The front-end employs direct-conversion design, and consists of two differential tunable low noise amplifiers (LNA), a quadrature mixer, and two intermediate frequency (IF) amplifiers. The two independent tunable LNAs are used to cover all the four frequency bands, achieving sufficient low noise and high gain performance with low power consumption. Switched capacitor arrays perform a resonant frequency point calibration for the LNAs. The two LNAs are combined at the driver stage of the mixer, which employs a folded double balanced Gilbert structure, and utilizes PMOS transistors as local oscillator (LO) switches to reduce flicker noise. The front-end has three gain modes to obtain a higher dynamic range. Frequency band selection and mode of configuration is realized by an on-chip serial peripheral interface (SPI) module. The front-end is fabricated in a TSMC 0.18-μm RF CMOS process and occupies an area of 1.3 mm2. The measured double-sideband (DSB) noise figure is below 3.5 dB and the conversion gain is over 43 dB at all of the frequency bands. The total current consumption is 31 mA from a 1.8-V supply.

  13. Development of an analytical method for simultaneous detection of psychotropic phenylalkylamines in hair by LC-MS/MS with a multi-mode reversed-phase column using pH gradient elution.

    PubMed

    Choi, Hyeyoung; Kim, Suncheun; Ahn, Suyoun; Chang, Hyejin; Lee, Sangki; Lee, Yongmoon

    2016-02-01

    Phenylalkylamine derivatives, such as methamphetamine (MA), 3,4-methylenedioxymethamphetamine (MDMA), phentermine, fenfluramine, phendimetrazine, amfepramone, and ketamine, are widely abused recreational or anorectic drugs in Korea, and their abuse has become a serious social problem. Hair is a useful specimen to prove chronic use and liquid chromatography-tandem mass spectrometry (LC-MS/MS) has recently become a more popular tool for hair analysis due to sensitivity and simplicity in sample preparation. In order to overcome limitations of standard reversed-phase column to separate low molecular weight amines, we adopted a multi-mode reversed-phase column, Scherzo SS-C18, which was composed of strong ionic ligands and C18 ligands, and used pH gradient elution to separate seven psychotropic phenylalkylamines and their metabolites. The essential validation parameters including selectivity, LOD, LLOQ, linearity, intra- and inter-assay precision and accuracy, recovery, and the matrix effect were satisfactory. The LODs ranged from 0.1ng/5mg hair (diethylnorephedrine, fenfluramine, ketamine, and MA) to 0.5ng/5mg hair (amfepramone, MDA, phendimetrazine, and phentermine). The LLOQs were 1ng/5mg hair for all analytes. The developed method was successfully applied to determination of phenylalkylamines in authentic hair samples analyzed previously by a routine gas chromatography/mass spectrometry (GC-MS) method. A good correlation was observed between the two methods, with a slope near one. PMID:26760907

  14. Suppression of Fiber Modal Noise Induced Radial Velocity Errors for Bright Emission-line Calibration Sources

    NASA Astrophysics Data System (ADS)

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  15. "Modal Noise" in Single-mode Fibers: A Cautionary Note for High Precision Radial Velocity Instruments

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath; Schwab, Christian

    2015-12-01

    Exploring the use of single-mode fibers (SMFs) in high precision Doppler spectrometers has become increasingly attractive since the advent of diffraction-limited adaptive optics systems on large-aperture telescopes. Spectrometers fed with these fibers can be made significantly smaller than typical “seeing-limited” instruments, greatly reducing cost and overall complexity. Importantly, classical mode interference and speckle issues associated with multi-mode fibers, also known as “modal noise,” are mitigated when using SMFs, which also provide perfect radial and azimuthal image scrambling. However, SMFs do support multiple polarization modes, an issue that is generally ignored for larger-core fibers given the large number of propagation modes. Since diffraction gratings used in most high resolution astronomical instruments have dispersive properties that are sensitive to incident polarization changes, any birefringence variations in the fiber can cause variations in the efficiency profile, degrading illumination stability. Here we present a cautionary note outlining how the polarization properties of SMFs can affect the radial velocity (RV) measurement precision of high resolution spectrographs. This work is immediately relevant to the rapidly expanding field of diffraction-limited, extreme precision RV spectrographs that are currently being designed and built by a number of groups.

  16. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources

    SciTech Connect

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  17. Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission.

    PubMed

    Melati, Daniele; Alippi, Andrea; Melloni, Andrea

    2016-06-13

    Spatial division multiplexing in multi-mode fibers allows to largely enhance transmission capacity compared to single-mode links. Photonic integrated circuits can provide solutions for mode multiplexing at the transmitter and demultiplexing at the receiver but have to generally face high losses and inter-modal cross-talk issues. Here a photonic circuit for efficient mode multiplexing and demultiplexing in few-mode fibers is presented and demonstrated. Two 10 Gbit/s channels at the same wavelength and polarization are simultaneously transmitted over modes LP01 and LP11a of a few-mode fiber relying only on integrated mode MUX and DEMUX. The proposed Indium-Phosphide-based circuits have a good coupling efficiency with fiber modes and mode-dependant loss smaller than 1 dB. Measured mode excitation cross-talk is as low as -20 dB and a channel cross-talk after propagation and demultiplexing of -15 dB is achieved. An operational bandwidth of the full transmission system of at least 10 nm is demonstrated. Both mode MUX and DEMUX are fully reconfigurable and allow a dynamic switch of channel routing in the transmission system. These results enable fully-integrated fiber mode handling for high-bandwidth flexible optical networks. PMID:27410284

  18. Elastic deformation and failure in protein filament bundles: atomistic simulations and coarse-grained modeling

    PubMed Central

    Hammond, N. A.

    2008-01-01

    The synthetic peptide RAD16-II has shown promise in tissue engineering and drug delivery. It has been studied as a vehicle for cell delivery and controlled release of IGF-1 to repair infarcted cardiac tissue, and as a scaffold to promote capillary formation for an in vitro model of angiogenesis. The structure of RAD16-II is hierarchical, with monomers forming long β-sheets that pair together to form filaments; filaments form bundles approximately 30–60 nm in diameter; branching networks of filament bundles form macroscopic gels. We investigate the mechanics of shearing between the two β-sheets constituting one filament, and between cohered filaments of RAD16-II. This shear loading is found in filament bundle bending or in tensile loading of fibers composed of partial-length filaments. Molecular dynamics simulations show that time to failure is a stochastic function of applied shear stress, and that for a given loading time behavior is elastic for sufficiently small shear loads. We propose a coarse-grained model based on Langevin dynamics that matches molecular dynamics results and facilities extending simulations in space and time. The model treats a filament as an elastic string of particles, each having potential energy that is a periodic function of its position relative to the neighboring filament. With insight from these simulations, we discuss strategies for strengthening RAD16-II and similar materials. PMID:18440063

  19. Optical Properties of Fine/Coarse Mode Aerosol Mixtures

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Siniuk, A.; Pinker, R. T.; Goloub, P.; Chen, H.; Chatenet, B.; Li, Z.; Singh, R.; Tripathi, S. N.; Dubovik, O.; Giles, D. M.; Martins, J.; Reid, J. S.; O'Neill, N. T.; Smirnov, A.

    2009-12-01

    Several regions of the earth exhibit seasonal mixtures of fine and coarse mode sized aerosol types, which are challenging to characterize from satellite remote sensing. Over land the coarse mode size aerosols (radius >1 micron) originate primarily from arid regions, which generate airborne soil dust, and the dominant fine mode sources are gases and particulates from urban/industrial emissions and from biomass burning. AERONET sun-sky radiometer almucantar retrievals from several years are analyzed for the urban sites of Beijing, China and Kanpur, India (in the Ganges floodplain) where seasonal coarse mode dust particles mix with fine mode pollution aerosol, predominately in the spring. As increasingly more absorbing fine mode pollutants are added to the dust aerosol at both sites, the single scattering albedo (SSA) of the mixtures at 675 nm through 1020 nm decrease as the fine mode fraction of AOD increases, while the 440 nm SSA is relatively constant. Additionally we compare multi-year data from Ilorin, Nigeria where desert dust from the Sahara and Sahel mix with fine mode biomass-burning aerosols. The volume size distribution retrievals from this site often shows tri-modality (third mode centered at 0.6 micron radius), which suggests a different particle source than found for most other arid region AERONET sites, which typically have bi-modal distributions. Comparison of mid-visible single scattering albedo obtained from in situ aircraft measurements during DABEX to multi-year means from the Ilorin site AERONET retrievals show close agreement (within 0.03 or less) over a wide range of Angstrom exponent (0.3 to 1.5). Observed differences in the spectral SSA as a function of fine mode fraction of the optical depth between all three sites are discussed and occur due to differences in absorption for both modes and also due to fine mode particle size dynamics.

  20. Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2-2.4 μm range.

    PubMed

    Kedenburg, S; Gissibl, T; Steinle, T; Steinmann, A; Giessen, H

    2015-04-01

    We demonstrate supercontinuum generation in unspliced as well as in integrated CS(2)-filled capillary fibers at different pump wavelengths of 1030 nm, 1510 nm, and 1685 nm. A novel method for splicing a liquid-filled capillary fiber to a standard single-mode optical fiber is presented. This method is based on mechanical splicing using a direct-laser written polymer ferrule using a femtosecond two-photon polymerization process. We maintain mostly single-mode operation despite the multi-mode capability of the liquid-filled capillaries. The generated supercontinua exhibit a spectral width of over 1200 nm and 1000 nm for core diameters of 5 μm and 10 μm, respectively. This is an increase of more than 50 percent compared to previously reported values in the literature due to improved dispersion properties of the capillaries. PMID:25968666

  1. Statistical coarse-graining of molecular dynamics into peridynamics.

    SciTech Connect

    Silling, Stewart Andrew; Lehoucq, Richard B.

    2007-10-01

    This paper describes an elegant statistical coarse-graining of molecular dynamics at finite temperature into peridynamics, a continuum theory. Peridynamics is an efficient alternative to molecular dynamics enabling dynamics at larger length and time scales. In direct analogy with molecular dynamics, peridynamics uses a nonlocal model of force and does not employ stress/strain relationships germane to classical continuum mechanics. In contrast with classical continuum mechanics, the peridynamic representation of a system of linear springs and masses is shown to have the same dispersion relation as the original spring-mass system.

  2. Molecular Dynamics Trajectory Compression with a Coarse-Grained Model

    PubMed Central

    Cheng, Yi-Ming; Gopal, Srinivasa Murthy; Law, Sean M.; Feig, Michael

    2012-01-01

    Molecular dynamics trajectories are very data-intensive thereby limiting sharing and archival of such data. One possible solution is compression of trajectory data. Here, trajectory compression based on conversion to the coarse-grained model PRIMO is proposed. The compressed data is about one third of the original data and fast decompression is possible with an analytical reconstruction procedure from PRIMO to all-atom representations. This protocol largely preserves structural features and to a more limited extent also energetic features of the original trajectory. PMID:22025759

  3. Coarse quantization with the fast digital shearlet transform

    NASA Astrophysics Data System (ADS)

    Bodmann, Bernhard G.; Kutyniok, Gitta; Zhuang, Xiaosheng

    2011-09-01

    The fast digital shearlet transform (FDST) was recently introduced as a means to analyze natural images efficiently, owing to the fact that those are typically governed by cartoon-like structures. In this paper, we introduce and discuss a first-order hybrid sigma-delta quantization algorithm for coarsely quantizing the shearlet coefficients generated by the FDST. Radial oversampling in the frequency domain together with our choice for the quantization helps suppress the reconstruction error in a similar way as first-order sigma-delta quantization for finite frames. We provide a theoretical bound for the reconstruction error and confirm numerically that the error is in accordance with this theoretical decay.

  4. Coarse fraction of soils from building rubble (WWII)

    NASA Astrophysics Data System (ADS)

    Mekiffer, Beate; Wessolek, Gerd; Scheytt, Traugott; Bussert, Robert; Nehls, Thomas

    2010-05-01

    Soils, resulting from building rubble of WWII are wide spread in whole Europe. The parent material for pedogenesis originates from different kinds of buildings, which where destroyed of different ways. Also the kind of sorting and disposing was varying for this material. So the most important feature of soils, resulting from building rubble of WWII, is their heterogeneity. We investigated samples of soils developed from building rubble to answer the following questions: ­ What are the amounts of coarse fraction and what are their main components? ­ What are the chemical properties and what is the crystalline mineral composition of technogenic components? ­ What is the release of ions from coarse technogenic components? We sieved and hand sorted the materials, used the X-ray diffractometry and X-ray fluorescence spectroscopy and measured the ions released in 1:2-extract. In most cases, the soils have a high amount of coarse fraction (> 2mm) (median 25% w/w, N=52). Dominating components in the coarse fraction are in the order of decreasing abundance: bricks, mortar (incl. plaster and stucco), slag, ashes and unburned coals. The analyzed components show alkalescent to alkaline pH-values. 75% of the samples show low electrical conductivities of up to 141 µS/cm. Bricks mainly consist of Si oxides, followed by oxides of Al, Ca, Fe, Mg and K. X-Ray-diffractometry of bricks showed, that most common minerals are clay minerals (Kaolinit, Illit, Montmorillonit and Chlorit), Quarz, and Carbonates (Calcite and Dolomite, Siderite). Bricks contain Fe-Oxides (Hematite, Goethite), Sulphates and Sulfides (Gypsum, Pyrite, Markasite) in lower amounts. 5-20 % of the minerals are x-ray-amorphous. Mortar is characterized by a high amount of silicates (nearby 80%). The samples showed a lower percentage of Al- and Ca-compounds than bricks. Chemical composition of ashes and slag varies in wide ranges, depending on their genesis. We found mainly ashes from stove heating. They contained

  5. Coarse-Grained Models for Protein-Cell Membrane Interactions

    PubMed Central

    Bradley, Ryan; Radhakrishnan, Ravi

    2015-01-01

    The physiological properties of biological soft matter are the product of collective interactions, which span many time and length scales. Recent computational modeling efforts have helped illuminate experiments that characterize the ways in which proteins modulate membrane physics. Linking these models across time and length scales in a multiscale model explains how atomistic information propagates to larger scales. This paper reviews continuum modeling and coarse-grained molecular dynamics methods, which connect atomistic simulations and single-molecule experiments with the observed microscopic or mesoscale properties of soft-matter systems essential to our understanding of cells, particularly those involved in sculpting and remodeling cell membranes. PMID:26613047

  6. Optical waveguide modeling of refractive index mediated pH responses in silica nanocomposite thin film based fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Wang, C.

    2016-02-01

    Recent experiments have demonstrated a pH-dependent optical transmission of silica based nanocomposite thin film enabled evanescent wave absorption spectroscopy based fiber optic sensors in aqueous solutions. Although the response was observed to linearly correlate with the pH-dependent surface charge density of the silica matrix, the responsible mechanism was not fully clarified. In this manuscript, an optical waveguide model is applied to describe observed responses through a modified effective refractive index of the silica matrix layer as a function of the solution phase pH. The refractive index dependence results from a surface charge dependent ionic adsorption, resulting in concentration of ionic species at charged surfaces. The resultant effective index modification to porous silica is estimated through effective medium theories and applied to an optical waveguide model of a multi-mode fiber optic based sensor response capable of reproducing all experimental observations reported to date.

  7. Coarse bedload routing and dispersion through tributary confluences

    NASA Astrophysics Data System (ADS)

    Imhoff, K. S.; Wilcox, A. C.

    2015-12-01

    Sediment routing fundamentally influences channel morphology and propagation of disturbances. However, the transport and storage of bedload particles in headwater channel confluences, which may be significant nodes of the channel network in terms of sediment routing, morphology, and habitat, is poorly understood. To characterize routing processes through confluences of headwater channels, we investigate how sediment routing patterns through headwater confluences compare to those described in low-gradient gravel bed river systems, and how confluences affect the dispersive behavior of coarse bedload particles compared to non-confluence reaches. We address these questions with a field tracer experiment using passive-integrated transponder and radio-frequency identification technology in the East Fork Bitterroot River basin, Montana, USA. Within the confluence zone, transport occurs along scour hole margins in narrow, efficient transport corridors that mirror those observed in finer-grained experiments and field studies. Coarse particles entering confluences experience reduced depositional probabilities, in contrast to the size-selective transport observed in a control reach. Stochastic transport modeling, tail analysis, and use of a dimensionless impulse (I*) suggest that transport distance and variance growth are enhanced through confluences for a given flow strength. We suggest that confluences absent of disturbances enhance sediment transport and dispersive growth through headwater networks.

  8. Effects of Elevated Temperature on Concrete with Recycled Coarse Aggregates

    NASA Astrophysics Data System (ADS)

    Salau, M. A.; Oseafiana, O. J.; Oyegoke, T. O.

    2015-11-01

    This paper discusses the effects of heating temperatures of 200°C, 400°C and 600°C each for 2 hours at a heating rate of 2.5°C/min on concrete with the content of Natural Coarse Aggregates (NCA) partially replaced with Recycled Coarse Aggregates (RCA), obtained from demolished building in the ratio of 0%, 15% and 30%.There was an initial drop in strength from 100°C to 200°C which is suspected to be due to the relatively weak interfacial bond between the RCA and the hardened paste within the concrete matrix;a gradual increase in strength continued from 200°C to 450°C and steady drop occurred again as it approached 600°C.With replacement proportion of 0%, 15% and 30% of NCA and exposure to peak temperature of 600°C, a relative concrete strength of 23.6MPa, 25.3MPa and 22.2MPa respectively can be achieved for 28 days curing age. Furthermore, RAC with 15% NCA replacement when exposed to optimum temperature of 450°C yielded high compressive strength comparable to that of control specimen (normal concrete). In addition, for all concrete samples only slight surface hairline cracks were noticed as the temperature approached 400°C. Thus, the RAC demonstrated behavior just like normal concrete and may be considered fit for structural use.

  9. Effective surface coverage of coarse-grained soft matter.

    PubMed

    Craven, Galen T; Popov, Alexander V; Hernandez, Rigoberto

    2014-12-11

    The surface coverage of coarse-grained macromolecules bound to a solid substrate is not simply proportional to the two-dimensional number density because macromolecules can overlap. As a function of the overlap probability δ, we have developed analytical formulas and computational models capable of characterizing this nonlinear relationship. For simplicity, we ignore site-site interactions that would be induced by length-scale mismatches between binding sites and the radius of gyration of the incident coarse-grained macromolecular species. The interactions between macromolecules are modeled with a finite bounded potential that allows multiple macromolecules to occupy the same binding site. The softness of the bounded potential is thereby reduced to the single parameter δ. Through variation of this parameter, completely hard (δ = 0) and completely soft (δ = 1) behavior can be bridged. For soft macromolecular interactions (δ > 0), multiple occupancy reduces the fraction of sites ϕ occupied on the substrate. We derive the exact transition probability between sequential configurations and use this probability to predict ϕ and the distribution of occupied sites. Due to the complexity of the exact ϕ expressions and their analytical intractability at the thermodynamic limit, we apply a simplified mean-field (MF) expression for ϕ. The MF model is found to be in excellent agreement with the exact result. Both the exact and MF models are applied to an example dynamical system with multibody interactions governed by a stochastic bounded potential. Both models show agreement with results measured from simulation. PMID:25059882

  10. A coarse-grained model of microtubule self-assembly

    NASA Astrophysics Data System (ADS)

    Regmi, Chola; Cheng, Shengfeng

    Microtubules play critical roles in cell structures and functions. They also serve as a model system to stimulate the next-generation smart, dynamic materials. A deep understanding of their self-assembly process and biomechanical properties will not only help elucidate how microtubules perform biological functions, but also lead to exciting insight on how microtubule dynamics can be altered or even controlled for specific purposes such as suppressing the division of cancer cells. Combining all-atom molecular dynamics (MD) simulations and the essential dynamics coarse-graining method, we construct a coarse-grained (CG) model of the tubulin protein, which is the building block of microtubules. In the CG model a tubulin dimer is represented as an elastic network of CG sites, the locations of which are determined by examining the protein dynamics of the tubulin and identifying the essential dynamic domains. Atomistic MD modeling is employed to directly compute the tubulin bond energies in the surface lattice of a microtubule, which are used to parameterize the interactions between CG building blocks. The CG model is then used to study the self-assembly pathways, kinetics, dynamics, and nanomechanics of microtubules.

  11. Minimizing memory as an objective for coarse-graining

    NASA Astrophysics Data System (ADS)

    Guttenberg, Nicholas; Dama, James F.; Saunders, Marissa G.; Voth, Gregory A.; Weare, Jonathan; Dinner, Aaron R.

    2013-03-01

    Coarse-graining a molecular model is the process of integrating over degrees of freedom to obtain a reduced representation. This process typically involves two separate but related steps, selection of the coordinates comprising the reduced system and modeling their interactions. Both the coordinate selection and the modeling procedure present challenges. Here, we focus on the former. Typically, one seeks to integrate over the fast degrees of freedom and retain the slow degrees of freedom. Failure to separate timescales results in memory. With this motivation, we introduce a heuristic measure of memory and show that it can be used to compare competing coordinate selections for a given modeling procedure. We numerically explore the utility of this heuristic for three systems of increasing complexity. The first example is a four-particle linear model, which is exactly solvable. The second example is a sixteen-particle nonlinear model; this system has interactions that are characteristic of molecular force fields but is still sufficiently simple to permit exhaustive numerical treatment. The third example is an atomic-resolution representation of a protein, the class of models most often treated by relevant coarse-graining approaches; we specifically study an actin monomer. In all three cases, we find that the heuristic suggests coordinate selections that are physically intuitive and reflect molecular structure. The memory heuristic can thus serve as an objective codification of expert knowledge and a guide to sites within a model that requires further attention.

  12. COARSE-GRAINED MODELING OF PROTEIN UNFOLDING DYNAMICS*

    PubMed Central

    DENG, MINGGE

    2014-01-01

    We present a new dynamic elastic network model (DENM) that describes the unfolding process of a force-loaded protein. The protein interaction network and its potentials are constructed based on information of its native-state structure obtained from the Protein Data Bank, with network nodes positioned at the Cα coordinates of the protein backbone. Specifically, to mimic the unfolding process, i.e., to simulate the process of overcoming the local energy barrier on the free energy landscape with force loading, the noncovalent protein network bonds (i.e., hydrogen bonds, salt bridges, hydrophobic contacts, etc.) are broken one-by-one with a certain probability, while the strong covalent bonds along the backbone (i.e., peptide bonds, disulfide bonds, etc.) are kept intact. The jumping event from local energy minima (bonds breaking rate) are chosen according to Kramer’s theory and the Bell model. Moreover, we exploit the self-similar structure of proteins at different scales to design an effective coarse-graining procedure for DENM with optimal parameter selection. The robustness of DENM is validated by coarse-grained molecular dynamics (MD) simulation against atomistic MD simulation of force-extension processes of the Fibrinogen and Titin Immunoglobulin proteins. We observe that the native structure of the proteins determines the total unfolding dynamics (including large deviations) and not just the fluctuations around the native state. PMID:25400515

  13. Coarse-to-fine wavelet-based airport detection

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wang, Shuigen; Pang, Zhaofeng; Zhao, Baojun

    2015-10-01

    Airport detection on optical remote sensing images has attracted great interest in the applications of military optics scout and traffic control. However, most of the popular techniques for airport detection from optical remote sensing images have three weaknesses: 1) Due to the characteristics of optical images, the detection results are often affected by imaging conditions, like weather situation and imaging distortion; and 2) optical images contain comprehensive information of targets, so that it is difficult for extracting robust features (e.g., intensity and textural information) to represent airport area; 3) the high resolution results in large data volume, which makes real-time processing limited. Most of the previous works mainly focus on solving one of those problems, and thus, the previous methods cannot achieve the balance of performance and complexity. In this paper, we propose a novel coarse-to-fine airport detection framework to solve aforementioned three issues using wavelet coefficients. The framework includes two stages: 1) an efficient wavelet-based feature extraction is adopted for multi-scale textural feature representation, and support vector machine(SVM) is exploited for classifying and coarsely deciding airport candidate region; and then 2) refined line segment detection is used to obtain runway and landing field of airport. Finally, airport recognition is achieved by applying the fine runway positioning to the candidate regions. Experimental results show that the proposed approach outperforms the existing algorithms in terms of detection accuracy and processing efficiency.

  14. Effective mobility of dislocations from systematic coarse-graining

    NASA Astrophysics Data System (ADS)

    Kooiman, M.; Hütter, M.; Geers, MGD

    2015-06-01

    The dynamics of large amounts of dislocations governs the plastic response of crystalline materials. In this contribution we discuss the relation between the mobility of discrete dislocations and the resulting flow rule for coarse-grained dislocation densities. The mobilities used in literature on these levels are quite different, for example in terms of their intrinsic the stress dependence. To establish the relation across the scales, we have derived the macroscopic evolution equations of dislocation densities from the equations of motion of individual dislocations by means of systematic coarse-graining. From this, we can identify a memory kernel relating the driving force and the flux of dislocations. This kernel can be considered as an effective macroscopic mobility with two contributions; a direct contribution related to the overdamped motion of individual dislocations, and an emergent contribution that arises from time correlations of fluctuations in the Peach-Koehler force. Scaling analysis shows that the latter contribution is dominant for dislocations in metals at room temperature. We also discuss several concerns related to the separation of timescales.

