Sample records for multi-mode fiber coarse

  1. An SMS (single mode - multi mode - single mode) fiber structure for vibration sensing

    NASA Astrophysics Data System (ADS)

    Waluyo, T. B.; Bayuwati, D.

    2017-04-01

    We describe an SMS (single mode - multi mode - single mode) fiber structure to be used in a vibration sensing system. The fiber structure was fabricated by splicing a section (about 300 mm in length) of a step index multi mode fiber between two single mode fibers obtained from a communication grade fiber patchcord. Interference between higher order modes occurs while light from a narrow band light source travels along the multi mode fiber. When the multi mode fiber vibrates, the refractive index profile is changed because of the photo-elastics effect and the amplitude of the interference pattern is changed accordingly. To simulate a vibrating structure we used a loudspeaker to vibrate a wooden table. By using a digital oscilloscope, we recorded and analysed the vibrating signals obtained from the SMS fiber structure as well as from a GS-32CT geophone for referencing. We observed that this SMS fiber structure was potential to be used in a vibration sensing system with a measurement range from 30 to 180 Hz with inherent optical fiber sensor advantages such as light weight, immune to electromagnetic interference, and no electricity in the sensing part.

  2. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber

    PubMed Central

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106

  3. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    PubMed

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  4. Object recognition through a multi-mode fiber

    NASA Astrophysics Data System (ADS)

    Takagi, Ryosuke; Horisaki, Ryoichi; Tanida, Jun

    2017-04-01

    We present a method of recognizing an object through a multi-mode fiber. A number of speckle patterns transmitted through a multi-mode fiber are provided to a classifier based on machine learning. We experimentally demonstrated binary classification of face and non-face targets based on the method. The measurement process of the experimental setup was random and nonlinear because a multi-mode fiber is a typical strongly scattering medium and any reference light was not used in our setup. Comparisons between three supervised learning methods, support vector machine, adaptive boosting, and neural network, are also provided. All of those learning methods achieved high accuracy rates at about 90% for the classification. The approach presented here can realize a compact and smart optical sensor. It is practically useful for medical applications, such as endoscopy. Also our study indicated a promising utilization of artificial intelligence, which has rapidly progressed, for reducing optical and computational costs in optical sensing systems.

  5. Tunable self-seeded multi-wavelength Brillouin-erbium fiber laser based on few-mode fiber filter

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Ma, Lei; Xiong, Hui; Zhang, Yun-shan; Liu, Chun-xiao

    2017-11-01

    A tunable self-seeded multi-wavelength Brillouin-erbium fiber laser (BEFL) is proposed and demonstrated based on a few-mode fiber filter (FMFF) with varying temperature. The FMFF configuration is a section of uncoated few-mode fiber (FMF) sandwiched between two up-tapers. As the temperature varies from 25 °C to 125 °C, the transmission spectrum of FMFF moves towards the longer wavelength. The self-excited Brillouin pump is internally achieved by cascaded stimulated Brillouin scattering (SBS) in the single mode fiber (SMF). Then employing the FMFF temperature variation characteristics in the ring cavity fiber laser, the multi-wavelength of the output laser can be tuned, and the tunable range is about 8.0 nm. The generation of up to 15 Brillouin Stokes wavelengths with 16 dB optical signal- to-noise ratio ( OSNR) is realized.

  6. Splice loss requirements in multi-mode fiber mode-division-multiplex transmission links.

    PubMed

    Warm, Stefan; Petermann, Klaus

    2013-01-14

    We investigate numerically the influence of fiber splices and fiber connectors to the statistics of mode dependent loss (MDL) and multiple-input multiple-output (MIMO) outage capacity in mode multiplexed multi-mode fiber links. Our results indicate required splice losses much lower than currently feasible to achieve a reasonable outage capacity in long-haul transmission systems. Splice losses as low as 0.03dB may effectively lead to an outage of MIMO channels after only a few hundred kilometers transmission length. In a first approximation, the relative capacity solely depends on the accumulated splice loss and should be less than ≈ 2dB to ensure a relative capacity of 90%. We also show that discrete mode permutation (mixing) within the transmission line may effectively increase the maximum transmission distance by a factor of 5 for conventional splice losses.

  7. Launch device using endlessly single-mode PCF for ultra-wideband WDM transmission in graded-index multi-mode fiber.

    PubMed

    Ma, Lin; Hanzawa, Nobutomo; Tsujikawa, Kyozo; Azuma, Yuji

    2012-10-22

    We demonstrated ultra-wideband wavelength division multiplexing (WDM) transmission from 850 to 1550 nm in graded-index multi-mode fiber (GI-MMF) using endlessly single-mode photonic crystal fiber (ESM-PCF) as a launch device. Effective single-mode guidance is obtained in multi-mode fiber at all wavelengths by splicing cm-order length ESM-PCF to the transmission fiber. We achieved 3 × 10 Gbit/s WDM transmission in a 1 km-long 50-μm-core GI-MMF. We also realized penalty free 10 Gbit/s data transmission at a wavelength of 850 nm by optimizing the PCF structure. This method has the potential to achieve greater total transmission capacity for MMF systems by the addition of more wavelength channels.

  8. The Aerosol Coarse Mode Initiative

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Adhikari, N.; Air, D.; Kassianov, E.; Barnard, J.

    2014-12-01

    Many areas of the world show an aerosol volume distribution with a significant coarse mode and sometimes a dominant coarse mode. The large coarse mode is usually due to dust, but sea salt aerosol can also play an important role. However, in many field campaigns, the coarse mode tends to be ignored, because it is difficult to measure. This lack of measurements leads directly to a concomitant "lack of analysis" of this mode. Because, coarse mode aerosols can have significant effects on radiative forcing, both in the shortwave and longwave spectrum, the coarse mode -- and these forcings -- should be accounted for in atmospheric models. Forcings based only on fine mode aerosols have the potential to be misleading. In this paper we describe examples of large coarse modes that occur in areas of large aerosol loading (Mexico City, Barnard et al., 2010) as well as small loadings (Sacramento, CA; Kassianov et al., 2012; and Reno, NV). We then demonstrate that: (1) the coarse mode can contribute significantly to radiative forcing, relative to the fine mode, and (2) neglecting the coarse mode may result in poor comparisons between measurements and models. Next we describe -- in general terms -- the limitations of instrumentation to measure the coarse mode. Finally, we suggest a new initiative aimed at examining coarse mode aerosol generation mechanisms; transport and deposition; chemical composition; visible and thermal IR refractive indices; morphology; microphysical behavior when deposited on snow and ice; and specific instrumentation needs. Barnard, J. C., J. D. Fast, G. Paredes-Miranda, W. P. Arnott, and A. Laskin, 2010: Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign, Atmospheric Chemistry and Physics, 10, 7325-7340. Kassianov, E. I., M. S. Pekour, and J. C. Barnard, 2012: Aerosols in Central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing

  9. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber.

    PubMed

    Zhu, Long; Wang, Andong; Chen, Shi; Liu, Jun; Mo, Qi; Du, Cheng; Wang, Jian

    2017-10-16

    Twisted light carrying orbital angular momentum (OAM) is a special kind of structured light that has a helical phase front, a phase singularity, and a doughnut intensity profile. Beyond widespread developments in manipulation, microscopy, metrology, astronomy, nonlinear and quantum optics, OAM-carrying twisted light has seen emerging application of optical communications in free space and specially designed fibers. Instead of specialty fibers, here we show the direct use of a conventional graded-index multi-mode fiber (MMF) for OAM communications. By exploiting fiber-compatible mode exciting and filtering elements, we excite the first four OAM mode groups in an MMF. We demonstrate 2.6-km MMF transmission using four data-carrying OAM mode groups (OAM 0,1 , OAM +1,1 /OAM -1,1 , OAM +2,1 , OAM +3,1 ). Moreover, we demonstrate two data-carrying OAM mode groups multiplexing transmission over the 2.6-km MMF with low-level crosstalk free of multiple-input multiple-output digital signal processing (MIMO-DSP). The demonstrations may open up new perspectives to fiber-based OAM communication/non-communication applications using already existing conventional fibers.

  10. A Compact Trench-Assisted Multi-Orbital-Angular-Momentum Multi-Ring Fiber for Ultrahigh-Density Space-Division Multiplexing (19 Rings × 22 Modes)

    PubMed Central

    Li, Shuhui; Wang, Jian

    2014-01-01

    We present a compact (130 μm cladding diameter) trench-assisted multi-orbital-angular-momentum (OAM) multi-ring fiber with 19 rings each supporting 22 modes with 18 OAM ones. Using the high-contrast-index ring and trench designs, the trench-assisted multi-OAM multi-ring fiber (TA-MOMRF) features both low-level inter-mode crosstalk and inter-ring crosstalk within a wide wavelength range (1520 to 1630 nm), which can potentially enable Pbit/s total transmission capacity and hundreds bit/s/Hz spectral efficiency in a single TA-MOMRF. Moreover, the effective refractive index difference of even and odd fiber eigenmodes induced by the ellipticity of ring and fiber bending and their impacts on the purity of OAM mode and mode coupling/crosstalk are analyzed. It is found that high-order OAM modes show preferable tolerance to the ring ellipticity and fiber bending. The designed fiber offers favorable tolerance to both small ellipticity of ring (<−22 dB crosstalk under an ellipticity of 0.5%) and small bend radius (<−20 dB crosstalk under a bend radius of 2 cm). PMID:24458159

  11. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes

    PubMed Central

    Liu, Xueming; Han, Dongdong; Sun, Zhipei; Zeng, Chao; Lu, Hua; Mao, Dong; Cui, Yudong; Wang, Fengqiu

    2013-01-01

    Multi-wavelength lasers have widespread applications (e.g. fiber telecommunications, pump-probe measurements, terahertz generation). Here, we report a nanotube-mode-locked all-fiber ultrafast oscillator emitting three wavelengths at the central wavelengths of about 1540, 1550, and 1560 nm, which are tunable by stretching fiber Bragg gratings. The output pulse duration is around 6 ps with a spectral width of ~0.5 nm, agreeing well with the numerical simulations. The triple-laser system is controlled precisely and insensitive to environmental perturbations with <0.04% amplitude fluctuation. Our method provides a simple, stable, low-cost, multi-wavelength ultrafast-pulsed source for spectroscopy, biomedical research and telecommunications. PMID:24056500

  12. Refractive-index-sensing fiber comb using intracavity multi-mode interference fiber sensor

    NASA Astrophysics Data System (ADS)

    Oe, Ryo; Minamikawa, Takeo; Taue, Shuji; Fukano, Hideki; Nakajima, Yoshiaki; Minoshima, Kaoru; Yasui, Takeshi

    2018-02-01

    Refractive index measurement is important for evaluation of liquid materials, optical components, and bio sensing. One promising approach for such measurement is use of optical fiber sensors such as surface plasmonic resonance or multi-mode interference (MMI), which measure the change of optical spectrum resulting from the refractive index change. However, the precision of refractive index measurement is limited by the performance of optical spectrum analyzer. If such the refractive index measurement can be performed in radio frequency (RF) region in place of optical region, the measurement precision will be further improved by the frequency-standard-based RF measurement. To this end, we focus on the disturbance-to-RF conversion in a fiber optical frequency comb (OFC) cavity. Since frequency spacing frep of OFC depends on an optical cavity length nL, frep sensitively reflects the external disturbance interacted with nL. Although we previously demonstrated the precise strain measurement based on the frep measurement, the measurable physical quantity is limited to strain or temperature, which directly interacts with the fiber cavity itself. If a functional fiber sensor can be installed into the fiber OFC cavity, the measurable physical quantity will be largely expanded. In this paper, we introduce a MMI fiber sensor into a ring-type fiber OFC cavity for refractive index measurement. We confirmed the refractive-index-dependent frep shift.

  13. Multiphoton endoscopy based on a mode-filtered single-mode fiber

    NASA Astrophysics Data System (ADS)

    Moon, Sucbei; Liu, Gangjun; Chen, Zhongping

    2011-03-01

    We present a new low-nonlinearity fiber of mode-filtered large-core fiber for flexible beam delivery of intense pulsed light aiming at multi-photon endoscopy application. A multimode fiber of a large core diameter (20 μm) equips a mode filtering means in the middle of the fiber link to suppress the high-order modes selectively. A large effective core area of ~200 μm2 has been achieved at 0.8-μm and 1.0-μm bands. This is 8 times larger than the core area of a conventional SMF used for those spectral bands. Various advantages of our large-mode area fiber will be demonstrated and discussed in this report.

  14. A multi-core fiber based interferometer for high temperature sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Song; Huang, Bo; Shu, Xuewen

    2017-04-01

    In this paper, we have verified and implemented a Mach-Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.

  15. Coarse mode aerosols in the High Arctic

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  16. Refractive index sensors based on the fused tapered special multi-mode fiber

    NASA Astrophysics Data System (ADS)

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  17. MULTI-SITE FIELD EVALUATION OF CANDIDATE SAMPLERS FOR MEASURING COARSE-MODE PM

    EPA Science Inventory

    In response to expected changes to the National Ambient Air Quality Standards for particulate matter, comprehensive field studies were conducted to evaluate the performance of sampling methods for measuring coarse mode aerosols (i.e. PMc). Five separate PMc sampling approaches w...

  18. Mode-Selective Amplification in a Large Mode Area Yb-Doped Fiber Using a Photonic Lantern

    DTIC Science & Technology

    2016-05-15

    in a few mode, double- clad Yb-doped large mode area (LMA) fiber, utilizing an all-fiber photonic lantern. Amplification to multi-watt output power is...that could enable dynamic spatial mode control in high power fiber lasers . © 2016 Optical Society of America OCIS codes: (060.2320) Fiber optics...amplifiers and oscillators; (060.2340) Fiber optics components. http://dx.doi.org/10.1364/OL.41.002157 The impressive growth experienced by fiber lasers and

  19. All-fiber orbital angular momentum mode generation and transmission system

    NASA Astrophysics Data System (ADS)

    Heng, Xiaobo; Gan, Jiulin; Zhang, Zhishen; Qian, Qi; Xu, Shanhui; Yang, Zhongmin

    2017-11-01

    We proposed and demonstrated an all-fiber system for generating and transmitting orbital angular momentum (OAM) mode light. A specially designed multi-core fiber (MCF) was used to endow with guide modes different phase change and two tapered transition regions were used for providing low-loss interfaces between different fiber structures. By arranging the refractive index distribution among the multi-cores and controlling the length of MCF, which essentially change the phase difference between the neighboring cores, OAM modes with different topological charge l can be generated selectively. Through two tapered transition regions, the non-OAM mode light can be effectively injected into the MCF and the generated OAM mode light can be easily launched into OAM mode supporting fiber for long distance and high purity transmission. Such an all-fiber OAM mode generation and transmission system owns the merits of flexibility, compactness, portability, and would have practical application value in OAM optical fiber communication systems.

  20. Diode-Pumped Narrow Linewidth Multi-kW Metalized Yb Fiber Amplifier

    DTIC Science & Technology

    2016-10-01

    multi-kW Yb fiber amplifier in a bi-directional pumping configuration. Each pump outputs 2 kW in a 200 µm, 0.2 NA multi-mode fiber. Gold -coated...multi-mode instability, with 90% O-O efficiency 12 GHz Linewidth and M2 < 1.15. OCIS codes: (140.3510) Lasers , fiber; (140.3615) Lasers , ytterbium...060.2430) Fibers, single-mode. 1. INTRODUCTION Yb-doped fiber laser has experienced exponential growth over the past decade. The output power

  1. Influence of high power 405 nm multi-mode and single-mode diode laser light on the long-term stability of fused silica fibers

    NASA Astrophysics Data System (ADS)

    Gonschior, C. P.; Klein, K.-F.; Sun, T.; Grattan, K. T. V.

    2012-04-01

    As the demand for high power fiber-coupled violet laser systems increases existing problems remain. The typical power of commercially available diode lasers around 400 nm is in the order of 100 to 300 mW, depending on the type of laser. But in combination with the small core of single-mode fibers reduced spot sizes are needed for good coupling efficiencies, leading to power densities in the MW/cm2 range. We investigated the influence of 405 nm laser light irradiation on different fused silica fibers and differently treated end-faces. The effect of glued-and-polished, cleaved-and-clamped and of cleaved-and-fusion-arc-treated fiber end-faces on the damage rate and behavior are presented. In addition, effects in the deep ultra-violet were determined spectrally using newest spectrometer technology, allowing the measurement of color centers around 200 nm in small core fibers. Periodic surface structures were found on the proximal end-faces and were investigated concerning generation control parameters and composition. The used fiber types range from low-mode fiber to single-mode and polarization-maintaining fiber. For this investigation 405 nm single-mode or multi-mode diode lasers with 150 mW or 300 mW, respectively, were employed.

  2. Fiber Mode Scrambler for the Subaru Infrared Doppler Instrument (IRD)

    NASA Astrophysics Data System (ADS)

    Ishizuka, Masato; Kotani, Takayuki; Nishikawa, Jun; Kurokawa, Takashi; Mori, Takahiro; Kokubo, Tsukasa; Tamura, Motohide

    2018-06-01

    We report the results of fiber mode scrambler experiments for the Infra-Red Doppler instrument (IRD) on the Subaru 8.2-m telescope. IRD is a fiber-fed, high precision radial velocity (RV) instrument to search for exoplanets around nearby M dwarfs at near-infrared wavelengths. It is a high-resolution spectrograph with an Echelle grating. The expected RV measurement precision is ∼1 m s‑1 with a state of the art laser frequency comb for the wavelength calibration. In IRD observations, one of the most significant instrumental noise is a change of intensity distribution of multi-mode fiber exit, which degrades RV measurement precision. To stabilize the intensity distribution of fiber exit an introduction of fiber mode scrambler is mandatory. Several kinds of mode scramblers have been suggested in previous research, though it is necessary to determine the most appropriate mode scrambler system for IRD. Thus, we conducted systematic measurements of performance for a variety of mode scramblers, both static and dynamic. We tested various length multi-mode fibers, an octagonal fiber, a double fiber scrambler, and two kinds of dynamic scramblers, and their combinations. We report the performances of these mode scramblers and propose candidate mode scrambler systems for IRD.

  3. Asymmetric transmission and reflection spectra of FBG in single-multi-single mode fiber structure.

    PubMed

    Chai, Quan; Liu, Yanlei; Zhang, Jianzhong; Yang, Jun; Chen, Yujin; Yuan, Libo; Peng, Gang-Ding

    2015-05-04

    We give a comprehensive theoretical analysis and simulation of a FBG in single-multi-single mode fiber structure (FBG-in-SMS), based on the coupled mode analysis and the mode interference analysis. This enables us to explain the experimental observations, its asymmetric transmission and reflection spectra with the similar temperature responses near the spectral range of Bragg wavelengths. The transmission spectrum shift during FBG written-in process is observed and discussed. The analysis results are useful in the design of the SMS structure based sensors and filters.

  4. Fiber-based three-dimensional multi-mode interference device as efficient power divider and vector curvature sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyang; Fiebrandt, Julia; Haynes, Dionne; Sun, Kai; Madhav, Kalaga; Stoll, Andreas; Makan, Kirill; Makan, Vadim; Roth, Martin

    2018-03-01

    Three-dimensional multi-mode interference devices are demonstrated using a single-mode fiber (SMF) center-spliced to a section of polygon-shaped core multimode fiber (MMF). This simple structure can effectively generate well-localized self-focusing spots that match to the layout of a chosen multi-core fiber (MCF) as a launcher device. An optimized hexagon-core MMF can provide efficient coupling from a SMF to a 7-core MCF with an insertion loss of 0.6 dB and a power imbalance of 0.5 dB, while a square-core MMF can form a self-imaging pattern with symmetrically distributed 2 × 2, 3 × 3 or 4 × 4 spots. These spots can be directly received by a two-dimensional detector array. The device can work as a vector curvature sensor by comparing the relative power among the spots with a resolution of ∼0.1° over a 1.8 mm-long MMF.

  5. Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer.

    PubMed

    Dong, Bo; Zhou, Da-Peng; Wei, Li; Liu, Wing-Ki; Lit, John W Y

    2008-11-10

    A novel lateral force sensor based on a core-offset multi-mode fiber (MMF) interferometer is reported. High extinction ratio can be obtained by misaligning a fused cross section between the single-mode fiber (SMF) and MMF. With the variation of the lateral force applied to a short section of the MMF, the extinction ratio changes while the interference phase remains almost constant. The change of the extinction ratio is independent of temperature variations. The proposed force sensor has the advantages of temperature- and phase-independency, high extinction ratio sensitivity, good repeatability, low cost, and simple structure. Moreover, the core-offset MMF interferometer is expected to have applications in fiber filters and tunable phase-independent attenuators.

  6. Complete measurement of spatiotemporally complex multi-spatial-mode ultrashort pulses from multimode optical fibers using delay-scanned wavelength-multiplexed holography.

    PubMed

    Zhu, Ping; Jafari, Rana; Jones, Travis; Trebino, Rick

    2017-10-02

    We introduce a simple delay-scanned complete spatiotemporal intensity-and-phase measurement technique based on wavelength-multiplexed holography to characterize long, complex pulses in space and time. We demonstrate it using pulses emerging from multi-mode fiber. This technique extends the temporal range and spectral resolution of the single-frame STRIPED FISH technique without using an otherwise-required expensive ultranarrow-bandpass filter. With this technique, we measured the complete intensity and phase of up to ten fiber modes from a multi-mode fiber (normalized frequency V ≈10) over a ~3ps time range. Spatiotemporal complexities such as intermodal delay, modal dispersion, and material dispersion were also intuitively displayed by the retrieved results. Agreement between the reconstructed color movies and the monitored time-averaged spatial profiles confirms the validity to this delay-scanned STRIPED FISH method.

  7. Multi-mode optical fibers for connecting space-based spectrometers

    NASA Astrophysics Data System (ADS)

    Roberts, W. T.; Lindenmisth, C. A.; Bender, S.; Miller, E. A.; Motts, E.; Ott, M.; LaRocca, F.; Thomes, J.

    2017-11-01

    significantly smaller, less massive and less robust. Large core multi-mode optical fibers are often used to accommodate the optical connection of the two separated portions of such instrumentation. In some cases, significant throughput efficiency improvement can be realized by judiciously orienting the strands of multi-fiber cable, close-bunching them to accommodate a tight focus of the optical system on the optical side of the connection, and splaying them out linearly along a spectrometer slit on the other end. For such instrumentation to work effectively in identifying elements and molecules, and especially to produce accurate quantitative results, the spectral throughput of the optical fiber connection must be consistent over varying temperatures, over the range of motion of the optical head (and it's implied optical cable stresses), and over angle-aperture invariant of the total system. While the first two of these conditions have been demonstrated[4], spectral observations of the latter present a cause for concern, and may have an impact on future design of fiber-connected LIBS and Raman spectroscopy instruments. In short, we have observed that the shape of the spectral efficiency curve of a large multi-mode core optical fiber changes as a function of input angle.

  8. Vector nature of multi-soliton patterns in a passively mode-locked figure-eight fiber laser.

    PubMed

    Ning, Qiu-Yi; Liu, Hao; Zheng, Xu-Wu; Yu, Wei; Luo, Ai-Ping; Huang, Xu-Guang; Luo, Zhi-Chao; Xu, Wen-Cheng; Xu, Shan-Hui; Yang, Zhong-Min

    2014-05-19

    The vector nature of multi-soliton dynamic patterns was investigated in a passively mode-locked figure-eight fiber laser based on the nonlinear amplifying loop mirror (NALM). By properly adjusting the cavity parameters such as the pump power level and intra-cavity polarization controllers (PCs), in addition to the fundamental vector soliton, various vector multi-soliton regimes were observed, such as the random static distribution of vector multiple solitons, vector soliton cluster, vector soliton flow, and the state of vector multiple solitons occupying the whole cavity. Both the polarization-locked vector solitons (PLVSs) and the polarization-rotating vector solitons (PRVSs) were observed for fundamental soliton and each type of multi-soliton patterns. The obtained results further reveal the fundamental physics of multi-soliton patterns and demonstrate that the figure-eight fiber lasers are indeed a good platform for investigating the vector nature of different soliton types.

  9. Robust, low-noise, polarization-maintaining mode-locked Er-fiber laser with a planar lightwave circuit (PLC) device as a multi-functional element.

    PubMed

    Kim, Chur; Kwon, Dohyeon; Kim, Dohyun; Choi, Sun Young; Cha, Sang Jun; Choi, Ki Sun; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon

    2017-04-15

    We demonstrate a new planar lightwave circuit (PLC)-based device, integrated with a 980/1550 wavelength division multiplexer, an evanescent-field-interaction-based saturable absorber, and an output tap coupler, which can be employed as a multi-functional element in mode-locked fiber lasers. Using this multi-functional PLC device, we demonstrate a simple, robust, low-noise, and polarization-maintaining mode-locked Er-fiber laser. The measured full-width at half-maximum bandwidth is 6 nm centered at 1555 nm, corresponding to 217 fs transform-limited pulse duration. The measured RIN and timing jitter are 0.22% [10 Hz-10 MHz] and 6.6 fs [10 kHz-1 MHz], respectively. Our results show that the non-gain section of mode-locked fiber lasers can be easily implemented as a single PLC chip that can be manufactured by a wafer-scale fabrication process. The use of PLC processes in mode-locked lasers has the potential for higher manufacturability of low-cost and robust fiber and waveguide lasers.

  10. Stabilized and tunable single-longitudinal-mode erbium fiber laser employing ytterbium-doped fiber based interference filter

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Chow, Chi-Wai; Chen, Jing-Heng

    2017-02-01

    In this demonstration, to achieve stabilized and wavelength-selectable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, a short length of ytterbium-doped fiber (YDF) is utilized to serve as a spatial multi-mode interference (MMI) inside a fiber cavity for suppressing multi-longitudinal-mode (MLM) significantly. In the measurement, the output powers and optical signal to noise ratios (OSNRs) of proposed EDF ring laser are measured between -9.85 and -5.71 dBm; and 38.03 and 47.95 dB, respectively, in the tuning range of 1530.0-1560.0 nm. In addition, the output SLM and stability performance are also analyzed and discussed experimentally.

  11. "Photonic lantern" spectral filters in multi-core Fiber.

    PubMed

    Birks, T A; Mangan, B J; Díez, A; Cruz, J L; Murphy, D F

    2012-06-18

    Fiber Bragg gratings are written across all 120 single-mode cores of a multi-core optical Fiber. The Fiber is interfaced to multimode ports by tapering it within a depressed-index glass jacket. The result is a compact multimode "photonic lantern" filter with astrophotonic applications. The tapered structure is also an effective mode scrambler.

  12. A numerical analysis of GeO2-doped multi-step index single-mode fiber for stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Ren, G.; Dong, Y.; Li, H.; Xiao, S.; Wu, B.; Jian, S.