  15. Coarse-mesh diffusion synthetic acceleration in slab geometry

    SciTech Connect

    Kim, K.S.; Palmer, T.S.

    2000-07-01

    It has long been known that the success of a diffusion synthetic acceleration (DSA) scheme is very sensitive to the consistency between the discretization of the transport and diffusion acceleration equations. Acceleration schemes involving inconsistent discretizations have been successful, but no prescription is available that determines a priori an allowable degree of inconsistency. It is notable, however, that all current DSA schemes involve diffusion equations discretized on the spatial mesh used to solve the transport equations. Often the solution of a large number of low-order equations is an expensive part of the transport simulation. This motivates the desire to find stable and rapidly convergent acceleration schemes that are discretized on a mesh that is coarse relative to the transport mesh. The authors present here results showing that the low-order diffusion equation can be solved on a mesh coarser (by a factor of 2) than that used for the slab geometry transport equation. Their results show that coarse-mesh DSA is unconditionally stable and is as rapidly convergent as a DSA method discretized on the transport mesh. They have used Adams and Martin's modified four-step acceleration method (M4S) applied to the linear discontinuous (LD) finite element transport equations in slab geometry. To evaluate their procedure, they have performed a Fourier analysis to calculate theoretical spectral radii. They compare this analysis with convergence behavior observed in an implementation code for several model problems.

  16. Deformation Behaviour of Coarse Grain Alumina under Shock Loading

    NASA Astrophysics Data System (ADS)

    Gupta, Satish

    2013-06-01

    To develop better understanding of the shock wave induced deformation behavior of coarse grain alumina ceramics, and for measurement of its Hugoniot Elastic Limit (HEL), in-situ and recovery gas gun experiments have been carried out on coarse grain alumina (grain size ~ 10 μm), prepared in the form of discs (>99.9% TMD) by pressure-less sintering of alpha alumina powder at 1583 K. The HEL value of 1.9 GPa has been determined from the kink in the pressure history recorded using piezoresistance gauge and also from the free surface velocity history of the sample shocked to 9 GPa. The nano-indentation measurements on the alumina samples shocked to 6.5 GPa showed hardness value 15% lower than 21.3 GPa for unshocked alumina, and strong Indentation Size Effect (ISE); the hardness value was still lower and the ISE was stronger for the sample shocked to 12 GPa. The XRD measurements showed reduced particle size and increased microstrains in the shocked alumina fragments. SEM, FESEM and TEM measurements on shock treated samples showed presence of grain localized micro- and nano-scale deformations, micro-cleavages, grain-boundary microcracks, extensive shear induced deformations, and localized micro-fractures, etc. These observations led to the development of a qualitative model for the damage initiation and its subsequent growth mechanisms in shocked alumina. The work performed in collaboration with K.D. Joshi of BARC and A.K. Mukhopadhyay of CGCRI.

  17. A quantitative coarse-grain model for lipid bilayers.

    PubMed

    Orsi, Mario; Haubertin, David Y; Sanderson, Wendy E; Essex, Jonathan W

    2008-01-24

    A simplified particle-based computer model for hydrated phospholipid bilayers has been developed and applied to quantitatively predict the major physical features of fluid-phase biomembranes. Compared with available coarse-grain methods, three novel aspects are introduced. First, the main electrostatic features of the system are incorporated explicitly via charges and dipoles. Second, water is accurately (yet efficiently) described, on an individual level, by the soft sticky dipole model. Third, hydrocarbon tails are modeled using the anisotropic Gay-Berne potential. Simulations are conducted by rigid-body molecular dynamics. Our technique proves 2 orders of magnitude less demanding of computational resources than traditional atomic-level methodology. Self-assembled bilayers quantitatively reproduce experimental observables such as electron density, compressibility moduli, dipole potential, lipid diffusion, and water permeability. The lateral pressure profile has been calculated, along with the elastic curvature constants of the Helfrich expression for the membrane bending energy; results are consistent with experimental estimates and atomic-level simulation data. Several of the results presented have been obtained for the first time using a coarse-grain method. Our model is also directly compatible with atomic-level force fields, allowing mixed systems to be simulated in a multiscale fashion. PMID:18085766

  18. An exactly solvable coarse-grained model for species diversity

    NASA Astrophysics Data System (ADS)

    Suweis, Samir; Rinaldo, Andrea; Maritan, Amos

    2012-07-01

    We present novel analytical results concerning ecosystem species diversity that stem from a proposed coarse-grained neutral model based on birth-death processes. The relevance of the problem lies in the urgency for understanding and synthesizing both theoretical results from ecological neutral theory and empirical evidence on species diversity preservation. The neutral model of biodiversity deals with ecosystems at the same trophic level, where per capita vital rates are assumed to be species independent. Closed-form analytical solutions for the neutral theory are obtained within a coarse-grained model, where the only input is the species persistence time distribution. Our results pertain to: the probability distribution function of the number of species in the ecosystem, both in transient and in stationary states; the n-point connected time correlation function; and the survival probability, defined as the distribution of time spans to local extinction for a species randomly sampled from the community. Analytical predictions are also tested on empirical data from an estuarine fish ecosystem. We find that emerging properties of the ecosystem are very robust and do not depend on specific details of the model, with implications for biodiversity and conservation biology.

  19. Simulating the entropic collapse of coarse-grained chromosomes.

    PubMed

    Shendruk, Tyler N; Bertrand, Martin; de Haan, Hendrick W; Harden, James L; Slater, Gary W

    2015-02-17

    Depletion forces play a role in the compaction and decompaction of chromosomal material in simple cells, but it has remained debatable whether they are sufficient to account for chromosomal collapse. We present coarse-grained molecular dynamics simulations, which reveal that depletion-induced attraction is sufficient to cause the collapse of a flexible chain of large structural monomers immersed in a bath of smaller depletants. These simulations use an explicit coarse-grained computational model that treats both the supercoiled DNA structural monomers and the smaller protein crowding agents as combinatorial, truncated Lennard-Jones spheres. By presenting a simple theoretical model, we quantitatively cast the action of depletants on supercoiled bacterial DNA as an effective solvent quality. The rapid collapse of the simulated flexible chromosome at the predicted volume fraction of depletants is a continuous phase transition. Additional physical effects to such simple chromosome models, such as enthalpic interactions between structural monomers or chain rigidity, are required if the collapse is to be a first-order phase transition. PMID:25692586

  20. Million atom DFT calculations using coarse graining and petascale computing

    NASA Astrophysics Data System (ADS)

    Nicholson, Don; Odbadrakh, Kh.; Samolyuk, G. D.; Stoller, R. E.; Zhang, X. G.; Stocks, G. M.

    2014-03-01

    Researchers performing classical Molecular Dynamics (MD) on defect structures often find it necessary to use millions of atoms in their models. It would be useful to perform density functional calculations on these large configurations in order to observe electron-based properties such as local charge and spin and the Helmann-Feynman forces on the atoms. The great number of atoms usually requires that a subset be ``carved'' from the configuration and terminated in a less that satisfactory manner, e.g. free space or inappropriate periodic boundary conditions. Coarse graining based on the Locally Self-consistent Multiple Scattering method (LSMS) and petascale computing can circumvent this problem by treating the whole system but dividing the atoms into two groups. In Coarse Grained LSMS (CG-LSMS) one group of atoms has its charge and scattering determined prescriptively based on neighboring atoms while the remaining group of atoms have their charge and scattering determined according to DFT as implemented in the LSMS. The method will be demonstrated for a one-million-atom model of a displacement cascade in Fe for which 24,130 atoms are treated with full DFT and the remaining atoms are treated prescriptively. Work supported as part of Center for Defect Physics, an Energy Frontier Research Center funded by the U.S. DOE, Office of Science, Basic Energy Sciences, used Oak Ridge Leadership Computing Facility, Oak Ridge National Lab, of DOE Office of Science.

  1. Coarse-graining the structure of polycyclic aromatic hydrocarbons clusters.

    PubMed

    Hernández-Rojas, J; Calvo, F; Wales, D J

    2016-05-18

    Clusters of polycyclic aromatic hydrocarbons (PAHs) are essential components of soot and may concentrate a significant fraction of carbon matter in the interstellar medium. In this contribution, coarse-grained potentials are parameterized using all-atom reference data to model PAH molecules, such as coronene (C24H12) or circumcoronene (C54H18), and their aggregates. Low-energy structures of pure coronene or circumcoronene clusters obtained using basin-hopping global optimization are found to agree with atomistic results, and consist of finite 1D columnar motifs, sometimes juxtaposed in larger clusters. The structures are only weakly perturbed when quadrupolar interactions are included. π-Stacking also dominates in binary coronene/circumcoronene aggregates, although intriguing motifs are predicted in which one or more molecules are sandwiched between the other PAH species. The coarse-grained model is also extended to account for interaction with a flat graphitic substrate. In this case, binding is stronger with the substrate than with other molecules, and the PAHs are predicted to arrange into a flat triangular monolayer. PMID:27055581

  2. Transport of fine sediment over a coarse, immobile riverbed

    USGS Publications Warehouse

    Grams, Paul E.; Wilcock, Peter R.

    2014-01-01

    Sediment transport in cobble-boulder rivers consists mostly of fine sediment moving over a coarse, immobile bed. Transport rate depends on several interrelated factors: boundary shear stress, the grain size and volume of fine sediment, and the configuration of fine sediment into interstitial deposits and bed forms. Existing models do not incorporate all of these factors. Approaches that partition stress face a daunting challenge because most of the boundary shear is exerted on immobile grains. We present an alternative approach that divides the bed into sand patches and interstitial deposits and is well constrained by two clear end-member cases: full sand cover and absence of sand. Entrainment from sand patches is a function of their aerial coverage. Entrainment from interstices among immobile grains is a function of sand elevation relative to the size of the immobile grains. The bed-sand coverage function is used to predict the ratio of the rate of entrainment from a partially covered bed to the rate of entrainment from a completely sand-covered bed, which is determined using a standard sand transport model. We implement the bed-sand coverage function in a morphodynamic routing model and test it against observations of sand bed elevation and suspended sand concentration for conditions of nonuniform fine sediment transport in a large flume with steady uniform flow over immobile hemispheres. The results suggest that this approach may provide a simple and robust method for predicting the transport and migration of fine sediment through rivers with coarse, immobile beds.

  3. Simulating the Entropic Collapse of Coarse-Grained Chromosomes

    PubMed Central

    Shendruk, Tyler N.; Bertrand, Martin; de Haan, Hendrick W.; Harden, James L.; Slater, Gary W.

    2015-01-01

    Depletion forces play a role in the compaction and decompaction of chromosomal material in simple cells, but it has remained debatable whether they are sufficient to account for chromosomal collapse. We present coarse-grained molecular dynamics simulations, which reveal that depletion-induced attraction is sufficient to cause the collapse of a flexible chain of large structural monomers immersed in a bath of smaller depletants. These simulations use an explicit coarse-grained computational model that treats both the supercoiled DNA structural monomers and the smaller protein crowding agents as combinatorial, truncated Lennard-Jones spheres. By presenting a simple theoretical model, we quantitatively cast the action of depletants on supercoiled bacterial DNA as an effective solvent quality. The rapid collapse of the simulated flexible chromosome at the predicted volume fraction of depletants is a continuous phase transition. Additional physical effects to such simple chromosome models, such as enthalpic interactions between structural monomers or chain rigidity, are required if the collapse is to be a first-order phase transition. PMID:25692586

  4. Multi-mode radio frequency device

    DOEpatents

    Gilbert, Ronald W.; Carrender, Curtis Lee; Anderson, Gordon A.; Steele, Kerry D.

    2007-02-13

    A transponder device having multiple modes of operation, such as an active mode and a passive mode, wherein the modes of operation are selected in response to the strength of a received radio frequency signal. A communication system is also provided having a transceiver configured to transmit a radio frequency signal and to receive a responsive signal, and a transponder configured to operate in a plurality of modes and to activate modes of operation in response to the radio frequency signal. Ideally, each mode of operation is activated and deactivated independent of the other modes, although two or more modes may be concurrently operational.

  5. Changes in speckle patterns induced by load application onto an optical fiber and its possible application for sensing purpose

    NASA Astrophysics Data System (ADS)

    Hasegawa, Makoto; Okumura, Jyun-ya; Hyuga, Akio

    2015-08-01

    Speckle patterns to be observed in an output light spot from an optical fiber are known to be changed due to external disturbances applied onto the optical fiber. In order to investigate possibilities of utilizing such changes in speckle patterns for sensing application, a certain load was applied onto a jacket-covered communication-grade multi-mode glass optical fiber through which laser beams emitted from a laser diode were propagating, and observed changes in speckle patterns in the output light spot from the optical fiber were investigated both as image data via a CCD camera and as an output voltage from a photovoltaic panel irradiated with the output light spot. The load was applied via a load application mechanism in which several ridges were provided onto opposite flat plates and a certain number of weights were placed there so that corrugated bending of the optical fiber was intentionally induced via load application due to the ridges. The obtained results showed that the number of speckles in the observed pattern in the output light spot as well as the output voltage from the photovoltaic panel irradiated with the output light spot showed decreases upon load application with relatively satisfactory repeatability. When the load was reduced, i.e., the weights were removed, the number of speckles then showed recovery. These results indicate there is a certain possibility of utilizing changes in speckle patterns for sensing of load application onto the optical fiber.

  6. Fiber distributed feedback laser

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G. A.; Yeh, C. (Inventor)

    1976-01-01

    Utilizing round optical fibers as communication channels in optical communication networks presents the problem of obtaining a high efficiency coupling between the optical fiber and the laser. A laser is made an integral part of the optical fiber channel by either diffusing active material into the optical fiber or surrounding the optical fiber with the active material. Oscillation within the active medium to produce lasing action is established by grating the optical fiber so that distributed feedback occurs.

  7. Unconstrained Structure Formation in Coarse-Grained Protein Simulations

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan

    The ability of proteins to fold into well-defined structures forms the basis of a wide variety of biochemical functions in and out of the cell membrane. Many of these processes, however, operate at time- and length-scales that are currently unattainable by all-atom computer simulations. To cope with this difficulty, increasingly more accurate and sophisticated coarse-grained models are currently being developed. In the present thesis, we introduce a solvent-free coarse-grained model for proteins. Proteins are modeled by four beads per amino acid, providing enough backbone resolution to allow for accurate sampling of local conformations. It relies on simple interactions that emphasize structure, such as hydrogen bonds and hydrophobicity. Realistic alpha/beta content is achieved by including an effective nearest-neighbor dipolar interaction. Parameters are tuned to reproduce both local conformations and tertiary structures. By studying both helical and extended conformations we make sure the force field is not biased towards any particular secondary structure. Without any further adjustments or bias a realistic oligopeptide aggregation scenario is observed. The model is subsequently applied to various biophysical problems: (i) kinetics of folding of two model peptides, (ii) large-scale amyloid-beta oligomerization, and (iii) protein folding cooperativity. The last topic---defined by the nature of the finite-size thermodynamic transition exhibited upon folding---was investigated from a microcanonical perspective: the accurate evaluation of the density of states can unambiguously characterize the nature of the transition, unlike its corresponding canonical analysis. Extending the results of lattice simulations and theoretical models, we find that it is the interplay between secondary structure and the loss of non-native tertiary contacts which determines the nature of the transition. Finally, we combine the peptide model with a high-resolution, solvent-free, lipid

  8. A coarse grained stochastic particle interacting system for tropical convection

    NASA Astrophysics Data System (ADS)

    Khouider, B.

    2012-12-01

    Climate models (GCMs) fail to represent adequately the variability associated with organized convection in the tropics. This deficiency is believed to hinder medium and long range weather forecasts, over weeks to months. GCMs use very complex sub-grid models, known as cumulus parameterizations, to represent the effects of clouds and convection as well as other unresolved processes. Cumulus parameterizations are intrinsically deterministic and are typically based on the quasi-equilibrium theory, which assumes that convection instantaneously consumes the atmospheric instability produced by radiation. In this talk, I will discuss a stochastic model for organized tropical convection based on a particle interacting system defined on a microscopic lattice. An order parameter is assumed to take the values 0,1,2,3 at a any given lattice site according to whether it is a clear site or it is occupied by a cloud of a one of the three types: congestus, deep, or stratiform, following intuitive rules motivated by recent satellite observations and various field campaigns conducted over the Indian Ocean and Western Pacific. The microscopic Markov process is coarse-grained systematically to obtain a multidimensional birth-death process with immigration, following earlier work done by Katsoulakis, Majda, and Vlachos (JCP 2003) for the case of the Ising model where the order parameter takes the values 0 and 1. The coarse grained birth-death process is a stochastic model, intermediate between the microscopic lattice model and the deterministic mean field limit, that is used to represent the sub-grid scale variability of the underlying physical process (here the cloud cover) with a negligible computational overhead and yet permits both local interactions between lattice sites and two-way interactions between the cloud cover and the large-scale climate dynamics. The new systematic coarse-graining, developed here for the multivalued order parameter, provides a unifying framework

  9. Strong fibers

    SciTech Connect

    Li, Che-Yu.

    1991-03-01

    This program was directed to a new and generic approach to the development of new materials with novel and interesting properties, and to the precision fabrication of these materials in one and two-dimensional forms. Advanced deposition processes and microfabrication technology were used to produce fibers and grids of metals, semiconductors, ceramics, and mixtures of controlled composition and structure, and with new and interesting mechanical and physical properties. Deposition processes included electron beam evaporation, co-deposition of mixtures by dual electron beam evaporation, thermal evaporation, sputtering of a single element or compound, sputtering of a single element in a gaseous atmosphere to produce compounds, plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), and selective tungsten chemical vapor deposition (W-CVD). The approach was to use the deposition processes in coordination with patterns generated by optical lithography to produce fibers with transverse dimensions in the micron range, and lengths from less than a millimeter to several centimeters. The approach is also applicable to the production of two-dimensional grids and particulates of controlled sizes and geometries.

  10. Probing the Twisted Structure of Sickle Hemoglobin Fibers via Particle Simulations.

    PubMed

    Lu, Lu; Li, Xuejin; Vekilov, Peter G; Karniadakis, George Em

    2016-05-10

    Polymerization of sickle hemoglobin (HbS) is the primary pathogenic event of sickle cell disease. For insight into the nature of the HbS polymer fiber formation, we develop a particle model-resembling a coarse-grained molecular model-constructed to match the intermolecular contacts between HbS molecules. We demonstrate that the particle model predicts the formation of HbS polymer fibers by attachment of monomers to rough fiber ends and the growth rate increases linearly with HbS concentration. We show that the characteristic 14-molecule fiber cross section is preserved during growth. We also correlate the asymmetry of the contact sites on the HbS molecular surface with the structure of the polymer fiber composed of seven helically twisted double strands. Finally, we show that the same asymmetry mediates the mechanical and structural properties of the HbS polymer fiber. PMID:27166816

  11. Carbon-fiber technology

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.; Parker, J. A.

    1980-01-01

    The state of the art of PAN based carbon fiber manufacture and the science of fiber behavior is surveyed. A review is given of the stabilization by oxidation and the subsequent carbonization of fibers, of the apparent structure of fibers deduced from scanning electron microscopy, from X-ray scattering, and from similarities with soft carbons, and of the known relations between fiber properties and heat treatment temperature. A simplified model is invoked to explain the electrical properties of fibers and recent quantum chemical calculations on atomic clusters are used to elucidate some aspects of fiber conductivity. Some effects of intercalation and oxidative modification of finished fibers are summarized.

  12. Coarse-fine residual gravity cancellation system with magnetic levitation

    NASA Technical Reports Server (NTRS)

    Salcudean, S. E.; Davis, H.; Chen, C. T.; Goertz, D. E.; Tryggvason, B. V.

    1992-01-01

    Aircraft flight along parabolic trajectories have been proposed and executed in order to achieve low cost, near free fall conditions of moderate duration. This paper describes a six degree of freedom experiment isolation system designed to cancel out residual accelerations due to mechanical vibrations and errors in aircraft trajectory. The isolation system consists of a fine motion magnetic levitator whose stator is transported by a conventional coarse motion stage. The levitator uses wide gap voice coil actuators and has the dual purpose of isolating the experiment platform from aircraft vibrations and actively cancelling residual accelerations through feedback control. The course motion stage tracks the levitated platform in order to keep the levitator's coils centered within their matching magnetic gaps. Aspects of system design, an analysis of the proposed control strategy and simulation results are presented. Feasibility experiments are also discussed.

  13. Optimised fine and coarse parallelism for sequence homology search.

    PubMed

    Meng, Xiandong; Chaudhary, Vipin

    2006-01-01

    New biological experimental techniques are continuing to generate large amounts of data using DNA, RNA, human genome and protein sequences. The quantity and quality of data from these experiments makes analyses of their results very time-consuming, expensive and impractical. Searching on DNA and protein databases using sequence comparison algorithms has become one of the most powerful techniques to better understand the functionality of particular DNA, RNA, genome, or protein sequence. This paper presents a technique to effectively combine fine and coarse grain parallelism using general-purpose processors for sequence homology database searches. The results show that the classic Smith-Waterman sequence alignment algorithm achieves super linear performance with proper scheduling and multi-level parallel computing at no additional cost. PMID:18048183

  14. The Apollo 15 coarse fines (4-10 mm)

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Sherman, Sarah Bean

    1989-01-01

    A new catalog of the Apollo 15 coarse fines particles is presented. Powell's macroscopic descriptions, resulting from his 1972 particle by particle binocular examination of all of the Apollo 15 4 to 10 mm fines samples, are retained. His groupings are also retained, but petrographic, chemical, and other data from later analyses are incorporated into this catalog to better characterize individual particles and describe the groups. A large number of particles have no characterization beyond that done by Powell. Complete descriptions of the particles and all known references are provided. The catalog is intended for anyone interested in the rock types collected by Dave Scott and Jim Irwin in the Hadley-Appenine region, and particularly for researchers requiring sample allocations.

  15. Investigating the impact of representation upon coarse-grained models

    NASA Astrophysics Data System (ADS)

    Foley, Thomas; Shell, M. Scott; Noid, William

    The first step in building a coarse-grained (CG) model is choosing a representation or `mapping' of the original system at a reduced resolution. In practice, the mapping is often chosen on the basis of `physical intuition.' Consequently this crucial step would greatly benefit from the development of systematic and principled methodologies. Accordingly, we have studied the relationship between the mapping and the resulting CG model. As a starting point, we have analytically derived, as a function of the CG mapping, the exact many-body potential of mean force (PMF) for the simple Gaussian Network Model (GNM) of protein fluctuations. We use this as a simple model for investigating the effect of the CG mapping upon the information loss and quality of the CG model. Moreover, by considering the GNM's for different proteins, we investigate the significance of high resolution structural features for the quality of the CG model. We acknowledge support from the NSF, Alfred P. Sloan Foundation, and KITP.

  16. A Coarse-Grained Model for Simulating Chitosan Hydrogels

    NASA Astrophysics Data System (ADS)

    Xu, Hongcheng; Matysiak, Silvina

    Hydrogels are biologically-derived materials composed of water-filled cross-linking polymer chains. It has widely been used as biodegradable material and has many applications in medical devices. The chitosan hydrogel is stimuli-responsive for undergoing pH-sensitive self-assembly process, allowing programmable tuning of the chitosan deposition through electric pulse. To explore the self-assembly mechanism of chitosan hydroge, we have developed an explicit-solvent coarse-grained chitosan model that has roots in the MARTINI force field, and the pH change is modeled by protonating chitosan chains using the Henderson-Hasselbalch equation. The mechanism of hydrogel network formation will be presented. The self-assembled polymer network qualitatively reproduce many experimental observables such as the pH-dependent strain-stress curve, bulk moduli, and structure factor. Our model is also capable of simulating other similar polyelectrolyte polymer systems.

  17. Supramolecular polymerization: a coarse grained molecular dynamics study.

    PubMed

    Bejagam, Karteek K; Balasubramanian, Sundaram

    2015-04-30

    A coarse-grained (CG) force field to model the self-assembly of benzene-1,3,5-tricarboxamide (BTA) class of compounds in nonpolar solvents has been developed. The model includes an intrinsic point dipole embedded on one of the CG beads so as to impart a macrodipole moment to the oligomer, one of its characteristic feature. Chemical specificity has been preserved by benchmarking against results, including dimerization and solvation free energies, obtained from an all-atom representation. Starting from a well-dispersed configuration in n-nonane, BTA molecules self-assemble to form one-dimensional stacks. Free energy (FE) changes for the various manner in which short oligomers can exchange between the assembled and the dispersed states have been calculated. These calculations show BTA to self-assemble via a downhill cooperative mechanism with a nucleus size of three. PMID:25853485

  18. Moderated regression analysis and Likert scales: too coarse for comfort.

    PubMed

    Russell, C J; Bobko, P

    1992-06-01

    One of the most commonly accepted models of relationships among three variables in applied industrial and organizational psychology is the simple moderator effect. However, many authors have expressed concern over the general lack of empirical support for interaction effects reported in the literature. We demonstrate in the current sample that use of a continuous, dependent-response scale instead of a discrete, Likert-type scale, causes moderated regression analysis effect sizes to increase an average of 93%. We suggest that use of relatively coarse Likert scales to measure fine dependent responses causes information loss that, although varying widely across subjects, greatly reduces the probability of detecting true interaction effects. Specific recommendations for alternate research strategies are made. PMID:1601825

  19. Coarse-Grained Modeling of Mucus Barrier Properties

    PubMed Central

    Gniewek, Pawel; Kolinski, Andrzej

    2012-01-01

    We designed a simple coarse-grained model of the glycocalyx layer, or adhesive mucus layer (AML), covered by mucus gel (luminal mucus layer) using a polymer lattice model and stochastic sampling (replica exchange Monte Carlo) for canonical ensemble simulations. We assumed that mucin MUC16 is responsible for the structural properties of the AML. Other mucins that are much smaller in size and less relevant for layer structure formation were not included. We further assumed that the system was in quasi-equilibrium. For systems with surface coverage and concentrations of model mucins mimicking physiological conditions, we determined the equilibrium distribution of inert nanoparticles within the mucus layers using an efficient replica exchange Monte Carlo sampling procedure. The results show that the two mucus layers penetrate each other only marginally, and the bilayer imposes a strong barrier for nanoparticles, with the AML layer playing a crucial role in the mucus barrier. PMID:22339855

  20. The spatial variation of vegetation changes at very coarse scales

    NASA Technical Reports Server (NTRS)

    Townshend, John R. G.; Justice, Christopher O.

    1990-01-01

    Previous analysis (Townshend and Justice 1988) is extended to examine the spatial variations in images of the normalized difference vegetation index (NDVI) of seven areas. These images were derived by subtracting corresponding pixel values from pairs of registered MSS images. The changes depicted by these derived images were analyzed by scale variance analysis for pixel sizes between 4 km and 64 km. It is shown that for some areas substantial changes are detectable at these very coarse scales, although there is less contrast between the areas than at finer spatial resolutions below 1 km. In all the areas the total spatial variability of the images is contributed at a wide variety of spatial scales.

  1. Coarse-grained theory of a realistic tetrahedral liquid model

    NASA Astrophysics Data System (ADS)

    Procaccia, I.; Regev, I.

    2012-02-01

    Tetrahedral liquids such as water and silica-melt show unusual thermodynamic behavior such as a density maximum and an increase in specific heat when cooled to low temperatures. Previous work had shown that Monte Carlo and mean-field solutions of a lattice model can exhibit these anomalous properties with or without a phase transition, depending on the values of the different terms in the Hamiltonian. Here we use a somewhat different approach, where we start from a very popular empirical model of tetrahedral liquids —the Stillinger-Weber model— and construct a coarse-grained theory which directly quantifies the local structure of the liquid as a function of volume and temperature. We compare the theory to molecular-dynamics simulations and show that the theory can rationalize the simulation results and the anomalous behavior.

  2. Biomembranes in atomistic and coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Pluhackova, Kristyna; Böckmann, Rainer A.

    2015-08-01

    The architecture of biological membranes is tightly coupled to the localization, organization, and function of membrane proteins. The organelle-specific distribution of lipids allows for the formation of functional microdomains (also called rafts) that facilitate the segregation and aggregation of membrane proteins and thus shape their function. Molecular dynamics simulations enable to directly access the formation, structure, and dynamics of membrane microdomains at the molecular scale and the specific interactions among lipids and proteins on timescales from picoseconds to microseconds. This review focuses on the latest developments of biomembrane force fields for both atomistic and coarse-grained molecular dynamics (MD) simulations, and the different levels of coarsening of biomolecular structures. It also briefly introduces scale-bridging methods applicable to biomembrane studies, and highlights selected recent applications.

  3. Fine and coarse dust separation with polarization lidar

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Ansmann, A.

    2014-05-01

    The polarization-lidar photometer networking (POLIPHON) method for separating dust and non-dust aerosol backscatter and extinction, volume, and mass concentration is extended to allow for a height-resolved separation of fine-mode and coarse-mode dust properties in addition. The method is applied to a period with complex aerosol layering of fine-mode background dust from Turkey and Arabian desert dust from Syria. The observation was performed at the combined European Aerosol Research Lidar Network (EARLINET) and Aerosol Robotic Network (AERONET) site of Limassol (34.7° N, 33° E), Cyprus, in September 2011. The dust profiling methodology and case studies are presented. Consistency between the column-integrated optical properties obtained with sun/sky photometer and the respective results derived by means of the new lidar-based method corroborate the applicability of the extended POLIPHON version.

  4. Fine and coarse dust separation with polarization lidar

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Ansmann, A.

    2014-11-01

    The polarization-lidar photometer networking (POLIPHON) method for separating dust and non-dust aerosol backscatter and extinction, volume, and mass concentration is extended to allow for a height-resolved separation of fine-mode and coarse-mode dust properties in addition. The method is applied to a period with complex aerosol layering of fine-mode background dust from Turkey and Arabian desert dust from Syria. The observation was performed at the combined European Aerosol Research Lidar Network (EARLINET) and Aerosol Robotic Network (AERONET) site of Limassol (34.7° N, 33° E), Cyprus, in September 2011. The dust profiling methodology and case studies are presented. Consistency between the column-integrated optical properties obtained with sun/sky photometer and the respective results derived by means of the new lidar-based method corroborate the applicability of the extended POLIPHON version.

  5. Coarse grained modeling of transport properties in monoclonal antibody solution

    NASA Astrophysics Data System (ADS)

    Swan, James; Wang, Gang

    Monoclonal antibodies and their derivatives represent the fastest growing segment of the bio pharmaceutical industry. For many applications such as novel cancer therapies, high concentration, sub-cutaneous injections of these protein solutions are desired. However, depending on the peptide sequence within the antibody, such high concentration formulations can be too viscous to inject via human derived force alone. Understanding how heterogenous charge distribution and hydrophobicity within the antibodies leads to high viscosities is crucial to their future application. In this talk, we explore a coarse grained computational model of therapeutically relevant monoclonal antibodies that accounts for electrostatic, dispersion and hydrodynamic interactions between suspended antibodies to predict assembly and transport properties in concentrated antibody solutions. We explain the high viscosities observed in many experimental studies of the same biologics.

  6. Coarse-grained kinetic equations for quantum systems

    NASA Astrophysics Data System (ADS)

    Petrov, E. G.

    2013-01-01

    The nonequilibrium density matrix method is employed to derive a master equation for the averaged state populations of an open quantum system subjected to an external high frequency stochastic field. It is shown that if the characteristic time τstoch of the stochastic process is much lower than the characteristic time τsteady of the establishment of the system steady state populations, then on the time scale Δ t ˜ τsteady, the evolution of the system populations can be described by the coarse-grained kinetic equations with the averaged transition rates. As an example, the exact averaging is carried out for the dichotomous Markov process of the kangaroo type.

  7. Polysaccharide-Protein Complexes in a Coarse-Grained Model.

    PubMed

    Poma, Adolfo B; Chwastyk, Mateusz; Cieplak, Marek

    2015-09-10

    We construct two variants of coarse-grained models of three hexaoses: one based on the centers of mass of the monomers and the other associated with the C4 atoms. The latter is found to be better defined and more suitable for studying interactions with proteins described within α-C based models. We determine the corresponding effective stiffness constants through all-atom simulations and two statistical methods. One method is the Boltzmann inversion (BI) and the other, named energy-based (EB), involves direct monitoring of energies as a function of the variables that define the stiffness potentials. The two methods are generally consistent in their account of the stiffness. We find that the elastic constants differ between the hexaoses and are noticeably different from those determined for the crystalline cellulose Iβ. The nonbonded couplings through hydrogen bonds between different sugar molecules are modeled by the Lennard-Jones potentials and are found to be stronger than the hydrogen bonds in proteins. We observe that the EB method agrees with other theoretical and experimental determinations of the nonbonded parameters much better than BI. We then consider the hexaose-Man5B catalytic complexes and determine the contact energies between their the C4-α-C atoms. These interactions are found to be stronger than the proteinic hydrogen bonds: about four times as strong for cellohexaose and two times for mannohexaose. The fluctuational dynamics of the coarse-grained complexes are found to be compatible with previous all-atom studies by Bernardi et al. PMID:26291477

  8. Mesoscopic coarse-grained simulations of lysozyme adsorption.

    PubMed

    Yu, Gaobo; Liu, Jie; Zhou, Jian

    2014-05-01

    Coarse-grained simulations are adopted to study the adsorption behavior of lysozyme on different (hydrophobic, neutral hydrophilic, zwitterionic, negatively charged, and positively charged) surfaces at the mesoscopic microsecond time scale (1.2 μs). Simulation results indicate the following: (i) the conformation change of lysozyme on the hydrophobic surface is bigger than any other studied surfaces; (ii) the active sites of lysozyme are faced to the hydrophobic surface with a "top end-on" orientation, while they are exposed to the liquid phase on the hydrophilic surface with a "back-on" orientation; (iii) the neutral hydrophilic surface can induce the adsorption of lysozyme, while the nonspecific protein adsorption can be resisted by the zwitterionic surface; (iv) when the solution ionic strength is low, lysozyme can anchor on the negatively charged surface easily but cannot adsorb on the positively charged surface; (v) when the solution ionic strength is high, the positively charged lysozyme can also adsorb on the like-charged surface; (vi) the major positive potential center of lysozyme, especially the residue ARG128, plays a vital role in leading the adsorption of lysozyme on charged surfaces; (vii) when the ionic strength is high, a counterion layer is formed above the positively charged surface, which is the key factor why lysozyme can adsorb on a like-charged surface. The coarse-grained method based on the MARTINI force field for proteins and the BMW water model could provide an efficient way to understand protein interfacial adsorption behavior at a greater length scale and time scale. PMID:24785197

  9. Circuit modeling of multimode semiconductor lasers and the effect of fiber dispersion on the intensity modulation

    NASA Astrophysics Data System (ADS)

    Kamath, K. K.; Vaya, P. R.

    1992-12-01

    A c irclAl: L mode 1 for Laser diodes based ort nu I C z. mode ra t e eqtiat tons i. s presert t ed hre. be I ay 1 i ries are cornec t ed aL the outpt nodes iduch provide de Lays corresponding to reLative propaation de 1 ays D7i for L aser Lorii LILdZ. ia I modes L!. . ) . n w optical fiber. Th(s modeL s(iruLat. d lASCfl3 th* c(reut s(nwLa LLOTt pacha6e SPICE2. The results were compared with those resuLts by the dtrect rtv soLution of th muLti mode rate equations.

  10. Long-period grating and its cascaded counterpart in photonic crystal fiber for gas phase measurement.

    PubMed

    Tian, Fei; Kanka, Jiri; Du, Henry

    2012-09-10

    Regular and cascaded long period gratings (LPG, C-LPG) of periods ranging from 460 to 590 μm were inscribed in an endlessly single mode photonic crystal fiber (PCF) using CO(2) laser for sensing measurements of helium, argon and acetylene. High index sensitivities in excess of 1700 nm/RIU were achieved in both grating schemes with a period of 460 μm. The sharp interference fringes in the transmission spectrum of C-PCF-LPG afforded not only greatly enhanced sensing resolution, but also accuracy when the phase-shift of the fringe pattern is determined through spectral processing. Comparative numerical and experimental studies indicated LP(01) to LP(03) mode coupling as the principal coupling step for both PCF-LPG and C-PCF-LPG with emergence of multi-mode coupling at shorter grating periods or longer resonance wavelengths. PMID:23037218

  11. Thermoluminescence characteristics of Ge-doped optical fibers with different dimensions for radiation dosimetry.

    PubMed

    Begum, Mahfuza; Rahman, A K M Mizanur; Abdul-Rashid, H A; Yusoff, Z; Begum, Mahbuba; Mat-Sharif, K A; Amin, Y M; Bradley, D A

    2015-06-01

    Important thermoluminescence (TL) properties of five (5) different core sizes Ge-doped optical fibers have been studied to develop new TL material with better response. These are drawn from same preform applying different speed and tension during drawing phase to produce Ge-doped optical fibers with five (5) different core sizes. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge-doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (SEM) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in Secondary Standard Dosimetry Lab (SSDL) was used for irradiation covering dose range from 1Gy to 10Gy. The essential dosimetric parameters that have been studied are TL linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5cm length are annealed at temperature of 400°C for 1h period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1h at 400°C and subsequently 2h at 100°C to yield the highest sensitivity. TL responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Zeff) is found in the range (13.25-13.69) which is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. TL properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation

  12. Coarse-grained computer simulation of dynamics in thylakoid membranes: methods and opportunities

    PubMed Central

    Schneider, Anna R.; Geissler, Phillip L.

    2013-01-01

    Coarse-grained simulation is a powerful and well-established suite of computational methods for studying structure and dynamics in nanoscale biophysical systems. As our understanding of the plant photosynthetic apparatus has become increasingly nuanced, opportunities have arisen for coarse-grained simulation to complement experiment by testing hypotheses and making predictions. Here, we give an overview of best practices in coarse-grained simulation, with a focus on techniques and results that are applicable to the plant thylakoid membrane–protein system. We also discuss current research topics for which coarse-grained simulation has the potential to play a key role in advancing the field. PMID:24478781

  13. Importance of Coarse Woody Debris to Avian Communities in Loblolly Pine Forests

    SciTech Connect

    Lohr, S.M.; Gauthreaux, S.A.; Kilgo, J.C.

    2001-06-14

    Investigates the importance of standing and down coarse woody debris to bird communities in loblolly pine forests, researchers compared breeding and nonbreeding responses of birds among two coarse woody debris removal and control treatments. Quantification of vegetation layers to determine their effects on the experimental outcome coarse woody debris removal had no effect on the nonbreeding bird community. Most breeding and nonbreeding species used habitats with sparse midstory and well-developed understory, where as sparse canopy cover and dense midstory were important to some nonbreeding species. Snag and down coarse woody debris practices that maintain a dense understory, sparse midstory and canopy will create favorable breeding habitat.

  14. Relative Entropy and Optimization-Driven Coarse-Graining Methods in VOTCA

    PubMed Central

    Mashayak, S. Y.; Jochum, Mara N.; Koschke, Konstantin; Aluru, N. R.; Rühle, Victor; Junghans, Christoph

    2015-01-01

    We discuss recent advances of the VOTCA package for systematic coarse-graining. Two methods have been implemented, namely the downhill simplex optimization and the relative entropy minimization. We illustrate the new methods by coarse-graining SPC/E bulk water and more complex water-methanol mixture systems. The CG potentials obtained from both methods are then evaluated by comparing the pair distributions from the coarse-grained to the reference atomistic simulations. In addition to the newly implemented methods, we have also added a parallel analysis framework to improve the computational efficiency of the coarse-graining process. PMID:26192992

  15. Relative entropy and optimization-driven coarse-graining methods in VOTCA

    SciTech Connect

    Mashayak, S. Y.; Jochum, Mara N.; Koschke, Konstantin; Aluru, N. R.; Rühle, Victor; Junghans, Christoph; Huang, Xuhui

    2015-07-20

    We discuss recent advances of the VOTCA package for systematic coarse-graining. Two methods have been implemented, namely the downhill simplex optimization and the relative entropy minimization. We illustrate the new methods by coarse-graining SPC/E bulk water and more complex water-methanol mixture systems. The CG potentials obtained from both methods are then evaluated by comparing the pair distributions from the coarse-grained to the reference atomistic simulations.We have also added a parallel analysis framework to improve the computational efficiency of the coarse-graining process.

  16. Classical predictability and coarse-grained evolution of the quantum baker's map

    SciTech Connect

    Scherer, Artur; Soklakov, Andrei N.; Schack, Ruediger

    2006-06-15

    We investigate how classical predictability of the coarse-grained evolution of the quantum baker's map depends on the character of the coarse-graining. Our analysis extends earlier work by Brun and Hartle [Phys. Rev. D 60, 123503 (1999)] to the case of a chaotic map. To quantify predictability, we compare the rate of entropy increase for a family of coarse-grainings in the decoherent histories formalism. We find that the rate of entropy increase is dominated by the number of scales characterizing the coarse-graining.

  17. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis

    PubMed Central

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  18. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis.

    PubMed

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  19. Flax Fiber - Interfacial Bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measured flax fiber physical and chemical properties potentially impact bonding and thus stress transfer between the matrix and fiber within composites. These first attempts at correlating flax fiber quality and biofiber composites contain the initial steps towards identifying key flax fiber charac...

  20. High-fiber foods

    MedlinePlus

    Dietary fiber - self-care ... Dietary fiber adds bulk to your diet. Because it makes you feel full faster, it can help you ... Grains are another important source of dietary fiber. Eat more: ... Whole-grain breads Brown rice Popcorn High-fiber cereals, such ...

  1. Fiber optic connector

    DOEpatents

    Rajic, S.; Muhs, J.D.

    1996-10-22

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded are disclosed. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled. 3 figs.

  2. Fiber optic connector

    DOEpatents

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  3. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  4. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  5. Impact damage detection of curved stiffened composite panels by using wavy embedded small-diameter optical fibers

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hiroaki; Kawamata, Akio; Kimoto, Junichi; Sanda, Tomio; Takeda, Nobuo

    2002-07-01

    It is well known that barely visible damage is often induced in composite structures subjected to our-of-plane impact, and the mechanical properties of the composites decrease markedly. So far, for the significance of the damage monitoring, the impact test of the CFRP laminate plates with embedded small-diameter optical fibers were conducted, and it was found possible to detect impact load and impact damage in real-time by measuring the optical loss and strain response. But the stiffened composite panels, which are the representative structural elements of airplane. Are characterized by different impact damage from that of the composite plates. In this study, single-mode and multi-mode optical fibers are used as a sensor for detecting impact load and impact damage in curved/stiffened composite panels. Those fibers have polyimide coating and about 40 micron in diameter which will have no serious effect on the mechanical properties of composites. Impact test are performed using the panels with wavy embedded optical fibers. The characteristics of impact damage are investigated. The impact load, the strain measured by FBG sensors and the optical intensity of the optical fibers embedded in the composites are monitored as a function of time. And we discuss the relationship between optical response, impact load and impact damage.

  6. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  7. Chromatin fiber polymorphism triggered by variations of DNA linker lengths

    PubMed Central

    Collepardo-Guevara, Rosana; Schlick, Tamar

    2014-01-01

    Deciphering the factors that control chromatin fiber structure is key to understanding fundamental chromosomal processes. Although details remain unknown, it is becoming clear that chromatin is polymorphic depending on internal and external factors. In particular, different lengths of the linker DNAs joining successive nucleosomes (measured in nucleosome-repeat lengths or NRLs) that characterize different cell types and cell cycle stages produce different structures. NRL is also nonuniform within single fibers, but how this diversity affects chromatin fiber structure is not clear. Here we perform Monte Carlo simulations of a coarse-grained oligonucleosome model to help interpret fiber structure subject to intrafiber NRL variations, as relevant to proliferating cells of interphase chromatin, fibers subject to remodeling factors, and regulatory DNA sequences. We find that intrafiber NRL variations have a profound impact on chromatin structure, with a wide range of different architectures emerging (highly bent narrow forms, canonical and irregular zigzag fibers, and polymorphic conformations), depending on the NRLs mixed. This stabilization of a wide range of fiber forms might allow NRL variations to regulate both fiber compaction and selective DNA exposure. The polymorphic forms spanning canonical to sharply bent structures, like hairpins and loops, arise from large NRL variations and are surprisingly more compact than uniform NRL structures. They are distinguished by tail-mediated far-nucleosome interactions, in addition to the near-nucleosome interactions of canonical 30-nm fibers. Polymorphism is consistent with chromatin’s diverse biological functions and heterogeneous constituents. Intrafiber NRL variations, in particular, may contribute to fiber bending and looping and thus to distant communication in associated regulatory processes. PMID:24847063

  8. Coarse mode aerosol measurement using a Low Turbulence Inlet

    NASA Astrophysics Data System (ADS)

    Brooke, J.; Bart, M.; Trembath, J.; McQuaid, J. B.; Brooks, B. J.; Osborne, S.

    2012-04-01

    The Sahara desert is a major natural source of global mineral dust emissions (Forster et al., 2007) through the mobilisation and lifting of dust particles into the atmosphere from dust storms. A significant fraction of this dust is in the aerosol coarse mode (Weinzierl et al., 2009). It is highlighted of the difficulty in making accurate and reliable measurements from an aircraft platform, particularly that of coarse mode aerosol (Wendisch et al., 2004). To achieve the measurement of a representative aerosol sample an aerosol inlet, on an aircraft, is required for the delivery of the sample to the instruments making the measurements. Inlet design can modify aerosol size distribution through either underestimating due to aerosol losses or overestimation due to enhancements. The Low Turbulence Inlet (LTI) was designed to improve inlet efficiency. This is achieved by reducing turbulence flow within the tip of the inlet, reducing impaction of particles to the walls of the inlet (Wilson et al., 2004). The LTI further maintains isokinetic sampling flow (free stream velocity, U0 and sampling velocity, U are equal to 1). Dust aerosol over the Sahara desert provides an excellent environment to test and quantify the capabilities of the LTI on the FAAM BAe 146, whilst enabling in-situ dust measurement. The LTI was operated during the Fennec field campaign in June 2011 with 11 flights during the campaign over Mauritania and Mali. We are using the LTI to provide critical information on the sampling characteristics of the inlet used by nearly all aerosol instruments inside the aircraft (AMS, Nephelometer, PSAP, and CCN). Inlet experiments were performed with identical Optical Particle Counters (OPC) connected to the rosemount and LTI with size distribution for each inlet measured and Rosemount enhancements determined. Rosemount inlet enhancements were determined to be 2 to 4 times for particles up to 2.5 µm. A key parameter in aerosol measurement is size distribution, in which

  9. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  10. Alumina fiber strength improvement

    NASA Technical Reports Server (NTRS)

    Pepper, R. T.; Nelson, D. C.

    1982-01-01

    The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.

  11. A coarse to fine minutiae-based latent palmprint matching.

    PubMed

    Liu, Eryun; Jain, Anil K; Tian, Jie

    2013-10-01

    With the availability of live-scan palmprint technology, high resolution palmprint recognition has started to receive significant attention in forensics and law enforcement. In forensic applications, latent palmprints provide critical evidence as it is estimated that about 30 percent of the latents recovered at crime scenes are those of palms. Most of the available high-resolution palmprint matching algorithms essentially follow the minutiae-based fingerprint matching strategy. Considering the large number of minutiae (about 1,000 minutiae in a full palmprint compared to about 100 minutiae in a rolled fingerprint) and large area of foreground region in full palmprints, novel strategies need to be developed for efficient and robust latent palmprint matching. In this paper, a coarse to fine matching strategy based on minutiae clustering and minutiae match propagation is designed specifically for palmprint matching. To deal with the large number of minutiae, a local feature-based minutiae clustering algorithm is designed to cluster minutiae into several groups such that minutiae belonging to the same group have similar local characteristics. The coarse matching is then performed within each cluster to establish initial minutiae correspondences between two palmprints. Starting with each initial correspondence, a minutiae match propagation algorithm searches for mated minutiae in the full palmprint. The proposed palmprint matching algorithm has been evaluated on a latent-to-full palmprint database consisting of 446 latents and 12,489 background full prints. The matching results show a rank-1 identification accuracy of 79.4 percent, which is significantly higher than the 60.8 percent identification accuracy of a state-of-the-art latent palmprint matching algorithm on the same latent database. The average computation time of our algorithm for a single latent-to-full match is about 141 ms for genuine match and 50 ms for impostor match, on a Windows XP desktop system with 2

  12. Coarse graining the distribution function of cold dark matter - II

    NASA Astrophysics Data System (ADS)

    Henriksen, R. N.