    2018-06-01

    A numerical analysis of a GeO2-doped single-mode optical fiber with a multi-step index core toward stimulated Brillouin scattering (SBS) based dual-parameter sensing applications is proposed. Adjusting the parameters in the fiber design, higher-order acoustic modes are sufficiently enhanced, making the fiber feasible for discriminative measurements of temperature and strain in the meantime. Numerical simulations indicate that the Brillouin frequency shifts and peak SBS efficiencies are strongly dependent on the doping concentration and the thickness of low-index ring in the proposed fiber. With appropriate structural and optical parameters, this fiber could support two distinct acoustic modes with comparable peak SBS efficiencies and well-spaced Brillouin frequency shifts. The sensing characteristics contributed by the dual-peak feature in the Brillouin gain spectrum are explored. Calculated accuracies of temperature and strain in simultaneous measurements can be up to 0.64 °C and 15.4 με, respectively. The proposed fiber might have potential applications for long-haul distributed dual-parameter simultaneous measurements.

  13. COARSEMAP: synthesis of observations and models for coarse-mode aerosols

    NASA Astrophysics Data System (ADS)

    Wiedinmyer, C.; Lihavainen, H.; Mahowald, N. M.; Alastuey, A.; Albani, S.; Artaxo, P.; Bergametti, G.; Batterman, S.; Brahney, J.; Duce, R. A.; Feng, Y.; Buck, C.; Ginoux, P. A.; Chen, Y.; Guieu, C.; Cohen, D.; Hand, J. L.; Harrison, R. M.; Herut, B.; Ito, A.; Losno, R.; Gomez, D.; Kanakidou, M.; Landing, W. M.; Laurent, B.; Mihalopoulos, N.; Mackey, K.; Maenhaut, W.; Hueglin, C.; Milando, C.; Miller, R. L.; Myriokefaitakis, S.; Neff, J. C.; Pandolfi, M.; Paytan, A.; Perez Garcia-Pando, C.; Prank, M.; Prospero, J. M.; Tamburo, E.; Varrica, D.; Wong, M.; Zhang, Y.

    2017-12-01

    Coarse mode aerosols influence Earth's climate and biogeochemistry by interacting with long-wave radiation, promoting ice nucleation, and contributing important elements to biogeochemical cycles during deposition. Yet coarse mode aerosols have received less emphasis in the scientific literature. Here we present first efforts to globally synthesize available mass concentration, composition and optical depth data and modeling for the coarse mode aerosols (<10 µm) in a new project called "COARSEMAP" (http://www.geo.cornell.edu/eas/PeoplePlaces/Faculty/mahowald/COARSEMAP/). We seek more collaborators who have observational data, especially including elemental or composition data, and/or who are interested in detailed modeling of the coarse mode. The goal will be publications synthesizing data with models, as well as providing synthesized results to the wider community.

  14. MIMO signal progressing with RLSCMA algorithm for multi-mode multi-core optical transmission system

    NASA Astrophysics Data System (ADS)

    Bi, Yuan; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Zhang, Qi; Wang, Yong-jun; Tian, Qing-hua; Tian, Feng; Mao, Ya-ya

    2018-01-01

    In the process of transmitting signals of multi-mode multi-core fiber, there will be mode coupling between modes. The mode dispersion will also occur because each mode has different transmission speed in the link. Mode coupling and mode dispersion will cause damage to the useful signal in the transmission link, so the receiver needs to deal received signal with digital signal processing, and compensate the damage in the link. We first analyzes the influence of mode coupling and mode dispersion in the process of transmitting signals of multi-mode multi-core fiber, then presents the relationship between the coupling coefficient and dispersion coefficient. Then we carry out adaptive signal processing with MIMO equalizers based on recursive least squares constant modulus algorithm (RLSCMA). The MIMO equalization algorithm offers adaptive equalization taps according to the degree of crosstalk in cores or modes, which eliminates the interference among different modes and cores in space division multiplexing(SDM) transmission system. The simulation results show that the distorted signals are restored efficiently with fast convergence speed.

  15. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    NASA Astrophysics Data System (ADS)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  16. Single-mode SOA-based 1kHz-linewidth dual-wavelength random fiber laser.

    PubMed

    Xu, Yanping; Zhang, Liang; Chen, Liang; Bao, Xiaoyi

    2017-07-10

    Narrow-linewidth multi-wavelength fiber lasers are of significant interests for fiber-optic sensors, spectroscopy, optical communications, and microwave generation. A novel narrow-linewidth dual-wavelength random fiber laser with single-mode operation, based on the semiconductor optical amplifier (SOA) gain, is achieved in this work for the first time, to the best of our knowledge. A simplified theoretical model is established to characterize such kind of random fiber laser. The inhomogeneous gain in SOA mitigates the mode competition significantly and alleviates the laser instability, which are frequently encountered in multi-wavelength fiber lasers with Erbium-doped fiber gain. The enhanced random distributed feedback from a 5km non-uniform fiber provides coherent feedback, acting as mode selection element to ensure single-mode operation with narrow linewidth of ~1kHz. The laser noises are also comprehensively investigated and studied, showing the improvements of the proposed random fiber laser with suppressed intensity and frequency noises.

  17. Efficient multi-mode to single-mode coupling in a photonic lantern.

    PubMed

    Noordegraaf, Danny; Skovgaard, Peter M W; Nielsen, Martin D; Bland-Hawthorn, Joss

    2009-02-02

    We demonstrate the fabrication of a high performance multi-mode (MM) to single-mode (SM) splitter or "photonic lantern", first described by Leon-Saval et al. (2005). Our photonic lantern is a solid all-glass version, and we show experimentally that this device can be used to achieve efficient and reversible coupling between a MM fiber and a number of SM fibers, when perfectly matched launch conditions into the MM fiber are ensured. The fabricated photonic lantern has a coupling loss for a MM to SM tapered transition of only 0.32 dB which proves the feasibility of the technology.

  18. Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber.

    PubMed

    Yin, Guolu; Saxena, Bhavaye; Bao, Xiaoyi

    2011-12-19

    A tunable and single longitudinal mode Er-doped fiber ring laser (SLM-EDFRL) is proposed and demonstrated based on Rayleigh backscattering (RBS) in single mode fiber-28e (SMF-28e). Theory and experimental study on formation of SLM from normal multi-mode ring laser is demonstrated. The RBS feedback in 660 m SMF-28e is the key to ensure SLM laser oscillation. This tunable SLM laser can be tuned over 1549.7-1550.18 nm with a linewidth of 2.5-3.0 kHz and a side mode suppression ratio (SMSR) of ~72 dB for electrical signal power. The tuning range is determined by the bandpass filter and gain medium used in the experiment. The laser is able to operate at S+C+L band.

  19. Characterization technique for long optical fiber cavities based on beating spectrum of multi-longitudinal mode fiber laser and beating spectrum in the RF domain

    NASA Astrophysics Data System (ADS)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-03-01

    The characterization of long fiber cavities is essential for many systems to predict the system practical performance. The conventional techniques for optical cavity characterization are not suitable for long fiber cavities due to the cavities' small free spectral ranges and due to the length variations caused by the environmental effects. In this work, we present a novel technique to characterize long fiber cavities using multi-longitudinal mode fiber laser source and RF spectrum analyzer. The fiber laser source is formed in a ring configuration, where the fiber laser cavity length is chosen to be 15 km to ensure that the free spectral range is much smaller than the free spectral range of the characterized passive fiber cavities. The method has been applied experimentally to characterize ring cavities with lengths of 6.2 m and 2.4 km. The results are compared to theoretical predictions with very good agreement.

  20. Blade tip clearance measurement of the turbine engines based on a multi-mode fiber coupled laser ranging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haotian; Duan, Fajie; Wu, Guoxiu

    2014-11-15

    The blade tip clearance is a parameter of great importance to guarantee the efficiency and safety of the turbine engines. In this article, a laser ranging system designed for blade tip clearance measurement is presented. Multi-mode fiber is utilized for optical transmission to guarantee that enough optical power is received by the sensor probe. The model of the tiny sensor probe is presented. The error brought by the optical path difference of different modes of the fiber is estimated and the length of the fiber is limited to reduce this error. The measurement range in which the optical power receivedmore » by the probe remains essentially unchanged is analyzed. Calibration experiments and dynamic experiments are conducted. The results of the calibration experiments indicate that the resolution of the system is about 0.02 mm and the range of the system is about 9 mm.« less

  1. Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm

    NASA Astrophysics Data System (ADS)

    Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning

    2016-03-01

    We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.

  2. Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Chen, W. G.; Lou, S. Q.; Feng, S. C.; Wang, L. W.; Li, H. L.; Guo, T. Y.; Jian, S. S.

    2009-11-01

    Switchable multi-wavelength fiber ring laser with an in-fiber Mach-Zehnder interferometer incorporated into the ring cavity serving as wavelength-selective filter at room temperature is demonstrated. The filter is formed by splicing a section of few-mode photonic crystal fiber (PCF) and two segments of single mode fiber (SMF) with the air-holes on the both sides of PCF intentionally collapsed in the vicinity of the splices. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-, dual- and triple-wavelength lasing operations by exploiting polarization hole burning (PHB) effect.

  3. Sensitivity of aerosol radiative forcing efficiency to the coarse mode contributions across aerosol regimes

    NASA Astrophysics Data System (ADS)

    McComiskey, A. C.; Telg, H.; Sheridan, P. J.; Kassianov, E.

    2017-12-01

    The coarse mode contribution to the aerosol radiative effect in a range of clean and turbid aerosol regimes has not been well quantified. While the coarse-mode radiative effect in turbid conditions is generally assumed to be consequential, the effect in clean conditions has likely been underestimated. We survey ground-based in situ measurements of the coarse mode fraction of aerosol optical properties measured around the globe over the past 20 years by the DOE Atmospheric Radiation Measurement Facility and the NOAA Global Monitoring Division. The aerosol forcing efficiency is presented, allowing an evaluation of where the aerosol coarse mode might be climatologically significant.

  4. Nonlinear pulse shaping and polarization dynamics in mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Boscolo, Sonia; Sergeyev, Sergey V.; Mou, Chengbo; Tsatourian, Veronika; Turitsyn, Sergei; Finot, Christophe; Mikhailov, Vitaly; Rabin, Bryan; Westbrook, Paul S.

    2014-03-01

    We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fiber lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new types of vector solitons with processing states of polarization for multi-pulse and tightly bound-state soliton (soliton molecule) operations in a carbon nanotube (CNT) mode-locked fiber laser with anomalous dispersion cavity.

  5. Single-mode fiber laser based on core-cladding mode conversion.

    PubMed

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  6. Multi-parameter fiber optic sensors based on fiber random grating

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi

    2017-04-01

    Two novel configurations of multi-parameter fiber-optic sensing systems based on the fiber random grating are reported. The fiber random grating is fabricated through femtosecond laser induced refractive index modification over a 10cm standard telecom single mode fiber. In one configuration, the reflective spectrum of the fiber random grating is directly detected and a wavelength-division spectral cross-correlation algorithm is adopted to extract the spectral shifts for simultaneous measurement of temperature, axial strain, and surrounding refractive index. In the other configuration, a random fiber ring laser is constructed by incorporating the random feedback from the random grating. Numerous polarization-dependent spectral filters are formed along the random grating and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which enables a high-fidelity multi-parameter sensing scheme by monitoring the spectral shifts of the lasing lines. Without the need of phase mask for fabrication and with the high physical strength, the random grating based sensors are much simpler and more compact, which could be potentially an excellent alternative for liquid medical sample sensing in biomedical and biochemical applications.

  7. Mid-infrared performance of single mode chalcogenide fibers

    NASA Astrophysics Data System (ADS)

    Cook, Justin; Sincore, Alex; Tan, Felix; El Halawany, Ahmed; Riggins, Anthony; Shah, Lawrence; Abouraddy, Ayman F.; Richardson, Martin C.; Schepler, Kenneth L.

    2018-02-01

    Due to the intrinsic absorption edge in silica near 2.4 μm, more exotic materials are required to transmit laser power in the IR such as fluoride or chalcogenide glasses (ChGs). In particular, ChG fibers offer broad IR transmission with low losses < 1 dB/m. Here, we report on the performance of in-house drawn multi-material chalcogenide fibers at four different infrared wavelengths: 2053 nm, 2520 nm and 4550 nm. Polymer clad ChG fibers were drawn with 12.3 μm and 25 μm core diameters. Testing at 2053 nm was accomplished using a > 15 W, CW Tm:fiber laser. Power handling up to 10.2 W with single mode beam quality has been demonstrated, limited only by the available Tm:fiber output power. Anti-reflective coatings were successfully deposited on the ChG fiber facets, allowing up to 90.6% transmission with 12.2 MW/cm2 intensity on the facet. Single mode guidance at 4550 nm was also demonstrated using a quantum cascade laser (QCL). A custom optical system was constructed to efficiently couple the 0.8 NA QCL radiation into the 0.2 NA ChG fiber, allowing for a maximum of 78% overlap between the QCL radiation and fundamental mode of the fiber. With an AR-coated, 25 μm core diameter fiber, >50 mW transmission was demonstrated with > 87% transmission. Finally, we present results on fiber coupling from a free space Cr:ZnSe resonator at 2520 nm.

  8. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission.

    PubMed

    Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko

    2013-11-04

    We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.

  9. Power Scaling Fiber Amplifiers Using Very-Large-Mode-Area Fibers

    DTIC Science & Technology

    2016-02-23

    fiber lasers are limited to below 1kW due to limited mode size and thermal issues, particularly thermal mode instability (TMI). Two comprehensive models...accurately modeling very- large-mode-area fiber amplifiers while simultaneously including thermal lensing and TMI. This model was applied to investigate...expected resilience to TMI. 15. SUBJECT TERMS Fiber amplifier, high power laser, thermal mode instability, large-mode-area fiber, ytterbium-doped

  10. Single-mode annular chirally-coupled core fibers for fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali

    2018-03-01

    Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.

  11. Multi-kW single fiber laser based on an extra large mode area fiber design

    NASA Astrophysics Data System (ADS)

    Langner, Andreas; Such, Mario; Schötz, Gerhard; Just, Florian; Leich, Martin; Schwuchow, Anka; Grimm, Stephan; Zimer, Hagen; Kozak, Marcin; Wedel, Björn; Rehmann, Georg; Bachert, Charley; Krause, Volker

    2012-02-01

    The quality of Yb-doped fused bulk silica produced by sintering of Yb-doped fused silica granulates has improved greatly in the past five years [1 - 4]. In particular, the refractive index and doping level homogeneity of such materials are excellent and we achieved excellent background fiber attenuation of the active core material down to about 20 dB/km at 1200 nm. The improvement of the Yb-doped fused bulk silica has enabled the development of multi-kW fiber laser systems based on a single extra large multimode laser fiber (XLMA fiber). When a single active fiber is used in combination with the XLMA multimode fiber of 1200 μm diameter simple and robust high power fiber laser setups without complex fiber coupling and fiber combiner systems become possible. In this papper, we will discuss in detail the development of the core material based on Yb-doped bulk silica and the characterization of Yb-doped fibers with different core compositions. We will also report on the excellent performance of a 4 kW fiber laser based on a single XLMA-fiber and show the first experimental welding results of steel sheets achieved with such a laser.

  12. Long distance transmission in few-mode fibers.

    PubMed

    Yaman, Fatih; Bai, Neng; Zhu, Benyuan; Wang, Ting; Li, Guifang

    2010-06-07

    Using multimode fibers for long-haul transmission is proposed and demonstrated experimentally. In particular few-mode fibers (FMFs) are demonstrated as a good compromise since they are sufficiently resistant to mode coupling compared to standard multimode fibers but they still can have large core diameters compared to single-mode fibers. As a result these fibers can have significantly less nonlinearity and at the same time they can have the same performance as single-mode fibers in terms of dispersion and loss. In the absence of mode coupling it is possible to use these fibers in the single-mode operation where all the data is carried in only one of the spatial modes throughout the fiber. It is shown experimentally that the single-mode operation is achieved simply by splicing single-mode fibers to both ends of a 35-km-long dual-mode fiber at 1310 nm. After 35 km of transmission, no modal dispersion or excess loss was observed. Finally the same fiber is placed in a recirculating loop and 3 WDM channels each carrying 6 Gb/s BPSK data were transmitted through 1050 km of the few-mode fiber without modal dispersion.

  13. Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics.

    PubMed

    Alcusa-Sáez, E; Díez, A; Andrés, M V

    2016-03-07

    Acousto-optic interaction in optical fibers is exploited for the accurate and broadband characterization of two-mode optical fibers. Coupling between LP 01 and LP 1m modes is produced in a broadband wavelength range. Difference in effective indices, group indices, and chromatic dispersions between the guided modes, are obtained from experimental measurements. Additionally, we show that the technique is suitable to investigate the fine modes structure of LP modes, and some other intriguing features related with modes' cut-off.

  14. Multimode fiber devices with single-mode performance

    NASA Astrophysics Data System (ADS)

    Leon-Saval, S. G.; Birks, T. A.; Bland-Hawthorn, J.; Englund, M.

    2005-10-01

    A taper transition can couple light between a multimode fiber and several single-mode fibers. If the number of single-mode fibers matches the number of spatial modes in the multimode fiber, the transition can have low loss in both directions. This enables the high performance of single-mode fiber devices to be attained in multimode fibers. We report an experimental proof of concept by using photonic crystal fiber techniques to make the transitions, demonstrating a multimode fiber filter with the transmission spectrum of a single-mode fiber grating.

  15. All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings.

    PubMed

    Zhang, W L; Ma, R; Tang, C H; Rao, Y J; Zeng, X P; Yang, Z J; Wang, Z N; Gong, Y; Wang, Y S

    2015-07-01

    An all-optical method to control the lasing modes of Er-doped random fiber lasers (RFLs) is proposed and demonstrated. In the RFL, an Er-doped fiber (EDF) recoded with randomly separated fiber Bragg gratings (FBG) is used as the gain medium and randomly distributed reflectors, as well as the controllable element. By combining random feedback of the FBG array and Fresnel feedback of a cleaved fiber end, multi-mode coherent random lasing is obtained with a threshold of 14 mW and power efficiency of 14.4%. Moreover, a laterally-injected control light is used to induce local gain perturbation, providing additional gain for certain random resonance modes. As a result, active mode selection of the RFL is realized by changing locations of the laser cavity that is exposed to the control light.

  16. Climatological Aspects of the Optical Properties of Fine/Coarse Mode Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Sinyuk, A.; Pinker, R. T.; Goloub, P.; Chen, H.; Chatenet, B.; Li, Z.; Singh, R. P.; Tripathi, S.N.; hide

    2010-01-01

    Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD.

  17. Fiber cavities with integrated mode matching optics.

    PubMed

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  18. Multi-element fiber technology for space-division multiplexing applications.

    PubMed

    Jain, S; Rancaño, V J F; May-Smith, T C; Petropoulos, P; Sahu, J K; Richardson, D J

    2014-02-24

    A novel technological approach to space division multiplexing (SDM) based on the use of multiple individual fibers embedded in a common polymer coating material is presented, which is referred to as Multi-Element Fiber (MEF). The approach ensures ultralow crosstalk between spatial channels and allows for cost-effective ways of realizing multi-spatial channel amplification and signal multiplexing/demultiplexing. Both the fabrication and characterization of a passive 3-element MEF for data transmission, and an active 5-element erbium/ytterbium doped MEF for cladding-pumped optical amplification that uses one of the elements as an integrated pump delivery fiber is reported. Finally, both components were combined to emulate an optical fiber network comprising SDM transmission lines and amplifiers, and illustrate the compatibility of the approach with existing installed single-mode WDM fiber systems.

  19. A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser

    NASA Astrophysics Data System (ADS)

    Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.

    2018-05-01

    A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.

  20. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    PubMed Central

    Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented. PMID:23112608

  1. Few-mode fiber, splice and SDM component characterization by spatially-diverse optical vector network analysis.

    PubMed

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner; Sakaguchi, Jun; Olmos, Juan José Vegas; Awaji, Yoshinari; Monroy, Idelfonso Tafur; Wada, Naoya

    2017-09-18

    This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.

  2. Low-bending loss and single-mode operation in few-mode optical fiber

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.

  3. Using multi-ring structure for suppression of mode competition in stable single-longitudinal-mode erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Huang, Tzu-Jung; Yang, Zi-Qing; Chow, Chi-Wai

    2017-12-01

    In this demonstration, a stable and tunable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser with multiple-ring configuration is proposed and investigated. The proposed compound-ring structure can create different free spectrum ranges (FSRs) to result in the mode-filter effect based on the Vernier effect for suppressing the other modes. Additionally, the output stabilization of power and wavelength in the proposed EDF multiple-ring laser are also discussed.

  4. Passively stabilized 215-W monolithic CW LMA-fiber laser with innovative transversal mode filter

    NASA Astrophysics Data System (ADS)

    Stutzki, Fabian; Jauregui, Cesar; Voigtländer, Christian; Thomas, Jens U.; Limpert, Jens; Nolte, Stefan; Tünnermann, Andreas

    2010-02-01

    We report on the development of a high power monolithic CW fiber oscillator with an output power of 215 W in a 20μm core diameter few-mode Large Mode Area fiber (LMA). The key parameters for stable operation are reviewed. With these optimizations the root mean square of the output power fluctuations can be reduced to less than 0.5 % on a timescale of 20 s, which represents an improvement of more than a factor 5 over a non-optimized fiber laser. With a real-time measurement of the mode content of the fiber laser it can be shown that the few-mode nature of LMA fibers is the main factor for the residual instability of our optimized fiber laser. The root of the problem is that Fiber Bragg Gratings (FBGs) written in multimode fibers exhibit a multi-peak reflexion spectrum in which each resonance corresponds to a different transversal mode. This reflectivity spectrum stimulates multimode laser operation, which results in power and pointing instabilities due to gain competition between the different transversal modes . To stabilize the temporal and spatial behavior of the laser output, we propose an innovative passive in-fiber transversal mode filter based on modified FBG-Fabry Perot structure. This structure provides different reflectivities to the different transversal modes according to the transversal distribution of their intensity profile. Furthermore, this structure can be completely written into the active fiber using fs-laser pulses. Moreover, this concept scales very well with the fiber core diameter, which implies that there is no performance loss in fibers with even larger cores. In consequence this structure is inherently power scalable and can, therefore, be used in kW-level fiber laser systems.

  5. Experimental study of multi-pulse generation in a full polarization-controlled passively mode-locked Er-fiber laser

    NASA Astrophysics Data System (ADS)

    Santiago-Hernández, H.; Bracamontes-Rodríguez, Y. E.; Beltrán-Pérez, G.; Armas-Rivera, I.; Rodríguez-Morales, L. A.; Pottiez, O.; Ibarra-Escamilla, B.; Durán-Sánchez, M.; Hernández-Arriaga, M. V.; Kuzin, E. A.

    2018-02-01

    We report the dynamics of multi-pulse in a ring cavity passively mode-locked fiber laser with a strict control of the polarization state. We study the relation between the polarization state of the pulses propagating in the cavity and the regimes of generation. We have found that small ellipticities, the laser generates one bunch of pulses in the cavity, while at higher ellipticities the laser generates multiple bunches. At constant ellipticity we rotated the polarization azimuth and observed a regime transition from the generation of a bunch of solitons to that of noise-like pulses (NLP).

  6. Highly stable multi-wavelength erbium-doped fiber linear laser based on modal interference

    NASA Astrophysics Data System (ADS)

    Herrera-Piad, L. A.; Jauregui-Vazquez, D.; Lopez-Dieguez, Y.; Estudillo-Ayala, J. M.; Hernandez-Garcia, J. C.; Sierra-Hernandez, J. M.; Bianchetti, M.; Rojas-Laguna, R.

    2018-03-01

    We report a linear fiber laser cavity based on an all-fiber Fabry-Perot interferometer and bi-tapered optical fiber for multi-wavelength emission generation. Curvature and strain are used to operate the laser system and the number of lines as well, the emission regions are stronger related to the physical effect applied, due to the phase alteration between the multiple fiber optic modes involved. The original laser emissions present zero wavelength variations, minimal power fluctuations and small spacing mode (1 nm). Additionally, a nonlinear fiber was employed trying to improve the performance of the multiple lasing lines. This system offers a low implementation cost, compactness and good laser parameters.

  7. Fused-fiber-based 3-dB mode insensitive power splitters for few-mode optical fiber networks

    NASA Astrophysics Data System (ADS)

    Ren, Fang; Huang, Xiaoshan; Wang, Jianping

    2017-11-01

    We propose a 3-dB mode insensitive power splitter (MIPS) capable of broadcasting and combining optical signals. It is fabricated with two identical few-mode fibers (FMFs) by a heating and pulling technique. The mode-dependent power transfer characteristic as a function of pulling length is investigated. For exploiting its application, we experimentally demonstrate both FMF-based transmissive and reflective star couplers consisting of multiple 3-dB mode insensitive power splitters, which perform broadcasting and routing signals in few-mode optical fiber networks such as mode-division multiplexing (MDM) local area networks using star topology. For experimental demonstration, optical on-off keying signals at 10 Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. Measured bit error ratio results show reasonable power penalties. It is found that a reflective star coupler in MDM networks can reduce half of the total amount of required fibers comparing to that of a transmissive star coupler. This MIPS is more efficient, more reliable, more flexible, and more cost-effective for future expansion and application in few-mode optical fiber networks.

  8. Optimization of few-mode-fiber based mode converter for mode division multiplexing transmission

    NASA Astrophysics Data System (ADS)

    Xie, Yiwei; Fu, Songnian; Zhang, Minming; Tang, M.; Shum, P.; Liu, Deming

    2013-10-01

    Few-mode-fiber (FMF) based mode division multiplexing (MDM) is a promising technique to further increase the transmission capacity of single mode fibers. We propose and numerically investigate a fiber-optical mode converter (MC) using long period gratings (LPGs) fabricated on the FMF by point-by-point CO2 laser inscription technique. In order to precisely excite three modes (LP01, LP11, and LP02), both untilted LPG and tilted LPG are comprehensively optimized through the length, index modulation depth, and tilt angle of the LPG in order to achieve a mode contrast ratio (MCR) of more than 20 dB with less wavelength dependence. It is found that the proposed MCs have obvious advantages of high MCR, low mode crosstalk, easy fabrication and maintenance, and compact size.

  9. Multi-Wavelength Mode-Locked Laser Arrays for WDM Applications

    NASA Technical Reports Server (NTRS)

    Davis, L.; Young, M.; Dougherty, D.; Keo, S.; Muller, R.; Maker, P.

    1998-01-01

    Multi-wavelength arrays of colliding pulse mode-locked (CPM) lasers have been demonstrated for wavelength division multiplexing (WDM) applications. The need for increased bandwidth is driving the development of both increased speed in time division multiplexing (TDM) and more channels in WDM for fiber optic communication systems.