    2004-12-01

    We study analytically the coarse- and fine-grained distribution function (DF) established by the self-similar infall of collisionless matter. We find this function explicitly for isotropic and spherically symmetric systems in terms of cosmological initial conditions. The coarse-grained function is structureless and steady but the familiar phase-space sheet substructure is recovered in the fine-grained limit. By breaking the self-similarity of the halo infall we are able to argue for a central density flattening. In addition there will be an edge steepening. The best-fitting analytic density function is likely to be provided by a high-order polytrope fit smoothly to an outer power law of index -3 for isolated systems. There may be a transition to a -4 power law in the outer regions of tidally truncated systems. As we find that the central flattening is progressive in time, dynamically young systems such as galaxy clusters may well possess a Navarro, Frenk and White type density profile, while primordial dwarf galaxies, for example, are expected to have cores. This progressive flattening is expected to end either in the non-singular isothermal sphere, or in the non-singular metastable polytropic cores; as the DFs associated with each of these arise naturally in the bulk halo during the infall. We suggest, based on previous studies of the evolution of de-stabilized polytropes, that a collisionless system may pass through a family of polytropes of increasing order, finally approaching the limit of the non-singular isothermal sphere, if the `violent' collective relaxation is frequently re-excited by `merger' events. Thus central dominant (cD) galaxies, and indeed all bright galaxies that have grown in this fashion, should be in polytropic states. Our results suggest that no physics beyond that of wave-particle scattering is necessary to explain the nature of dark matter density profiles. However, this may be assisted by the scattering of particles from the centre of the

  13. The decomposition of fine and coarse roots: their global patterns and controlling factors

    PubMed Central

    Zhang, Xinyue; Wang, Wei

    2015-01-01

    Fine root decomposition represents a large carbon (C) cost to plants, and serves as a potential soil C source, as well as a substantial proportion of net primary productivity. Coarse roots differ markedly from fine roots in morphology, nutrient concentrations, functions, and decomposition mechanisms. Still poorly understood is whether a consistent global pattern exists between the decomposition of fine (<2 mm root diameter) and coarse (≥2 mm) roots. A comprehensive terrestrial root decomposition dataset, including 530 observations from 71 sampling sites, was thus used to compare global patterns of decomposition of fine and coarse roots. Fine roots decomposed significantly faster than coarse roots in middle latitude areas, but their decomposition in low latitude regions was not significantly different from that of coarse roots. Coarse root decomposition showed more dependence on climate, especially mean annual temperature (MAT), than did fine roots. Initial litter lignin content was the most important predictor of fine root decomposition, while lignin to nitrogen ratios, MAT, and mean annual precipitation were the most important predictors of coarse root decomposition. Our study emphasizes the necessity of separating fine roots and coarse roots when predicting the response of belowground C release to future climate changes. PMID:25942391

  14. The decomposition of fine and coarse roots: their global patterns and controlling factors

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Wang, Wei

    2015-05-01

    Fine root decomposition represents a large carbon (C) cost to plants, and serves as a potential soil C source, as well as a substantial proportion of net primary productivity. Coarse roots differ markedly from fine roots in morphology, nutrient concentrations, functions, and decomposition mechanisms. Still poorly understood is whether a consistent global pattern exists between the decomposition of fine (<2 mm root diameter) and coarse (≥2 mm) roots. A comprehensive terrestrial root decomposition dataset, including 530 observations from 71 sampling sites, was thus used to compare global patterns of decomposition of fine and coarse roots. Fine roots decomposed significantly faster than coarse roots in middle latitude areas, but their decomposition in low latitude regions was not significantly different from that of coarse roots. Coarse root decomposition showed more dependence on climate, especially mean annual temperature (MAT), than did fine roots. Initial litter lignin content was the most important predictor of fine root decomposition, while lignin to nitrogen ratios, MAT, and mean annual precipitation were the most important predictors of coarse root decomposition. Our study emphasizes the necessity of separating fine roots and coarse roots when predicting the response of belowground C release to future climate changes.

  15. DEVELOPMENT AND EVALUATION OF A CONTINUOUS COARSE (PM10-PM2.5) PARTICLE MONITOR

    EPA Science Inventory

    In this paper, we describe the development and laboratory and field evaluation of a continuous coarse (2.5-10 um) particle mass (PM) monitor that can provide reliable measurements of the coarse mass (CM) concentrations in time intervals as short as 5-10 min. The operating princ...

  16. Chemical Characterization of Coarse Particulate Matter in the Desert Southwest - Pinal County Arizona, USA

    EPA Science Inventory

    The Desert Southwest Coarse Particulate Matter Study was undertaken of ambient concentrations and the composition of fine and coarse particles in rural, arid environments. Sampling was conducted in Pinal County, Arizona between February 2009 and February 2010. The goals of this ...

  17. Self-Repairing Polymer Optical Fiber Strain Sensor

    NASA Astrophysics Data System (ADS)

    Song, Young Jun

    This research develops a self-repairing polymer optical fiber strain sensor for structural health monitoring applications where the sensor network must survive under extreme conditions. Inspired by recent research in self-healing material systems, this dissertation demonstrates a self-repairing strain sensor waveguide, created by self-writing in a photopolymerizable resin system. In an initial configuration, the waveguide sensor was fabricated between two multi-mode (MM) optical fibers via ultraviolet (UV) lightwaves in the UV curable resin and operated as a strain sensor by interrogation of the infrared (IR) power transmission through the waveguide. After failure of the sensor occurred due to loading, the waveguide re-bridged the gap between the two optical fibers through the UV resin. The response of the waveguide sensors was sensitive to the applied strain and repeatable during multiple loading cycles with low observed hysteresis, however was not always monotonic. The strain response of the original sensor and the self-repaired sensor showed similar behaviors. Packaging the sensor in a polymer capillary improved the performance of the sensor by removing previous "no-response" zones. The resulting sensor output was monotonic throughout the measurement range. The hysteresis in the sensor behavior between multiple loading cycles was also significantly reduced. However, a jump in sensor output voltage was observed after the sensor self-repair process, which presents challenges for calibration of the sensor. The sensor configuration was modified to a Fabry-Perot interferometer to improve the sensor response. The measurable strain range was extended through multiple sensor self-repairs, and strain measurements were demonstrated up to 150% applied tensile strain. A hybrid sensor was fabricated by splicing a short segment of MM optical fiber to the input single-mode (SM) optical fiber. The hybrid sensor provided the high quality of waveguide fabrication previously

  18. Perspective: Coarse-grained models for biomolecular systems

    NASA Astrophysics Data System (ADS)

    Noid, W. G.

    2013-09-01

    By focusing on essential features, while averaging over less important details, coarse-grained (CG) models provide significant computational and conceptual advantages with respect to more detailed models. Consequently, despite dramatic advances in computational methodologies and resources, CG models enjoy surging popularity and are becoming increasingly equal partners to atomically detailed models. This perspective surveys the rapidly developing landscape of CG models for biomolecular systems. In particular, this review seeks to provide a balanced, coherent, and unified presentation of several distinct approaches for developing CG models, including top-down, network-based, native-centric, knowledge-based, and bottom-up modeling strategies. The review summarizes their basic philosophies, theoretical foundations, typical applications, and recent developments. Additionally, the review identifies fundamental inter-relationships among the diverse approaches and discusses outstanding challenges in the field. When carefully applied and assessed, current CG models provide highly efficient means for investigating the biological consequences of basic physicochemical principles. Moreover, rigorous bottom-up approaches hold great promise for further improving the accuracy and scope of CG models for biomolecular systems.

  19. Coarse-Grained Molecular Models of Water: A Review

    PubMed Central

    Hadley, Kevin R.; McCabe, Clare

    2012-01-01

    Coarse-grained (CG) models have proven to be very effective tools in the study of phenomena or systems that involve large time- and length-scales. By decreasing the degrees of freedom in the system and using softer interactions than seen in atomistic models, larger timesteps can be used and much longer simulation times can be studied. CG simulations are widely used to study systems of biological importance that are beyond the reach of atomistic simulation, necessitating a computationally efficient and accurate CG model for water. In this review, we discuss the methods used for developing CG water models and the relative advantages and disadvantages of the resulting models. In general, CG water models differ with regards to how many waters each CG group or bead represents, whether analytical or tabular potentials have been used to describe the interactions, and how the model incorporates electrostatic interactions. Finally, how the models are parameterized depends on their application, so, while some are fitted to experimental properties such as surface tension and density, others are fitted to radial distribution functions extracted from atomistic simulations. PMID:22904601

  20. Fine and coarse components in surface sediments from Bikini Lagoon

    SciTech Connect

    Noshkin, V. E., LLNL

    1997-01-01

    In 1979, 21 years after the moratorium on nuclear testing in the Marshall Islands, surface sediment samples (to depths of 2 and 4 cm) were collected from 87 locations in the lagoon of Bikini Atoll, one of the two sites in the Marshall Islands used by the United States to test nuclear devices from 1946 through 1958. The main purpose for the collections was to map the distribution of long-lived man-made radionuclides associated with the bottom material. In addition the samples were processed to estimate the fraction of fine and coarse components to show, by comparison, what modifications occurred in the composition since the sediments were first described in samples collected before testing in 1946. Nuclear testing produced more finely divided material that is now found in the surface sediment layer over large areas of the lagoon and especially in regions of the lagoon and reef adjacent to test sites. The 5 cratering events alone at Bikini Atoll redistributed sufficient material to account for the higher inventory of fine material found over the surface 4 cm of the sediment of the lagoon. Although the fraction of fine material in the bottom sediments was altered by the nuclear events, the combined processes of formation, transport and deposition were not sufficiently dynamic to greatly change the general geographical features of the major sedimentary components over most of the lagoon floor.

  1. Coarse-grained potentials of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Junhua; Jiang, Jin-Wu; Wang, Lifeng; Guo, Wanlin; Rabczuk, Timon

    2014-11-01

    We develop the coarse-grained (CG) potentials of single-walled carbon nanotubes (SWCNTs) in CNT bundles and buckypaper for the study of the static and dynamic behaviors. The explicit expressions of the CG stretching, bending and torsion potentials for the nanotubes are obtained by the stick-spiral and the beam models, respectively. The non-bonded CG potentials between two different CG beads are derived from analytical results based on the cohesive energy between two parallel and crossing SWCNTs from the van der Waals interactions. We show that the CG model is applicable to large deformations of complex CNT systems by combining the bonded potentials with non-bonded potentials. Checking against full atom molecular dynamics calculations and our analytical results shows that the present CG potentials have high accuracy. The established CG potentials are used to study the mechanical properties of the CNT bundles and buckypaper efficiently at minor computational cost, which shows great potential for the design of micro- and nanomechanical devices and systems.

  2. Anatomy of an Allende coarse-grained inclusion

    NASA Astrophysics Data System (ADS)

    El Gorsey, A.; Armstrong, J. T.; Wasserburg, G. J.

    1985-11-01

    The petrology, mineralogy, and mineral chemistry of a coarse-grained calcium-aluminum-rich inclusion from Allende are studied. The inclusion consists of a spinel-fassaite-melilite core surrounded by a melilite mantle. The zoning, chemical variation between crystals, and concentration of molecules in the melilite and fassaite of the spinel-free island, spinel-rich area, and melilite mantle are examined. The possible formation of the inclusion by gas-solid condensation, crystallization from a homogeneous refractory silicate melt, and evaporative loss due to distillation is analyzed. These processes, however, do not explain the textural relations and mineral chemistries of the spinel-free island, spinel-rich areas, and melilite mantle. The formation of the inclusion by spinel-free islands forming by crystallization from a spinel deficient liquid, the capture of solid clasts and Fremdlinge in a more refractory spinel-saturated liquid, and formation of the outer melilite veneer mantle from two refractory liquid layers is proposed.

  3. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-05-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio (w/c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  4. Coarse grained molecular simulations of melting kinetics of DPPC vesicles

    NASA Astrophysics Data System (ADS)

    Bolling-Patel, Lara A.; Kindt, James T.

    2015-03-01

    Phase transitions in unilamellar vesicles are of particular interest as the increase in permeability of lipid bilayers around the main phase transition temperature makes them candidates for drug encapsulation and temperature-responsive delivery. We study the transition between the gel and fluid phases of a unilamellar vesicle of MARTINI coarse grain DPPC lipids with a diameter of 40 nm following temperature jumps from 280 K to temperatures near the transition temperature of 295 K. At 290 K and 295 K vesicles show single exponential melting kinetics in qualitative agreement with the early stages of melting measured in IR temperature-jump experiments. These trajectories exhibit partial melting over 500 ns, accompanied by a decrease in the number of gel domains from 8 domains in the initial faceted structure to 5 and 3 respectively. Melting at 295 K results in a shape change to an asymmetric structure that appears to be transforming into an oblate solid. Complete melting is seen for temperature jumps to 300 K and 310 K, in which cases vesicles undergo shape transitions into prolate dumbbell shapes. The shape changes that accompany the phase transition indicate that the phase transition kinetics are correlated to changes in curvature. NSF CHE-1213904.

  5. Improving the treatment of coarse-grain electrostatics: CVCEL.

    PubMed

    Ceres, N; Lavery, R

    2015-12-28

    We propose an analytic approach for calculating the electrostatic energy of proteins or protein complexes in aqueous solution. This method, termed CVCEL (Circular Variance Continuum ELectrostatics), is fitted to Poisson calculations and is able to reproduce the corresponding energies for different choices of solute dielectric constant. CVCEL thus treats both solute charge interactions and charge self-energies, and it can also deal with salt solutions. Electrostatic damping notably depends on the degree of solvent exposure of the charges, quantified here in terms of circular variance, a measure that reflects the vectorial distribution of the neighbors around a given center. CVCEL energies can be calculated rapidly and have simple analytical derivatives. This approach avoids the need for calculating effective atomic volumes or Born radii. After describing how the method was developed, we present test results for coarse-grain proteins of different shapes and sizes, using different internal dielectric constants and different salt concentrations and also compare the results with those from simple distance-dependent models. We also show that the CVCEL approach can be used successfully to calculate the changes in electrostatic energy associated with changes in protein conformation or with protein-protein binding. PMID:26723603

  6. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste. PMID:25188783

  7. Coarse-grained molecular simulations of allosteric cooperativity

    NASA Astrophysics Data System (ADS)

    Nandigrami, Prithviraj; Portman, John J.

    2016-03-01

    Interactions between a protein and a ligand are often accompanied by a redistribution of the population of thermally accessible conformations. This dynamic response of the protein's functional energy landscape enables a protein to modulate binding affinities and control binding sensitivity to ligand concentration. In this paper, we investigate the structural origins of binding affinity and allosteric cooperativity of binding two Ca2+ ions to each domain of Calmodulin (CaM) through simulations of a simple coarse-grained model. In this model, the protein's conformational transitions between open and closed conformational ensembles are simulated explicitly and ligand binding and unbinding are treated implicitly within the grand canonical ensemble. Ligand binding is cooperative because the binding sites are coupled through a shift in the dominant conformational ensemble upon binding. The classic Monod-Wyman-Changeux model of allostery with appropriate binding free energies to the open and closed ensembles accurately describes the simulated binding thermodynamics. The simulations predict that the two domains of CaM have distinct binding affinity and cooperativity. In particular, the C-terminal domain binds Ca2+ with higher affinity and greater cooperativity than the N-terminal domain. From a structural point of view, the affinity of an individual binding loop depends sensitively on the loop's structural compatibility with the ligand in the bound ensemble, as well as the conformational flexibility of the binding site in the unbound ensemble.

  8. Complete Eulerian-mean tracer equation for coarse resolution OGCMs

    NASA Astrophysics Data System (ADS)

    Dubovikov, M. S.; Canuto, V. M.

    2006-06-01

    McDougall and McIntosh showed that the adiabatic mesoscale mixing is represented incompletely in the tracer Eulerian-averaged equation (EAE) of coarse resolution OGCMs. We show that completing EAE requires an adequate decomposition of the mesoscale tracer flux which is achieved by means of transforming mesoscale fields to isopycnal coordinates (IC) where mesoscale dynamics has the simplest form. The transformation results in splitting Fτ into two components and : the former is determined by buoyancy mesoscale dynamics only and has a trivial kinematic dependence on the mean tracer field, the latter is determined by mesoscale tracer dynamics. Thus, the problem of modelling (parameterizing) Fτ in ZC is divided in two stages which can be termed kinematic and dynamic. The kinematic stage consists in adequate decomposing Fτ, and the result is expressed in terms of mesoscale fields. The dynamic stage consists in applying a specific dynamic mesoscale model to parameterize the components of Fτ. In this article, we show that some components of Fτ are missing in ZC-OGCMs tracer equation and that their contribution is of the same order of magnitude as the mesoscale contribution itself. We also show that Fτ has components across mean isopycnals and that their existence is consistent with the adiabatic approximation which requires vanishing all fluxes across isopycnal surfaces. As for practical results, we derive the complete equation for the large scale tracer in ZC-OGCMs and present the parameterization of the terms which have been missing thus far.

  9. Generic Coarse-Grained Model for Protein Folding and Aggregation

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan; Deserno, Markus

    2009-03-01

    The complexity involved in protein structure is not only due to the rich variety of amino acids, but also the inherent weak interactions, comparable to thermal energy, and important cooperative phenomena. This presents a challenge in atomistic simulations, as it is associated with high-dimensionality and ruggedness of the energy landscape as well as long equilibration times. We have recently developed a coarse-grained (CG) implicit solvent peptide model which has been designed to reproduce key consequences of the abovementioned weak interactions. Its intermediate level of resolution, four beads per amino acid, allows for accurate sampling of local conformations by designing a force field that relies on simple interactions. A realistic ratio of α-helix to β-sheet content is achieved by mimicking a nearest-neighbor dipole interaction. We tune the model in order to fold helical proteins while systematically comparing the structure with NMR data. Very good agreement is achieved for proteins that have simple tertiary structures. We further probe the effects of cooperativity between amino acids by looking at peptide aggregation, where hydrophobic peptide fragments cooperatively form large-scale β-sheet structures. The model is able to reproduce features from atomistic simulations on a qualitative basis.

  10. Nanodomained Nickel Unite Nanocrystal Strength with Coarse-Grain Ductility

    PubMed Central

    Wu, Xiaolei; Yuan, Fuping; Yang, Muxin; Jiang, Ping; Zhang, Chuanxin; Chen, Liu; Wei, Yueguang; Ma, Evan

    2015-01-01

    Conventional metals are routinely hardened by grain refinement or by cold working with the expense of their ductility. Recent nanostructuring strategies have attempted to evade this strength versus ductility trade-off, but the paradox persists. It has never been possible to combine the strength reachable in nanocrystalline metals with the large uniform tensile elongation characteristic of coarse-grained metals. Here a defect engineering strategy on the nanoscale is architected to approach this ultimate combination. For Nickel, spread-out nanoscale domains (average 7 nm in diameter) were produced during electrodeposition, occupying only ~2.4% of the total volume. Yet the resulting Ni achieves a yield strength approaching 1.3 GPa, on par with the strength for nanocrystalline Ni with uniform grains. Simultaneously, the material exhibits a uniform elongation as large as ~30%, at the same level of ductile face-centered-cubic metals. Electron microscopy observations and molecular dynamics simulations demonstrate that the nanoscale domains effectively block dislocations, akin to the role of precipitates for Orowan hardening. In the meantime, the abundant domain boundaries provide dislocation sources and trapping sites of running dislocations for dislocation multiplication, and the ample space in the grain interior allows dislocation storage; a pronounced strain-hardening rate is therefore sustained to enable large uniform elongation. PMID:26122728

  11. High-efficiency flotation of coarse and fine coal

    SciTech Connect

    Atkinson, B.W.; Conway, C.J.; Jameson, G.J.

    1995-10-01

    The flotation of coal in the fine and coarse particle size ranges presents particular problems. Fine or ultra-fine coal less than 100 microns presents a challenge to conventional flotation machines because the rate of capture of the coal particles can be very low, so longer residence times are needed. Also, conventional mechanical cells are not normally designed with froth properties in mind. Froth drainage may be inadequate, leading to excessive entrainment of ash. The upper limit of flotation of coal is normally put at about 500 {micro}m (30 mesh). It appears that, in mechanical cells, coarser particles tend to be torn away from bubbles in the turbulent environment created by the impeller. In this paper, results are presented from plant trials of a high-intensity flotation column of novel design, namely the Jameson cell. Extensive trials have been conducted on coal slurries with a top size of around 1 mm. Size-by size analysis shows that it is possible to achieve high yields of low ash product over the whole particle size range.

  12. Improving the treatment of coarse-grain electrostatics: CVCEL

    SciTech Connect

    Ceres, N.; Lavery, R.

    2015-12-28

    We propose an analytic approach for calculating the electrostatic energy of proteins or protein complexes in aqueous solution. This method, termed CVCEL (Circular Variance Continuum ELectrostatics), is fitted to Poisson calculations and is able to reproduce the corresponding energies for different choices of solute dielectric constant. CVCEL thus treats both solute charge interactions and charge self-energies, and it can also deal with salt solutions. Electrostatic damping notably depends on the degree of solvent exposure of the charges, quantified here in terms of circular variance, a measure that reflects the vectorial distribution of the neighbors around a given center. CVCEL energies can be calculated rapidly and have simple analytical derivatives. This approach avoids the need for calculating effective atomic volumes or Born radii. After describing how the method was developed, we present test results for coarse-grain proteins of different shapes and sizes, using different internal dielectric constants and different salt concentrations and also compare the results with those from simple distance-dependent models. We also show that the CVCEL approach can be used successfully to calculate the changes in electrostatic energy associated with changes in protein conformation or with protein-protein binding.

  13. Safety Ellipse Motion with Coarse Sun Angle Optimization

    NASA Technical Reports Server (NTRS)

    Naasz, Bo

    2005-01-01

    The Hubble Space Telescope Robotic Servicing and De-orbit Mission (HRSDM) was t o be performed by the unmanned Hubble Robotic Vehicle (HRV) consisting of a Deorbit Module (DM), responsible for the ultimate disposal of Hubble Space Telescope (HST) at the end of science operations, and an Ejection Module (EM), responsible for robotically servicing the HST to extend its useful operational lifetime. HRSDM consisted of eight distinct phases, including: launch, pursuit, proximity operations, capture, servicing, EM jettison and disposal, science operations, and deorbit. The scope of this paper is limited to the Proximity Operations phase of HRSDM. It introduces a relative motion strategy useful for Autonomous Rendezvous and Docking (AR&D) or Formation Flying missions where safe circumnavigation trajectories, or close proximity operations (tens or hundreds of meters) are required for extended periods of time. Parameters and algorithms used to model the relative motion of HRV with respect to HST during the Proximity Operations phase of the HRSDM are described. Specifically, the Safety Ellipse (SE) concept, convenient parameters for describing SE motion, and a concept for initializing SE motion around a target vehicle to coarsely optimize sun and relative navigation sensor angles are presented. The effects of solar incidence angle variations on sun angle optimization, and the effects of orbital perturbations and navigation uncertainty on long term SE motion are discussed.

  14. Penetration strength of coarse granular materials from DEM simulations

    NASA Astrophysics Data System (ADS)

    Quezada, Juan Carlos; Saussine, Gilles; Breul, Pierre; Radjai, Farhang

    2013-06-01

    Field tests are widely used for soil characterization in geotechnical applications in spite of implementation difficulties. The light penetrometer test is a well-known testing tool for fine soils, but the physical interpretation of the output data in the case of coarse granular materials is far less evident. In fact, the data are considerably more sensitive to various parameters such as fabric structure, particles shape or the applied impact energy. In order to achieve a better understanding of the underlying phenomena, we performed a numerical study by means contact dynamics DEM simulations. We consider the penetration of a moving tip into a sample composed of irregular grain shapes and we analyze the influence of the driving velocity and applied energy on the penetration strength. We find that the latter grows with both the penetration rate and energy. Force fluctuations on the tip involve a jamming-unjamming process. The typology of contact network and inter-granular friction play a major role in the fluctuations and measured values of the cone penetration strength.

  15. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  16. Personal coarse particulate matter exposures in an adult cohort

    NASA Astrophysics Data System (ADS)

    Williams, Ron; Case, Martin; Yeatts, Karin; Chen, Fu-Lin; Scott, James; Svendsen, Erik; Devlin, Robert

    Volunteers associated with the North Carolina Adult Asthma and Environment Study (NCAAES) participated in an investigation of personal daily exposures to coarse and fine particulate matter size fractions (PM 10-2.5, PM 2.5). Data from these personal measurements were then compared to community-based measures that might typically represent surrogate measurements of exposure often used in epidemiological assessments. To determine personal exposures to various particulate matter (PM) size fractions, a recently evaluated personal PM monitor capable of direct PM 10-2.5 size fraction collection was used. Participants living in the central region of North Carolina and enrolled in the NCAAES were asked to wear the monitor attached to a supporting backpack for 24-h collection periods. These volunteers were monitored for 2 to 4 days with subsequent gravimetric analysis of their PM samples. Personal PM 10-2.5 mass concentrations were observed to be highly variable and ranged from 7.6 to 40.2 μg/m 3 over an 8-month period. The median for this measurement from all participants (50th percentile) was 13.7 μg/m 3. A coefficient of determination ( r2) of 0.02 was established for community-based PM 10-2.5 mass concentrations versus personal exposures. Similar coefficients established for PM 2.5 mass revealed only a modest improvement in agreement ( r2 = 0.12). Data from the exposure findings are reported here.

  17. Fuzzy logic and coarse coding using programmable logic devices

    NASA Astrophysics Data System (ADS)

    Brooks, Geoffrey

    2009-05-01

    Naturally-occurring sensory signal processing algorithms, such as those that inspired fuzzy-logic control, can be integrated into non-naturally-occurring high-performance technology, such as programmable logic devices, to realize novel bio-inspired designs. Research is underway concerning an investigation into using field programmable logic devices (FPLD's) to implement fuzzy logic sensory processing. A discussion is provided concerning the commonality between bio-inspired fuzzy logic algorithms and coarse coding that is prevalent in naturally-occurring sensory systems. Undergraduate design projects using fuzzy logic for an obstacle-avoidance robot has been accomplished at our institution and other places; numerous other successful fuzzy logic applications can be found as well. The long-term goal is to leverage such biomimetic algorithms for future applications. This paper outlines a design approach for implementing fuzzy-logic algorithms into reconfigurable computing devices. This paper is presented in an effort to connect with others who may be interested in collaboration as well as to establish a starting point for future research.

  18. Coarse-grained force field; general folding theory

    PubMed Central

    Liwo, Adam; He, Yi; Scheraga, Harold A.