  10. Single mode variable-sensitivity fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.; Fogg, B. R.; Gunther, M. F.; Claus, R. O.

    1992-01-01

    We review spatially-weighted optical fiber sensors that filter specific vibration modes from one dimensional beams placed in clamped-free and clamped-clamped configurations. The sensitivity of the sensor is varied along the length of the fiber by tapering circular-core, dual-mode optical fibers. Selective vibration mode suppression on the order of 10 dB was obtained. We describe experimental results and propose future extensions to single mode sensor applications.

  11. Modeling of mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Shaulov, Gary

    This thesis presents the results of analytical and numerical simulations of mode-locked fiber lasers and their components: multiple quantum well saturable absorbers and nonlinear optical loop mirrors. Due to the growing interest in fiber lasers as a compact source of ultrashort pulses there is a need to develop a full understanding of the advantages and limitations of the different mode-locked techniques. The mode-locked fiber laser study performed in this thesis can be used to optimize the design and performance of mode-locked fiber laser systems. A group at Air Force Research Laboratory reported a fiber laser mode-locked by multiple quantum well (MQW) saturable absorber with stable pulses generated as short as 2 ps [21]. The laser cavity incorporates a chirped fiber Bragg grating as a dispersion element; our analysis showed that the laser operates in the soliton regime. Soliton perturbation theory was applied and conditions for stable pulse operation were investigated. Properties of MQW saturable absorbers and their effect on cavity dynamics were studied and the cases of fast and slow saturable absorbers were considered. Analytical and numerical results are in a good agreement with experimental data. In the case of the laser cavity with a regular fiber Bragg grating, the properties of MQW saturable absorbers dominate the cavity dynamics. It was shown that despite the lack of a soliton shaping mechanism, there is a regime in parameter space where stable or quasi-stable solitary waves solutions can exist. Further a novel technique of fiber laser mode-locking by nonlinear polarization rotation was proposed. Polarization rotation of vector solitons was simulated in a birefringent nonlinear optical loop mirror (NOLM) and the switching characteristics of this device was studied. It was shown that saturable absorber-like action of NOLM allows mode-locked operation of the two fiber laser designs. Laser cavity designs were proposed: figure-eight-type and sigma-type cavity.

  12. All-fiber mode converter based on superimposed long period fiber gratings

    NASA Astrophysics Data System (ADS)

    Xue, Yan-ru; Bi, Wei-hong; Jin, Wa; Tian, Peng-fei; Jiang, Peng; Liu, Qiang; Jin, Yun

    2018-03-01

    In this paper, a novel broadband all-fiber mode converter is proposed and experimentally demonstrated. Through writing a pair of superimposed long period fiber gratings (SLPFGs) in tow-mode fiber (TMF) with a CO2 laser, the mode converter can realize the conversion from LP01 to LP11 owing to the phase matching condition. Numerical and experimental results show that the bandwidth of this mode converter is 3 times broader than that of a single grating converter. The converter has low loss, high coupling efficiency, small size and is easy to fabricate, so it can be widely used in mode-division multiplexing.

  13. 40nm tunable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin

    2014-12-01

    A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.

  14. Fiber-guided modes conversion using superposed helical gratings

    NASA Astrophysics Data System (ADS)

    Ma, Yancheng; Fang, Liang; Wu, Guoan

    2017-03-01

    Optical fibers can support various modal forms, including vector modes, linear polarization (LP) modes, and orbital angular momentum (OAM) modes, etc. The modal correlation among these modes is investigated via Jones matrix, associated with polarization and helical phase corresponding to spin angular momentum (SAM) and OAM of light, respectively. We can generate different modal forms by adopting superposed helical gratings (SHGs) with opposite helix orientations. Detailed analysis and discussion on mode conversion is given as for mode coupling in optical fibers with both low and high contrast index, respectively. Our study may deepen the understanding for various fiber-guided modes and mode conversion among them via fiber gratings.

  15. Erbium-doped fiber ring laser based on few-mode-singlemode-few-mode fiber structure for refractive index measurement

    NASA Astrophysics Data System (ADS)

    Liu, Jingxuan; Wang, Muguang; Liang, Xiao; Dong, Yue; Xiao, Han; Jian, Shuisheng

    2017-08-01

    A novel Erbium-doped fiber ring cavity laser sensor for refractive index (RI) measurement based on a special designed few-mode-singlemode-few-mode structure is proposed and experimentally demonstrated. The few-mode fiber is a home-made concentric ring core fiber (CRCF) which can only support two scalar modes. Thus a stable mode interference occurs which functions as a sensing head and band-pass filter to select the lasing wavelength simultaneously. A sensitivity of -45.429 nm/RIU is obtained in the range of 1.333-1.363. High optical signal to noise ratio (OSNR) of ∼45 dB and narrow 3-dB bandwidth of ∼0.1 nm indicate that the fiber ring laser sensing system has a high resolution and accuracy RI measurement.

  16. Multi-resonance peaks fiber Bragg gratings based on largely-chirped structure

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Zhang, Xuan-Yu; Wei, Wei-Hua; Chen, Yong-Yi; Qin, Li; Ning, Yong-Qiang; Yu, Yong-Sen

    2018-04-01

    A composite fiber Bragg grating (FBG) with multi-resonance peaks (MRPs) has been realized by using femtosecond (fs) laser point-by-point inscription in single-mode fiber. This device contains a segment of largely-chirped gratings with the ultrahigh chirp coefficients and a segment of uniform high-order gratings. The observed MRPs are distributed in an ultra-broadband wavelength range from 1200 nm to 1700 nm in the form of quasi-period or multi-peak-group. For the 8th-order MRPs-FBG, we studied the axial strain and high-temperature sensing characteristics of different resonance peaks experimentally. Moreover, we have demonstrated a multi-wavelength fiber lasers with three-wavelength stable output by using a 9th-order MRPs-FBG as the wavelength selector. This work is significant for the fabrication and functionalization of FBGs with complicated spectra characteristics.

  17. Free-space to few-mode-fiber coupling under atmospheric turbulence.

    PubMed

    Zheng, Donghao; Li, Yan; Chen, Erhu; Li, Beibei; Kong, Deming; Li, Wei; Wu, Jian

    2016-08-08

    High speed free space optical communication (FSOC) has taken advantages of components developed for fiber-optic communication systems. Recently, with the rapid development of few-mode-fiber based fiber communication systems, few-mode-fiber components might further promote their applications in FSOC system. The coupling efficiency between free space optical beam and few-mode fibers under atmospheric turbulence effect are investigated in this paper. Both simulation and experimental results show that, compared with single-mode fiber, the coupling efficiencies for a 2-mode fiber and a 4-mode fiber are improved by ~4 dB and ~7 dB respectively in the presence of medium moderate and strong turbulence. Compared with single-mode fiber, the relative standard deviation of received power is restrained by 51% and 66% respectively with a 4-mode and 2-mode fiber.

  18. Cross mode modulation in multimode fibers.

    PubMed

    Kroushkov, Dimitar I; Rademacher, Georg; Petermann, Klaus

    2013-05-15

    We show that Kerr nonlinearity induced intermodal power transfer in a particular mode group of a multimode fiber can be formulated by the same type of equation used to describe the effect of cross polarization modulation in single-mode fibers.

  19. Global measurements of coarse-mode aerosol size distributions - first results from the Atmospheric Tomography Mission (ATom)

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Dollner, M.; Schuh, H.; Brock, C. A.; Bui, T. V.; Gasteiger, J.; Froyd, K. D.; Schwarz, J. P.; Spanu, A.; Murphy, D. M.; Katich, J. M.; Kupc, A.; Williamson, C.

    2016-12-01

    Although coarse-mode aerosol (>1 µm diameter), composed mainly of mineral dust and sea-salt, is highly abundant over large regions of the world, these particles form a particularly poorly understood and characterized subset of atmospheric aerosol constituents. The NASA-sponsored Atmospheric Tomography Mission (ATom) is an unprecedented field program that investigates how human emissions affect air quality and climate change. ATom provides a singular opportunity to characterize the global coarse-mode size distribution by continuously profiling between 0.2 and 13 km with the NASA DC-8 research aircraft while traveling from the high Arctic down south the middle of the Pacific Ocean, to the Southern Ocean and back north over the Atlantic Ocean basin in four seasons. For ATom, the DC-8 aircraft has been equipped with multiple instruments to observe the composition of the air. The coarse mode and cloud particle size distribution is measured in-situ with a Cloud, Aerosol, and Precipitation Spectrometer (CAPS) mounted under the wing of the DC-8 research aircraft. The CAPS consists of an optical spectrometer providing size distributions in the size range between 0.5 and 50 µm and an imager detecting number concentration, size and shape of particles between 15 and 930 µm diameter. Early ATom flights indicated complicated vertical layering: over the sea, we regularly observed sea salt aerosol which extended from the ground up to 0.6-1 km altitude. In addition - depending on the location of the measurements - we frequently found layers with coarse mode aerosol originating from deserts and biomass burning aerosol aloft. In this study, we will present first results of coarse mode aerosol observations from the entire first ATom deployment in summer 2016. We will show vertical profiles of coarse mode aerosol number concentration, discuss their interhemispheric differences, and look into the question how frequently coarse-mode aerosol is externally mixed with submicron black

  20. Six mode selective fiber optic spatial multiplexer.

    PubMed

    Velazquez-Benitez, A M; Alvarado, J C; Lopez-Galmiche, G; Antonio-Lopez, J E; Hernández-Cordero, J; Sanchez-Mondragon, J; Sillard, P; Okonkwo, C M; Amezcua-Correa, R

    2015-04-15

    Low-loss all-fiber photonic lantern (PL) mode multiplexers (MUXs) capable of selectively exciting the first six fiber modes of a multimode fiber (LP01, LP11a, LP11b, LP21a, LP21b, and LP02) are demonstrated. Fabrication of the spatial mode multiplexers was successfully achieved employing a combination of either six step or six graded index fibers of four different core sizes. Insertion losses of 0.2-0.3 dB and mode purities above 9 dB are achieved. Moreover, it is demonstrated that the use of graded index fibers in a PL eases the length requirements of the adiabatic tapered transition and could enable scaling to large numbers.

  1. Rayleigh scattering in few-mode optical fibers.

    PubMed

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  2. Variable optical attenuator and dynamic mode group equalizer for few mode fibers.

    PubMed

    Blau, Miri; Weiss, Israel; Gerufi, Jonathan; Sinefeld, David; Bin-Nun, Moran; Lingle, Robert; Grüner-Nielsen, Lars; Marom, Dan M

    2014-12-15

    Variable optical attenuation (VOA) for three-mode fiber is experimentally presented, utilizing an amplitude spatial light modulator (SLM), achieving up to -28dB uniform attenuation for all modes. Using the ability to spatially vary the attenuation distribution with the SLM, we also achieve up to 10dB differential attenuation between the fiber's two supported mode group (LP₀₁ and LP₁₁). The spatially selective attenuation serves as the basis of a dynamic mode-group equalizer (DME), potentially gain-balancing mode dependent optical amplification. We extend the experimental three mode DME functionality with a performance analysis of a fiber supporting 6 spatial modes in four mode groups. The spatial modes' distribution and overlap limit the available dynamic range and performance of the DME in the higher mode count case.

  3. Switchable multi-wavelength fiber laser based on modal interference

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Jiang, Sun; Qi, Yan-Hui; Kang, Ze-Xin; Jian, Shui-Sheng

    2015-08-01

    A comb fiber filter based on modal interference is proposed and demonstrated in this paper. Here two cascaded up-tapers are used to excite the cladding mode, and a core-offset jointing point is used to act as an interference component. Experimental results show that this kind of structure possesses a comb filter property in a range of the C-band. The measured extinction ratio is better than 12 dB with an insertion loss of about 11 dB. A switchable multi-wavelength erbium-doped fiber laser based on this novel comb filter is demonstrated. By adjusting the polarization controller, the output laser can be switched among single-, dual-, and three-wavelengths with a side mode suppression ratio of better than 45 dB.

  4. 4 Gbps impulse radio (IR) ultra-wideband (UWB) transmission over 100 meters multi mode fiber with 4 meters wireless transmission.

    PubMed

    Jensen, Jesper Bevensee; Rodes, Roberto; Caballero, Antonio; Yu, Xianbin; Gibbon, Timothy Braidwood; Monroy, Idelfonso Tafur

    2009-09-14

    We present experimental demonstrations of in-building impulse radio (IR) ultra-wideband (UWB) link consisting of 100 m multi mode fiber (MMF) and 4 m wireless transmission at a record 4 Gbps, and a record 8 m wireless transmission at 2.5 Gbps. A directly modulated vertical cavity surface emitting laser (VCSEL) was used for the generation of the optical signal. 8 m at 2.5 Gbps corresponds to a bit rate--distance product of 20; the highest yet reported for wireless IR-UWB transmission.

  5. Topological Edge Floppy Modes in Disordered Fiber Networks

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Zhang, Leyou; Mao, Xiaoming

    2018-02-01

    Disordered fiber networks are ubiquitous in a broad range of natural (e.g., cytoskeleton) and manmade (e.g., aerogels) materials. In this Letter, we discuss the emergence of topological floppy edge modes in two-dimensional fiber networks as a result of deformation or active driving. It is known that a network of straight fibers exhibits bulk floppy modes which only bend the fibers without stretching them. We find that, interestingly, with a perturbation in geometry, these bulk modes evolve into edge modes. We introduce a topological index for these edge modes and discuss their implications in biology.

  6. Extending Mode Areas of Single-mode All-solid Photonic Bandgap Fibers

    DTIC Science & Technology

    2015-04-02

    T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal ...Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006). 10. L. Dong, T. Wu, H. McKay, L. Fu...progress in mode area scaling of optical fibers. One notable area is in photonic crystal fibers (PCF) [3–5, 8, 9]. The short straight PCF rods used in

  7. Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX

    NASA Astrophysics Data System (ADS)

    Ren, Fang; Li, Juhao; Wu, Zhongying; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-01-01

    We propose three-mode mode-division-multiplexing passive optical network (MDM-PON) based on low mode-crosstalk few-mode fiber (FMF) and all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). The FMF with step-index profile is designed and fabricated for effectively three-independent-spatial-mode transmission and low mode-crosstalk for MDM-PON transmission. The all-fiber mode MUX/DEMUX are composed of cascaded mode selective couplers (MSCs), which simultaneously multiplex or demultiplex multiple modes. Based on the low mode-crosstalk of the FMF and all-fiber mode MUX/DEMUX, each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing a different optical linearly polarized (LP) spatial mode in MDM-PON system. We experimentally demonstrate MDM-PON transmission of three independent-spatial-modes over 12-km FMF with 10-Gb/s optical on-off keying (OOK) signal and direct detection.

  8. Stable multi-wavelength fiber lasers for temperature measurements using an optical loop mirror.

    PubMed

    Diaz, Silvia; Socorro, Abian Bentor; Martínez Manuel, Rodolfo; Fernandez, Ruben; Monasterio, Ioseba

    2016-10-10

    In this work, two novel stable multi-wavelength fiber laser configurations are proposed and demonstrated by using a spool of a single-mode fiber as an optical loop mirror and one or two fiber ring cavities, respectively. The lasers are comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters. The influence of the length of the spool of fiber on the laser stability both in terms of wavelength and laser output power was investigated. An application for temperature measurement is also shown.

  9. Special purpose modes in photonic band gap fibers

    DOEpatents

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  10. Vector mode conversion based on tilted fiber Bragg grating in ring-core fibers

    NASA Astrophysics Data System (ADS)

    Mi, Yuean; Ren, Guobin; Gao, Yixiao; Li, Haisu; Zhu, Bofeng; Liu, Yu

    2018-03-01

    We propose a vector mode conversion approach based on tilted fiber Bragg grating (TFBG) written in ring-core fiber with effective separation of eigenmodes. The mode coupling properties of TFBG are numerically investigated. It is shown that under the constraint of phase matching, the conversion of high-order vector modes could be achieved at specific wavelengths. Moreover, the polarization of incident light and tilt angle of TFBG play critical roles in mode coupling process. The proposed TFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for fibers based OAM beam generation and fiber lasers with vortex beams output.

  11. Rayleigh scattering in few-mode optical fibers

    PubMed Central

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-01-01

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation. PMID:27775003

  12. Mode coupling at connectors in mode-division multiplexed transmission over few-mode fiber.

    PubMed

    Vuong, Jordi; Ramantanis, Petros; Frignac, Yann; Salsi, Massimiliano; Genevaux, Philippe; Bendimerad, Djalal F; Charlet, Gabriel

    2015-01-26

    In mode-division multiplexed (MDM) transmission systems, mode coupling is responsible for inter-modal crosstalk. We consider the transmission of modulated signals over a few-mode fiber (FMF) having low mode coupling and large differential mode group delay in the presence of a non-ideal fiber connection responsible for extra mode coupling. In this context, we first analytically derive the coupling matrix of the multimode connector and we numerically study the dependence of the matrix coefficients as a function of the butt-joint connection characteristics. The numerical results are then validated through an experiment with a five-mode setup. Finally, through numerical simulations, we assess the impact of the connector on the signal quality investigating different receiver digital signal processing (DSP) schemes.

  13. Fiber Loop Ringdown — a Time-Domain Sensing Technique for Multi-Function Fiber Optic Sensor Platforms: Current Status and Design Perspectives

    PubMed Central

    Wang, Chuji

    2009-01-01

    Fiber loop ringdown (FLRD) utilizes an inexpensive telecommunications light source, a photodiode, and a section of single-mode fiber to form a uniform fiber optic sensor platform for sensing various quantities, such as pressure, temperature, strain, refractive index, chemical species, biological cells, and small volume of fluids. In FLRD, optical losses of a light pulse in a fiber loop induced by changes in a quantity are measured by the light decay time constants. FLRD measures time to detect a quantity; thus, FLRD is referred to as a time-domain sensing technique. FLRD sensors have near real-time response, multi-pass enhanced high-sensitivity, and relatively low cost (i.e., without using an optical spectral analyzer). During the last eight years since the introduction of the original form of fiber ringdown spectroscopy, there has been increasing interest in the FLRD technique in fiber optic sensor developments, and new application potential is being explored. This paper first discusses the challenging issues in development of multi-function, fiber optic sensors or sensor networks using current fiber optic sensor sensing schemes, and then gives a review on current fiber optic sensor development using FLRD technique. Finally, design perspectives on new generation, multi-function, fiber optic sensor platforms using FLRD technique are particularly presented. PMID:22408471

  14. Experimental investigation on the high-order modes in supercontinuum generation from step-index As-S fibers

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Xue, Zugang; Tian, Youmei; Zhao, Zheming; Wang, Xunsi; Liu, Zijun; Zhang, Peiqing; Dai, Shixun; Nie, Qiuhua; Wang, Rongping

    2018-06-01

    Two kinds of step-index As-S fibers have been fabricated by an isolated extrusion method with a numerical aperture (NA) of 0.52, but with different core size of 10 or 50 µm. With a femtosecond laser pumping, their supercontinnum (SC) generation spectra were recorded in order to testify the effect of high-order modes on SC generation. The spectra spanning from 1.0 to 6.7 µm and from 1.5 to 8.6 µm can be obtained in a 16-cm-long fiber with 10 µm-core diameter pumping by central wavelength of 2.9 and 4.0 µm, respectively. The results show that high-order modes would deplete the spectra spanning in red-shifting part. The SC generation in small-core fiber is much more efficient than that in large-core fiber. This is the first comparative investigation on the SC generation from the quasi single- and multi-mode ChG fibers under the same conditions.

  15. Wavelength-independent all-fiber mode converters.

    PubMed

    Lai, K; Leon-Saval, S G; Witkowska, A; Wadsworth, W J; Birks, T A

    2007-02-15

    We have used two different photonic crystal fiber (PCF) techniques to make all-fiber mode converters. An LP(01) to LP(11) mode converter was made by the ferrule technique on a drawing tower, and an LP(01) to LP(02) mode converter was made by controlled hole inflation of an existing PCF on a tapering rig. Both devices rely on adiabatic propagation rather than resonant coupling; so high extinction was achieved across a wide wavelength range.

  16. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.

    PubMed

    Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan

    2016-02-22

    We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.

  17. Helical Fiber Amplifier

    DOEpatents

    Koplow, Jeffrey P.; Kliner, Dahy; Goldberg, Lew

    2002-12-17

    A multi-mode gain fiber is provided which affords substantial improvements in the maximum pulse energy, peak power handling capabilities, average output power, and/or pumping efficiency of fiber amplifier and laser sources while maintaining good beam quality (comparable to that of a conventional single-mode fiber source). These benefits are realized by coiling the multimode gain fiber to induce significant bend loss for all but the lowest-order mode(s).

  18. Femtosecond pulse inscription of a selective mode filter in large mode area fibers

    NASA Astrophysics Data System (ADS)

    Krämer, Ria G.; Voigtländer, Christian; Freier, Erik; Liem, Andreas; Thomas, Jens U.; Richter, Daniel; Schreiber, Thomas; Tünnermann, Andreas; Nolte, Stefan

    2013-02-01

    We present a selective mode filter inscribed with ultrashort pulses directly into a few mode large mode area (LMA) fiber. The mode filter consists of two refractive index modifications alongside the fiber core in the cladding. The refractive index modifications, which were of approximately the same order of magnitude as the refractive index difference between core and cladding have been inscribed by nonlinear absorption of femtosecond laser pulses (800 nm wavelength, 120 fs pulse duration). If light is guided in the core, it will interact with the inscribed modifications causing modes to be coupled out of the core. In order to characterize the mode filter, we used a femtosecond inscribed fiber Bragg grating (FBG), which acts as a wavelength and therefore mode selective element in the LMA fiber. Since each mode has different Bragg reflection wavelengths, an FBG in a multimode fiber will exhibit multiple Bragg reflection peaks. In our experiments, we first inscribed the FBG using the phase mask scanning technique. Then the mode filter was inscribed. The reflection spectrum of the FBG was measured in situ during the inscription process using a supercontinuum source. The reflectivities of the LP01 and LP11 modes show a dependency on the length of the mode filter. Two stages of the filter were obtained: one, in which the LP11 mode was reduced by 60% and one where the LP01 mode was reduced by 80%. The other mode respectively showed almost no losses. In conclusion, we could selectively filter either the fundamental or higher order modes.

  19. Multimode optical fibers: steady state mode exciter.

    PubMed

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  20. Mode-filtered large-core fiber for optical coherence tomography

    PubMed Central

    Moon, Sucbei; Chen, Zhongping

    2013-01-01

    We have investigated the use of multimode fiber in optical coherence tomography (OCT) with a mode filter that selectively suppresses the power of the high-order modes (HOMs). A large-core fiber (LCF) that has a moderate number of guiding modes was found to be an attractive alternative to the conventional single-mode fiber for its large mode area and the consequentially wide Rayleigh range of the output beam if the HOMs of the LCF were efficiently filtered out by a mode filter installed in the middle. For this, a simple mode filtering scheme of a fiber-coil mode filter was developed in this study. The LCF was uniformly coiled by an optimal bend radius with a fiber winder, specially devised for making a low-loss mode filter. The feasibility of the mode-filtered LCF in OCT imaging was tested with a common-path OCT system. It has been successfully demonstrated that our mode-filtered LCF can provide a useful imaging or sensing probe without an objective lens that greatly simplifies the structure of the probing optics. PMID:23207399

  1. Coupling analysis of non-circular-symmetric modes and design of orientation-insensitive few-mode fiber couplers

    NASA Astrophysics Data System (ADS)

    Li, Jiaxiong; Du, Jiangbing; Ma, Lin; Li, Ming-Jun; Jiang, Shoulin; Xu, Xiao; He, Zuyuan

    2017-01-01

    We study the coupling between two identical weakly-coupled few-mode fibers based on coupled-mode theory. The coupling behavior of non-circular-symmetric modes, such as LP11 and LP21, is investigated analytically and numerically. By carefully choosing the fiber core separation and coupler length, we can design orientation-insensitive fiber couplers for non-circular-symmetric modes at arbitrary coupling ratios. Based on the design method, we propose an orientation-insensitive two-mode fiber coupler at 850 nm working as a mode multiplexer/demultiplexer for two-mode transmission using standard single-mode fiber. Within the band from 845 to 855 nm, the insertion losses of LP01 and LP11 modes are less than 0.03 dB and 0.24 dB, respectively. When the two-mode fiber coupler is used as mode demultiplexer, the LP01/LP11 and LP11/LP01 extinction ratios in the separated branches are respectively above 12.6 dB and 21.2 dB. Our design method can be extended to two-mode communication or sensing systems at other wavelengths.

  2. Two-mode elliptical-core weighted fiber sensors for vibration analysis

    NASA Technical Reports Server (NTRS)

    Vengsarkar, Ashish M.; Murphy, Kent A.; Fogg, Brian R.; Miller, William V.; Greene, Jonathan A.; Claus, Richard O.

    1992-01-01

    Two-mode, elliptical-core optical fibers are demonstrated in weighted, distributed and selective vibration-mode-filtering applications. We show how appropriate placement of optical fibers on a vibrating structure can lead to vibration mode filtering. Selective vibration-mode suppression on the order of 10 dB has been obtained using tapered two-mode, circular-core fibers with tapering functions that match the second derivatives of the modes of vibration to be enhanced. We also demonstrate the use of chirped, two-mode gratings in fibers as spatial modal sensors that are equivalents of shaped piezoelectric sensors.

  3. “MODAL NOISE” IN SINGLE-MODE FIBERS: A CAUTIONARY NOTE FOR HIGH PRECISION RADIAL VELOCITY INSTRUMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath

    2015-12-01

    Exploring the use of single-mode fibers (SMFs) in high precision Doppler spectrometers has become increasingly attractive since the advent of diffraction-limited adaptive optics systems on large-aperture telescopes. Spectrometers fed with these fibers can be made significantly smaller than typical “seeing-limited” instruments, greatly reducing cost and overall complexity. Importantly, classical mode interference and speckle issues associated with multi-mode fibers, also known as “modal noise,” are mitigated when using SMFs, which also provide perfect radial and azimuthal image scrambling. However, SMFs do support multiple polarization modes, an issue that is generally ignored for larger-core fibers given the large number of propagation modes.more » Since diffraction gratings used in most high resolution astronomical instruments have dispersive properties that are sensitive to incident polarization changes, any birefringence variations in the fiber can cause variations in the efficiency profile, degrading illumination stability. Here we present a cautionary note outlining how the polarization properties of SMFs can affect the radial velocity (RV) measurement precision of high resolution spectrographs. This work is immediately relevant to the rapidly expanding field of diffraction-limited, extreme precision RV spectrographs that are currently being designed and built by a number of groups.« less

  4. Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter.