    2012-01-01

    We review the coarse-grained UNited RESidue (UNRES) force field for the simulations of protein structure and dynamics, which is being developed in our laboratory over the last several years. UNRES is a physics-based force field, the prototype of which is defined as a potential of mean force of polypeptide chains in water, where all the degrees of freedom except the coordinates of α-carbon atoms and side-chain centers have been integrated out. We describe the initial implementation of UNRES to protein-structure prediction formulated as a search for the global minimum of the potential-energy function and its subsequent molecular dynamics and extensions of molecular-dynamics implementation, which enabled us to study protein-folding pathways and thermodynamics, as well as to reformulate the protein-structure prediction problem as a search for the conformational ensemble with the lowest free energy at temperatures below the folding-transition temperature. Applications of UNRES to study biological problems are also described. PMID:21643583

  19. Coarse-grained, foldable, physical model of the polypeptide chain

    PubMed Central

    Chakraborty, Promita; Zuckermann, Ronald N.

    2013-01-01

    Although nonflexible, scaled molecular models like Pauling–Corey’s and its descendants have made significant contributions in structural biology research and pedagogy, recent technical advances in 3D printing and electronics make it possible to go one step further in designing physical models of biomacromolecules: to make them conformationally dynamic. We report here the design, construction, and validation of a flexible, scaled, physical model of the polypeptide chain, which accurately reproduces the bond rotational degrees of freedom in the peptide backbone. The coarse-grained backbone model consists of repeating amide and α-carbon units, connected by mechanical bonds (corresponding to φ and ψ) that include realistic barriers to rotation that closely approximate those found at the molecular scale. Longer-range hydrogen-bonding interactions are also incorporated, allowing the chain to readily fold into stable secondary structures. The model is easily constructed with readily obtainable parts and promises to be a tremendous educational aid to the intuitive understanding of chain folding as the basis for macromolecular structure. Furthermore, this physical model can serve as the basis for linking tangible biomacromolecular models directly to the vast array of existing computational tools to provide an enhanced and interactive human–computer interface. PMID:23898168

  20. Subsurface flow mixing in coarse, braided river deposits

    NASA Astrophysics Data System (ADS)

    Huber, Emanuel; Huggenberger, Peter

    2016-05-01

    Coarse, braided river deposits show a large hydraulic heterogeneity on the metre scale. One of the main depositional elements found in such deposits is a trough structure filled with layers of bimodal gravel and open-framework gravel, the latter being highly permeable. However, the impact of such trough fills on subsurface flow and advective mixing has not drawn much attention. A geologically realistic model of trough fills is proposed and fitted to a limited number of ground-penetrating radar records surveyed on the river bed of the Tagliamento River (northeast Italy). A steady-state, saturated subsurface flow simulation is performed on the small-scale, high-resolution, synthetic model (size: 75 m × 80 m × 9 m). Advective mixing (i.e. streamline intertwining) is visualised and quantified based on particle tracking. The results indicate strong advective mixing as well as a large flow deviation induced by the asymmetry of the trough fills with regard to the main flow direction. The flow deviation induces a partial, large-scale rotational effect. These findings depict possible advective mixing found in natural environments and can guide the interpretation of ecological processes such as in the hyporheic zone.

  1. Entrainment of coarse grains using a discrete particle model

    SciTech Connect

    Valyrakis, Manousos; Arnold, Roger B. Jr.

    2014-10-06

    Conventional bedload transport models and incipient motion theories relying on a time-averaged boundary shear stress are incapable of accounting for the effects of fluctuating near-bed velocity in turbulent flow and are therefore prone to significant errors. Impulse, the product of an instantaneous force magnitude and its duration, has been recently proposed as an appropriate criterion for quantifying the effects of flow turbulence in removing coarse grains from the bed surface. Here, a discrete particle model (DPM) is used to examine the effects of impulse, representing a single idealized turbulent event, on particle entrainment. The results are classified according to the degree of grain movement into the following categories: motion prior to entrainment, initial dislodgement, and energetic displacement. The results indicate that in all three cases the degree of particle motion depends on both the force magnitude and the duration of its application and suggest that the effects of turbulence must be adequately accounted for in order to develop a more accurate method of determining incipient motion. DPM is capable of simulating the dynamics of grain entrainment and is an appropriate tool for further study of the fundamental mechanisms of sediment transport.

  2. Ambient fine and coarse particle suppression of alveolar macrophage functions.

    PubMed

    Kleinman, M T; Sioutas, C; Chang, M C; Boere, A J F; Cassee, F R

    2003-02-01

    Alveolar macrophages (AM) are part of the innate immunological defense system and are among the first cells to respond to the effects of inhaled particles. Study of macrophage responses to particles is, therefore, relevant to understanding the mechanisms by which inhaled particles can adversely affect health. Size-fractionated ambient particles were collected at traffic-dominated sites in The Netherlands using a mobile high volume slit impactor system. AM were obtained by bronchoalveolar lavage from adult as well as aged rats and were incubated with for 4 h with collected particles at concentrations of 25-1000 pg per cell. Free radical generation by AM was measured with and without stimulation of AM with phorbol myristate acetate (PMA). There were dose-dependent decreases in macrophage production of superoxide radicals as measured by the chemiluminescent method. Coarse particles were more toxic than were fine particles. Suppression of free radical production did not seem to be related to the presence of bioavailable iron or to endotoxin associated with the particles. There were no statistically significant differences related to age or strain of the rats tested. We conclude that in vitro tests using AM is a useful and rapid method for delineating differences in toxicity between environmental samples of size fractionated ambient particles. PMID:12523957

  3. Coarse-grained description of cosmic structure from Szekeres models

    NASA Astrophysics Data System (ADS)

    Sussman, Roberto A.; Delgado Gaspar, I.; Hidalgo, Juan Carlos

    2016-03-01

    We show that the full dynamical freedom of the well known Szekeres models allows for the description of elaborated 3-dimensional networks of cold dark matter structures (over-densities and/or density voids) undergoing ``pancake'' collapse. By reducing Einstein's field equations to a set of evolution equations, which themselves reduce in the linear limit to evolution equations for linear perturbations, we determine the dynamics of such structures, with the spatial comoving location of each structure uniquely specified by standard early Universe initial conditions. By means of a representative example we examine in detail the density contrast, the Hubble flow and peculiar velocities of structures that evolved, from linear initial data at the last scattering surface, to fully non-linear 10-20 Mpc scale configurations today. To motivate further research, we provide a qualitative discussion on the connection of Szekeres models with linear perturbations and the pancake collapse of the Zeldovich approximation. This type of structure modelling provides a coarse grained—but fully relativistic non-linear and non-perturbative —description of evolving large scale cosmic structures before their virialisation, and as such it has an enormous potential for applications in cosmological research.

  4. On a Primal Coarse Projective Integration Method for Multiscale Simulations

    NASA Astrophysics Data System (ADS)

    Skoric, Milos; Ishiguro, Seiji; Maluckov, Sandra

    2006-10-01

    A novel simulation framework called Equation-Free Projective Integration (EFPI) was recently applied to nonlinear plasmas by M. Shay [1] to study propagation and steepening of a 1D ion sound (IS) with a PIC code as a microscopic simulator. To initialize, macro plasma variables are ``lifted'' to a fine micro-representation. PIC code is stepped forward for a short time, and the results are ``restricted'' or smoothed back to macro space. By extrapolation, time derivative is estimated and projected with a large step; the process is repeated. As a simple alternative, we propose a sort of a primal EPFI scheme to simulate nonlinear plasmas including kinetic effects. The micro-simulator is a standard 1D ES PIC code. Ions are assumed inherently coarse grained or ``smoothed'' and tracked to extrapolate in time and project. The potential is averaged over the electron plasma period to extrapolate and project. No adiabatic approximation for electrons is used [2], instead, self-consistently find the non-uniform electron distribution from the Poisson equation and ion density. Preliminary results for nonlinear IS as well as for the IS double layer paradigm are presented and some limitations on the EPFI discussed. [1] M. Shay, J. Drake, W. Dorland, J. of Comp. Phys (APS DPP 2005) [2] G. Stanchev, A. Maluckov et al., in EPS Fusion (Rome, 2006).

  5. Coarse-Grained Model for Water Involving a Virtual Site.

    PubMed

    Deng, Mingsen; Shen, Hujun

    2016-02-01

    In this work, we propose a new coarse-grained (CG) model for water by combining the features of two popular CG water models (BMW and MARTINI models) as well as by adopting a topology similar to that of the TIP4P water model. In this CG model, a CG unit, representing four real water molecules, consists of a virtual site, two positively charged particles, and a van der Waals (vdW) interaction center. Distance constraint is applied to the bonds formed between the vdW interaction center and the positively charged particles. The virtual site, which carries a negative charge, is determined by the locations of the two positively charged particles and the vdW interaction center. For the new CG model of water, we coined the name "CAVS" (charge is attached to a virtual site) due to the involvment of the virtual site. After being tested in molecular dynamic (MD) simulations of bulk water at various time steps, under different temperatures and in different salt (NaCl) concentrations, the CAVS model offers encouraging predictions for some bulk properties of water (such as density, dielectric constant, etc.) when compared to experimental ones. PMID:26747089

  6. Nanodomained Nickel Unite Nanocrystal Strength with Coarse-Grain Ductility

    NASA Astrophysics Data System (ADS)

    Wu, Xiaolei; Yuan, Fuping; Yang, Muxin; Jiang, Ping; Zhang, Chuanxin; Chen, Liu; Wei, Yueguang; Ma, Evan

    2015-06-01

    Conventional metals are routinely hardened by grain refinement or by cold working with the expense of their ductility. Recent nanostructuring strategies have attempted to evade this strength versus ductility trade-off, but the paradox persists. It has never been possible to combine the strength reachable in nanocrystalline metals with the large uniform tensile elongation characteristic of coarse-grained metals. Here a defect engineering strategy on the nanoscale is architected to approach this ultimate combination. For Nickel, spread-out nanoscale domains (average 7 nm in diameter) were produced during electrodeposition, occupying only ~2.4% of the total volume. Yet the resulting Ni achieves a yield strength approaching 1.3 GPa, on par with the strength for nanocrystalline Ni with uniform grains. Simultaneously, the material exhibits a uniform elongation as large as ~30%, at the same level of ductile face-centered-cubic metals. Electron microscopy observations and molecular dynamics simulations demonstrate that the nanoscale domains effectively block dislocations, akin to the role of precipitates for Orowan hardening. In the meantime, the abundant domain boundaries provide dislocation sources and trapping sites of running dislocations for dislocation multiplication, and the ample space in the grain interior allows dislocation storage; a pronounced strain-hardening rate is therefore sustained to enable large uniform elongation.

  7. Cellulose microfibril formation within a coarse grained molecular dynamics

    NASA Astrophysics Data System (ADS)

    Nili, Abdolmadjid; Shklyaev, Oleg; Crespi, Vincent; Zhao, Zhen; Zhong, Linghao; CLSF Collaboration

    2014-03-01

    Cellulose in biomass is mostly in the form of crystalline microfibrils composed of 18 to 36 parallel chains of polymerized glucose monomers. A single chain is produced by cellular machinery (CesA) located on the preliminary cell wall membrane. Information about the nucleation stage can address important questions about intermediate region between cell wall and the fully formed crystalline microfibrils. Very little is known about the transition from isolated chains to protofibrils up to a full microfibril, in contrast to a large body of studies on both CesA and the final crystalline microfibril. In addition to major experimental challenges in studying this transient regime, the length and time scales of microfibril nucleation are inaccessible to atomistic molecular dynamics. We have developed a novel coarse grained model for cellulose microfibrils which accounts for anisotropic interchain interactions. The model allows us to study nucleation, kinetics, and growth of cellulose chains/protofibrils/microfibrils. This work is supported by the US Department of Energy, Office of Basic Energy Sciences as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center.

  8. STUDY ON THE EVALUATION FOR DRYING SHRINKAGE PROPERTIES OF COARSE AGGREGATE

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi; Katahira, Hiroshi; Watanabe, Hiroshi

    Drying shrinkage of coarse aggregate is one of principal indexes to evaluate drying shrinkage of concrete. However, testing of drying shrinkage of a coarse aggregate particle has not been commonly conducted. We carried out measurement of drying shrinkage of a coarse aggregate particle using wire strain gauges and discussed the variation in the measurement. We found that variation among particles in drying shrinkage strain of coarse aggregate is intrinsic and much bigger than test result due to the simplified unidirectional strain measurement under the assumption of ignoring multi-axial strain field. Strong relationship between the mean value of drying shrinkage strain of coarse aggregate and drying shrinkage strain of concrete prism specimens was observed, which indicates that measured drying shrinkage strain of aggregate particles intrinsically contains large variation, however the mean value is an effective index to estimate drying shrinkage of concrete.

  9. Specialty optical fibers: revisited

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-10-01

    The paper contains description of chosen aspects of analysis and design of tailored optical fibers. By specialty optical fibers we understand here the fibers which have complex construction and which serve for the functional processing of optical signal rather than long distance transmission. Thus, they are called also instrumentation optical fibers. The following issues are considered: transmission properties, transformation of optical signal, fiber characteristics, fiber susceptibility to external reactions. The technology of tailored optical fibers offers a wider choice of the design tools for the fiber itself, and then various devices made from these fiber, than classical technology of communication optical fibers. The consequence is different fiber properties, nonstandard dimensions and different metrological problems. The price to be paid for wider design possibilities are bigger optical losses of these fibers and weaker mechanical properties, and worse chemical stability. These fibers find their applications outside the field of telecommunications. The applications of instrumentation optical fibers combine other techniques apart from the photonics ones like: electronic, chemical and mechatronic.

  10. Changing Chromatin Fiber Conformation by Nucleosome Repositioning

    PubMed Central

    Müller, Oliver; Kepper, Nick; Schöpflin, Robert; Ettig, Ramona; Rippe, Karsten; Wedemann, Gero

    2014-01-01

    Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ∼10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell. PMID:25418099

  11. RELATIONSHIP OF FORAGE FIBER CONTENT AND MECHANICAL STRENGTH TO PARTICLE SIZE REDUCTION DURING INGESTIVE MASTICATION BY STEERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forage fiber content and mechanical toughness have been proposed as factors that limit particle size reduction and feed intake of ruminants. Three coarsely chopped forages were available ad lib to six mature rumen- fistulated steers. The oaten and mature alfalfa hays were similar in NDF concentratio...

  12. Modal dispersion, pulse broadening and maximum transmission rate in GRIN optical fibers encompass a central dip in the core index profile

    NASA Astrophysics Data System (ADS)

    El-Diasty, Fouad; El-Hennawi, H. A.; El-Ghandoor, H.; Soliman, Mona A.

    2013-12-01

    Intermodal and intramodal dispersions signify one of the problems in graded-index multi-mode optical fibers (GRIN) used for LAN communication systems and for sensing applications. A central index dip (depression) in the profile of core refractive-index may occur due to the CVD fabrication processes. The index dip may also be intentionally designed to broaden the fundamental mode field profile toward a plateau-like distribution, which have advantages for fiber-source connections, fiber amplifiers and self-imaging applications. Effect of core central index dip on the propagation parameters of GRIN fiber, such as intermodal dispersion, intramodal dispersion and root-mean-square broadening, is investigated. The conventional methods usually study optical signal propagation in optical fiber in terms of mode characteristics and the number of modes, but in this work multiple-beam Fizeau interferometry is proposed as an inductive but alternative methodology to afford a radial approach to determine dispersion, pulse broadening and maximum transmission rate in GRIN optical fiber having a central index dip.

  13. TCF-MMF-TCF fiber structure based interferometer for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Fu, Haiwei; Li, Huidong; Shao, Min; Zhao, Na; Liu, Yinggang; Li, Yan; Yan, Xu; Liu, Qinpeng

    2015-06-01

    A liquid refractive index (RI) sensor based on in-fiber Mach-Zehnder interferometer (MZI) by sandwiching multi-mode fiber (MMF) between two short sections of thinned core fiber (TCF) is proposed in this paper. The first section of TCF excites the high-order modes and the second section TCF couples the core mode and high-order modes into lead-out SMF to form intermodal interference. The sensor with MMF length of 20 mm and TCFs length of 1 mm was fabricated. The transmission spectrum variation of the sensor with respect to surrounding refractive index (SRI) has been studied by experiment. The results show that the central wavelength of dips/peaks shifting had a good linearity with SRI. The RI sensitivity of the sensor is 130.00 nm/RIU over the RI range of 1.3333-1.4182. The RI sensitivity increase to 433.60 nm/RIU after etching the MMF cladding of the sensor. The sensor keeps low dependence on temperature before and after etching.

  14. Coarse-pored ceramic supports for pyrolysis catalysts

    SciTech Connect

    Potapova, L.L.; Cherches, B.Kh.; Egiazarov, Yu.G.

    1988-03-20

    One promising trend in improvement of pyrolysis of hydrocarbon feedstocks is the use of heterogeneous catalysts in the process. The industrial use of highly effective catalysts would result in substantially increased product yields and in decrease of energy consumption in comparison with the requirements of drastic thermal processes. The aims of the present work were to obtain a mechanically strong coarse-pored ceramic support for pyrolysis catalysts and to study the influence of various factors on formation of its structure. The support material was made from an industrial ceramic mass of the following composition (%): koalin 30, plastic refractory clay 21, quartz 32, pegmatite 17. Various additives were used for formation of a porous structure: noncombustible highly porous (pumice, claydite), partially combustible (shungite), and completely combustible (SKT) activated carbon). The authors results show that 15 mass % of SKT carbon (particle size 0.1-0.2 mm) and 1-2 mass % of sodium trimetaphosphate should be added to the ceramic mass. The crushing strength of the resultant support samples reaches 550-630 kg/cm/sup 2/, with 34-35% porosity. Under the optimal conditions of pyrolysis of a straight-run gasoline fraction the catalyst obtained by deposition of 12 mass % of In/sub 2/O/sub 3/ and 4% K/sub 2/O on the synthesized support gives a yield of 39-41 mass % of ethylene and 61-62 mass % of unsaturated C/sub 2/-C/sub 4/ hydrocarbons, with 88-90 mass % gasification.

  15. Coarse-grained DNA modeling: Hybridization and ionic effects

    NASA Astrophysics Data System (ADS)

    Hinckley, Daniel M.

    Deoxyribonucleic acid (DNA) is a biopolymer of enormous significance in living systems. The utility of DNA in such systems is derived from the programmable nature of DNA and its unique mechanical properties. Recently, material scientists have harnessed these properties in order to create systems that spontaneous self-assemble on the nanoscale. Both biologists and material scientists are hindered by an incomplete understanding of the physical interactions that together govern DNA's behavior. Computer simulations, especially those at the coarse-grained (CG) level, can potentially complete this understanding by resolving details indiscernible with current experimental techniques. In this thesis, we advance the state-of-the-art of DNA CG simulations by first reviewing the relevant theory and the evolution of CG DNA models since their inception. Then we present 3SPN.2, an improved CG model for DNA that should provide new insights into biological and nanotechnological systems which incorporate DNA. We perform forward flux sampling simulations in order to examine the effect of sequence, oligomer length, and ionic strength on DNA oligomer hybridization. Due to the limitations inherent in continuum treatments of electrostatic interactions in biological systems, we generate a CG model of biological ions for use with 3SPN.2 and other CG models. Lastly, we illustrate the potential of 3SPN.2 and CG ions by using the models in simulations of viral capsid packaging experiments. The models and results described in this thesis will be useful in future modeling efforts that seek to identify the fundamental physics that govern behavior such as nucleosome positioning, DNA hybridization, and DNA nanoassembly.

  16. Impact Cratering on Small Asteroids and into Coarse Regoliths

    NASA Astrophysics Data System (ADS)

    Durda, D. D.

    2012-12-01

    Impact cratering on the smallest asteroids can result in crater and other associated impact scar morphologies that we do not usually see exhibited in imagery of larger main-belt asteroids and airless moons. The NEAR-Shoemaker spacecraft at (433) Eros and the Hayabusa spacecraft at (25143) Itokawa showed the surfaces of these near-Earth asteroids to be relatively depleted in smaller craters. 'Armoring' of the surface by the presence of boulders larger than the size of the projectiles needed to form the missing craters has been proposed as one possible contributing factor in the observed depletion. Indeed, a number of bright spots observed on the surfaces of some boulders on Itokawa appear to have a size distribution consistent with small projectiles and have been interpreted as impact scars - an extreme end member example of the armoring hypothesis. Several research teams have conducted a number of laboratory impact experiments focusing on the range of morphological expression of craters formed in coarse regoliths where the impacting projectiles are comparable in size to the regolith grains. The results of these experiments suggest that craters become less well defined and more irregular in shape as soon as the regolith target grains are larger than the projectiles. I will give an overview of the range of visual appearance of impact features on small asteroids, review the results of some previous laboratory experiments relevant to the armoring hypothesis, and present results of our own new impact experiments conducted at the Ames Vertical Gun Range to examine the range of morphological expression of impacts onto blocks on and in the regolith of small airless bodies.

  17. Microcanonical thermostatistics of coarse-grained proteins with amyloidogenic propensity

    NASA Astrophysics Data System (ADS)

    Frigori, Rafael B.; Rizzi, Leandro G.; Alves, Nelson A.

    2013-01-01

    The formation of fibrillar aggregates seems to be a common characteristic of polypeptide chains, although the observation of these aggregates may depend on appropriate experimental conditions. Partially folded intermediates seem to have an important role in the generation of protein aggregates, and a mechanism for this fibril formation considers that these intermediates also correspond to metastable states with respect to the fibrillar ones. Here, using a coarse-grained (CG) off-lattice model, we carry out a comparative analysis of the thermodynamic aspects characterizing the folding transition with respect to the propensity for aggregation of four different systems: two isoforms of the amyloid β-protein, the Src SH3 domain, and the human prion proteins (hPrP). Microcanonical analysis of the data obtained from replica exchange method is conducted to evaluate the free-energy barrier and latent heat in these models. The simulations of the amyloid β isoforms and Src SH3 domain indicated that the folding process described by this CG model is related to a negative specific heat, a phenomenon that can only be verified in the microcanonical ensemble in first-order phase transitions. The CG simulation of the hPrP heteropolymer yielded a continuous folding transition. The absence of a free-energy barrier and latent heat favors the presence of partially unfolded conformations, and in this context, this thermodynamic aspect could explain the reason why the hPrP heteropolymer is more aggregation-prone than the other heteropolymers considered in this study. We introduced the hydrophobic radius of gyration as an order parameter and found that it can be used to obtain reliable information about the hydrophobic packing and the transition temperatures in the folding process.

  18. Microcanonical thermostatistics of coarse-grained proteins with amyloidogenic propensity.

    PubMed

    Frigori, Rafael B; Rizzi, Leandro G; Alves, Nelson A

    2013-01-01

    The formation of fibrillar aggregates seems to be a common characteristic of polypeptide chains, although the observation of these aggregates may depend on appropriate experimental conditions. Partially folded intermediates seem to have an important role in the generation of protein aggregates, and a mechanism for this fibril formation considers that these intermediates also correspond to metastable states with respect to the fibrillar ones. Here, using a coarse-grained (CG) off-lattice model, we carry out a comparative analysis of the thermodynamic aspects characterizing the folding transition with respect to the propensity for aggregation of four different systems: two isoforms of the amyloid β-protein, the Src SH3 domain, and the human prion proteins (hPrP). Microcanonical analysis of the data obtained from replica exchange method is conducted to evaluate the free-energy barrier and latent heat in these models. The simulations of the amyloid β isoforms and Src SH3 domain indicated that the folding process described by this CG model is related to a negative specific heat, a phenomenon that can only be verified in the microcanonical ensemble in first-order phase transitions. The CG simulation of the hPrP heteropolymer yielded a continuous folding transition. The absence of a free-energy barrier and latent heat favors the presence of partially unfolded conformations, and in this context, this thermodynamic aspect could explain the reason why the hPrP heteropolymer is more aggregation-prone than the other heteropolymers considered in this study. We introduced the hydrophobic radius of gyration as an order parameter and found that it can be used to obtain reliable information about the hydrophobic packing and the transition temperatures in the folding process. PMID:23298062

  19. Development and application of coarse-grained models for lipids

    NASA Astrophysics Data System (ADS)

    Cui, Qiang

    2013-03-01

    I'll discuss a number of topics that represent our efforts in developing reliable molecular models for describing chemical and physical processes involving biomembranes. This is an exciting yet challenging research area because of the multiple length and time scales that are present in the relevant problems. Accordingly, we attempt to (1) understand the value and limitation of popular coarse-grained (CG) models for lipid membranes with either a particle or continuum representation; (2) develop new CG models that are appropriate for the particular problem of interest. As specific examples, I'll discuss (1) a comparison of atomistic, MARTINI (a particle based CG model) and continuum descriptions of a membrane fusion pore; (2) the development of a modified MARTINI model (BMW-MARTINI) that features a reliable description of membrane/water interfacial electrostatics and its application to cell-penetration peptides and membrane-bending proteins. Motivated specifically by the recent studies of Wong and co-workers, we compare the self-assembly behaviors of lipids with cationic peptides that include either Arg residues or a combination of Lys and hydrophobic residues; in particular, we attempt to reveal factors that stabilize the cubic ``double diamond'' Pn3m phase over the inverted hexagonal HII phase. For example, to explicitly test the importance of the bidentate hydrogen-bonding capability of Arg to the stabilization of negative Gaussian curvature, we also compare results using variants of the BMW-MARTINI model that treat the side chain of Arg with different levels of details. Collectively, the results suggest that both the bidentate feature of Arg and the overall electrostatic properties of cationic peptides are important to the self-assembly behavior of these peptides with lipids. The results are expected to have general implications to the mechanism of peptides and proteins that stimulate pore formation in biomembranes. Work in collaboration with Zhe Wu, Leili Zhang

  20. Critical parameters for coarse coal underground slurry haulage systems

    SciTech Connect

    Maynard, D.P.

    1981-02-15

    This report describes the basic parameters which directly influence the behavior of a coal slurry pipeline transportation system and determine the limitations of the system performance. The purpose of this technology assessment is to provide an identification and understanding of the critical factors which must be given consideration in the design and evaluation of such a slurry haulage system intended for use in an underground coal mine. The slurry haulage system will be utilized to satisfy the transportation requirements of conveying, in a pipeline, the coal mined by a continuous mining machine to a storage location near the mine entrance or to a coal preparation plant located on the surface. Coal-water slurries, particularly those consisting of homogeneous suspensions of small particles, frequently behave as non-Newtonian, Bingham-plastic fluids. For successful operation, slurry transport systems should be designed to operate in the turbulent flow regime and at a flow rate at least 30% greater than the deposition velocity. The deposition velocity is defined as the slurry flow rate at which the solid particles tend to settle in the pipe. Due to the importance of accurately determining the deposition velocity and the uncertainties of current methods for predicting the deposition velocity of coarse particle slurries, it is recommended that experimental efforts be performed as a part of the system design. The capacity of the haulage system should be compatible with the mine's projected coal output in order to avoid operational delays and the necessity for in-mine coal storage. The slurry pumps must generate sufficient discharge pressure to overcome the resultant friction losses in horizontal and vertical pipe sections and to satisfy the slurry hoisting requirements.

  1. Ceramic fiber reinforced filter

    DOEpatents

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  2. Fiber optics in adverse environments

    SciTech Connect

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations.

  3. Fiber-matrix integrity, micromorphology and flexural strength of glass fiber posts: Evaluation of the impact of rotary instruments.

    PubMed

    Pereira, Gabriel Kalil Rocha; Lançanova, Mateus; Wandscher, Vinicius Felipe; Kaizer, Osvaldo Bazzan; Limberger, Inácio; Özcan, Mutlu; Valandro, Luiz Felipe

    2015-08-01

    Several rotary instruments have been daily employed on clinic to promote cut aiming to adjust the length of fiber posts to the radicular conduct, but there is no information on the literature about the effects of the different rotary instruments and its impact on the micromorphology of surface and mechanical properties of the glass fiber post. This study aimed the impact of rotary instruments upon fiber-matrix integrity, micromorphology and flexural-strength of glass-fiber posts (GFP). GFP (N=110) were divided into 5 groups: Ctrl: as-received posts, DBc: coarse diamond-bur, DBff: extra-fine diamond-bur, CB: carbide-bur, DD: diamond-disc. Cutting procedures were performed under abundant irrigation. Posts exposed to rotary instruments were then subjected to 2-point inclined loading test (compression 45°) (n=10/group) and 3-point flexural-strength test (n=10/group). Fiber-matrix integrity and micromorphology at the cut surface were analyzed using a SEM (n=2/group). Cutting procedures did not significantly affect the 2-point (51.7±4.3-56.7±5.1 MPa) (p=0.0233) and 3-point flexural-strength (671.5±35.3-709.1±33.1 MPa) (p=0.0968) of the posts (One-way ANOVA and Tukey׳s test). Fiber detachment was observed only at the end point of the cut at the margins of the post. Cut surfaces of the CB group were smoother than those of the other groups. After 3-point flexural strength test, fiber-matrix separation was evident at the tensile side of the post. Rotary instruments tested with simultaneous water-cooling did not affect the resistance of the tested fiber posts but caused disintegration of the fibers from the matrix at the end of the cut, located at the margins. PMID:25955561

  4. STOCK: Structure mapper and online coarse-graining kit for molecular simulations

    SciTech Connect

    Bevc, Staš; Junghans, Christoph; Praprotnik, Matej

    2015-03-15

    We present a web toolkit STructure mapper and Online Coarse-graining Kit for setting up coarse-grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, e.g. all-atom, to low, i.e. coarse-grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse-graining packages, e.g. VOTCA and DL_CGMAP. Our second tool generates effective potentials for coarse-grained simulations preserving the structural properties, e.g. radial distribution functions, of the underlying higher resolution model. The required distribution functions can be provided by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse-grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse-graining web toolkit is available at http://stock.cmm.ki.si.

  5. STOCK: Structure mapper and online coarse-graining kit for molecular simulations

    DOE PAGESBeta

    Bevc, Staš; Junghans, Christoph; Praprotnik, Matej

    2015-03-15

    We present a web toolkit STructure mapper and Online Coarse-graining Kit for setting up coarse-grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, e.g. all-atom, to low, i.e. coarse-grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse-graining packages, e.g. VOTCA and DL_CGMAP. Our second tool generates effective potentials for coarse-grained simulations preserving the structural properties, e.g. radial distribution functions, of the underlying higher resolution model. The required distribution functions can be providedmore » by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse-grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse-graining web toolkit is available at http://stock.cmm.ki.si.« less

  6. First-principle approach to rescale the dynamics of simulated coarse-grained macromolecular liquids

    NASA Astrophysics Data System (ADS)

    Lyubimov, I.; Guenza, M. G.

    2011-09-01

    We present a detailed derivation and testing of our approach to rescale the dynamics of mesoscale simulations of coarse-grained polymer melts (I. Y. Lyubimov, J. McCarty, A. Clark, and M. G. Guenza, J. Chem. Phys.JCPSA60021-960610.1063/1.3450301 132, 224903 (2010)). Starting from the first-principle Liouville equation and applying the Mori-Zwanzig projection operator technique, we derive the generalized Langevin equations (GLEs) for the coarse-grained representations of the liquid. The chosen slow variables in the projection operators define the length scale of coarse graining. Each polymer is represented at two levels of coarse graining: monomeric as a bead-and-spring model and molecular as a soft colloid. In the long-time regime where the center-of-mass follows Brownian motion and the internal dynamics is completely relaxed, the two descriptions must be equivalent. By enforcing this formal relation we derive from the GLEs the analytical rescaling factors to be applied to dynamical data in the coarse-grained representation to recover the monomeric description. Change in entropy and change in friction are the two corrections to be accounted for to compensate the effects of coarse graining on the polymer dynamics. The solution of the memory functions in the coarse-grained representations provides the dynamical rescaling of the friction coefficient. The calculation of the internal degrees of freedom provides the correction of the change in entropy due to coarse graining. The resulting rescaling formalism is a function of the coarse-grained model and thermodynamic parameters of the system simulated. The rescaled dynamics obtained from mesoscale simulations of polyethylene, represented as soft-colloidal particles, by applying our rescaling approach shows a good agreement with data of translational diffusion measured experimentally and from simulations. The proposed method is used to predict self-diffusion coefficients of new polyethylene samples.

  7. Fiber optic chemical sensors

    NASA Astrophysics Data System (ADS)

    Jung, Chuck C.; McCrae, David A.; Saaski, Elric W.

    1998-09-01

    This paper provides a broad overview of the field of fiber optic chemical sensors. Several different types of fiber optic sensors and probes are described, and references are cited for each category discussed.

  8. Soluble vs. insoluble fiber

    MedlinePlus

    ... soluble and insoluble. Both are important for health, digestion, and preventing diseases. Soluble fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  9. Omnidirectional fiber optic tiltmeter

    DOEpatents

    Benjamin, B.C.; Miller, H.M.

    1983-06-30

    A tiltmeter is provided which is useful in detecting very small movements such as earth tides. The device comprises a single optical fiber, and an associated weight affixed thereto, suspended from a support to form a pendulum. A light source, e.g., a light emitting diode, mounted on the support transmits light through the optical fiber to a group of further optical fibers located adjacent to but spaced from the free end of the single optical fiber so that displacement of the single optical fiber with respect to the group will result in a change in the amount of light received by the individual optical fibers of the group. Photodetectors individually connectd to the fibers produce corresponding electrical outputs which are differentially compared and processed to produce a resultant continuous analog output representative of the amount and direction of displacement of the single optical fiber.

  10. Soluble vs. insoluble fiber

    MedlinePlus

    ... diseases. Soluble fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in oat bran, barley, nuts, seeds, beans, lentils, peas, and some fruits and vegetables. It is also found in psyllium, ...

  11. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  12. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  13. Simulating Fiber Ordering and Aggregation In Shear Flow Using Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Stimatze, Justin T.

    We have developed a mesoscale simulation of fiber aggregation in shear flow using LAMMPS and its implementation of dissipative particle dynamics. Understanding fiber aggregation in shear flow and flow-induced microstructural fiber networks is critical to our interest in high-performance composite materials. Dissipative particle dynamics enables the consideration of hydrodynamic interactions between fibers through the coarse-grained simulation of the matrix fluid. Correctly simulating hydrodynamic interactions and accounting for fluid forces on the microstructure is required to correctly model the shear-induced aggregation process. We are able to determine stresses, viscosity, and fiber forces while simulating the evolution of a model fiber system undergoing shear flow. Fiber-fiber contact interactions are approximated by combinations of common pairwise forces, allowing the exploration of interaction-influenced fiber behaviors such as aggregation and bundling. We are then able to quantify aggregate structure and effective volume fraction for a range of relevant system and fiber-fiber interaction parameters. Our simulations have demonstrated several aggregate types dependent on system parameters such as shear rate, short-range attractive forces, and a resistance to relative rotation while in contact. A resistance to relative rotation at fiber-fiber contact points has been found to strongly contribute to an increased angle between neighboring aggregated fibers and therefore an increase in average aggregate volume fraction. This increase in aggregate volume fraction is strongly correlated with a significant enhancement of system viscosity, leading us to hypothesize that controlling the resistance to relative rotation during manufacturing processes is important when optimizing for desired composite material characteristics.

  14. Fiber pulling apparatus modification

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Workman, Gary L.

    1992-01-01

    A reduced gravity fiber pulling apparatus (FPA) was constructed in order to study the effects of gravity on glass fiber formation. The apparatus was specifically designed and built for use on NASA's KC-135 aircraft. Four flights have been completed to date during which E-glass fiber was successfully produced in simulated zero, high, and lunar gravity environments. In addition simulated lunar soil samples were tested for their fiber producing properties using the FPA.

  15. Majorization approach to entropic uncertainty relations for coarse-grained observables

    NASA Astrophysics Data System (ADS)

    Rudnicki, Łukasz

    2015-03-01

    We improve the entropic uncertainty relations for position and momentum coarse-grained measurements. We derive the continuous, coarse-grained counterparts of the discrete uncertainty relations based on the concept of majorization. The entropic inequalities obtained involve two Rényi entropies of the same order, and thus go beyond the standard scenario with conjugated parameters. In a special case describing the sum of two Shannon entropies, the majorization-based bounds significantly outperform the currently known results in the regime of larger coarse graining, and might thus be useful for entanglement detection in continuous variables.

  16. Coarse fragmental material of the littoral zones on the Murmansk and Carelian coasts

    NASA Astrophysics Data System (ADS)

    Mityaev, M. V.; Gerasimova, M. V.

    2010-04-01

    A three-year study of the abrasion of coarse fragmental material on the Murmansk coast has been carried out. According to the researchers, the average rate of the abrasion of the coarse-fragmental material of granitoid composition on the Murmansk coast has been determined. It was revealed that the rate of the destruction of the blocks increases from the lower littoral zone to the upper one. The estimation of the quantity of sedimentary material coming to the sedimentation basin as a result of the abrasion of coarse-fragmental material has been carried out.

  17. Fiber optic coupled optical sensor

    DOEpatents

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  18. Advanced Engineering Fibers.

    ERIC Educational Resources Information Center

    Edie, Dan D.; Dunham, Michael G.

    1987-01-01

    Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…

  19. Oxynitride glass fibers

    NASA Technical Reports Server (NTRS)

    Patel, Parimal J.; Messier, Donald R.; Rich, R. E.

    1991-01-01

    Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.

  20. Mineral Fiber Toxicology

    EPA Science Inventory

    The chemical and physical properties of different forms of mineral fibers impact biopersistence and pathology in the lung. Fiber chemistry, length, aspect ratio, surface area and dose are critical factors determining mineral fiber-associated health effects including cancer and as...

  1. Linearly polarized fiber amplifier

    DOEpatents

    Kliner, Dahv A.; Koplow, Jeffery P.

    2004-11-30

    Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.

  2. The Fiber Optic Connection.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  3. Mutual injection-locking of two double-clad fibers for coherent beam combining with corner cube

    NASA Astrophysics Data System (ADS)

    Zheng, Rui; Xu, Lixin; Liu, Yang; Gao, Kun; Cheng, Yong; Ming, Hai

    2009-11-01

    We experimentally demonstrate coherent beam combination of two double-clad fiber lasers using mutual injectionlocking in an external cavity coupling structure. The configuration employs a corner cube as a mutual injection component to couple the two lasers. A beam splitter acts as the output coupler and far field intensity has been observed at the lens focus plane. We observe interferential fringes with the contrast ratio of 0.5, and a combination efficiency of 80% is achieved. The total output power exceeds 11 W. We present simulative discussion here on the influence of multitransversal modes of element beam. The multi-mode operation degrades the quality of the output beam of main peak power, fringe contrast ratio, and other parameters. The configuration has the potential to scale to more lasers without much structural modification.

  4. Preferential Transport of Coarse Sediment in Steep Channels

    NASA Astrophysics Data System (ADS)

    Moody, J. A.

    2002-12-01

    Wildfires can change a source-limited system to a transport-limited system especially in steep mountainous terrain where the erosion threshold has been lowered by a wildfire. Such a situation occurred in the Buffalo and Spring Creek watersheds after the 1996 Buffalo Creek Fire, when 1 to 3 m of sediment was deposited in two relatively steep main channels (channel slope equal to 0.02 and 0.04 respectively) after an intense rainstorm of about 110 mm/hour. The bed material was a mixture of coarse grain sizes in both channels. The median size class in Buffalo Creek was 2-4 mm and in Spring Creek it was 4-8 mm. Bedload transport samples were collected in the field using a US BLH-84 sampler for discharge ranging from 0.0036 to 5.2 m3/s. The particle-size distributions for the bedload samples were analyzed to investigate sediment mobility. For each size class, a ratio was calculated equal to the percent of sediment transported divided by the percent of sediment available for transport. The percent available for transport was determined by recalculating the particle-size distribution of the bed material by excluding those sizes that did not move. The average ratio for the median-size class was 1.00 (13 samples) for Buffalo Creek and 0.94 (12 samples) for Spring Creek. In the Buffalo Creek channel, the average ratio for sizes larger than the median size (greater than 2-4 mm) was less than 1.00. Whereas in the Spring Creek channel, the data indicate a preferential transport of sizes larger than the median size with the ratio ranging from 0.86 to 2.22 and averaging 1.42 for the 8-16 mm size class and from 0.37 to 3.86 and averaging 1.28 for the 16-32 mm size class. Possible causes for the difference between Buffalo and Spring Creeks are: 1) the smaller value of the relative roughness (particle diameter/flow depth) in Buffalo Creek, 2) the less steep bed slope in Buffalo Creek, and 3) the difference in the sediment-size distribution

  5. Fiber optic monitoring device

    DOEpatents

    Samborsky, J.K.

    1993-10-05

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

  6. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  7. Multimaterial Acoustic Fibers

    NASA Astrophysics Data System (ADS)

    Chocat, Noemie

    The emergence of multimaterial fibers that combine a multiplicity of solid materials with disparate electrical, optical, and mechanical properties into a single fiber presents new opportunities for extending fiber applications well beyond optical transmission. Fiber reflectors, thermal detectors, photodetectors, chemical sensors, surface-emitting fiber lasers, fiber diodes, and other functional fiber devices have been demonstrated with this approach. Yet, throughout this development and indeed the development of fibers in general, a key premise has remained unchanged : that fibers are essentially static devices incapable of controllably changing their properties at high frequencies. Unique opportunities would arise if a rapid, electrically-driven mechanism for changing fiber properties existed. A wide spectrum of hitherto passive fiber devices could at once become active with applications spanning electronics, mechanics, acoustics, and optics, with the benefits of large surface-area, structural robustness, and mechanical flexibility. This thesis addresses the challenges and opportunities associated with the realization of electromechanical transduction in fibers through the integration of internal piezoelectric and electrostrictive domains. The fundamental challenges related to the fabrication of piezoelectric devices in fiber form are analyzed from a materials perspective, and candidate materials and geometries are selected that are compatible with the thermal drawing process. The first realization of a thermally drawn piezoelectric fiber device is reported and its piezoelectric response is established over a wide range of frequencies. The acoustic properties of piezoelectric fiber devices are characterized and related to their mechanical and geometric properties. Collective effects in multi-fiber constructs are discussed and demonstrated by the realization of a linear phased array of piezoelectric fibers capable of acoustic beam steering. High strain actuation

  8. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  9. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  10. Fiber optic monitoring device

    SciTech Connect

    Samborsky, J.K.

    1992-12-31

    This invention is comprised of a device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  11. Fiber coating method

    DOEpatents

    Corman, Gregory Scot

    2001-01-01

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

  12. Fiber coating method

    DOEpatents

    Corman, Gregory Scot

    2003-04-15

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

  13. New development in optical fibers for data center applications

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Shubochkin, Roman; Zhu, Benyuan

    2015-01-01

    VCSEL-multimode optical fiber based links is the most successful optical technology in Data Centers. Laser-optimized multimode optical fibers, OM3 and OM4, have been the primary choice of physical media for 10 G serial, 4 x 10 G parallel, 10 x 10 G parallel, and 4 x 25 G parallel optical solutions in IEEE 802.3 standards. As the transition of high-end servers from 10 Gb/s to 40 Gb/s is driving the aggregation of speeds to 40 Gb/s now, and to 100 Gb/s and 400 Gb/s in near future, industry experts are coming together in IEEE 802.3bs 400 Gb/s study group and preliminary discussion of Terabit transmission for datacom applications has also been commenced. To meet the requirement of speed, capacity, density, power consumption and cost for next generation datacom applications, optical fiber design concepts beyond the standard OM3 and OM4 MMFs have a revived research and developmental interest, for example, wide band multimode optical fiber using multiple dopants for coarse wavelength division multiplexing; multicore multimode optical fiber using plural multimode cores in a single fiber strand to improve spatial density; and perhaps 50 Gb/s per lane and few mode fiber in spatial division multiplexing for ultimate capacity increase in far future. This talk reviews the multitude of fiber optic media being developed in the industry to address the upcoming challenges of datacom growth. We conclude that multimode transmission using low cost VCSEL technology will continue to be a viable solution for datacom applications.

  14. Comparison of gene expression profiles induced by coarse, fine, and ultrafile particulate matter

    EPA Science Inventory

    Coarse, fine, and ultrafine particulate matter (PM) fractions possess different physical properties and chemical compositions and may produce different adverse health effects. Studies were undertaken to determine whether or not gene expression patterns may be used to discriminate...

  15. Coarse-grained description of polymer blends as chains of interacting soft particles

    NASA Astrophysics Data System (ADS)

    Walton, Kevin; Guenza, Marina

    We present an analytic pair potential in a coarse grain description of a polymer blend where each chain is represented as a chain of soft-colloidal particles. This coarse grain model is based on integral theory that can represent the chains at variable levels.The particles have soft repulsion at separation less than the size of each coarse grain unit and a long repulsive tail with small attractive portion. While the short range pieces of the potential dominates the liquid structure, the long range tail dominate the thermodynamics of the system. So an accurate potential in both the short and long range distances is need to keep give correct structure and thermodynamical properties in the coarse grain description.

  16. Coarse alignment of thin-shell, segmented mirrors for Wolter-I telescopes

    NASA Astrophysics Data System (ADS)

    Donovan, Benjamin D.; Hertz, Edward; Marquez, Vanessa; McMuldroch, Stuart; Reid, Paul B.; Allured, Ryan

    2015-09-01

    The alignment of thin-shell, segmented mirrors for Wolter-I telescopes frequently involves the use of a Hartmann test. In order to get optical throughput in the Hartmann test, the mirrors must first be coarsely aligned to one another and to the metrology system. In the past, the coarse alignment of these mirrors at the Smithsonian Astrophysical Observatory has largely relied upon component machine tolerances and contact measurements with a coordinate measurement machine (CMM). This process takes time and does not produce reliable nor repeatable results. Thus, methods were developed to allow for the quick and reliable coarse alignment of thin- shell, segmented mirrors at their final locations in the mirror assembly. We present the coarse alignment system developed at the Smithsonian Astrophysical Observatory and its use in the alignment of thin-shell, segmented mirrors for the adjustable X-ray optics program.

  17. Kinetics of fiber solidification

    PubMed Central

    Mercader, C.; Lucas, A.; Derré, A.; Zakri, C.; Moisan, S.; Maugey, M.; Poulin, P.

    2010-01-01

    Many synthetic or natural fibers are produced via the transformation of a liquid solution into a solid filament, which allows the wet processing of high molecular weight polymers, proteins, or inorganic particles. Synthetic wet-spun fibers are used in our everyday life from clothing to composite reinforcement applications. Spun fibers are also common in nature. Silk solidification results from the coagulation of protein solutions. The chemical phenomena involved in the formation of all these classes of fibers can be quite different but they all share the same fundamental transformation from a liquid to a solid state. The solidification process is critical because it governs the production rate and the strength that fibers can sustain to be drawn and wound. An approach is proposed in this work to investigate the kinetics of fiber solidification. This approach consists in circulating solidifying fibers in the extensional flow of a surrounding liquid. Such as polymers in extensional flows, the fibers break if resultant drag forces exceed the fiber tensile strength. The solidification kinetics of nanotube composite fibers serves as a validation example of this approach. The method could be extended to other systems and advance thereby the science and technology of fiber and textile materials. It is also a way to directly visualize the scission of chain-like systems in extensional flows. PMID:20937910

  18. Kinetics of fiber solidification.

    PubMed

    Mercader, C; Lucas, A; Derré, A; Zakri, C; Moisan, S; Maugey, M; Poulin, P

    2010-10-26

    Many synthetic or natural fibers are produced via the transformation of a liquid solution into a solid filament, which allows the wet processing of high molecular weight polymers, proteins, or inorganic particles. Synthetic wet-spun fibers are used in our everyday life from clothing to composite reinforcement applications. Spun fibers are also common in nature. Silk solidification results from the coagulation of protein solutions. The chemical phenomena involved in the formation of all these classes of fibers can be quite different but they all share the same fundamental transformation from a liquid to a solid state. The solidification process is critical because it governs the production rate and the strength that fibers can sustain to be drawn and wound. An approach is proposed in this work to investigate the kinetics of fiber solidification. This approach consists in circulating solidifying fibers in the extensional flow of a surrounding liquid. Such as polymers in extensional flows, the fibers break if resultant drag forces exceed the fiber tensile strength. The solidification kinetics of nanotube composite fibers serves as a validation example of this approach. The method could be extended to other systems and advance thereby the science and technology of fiber and textile materials. It is also a way to directly visualize the scission of chain-like systems in extensional flows. PMID:20937910

  19. Impact of coarse-grained measurement with finite range on continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Yu, Song; Gu, Wanyi

    2016-03-01

    In continuous-variable quantum key distribution, detectors are necessarily coarse grained and of finite range. We analyze the impact of both features and demonstrate that while coarse graining adds a fixed error to the estimated excess noise, finite range degrades the estimation accuracy of both transmission and excess noise. Moreover, the inaccurate estimation due to finite range may results in secret key rate underestimation, even misjudgment of security. To compensate these consequences, tuning the modulation variance is a possible way.

  20. Fiber draw synthesis

    PubMed Central

    Orf, Nicholas D.; Shapira, Ofer; Sorin, Fabien; Danto, Sylvain; Baldo, Marc A.; Joannopoulos, John D.; Fink, Yoel

    2011-01-01

    The synthesis of a high-melting temperature semiconductor in a low-temperature fiber drawing process is demonstrated, substantially expanding the set of materials that can be incorporated into fibers. Reagents in the solid state are arranged in proximate domains within a fiber preform. The preform is fluidized at elevated temperatures and drawn into fiber, reducing the lateral dimensions and bringing the domains into intimate contact to enable chemical reaction. A polymer preform containing a thin layer of selenium contacted by tin–zinc wires is drawn to yield electrically contacted crystalline ZnSe domains of sub-100-nm scales. The in situ synthesized compound semiconductor becomes the basis for an electronic heterostructure diode of arbitrary length in the fiber. The ability to synthesize materials within fibers while precisely controlling their geometry and electrical connectivity at submicron scales presents new opportunities for increasing the complexity and functionality of fiber structures.