    PubMed

    Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2015-11-10

    A thin-core-fiber excited photonic crystal fiber modal interferometer has been proposed and experimentally demonstrated. By employing a thin-core fiber as the mode exciter, both of the core and cladding modes propagate in the photonic crystal fiber and interfere with each other. The experimental results show that the transmission dips corresponding to different-order modes have various strain responses with opposite shift directions. The strain sensitivity could be improved to 58.57  pm/με for the applied strain from 0 to 491 με by utilizing the wavelength interval between the dips with opposite shift directions. Moreover, due to the pure silica property of the employed photonic crystal fiber, the proposed fiber modal interferometer exhibits a low-temperature sensitivity of about 0.56  pm/°C within a temperature range from 26.4°C (room temperature) to 70°C. Additionally, the proposed fiber modal interferometer has several advantages, such as good stability, compact structure, and simple fabrication. Therefore, it is more applicable for strain measurement with reducing temperature cross-sensitivity.

  5. All fiber passively mode locked zirconium-based erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Awang, N. A.; Paul, M. C.; Pal, M.; Latif, A. A.; Harun, S. W.

    2012-04-01

    All passively mode locked erbium-doped fiber laser with a zirconium host is demonstrated. The fiber laser utilizes the Non-Linear Polarization Rotation (NPR) technique with an inexpensive fiber-based Polarization Beam Splitter (PBS) as the mode-locking element. A 2 m crystalline Zirconia-Yttria-Alumino-silicate fiber doped with erbium ions (Zr-Y-Al-EDF) acts as the gain medium and generates an Amplified Spontaneous Emission (ASE) spectrum from 1500 nm to 1650 nm. The generated mode-locked pulses have a spectrum ranging from 1548 nm to more than 1605 nm, as well as a 3-dB bandwidth of 12 nm. The mode-locked pulse train has an average output power level of 17 mW with a calculated peak power of 1.24 kW and energy per pulse of approximately 730 pJ. The spectrum also exhibits a Signal-to-Noise Ratio (SNR) of 50 dB as well as a repetition rate of 23.2 MHz. The system is very stable and shows little power fluctuation, in addition to being repeatable.

  6. Biology of the Coarse Aerosol Mode: Insights Into Urban Aerosol Ecology

    NASA Astrophysics Data System (ADS)

    Dueker, E.; O'Mullan, G. D.; Montero, A.

    2015-12-01

    Microbial aerosols have been understudied, despite implications for climate studies, public health, and biogeochemical cycling. Because viable bacterial aerosols are often associated with coarse aerosol particles, our limited understanding of the coarse aerosol mode further impedes our ability to develop models of viable bacterial aerosol production, transport, and fate in the outdoor environment, particularly in crowded urban centers. To address this knowledge gap, we studied aerosol particle biology and size distributions in a broad range of urban and rural settings. Our previously published findings suggest a link between microbial viability and local production of coarse aerosols from waterways, waste treatment facilities, and terrestrial systems in urban and rural environments. Both in coastal Maine and in New York Harbor, coarse aerosols and viable bacterial aerosols increased with increasing wind speeds above 4 m s-1, a dynamic that was observed over time scales ranging from minutes to hours. At a New York City superfund-designated waterway regularly contaminated with raw sewage, aeration remediation efforts resulted in significant increases of coarse aerosols and bacterial aerosols above that waterway. Our current research indicates that bacterial communities in aerosols at this superfund site have a greater similarity to bacterial communities in the contaminated waterway with wind speeds above 4 m s-1. Size-fractionated sampling of viable microbial aerosols along the urban waterfront has also revealed significant shifts in bacterial aerosols, and specifically bacteria associated with coarse aerosols, when wind direction changes from onshore to offshore. This research highlights the key connections between bacterial aerosol viability and the coarse aerosol fraction, which is important in assessments of production, transport, and fate of bacterial contamination in the urban environment.

  7. 2 × 2 MIMO OFDM/OQAM radio signals over an elliptical core few-mode fiber.

    PubMed

    Mo, Qi; He, Jiale; Yu, Dawei; Deng, Lei; Fu, Songnian; Tang, Ming; Liu, Deming

    2016-10-01

    We experimentally demonstrate a 4.46  Gb/s2×2 multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM)/OQAM radio signal over a 2 km elliptical core 3-mode fiber, together with 0.4 m wireless transmission. Meanwhile, to cope with differential channel delay (DCD) among involved MIMO channels, we propose a time-offset crosstalk cancellation algorithm to extend the DCD tolerance from 10 to 60 ns without using a circle prefix (CP), leading to an 18.7% improvement of spectral efficiency. For the purpose of comparison, we also examine the transmission performance of CP-OFDM signals with different lengths of CPs, under the same system configuration. The proposed algorithm is also effective for the DCD compensation of a radio signal over a 2 km 7-core fiber. These results not only demonstrate the feasibility of space division multiplexing for RoF application but also validate that the elliptical core few-mode fiber can provide the same independent channels as the multicore fiber.

  8. Few-mode fiber based Raman distributed temperature sensing.

    PubMed

    Wang, Meng; Wu, Hao; Tang, Ming; Zhao, Zhiyong; Dang, Yunli; Zhao, Can; Liao, Ruolin; Chen, Wen; Fu, Songnian; Yang, Chen; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-03-06

    We proposed and experimentally demonstrated a few mode fiber (FMF) based Raman distributed temperature sensor (RDTS) to extend the sensing distance with enhanced signal-to-noise ratio (SNR) of backscattered anti-Stokes spontaneous Raman scattering. Operating in the quasi-single mode (QSM) with efficient fundamental mode excitement, the FMF allows much larger input pump power before the onset of stimulated Raman scattering compared with the standard single mode fiber (SSMF) and mitigates the detrimental differential mode group delay (DMGD) existing in the conventional multimode fiber (MMF) based RDTS system. Comprehensive theoretical analysis has been conducted to reveal the benefits of RDTS brought by QSM operated FMFs with the consideration of geometric/optical parameters of different FMFs. The measurement uncertainty of FMF based scheme has also been evaluated. Among fibers being investigated and compared (SSMF, 2-mode and 4-mode FMFs, respectively), although an ideal 4-mode FMF based RDTS has the largest SNR enhancement in principle, real fabrication imperfections and larger splicing loss degrade its performance. While the 2-mode FMF based system outperforms in longer distance measurement, which agrees well with the theoretical calculations considering real experimental parameters. Using the conventional RDTS hardware, a 30-ns single pulse at 1550nm has been injected as the pump; the obtained temperature resolutions at 20km distance are estimated to be about 10°C, 7°C and 6°C for the SSMF, 4-mode and 2-mode FMFs, respectively. About 4°C improvement over SSMF on temperature resolution at the fiber end with 3m spatial resolution within 80s measuring time over 20km 2-mode FMFs have been achieved.

  9. Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber.

    PubMed

    Al Amin, Abdullah; Li, An; Chen, Simin; Chen, Xi; Gao, Guanjun; Shieh, William

    2011-08-15

    We report successful transmission of dual-LP(11) mode (LP(11a) and LP(11b)), dual polarization coherent optical orthogonal frequency-division multiplexing (CO-OFDM) signals over two-mode fibers (TMF) using all-fiber mode converters. Mode converters based on mechanically induced long-period grating with better than 20 dB extinction ratios are realized and used for interfacing single-mode fiber transmitter and receivers to the TMF. We demonstrate that by using 4×4 MIMO-OFDM processing, the random coupling of the two LP(11) spatial modes can be successfully tracked and equalized with a one-tap frequency-domain equalizer. We achieve successful transmission of 35.3 Gb/s over 26-km two-mode fiber with less than 3 dB penalty. © 2011 Optical Society of America

  10. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating.

    PubMed

    He, Xiaoying; Liu, Zhi-bo; Wang, D N

    2012-06-15

    We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.

  11. Wavelength-agile high-power sources via four-wave mixing in higher-order fiber modes.

    PubMed

    Demas, J; Prabhakar, G; He, T; Ramachandran, S

    2017-04-03

    Frequency doubling of conventional fiber lasers in the near-infrared remains the most promising method for generating integrated high-peak-power lasers in the visible, while maintaining the benefits of a fiber geometry; but since the shortest wavelength power-scalable fiber laser sources are currently restricted to either the 10XX nm or 15XX nm wavelength ranges, accessing colors other than green or red remains a challenge with this schematic. Four-wave mixing using higher-order fiber modes allows for control of dispersion while maintaining large effective areas, thus enabling a power-scalable method to extend the bandwidth of near-infrared fiber lasers, and in turn, the bandwidth of potential high-power sources in the visible. Here, two parametric sources using the LP0,7 and LP0,6 modes of two step-index multi-mode fibers are presented. The output wavelengths for the sources are 880, 974, 1173, and 1347 nm with peak powers of 10.0, 16.2, 14.7, and 6.4 kW respectively, and ~300-ps pulse durations. The efficiencies of the sources are analyzed, along with a discussion of wavelength tuning and further power scaling, representing an advance in increasing the bandwidth of near-infrared lasers as a step towards high-peak-power sources at wavelengths across the visible spectrum.

  12. Switchable narrow linewidth fiber laser with LP11 transverse mode output

    NASA Astrophysics Data System (ADS)

    Shen, Ya; Ren, Guobin; Yang, Yuguang; Yao, Shuzhi; Wu, Yue; Jiang, Youchao; Xu, Yao; Jin, Wenxing; Zhu, Bofeng; Jian, Shuisheng

    2018-01-01

    We experimentally demonstrate a switchable narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser with LP11 transverse mode output. The laser is based on a mode selective all-fiber fused coupler which is composed of a single-mode fiber (SMF) and a two-mode fiber (TMF). By controlling the polarization state of the output light, the laser can provide narrow linewidth SLM output with LP11 transverse mode at two specific wavelengths, which correspond to two transmission peaks of the chirped moiré fiber grating (CMFBG). The 20 dB linewidth of the fiber laser for each wavelength is approximately 7.2 and 6.4 kHz.

  13. Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber

    PubMed Central

    Rong, Qiangzhou; Zhou, Yi; Yin, Xunli; Shao, Zhihua; Qiao, Xueguang

    2017-01-01

    Optical manipulation using optical micro- and nano-fibers has shown potential for controlling bacterial activities such as E. coli trapping, propelling, and binding. Most of these manipulations have been performed using the propagation of the fundamental mode through the fiber. However, along the maximum mode-intensity axis, the higher-order modes have longer evanescent field extensions and larger field amplitudes at the fiber waist than the fundamental mode, opening up new possibilities for manipulating E. coli bacteria. In this work, a compact seven-core fiber (SCF)-based micro-fiber/optical tweezers was demonstrated for trapping, propelling, and rotating E. coli bacteria using the excitation of higher-order modes. The diameter of the SCF taper was 4 µm at the taper waist, which was much larger than that of previous nano-fiber tweezers. The laser wavelength was tunable from 1500 nm to 1600 nm, simultaneously causing photophoretic force, gradient force, and scattering force. This work provides a new opportunity for better understanding optical manipulation using higher-order modes at the single-cell level. PMID:28966849

  14. Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber.

    PubMed

    Rong, Qiangzhou; Zhou, Yi; Yin, Xunli; Shao, Zhihua; Qiao, Xueguang

    2017-09-01

    Optical manipulation using optical micro- and nano-fibers has shown potential for controlling bacterial activities such as E. coli trapping, propelling, and binding. Most of these manipulations have been performed using the propagation of the fundamental mode through the fiber. However, along the maximum mode-intensity axis, the higher-order modes have longer evanescent field extensions and larger field amplitudes at the fiber waist than the fundamental mode, opening up new possibilities for manipulating E. coli bacteria. In this work, a compact seven-core fiber (SCF)-based micro-fiber/optical tweezers was demonstrated for trapping, propelling, and rotating E. coli bacteria using the excitation of higher-order modes. The diameter of the SCF taper was 4 µm at the taper waist, which was much larger than that of previous nano-fiber tweezers. The laser wavelength was tunable from 1500 nm to 1600 nm, simultaneously causing photophoretic force, gradient force, and scattering force. This work provides a new opportunity for better understanding optical manipulation using higher-order modes at the single-cell level.

  15. Single-mode fiber systems for deep space communication network

    NASA Technical Reports Server (NTRS)

    Lutes, G.

    1982-01-01

    The present investigation is concerned with the development of single-mode optical fiber distribution systems. It is pointed out that single-mode fibers represent potentially a superior medium for the distribution of frequency and timing reference signals and wideband (400 MHz) IF signals. In this connection, single-mode fibers have the potential to improve the capability and precision of NASA's Deep Space Network (DSN). Attention is given to problems related to precise time synchronization throughout the DSN, questions regarding the selection of a transmission medium, and the function of the distribution systems, taking into account specific improvements possible by an employment of single-mode fibers.

  16. Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Qiang; Guo, Zhengru; Zhang, Qingshan

    Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth.more » This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.« less

  17. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai

    2018-03-01

    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  18. Optical transmission through a polarization preserving single mode optical fiber at two Ar(+) laser wavelengths

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken K.; Hunter, William W., Jr.

    1989-01-01

    The transmission characteristics of two Ar(+) laser wavelengths through a twenty meter Panda type Polarization Preserving Single Mode Optical Fiber (PPSMOF) were measured. The measurements were done with both single and multi-longitudinal mode radiation. In the single longitudinal mode case, a degrading Stimulated Brillouin Scattering (SBS) is observed as a backward scattering loss. By choosing an optimum coupling system and manipulating the input polarization, the threshold of the SBS onset can be raised and the transmission efficiency can be increased.

  19. LP01 to LP11 mode convertor based on side-polished small-core single-mode fiber

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Yang; Li, Wei-dong

    2018-03-01

    An all-fiber LP01-LP11 mode convertor based on side-polished small-core single-mode fibers (SMFs) is numerically demonstrated. The linearly polarized incident beam in one arm experiences π shift through a fiber half waveplate, and the side-polished parts merge into an equivalent twin-core fiber (TCF) which spatially shapes the incident LP01 modes to the LP11 mode supported by the step-index few-mode fiber (FMF). Optimum conditions for the highest conversion efficiency are investigated using the beam propagation method (BPM) with an approximate efficiency as high as 96.7%. The proposed scheme can operate within a wide wavelength range from 1.3 μm to1.7 μm with overall conversion efficiency greater than 95%. The effective mode area and coupling loss are also characterized in detail by finite element method (FEM).

  20. Fundamental-mode MMF transmission enabled by mode conversion

    NASA Astrophysics Data System (ADS)

    Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Jinglong; Ren, Fang; Mo, Qi; Yu, Jinyi; Li, Zhengbin; Chen, Zhangyuan; He, Yongqi

    2018-03-01

    Modal dispersion in conventional multi-mode fiber (MMF) will cause serious signal degradation and an effective solution is to restrict the signal transmission in the fundamental mode of MMF. In this paper, unlike previous methods by filtering out higher-order modes, we propose to adopt low-modal-crosstalk mode converters to realize fundamental-mode MMF transmission. We design and fabricate all-fiber mode-selective couplers (MSC), which perform mode conversion between the fundamental mode in single-mode fiber (SMF) and fundamental mode in MMF. The proposed scheme is experimentally compared with center launching method under different MMF links and then its wavelength division multiplexing (WDM) transmission performance is investigated. Experimental results indicate that the proposed mode conversion scheme could achieve better transmission performance and works well for the whole C-band.

  1. Research on high-temperature sensing characteristics based on modular interference of single-mode multimode single-mode fiber

    NASA Astrophysics Data System (ADS)

    Peng, Zhaozhuang; Wang, Li; Yan, Huanhuan

    2016-11-01

    Application of high temperature fiber sensing system is very extensive. It can be mainly used in high temperature test aerospace, such as, materials, chemicals, and energy. In recent years, various on-line optical fiber interferometric sensors based on modular interference of single-mode-multimode-single-mode(SMS) fiber have been largely explored in high temperature fiber sensor. In this paper we use the special fiber of a polyimide coating, its sensor head is composed of a section of multimode fiber spliced in the middle of Single-mode fiber. When the light is launched into the multimode fiber(MMF) through the lead-in single-mode fiber(SMF), the core mode and cladding modes are excited and propagate in the MMF respectively. Then, at the MMF-SMF spliced point, the excited cladding modes coupled back into the core of lead-out SMF interfere with SMF core mode. And the wavelength of the interference dip would shift differently with the variation of the temperature. By this mean, we can achieve the measurement of temperature. The experimental results also show that the fiber sensor based on SMS structure has a highly temperature sensitivity. From 30° to 300°, with the temperature increasing, the interference dip slightly shifts toward longer wavelength and the temperature sensitivity coefficient is 0.0115nm/°. With high sensitivity, simple structure, immunity to electromagnetic interferences and a good linearity of the experimental results, the structure has an excellent application prospect in engineering field.

  2. Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift.

    PubMed

    Wu, Hao; Wang, Ruoxu; Liu, Deming; Fu, Songnian; Zhao, Can; Wei, Huifeng; Tong, Weijun; Shum, Perry Ping; Tang, Ming

    2016-04-01

    We proposed and demonstrated a few-mode fiber (FMF) based optical-fiber sensor for distributed curvature measurement through quasi-single-mode Brillouin frequency shift (BFS). By central-alignment splicing FMF and single-mode fiber (SMF) with a fusion taper, a SMF-components-compatible distributed curvature sensor based on FMF is realized using the conventional Brillouin optical time-domain analysis system. The distributed BFS change induced by bending in FMF has been theoretically and experimentally investigated. The precise BFS response to the curvature along the fiber link has been calibrated. A proof-of-concept experiment is implemented to validate its effectiveness in distributed curvature measurement.

  3. Geometric phase due to orbit-orbit interaction: rotating LP11 modes in a two-mode fiber

    NASA Astrophysics Data System (ADS)

    Pradeep Chakravarthy, T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2017-10-01

    Accumulation of geometric phase due to non-coplanar propagation of higher-order modes in an optical fiber is experimentally demonstrated. Vertically-polarized LP11 fiber mode, excited in a horizontally-held, torsion-free, step-index, two-mode optical fiber, rotates due to asymmetry in the propagating k-vectors, arising due to off-centered beam location at the fiber input. Perceiving the process as due to rotation of the fiber about the off-axis launch position, the orbital Berry phase accumulation upon scanning the launch position in a closed-loop around the fiber axis manifests as rotational Doppler effect, a consequence of orbit-orbit interaction. The anticipated phase accumulation as a function of the input launch position, observed through interferometry is connected to the mode rotation angle, quantified using the autocorrelation method.

  4. Spatiotemporal mode-locking in multimode fiber lasers

    NASA Astrophysics Data System (ADS)

    Wright, Logan G.; Christodoulides, Demetrios N.; Wise, Frank W.

    2017-10-01

    A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made toward controlling the interactions of longitudinal modes in lasers with a single transverse mode. For example, the field of ultrafast science has been built on lasers that lock many longitudinal modes together to form ultrashort light pulses. However, coherent superposition of longitudinal and transverse modes in a laser has received little attention. We show that modal and chromatic dispersions in fiber lasers can be counteracted by strong spatial and spectral filtering. This allows locking of multiple transverse and longitudinal modes to create ultrashort pulses with a variety of spatiotemporal profiles. Multimode fiber lasers thus open new directions in studies of nonlinear wave propagation and capabilities for applications.

  5. Switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin

    2018-05-01

    In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.

  6. Mode-locking peculiarities in an all-fiber erbium-doped ring ultrashort pulse laser with a highly-nonlinear resonator

    NASA Astrophysics Data System (ADS)

    Dvoretskiy, Dmitriy A.; Sazonkin, Stanislav G.; Kudelin, Igor S.; Orekhov, Ilya O.; Pnev, Alexey B.; Karasik, Valeriy E.; Denisov, Lev K.

    2017-12-01

    Today ultrashort pulse (USP) fiber lasers are in great demand in a frequency metrology field, THz pulse spectroscopy, optical communication, quantum optics application, etc. Therefore mode-locked (ML) fiber lasers have been extensively investigated over the last decade due the number of scientific, medical and industrial applications. It should be noted, that USP fiber lasers can be treated as an ideal platform to expand future applications due to the complex ML nonlinear dynamics in a laser resonator. Up to now a series of novel ML regimes have been investigated e.g. self-similar pulses, noise-like pulses, multi-bound solitons and soliton rain generation. Recently, we have used a highly nonlinear germanosilicate fiber (with germanium oxides concentration in the core 50 mol. %) inside the resonator for more reliable and robust launching of passive mode-locking based on the nonlinear polarization evolution effect in fibers. In this work we have measured promising and stable ML regimes such as stretched pulses, soliton rain and multi-bound solitons formed in a highly-nonlinear ring laser and obtained by intracavity group velocity dispersion (GVD) variation in slightly negative region. As a result, we have obtained the low noise ultrashort pulse generation with duration < 250 fs (more than 20 bound pulses when obtained multi-bound soliton generation with intertemporal width 5 ps) at a repetition rate 11.3 MHz (with signal-to-noise ratio at fundamental frequency > 59 dB) and relative intensity noise <-101 dBc / Hz.

  7. Leakage of the fundamental mode in photonic crystal fiber tapers.

    PubMed

    Nguyen, Hong C; Kuhlmey, Boris T; Steel, Michael J; Smith, Cameron L; Mägi, Eric C; McPhedran, Ross C; Eggleton, Benjamin J

    2005-05-15

    We report detailed measurements of the optical properties of tapered photonic crystal fibers (PCFs). We observe a striking long-wavelength loss as the fiber diameter is reduced, despite the minimal airhole collapse along the taper. We associate this loss with a transition of the fundamental core mode as the fiber dimensions contract: At wavelengths shorter than this transition wavelength, the core mode is strongly confined in the fiber microstructure, whereas at longer wavelengths the mode expands beyond the microstructure and couples out to higher-order modes. These experimental results are discussed in the context of the so-called fundamental mode cutoff described by Kuhlmey et al. [Opt. Express 10, 1285 (2002)], which apply to PCFs with a finite microstructure.

  8. Extremely small-core photonic crystal fiber fusion splicing with a single-mode fiber

    NASA Astrophysics Data System (ADS)

    Tiburcio, Bruno D.; Fernandes, Gil M.; Pinto, Armando N.

    2013-11-01

    We present a low-loss fusion splicing of a non-linear photonic-crystal fiber (NL-PCF) with a single-mode fiber (SMF), helped by an intermediate fiber, using a electric-arc splicer. We also analysed the splice loss between SMF and intermediate fiber, as a function of the electrical discharge duration, to achieve a low-loss transition between SMF and intermediate fiber, through a thermally expanded core splice (TEC). The NL-PCF has a external cladding diameter of 105 μm, a core diameter of 1.7 μm and mode-field diameter (MFD) of 1.5 μm. We also performed mechanical strength tests to verify the robustness of the splice joints obtained.

  9. Single-mode fiber, velocity interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauter, K. G.; Jacobson, G. F.; Patterson, J. R.

    2011-04-15

    In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, wemore » demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats--this interference occurs between the ''recently'' shifted and ''formerly unshifted'' paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber.« less

  10. Single-mode fiber, velocity interferometry.

    PubMed

    Krauter, K G; Jacobson, G F; Patterson, J R; Nguyen, J H; Ambrose, W P

    2011-04-01

    In this paper, we describe a velocity interferometer system based entirely on single-mode fiber optics. This paper includes a description of principles used in developing the single-mode velocity interferometry system (SMV). The SMV design is based on polarization-insensitive components. Polarization adjusters are included to eliminate the effects of residual birefringence and polarization dependent losses in the interferometers. Characterization measurements and calibration methods needed for data analysis and a method of data analysis are described. Calibration is performed directly using tunable lasers. During development, we demonstrated its operation using exploding-foil bridge-wire fliers up to 200 m/s. In a final test, we demonstrated the SMV in a gas gun experiment up to 1.2 km/sec. As a basis for comparison in the gas gun experiment, we used another velocimetry technique that is also based on single-mode fiber optics: photonic Doppler velocimetry (PDV). For the gas gun experiment, we split the light returned from a single target spot and performed a direct comparison of the homodyne (SMV) and heterodyne (PDV) techniques concurrently. The two techniques had a negligible mean difference and a 1.5% standard deviation in the one-dimensional shock zone. Within one interferometer delay time after a sudden Doppler shift, a SMV unencumbered by multimode-fiber dispersion exhibits two color beats. These beats have the same period as PDV beats-this interference occurs between the "recently" shifted and "formerly unshifted" paths within the interferometer. We believe that recognizing this identity between homodyne and heterodyne beats is novel in the shock-physics field. SMV includes the conveniences of optical fiber, while removing the time resolution limitations associated with the multimode delivery fiber. © 2011 American Institute of Physics

  11. MPO-type single-mode multi-fiber connector: Low-loss and high-return-loss intermateability of APC-MPO connectors

    NASA Astrophysics Data System (ADS)

    Satake, Toshiaki; Nagasawa, Shinji; Hughes, Mike; Lutz, Sharon

    2011-01-01

    The electrical communication laboratory of NTT started the research of MT (Mechanically Transferable) connector in early 1980s. The initial goal was to realize a multi-fiber connector which can repeat low loss, stable, reliable and low-cost connections of subscriber optical fiber cable networks for more than 20 years period in the field. We review the multi-fiber alignment design with two guide pins, and following several technical improvements toward the final MT connector used in the commercial telecommunication networks. And then, we review development histories to reach to the low-loss, high-return-loss and reliable APC-MPO (Angled Physical Contact Multi-fiber Push On) connectors introduced in NTT COs and in Verizon's FTTH (Fiber To The Home) networks. In the latter half, we propose the low-loss intermateability design for connectors made by different suppliers in order to enable mass introductions into large scale systems. In addition we also describe an accurate connector loss presumption method for different lots' ferrules based on the MT ferrule dimension data before assembling the connectors. We believe with a wide intermateability of APC-MPO connector will increase its use in the fields. The APC-MPO connector manufactured based on the proposed design had low insertion losses of less than 0.25 dB at the same level of simplex connectors and the higher level of return losses higher than 65 dB.

  12. Alcohol sensor based on single-mode-multimode-single-mode fiber structure

    NASA Astrophysics Data System (ADS)

    Mefina Yulias, R.; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol sensor based on Single-mode -Multimode-Single-mode (SMS) fiber structure is being proposed to sense alcohol concentration in alcohol-water mixtures. This proposed sensor uses refractive index sensing as its sensing principle. Fabricated SMS fiber structure had 40 m of multimode length. With power input -6 dBm and wavelength 1550 nm, the proposed sensor showed good response with sensitivity 1,983 dB per % v/v with measurement range 05 % v/v and measurement span 0,5% v/v.