  1. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  2. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  3. Fiber Accelerating Structures

    SciTech Connect

    Hammond, Andrew P.; /Reed Coll. /SLAC

    2010-08-25

    One of the options for future particle accelerators are photonic band gap (PBG) fiber accelerators. PBG fibers are specially designed optical fibers that use lasers to excite an electric field that is used to accelerate electrons. To improve PBG accelerators, the basic parameters of the fiber were tested to maximize defect size and acceleration. Using the program CUDOS, several accelerating modes were found that maximized these parameters for several wavelengths. The design of multiple defects, similar to having closely bound fibers, was studied to find possible coupling or the change of modes. The amount of coupling was found to be dependent on distance separated. For certain distances accelerating coupled modes were found and examined. In addition, several non-periodic fiber structures were examined using CUDOS. The non-periodic fibers produced several interesting results and promised more modes given time to study them in more detail.

  4. Tapered fiber amplifier

    NASA Astrophysics Data System (ADS)

    Russell, Stephen D.; Stamnitz, Timothy C.

    1990-07-01

    A tapered optical fiber amplifier is designed to provide for long-distance, un-repeatered fiber optic communications. Two single-mode fiber portions are tapered to efficiently intensify and couple an information signal from a laser diode and a pump signal at a shorter wavelength into a fused, tapered single-mode fiber optic coupler. The concentrated information signal and concentrated pump signal are combined via the coupler which is coupled to a several-kilometer length of a relatively small core diametered single-mode fiber to create nonlinear optical effect (stimulated Raman scattering) (SRS). The SRS causes Raman shift of the pump light into the small core diametered single-mode fiber length, thereby generating SRS to result in a signal amplification and an efficient extraction of the amplified signal via the tapered output fiber portion or pigtail.

  5. Fiber optic moisture sensor

    DOEpatents

    Kirkham, R.R.

    1984-08-03

    A method and apparatus for sensing moisture changes by utilizing optical fiber technology. One embodiment uses a reflective target at the end of an optical fiber. The reflectance of the target varies with its moisture content and can be detected by a remote unit at the opposite end of the fiber. A second embodiment utilizes changes in light loss along the fiber length. This can be attributed to changes in reflectance of cladding material as a function of its moisture content. It can also be affected by holes or inserts interposed in the cladding material and/or fiber. Changing light levels can also be coupled from one fiber to another in an assembly of fibers as a function of varying moisture content in their overlapping lengths of cladding material.

  6. Indium fluoride glass fibers

    NASA Astrophysics Data System (ADS)

    Saad, Mohammed

    2012-03-01

    Fluoride glasses are the only material that transmit light from ultraviolet to mid-infrared and can be drawn into industrial optical fibers. The mechanical and optical properties of new indium fluoride glass fibers have been investigated. Multimode fiber 190 microns, has very high mechanical strength greater than 100 kpsi and optical loss as low as 45 dB/km between 2 and 4 microns. Unlike chalcogenide glass fibers, indium fluoride fiber has a wide transmission window from 0.3 to 5.5 microns without any absorption peak. Indium fluoride glass fibers are the technology of choice for all application requiring transmission up to 5 micron such as infrared contour measure (IRCM) and chemical sensing. Furthermore, Indium fluoride glasses have low phonon energy and can be heavily doped and co-doped whit rare-earth elements. Therefore they are very promising candidates for infrared fiber lasers.

  7. Exploiting Genetic Variation of Fiber Components and Morphology in Juvenile Loblolly Pine

    SciTech Connect

    Chang, Hou-Min; Kadia, John F.; Li, Bailian; Sederoff, Ron

    2005-06-30

    In order to ensure the global competitiveness of the Pulp and Paper Industry in the Southeastern U.S., more wood with targeted characteristics have to be produced more efficiently on less land. The objective of the research project is to provide a molecular genetic basis for tree breeding of desirable traits in juvenile loblolly pine, using a multidisciplinary research approach. We developed micro analytical methods for determine the cellulose and lignin content, average fiber length, and coarseness of a single ring in a 12 mm increment core. These methods allow rapid determination of these traits in micro scale. Genetic variation and genotype by environment interaction (GxE) were studied in several juvenile wood traits of loblolly pine (Pinus taeda L.). Over 1000 wood samples of 12 mm increment cores were collected from 14 full-sib families generated by a 6-parent half-diallel mating design (11-year-old) in four progeny tests. Juvenile (ring 3) and transition (ring 8) for each increment core were analyzed for cellulose and lignin content, average fiber length, and coarseness. Transition wood had higher cellulose content, longer fiber and higher coarseness, but lower lignin than juvenile wood. General combining ability variance for the traits in juvenile wood explained 3 to 10% of the total variance, whereas the specific combining ability variance was negligible or zero. There were noticeable full-sib family rank changes between sites for all the traits. This was reflected in very high specific combining ability by site interaction variances, which explained from 5% (fiber length) to 37% (lignin) of the total variance. Weak individual-tree heritabilities were found for cellulose, lignin content and fiber length at the juvenile and transition wood, except for lignin at the transition wood (0.23). Coarseness had moderately high individual-tree heritabilities at both the juvenile (0.39) and transition wood (0.30). Favorable genetic correlations of volume and stem

  8. Systematic and Simulation-Free Coarse-Graining of Polymer Melts using Soft Potentials

    NASA Astrophysics Data System (ADS)

    Yang, Delian; Wang, Qiang

    2014-03-01

    Full atomistic simulations of multi-chain systems are not feasible at present due to their formidable computational requirements. Molecular simulations with coarse-grained models have to be used instead, where each segment represents, for example, the center-of-mass of a group of atoms or real monomers. While atoms interact with hard excluded-volume interactions (e.g., the Lennard-Jones potential) and cannot overlap, the coarse-grained segments can certainly overlap and should therefore interact with soft potentials that allow complete particle overlapping. Coarse-grained models, however, reduce the chain conformational entropy, which plays an essential role in the behavior of polymeric systems. In this work, we use integral-equation theories, instead of molecular simulations, to perform both the structure-based and relative-entropy-based coarse-graining of homopolymer melts, and systematically examine how the coarse-grained soft potential varies with N (the number of segments on each chain) and how well the coarse-grained models reproduce both the structural and thermodynamic properties of the original system. This provides us with a quantitative basis for choosing small N-values that can still capture the chain conformational entropy, a characteristics of polymers.

  9. YUP: A Molecular Simulation Program for Coarse-Grained and Multi-Scaled Models.

    PubMed

    Tan, Robert K Z; Petrov, Anton S; Harvey, Stephen C

    2006-05-01

    Coarse-grained models can be very different from all-atom models and are highly varied. Each class of model is assembled very differently and some models need customized versions of the standard molecular mechanics methods. The most flexible way to meet these diverse needs is to provide access to internal data structures and a programming language to manipulate these structures. We have created YUP, a general-purpose program for coarse-grained and multi-scaled models. YUP extends the Python programming language by adding new data types. We have then used the extended language to implement three classes of coarse-grained models. The coarse-grained RNA model type is an unusual non-linear polymer and the assembly was easily handled with a simple program. The molecular dynamics algorithm had to be extended for a coarse-grained DNA model so that it could detect a failure that is invisible to a standard implementation. A third model type took advantage of access to the force field to simulate the packing of DNA in viral capsid. We find that objects are easy to modify, extend and redeploy. Thus, new classes of coarse-grained models can be implemented easily. PMID:22844233

  10. Systematic coarse-graining of the wormlike chain model for dynamic simulations

    NASA Astrophysics Data System (ADS)

    Koslover, Elena; Spakowitz, Andrew

    2014-03-01

    One of the key goals of macromolecular modeling is to elucidate how macroscale physical properties arise from the microscale behavior of the polymer constituents. For many biological and industrial applications, a direct simulation approach is impractical due to to the wide range of length and time scales that must be spanned by the model, necessitating physically sound and practically relevant procedures for coarse-graining polymer systems. We present a highly general systematic coarse-graining procedure that maps any detailed polymer model onto effective elastic-chain models at intermediate and large length scales, and we specifically focus on the wormlike chain model of semiflexible polymers. Our approach defines a continuous flow of coarse-grained models starting from the wormlike chain model, proceeding through an intermediate-scale stretchable, shearable wormlike chain, and finally resolving to a Gaussian chain at the longest lengths. Using Brownian dynamic simulations of our coarse grained polymer, we show that this approach to coarse graining the wormlike chain model captures analytical predictions for stress relaxation in a semiflexible polymer. Since we can arbitrarily coarse grain the polymer in these dynamic simulations, our approach greatly accelerates simulations.

  11. Spatial and Temporal Variability of Outdoor Coarse Particulate Matter Mass Concentrations Measured with a New Coarse Particulate Sampler during the Detroit Exposure and Aerosol Research Study

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) provided data to compare outdoor residential coarse particulate matter (PM10-2.5) concentrations in six different areas of Detroit with data from a central monitoring site. Daily and seasonal influences on the spa...

  12. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Morey, W. W.; Glenn, W. H.; Snitzer, E.

    1983-01-01

    A temperature sensor has been developed that utilizes the temperature dependent absorption of a rare earth doped optical fiber. The temperature measurement is localized at a remote position by splicing a short section of the rare earth fiber into a loop of commercial data communication fiber that sends and returns an optical probe signal to the temperature sensitive section of fiber. The optical probe signal is generated from two different wavelength filtered LED sources. A four port fiber optic coupler combines the two separate wavelength signals into the fiber sensing loop. Time multiplexing is used so that each signal wavelength is present at a different time. A reference signal level measurement is also made from the LED sources and a ratio taken with the sensor signal to produce a transmission measurement of the fiber loop. The transmission is affected differently at each wavelength by the rare earth temperature sensitive fiber. The temperature is determined from a ratio of the two transmission measurements. This method eliminates any ambiguity with respect to changes in signal level in the fiber loop such as mating and unmating optical connectors. The temperature range of the sensor is limited to about 800 C by the temperature limit fo the feed fibers.

  13. Coatings for Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Several approaches for applying high resistance coatings continuously to graphite yarn were investigated. Two of the most promising approaches involved (1) chemically vapor depositing (CVD) SiC coatings on the surface of the fiber followed by oxidation, and (2) drawing the graphite yarn through an organo-silicone solution followed by heat treatments. In both methods, coated fibers were obtained which exhibited increased electrical resistances over untreated fibers and which were not degraded. This work was conducted in a previous program. In this program, the continuous CVD SiC coating process used on HTS fiber was extended to the coating of HMS, Celion 6000, Celion 12000 and T-300 graphite fiber. Electrical resistances three order of magnitude greater than the uncoated fiber were measured with no significant degradation of the fiber strength. Graphite fibers coated with CVD Si3N4 and BN had resistances greater than 10(exp 6) ohm/cm. Lower pyrolysis temperatures were used in preparing the silica-like coatings also resulting in resistances as high as three orders of magnitude higher than the uncoated fiber. The epoxy matrix composites prepared using these coated fibers had low shear strengths indicating that the coatings were weak.

  14. Calibration and validation of coarse-grained models of atomic systems: application to semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Farrell, Kathryn; Oden, J. Tinsley

    2014-07-01

    Coarse-grained models of atomic systems, created by aggregating groups of atoms into molecules to reduce the number of degrees of freedom, have been used for decades in important scientific and technological applications. In recent years, interest in developing a more rigorous theory for coarse graining and in assessing the predictivity of coarse-grained models has arisen. In this work, Bayesian methods for the calibration and validation of coarse-grained models of atomistic systems in thermodynamic equilibrium are developed. For specificity, only configurational models of systems in canonical ensembles are considered. Among major challenges in validating coarse-grained models are (1) the development of validation processes that lead to information essential in establishing confidence in the model's ability predict key quantities of interest and (2), above all, the determination of the coarse-grained model itself; that is, the characterization of the molecular architecture, the choice of interaction potentials and thus parameters, which best fit available data. The all-atom model is treated as the "ground truth," and it provides the basis with respect to which properties of the coarse-grained model are compared. This base all-atom model is characterized by an appropriate statistical mechanics framework in this work by canonical ensembles involving only configurational energies. The all-atom model thus supplies data for Bayesian calibration and validation methods for the molecular model. To address the first challenge, we develop priors based on the maximum entropy principle and likelihood functions based on Gaussian approximations of the uncertainties in the parameter-to-observation error. To address challenge (2), we introduce the notion of model plausibilities as a means for model selection. This methodology provides a powerful approach toward constructing coarse-grained models which are most plausible for given all-atom data. We demonstrate the theory and

  15. Biology of the Coarse Aerosol Mode: Insights Into Urban Aerosol Ecology

    NASA Astrophysics Data System (ADS)

    Dueker, E.; O'Mullan, G. D.; Montero, A.

    2015-12-01

    Microbial aerosols have been understudied, despite implications for climate studies, public health, and biogeochemical cycling. Because viable bacterial aerosols are often associated with coarse aerosol particles, our limited understanding of the coarse aerosol mode further impedes our ability to develop models of viable bacterial aerosol production, transport, and fate in the outdoor environment, particularly in crowded urban centers. To address this knowledge gap, we studied aerosol particle biology and size distributions in a broad range of urban and rural settings. Our previously published findings suggest a link between microbial viability and local production of coarse aerosols from waterways, waste treatment facilities, and terrestrial systems in urban and rural environments. Both in coastal Maine and in New York Harbor, coarse aerosols and viable bacterial aerosols increased with increasing wind speeds above 4 m s-1, a dynamic that was observed over time scales ranging from minutes to hours. At a New York City superfund-designated waterway regularly contaminated with raw sewage, aeration remediation efforts resulted in significant increases of coarse aerosols and bacterial aerosols above that waterway. Our current research indicates that bacterial communities in aerosols at this superfund site have a greater similarity to bacterial communities in the contaminated waterway with wind speeds above 4 m s-1. Size-fractionated sampling of viable microbial aerosols along the urban waterfront has also revealed significant shifts in bacterial aerosols, and specifically bacteria associated with coarse aerosols, when wind direction changes from onshore to offshore. This research highlights the key connections between bacterial aerosol viability and the coarse aerosol fraction, which is important in assessments of production, transport, and fate of bacterial contamination in the urban environment.

  16. Fiber composite flywheel rim

    DOEpatents

    Davis, D.E.; Ingham, K.T.

    1987-04-28

    A flywheel comprising a hub having at least one radially projecting disc, an annular rim secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers wound about said rim congruent to said surface, and a shell enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface. 2 figs.

  17. Fiber composite flywheel rim

    DOEpatents

    Davis, Donald E.; Ingham, Kenneth T.

    1987-01-01

    A flywheel 2 comprising a hub 4 having at least one radially projecting disc 6, an annular rim 14 secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers 22 wound about said rim congruent to said surface, and a shell 26 enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface.

  18. Fiber optic micro accelerometer

    DOEpatents

    Swierkowski, Steve P.

    2005-07-26

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  19. Continuous Fiber Ceramic Composites

    SciTech Connect

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  20. Cellulosic fibers with high aspect ratio from cornhusks via controlled swelling and alkaline penetration.

    PubMed

    Ma, Zhuanzhuan; Pan, Gangwei; Xu, Helan; Huang, Yiling; Yang, Yiqi

    2015-06-25

    Cellulosic fibers with high aspect ratio have been firstly obtained from cornhusks via controlled swelling in organic solvent and simultaneous tetramethylammonium hydroxide (TMAOH) post treatment within restricted depth. Cornhusks, with around 42% cellulose content, are a copious and inexpensive source for natural fibers. However, cornhusk fibers at 20tex obtained via small-molecule alkaline extraction were too coarse for textile applications. Continuous NaOH treatment would result in fine fibers but with length of about 0.5-1.5mm, too short for textile use. In this research, post treatment using TMAOH and under controlled swelling significantly reduced fineness of cornhusk fibers from 21.3±2.88 to 5.72±0.21tex. Fiber length was reduced from 105.47±10.03 to47.2±27.4mm. The cornhusk fibers had more oriented microstructures and cellulose content increased to 84.47%. Besides, cornhusk fibers had similar tenacity, longer elongation, and lower modulus compared to cotton and linen, which endowed them with durability and flexibility. PMID:25839793

  1. Fiber optic choline biosensor

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Cao, Xiaojian; Jia, Ke; Chai, Xueting; Lu, Hua; Lu, Zuhong

    2001-10-01

    A fiber optic fluorescence biosensor for choline is introduced in this paper. Choline is an important neurotransmitter in mammals. Due to the growing needs for on-site clinical monitoring of the choline, much effect has been devoted to develop choline biosensors. Fiber-optic fluorescence biosensors have many advantages, including miniaturization, flexibility, and lack of electrical contact and interference. The choline fiber-optic biosensor we designed implemented a bifurcated fiber to perform fluorescence measurements. The light of the blue LED is coupled into one end of the fiber as excitation and the emission spectrum from sensing film is monitored by fiber-spectrometer (S2000, Ocean Optics) through the other end of the fiber. The sensing end of the fiber is coated with Nafion film dispersed with choline oxidase and oxygen sensitive luminescent Ru(II) complex (Tris(2,2'-bipyridyl)dichlororuthenium(II), hexahydrate). Choline oxidase catalyzes the oxidation of choline to betaine and hydrogen peroxide while consuming oxygen. The fluorescence intensity of oxygen- sensitive Ru(II) are related to the choline concentration. The response of the fiber-optic sensor in choline solution is represented and discussed. The result indicates a low-cost, high-performance, portable choline biosensor.

  2. ZBLAN, Silica Fiber Comparison

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This graph depicts the increased signal quality possible with optical fibers made from ZBLAN, a family of heavy-metal fluoride glasses (fluorine combined zirconium, barium, lanthanum, aluminum, and sodium) as compared to silica fibers. NASA is conducting research on pulling ZBLAN fibers in the low-g environment of space to prevent crystallization that limits ZBLAN's usefulness in optical fiber-based communications. In the graph, a line closer to the black theoretical maximum line is better. Photo credit: NASA/Marshall Space Flight Center

  3. Assessment of Physical and Mechanical Properties of Cement Panel Influenced by Treated and Untreated Coconut Fiber Addition

    NASA Astrophysics Data System (ADS)

    Abdullah, Alida; Jamaludin, Shamsul Baharin; Anwar, Mohamed Iylia; Noor, Mazlee Mohd; Hussin, Kamarudin

    This project was conducted to produce a cement panel with the addition of treated and untreated coconut fiber in cement panel. Coconut fiber was added to replace coarse aggregate (sand) in this cement panel. In this project, the ratios used to design the mixture were 1:1:0, 1:0.97:0.03, 1:0.94:0.06, 1:0.91:0.09 (cement: sand: coconut fiber). The water cement ratio was constant at 0.55. The sizes of sample tested were, 160 mm x 40 mm x 40 mm for compression test, and 100 mm x 100 mm x 40 mm for density, moisture content and water absorption tests. After curing samples for 28 days, it was found that the addition of coconut fiber, further increase in compressive strength of cement panel with untreated coconut fiber. Moisture content of cement panel with treated coconut fiber increased with increasing content of coconut fiber whereas water absorption of cement panel with untreated coconut fiber increased with increasing content of coconut fiber. The density of cement panel decreased with the addition of untreated and treated coconut fiber.

  4. Predictors of coarse particulate matter and associated endotoxin concentrations in residential environments

    NASA Astrophysics Data System (ADS)

    Bari, Md. Aynul; MacNeill, Morgan; Kindzierski, Warren B.; Wallace, Lance; Héroux, Marie-Ève; Wheeler, Amanda J.

    2014-08-01

    Exposure to coarse particulate matter (PM), i.e., particles with an aerodynamic diameter between 2.5 and 10 μm (PM10-2.5), is of increasing interest due to the potential for health effects including asthma, allergy and respiratory symptoms. Limited information is available on indoor and outdoor coarse PM and associated endotoxin exposures. Seven consecutive 24-h samples of indoor and outdoor coarse PM were collected during winter and summer 2010 using Harvard Coarse Impactors in a total of 74 Edmonton homes where no reported smoking took place. Coarse PM filters were subsequently analyzed for endotoxin content. Data were also collected on indoor and outdoor temperature, relative humidity, air exchange rate, housing characteristics and occupants' activities. During winter, outdoor concentrations of coarse PM (median = 6.7 μg/m3, interquartile range, IQR = 3.4-12 μg/m3) were found to be higher than indoor concentrations (median 3.4 μg/m3, IQR = 1.6-5.7 μg/m3); while summer levels of indoor and outdoor concentrations were similar (median 4.5 μg/m3, IQR = 2.3-6.8 μg/m3, and median 4.7 μg/m3, IQR = 2.1-7.9 μg/m3, respectively). Similar predictors were identified for indoor coarse PM in both seasons and included corresponding outdoor coarse PM concentrations, whether vacuuming, sweeping or dusting was performed during the sampling period, and number of occupants in the home. Winter indoor coarse PM predictors also included the number of dogs and indoor endotoxin concentrations. Summer median endotoxin concentrations (indoor: 0.41 EU/m3, outdoor: 0.64 EU/m3) were 4-fold higher than winter concentrations (indoor: 0.12 EU/m3, outdoor: 0.16 EU/m3). Other than outdoor endotoxin concentrations, indoor endotoxin concentration predictors for both seasons were different. Winter endotoxin predictors also included presence of furry pets and whether the vacuum had a high efficiency particulate air (HEPA) filter. Summer endotoxin predictors were problems with mice in the

  5. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows.

    PubMed

    Munafò, A; Panesi, M; Magin, T E

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models. PMID:25353565

  6. A general method for spatially coarse-graining Metropolis Monte Carlo simulations onto a lattice

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Seider, Warren D.; Sinno, Talid

    2013-03-01

    A recently introduced method for coarse-graining standard continuous Metropolis Monte Carlo simulations of atomic or molecular fluids onto a rigid lattice of variable scale [X. Liu, W. D. Seider, and T. Sinno, Phys. Rev. E 86, 026708 (2012)], 10.1103/PhysRevE.86.026708 is further analyzed and extended. The coarse-grained Metropolis Monte Carlo technique is demonstrated to be highly consistent with the underlying full-resolution problem using a series of detailed comparisons, including vapor-liquid equilibrium phase envelopes and spatial density distributions for the Lennard-Jones argon and simple point charge water models. In addition, the principal computational bottleneck associated with computing a coarse-grained interaction function for evolving particle positions on the discretized domain is addressed by the introduction of new closure approximations. In particular, it is shown that the coarse-grained potential, which is generally a function of temperature and coarse-graining level, can be computed at multiple temperatures and scales using a single set of free energy calculations. The computational performance of the method relative to standard Monte Carlo simulation is also discussed.

  7. Symmetry-adapted digital modeling III. Coarse-grained icosahedral viruses.

    PubMed

    Janner, A

    2016-05-01

    Considered is the coarse-grained modeling of icosahedral viruses in terms of a three-dimensional lattice (the digital modeling lattice) selected among the projected points in space of a six-dimensional icosahedral lattice. Backbone atomic positions (Cα's for the residues of the capsid and phosphorus atoms P for the genome nucleotides) are then indexed by their nearest lattice point. This leads to a fine-grained lattice point characterization of the full viral chains in the backbone approximation (denoted as digital modeling). Coarse-grained models then follow by a proper selection of the indexed backbone positions, where for each chain one can choose the desired coarseness. This approach is applied to three viruses, the Satellite tobacco mosaic virus, the bacteriophage MS2 and the Pariacoto virus, on the basis of structural data from the Brookhaven Protein Data Bank. In each case the various stages of the procedure are illustrated for a given coarse-grained model and the corresponding indexed positions are listed. Alternative coarse-grained models have been derived and compared. Comments on related results and approaches, found among the very large set of publications in this field, conclude this article. PMID:27126109

  8. Coarse-grained variables for particle-based models: diffusion maps and animal swarming simulations

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Safford, Hannah R.; Couzin, Iain D.; Kevrekidis, Ioannis G.

    2014-12-01

    As microscopic (e.g. atomistic, stochastic, agent-based, particle-based) simulations become increasingly prevalent in the modeling of complex systems, so does the need to systematically coarse-grain the information they provide. Before even starting to formulate relevant coarse-grained equations, we need to determine the right macroscopic observables—the right variables in terms of which emergent behavior will be described. This paper illustrates the use of data mining (and, in particular, diffusion maps, a nonlinear manifold learning technique) in coarse-graining the dynamics of a particle-based model of animal swarming. Our computational data-driven coarse-graining approach extracts two coarse (collective) variables from the detailed particle-based simulations, and helps formulate a low-dimensional stochastic differential equation in terms of these two collective variables; this allows the efficient quantification of the interplay of "informed" and "naive" individuals in the collective swarm dynamics. We also present a brief exploration of swarm breakup and use data-mining in an attempt to identify useful predictors for it. In our discussion of the scope and limitations of the approach we focus on the key step of selecting an informative metric, allowing us to usefully compare different particle swarm configurations.

  9. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows

    NASA Astrophysics Data System (ADS)

    Munafò, A.; Panesi, M.; Magin, T. E.

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N2-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N2 molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.

  10. Effective rates from thermodynamically consistent coarse-graining of models for molecular motors with probe particles

    NASA Astrophysics Data System (ADS)

    Zimmermann, Eva; Seifert, Udo

    2015-02-01

    Many single-molecule experiments for molecular motors comprise not only the motor but also large probe particles coupled to it. The theoretical analysis of these assays, however, often takes into account only the degrees of freedom representing the motor. We present a coarse-graining method that maps a model comprising two coupled degrees of freedom which represent motor and probe particle to such an effective one-particle model by eliminating the dynamics of the probe particle in a thermodynamically and dynamically consistent way. The coarse-grained rates obey a local detailed balance condition and reproduce the net currents. Moreover, the average entropy production as well as the thermodynamic efficiency is invariant under this coarse-graining procedure. Our analysis reveals that only by assuming unrealistically fast probe particles, the coarse-grained transition rates coincide with the transition rates of the traditionally used one-particle motor models. Additionally, we find that for multicyclic motors the stall force can depend on the probe size. We apply this coarse-graining method to specific case studies of the F1-ATPase and the kinesin motor.

  11. Anisotropic Coarse-Grained Model for Proteins Based On Gay–Berne and Electric Multipole Potentials

    PubMed Central

    2015-01-01

    Gay–Berne anisotropic potential has been widely used to evaluate the nonbonded interactions between coarse-grained particles being described as elliptical rigid bodies. In this paper, we are presenting a coarse-grained model for twenty kinds of amino acids and proteins, based on the anisotropic Gay–Berne and point electric multipole (EMP) potentials. We demonstrate that the anisotropic coarse-grained model, namely GBEMP model, is able to reproduce many key features observed from experimental protein structures (Dunbrack Library), as well as from atomistic force field simulations (using AMOEBA, AMBER, and CHARMM force fields), while saving the computational cost by a factor of about 10–200 depending on specific cases and atomistic models. More importantly, unlike other coarse-grained approaches, our framework is based on the fundamental intermolecular forces with explicit treatment of electrostatic and repulsion-dispersion forces. As a result, the coarse-grained protein model presented an accurate description of nonbonded interactions (particularly electrostatic component) between hetero/homodimers (such as peptide–peptide, peptide–water). In addition, the encouraging performance of the model was reflected by the excellent correlation between GBEMP and AMOEBA models in the calculations of the dipole moment of peptides. In brief, the GBEMP model given here is general and transferable, suitable for simulating complex biomolecular systems. PMID:24659927

  12. Prediction of Coarse Particle Nitrate From Fine Particle Measurements in a Coastal Environment

    NASA Astrophysics Data System (ADS)

    Campbell, S. W.; Evans, M. C.; Poor, N. D.

    2003-12-01

    Nutrient induced algal growth is one cause of decreased seagrass in the Tampa Bay Estuary. This influx of nutrients arises from the presence of fixed nitrogen in various flows and discharges to the estuary and from atmospheric deposition. One of the goals of BRACE (Bay Regional Atmospheric Chemistry Experiment) is to obtain improved estimates of the atmospheric nitrogen deposition to Tampa Bay. Previous estimates of atmospheric dry deposition of nitrogen to Tampa Bay have been based on Annular Denuder System (ADS) measurements of gaseous nitric acid and ammonia and fine particle (PM2.5) nitrate and ammonium, which extend back to 1996. However, recent coarse particle measurements indicate that, while ammonium primarily exists in fine particles, nitrate is preferentially found in the coarse fraction. The goal of this study is to examine whether the historical data for fine particle nitrate can be used to predict the amount of nitrate in the coarse fraction so as to obtain a more accurate estimate of dry particle deposition of nitrate to the Tampa Bay Estuary. Specifically, it is shown that averaged nitrate distributions obtained from recent micro-orifice impactor data can be used to predict the coarse to fine ratios observed for dichotomous samplers and the fine particle concentrations obtained from the Annular Denuder System. This provides some confidence that the impactor results may be used in conjunction with earlier fine particle data to obtain an estimate of coarse particle nitrate concentrations, and therefore an improved estimate of nitrate flux to the estuary.

  13. Bryophyte species associations with coarse woody debris and stand ages in Oregon

    USGS Publications Warehouse

    Rambo, T.; Muir, Patricia S.

    1998-01-01

    We quantified the relationships of 93 forest floor bryophyte species, including epiphytes from incorporated litterfall, to substrate and stand age in Pseudotsuga menziesii-Tsuga heterophylla stands at two sites in western Oregon. We used the method of Dufr??ne and Legendre that combines a species' relative abundance and relative frequency, to calculate that species' importance in relation to environmental variables. The resulting 'indicator value' describes a species' reliability for indicating the given environmental parameter. Thirty-nine species were indicative of either humus, a decay class of coarse woody debris, or stand age. Bryophyte community composition changed along the continuum of coarse woody debris decomposition from recently fallen trees with intact bark to forest floor humus. Richness of forest floor bryophytes will be enhanced when a full range of coarse woody debris decay classes is present. A suite of bryophytes indicated old-growth forest. These were mainly either epiphytes associated with older conifers or liverworts associated with coarse woody debris. Hardwood-associated epiphytes mainly indicated young stands. Mature conifers, hardwoods, and coarse woody debris are biological legacies that can be protected when thinning managed stands to foster habitat complexity and biodiversity, consistent with an ecosystem approach to forest management.

  14. NIRCam Long Wavelength Channel grisms as the Dispersed Fringe Sensor for JWST segment mirror coarse phasing

    NASA Astrophysics Data System (ADS)

    Shi, Fang; King, Brian M.; Sigrist, Norbert; Basinger, Scott A.

    2008-07-01

    The baseline wavefront sensing and control for James Webb Space Telescope (JWST) includes the Dispersed Hartmann Sensors (DHS) for segment mirror coarse phasing. The two DHS devices, residing on the pupil wheel of the JWST's Near Infrared Camera (NIRCam) Short Wavelength Channel (SWC), can sense the JWST segment mirror pistons by measuring the heights of 20 inter-segment edges from the dispersed fringes. JWST also incorporates two identical grisms in the NIRCam's Long Wavelength Channel (LWC). The two grisms, designed as the Dispersed Fringe Sensor (DFS), are used as the backup sensor for JWST segment mirror coarse phasing. The versatility of DFS enables a very flexible JWST segment coarse phasing process and the DFS is designed to have larger piston capture range than that of DHS, making the coarse phasing more robust. The DFS can also be a useful tool during JWST ground integration and test (I&T). In this paper we describe the DFS design details and use the JWST optical model to demonstrate the DFS coarse phasing process during flight and ground I&T.

  15. Coarse dark patterning functionally constrains adaptive shifts from aposematism to crypsis in strawberry poison frogs.

    PubMed

    Qvarnström, Anna; Rudh, Andreas; Edström, Torkel; Ödeen, Anders; Løvlie, Hanne; Tullberg, Birgitta S

    2014-10-01

    Ecological specialization often requires tight coevolution of several traits, which may constrain future evolutionary pathways and make species more prone to extinction. Aposematism and crypsis represent two specialized adaptations to avoid predation. We tested whether the combined effects of color and pattern on prey conspicuousness functionally constrain or facilitate shifts between these two adaptations. We combined data from 17 natural populations of strawberry poison frogs, Oophaga pumilio with an experimental approach using digitalized images of frogs and chickens as predators. We show that bright coloration often co-occurs with coarse patterning among the natural populations. Dull green frogs with coarse patterning are rare in nature but in the experiment they were as easily detected as bright red frogs suggesting that this trait combination represents a transient evolutionary state toward aposematism. Hence, a gain of either bright color or coarse patterning leads to conspicuousness, but a transition back to crypsis would be functionally constrained in populations with both bright color and coarse patterning by requiring simultaneous changes in two traits. Thus, populations (or species) signaling aposematism by conspicuous color should be less likely to face an evolutionary dead end and more likely to radiate than populations with both conspicuous color and coarse patterning. PMID:24990085

  16. Hermetically coated specialty optical fibers

    NASA Astrophysics Data System (ADS)

    Semjonov, Sergey L.; Bogatyrev, Vladimir A.; Malinin, Alexei A.

    2010-10-01

    Manufacturing processes for different types of hermetically coated fibers are described. Optical and mechanical properties of metal and carbon coated fibers are compared. Prospects of application of both types of hermetically coated fibers in special applications are discussed.

  17. Splicing Efficiently Couples Optical Fibers

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1985-01-01

    Method of splicing single-mode optical fibers results in very low transmission losses through joined fiber ends. Coupling losses between joined optical-fiber ends only 0.1 dB. Method needs no special operator training.

  18. Soluble and insoluble fiber (image)

    MedlinePlus

    Dietary fiber is the part of food that is not affected by the digestive process in the body. ... of the stool. There are two types of dietary fiber, soluble and insoluble. Soluble fiber retains water and ...

  19. Ultrafine PBI fibers and yarns

    NASA Technical Reports Server (NTRS)

    Leal, J. R.; Tan, M.

    1979-01-01

    Gentle precisely controlled process is used to draw polybenzimidazole (PBI) fibers to denier as low as 0.17 per fiber. Yarns of lightweight fibers could be useful in applications where lightweight textiles must withstand high temperatures, corrosion, or radiation.

  20. Orientation-guided two-scale approach for the segmentation and quantitative description of woven bundles of fibers from three-dimensional tomographic images

    NASA Astrophysics Data System (ADS)

    Chapoullié, Cédric; Da Costa, Jean-Pierre; Cataldi, Michel; Vignoles, Gérard L.; Germain, Christian

    2015-11-01

    This paper proposes a two-scale approach for the description of fibrous materials from tomographic data. It operates at two scales: coarse scale to describe weaving patterns and fine scale to depict fiber layout within yarns. At both scales, the proposed approach starts with the segmentation of yarns and fibers. Then, the fibrous structure (fiber diameters, fiber and yarn orientations, fiber density within yarns) is described. The segmentation algorithms are applied to a chunk of a woven ceramic-matrix composite observed at yarn and fiber scales using tomographic data from the European synchrotron radiation facility. The fiber and yarn segmentation results allow investigation of intrayarn fiber layout. The analysis of intrayarn fiber density and orientations shows the effects of the weaving process on fiber organization, in particular fiber compaction or yarn shearing. These results pave the way toward a deeper analysis of such materials. Indeed, the data collected with the proposed methods are a key starting point for realistic image synthesis. Such images may in turn be used to validate the fiber and yarn segmentation algorithms. Besides, and above all, they will allow material behavior simulation, aiming at the evaluation of the material's strengths and weaknesses inferred from its fibrous architecture.

  1. A unified data representation theory for network visualization, ordering and coarse-graining

    NASA Astrophysics Data System (ADS)

    Kovács, István A.; Mizsei, Réka; Csermely, Péter

    2015-09-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form.

  2. Compact cell-centered discretization stencils at fine-coarse block structured grid interfaces

    NASA Astrophysics Data System (ADS)

    Pletzer, Alexander; Jamroz, Ben; Crockett, Robert; Sides, Scott

    2014-03-01

    Different strategies for coupling fine-coarse grid patches are explored in the context of the adaptive mesh refinement (AMR) method. We show that applying linear interpolation to fill in the fine grid ghost values can produce a finite volume stencil of comparable accuracy to quadratic interpolation provided the cell volumes are adjusted. The volume of fine cells expands whereas the volume of neighboring coarse cells contracts. The amount by which the cells contract/expand depends on whether the interface is a face, an edge, or a corner. It is shown that quadratic or better interpolation is required when the conductivity is spatially varying, anisotropic, the refinement ratio is other than two, or when the fine-coarse interface is concave.

  3. A novel coarse-to-fine method for registration of multispectral images

    NASA Astrophysics Data System (ADS)

    Jin, Hongbin; Fan, Chunxiao; Li, Yong; Xu, Liangpeng

    2016-07-01

    Due to non-linear intensity changes between multispectral images, the existed descriptors often yield low matching performance. In order to build reliable keypoint mappings on multispectral images, a novel coarse-to-fine method is designed using projective transformation and the information of edge overlap. The method consists of a coarse process and a fine-tuning process. In the coarse process, initial keypoint mappings are built with the descriptors associated with keypoints and the relative distance constraints are employed on them to remove outliers. In the fine-tuning process, the edge overlap information is utilized as similarity metric and an iterative framework is applied to search correct keypoint mappings. The performance of the proposed is investigated with keypoints extracted by speeded-up robust features. The experiment results show that the proposed method can build more reliable keypoint mappings on multispectral images than existed methods.

  4. Systematic coarse graining flowing polymer melts: thermodynamically guided simulations and resulting constitutive model.

    PubMed

    Iig, Patrick

    2011-01-01

    Complex fluids, such as polymers, colloids, liquid-crystals etc., show intriguing viscoelastic properties, due to the complicated interplay between flow-induced structure formation and dynamical behavior. Starting from microscopic models of complex fluids, a systematic coarse-graining method is presented that allows us to derive closed-form and thermodynamically consistent constitutive equations for such fluids. Essential ingredients of the proposed approach are thermodynamically guided simulations within a consistent coarse-graining scheme. In addition to this new type of multiscale simulations, we reconstruct the building blocks that constitute the thermodynamically consistent coarse-grained model. We illustrate the method for low-molecular polymer melts, which are subject to different imposed flow fields like planar shear and different elongational flows. The constitutive equation for general flow conditions we obtain shows rheological behavior including shear thinning, normal stress differences, and elongational viscosities in good agreement with reference results. PMID:21678766

  5. Coarse Grained Molecular Dynamics Simulations of Transmembrane Protein-Lipid Systems

    PubMed Central

    Spijker, Peter; van Hoof, Bram; Debertrand, Michel; Markvoort, Albert J.; Vaidehi, Nagarajan; Hilbers, Peter A.J.

    2010-01-01

    Many biological cellular processes occur at the micro- or millisecond time scale. With traditional all-atom molecular modeling techniques it is difficult to investigate the dynamics of long time scales or large systems, such as protein aggregation or activation. Coarse graining (CG) can be used to reduce the number of degrees of freedom in such a system, and reduce the computational complexity. In this paper the first version of a coarse grained model for transmembrane proteins is presented. This model differs from other coarse grained protein models due to the introduction of a novel angle potential as well as a hydrogen bonding potential. These new potentials are used to stabilize the backbone. The model has been validated by investigating the adaptation of the hydrophobic mismatch induced by the insertion of WALP-peptides into a lipid membrane, showing that the first step in the adaptation is an increase in the membrane thickness, followed by a tilting of the peptide. PMID:20640160

  6. A Hybrid Coarse-graining Approach for Lipid Bilayers at Large Length and Time Scales

    PubMed Central

    Ayton, Gary S.; Voth, Gregory A.

    2009-01-01

    A hybrid analytic-systematic (HAS) coarse-grained (CG) lipid model is developed and employed in a large-scale simulation of a liposome. The methodology is termed hybrid analyticsystematic as one component of the interaction between CG sites is variationally determined from the multiscale coarse-graining (MS-CG) methodology, while the remaining component utilizes an analytic potential. The systematic component models the in-plane center of mass interaction of the lipids as determined from an atomistic-level MD simulation of a bilayer. The analytic component is based on the well known Gay-Berne ellipsoid of revolution liquid crystal model, and is designed to model the highly anisotropic interactions at a highly coarse-grained level. The HAS CG approach is the first step in an “aggressive” CG methodology designed to model multi-component biological membranes at very large length and timescales. PMID:19281167

  7. Hybrid coarse-graining approach for lipid bilayers at large length and time scales.

    PubMed

    Ayton, Gary S; Voth, Gregory A

    2009-04-01

    A hybrid analytic-systematic (HAS) coarse-grained (CG) lipid model is developed and employed in a large-scale simulation of a liposome. The methodology is termed hybrid analytic-systematic because one component of the interaction between CG sites is variationally determined from the multiscale coarse-graining (MS-CG) methodology, whereas the remaining component utilizes an analytic potential. The systematic component models the in-plane center-of-mass interaction of the lipids as determined from an atomistic-level MD simulation of a bilayer. The analytic component is based on the well-known Gay-Berne ellipsoid-of-revolution liquid-crystal model and is designed to model the highly anisotropic interactions at a highly coarse-grained level. The HAS CG approach is the first step in an "aggressive" CG methodology designed to model multicomponent biological membranes at very large length and time scales. PMID:19281167

  8. Improved calibration of IMU biases in analytic coarse alignment for AHRS

    NASA Astrophysics Data System (ADS)

    Lu, Jiazhen; Lei, Chaohua; Li, Baoguo; Wen, Ting

    2016-07-01

    An improved method for the inertial measurement unit (IMU) calibration of coarse alignment for the low-accuracy attitude heading reference system (AHRS) is proposed in this paper. The sensitivities of the Euler angles with respect to the inertial sensor biases are studied based on the analytic coarse alignment principle, and the errors of earth rotation rate and local gravity in the body frame caused by initial attitude error are analyzed. Then, an improved analytic coarse alignment algorithm with accelerometer and gyro bias calibration in an arbitrary three-position is proposed. Simulation and experiment results show that the novel method can calibrate accelerometer and gyro biases, reduce Euler angle attitude error, and improve navigation precision in practical applications. Moreover, this method can be applied to other low-accuracy inertial navigation systems.

  9. Multiscale dynamics of semiflexible polymers from a universal coarse-graining procedure.

    PubMed

    Koslover, Elena F; Spakowitz, Andrew J

    2014-07-01

    Simulating the dynamics of a semiflexible polymer across time and length scales that bridge the rigid and flexible regimes requires a physically sound method for generating coarse-grained representations of the polymer. Here, we study the dynamic behavior of the discrete stretchable, shearable wormlike chain model, which can be used to coarse-grain a continuous semi-elastic chain at an arbitrary discretization. We show that the dynamics of this universal model match those of the wormlike chain at length scales above the discretization length. The evolution of the stress correlation, as probed through Brownian dynamics simulations, is found to reproduce the predicted behavior in both the rigid and flexible regimes, spanning over six orders of magnitude in time scales. The coarse-graining approach employed here thus enables dynamic simulation of semiflexible polymers at lengths and times that were previously inaccessible with conventional methods. PMID:25122407

  10. Multiscale dynamics of semiflexible polymers from a universal coarse-graining procedure

    NASA Astrophysics Data System (ADS)

    Koslover, Elena F.; Spakowitz, Andrew J.

    2014-07-01

    Simulating the dynamics of a semiflexible polymer across time and length scales that bridge the rigid and flexible regimes requires a physically sound method for generating coarse-grained representations of the polymer. Here, we study the dynamic behavior of the discrete stretchable, shearable wormlike chain model, which can be used to coarse-grain a continuous semi-elastic chain at an arbitrary discretization. We show that the dynamics of this universal model match those of the wormlike chain at length scales above the discretization length. The evolution of the stress correlation, as probed through Brownian dynamics simulations, is found to reproduce the predicted behavior in both the rigid and flexible regimes, spanning over six orders of magnitude in time scales. The coarse-graining approach employed here thus enables dynamic simulation of semiflexible polymers at lengths and times that were previously inaccessible with conventional methods.

  11. A unified data representation theory for network visualization, ordering and coarse-graining

    PubMed Central

    Kovács, István A.; Mizsei, Réka; Csermely, Péter

    2015-01-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form. PMID:26348923

  12. Bottom-up coarse-graining of a simple graphene model: the blob picture.

    PubMed

    Kauzlarić, David; Meier, Julia T; Español, Pep; Succi, Sauro; Greiner, Andreas; Korvink, Jan G

    2011-02-14

    The coarse-graining of a simple all-atom 2D microscopic model of graphene, in terms of "blobs" described by center of mass variables, is presented. The equations of motion of the coarse-grained variables take the form of dissipative particle dynamics (DPD). The coarse-grained conservative forces and the friction of the DPD model are obtained via a bottom-up procedure from molecular dynamics (MD) simulations. The separation of timescales for blobs of 24 and 96 carbon atoms is sufficiently pronounced for the Markovian assumption, inherent to the DPD model, to provide satisfactory results. In particular, the MD velocity autocorrelation function of the blobs is well reproduced by the DPD model, provided that the effect of friction and noise is taken into account. However, DPD cross-correlations between neighbor blobs show appreciable discrepancies with respect to the MD results. Possible extensions to mend these discrepancies are briefly outlined. PMID:21322660

  13. ROLE OF FIBER MODIFICATION IN NATURAL FIBER COMPOSITE PROCESSING

    SciTech Connect

    Fifield, Leonard S.; Denslow, Kayte M.; Gutowska, Anna; Simmons, Kevin L.; Holbery, Jim

    2005-11-03

    The prediction and characterization of the adhesion between fiber, surface treatment, and polymer is critical to the success of large-scale natural fiber based polymer composites in automotive semi-structural application. The two primary factors limiting the use of natural fiber in polymer composites are fiber moisture uptake and fiber degradation during high-temperature processing. In this study, we have developed several fiber surface modification techniques and analyzed the fiber-polymer adhesion of modified fibers to more clearly understand the critical parameters controlling moisture uptake, swelling, and fiber degradation due to interfacial structure. We will present a overview of surface modification techniques we have applied to date for hemp fiber sources, and illustrate a path to characterize surface modification effects on natural fiber adhesion in thermoplastic composites.

  14. Super capacitor with fibers

    SciTech Connect

    Farmer, Joseph Collin; Kaschmitter, James

    2015-02-17

    An electrical cell apparatus includes a first current collector made of a multiplicity of fibers, a second current collector spaced from the first current collector; and a separator disposed between the first current collector and the second current collector. The fibers are contained in a foam.

  15. Low dielectric polyimide fibers

    NASA Technical Reports Server (NTRS)

    Dorogy, William E., Jr. (Inventor); St.clair, Anne K. (Inventor)

    1994-01-01

    A high temperature resistant polyimide fiber that has a dielectric constant of less than 3 is presented. The fiber was prepared by first reacting 2,2-bis (4-(4aminophenoxy)phenyl) hexafluoropropane with 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride in an aprotic solvent to form a polyamic acid resin solution. The polyamic acid resin solution is then extruded into a coagulation medium to form polyamic acid fibers. The fibers are thermally cured to their polyimide form. Alternatively, 2,2-bis(4-(4-aminophenoxy)phenyl) hexafluoropropane is reacted with 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride to form a polyamic acid, and the polyamic acid is chemically converted to its polyimide form. The polyimide is then dissolved in a solvent to form a polyimide resin solution, and the polyimide resin is extruded into a coagulation medium to form a polyimide wet gel filament. In order to obtain polyimide fibers of increased tensile properties, the polyimide wet gel filaments are stretched at elevated temperatures. The tensile properties of the fibers were measured and found to be in the range of standard textile fibers. Polyimide fibers obtained by either method will have a dielectric constant similar to that of the corresponding polymer, viz., less than 3 at 10 GHz.

  16. Diamond fiber field emitters

    DOEpatents

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  17. FLAX FIBER IN TEXTILES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    REFINED, SHORT STAPLE FLAX FIBER CAN BE BLENDED WITH COTTON AND SPUN ON DRY SYSTEMS THAT ARE PREVALENT IN THE U.S. RESEARCH IS REQUIRED TO OPTIMIZE THE FIBER PROPERTIES AND THE PROCESSING SYSTEMS TO MORE EFFICIENTLY BLEND FLAX WITH COTTON. INCLUSION OF FLAX WITH COTTON PROVIDES YARN AND FABRIC PROPE...

  18. MEGARA fiber bundles

    NASA Astrophysics Data System (ADS)

    Pérez-Calpena, A.; García-Vargas, María. Luisa; Arrillaga, X.; Gil de Paz, A.; Sánchez-Blanco, E.; Martínez-Delgado, I.; Carrera, M. A.; Gallego, J.; Carrasco, E.; Sánchez-Moreno, F. M.; Iglesias-Páramo, J.

    2014-07-01

    MEGARA (Multi Espectrógrafo en GTC de Alta Resolución para Astronomía) is the future optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) for the 10.4-m Gran Telescopio CANARIAS (GTC). MEGARA has three different fiber bundles, the Large Central Bundle covering 12.5 arcsec x 11.3 arcsec on sky, the Small Compact Bundle, of 8.5 arcsec x 6.7 arcsec, and a Fiber MOS positioner system that is able to place up to 100 mini-bundles with 7 fibers each in MOS configuration within a 3.5 arcmin x 3.5 arcmin FOV. The MEGARA focal plane subsystems are located at one of the GTC Folded Cassegrain focal stations. A field lens provides a telecentric focal plane, where the fibers are located. Micro-lenses arrays couple the telescope beam to the collimator focal ratio at the entrance of the fibers. Finally, the fibers, organized in bundles conducted the light from the focal plane to the pseudo-slit plates at the entrance of the MEGARA spectrograph, which shall be located at one of the Nasmyth platforms. This article also summarizes the prototypes already done and describes the set-up that shall be used to integrate fibers and micro-lens and characterize the fiber bundles.

  19. Fiber Sensor Technology Today

    NASA Astrophysics Data System (ADS)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  20. Infrared optical fibers

    NASA Astrophysics Data System (ADS)

    Drexhage, Martin G.; Moynihan, Cornelius T.

    1988-11-01

    The development of IR optical fibers for medical, laser, industrial, and telecommunications applications is discussed. IR studies of single and polycrystalline materials, chalcogenide glasses, and heavy-metal fluoride glasses are reviewed. It is suggested that heavy-metal fluoride glasses are the best prospects for obtaining optical losses lower than those in high-quality silica fibers.