  13. Low-NA single-mode LMA photonic crystal rod fiber amplifier

    NASA Astrophysics Data System (ADS)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Scolari, Lara; Broeng, Jes

    2011-02-01

    Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving ultra-low NA SM rod fibers by using a spatially Distributed Mode Filter (DMF). This approach achieves SM performance in a short and straight rod fiber and allows preform tolerances to be compensated during draw. A low-NA SM rod fiber amplifier having a mode field diameter of ~60μm at 1064nm and a pump absorption of 27dB/m at 976nm is demonstrated.

  14. High energy, single-polarized, single-transverse-mode, nanosecond pulses generated by a multi-stage Yb-doped photonic crystal fiber amplifier

    NASA Astrophysics Data System (ADS)

    Shen, Xinglai; Zhang, Haitao; Hao, He; Li, Dan; Li, Qinghua; Yan, Ping; Gong, Mali

    2015-06-01

    We report the construction of a cascaded fiber amplifier where a 40-μm-core-diameter photonic crystal fiber is utilized in the main amplifier stage. Single-transverse-mode, linearly-polarized, 7.5 ns pulses with 1.5 mJ energy, 123 kW peak power and 10 nm spectral bandwidth centered at 1062 nm are generated. To our knowledge, the pulse energy we obtain is the highest from 40-μm-core-diameter photonic crystal fibers, and also the highest for long pulses (>1 ns) with linear polarization and single transverse mode.

  15. 978-nm square-wave in an all-fiber single-mode ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Shujie; Xu, Lixin; Gu, Chun

    2018-01-01

    A 978 nm single mode passively mode-locked all-fiber laser delivering square-wave pulses was demonstrated using a figure-8 cavity and a 75 cm commercial double-clad ytterbium-doped fiber. We found the three-level system near 978 nm was able to operate efficiently under clad pumping, simultaneously oscillation around 1030 nm well inhibited. The optimized nonlinear amplifying loop mirror made the mode locking stable and performed the square-pulses shaping. To the best of our knowledge, it is the first time to report the square-wave pulse fiber laser operating at 980 nm. The spectral width of the 978 mode-locked square pulses was about 4 nm, far greater than that of the mode-locked square pulses around 1060 nm reported before, which would be helpful to deeply understand the various square-wave pulses' natures and forming mechanisms. Compared with modulated single-mode or multimode 980 nm LDs, this kind of 980 nm square-wave sources having higher brightness, more steeper rising and falling edge and shorter pulse width, might have potential applications in pumping nanosecond ytterbium or erbium fiber lasers and amplifiers.

  16. Adiabatically tapered microstructured mode converter for selective excitation of the fundamental mode in a few mode fiber.

    PubMed

    Taher, Aymen Belhadj; Di Bin, Philippe; Bahloul, Faouzi; Tartaret-Josnière, Etienne; Jossent, Mathieu; Février, Sébastien; Attia, Rabah

    2016-01-25

    We propose a new technique to selectively excite the fundamental mode in a few mode fiber (FMF). This method of excitation is made from a single mode fiber (SMF) which is inserted facing the FMF into an air-silica microstructured cane before the assembly is adiabatically tapered. We study theoretically and numerically this method by calculating the effective indices of the propagated modes, their amplitudes along the taper and the adiabaticity criteria, showing the ability to achieve an excellent selective excitation of the fundamental mode in the FMF with negligible loss. We experimentally demonstrate that the proposed solution provides a successful mode conversion and allows an almost excellent fundamental mode excitation in the FMF (representing 99.8% of the total power).

  17. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers.

    PubMed

    Mao, Dong; He, Zhiwen; Lu, Hua; Li, Mingkun; Zhang, Wending; Cui, Xiaoqi; Jiang, Biqiang; Zhao, Jianlin

    2018-04-01

    We demonstrate a mode converter with an insertion loss of 0.36 dB based on mode coupling of tapered single-mode and two-mode fibers, and realize all-fiber flexible cylindrical vector lasers at 1550 nm. Attributing to the continuous distribution of a tangential electric field at taper boundaries, the laser is switchable between the radially and azimuthally polarized states by adjusting the input polarization. In the temporal domain, the operation is controllable among continuous-wave, Q-switched, and mode-locked statuses by changing the saturable absorber or pump strength. The duration of Q-switched radially/azimuthally polarized laser spans from 10.4/10.8 to 6/6.4 μs at the pump range of 38 to 58 mW, while that of the mode-locked pulse varies from 39.2/31.9 to 5.6/5.2 ps by controlling the laser bandwidth. The proposed laser combines the features of a cylindrical vector beam, a fiber laser, and an ultrafast pulse, providing a special and cost-effective source for practical applications.

  18. Fast convergent frequency-domain MIMO equalizer for few-mode fiber communication systems

    NASA Astrophysics Data System (ADS)

    He, Xuan; Weng, Yi; Wang, Junyi; Pan, Z.

    2018-02-01

    Space division multiplexing using few-mode fibers has been extensively explored to sustain the continuous traffic growth. In few-mode fiber optical systems, both spatial and polarization modes are exploited to transmit parallel channels, thus increasing the overall capacity. However, signals on spatial channels inevitably suffer from the intrinsic inter-modal coupling and large accumulated differential mode group delay (DMGD), which causes spatial modes de-multiplex even harder. Many research articles have demonstrated that frequency domain adaptive multi-input multi-output (MIMO) equalizer can effectively compensate the DMGD and demultiplex the spatial channels with digital signal processing (DSP). However, the large accumulated DMGD usually requires a large number of training blocks for the initial convergence of adaptive MIMO equalizers, which will decrease the overall system efficiency and even degrade the equalizer performance in fast-changing optical channels. Least mean square (LMS) algorithm is always used in MIMO equalization to dynamically demultiplex the spatial signals. We have proposed to use signal power spectral density (PSD) dependent method and noise PSD directed method to improve the convergence speed of adaptive frequency domain LMS algorithm. We also proposed frequency domain recursive least square (RLS) algorithm to further increase the convergence speed of MIMO equalizer at cost of greater hardware complexity. In this paper, we will compare the hardware complexity and convergence speed of signal PSD dependent and noise power directed algorithms against the conventional frequency domain LMS algorithm. In our numerical study of a three-mode 112 Gbit/s PDM-QPSK optical system with 3000 km transmission, the noise PSD directed and signal PSD dependent methods could improve the convergence speed by 48.3% and 36.1% respectively, at cost of 17.2% and 10.7% higher hardware complexity. We will also compare the frequency domain RLS algorithm against

  19. High-quality Mach-Zehnder interferometer based on a microcavity in single-multi-single mode fiber structure for refractive index sensing.

    PubMed

    Liu, Yi; Wu, Guoqiang; Gao, Renxi; Qu, Shiliang

    2017-02-01

    A fiber inline Mach-Zehnder interferometer (MZI) based on a microcavity with two symmetric openings in single-multi-single mode fiber (SMSF) structure is proposed. By using the finite difference beam propagation method (FD-BPM), the interference spectrum simulation result shows that the MZI can still have high-quality interference even if the microcavity deviates along the radial direction for 3 μm. Therefore, it allows a larger fabrication tolerance and tremendously decreases the fabrication difficulty. Then a microcavity with two symmetric openings in SMSF was fabricated by using femtosecond laser-induced water breakdown. The insertion loss of the microcavity immerged in water is only -8  dB, and the MZ interference peak contrast in the transmission spectrum reaches more than 30 dB. The MZI based on the microcavity in SMSF can be used as a practical liquid refractive index sensor as its high-quality interference spectrum, ultrahigh sensitivity (9756.75 nm/RIU), high refractive index resolution (2×10-5  RIU), good linearity (99.93%), and low-temperature crosstalk (0.04 nm/°C).

  20. The Nature of Accelerating Modes in PBG Fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, TRobert J.; /SLAC

    Transverse magnetic (TM) modes with phase velocities at or just below the speed of light, c, are intended to accelerate relativistic particles in hollow-core, photonic band gap (PBG) fibers. These are so-called 'surface defect modes', being lattice modes perturbed by the defect to have their frequencies shifted into the band gap, and they can have any phase velocity. PBG fibers also support so-called 'core defect modes' which are characterized as having phase velocities always greater than c and never cross the light line. In this paper we explore the nature of these two classes of accelerating modes and compare theirmore » properties.« less

  1. Column-integrated aerosol optical properties of coarse- and fine-mode particles over the Pearl River Delta region in China.

    PubMed

    Mai, B; Deng, X; Xia, X; Che, H; Guo, J; Liu, X; Zhu, J; Ling, C

    2018-05-01

    The sun-photometer data from 2011 to 2013 at Panyu site (Panyu) and from 2007 to 2013 at Dongguan site (Dg) in the Pearl River Delta region, were used for the retrieving of the aerosol optical depth (AOD), single scattering albedo (SSA), Ångström exponent (AE) and volume size distribution of coarse- and fine-mode particles. The coarse-mode particles presented low AOD (ranging from 0.05±0.03 to 0.08±0.05) but a strong absorption property (SSA ranged from 0.70±0.03 to 0.90±0.02) for the wavelengths between 440 and 1020nm. However, these coarse particles accounted for <10% of the total particles. The AOD of fine particles (AODf) was over 3 times as large as that of coarse particles (AODc). The fine particles SSA (SSAf) generally decreased as a function of wavelength, and the relatively lower SSAf value in summer was likely to be due to the stronger solar radiation and higher temperature. More than 70% of the aerosols at Panyu site were dominated by fine-mode absorbing particles, whereas about 70% of the particles at Dg site were attributed to fine-mode scattering particles. The differences of the aerosol optical properties between the two sites are likely associated with local emissions of the light-absorbing carbonaceous aerosols and the scattering aerosols (e.g., sulfate and nitrate particles) caused by the gas-phase oxidation of gaseous precursors (e.g., SO 2 and NO 2 ). The size distribution exhibited bimodal structures in which the accumulation mode was predominant. The fine-mode volume showed positive dependence on AOD (500nm), and the growth of peak value of the fine-mode volume was higher than that of the coarse volume. Both the AOD and SSA increased with increasing relative humidity (RH), while the AE decreased with increasing RH. These correlations imply that the aerosol properties are greatly modified by condensation growth. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Fiber pressure sensors based on periodical mode coupling effects

    NASA Astrophysics Data System (ADS)

    Lotem, Haim; Wang, Wen C.; Wang, Michael; Schaafsma, David; Skolnick, Bob; Grebel, Haim

    2005-05-01

    Fiber optic sensor technology offers the possibility of implementing low weight, high performance and cost effective health and damage assessment for infrastructure elements. Common fiber sensors are based on the effect of external action on the spectral response of a Fabry-Perot or a Bragg grating section, or on the modal dynamics in multimode (MM) fiber. In the latter case, the fiber itself acts as the sensor, giving it the potential for large range coverage. We were interested in this type of sensor because of its cost advantage in monitoring structural health. In the course of the research, a new type of a rugged modal filter device, based on off-center splicing, was developed. This device, in combination with a MM fiber, was found to be a potential single point-pressure sensing device. Additionally, by translating the pressing point along a MM sensing fiber with a constant load and speed, a sinusoidal intensity modulation was observed. This harmonic behavior, during load translation, is explained by the theory of mode coupling and dispersion. The oscillation period, L~0.43. mm, obtained at 980 nm in a Corning SMF-28 fiber, corresponds to the wavevector difference, Db, between the two-coupled modes, by L = 2p/Db. An additional outcome of the present research is the observation that the response of the loaded MM fiber is strongly dependent on the polarization state of the light traveling along the MM fiber due to different response of the modes to polarization active elements. Our main conclusions are that in MM fiber optic sensor design, special cautions need to be taken in order to stabilize the system, and that the sensitivity along a MM fiber sensor is periodic with a period of ~ 0.4 - 0.5 mm, depending on various fiber parameters and excited modes.

  3. Fracture modes in off-axis fiber composites

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.; Chamis, C. C.

    1978-01-01

    Criteria were developed for identifying, characterizing, and quantifying fracture modes in high-modulus graphite-fiber/resin unidirectional composites subjected to off-axis tensile loading. Procedures are described which use sensitivity analyses and off-axis data to determine the uniaxial strength of fiber composites. It was found that off-axis composites fail by three fracture modes which produce unique fracture surface characteristics. The stress that dominates each fracture mode and the load angle range of its dominance can be identified. Linear composite mechanics is adequate to describe quantitatively the mechanical behavior of off-axis composites. The uniaxial strengths predicted from off-axis data are comparable to these measured in uniaxial tests.

  4. 2μm all fiber multi-wavelength Tm/Ho co-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Junhong; Jiang, Qiuxia; Wang, Xiaofa

    2017-10-01

    A 2 μm all fiber multi-wavelength Tm/Ho co-doped fiber laser based on a simple ring cavity is experimentally demonstrated. Compared with other 2 μm multi-wavelength Tm/Ho co-doped fiber lasers, the multi-wavelength fiber laser is obtained by the gain saturation effect and inhomogeneous broadening effect without any frequency selector component, filter component or polarization-dependent component. When the pump power is about 304 mW, the fiber laser enters into single-wavelength working state around 1967.76 nm. Further increasing the pump power to 455 mW, a stable dual-wavelength laser is obtained at room temperature. The bimodal power difference between λ1 and λ2 is 5.528 dB. The fluctuations of wavelength and power are less than 0.03 nm and 0.264 dB in an hour, which demonstrates that the multi-wavelength fiber laser works at a stable state. Furthermore, a research about the relationship between the pump power and the output spectra has been made.

  5. Bend-resistant large mode area fiber with novel segmented cladding

    NASA Astrophysics Data System (ADS)

    Ma, Shaoshuo; Ning, Tigang; Pei, Li; Li, Jing; Zheng, Jingjing

    2018-01-01

    A novel structure of segment cladding fiber (SCF) with characteristics of bend-resistance and large-mode-area (LMA) is proposed. In this new structure, the high refractive index (RI) core is periodically surrounded by high RI fan-segmented claddings. Numerical investigations show that effective single-mode operation of the proposed fiber with mode field area of 700 μm2 can be achieved when the bending radius is 15 cm. Besides, this fiber is insensitive to the bending orientation at the ranging of [-180°, 180°]. The proposed design shows great potential in high power fiber lasers and amplifiers with compact structure.

  6. High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings

    NASA Astrophysics Data System (ADS)

    Zhan, Chun; Kim, Jae Hun; Lee, Jon; Yin, Stuart; Ruffin, Paul; Luo, Claire

    2007-09-01

    In this paper, we report the fabrication of higher-order-mode rejected fiber Bragg gratings (FBGs) in sapphire crystal fiber using infrared (IR) femtosecond laser illumination. The grating is tested in high temperature furnace up to 1600 degree Celsius. As sapphire fiber is only available as highly multimode fiber, a scheme to filter out higher order modes in favor for the fundamental mode is theoretically evaluated and experimentally demonstrated. The approach is to use an ultra thin sapphire crystal fiber (60 micron in diameter) to decrease the number of modes. The small diameter fiber also enables bending the fiber to certain radius which is carefully chosen to provide low loss for the fundamental mode LP01 and high loss for the other high-order modes. After bending, less-than-2-nm resonant peak bandwidth is achieved. The grating spectrum is improved, and higher resolution sensing measurement can be achieved. This mode filtering method is very easy to implement. Furthermore, the sapphire fiber is sealed with hi-purity alumina ceramic cement inside a flexible high temperature titanium tube, and the highly flexible titanium tube offers a robust packaging to sapphire fiber. Our high temperature sapphire grating sensor is very promising in extremely high temperature sensing application.

  7. Stability of Ince-Gaussian beams in elliptical core few-mode fibers.

    PubMed

    Sakpal, Sahil; Milione, Giovanni; Li, Min-Jun; Nouri, Mehdi; Shahoei, Hiva; LaFave, Tim; Ashrafi, Solyman; MacFarlane, Duncan

    2018-06-01

    A comparative stability analysis of Ince-Gaussian and Hermite-Gaussian modes in elliptical core few-mode fibers is provided to inform the design of spatial division multiplexing systems. The correlation method is used to construct crosstalk matrices that characterize the spatial modes of the fiber. Up to six low-order modes are shown to exhibit about -20  dB crosstalk. The crosstalk performance of each mode set is found to be similar. However, a direct comparison between modes of equal Gouy phase shift, a parameter that ensures identical beam quality, and phase at the detector, demonstrates better relative power transmission for Ince-Gaussian beams. This result is consistent with the natural modes supported by a 100 m elliptical core fiber for which a mode ellipticity of ϵ=2 was found to be optimal. The relative power difference is expected to be magnified over longer fiber lengths in favor of Ince-Gaussian modes.

  8. Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System.

    PubMed

    Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei

    2015-06-25

    Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm.

  9. Few-mode fiber detection for tissue characterization in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Eugui, Pablo; Lichtenegger, Antonia; Augustin, Marco; Harper, Danielle J.; Fialová, Stanislava; Wartak, Andreas; Hitzenberger, Christoph K.; Baumann, Bernhard

    2017-07-01

    A few-mode fiber based detection for OCT systems is presented. The capability of few-mode fibers for delivering light through different fiber paths enables the application of these fibers for angular scattering tissue character- ization. Since the optical path lengths traveled in the fiber change between the fiber modes, the OCT image information will be reconstructed at different depth positions, separating the directly backscattered light from the light scattered at other angles. Using the proposed method, the relation between the angle of reflection from the sample and the respective modal intensity distribution was investigated. The system was demonstrated for imaging ex-vivo brain tissue samples of patients with Alzheimer's disease.

  10. Transverse mode instability of fiber oscillators in comparison with fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Hejaz, Kamran; Shayganmanesh, Mahdi; Azizi, Saeed; Abedinajafi, Ali; Roohforouz, Ali; Rezaei-Nasirabad, Reza; Vatani, Vahid

    2018-05-01

    Transverse mode instability (TMI) is experimentally investigated in a fiber oscillator and a fiber amplifier. For a reasonable comparison of TMI in these two configurations, the same optical components and design parameters are applied to both. Our experimental results show that the TMI power threshold in a fiber oscillator is lower than in a corresponding fiber amplifier. By using simulation software, a fiber oscillator and an amplifier are designed with similar characteristics, to provide identical conditions for all effective parameters on TMI in both of them. Since the signal propagation in fiber oscillators is different from that of single-pass fiber amplifiers, and also since both forward and backward propagating signals in fiber oscillators can generate thermo-optic index gratings, the observed lower TMI threshold in the fiber oscillator is due to its different interaction of light with index gratings.

  11. All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhu, Jianqi; Li, Pingxue; Wang, Xiaoxiao; Yu, Hua; Xiao, Kun; Li, Chunyong; Zhang, Guangyu

    2018-04-01

    We report on an all-fiber passively mode-locked ytterbium-doped (Yb-doped) fiber laser with monolayer molybdenum disulfide (ML-MoS2) saturable absorber (SA) by three-temperature zone chemical vapor deposition (CVD) method. The modulation depth, saturation fluence, and non-saturable loss of this ML-MoS2 are measured to be 3.6%, 204.8 μJ/cm2 and 6.3%, respectively. Based on this ML-MoS2SA, a passively mode-locked Yb-doped fiber laser has been achieved at 979 nm with pulse duration of 13 ps and repetition rate of 16.51 MHz. A mode-locked fiber laser at 1037 nm is also realized with a pulse duration of 475 ps and repetition rate of 26.5 MHz. To the best of our knowledge, this is the first report that the ML-MoS2 SA is used in an all-fiber Yb-doped mode-locked fiber laser at 980 nm. Our work further points the excellent saturable absorption ability of ML-MoS2 in ultrafast photonic applications.

  12. All-fiber bandpass filter based on asymmetrical modes exciting and coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhu, Tao; Shi, Leilei; Liu, Min

    2013-01-01

    A low cost all-fiber bandpass filter is demonstrated by fabricating an asymmetric long-period fiber grating (LPFG) in an off-set splicing fiber structure of two single mode fibers in this paper. The main principle of the filter is that the asymmetric LPFG written by single-side CO2 laser irradiation is used to couple the asymmetric cladding modes excited by the offset-coupling of the splicing point between the single mode fiber and the grating, and the left core mode of the splicing point cannot be coupled to the right fiber core, hence the interference effect is avoided. So the bandpass characteristics in the transmission spectrum are achieved. The designed filter exhibits a pass band at a central wavelength of 1565.0 nm with a full-width at half-maximum bandwidth of 12.3 nm.

  13. All-fiber-based selective mode multiplexer and demultiplexer for weakly-coupled mode-division multiplexed systems

    NASA Astrophysics Data System (ADS)

    Igarashi, Koji; Park, Kyung Jun; Tsuritani, Takahiro; Morita, Itsuro; Kim, Byoung Yoon

    2018-02-01

    We show all-fiber-based selective mode multiplexers and demultiplexers for weakly-coupled mode-division multiplexed systems. We fabricate a set of six-mode multiplexer and demultiplexer based on fiber mode selective couplers, and experimentally evaluate the performance for the six-mode dual-polarization (DP) quadrature phase shift keying (QPSK) optical signals. In the mode multiplexer and demultiplexer, the mode couplings between the lower three modes and the higher three modes are suppressed to be less than -20 dB, which enables us to apply partial 6 ×6 MIMO equalizers even for the six-mode demultiplexing. For the six-mode DP-QPSK signals, the penalty of optical signal-to-noise ratio by replacing the full 12 ×12MIMO to the partial 6 ×6 MIMO is suppressed by less than 1 dB.

  14. Single-mode large-mode-area laser fiber with ultralow numerical aperture and high beam quality.

    PubMed

    Peng, Kun; Zhan, Huan; Ni, Li; Wang, Xiaolong; Wang, Yuying; Gao, Cong; Li, Yuwei; Wang, Jianjun; Jing, Feng; Lin, Aoxiang

    2016-12-10

    By using the chelate precursor doping technique, we report on an ytterbium-doped aluminophosphosilicate (APS) large-mode-area fiber with ultralow numerical aperture of 0.036 and effective fundamental mode area of ∼550  μm2. With a bend diameter of 600 mm, the bending loss of fundamental mode LP01 was measured to be <10-3  dB/m, in agreement with the corresponding simulation results, while that of higher order mode LP11 is >100  dB/m at 1080 nm. Measured in an all-fiber oscillator laser cavity, 592 W single-mode laser output was obtained at 1079.64 nm with high-beam quality M2 of 1.12. The results indicate that the chelate precursor doping technique is a competitive method for ultralow numerical aperture fiber fabrication, which is very suitable for developing single-mode seed lasers for high power laser systems.

  15. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, J.D.

    1997-05-06

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.

  16. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, Jeffrey D.

    1997-01-01

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.

  17. Propagating modes in gain-guided optical fibers.

    PubMed

    Siegman, A E

    2003-08-01

    Optical fibers in which gain-guiding effects are significant or even dominant compared with conventional index guiding may become of practical interest for future high-power single-mode fiber lasers. I derive the propagation characteristics of symmetrical slab waveguides and cylindrical optical fibers having arbitrary amounts of mixed gain and index guiding, assuming a single uniform transverse profile for both the gain and the refractive-index steps. Optical fibers of this type are best characterized by using a complex-valued v-squared parameter in place of the real-valued v parameter commonly used to describe conventional index-guided optical fibers.

  18. Mode-field adapter for tapered-fiber-bundle signal and pump combiners.

    PubMed

    Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Bohata, Jan; Písařík, Michael

    2015-02-01

    We report on a novel mode-field adapter that is proposed to be incorporated inside tapered fused-fiber-bundle pump and signal combiners for high-power double-clad fiber lasers. Such an adapter allows optimization of signal-mode-field matching on the input and output fibers. Correspondingly, losses of the combiner signal branch are significantly reduced. The mode-field adapter optimization procedure is demonstrated on a combiner based on commercially available fibers. Signal wavelengths of 1.55 and 2 μm are considered. The losses can be further improved by using specially designed intermediate fiber and by dopant diffusion during splicing as confirmed by preliminary experimental results.

  19. Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses.

    PubMed

    Ahmed, Aqeel; Villinger, Saskia; Gohlke, Holger

    2010-12-01

    A large-scale comparison of essential dynamics (ED) modes from molecular dynamic simulations and normal modes from coarse-grained normal mode methods (CGNM) was performed on a dataset of 335 proteins. As CGNM methods, the elastic network model (ENM) and the rigid cluster normal mode analysis (RCNMA) were used. Low-frequency normal modes from ENM correlate very well with ED modes in terms of directions of motions and relative amplitudes of motions. Notably, a similar performance was found if normal modes from RCNMA were used, despite a higher level of coarse graining. On average, the space spanned by the first quarter of ENM modes describes 84% of the space spanned by the five ED modes. Furthermore, no prominent differences for ED and CGNM modes among different protein structure classes (CATH classification) were found. This demonstrates the general potential of CGNM approaches for describing intrinsic motions of proteins with little computational cost. For selected cases, CGNM modes were found to be more robust among proteins that have the same topology or are of the same homologous superfamily than ED modes. In view of recent evidence regarding evolutionary conservation of vibrational dynamics, this suggests that ED modes, in some cases, might not be representative of the underlying dynamics that are characteristic of a whole family, probably due to insufficient sampling of some of the family members by MD. Copyright © 2010 Wiley-Liss, Inc.

  20. 5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser.

    PubMed

    Cheng, Huihui; Wang, Wenlong; Zhou, Yi; Qiao, Tian; Lin, Wei; Xu, Shanhui; Yang, Zhongmin

    2017-10-30

    A passively mode-locked Yb 3+ -doped fiber laser with a fundamental repetition rate of 5 GHz and wavelength tunable performance is demonstrated. A piece of heavily Yb 3+ -doped phosphate fiber with a high net gain coefficient of 5.7 dB/cm, in conjunction with a fiber mirror by directly coating the SiO 2 /Ta 2 O 5 dielectric films on a fiber ferrule is exploited for shortening the laser cavity to 2 cm. The mode-locked oscillator has a peak wavelength of 1058.7 nm, pulse duration of 2.6 ps, and the repetition rate signal has a high signal-to-noise ratio of 90 dB. Moreover, the wavelength of the oscillator is found to be continuously tuned from 1056.7 to 1060.9 nm by increasing the temperature of the laser cavity. Simultaneously, the repetition rate correspondingly decreases from 4.945874 to 4.945496 GHz. Furthermore, the long-term stability of the mode-locked operation in the ultrashort laser cavity is realized by exploiting temperature controls. This is, to the best of our knowledge, the highest fundamental pulse repetition rate for 1-μm mode-locked fiber lasers.

  1. Coupled-mode propagation in multicore fibers characterized by optical low-coherence reflectometry.

    PubMed

    Salathé, R P; Gilgen, H; Bodmer, G

    1996-07-01

    A fiber-optical low-coherence ref lectometer has been used to probe a multicore fiber locally at a wavelength of 1.3 microm. This technique allows one to determine the group index of refraction of the modes in the multicore fiber with high accuracy. Light propagation that is due to noncoherent coupling of energy from one fiber core to adjacent cores through cladding modes can be distinguished quantitatively from light propagating in coherently coupled modes. Intercore coupling constants in the range of 0.6-2 mm(-1) have been evaluated for the coupled modes.

  2. Design of a low-bending-loss large-mode-area photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Napierala, Marek; Beres-Pawlik, Elzbieta; Nasilowski, Tomasz; Mergo, Pawel; Berghmans, Francis; Thienpont, Hugo

    2012-04-01

    We present a design of a photonic crystal fiber for high power laser and amplifier applications. Our fiber comprises a core with a diameter larger than 60 μm and exhibits single mode operation when the fiber is bent around a 10 cm radius at a wavelength of 1064 nm. Single mode guidance is enforced by the high loss of higher order modes which exceeds 80 dB/m whereas the loss of the fundamental mode (FM) is lower than 0.03 dB/m. The fiber can therefore be considered as an active medium for compact high power fiber lasers and amplifiers with a nearly diffraction limited beam output. We also analyze our fiber in terms of tolerance to manufacturing imperfections. To do so we employ a statistical design methodology. This analysis reveals those crucial parameters of the fiber that have to be controlled precisely during the fabrication process not to deteriorate the fiber performance. Finally we show that the fiber can be fabricated according to our design and we present experimental results that confirm the expected fiber performance.

  3. Multi-fiber strains measured by micro-Raman spectroscopy: Principles and experiments

    NASA Astrophysics Data System (ADS)

    Lei, Zhenkun; Wang, Yunfeng; Qin, Fuyong; Qiu, Wei; Bai, Ruixiang; Chen, Xiaogang

    2016-02-01

    Based on widely used axial strain measurement method of Kevlar single fiber, an original theoretical model and measurement principle of application of micro-Raman spectroscopy to multi-fiber strains in a fiber bundle were established. The relationship between the nominal Raman shift of fiber bundle and the multi-fiber strains was deduced. The proposed principle for multi-fiber strains measurement is consistent with two special cases: single fiber deformation and multi-fiber deformation under equal strain. It is found experimentally that the distribution of Raman scattering intensity of a Kevlar 49 fiber as a function of distance between a fiber and the laser spot center follows a Gaussian function. Combining the Raman-shift/strain relationship of the Kevlar 49 single fiber and the uniaxial tension measured by micro-Raman spectroscopy, the Raman shift as a function of strain was obtained. Then the Raman peak at 1610 cm-1 for the Kevlar 49 fiber was fitted to a Lorentzian function and the FWHM showed a quadratic increase with the fiber strain. Finally, a dual-fiber tensile experiment was performed to verify the adequacy of the Raman technique for the measurement of multi-fiber strains.

  4. Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.

    PubMed

    Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman

    2013-03-25

    We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.

  5. Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber.

    PubMed

    Gregg, P; Mirhosseini, M; Rubano, A; Marrucci, L; Karimi, E; Boyd, R W; Ramachandran, S

    2015-04-15

    We demonstrate that a |q|=1/2 plate, in conjunction with appropriate polarization optics, can selectively and switchably excite all linear combinations of the first radial mode order |l|=1 orbital angular momentum (OAM) fiber modes. This enables full mapping of free-space polarization states onto fiber vector modes, including the radially (TM) and azimuthally polarized (TE) modes. The setup requires few optical components and can yield mode purities as high as ∼30  dB. Additionally, just as a conventional fiber polarization controller creates arbitrary elliptical polarization states to counteract fiber birefringence and yield desired polarizations at the output of a single-mode fiber, q-plates disentangle degenerate state mixing effects between fiber OAM states to yield pure states, even after long-length fiber propagation. We thus demonstrate the ability to switch dynamically, potentially at ∼GHz rates, between OAM modes, or create desired linear combinations of them. We envision applications in fiber-based lasers employing vector or OAM mode outputs, as well as communications networking schemes exploiting spatial modes for higher dimensional encoding.

  6. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses.

    PubMed

    Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei

    2016-11-28

    We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

  7. Wide spectral range confocal microscope based on endlessly single-mode fiber.

    PubMed

    Hubbard, R; Ovchinnikov, Yu B; Hayes, J; Richardson, D J; Fu, Y J; Lin, S D; See, P; Sinclair, A G

    2010-08-30

    We report an endlessly single mode, fiber-optic confocal microscope, based on a large mode area photonic crystal fiber. The microscope confines a very broad spectral range of excitation and emission wavelengths to a single spatial mode in the fiber. Single-mode operation over an optical octave is feasible. At a magnification of 10 and λ = 900 nm, its resolution was measured to be 1.0 μm (lateral) and 2.5 μm (axial). The microscope's use is demonstrated by imaging single photons emitted by individual InAs quantum dots in a pillar microcavity.

  8. Photonic Lantern Adaptive Spatial Mode Control in LMA Fiber Amplifiers using SPGD

    DTIC Science & Technology

    2015-12-15

    ll.mit.edu Abstract: We demonstrate adaptive-spatial mode control (ASMC) in few- moded double- clad large mode area (LMA) fiber amplifiers by using an...combination resulting in a single fundamental mode at the output is achieved. 2015 Optical Society of America OCIS codes: (140.3510) Lasers ...fiber; (140.3425) Laser stabilization; (060.2340) Fiber optics components; (110.1080) Active or adaptive optics; References and links 1. C

  9. Mode Selection for a Single-Frequency Fiber Laser

    NASA Technical Reports Server (NTRS)

    Liu, Jian

    2010-01-01

    A superstructured fiber-grating-based mode selection filter for a single-frequency fiber laser eliminates all free-space components, and makes the laser truly all-fiber. A ring cavity provides for stable operations in both frequency and power. There is no alignment or realignment required. After the fibers and components are spliced together and packaged, there is no need for specially trained technicians for operation or maintenance. It can be integrated with other modules, such as telescope systems, without extra optical alignment due to the flexibility of the optical fiber. The filter features a narrow line width of 1 kHz and side mode suppression ratio of 65 dB. It provides a high-quality laser for lidar in terms of coherence length and signal-to-noise ratio, which is 20 dB higher than solid-state or microchip lasers. This concept is useful in material processing, medical equipment, biomedical instrumentation, and optical communications. The pulse-shaping fiber laser can be directly used in space, airborne, and satellite applications including lidar, remote sensing, illuminators, and phase-array antenna systems.

  10. Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber

    NASA Astrophysics Data System (ADS)

    Burdin, V.; Bourdine, A.

    2018-04-01

    This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.

  11. Adaptive frequency-domain equalization for the transmission of the fundamental mode in a few-mode fiber.

    PubMed

    Bai, Neng; Xia, Cen; Li, Guifang

    2012-10-08

    We propose and experimentally demonstrate single-carrier adaptive frequency-domain equalization (SC-FDE) to mitigate multipath interference (MPI) for the transmission of the fundamental mode in a few-mode fiber. The FDE approach reduces computational complexity significantly compared to the time-domain equalization (TDE) approach while maintaining the same performance. Both FDE and TDE methods are evaluated by simulating long-haul fundamental-mode transmission using a few-mode fiber. For the fundamental mode operation, the required tap length of the equalizer depends on the differential mode group delay (DMGD) of a single span rather than DMGD of the entire link.

  12. Arc fusion splicing of photonic crystal fibers to standard single mode fibers

    NASA Astrophysics Data System (ADS)

    Borzycki, Krzysztof; Kobelke, Jens; Schuster, Kay; Wójcik, Jan

    2010-04-01

    Coupling a photonic crystal fiber (PCF) to measuring instruments or optical subsystems is often done by splicing it to short lengths of single mode fiber (SMF) used for interconnections, as SMF is standardized, widely available and compatible with most fiber optic components and measuring instruments. This paper presents procedures and results of loss measurements during fusion splicing of five PCFs tested at NIT laboratory within activities of COST Action 299 "FIDES". Investigated silica-based fibers had 80-200 μm cladding diameter and were designed as single mode. A standard splicing machine designed for telecom fibers was used, but splicing procedure and arc power were tailored to each PCF. Splice loss varied between 0.7 and 2.8 dB at 1550 nm. Splices protected with heat-shrinkable sleeves served well for gripping fibers during mechanical tests and survived temperature cycling from -30°C to +70°C with stable loss. Collapse of holes in the PCF was limited by reducing fusion time to 0.2-0.5 s; additional measures included reduction of discharge power and shifting SMF-PCF contact point away from the axis of electrodes. Unfortunately, short fusion time sometimes precluded proper smoothing of glass surface, leading to a trade-off between splice loss and strength.

  13. Single and low order mode interrogation of a multimode sapphire fiber Bragg grating sensor with tapered fibers

    NASA Astrophysics Data System (ADS)

    Grobnic, Dan; Mihailov, Stephen J.; Ding, H.; Bilodeau, F.; Smelser, Christopher W.

    2005-05-01

    Multimode sapphire fiber Bragg gratings (SFBG) made with an IR femtosecond laser and a phase mask were probed using tapered single mode fibers of different taper diameters producing single and low order mode reflection/transmission responses. A configuration made of an input single mode tapered fiber and multimode silica fiber used for output coupling was also tested and has delivered a filtered multimode transmission spectrum. The tapered coupling improved the spectral resolution of the SFBG as compared to its multimode responses previously reported. Such improvements facilitate the utilization of the SFBG as a high temperature sensor. Wavelength shifts of the single mode response were monitored as a function of temperature up to 1500 °C and were consistent with the measurement obtained from the multimode response published previously.

  14. Single Mode Fiber Optic Transceiver Using Short Wavelength Active Devices In Long Wavelength Fiber

    NASA Astrophysics Data System (ADS)

    Gillham, Frederick J.; Campbell, Daniel R.; Corke, Michael; Stowe, David W.

    1990-01-01

    Presently, single mode optical fiber technology is being utilized in systems to supply telephone service to the subscriber. However, in an attempt to be competitive with copper based systems, there are many development programs underway to determine the most cost effective solution while still providing a service that will either satisfy or be upgradeable to satisfy the demands of the consumer for the next 10 to 20 years. One such approach is to combine low cost laser transmitters and silicon receivers, which have been developed for the "compact disc" industry, with fiber that operates in the single mode regime at 1300 nm. In this paper, an optical transceiver will be presented, consisting of a compact disc laser, a silicon detector and a single mode coupler at 1300 nm. A possible system layout is presented which operates at 780 nm bi-directionally for POTS and upgradeable to 1300 nm for video services. There are several important design criteria that have to be considered in the development of such a system which will be addressed. These include: 1. Optimization of coupled power from laser to fiber while maintaining stable launched conditions over a wide range of environmental conditions. 2. Consideration of the multimode operation of the 1300 nm single mode fiber while operating in the 780 nm wavelength region. 3. Development of a low cost pseudo-wavelength division multiplexer for 1300 nm single mode/780 nm multimode operation and a low cost dual mode 50/50, 780 nm splitter using 1300 nm fiber. Details will be given of the design criteria and solution in terms of optimized design. Results of the performance of several prototype devices will be given with indications of the merits of this approach and where further development effort should be applied.

  15. Mode conversion in a tapered fiber via a whispering gallery mode resonator and its application as add/drop filter.

    PubMed

    Huang, Ligang; Wang, Jie; Peng, Weihua; Zhang, Wending; Bo, Fang; Yu, Xuanyi; Gao, Feng; Chang, Pengfa; Song, Xiaobo; Zhang, Guoquan; Xu, Jingjun

    2016-02-01

    Based on the conversion between the fundamental mode (LP01) and the higher-order mode (LP11) in a tapered fiber via a whispering gallery mode resonator, an add/drop filter was proposed and demonstrated experimentally, in which the resonator only interacted with one tapered fiber, rather than two tapered fibers as in conventional configurations. The filter gains advantages of easy alignment and low scattering loss over the other filters based on tapered fiber and resonator, and will be useful in application.

  16. Dual spherical single-mode-multimode-single-mode optical fiber temperature sensor based on a Mach–Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Tan, Jianchang; Feng, Guoying; Zhang, Shulin; Liang, Jingchuan; Li, Wei; Luo, Yun

    2018-07-01

    A dual spherical single-mode-multimode-single-mode (DSSMS) optical fiber temperature sensor based on a Mach–Zehnder interferometer (MZI) was designed and implemented in this paper. Theoretical and experimental results indicated that the LP01 mode in the core and the LP09 mode excited by the spherical structure were maintained and transmitted via multimode fiber and interfered at the second spherical structure, resulting in the interference spectrum. An increase or decrease in temperature can cause significant red-shift or blue-shift of the spectrum, respectively. The linearity of the spectral shift due to the temperature change is ~0.999, the sensitivity at 30 °C–540 °C is ~37.372 pm °C‑3, and at  ‑25 °C–25 °C is ~37.28 pm °C‑1. The reproducibility error of this all-fiber temperature sensor at 30 °C–540 °C is less than 0.15%. Compared with the optical fiber sensor with a tapered structure and fiber core offset structure, this MZI-based DSSMS optical fiber temperature sensor has higher mechanical strength. Moreover, benefiting from low-cost and environmentally friendly materials, it is expected to be a novel micro-nano all-fiber sensor.

  17. High-power, cladding-pumped all-fiber laser with selective transverse mode generation property.

    PubMed

    Li, Lei; Wang, Meng; Liu, Tong; Leng, Jinyong; Zhou, Pu; Chen, Jinbao

    2017-06-10

    We demonstrate, to the best of our knowledge, the first cladding-pumped all-fiber oscillator configuration with selective transverse mode generation based on a mode-selective fiber Bragg grating pair. Operating in the second-order (LP 11 ) mode, maximum output power of 4.2 W is obtained with slope efficiency of about 38%. This is the highest reported output power of single higher-order transverse mode generation in an all-fiber configuration. The intensity distribution profile and spectral evolution have also been investigated in this paper. Our work suggests the potential of realizing higher power with selective transverse mode operation based on a mode-selective fiber Bragg grating pair.

  18. Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers.

    PubMed

    Xiao, Feng; Alameh, Kamal; Lee, Yong Tak

    2009-12-07

    A multi-wavelength tunable fiber laser based on the use of an Opto-VLSI processor in conjunction with different optical amplifiers is proposed and experimentally demonstrated. The Opto-VLSI processor can simultaneously select any part of the gain spectrum from each optical amplifier into its associated fiber ring, leading to a multiport tunable fiber laser source. We experimentally demonstrate a 3-port tunable fiber laser source, where each output wavelength of each port can independently be tuned within the C-band with a wavelength step of about 0.05 nm. Experimental results demonstrate a laser linewidth as narrow as 0.05 nm and an optical side-mode-suppression-ratio (SMSR) of about 35 dB. The demonstrated three fiber lasers have excellent stability at room temperature and output power uniformity less than 0.5 dB over the whole C-band.

  19. Mechanics of Unidirectional Fiber-Reinforced Composites: Buckling Modes and Failure Under Compression Along Fibers

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.

    2018-01-01

    One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.

  20. Mode instability in a Yb-doped stretched core fiber

    NASA Astrophysics Data System (ADS)

    Xia, N.; Yoo, S.

    2017-02-01

    In this work we present the theoretical study of transverse mode instability (TMI) in ytterbium (Yb)-doped rectangular core fibers with different core aspect ratios using the fast Fourier transform (FFT) beam propagation method (BPM). As expected, the rectangular core fiber with larger aspect ratio (AR.) offers more efficient heat dissipation than a circular core fiber. However, it is found that the rectangular core fiber does not benefit from the better heat dissipation to suppress the TMI when compared to the circular core counterpart. The temperature building in the rectangular core fiber decreases by up to 24.6% with a 10:1 aspect ratio core, while threshold pump power drops by up to 38.3% when compared with a circular core fiber with the same core area. Our study reveals that a smaller effective refractive index difference between modes and a weaker gain saturation effect compensate the thermal advantage from more efficient heat dissipation.

  1. NONLINEAR AND FIBER OPTICS: Influence of nonlinearity of the parameters of guided modes in fiber waveguides

    NASA Astrophysics Data System (ADS)

    Goncharenko, I. A.

    1990-04-01

    The shift formula method is used to obtain analytic expressions which provide estimates of the influence of nonlinearity on the parameters of fiber waveguide modes. Depending on the sign of the nonlinear susceptibility of the waveguide core, the nonlinearity can improve or impair (right down to complete loss) the waveguiding properties of fibers. The optical power at which a fiber loses its guiding properties is constant far from the cutoff, but rises steeply near the critical cutoff frequency. The nonlinearity can be used to vary the zero dispersion wavelength and the range of single-mode operation of a fiber waveguide.

  2. Picosecond passively mode-locked mid-infrared fiber laser

    NASA Astrophysics Data System (ADS)

    Wei, C.; Zhu, X.; Norwood, R. A.; Kieu, K.; Peyghambarian, N.

    2013-02-01

    Mode-locked mid-infrared (mid-IR) fiber lasers are of increasing interest due to their many potential applications in spectroscopic sensors, infrared countermeasures, laser surgery, and high-efficiency pump sources for nonlinear wavelength convertors. Er3+-doped ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fiber lasers, which can emit mid-IR light at 2.65-2.9 μm through the transition from the upper energy level 4I11/2 to the lower laser level 4I13/2, have attracted much attention because of their broad emission range, high optical efficiency, and the ready availability of diode pump lasers at the two absorption peaks of Er3+ ions (975 nm and 976 nm). In recent years, significant progress on high power Er3+- doped ZBLAN fiber lasers has been achieved and over 20 watt cw output at 2.8 μm has been demonstrated; however, there has been little progress on ultrafast mid-IR ZBLAN fiber lasers to date. We report a passively mode-locked Er3+- doped ZBLAN fiber laser in which a Fe2+:ZnSe crystal was used as the intracavity saturable absorber. Fe2+:ZnSe is an ideal material for mid-IR laser pulse generation because of its large saturable absorption cross-section and small saturation energy along with the excellent opto-mechanical (damage threshold ~2 J/cm2) and physical characteristics of the crystalline ZnSe host. A 1.6 m double-clad 8 mol% Er3+-doped ZBLAN fiber was used in our experiment. The fiber core has a diameter of 15 μm and a numerical aperture (NA) of 0.1. The inner circular cladding has a diameter of 125 μm and an NA of 0.5. Both continuous-wave and Q-switched mode-locking pulses at 2.8 μm were obtained. Continuous-wave mode locking operation with a pulse duration of 19 ps and an average power of 51 mW were achieved when a collimated beam traversed the Fe2+:ZnSe crystal. When the cavity was modified to provide a focused beam at the Fe2+:ZnSe crystal, Q-switched mode-locked operation with a pulse duration of 60 ps and an average power of 4.6 mW was achieved. More powerful

  3. Experimental measurement and numerical analysis of group velocity dispersion in cladding modes of an endlessly single-mode photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Baselt, Tobias; Taudt, Christopher; Nelsen, Bryan; Lasagni, Andrés. Fabián.; Hartmann, Peter

    2017-06-01

    The optical properties of the guided modes in the core of photonic crystal fibers (PCFs) can be easily manipulated by changing the air-hole structure in the cladding. Special properties can be achieved in this case such as endless singlemode operation. Endlessly single-mode fibers, which enable single-mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode properties. In addition to the guidance of light in the core, different cladding modes occur. The coupling between the core and the cladding modes can affect the endlessly single-mode guides. There are two possible ways to determine the dispersion: measurement and calculation. We calculate the group velocity dispersion (GVD) of different cladding modes based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array. Based on the scanning electron image, a calculation was made of the optical guiding properties of the microstructured cladding. We compare the calculation with a method to measure the wavelength-dependent time delay. We measure the time delay of defined cladding modes with a homemade supercontinuum light source in a white light interferometric setup. To measure the dispersion of cladding modes of optical fibers with high accuracy, a time-domain white-light interferometer based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelengthdependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the cladding modes of an endlessly single-mode fiber.

  4. Two mode optical fiber in space optics communication

    NASA Astrophysics Data System (ADS)

    Hampl, Martin

    2017-11-01

    In our contribution we propose to use of a two-mode optical fiber as a primary source in a transmitting optical head instead of the laser diode. The distribution of the optical intensity and the complex degree of the coherence on the output aperture of the lens that is irradiated by a step-index weakly guiding optical fiber is investigated. In our treatment we take into account weakly guided modes with polarization corrections to the propagation constant and unified theory of second order coherence and polarization of electromagnetic beams.

  5. On the Raman threshold of passive large mode area fibers

    NASA Astrophysics Data System (ADS)

    Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2011-02-01

    The output power of fiber optic laser systems has been exponentially increasing in the last years. However, non-linear effects, and in particular stimulated Raman scattering (SRS), are threatening to seriously limit the development pace in the near future. SRS can take place anywhere along the laser system, however it is actually the passive delivery fiber at the end of the system, the section where SRS is most likely to occur. The common way to combat this problem is to use the so-called Large Mode Area (LMA) fibers. However, these fibers are expensive and have a multimode nature that will either reduce the beam quality of the laser output or require a careful excitation of the fundamental mode. Furthermore, the larger the core area, the more complicated it will be to sustain single-mode operation. Therefore, it is becoming increasingly important to be able to determine which is the minimum core area required in the delivery fiber to avoid SRS. This calculation is usually carried out using the conventional formula for the Raman Threshold published by R.G. Smith in 1972: Pth =16Aeff gRLeff . In this work we demonstrate that this formula and the conclusions derived from it are inaccurate for short (several meters long) LMA fibers. For example, one widely spread belief (obtained from this expression) is that there is no dependence of the Raman intensity threshold (Ith=Pth/Aeff) on the mode area. However, our calculations show otherwise. Additionally, we have obtained an improved Raman threshold formula valid for short LMA fibers.

  6. Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber.

    PubMed

    Jung, Yongmin; Jeong, Yoonchan; Brambilla, Gilberto; Richardson, David J

    2009-08-01

    We propose a simple and effective method to selectively excite the fundamental mode of a multimode fiber by adiabatically tapering a fusion splice to a single-mode fiber. We experimentally demonstrate the method by adiabatically tapering splice (taper waist=15 microm, uniform length=40 mm) between single-mode and multimode fiber and show that it provides a successful mode conversion/connection and allows for almost perfect fundamental mode excitation in the multimode fiber. Excellent beam quality (M(2) approximately 1.08) was achieved with low loss and high environmental stability.

  7. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.

    PubMed

    Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo

    2013-07-15

    We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

  8. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Cary; Homa, Dan; Yu, Zhihao

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  9. Single Mode Air-Clad Single Crystal Sapphire Optical Fiber

    DOE PAGES

    Hill, Cary; Homa, Dan; Yu, Zhihao; ...

    2017-05-03

    The observation of single mode propagation in an air-clad single crystal sapphire optical fiber at wavelengths at and above 783 nm is presented for the first time. A high-temperature wet acid etching method was used to reduce the diameter of a 10 cm length of commercially-sourced sapphire fiber from 125 micrometers to 6.5 micrometers, and far-field imaging provided modal information at intervals as the fiber diameter decreased. Modal volume was shown to decrease with decreasing diameter, and single mode behavior was observed at the minimum diameter achieved. While weakly-guiding approximations are generally inaccurate for low modal volume optical fiber withmore » high core-cladding refractive index disparity, consistency between these approximations and experimental results was observed when the effective numerical aperture was measured and substituted for the theoretical numerical aperture in weakly-guiding approximation calculations. With the demonstration of very low modal volume in sapphire at fiber diameters much larger than anticipated by legacy calculations, the resolution of sapphire fiber distributed sensors may be increased and other sensing schemes requiring very low modal volume, such as fiber Bragg gratings, may be realized in extreme environment applications.« less

  10. Passively mode-locked Raman fiber laser with 100 GHz repetition rate

    NASA Astrophysics Data System (ADS)

    Schröder, Jochen; Coen, Stéphane; Vanholsbeeck, Frédérique; Sylvestre, Thibaut

    2006-12-01

    We experimentally demonstrate the operation of a passively mode-locked Raman fiber ring laser with an ultrahigh repetition rate of 100GHz and up to 430mW of average output power. This laser constitutes a simple wavelength versatile pulsed optical source. Stable mode locking is based on dissipative four-wave mixing with a single fiber Bragg grating acting as the mode-locking element.

  11. Fiber comb filters based on UV-writing Bragg gratings in graded-index multimode fibers

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Lit, John; Gu, Xijia; Wei, Li

    2005-10-01

    We report a new kind of comb filters based on fiber Bragg gratings in graded-index multimode fibers. It produces two groups of spectra with a total of 36 reflection peaks that correspond to 18 principal modes and cross coupled modes. The mode indices and wavelength spacings have been investigated theoretically and experimentally. This kind of comb filters may be used to construct multi-wavelength light sources for sensing, optical communications, and instrumentations

  12. Mode evolution in polarization maintain few mode fibers and applications in mode-division-multiplexing systems

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zeng, Xinglin; Mo, Qi; Li, Wei; Liu, Zhijian; Wu, Jian

    2016-10-01

    In few-mode polarization-maintaining-fiber (FM-PMF), the effective-index splitting exists not only between orthogonally polarization state but also between degenerated modes within a high-order mode group. Hence besides the polarization state evolution, the mode patterns in each LP set are need to be analyzed. In this letter, the completed firstorder mode (LP11 mode) evolution in PM-FMF is analyzed and represented by analogous Jones vector and Poincarésphere respectively. Furthermore, with Jones matrix analysis, the modal dynamics in FM-PMFs is conveniently analyzed. The conclusions are used to propose a PM-FMF based LP11 mode rotator and an PM-FMF based OAM generator. Both simulation and experiments are conducted to investigate performance of the two devices.

  13. Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges.

    PubMed

    Xiao, Limin; Jin, Wei; Demokan, M S

    2007-01-15

    We demonstrate a novel method for low-loss splicing small-core photonic crystal fibers (PCFs) and single-mode fibers (SMFs) by repeated arc discharges using a conventional fusion splicer. An optimum mode field match at the interface of PCF-SMF and an adiabatic mode field variation in the longitudinal direction of the small-core PCF can be achieved by repeated arc discharges applied over the splicing joint to gradually collapse the air holes of the small-core PCF. This method is simple and offers a practical solution for light coupling between small-core PCFs and SMFs.

  14. Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges

    NASA Astrophysics Data System (ADS)

    Xiao, Limin; Jin, Wei; Demokan, M. S.

    2007-01-01

    We demonstrate a novel method for low-loss splicing small-core photonic crystal fibers (PCFs) and single-mode fibers (SMFs) by repeated arc discharges using a conventional fusion splicer. An optimum mode field match at the interface of PCF-SMF and an adiabatic mode field variation in the longitudinal direction of the small-core PCF can be achieved by repeated arc discharges applied over the splicing joint to gradually collapse the air holes of the small-core PCF. This method is simple and offers a practical solution for light coupling between small-core PCFs and SMFs.

  15. Yb-doped large mode area tapered fiber with depressed cladding and dopant confinement

    NASA Astrophysics Data System (ADS)

    Roy, V.; Paré, C.; Labranche, B.; Laperle, P.; Desbiens, L.; Boivin, M.; Taillon, Y.

    2017-02-01

    A polarization-maintaining Yb-doped large mode area fiber with depressed-index inner cladding layer and confinement of rare-earth dopants has been drawn as a long tapered fiber. The larger end features a core/clad diameter of 56/400 μm and core NA 0.07, thus leading to an effective mode area over 1000 μm2. The fiber was tested up to 100 W average power, with near diffraction-limited output as the beam quality M2 was measured < 1.2. As effective single-mode guidance is enforced in the first section due to enhanced bending loss, subsequent adiabatic transition of the mode field in the taper section preserves single-mode amplification towards the larger end of the fiber.

  16. Multi-fibers connectors systems for FOCCoS-PFS-Subaru

    NASA Astrophysics Data System (ADS)

    de Oliveira, Antonio Cesar; de Oliveira, Ligia Souza; Souza Marrara, Lucas; dos Santos, Leandro Henrique; Vital de Arruda, Marcio; dos Santos, Jesulino Bispo; Ferreira, Décio; Rosa, Josimar Aparecido; de Paiva Vilaça, Rodrigo; Sodré, Laerte; de Oliveira, Claudia Mendes; Gunn, James E.

    2014-07-01

    The Fiber Optical Cable and Connector System (FOCCoS), provides optical connection between 2400 positioners and a set of spectrographs through optical fibers cables as part of PFS instrument for Subaru telescope. The optical fiber cable will be segmented in 3 parts along the route, cable A, cable B and cable C, connected by a set of multi-fiber connectors. The company USCONEC produces the multi-fiber connector under study. The USCONEC 32F model can connect 32 optical fibers in a 4 x 8 matrix arrangement. The ferrules are made of a durable composite, Polyphenylene Sulfide (PPS) based thermoplastic. The connections are held in place by a push-on/pull-off latch, and the connector can also be distinguished by a pair of metal guide pins that protrude from the front of the connector. Two fibers per connector will be used for monitoring the connection procedure. It was found to be easy to polish and it is small enough to be mounted in groups. Highly multiplexed instruments like PFS require a fiber connector system that can deliver excellent optical performance and reliability. PFS requires two different types of structures to organize the connectors. The Tower Connector system, with 80 multi-fiber connectors, will be a group of connectors for connecting cable B (Telescope Structure) with cable C (Positioners Plate). The Gang Connector system is a group of 8 gang connectors, each one with 12 multi-fibers connectors, for connecting cable B (Telescope Structure) with cable A (Spectrograph). The bench tests with these connector systems and the chosen fibers should measure the throughput of light and the stability after many connections and disconnections. In this paper we describe tests and procedures to evaluate the throughput and FRD increment. The lifetime of the ferrules is also in evaluation.

  17. Single-mode glass waveguide technology for optical interchip communication on board level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  18. Fast coarse-fine locating method for φ-OTDR.

    PubMed

    Mei, Xuanwei; Pang, Fufei; Liu, Huanhuan; Yu, Guoqin; Shao, Yuying; Qian, Tianyu; Mou, Chengbo; Lv, Longbao; Wang, Tingyun

    2018-02-05

    We proposed and demonstrated a coarse-fine method to achieve fast locating of external vibration for the phase-sensitive optical time-domain reflectometer (φ-OTDR) sensing system. Firstly, the acquired backscattered traces from heterodyne coherent φ-OTDR systems are spatially divided into a few segments along a sensing fiber for coarse locating, and most of the acquired data can be excluded by comparing the phase difference between the endpoints in adjacent segments. Secondly, the amplitude-based locating is implemented within the target segments for fine locating. By using the proposed coarse-fine locating method, we have numerically and experimentally investigated a distributed vibration sensor based on the heterodyne coherent φ-OTDR system with a 50-km-long sensing fiber. We find that the computation cost of signal processing for locating is significantly reduced in the long-haul sensing fiber, showing a potential application in real-time locating of external vibration.

  19. Kiso Multi-Fiber Spectroscope Project (C)

    NASA Astrophysics Data System (ADS)

    Yadoumaru, Yasushi; Itoh, Nobunari; Nakada, Yoshikazu; Tarusawa, Ken'ichi; Soyano, Takao; Mito, Hiroyuki

    A Multi-FIBER Spectroscope at Kiso Observatory is under consideration as our next instrument. In this paper we report an overview of our instrument and a scientific target of our survey project. We are going to attach multi-fiber system at the prime focus of Kiso 105cm Schmidt telescope. This telescope has some advantages for our project. First, the efficiency in survey for the object, which number density is 0.1 to 10 degree2, is higher than other multi object system due to the wide field of view (6 degree x 6 degree). Second, an optics of telescope is well-matched to fiber numerical aperture (NA) at an input end of fiber. Moreover, taking a focal ratio degradation (FRD) and scrambling property into account, since the light from object dose not move at the entrance slit of spectroscope, we could get spectroscopic data stably with this system. We select a fiber with 100 micron meter core which is correspond to 6 arcsec on focal plane, that is matched with a typical seeing (about 3 arcsec) of Kiso Observatory and set 150 fibers to one field. For efficient observations, it is necessary to arrange fibers accurately within an accuracy of +/- 25 micron meter on the curved focal plane during a typical exposure time (1 hour). Therefore we examine a particular positioner specialized for curved surface. We also develop a spectroscope that is suited for a fast focal ratio and proceed with making its design. One of our main key projects with this system is a non-biased metallicity survey for solar neighbor stars. We are now establishing a new metallicity determination method that easily and reliably measures a metallicity from low-dispersion spectra. (see Itoh et al.). As we consider our main target as Galactic objects and low resolution (R is around 1000), we could observe a star with 17 mag at V-band (1 hour exposure).

  20. Modeling thermo-optic effect in large mode area double cladding photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Coscelli, Enrico; Cucinotta, Annamaria

    2014-02-01

    The impact of thermally-induced refractive index changes on the single-mode (SM) properties of large mode area (LMA) photonic crystal fibers are thoroughly investigated by means of a full-vector modal solver with integrated thermal model. Three photonic crystal fiber designs are taken into account, namely the 19-cell core fiber, the large-pitch fiber (LPF) and the distributed modal filtering (DMF) fiber, to assess the effects of the interplay between thermal effects and the high-order mode (HOM) suppression mechanisms exploited in order to obtain effectively SM guiding. The results have shown significant differences in the way the SM regime is changed by the increase of heat load, providing useful hints for the design of LMA fibers for high power lasers.

  1. Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements.

    PubMed

    Habib, Md Selim; Bang, Ole; Bache, Morten

    2016-04-18

    A hollow-core fiber using anisotropic anti-resonant tubes in the cladding is proposed for low loss and effectively single-mode guidance. We show that the loss performance and higher-order mode suppression is significantly improved by using symmetrically distributed anisotropic anti-resonant tubes in the cladding, elongated in the radial direction, when compared to using isotropic, i.e. circular, anti-resonant tubes. The effective single-mode guidance of the proposed fiber is achieved by enhancing the coupling between the cladding modes and higher-order-core modes by suitably engineering the anisotropic anti-resonant elements. With a silica-based fiber design aimed at 1.06 µm, we show that the loss extinction ratio between the higher-order core modes and the fundamental core mode can be more than 1000 in the range 1.0-1.65 µm, while the leakage loss of the fundamental core mode is below 15 dB/km in the same range.

  2. Laser to single-mode-fiber coupling: A laboratory guide

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1992-01-01

    All the information necessary to achieve reasonably efficient coupling of semiconductor lasers to single mode fibers is collected from the literature, reworked when necessary, and presented in a mostly tabular form. Formulas for determining the laser waist radius and the fiber mode radius are given. Imaging relations connecting these values with the object and image distances are given for three types of lenses: ball, hemisphere, and Gradient Index (GRIN). Sources for these lenses are indicated, and a brief discussion is given about ways of reducing feedback effects.

  3. Theoretical study of mode evolution in active long tapered multimode fiber.

    PubMed

    Shi, Chen; Wang, Xiaolin; Zhou, Pu; Xu, Xiaojun; Lu, Qisheng

    2016-08-22

    A concise and effective model based on coupled mode theory to describe mode evolution in long tapered active fiber is presented in this manuscript. The mode coupling due to variation of core radius and slight perturbation have been analyzed and local gain with transverse spatial hole burning (TSHB) effect, loss and curvature have been taken into consideration in our model. On the base of this model, the mode evolution behaviors under different factors have been numerically investigated. Our model and results can provide instructive suggestions when designing long tapered fiber based laser and amplifiers.

  4. Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber

    PubMed Central

    Li, Wentao; Chen, Danping; Qinling, Zhou; Hu, Lili

    2015-01-01

    We have demonstrated a 45 μm core diameter Neodymium-doped all-solid silicate glass photonic crystal fiber laser with a single mode laser output. The structure parameters and modes information of the fiber are both demonstrated by theoretical calculations using Finite Difference Time Domain (FDTD) method and experimental measurements. Maximum 0.8 W output power limited by launched pump power has been generated in 1064 nm with laser beam quality factor M2 1.18. PMID:26205850

  5. Nonlinear optics in the LP(02) higher-order mode of a fiber.

    PubMed

    Chen, Y; Chen, Z; Wadsworth, W J; Birks, T A

    2013-07-29

    The distinct disperion properties of higher-order modes in optical fibers permit the nonlinear generation of radiation deeper into the ultraviolet than is possible with the fundamental mode. This is exploited using adiabatic, broadband mode convertors to couple light efficiently from an input fundamental mode and also to return the generated light to an output fundamental mode over a broad spectral range. For example, we generate visible and UV supercontinuum light in the LP(02) mode of a photonic crystal fiber from sub-ns pulses with a wavelength of 532 nm.

  6. Acousto-optic resonant coupling of three spatial modes in an optical fiber.

    PubMed

    Park, Hee Su; Song, Kwang Yong

    2014-01-27

    A fiber-optic analogue to an externally driven three-level quantum state is demonstrated by acousto-optic coupling of the spatial modes in a few-mode fiber. Under the condition analogous to electromagnetically induced transparency, a narrow-bandwidth transmission within an absorption band for the fundamental mode is demonstrated. The presented structure is an efficient converter between the fundamental mode and the higher-order modes that cannot be easily addressed by previous techniques, therefore can play a significant role in the next-generation space-division multiplexing communications as an arbitrarily mode-selectable router.

  7. High-Energy Passive Mode-Locking of Fiber Lasers

    PubMed Central

    Ding, Edwin; Renninger, William H.; Wise, Frank W.; Grelu, Philippe; Shlizerman, Eli; Kutz, J. Nathan

    2012-01-01

    Mode-locking refers to the generation of ultrashort optical pulses in laser systems. A comprehensive study of achieving high-energy pulses in a ring cavity fiber laser that is passively mode-locked by a series of waveplates and a polarizer is presented in this paper. Specifically, it is shown that the multipulsing instability can be circumvented in favor of bifurcating to higher-energy single pulses by appropriately adjusting the group velocity dispersion in the fiber and the waveplate/polarizer settings in the saturable absorber. The findings may be used as practical guidelines for designing high-power lasers since the theoretical model relates directly to the experimental settings. PMID:22866059

  8. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides.

    PubMed

    Papes, Martin; Cheben, Pavel; Benedikovic, Daniel; Schmid, Jens H; Pond, James; Halir, Robert; Ortega-Moñux, Alejandro; Wangüemert-Pérez, Gonzalo; Ye, Winnie N; Xu, Dan-Xia; Janz, Siegfried; Dado, Milan; Vašinek, Vladimír

    2016-03-07

    Fiber-chip edge couplers are extensively used in integrated optics for coupling of light between planar waveguide circuits and optical fibers. In this work, we report on a new fiber-chip edge coupler concept with large mode size for silicon photonic wire waveguides. The coupler allows direct coupling with conventional cleaved optical fibers with large mode size while circumventing the need for lensed fibers. The coupler is designed for 220 nm silicon-on-insulator (SOI) platform. It exhibits an overall coupling efficiency exceeding 90%, as independently confirmed by 3D Finite-Difference Time-Domain (FDTD) and fully vectorial 3D Eigenmode Expansion (EME) calculations. We present two specific coupler designs, namely for a high numerical aperture single mode optical fiber with 6 µm mode field diameter (MFD) and a standard SMF-28 fiber with 10.4 µm MFD. An important advantage of our coupler concept is the ability to expand the mode at the chip edge without leading to high substrate leakage losses through buried oxide (BOX), which in our design is set to 3 µm. This remarkable feature is achieved by implementing in the SiO 2 upper cladding thin high-index Si 3 N 4 layers. The Si 3 N 4 layers increase the effective refractive index of the upper cladding near the facet. The index is controlled along the taper by subwavelength refractive index engineering to facilitate adiabatic mode transformation to the silicon wire waveguide while the Si-wire waveguide is inversely tapered along the coupler. The mode overlap optimization at the chip facet is carried out with a full vectorial mode solver. The mode transformation along the coupler is studied using 3D-FDTD simulations and with fully-vectorial 3D-EME calculations. The couplers are optimized for operating with transverse electric (TE) polarization and the operating wavelength is centered at 1.55 µm.

  9. Short pulse fiber lasers mode-locked by carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Yamashita, Shinji; Martinez, Amos; Xu, Bo

    2014-12-01

    One and two dimensional forms of carbon, carbon nanotubes and graphene, have interesting and useful, not only electronic but also photonic, properties. For fiber lasers, they are very attractive passive mode lockers for ultra-short pulse generation, since they have saturable absorption with inherently fast recovery time (<1 ps). In this paper, we review the photonic properties of graphene and CNT and our recent works on fabrication of fiber devices and applications to ultra-short pulse mode-locked fiber lasers.

  10. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth.

    PubMed

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of

  11. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth

    NASA Astrophysics Data System (ADS)

    de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás

    2017-12-01

    The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of

  12. Ultrafast mode-locked fiber lasers for high-speed OTDM transmission and related topics

    NASA Astrophysics Data System (ADS)

    Nakazawa, Masataka

    Ultrashort optical pulse sources in the 1.5-µm region are becoming increasingly important in terms of realizing ultrahigh-speed optical transmission and signal processing at optical nodes. This paper provides a detailed description of several types of mode-locked erbium-doped fiber laser, which are capable of generating picosecond-femtosecond optical pulses in the 1.55-µm region. In terms of ultrashort pulse generation at a low repetition rate (˜100 MHz), passively mode-locked fiber lasers enable us to produce pulses of approximately 100 fs. With regard to high repetition rate pulse generation at 10-40 GHz, harmonically mode-locked fiber lasers can produce picosecond pulses. This paper also describes the generation of a femtosecond pulse train at a repetition rate of 10-40 GHz by compressing the output pulses from harmonically mode-locked fiber lasers with dispersion-decreasing fibers. Finally, a new Cs optical atomic clock at a frequency of 9.1926 GHz is reported that uses a re-generatively mode-locked fiber laser as an opto-electronic oscillator instead of a quartz oscillator. The repetition rate stability reaches as high as 10-12-10-13.

  13. Behavioral modeling and digital compensation of nonlinearity in DFB lasers for multi-band directly modulated radio-over-fiber systems

    NASA Astrophysics Data System (ADS)

    Li, Jianqiang; Yin, Chunjing; Chen, Hao; Yin, Feifei; Dai, Yitang; Xu, Kun

    2014-11-01

    The envisioned C-RAN concept in wireless communication sector replies on distributed antenna systems (DAS) which consist of a central unit (CU), multiple remote antenna units (RAUs) and the fronthaul links between them. As the legacy and emerging wireless communication standards will coexist for a long time, the fronthaul links are preferred to carry multi-band multi-standard wireless signals. Directly-modulated radio-over-fiber (ROF) links can serve as a lowcost option to make fronthaul connections conveying multi-band wireless signals. However, directly-modulated radioover- fiber (ROF) systems often suffer from inherent nonlinearities from directly-modulated lasers. Unlike ROF systems working at the single-band mode, the modulation nonlinearities in multi-band ROF systems can result in both in-band and cross-band nonlinear distortions. In order to address this issue, we have recently investigated the multi-band nonlinear behavior of directly-modulated DFB lasers based on multi-dimensional memory polynomial model. Based on this model, an efficient multi-dimensional baseband digital predistortion technique was developed and experimentally demonstrated for linearization of multi-band directly-modulated ROF systems.

  14. Polarization-maintaining performance of large effective area, higher order modes fiber in a coiled configuration

    NASA Astrophysics Data System (ADS)

    Ahmad, Raja; Nicholson, Jeffrey W.; Abedin, Kazi S.; Westbrook, Paul S.; Headley, Clifford; Wisk, Patrick W.; Monberg, Eric M.; Yan, Man F.; DiGiovanni, David J.

    2018-02-01

    Scaling the power-level of fiber sources has many practical advantages, while also enabling fundamental studies on the light-matter interaction in amorphous guiding media. In order to scale the power-level of fiber-sources without encountering nonlinear impairments, a strategy is to increase the effective-area of the guided optical-mode. Increasing the effective-area of the fundamental mode in a fiber, however, presents the challenges of increased susceptibility to mode-distortion and effective-area-reduction under the influence of bends. Therefore, higher-order-mode (HOM) fibers, which guide light in large effective-area (Aeff) Bessel-like modes, are a good candidate for scaling the power-level of robust fiber-sources. Many applications of high-power fiber-sources also demand a deterministic control on the polarization-state of light. Furthermore, a polarization-maintaining (PM)-type HOM fiber can afford the added possibility of coherent-beam combination and polarization multiplexing of high-power fiber-lasers. Previously, we reported polarization-maintaining operation in a 1.3 m length of PM-HOM fiber that was held straight. The PM-HOM fiber guided Bessel-like modes with Aeff ranging from 1200-2800 μm2. In this work, we report, for the first time, that the polarization-extinction-ratio (PER) of the HOM exceeds 10 dB in an 8 m long fiber that is coiled down to a diameter of 40 cm. This opens a path towards compact and polarization-controlled high-power fiber-systems.

  15. A Multi-D-Shaped Optical Fiber for Refractive Index Sensing

    PubMed Central

    Chen, Chien-Hsing; Tsao, Tzu-Chein; Tang, Jaw-Luen; Wu, Wei-Te

    2010-01-01

    A novel class of multi-D-shaped optical fiber suited for refractive index measurements is presented. The multi-D-shaped optical fiber was constructed by forming several D-sections in a multimode optical fiber at localized regions with femtosecond laser pulses. The total number of D-shaped zones fabricated could range from three to seven. Each D-shaped zone covered a sensor volume of 100 μm depth, 250 μm width, and 1 mm length. The mean roughness of the core surface obtained by the AFM images was 231.7 nm, which is relatively smooth. Results of the tensile test indicated that the fibers have sufficient mechanical strength to resist damage from further processing. The multi-D-shaped optical fiber as a high sensitive refractive-index sensor to detect changes in the surrounding refractive index was studied. The results for different concentrations of sucrose solution show that a resolution of 1.27 × 10−3–3.13 × 10−4 RIU is achieved for refractive indices in the range of 1.333 to 1.403, suggesting that the multi-D-shaped fibers are attractive for chemical, biological, and biochemical sensing with aqueous solutions. PMID:22399908

  16. A comprehensive review of lossy mode resonance-based fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Zhao, Wan-Ming

    2018-01-01

    This review paper presents the achievements and present developments in lossy mode resonances-based optical fiber sensors in different sensing field, such as physical, chemical and biological, and briefly look forward to its future development trend in the eyes of the author. Lossy mode resonances (LMR) is a relatively new physical optics phenomenon put forward in recent years. Fiber sensors utilizing LMR offered a new way to improve the sensing capability. LMR fiber sensors have diverse structures such as D-shaped, cladding-off, fiber tip, U-shaped and tapered fiber structures. Major applications of LMR sensors include refraction sensors and biosensors. LMR-based fiber sensors have attracted considerable research and development interest, because of their distinct advantages such as high sensitivity and label-free measurement. This kind of sensor is also of academic interest and many novel and great ideas are continuously developed.

  17. Neural networks within multi-core optic fibers.

    PubMed

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-07-07

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

  18. Multimode and single-mode fibers for data center and high-performance computing applications

    NASA Astrophysics Data System (ADS)

    Bickham, Scott R.

    2016-03-01

    Data center (DC) and high performance computing (HPC) applications have traditionally used a combination of copper, multimode fiber and single-mode fiber interconnects with relative percentages that depend on factors such as the line rate, reach and connectivity costs. The balance between these transmission media has increasingly shifted towards optical fiber due to the reach constraints of copper at data rates of 10 Gb/s and higher. The percentage of single-mode fiber deployed in the DC has also grown slightly since 2014, coinciding with the emergence of mega DCs with extended distance needs beyond 100 m. This trend will likely continue in the next few years as DCs expand their capacity from 100G to 400G, increase the physical size of their facilities and begin to utilize silicon-photonics transceiver technology. However there is a still a need for the low-cost and high-density connectivity, and this is sustaining the deployment of multimode fiber for links <= 100 m. In this paper, we discuss options for single-mode and multimode fibers in DCs and HPCs and introduce a reduced diameter multimode fiber concept which provides intra-and inter-rack connectivity as well as compatibility with silicon-photonic transceivers operating at 1310 nm. We also discuss the trade-offs between single-mode fiber attributes such as bend-insensitivity, attenuation and mode field diameter and their roles in capacity and connectivity in data centers.

  19. Elliptical-core two mode fiber sensors and devices incorporating photoinduced refractive index gratings

    NASA Technical Reports Server (NTRS)

    Greene, Jonathan A.; Miller, Mark S.; Starr, Suzanne E.; Fogg, Brian R.; Murphy, Kent A.; Claus, Richard O.; Vengsarkar, Ashish M.

    1991-01-01

    Results of experiments performed using germanium-doped, elliptical core, two-mode optical fibers whose sensitivity to strain was spatially varied through the use of chirped, refractive-index gratings permanently induced into the core using Argon-ion laser light are presented. This type of distributed sensor falls into the class of eighted-fiber sensors which, through a variety of means, weight the strain sensitivity of a fiber according to a specified spatial profile. We describe results of a weighted-fiber vibration mode filter which successfully enhances the particular vibration mode whose spatial profile corresponds to the profile of the grating chirp. We report on the high temperature survivability of such grating-based sensors and discuss the possibility of multiplexing more than one sensor within a single fiber.

  20. Numerical study on a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier

    NASA Astrophysics Data System (ADS)

    Cao, Jianqiu; Liu, Wenbo; Ying, Hanyuan; Chen, Jinbao; Lu, Qisheng

    2018-03-01

    The characteristics of a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier are investigated numerically using the rate-equation model while taking thermal transfer into account. It is revealed that the seed power should play an important role in the fiber amplifier and should be large enough to ensure high output efficiency. The effects of three pumping schemes (i.e. the co-, counter- and bi-directional pumping schemes) and the initial refraction index difference are also studied. It is revealed that the optimum fiber length changes with the pumping scheme, and the initial refraction index difference should be lower than 10-4 in order to ensure the linear increment of the output signal power with the pump power. Furthermore, a brief comparison between the thermally induced waveguides in the fiber amplifiers for three pumping schemes is also made.

  1. Edge-dip air core fiber for improvement of the transmission of higher-order OAM modes

    NASA Astrophysics Data System (ADS)

    Sun, Xibo; Geng, Yuanchao; Zhu, Qihua; Feng, Xi; Huang, Wanqing; Zhang, Ying; Wang, Wenyi; Liu, Lanqin

    2018-03-01

    We presented a novel scheme to improve the stability of the orbital angular momentum (OAM) modes transmission by adding a dip at the edge of the annular high-index region of the air-core fiber. The simulation indicated a larger effective index difference of the vector modes that composed OAM modes in the same order, promising a stable transmission of the OAM modes. The intensity of the modes was concentrated better in this scheme decreasing the crosstalk between adjacent fibers. The propagation properties of the OAM modes in bent fiber were investigated.

  2. Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers.

    PubMed

    Moenster, Mathias; Steinmeyer, Günter; Iliew, Rumen; Lederer, Falk; Petermann, Klaus

    2006-11-15

    For optical fibers exhibiting a radially symmetric refractive index profile, there exists an analytical relation that connects waveguide dispersion and the Petermann-II mode field radius. We extend the usefulness of this relation to the nonradially symmetric case of microstructure fibers in the anomalous dispersion regime, yielding a simple relation between dispersion and effective mode field area. Assuming a Gaussian mode distribution, we derive a fundamental upper limit for the effective mode field area that is required to obtain a certain amount of anomalous waveguide dispersion. This relation is demonstrated to show excellent agreement for fiber designs suited for supercontinuum generation and soliton lasers in the near infrared.

  3. Characterization of Mid-Infrared Single Mode Fibers as Modal Filters

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Lay, O.; Martin, S.; Sanghera, J. S.; Busse, L. E.; Kim, W. H.; Pureza, P. C.; Nguyen, V. Q.; Aggarwal, I. D.

    2007-01-01

    We present a technique for measuring the modal filtering ability of single mode fibers. The ideal modal filter rejects all input field components that have no overlap with the fundamental mode of the filter and does not attenuate the fundamental mode. We define the quality of a nonideal modal filter Q(sub f) as the ratio of transmittance for the fundamental mode to the transmittance for an input field that has no overlap with the fundamental mode. We demonstrate the technique on a 20 cm long mid-infrared fiber that was produced by the U.S. Naval Research Laboratory. The filter quality Q(sub f) for this fiber at 10.5 micron wavelength is 1000 +/- 300. The absorption and scattering losses in the fundamental mode are approximately 8 dB/m. The total transmittance for the fundamental mode, including Fresnel reflections, is 0.428 +/- 0.002. The application of interest is the search for extrasolar Earthlike planets using nulling interferometry. It requires high rejection ratios to suppress the light of a bright star, so that the faint planet becomes visible. The use of modal filters increases the rejection ratio (or, equivalently, relaxes requirements on the wavefront quality) by reducing the sensitivity to small wavefront errors. We show theoretically that, exclusive of coupling losses, the use of a modal filter leads to the improvement of the rejection ratio in a two-beam interferometer by a factor of Q(sub f).

  4. Nonlinear High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers

    DTIC Science & Technology

    2014-12-23

    coupled for d = 2λ . Results are shown for the TE polarization , where the transverse electric field vector is pointing in the vertical direction in these...16, 42–44 (1991). 6. D. U. Noske, N. Pandit, and J. R. Taylor, “Subpicosecond soliton pulse formation from self-mode- locked erbium fibre laser using...High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode- Locked Fiber Lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1

  5. Generating broadband vortex modes in ring-core fiber by using a plasmonic q-plate.

    PubMed

    Ye, Jingfu; Li, Yan; Han, Yanhua; Deng, Duo; Su, Xiaoya; Song, He; Gao, Jianmin; Qu, Shiliang

    2017-08-15

    A mode convertor was proposed and investigated for generating vortex modes in a ring-core fiber based on a plasmonic q-plate (PQP), which is composed of specially organized L-shaped resonator (LSR) arrays. A multicore fiber was used to transmit fundamental modes, and the LSR arrays were used to modulate phases of these fundamental modes. Behind the PQP, the transmitted fundamental modes with gradient phase distribution can be considered as the incident lights for generating broadband vortex modes in the ring-core fiber filter. The topological charges of generated vortex modes can be various by using an optical PQP with different q, and the chirality of the generated vortex mode can be controlled by the sign of q and handedness of the incident circularly polarized light. The operation bandwidth is 800 nm in the range of 1200-2000 nm, which covers six communication bands from the O band to the U band. The separation of vortex modes also was addressed by using a dual ring-core fiber. The mode convertor is of potential interest for connecting a traditional network and vortex communication network.

  6. Intermodal Parametric Frequency Conversion in Optical Fibers

    NASA Astrophysics Data System (ADS)

    Demas, Jeffrey D.

    Lasers are an essential technology enabling countless fields of optics, however, their operation wavelengths are limited to isolated regions across the optical spectrum due to the need for suitable gain media. Parametric frequency conversion (PFC) is an attractive means to convert existing lasers to new colors using nonlinear optical interactions rather than the material properties of the host medium, allowing for the development of high power laser sources across the entire optical spectrum. PFC in bulk chi(2) crystals has led to the development of the optical parametric oscillator, which is currently the standard source for high power light at non-traditional wavelengths in the laboratory setting. Ideally, however, one could implement PFC in an optical fiber, thus leveraging the crucial benefits of a guided-wave geometry: alignment-free, compact, and robust operation. Four-wave mixing (FWM) is a nonlinear effect in optical fibers that can be used to convert frequencies, the major challenge being conservation of momentum, or phase matching, between the interacting light waves. Phase matching can be satisfied through the interaction of different spatial modes in a multi-mode fiber, however, previous demonstrations have been limited by mode stability and narrow-band FWM gain. Alternatively, phase matching within the fundamental mode can be realized in high-confinement waveguides (such as photonic crystal fibers), but achieving the anomalous waveguide dispersion necessary for phase matching at pump wavelengths near ˜1 mum (where the highest power fiber lasers emit) comes at the cost of reducing the effective area of the mode, thus limiting power-handling. Here, we specifically consider the class of Bessel-like LP0,m modes in step-index fibers. It has been shown that these modes can be selectively excited and guided stably for long lengths of fiber, and mode stability increases with mode order 'm'. The effective area of modes in these fibers can be very large (>6000

  7. Design of graded refractive index profile for silica multimode optical fibers with improved effective modal bandwidth for short-distance laser-based multi-Gigabit data transmission over "O"-band

    NASA Astrophysics Data System (ADS)

    Bourdine, Anton V.; Zhukov, Alexander E.

    2017-04-01

    High bit rate laser-based data transmission over silica optical fibers with enlarged core diameter in comparison with standard singlemode fibers is found variety infocommunication applications. Since IEEE 802.3z standard was ratified on 1998 this technique started to be widely used for short-range in-premises distributed multi-Gigabit networks based on new generation laser optimized multimode fibers 50/125 of Cat. OM2…OM4. Nowadays it becomes to be in demand for on-board cable systems and industrial network applications requiring 1Gps and more bit rates over fibers with extremely enlarged core diameter up to 100 μm. This work presents an alternative method for design the special refractive index profiles of silica few-mode fibers with extremely enlarged core diameter, that provides modal bandwidth enhancing under a few-mode regime of laser-based data optical transmission. Here some results are presented concerning with refractive index profile synthesis for few-mode fibers with reduced differential mode delay for "O"-band central region, as well as computed differential mode delay spectral curves corresponding to profiles for fibers 50/125 and 100/125 for in-premises and on-board/industrial cable systems.

  8. Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing.

    PubMed

    Yadav, T K; Narayanaswamy, R; Abu Bakar, M H; Kamil, Y Mustapha; Mahdi, M A

    2014-09-22

    We demonstrate refractive index sensors based on single mode tapered fiber and its application as a biosensor. We utilize this tapered fiber optic biosensor, operating at 1550 nm, for the detection of protein (gelatin) concentration in water. The sensor is based on the spectroscopy of mode coupling based on core modes-fiber cladding modes excited by the fundamental core mode of an optical fiber when it transitions into tapered regions from untapered regions. The changes are determined from the wavelength shift of the transmission spectrum. The proposed fiber sensor has sensitivity of refractive index around 1500 nm/RIU and for protein concentration detection, its highest sensitivity is 2.42141 nm/%W/V.

  9. Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber.

    PubMed

    Ahn, Tae-Jung; Jung, Yongmin; Oh, Kyunghwan; Kim, Dug Young

    2005-12-12

    We propose a new chromatic dispersion measurement method for the higher-order modes of an optical fiber using optical frequency modulated continuous-wave (FMCW) interferometry. An optical fiber which supports few excited modes was prepared for our experiments. Three different guiding modes of the fiber were identified by using far-field spatial beam profile measurements and confirmed with numerical mode analysis. By using the principle of a conventional FMWC interferometry with a tunable external cavity laser, we have demonstrated that the chromatic dispersion of a few-mode optical fiber can be obtained directly and quantitatively as well as qualitatively. We have also compared our measurement results with those of conventional modulation phase-shift method.

  10. Neural networks within multi-core optic fibers

    PubMed Central

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-01-01

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911

  11. Fiber laser with combined feedback of core and cladding modes assisted by an intracavity long-period grating.

    PubMed

    Sáez-Rodriguez, D; Cruz, J L; Díez, A; Andrés, M V

    2011-05-15

    We present a fiber laser made in a single piece of conventional doped-core fiber that operates by combined feedback of the fundamental core mode LP((0,1)) and the high-order cladding mode LP((0,10)). The laser is an all-fiber structure that uses two fiber Bragg gratings and a long-period grating to select the modes circulating in the cavity; the laser emits at the coupling wavelength between the core mode LP((0,1)) and the counterpropagating cladding mode LP((0,10)) in the Bragg gratings. This work demonstrates the feasibility of high-order mode fiber lasers assisted by long-period gratings. © 2011 Optical Society of America

  12. Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber

    DOE PAGES

    Cheng, Yujie; Hill, Cary; Liu, Bo; ...

    2016-06-01

    We present a large-core single-mode “windmill” single crystal sapphire optical fiber (SCSF) design, which exhibits single-mode operation by stripping off the higher-order modes (HOMs) while maintaining the fundamental mode. The “windmill” SCSF design was analyzed using the finite element analysis method, in which all the HOMs are leaky. The numerical simulation results show single-mode operation in the spectral range from 0.4 to 2 μm in the windmill SCSF, with an effective core diameter as large as 14 μm. Such fiber is expected to improve the performance of many of the current sapphire fiber optic sensor structures.

  13. Vector dissipative solitons in graphene mode locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Tang, Dingyuan; Zhao, Luming; Bao, Qiaoliang; Loh, Kian Ping

    2010-09-01

    Vector soliton operation of erbium-doped fiber lasers mode locked with atomic layer graphene was experimentally investigated. Either the polarization rotation or polarization locked vector dissipative solitons were experimentally obtained in a dispersion-managed cavity fiber laser with large net cavity dispersion, while in the anomalous dispersion cavity fiber laser, the phase locked nonlinear Schrödinger equation (NLSE) solitons and induced NLSE soliton were experimentally observed. The vector soliton operation of the fiber lasers unambiguously confirms the polarization insensitive saturable absorption of the atomic layer graphene when the light is incident perpendicular to its 2-dimentional (2D) atomic layer.

  14. Stable C-band fiber laser with switchable multi-wavelength output using coupled microfiber Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Jasim, A. A.

    2017-07-01

    A compact coupled microfiber Mach-Zehnder interferometer (CM-MZI) is proposed and experimentally demonstrated for C-band region multi-wavelength tuning and switching in a fiber laser. The CM-MZI is fabricated using a 9 μm single tapered silica optical microfiber fabricated by flame-drawing technique and exploits multi-mode interference to produce spatial mode beating and suppress mode competition of the homogeneous gain medium. The output wavelength spacing is immune to changes in the external environment, but can be changed from 1.5 nm to 1.4 nm by slightly modifying the path-length difference of the CM-MZI. The proposed laser is capable of generating single, dual, triple, quintuple, and sextuple stabilize wavelengths outputs over a range of more than 32 nm using polarization rotation (PR) and macro-bending. The lasers having a 3 dB line-width of less than ∼30 pm and peak-to-floor of about 55 dB at a pump power of 38 mW.

  15. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber.

    PubMed

    Wang, Andong; Zhu, Long; Chen, Shi; Du, Cheng; Mo, Qi; Wang, Jian

    2016-05-30

    Mode-division multiplexing over fibers has attracted increasing attention over the last few years as a potential solution to further increase fiber transmission capacity. In this paper, we demonstrate the viability of orbital angular momentum (OAM) modes transmission over a 50-km few-mode fiber (FMF). By analyzing mode properties of eigen modes in an FMF, we study the inner mode group differential modal delay (DMD) in FMF, which may influence the transmission capacity in long-distance OAM modes transmission and multiplexing. To mitigate the impact of large inner mode group DMD in long-distance fiber-based OAM modes transmission, we use low-density parity-check (LDPC) codes to increase the system reliability. By evaluating the performance of LDPC-coded single OAM mode transmission over 50-km fiber, significant coding gains of >4 dB, 8 dB and 14 dB are demonstrated for 1-Gbaud, 2-Gbaud and 5-Gbaud quadrature phase-shift keying (QPSK) signals, respectively. Furthermore, in order to verify and compare the influence of DMD in long-distance fiber transmission, single OAM mode transmission over 10-km FMF is also demonstrated in the experiment. Finally, we experimentally demonstrate OAM multiplexing and transmission over a 50-km FMF using LDPC-coded 1-Gbaud QPSK signals to compensate the influence of mode crosstalk and DMD in the 50 km FMF.

  16. Mode coupling in 340 μm GeO2 doped core-silica clad optical fibers

    NASA Astrophysics Data System (ADS)

    Djordjevich, Alexandar; Savović, Svetislav

    2017-03-01

    The state of mode coupling in 340 μm GeO2 doped core-silica clad optical fibers is investigated in this article using the power flow equation. The coupling coefficient in this equation was first tuned such that the equation could correctly reconstruct previously reported measured output power distributions. It was found that the GeO2 doped core-silica clad optical fiber showed stronger mode coupling than both, glass and popular plastic optical fibers. Consequently, the equilibrium as well as steady state mode distributions were achieved at shorter fiber lengths in GeO2 doped core-silica clad optical fibers.

  17. Wavelength meter having single mode fiber optics multiplexed inputs

    DOEpatents

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  18. Wavelength meter having single mode fiber optics multiplexed inputs

    DOEpatents

    Hackel, Richard P.; Paris, Robert D.; Feldman, Mark

    1993-01-01

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  19. Precise fiber length measurement using harmonic detection of phase-locked cavity modes

    NASA Astrophysics Data System (ADS)

    Terra, Osama

    2018-06-01

    In this paper, precise length measurements of optical fibers are performed by employing harmonic detection of the pulse-train frequency of a passively mode-locked fiber laser. This frequency is proportional to the length of the laser cavity in which the measured fiber is installed. Our proposed technique enables length measurement of long fibers from 1 to 40 km with precision from 0.4 to 8 mm and short fibers of few meters with precision as low as 26 μm. Such superior precision is achieved not only by the selection of higher harmonics of up to 1410, but also by the careful control of the wavelength at which the passive mode-locking occur, because of the broadband nature of the used gain medium.

  20. Integrated double-clad photonic crystal fiber amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Gu, Yanran; Chen, Zilun

    2017-10-01

    This paper studies and fabricates an integrated double-clad photonic crystal fiber amplifier, which overcomes the shortcomings of space application and makes full use of excellent property of double-clad photonic crystal fiber. In the experiment, the (6 + 1) × 1 end-pump coupler with DC-PCF is fabricated. The six pump fibers are fabricated with 105 / 125μm (NA = 0.22) multi-mode fiber. The signal fiber is made of ordinary single-mode fiber SMF-28. Then we spliced the tapered fiber bundle to photonic crystal fiber. At last, we produce double-clad photonic crystal fiber with an end-cap that are able to withstand high average power and protect the system. We have fabricated an integrated Yb-double-clad photonic crystal fiber amplifier.

  1. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes

    PubMed Central

    Yasinskii, V. M.; Filimonenko, D. S.; Rostova, E.; Dietler, G.; Sekatskii, S. K.

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation. PMID:29849857

  2. True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.

    PubMed

    Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K

    2018-01-01

    In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.

  3. PLC-based mode multi/demultiplexers for mode division multiplexing

    NASA Astrophysics Data System (ADS)

    Saitoh, Kunimasa; Hanzawa, Nobutomo; Sakamoto, Taiji; Fujisawa, Takeshi; Yamashita, Yoko; Matsui, Takashi; Tsujikawa, Kyozo; Nakajima, Kazuhide

    2017-02-01

    Recently developed PLC-based mode multi/demultiplexers (MUX/DEMUXs) for mode division multiplexing (MDM) transmission are reviewed. We firstly show the operation principle and basic characteristics of PLC-based MUX/DEMUXs with an asymmetric directional coupler (ADC). We then demonstrate the 3-mode (2LP-mode) multiplexing of the LP01, LP11a, and LP11b modes by using fabricated PLC-based mode MUX/DEMUX on one chip. In order to excite LP11b mode in the same plane, a PLC-based LP11 mode rotator is introduced. Finally, we show the PLC-based 6-mode (4LP-mode) MUX/DEMUX with a uniform height by using ADCs, LP11 mode rotators, and tapered waveguides. It is shown that the LP21a mode can be excited from the LP11b mode by using ADC, and the two nearly degenerated LP21b and LP02 modes can be (de)multiplexed separately by using tapered mode converter from E13 (E31) mode to LP21b (LP02) mode.

  4. 40Gbit/s MDM-WDM Laguerre-Gaussian Mode with Equalization for Multimode Fiber in Access Networks

    NASA Astrophysics Data System (ADS)

    Fazea, Yousef; Amphawan, Angela

    2018-04-01

    Modal dispersion is seen as the primary impairment for multimode fiber. Mode division multiplexing (MDM) is a promising technology that has been realized as a favorable technology for considerably upsurges the capacity and distance of multimode fiber in conjunction with Wavelength Division Multiplexing (WDM) for fiber-to-the-home. This paper reveals the importance of an equalization technique in conjunction with controlling the modes spacing of mode division multiplexing-wavelength division multiplexing of Laguerre-Gaussian modes to alleviate modal dispersion for multimode fiber. The effects of channel spacing of 20 channels MDM-WDM were examined through controlling the azimuthal mode number and the radial mode number of Laguerre-Gaussian modes. A data rate of 40Gbit/s was achieved for a distance of 1,500 m for MDM-WDM.

  5. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    NASA Astrophysics Data System (ADS)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  6. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    NASA Technical Reports Server (NTRS)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  7. Multi-Gigabit Fiber Optic Wide Area Network Development.

    DTIC Science & Technology

    1991-07-01

    to propagate, no modal dispersion can occur. In multimode fiber , a parabolic index profile across the core is often used so that mode travel times are...In the fiber plant, such as connectors, splices couplers, splitters, switches, tunable filters , wavelength division multiplexers and demultiplexers...losses are much higher, at around 0.5 dB, and are usually avoided in long-haul systems. 30 Some fiber plant components have a filtering effect on the

  8. Equalizer tap length requirement for mode group delay-compensated fiber link with weakly random mode coupling.

    PubMed

    Bai, Neng; Li, Guifang

    2014-02-24

    The equalizer tap length requirement is investigated analytically and numerically for differential modal group delay (DMGD) compensated fiber link with weakly random mode coupling. Each span of the DMGD compensated link comprises multiple pairs of fibers which have opposite signs of DMGD. The result reveals that under weak random mode coupling, the required tap length of the equalizer is proportional to modal group delay of a single DMGD compensated pair, instead of the total modal group delay (MGD) of the entire link. By using small DMGD compensation step sizes, the required tap length (RTL) can be potentially reduced by 2 orders of magnitude.

  9. Mid-infrared multi-mode absorption spectroscopy, MUMAS, using difference frequency generation

    NASA Astrophysics Data System (ADS)

    Northern, Henry; O'Hagan, Seamus; Hamilton, Michelle L.; Ewart, Paul

    2015-03-01

    Multi-mode absorption spectroscopy of ammonia and methane at 3.3 μm has been demonstrated using a source of multi-mode mid-infrared radiation based on difference frequency generation. Multi-mode radiation at 1.56 μm from a diode-pumped Er:Yb:glass laser was mixed with a single-mode Nd:YAG laser at 1.06 μm in a periodically poled lithium niobate crystal to produce multi-mode radiation in the region of 3.3 μm. Detection, by direct multi-mode absorption, of NH3 and CH4 is reported for each species individually and also simultaneously in mixtures allowing measurements of partial pressures of each species.

  10. Fusion splicing small-core photonic crystal fibers and single-mode fibers by controlled air hole collapse

    NASA Astrophysics Data System (ADS)

    Zhou, Xuanfeng; Chen, Zilun; Chen, Haihuan; Hou, Jing

    2012-11-01

    A method based on controlled air hole collapse for low-loss fusion splicing small-core photonic crystal fibers (PCFs) and single-mode fibers (SMFs) was demonstrated. A taper rig was used to control air hole collapse accurately to enlarge the MFDs of PCFs which was then spliced with SMFs using a fusion splicer. An optimum mode field match at the interface of PCF-SMF was achieved and a low-loss with 0.64 dB was obtained from 3.57 dB for a PCF with 4 μm MFD and a SMF with 10.4 μm MFD experimentally.

  11. Experimental Performance of a Single-Mode Ytterbium-doped Fiber Ring Laser with Intracavity Modulator

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz

  12. Looped back fiber mode for reduction of false alarm in leak detection using distributed optical fiber sensor.

    PubMed

    Chelliah, Pandian; Murgesan, Kasinathan; Samvel, Sosamma; Chelamchala, Babu Rao; Tammana, Jayakumar; Nagarajan, Murali; Raj, Baldev

    2010-07-10

    Optical-fiber-based sensors have inherent advantages, such as immunity to electromagnetic interference, compared to the conventional sensors. Distributed optical fiber sensor (DOFS) systems, such as Raman and Brillouin distributed temperature sensors are used for leak detection. The inherent noise of fiber-based systems leads to occasional false alarms. In this paper, a methodology is proposed to overcome this. This uses a looped back fiber mode in DOFS and voting logic is employed to considerably reduce the false alarm rate.

  13. Few-mode optical fiber based simultaneously distributed curvature and temperature sensing.

    PubMed

    Wu, Hao; Tang, Ming; Wang, Meng; Zhao, Can; Zhao, Zhiyong; Wang, Ruoxu; Liao, Ruolin; Fu, Songnian; Yang, Chen; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-05-29

    The few-mode fiber (FMF) based Brillouin sensing operated in quasi-single mode (QSM) has been reported to achieve the distributed curvature measurement by monitoring the bend-induced strain variation. However, its practicality is limited by the inherent temperature-strain cross-sensitivity of Brillouin sensors. Here we proposed and experimentally demonstrated an approach for simultaneously distributed curvature and temperature sensing, which exploits a hybrid QSM operated Raman-Brillouin system in FMFs. Thanks to the larger spot size of the fundamental mode in the FMF, the Brillouin frequency shift change of the FMF is used for curvature estimation while the temperature variation is alleviated through Raman signals with the enhanced signal-to-noise ratio (SNR). Within 2 minutes measuring time, a 1.5 m spatial resolution is achieved along a 2 km FMF. The worst resolution of the square of fiber curvature is 0.333 cm -2 while the temperature resolution is 1.301 °C at the end of fiber.

  14. Multi-PON access network using a coarse AWG for smooth migration from TDM to WDM PON

    NASA Astrophysics Data System (ADS)

    Shachaf, Y.; Chang, C.-H.; Kourtessis, P.; Senior, J. M.

    2007-06-01

    An interoperable access network architecture based on a coarse array waveguide grating (AWG) is described, displaying dynamic wavelength assignment to manage the network load across multiple PONs. The multi-PON architecture utilizes coarse Gaussian channels of an AWG to facilitate scalability and smooth migration path between TDM and WDM PONs. Network simulations of a cross-operational protocol platform confirmed successful routing of individual PON clusters through 7 nm-wide passband windows of the AWG. Furthermore, polarization-dependent wavelength shift and phase errors of the device proved not to impose restrain on the routing performance. Optical transmission tests at 2.5 Gbit/s for distances up to 20 km are demonstrated.

  15. Single mode fibers with antireflective surface structures for high power laser applications

    NASA Astrophysics Data System (ADS)

    Busse, Lynda E.; Florea, Catalin M.; Shaw, L. Brandon; Aggarwal, Ishwar D.; Sanghera, Jasbinder S.

    2014-03-01

    We present results for increased transmission of ~99.5% in the near-IR through the end faces of silica single mode fibers by creating a random antireflective microstructure etched into the end face of the fiber. We demonstrate high laser damage thresholds for these fibers with AR structured surfaces.

  16. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes.

    PubMed

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng; Olmos, Juan José Vegas; Garrido-Balsells, José María; Monroy, Idelfonso Tafur

    2015-12-28

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by ℳ turbulence is coupled to the multimode fiber link. In addition, we report a better and more robust behavior of higher order OAM modes when the intermodal dispersion is dominant in the fiber after exceeding its maximum range of operation.

  17. Actively mode-locked fiber laser using a deformable micromirror.

    PubMed

    Fabert, Marc; Kermène, Vincent; Desfarges-Berthelemot, Agnès; Blondy, Pierre; Crunteanu, Aurelian

    2011-06-15

    We present what we believe to be the first fiber laser system that is actively mode-locked by a deformable micromirror. The micromirror device is placed within the laser cavity and performs a dual function of modulator and end-cavity mirror. The mode-locked laser provides ~1-ns-long pulses with 20 nJ/pulse energy at 5 MHz repetition rates.

  18. Widely tunable Tm-doped mode-locked all-fiber laser

    PubMed Central

    Yan, Zhiyu; Sun, Biao; Li, Xiaohui; Luo, Jiaqi; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2016-01-01

    We demonstrated a widely tunable Tm-doped mode-locked all-fiber laser, with the widest tunable range of 136 nm, from 1842 to 1978 nm. Nonlinear polarization evolution (NPE) technique is employed to enable mode-locking and the wavelength-tunable operation. The widely tunable range attributes to the NPE-induced transmission modulation and bidirectional pumping mechanism. Such kind of tunable mode-locked laser can find various applications in optical communications, spectroscopy, time-resolved measurement, and among others. PMID:27263655

  19. Breaking the glass ceiling: hollow OmniGuide fibers

    NASA Astrophysics Data System (ADS)

    Johnson, Steven G.; Ibanescu, Mihai; Skorobogatiy, Maksim A.; Weisberg, Ori; Engeness, Torkel D.; Soljacic, Marin; Jacobs, Steven A.; Joannopoulos, John D.; Fink, Yoel

    2002-04-01

    We argue that OmniGuide fibers, which guide light within a hollow core by concentric multilayer films having the property of omnidirectional reflection, have the potential to lift several physical limitations of silica fibers. We show how the strong confinement in OmniGuide fibers greatly suppresses the properties of the cladding materials: even if highly lossy and nonlinear materials are employed, both the intrinsic losses and nonlinearities of silica fibers can be surpassed by orders of magnitude. This feat, impossible to duplicate in an index-guided fiber with existing materials, would open up new regimes for long-distance propagation and dense wavelength-division multiplexing (DWDM). The OmniGuide-fiber modes bear a strong analogy to those of hollow metallic waveguides; from this analogy, we are able to derive several general scaling laws with core radius. Moreover, there is strong loss discrimination between guided modes, depending upon their degree of confinement in the hollow core: this allows large, ostensibly multi-mode cores to be used, with the lowest-loss TE01 mode propagating in an effectively single-mode fashion. Finally, because this TE01 mode is a cylindrically symmetrical ('azimuthally' polarized) singlet state, it is immune to polarization-mode dispersion (PMD), unlike the doubly-degenerate linearly-polarized modes in silica fibers that are vulnerable to birefringence.

  20. Compressive Failure of Fiber Composites under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Basu, Shiladitya; Waas, Anthony M.; Ambur, Damodar R.

    2006-01-01

    This paper examines the compressive strength of a fiber reinforced lamina under multi-axial stress states. An equilibrium analysis is carried out in which a kinked band of rotated fibers, described by two angles, is sandwiched between two regions in which the fibers are nominally straight. Proportional multi-axial stress states are examined. The analysis includes the possibility of bifurcation from the current equilibrium state. The compressive strength of the lamina is contingent upon either attaining a load maximum in the equilibrium response or satisfaction of a bifurcation condition, whichever occurs first. The results show that for uniaxial loading a non-zero kink band angle beta produces the minimum limit load. For multi-axial loading, different proportional loading paths show regimes of bifurcation dominated and limit load dominated behavior. The present results are able to capture the beneficial effect of transverse compression in raising the composite compressive strength as observed in experiments.

  1. Bend compensated large-mode-area fibers: achieving robust single-modedness with transformation optics.

    PubMed

    Fini, John M; Nicholson, Jeffrey W

    2013-08-12

    Fibers with symmetric bend compensated claddings are proposed, and demonstrate performance much better than conventional designs. These fibers can simultaneously achieve complete HOM suppression, negligible bend loss, and mode area >1000 square microns. The robust single-modedness of these fibers offers a path to overcoming mode instability limits on high-power amplifiers and lasers. The proposed designs achieve many of the advantages of our previous (asymmetric) bend compensation strategy in the regime of moderately large area, and are much easier to fabricate and utilize.

  2. Slow light generation in single-mode rectangular core photonic crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Sandeep; Saini, Than Singh; Kumar, Ajeet, E-mail: ajeetdph@gmail.com

    2016-05-06

    In this paper, we have designed and analyzed a rectangular core photonic crystal fiber (PCF) in Tellurite material. For the designed photonics crystal fiber, we have calculated the values of confinement loss and effective mode area for different values of air filling fraction (d/Λ). For single mode operation of the designed photonic crystal fiber, we have taken d/Λ= 0.4 for the further calculation of stimulated Brillouin scattering based time delay. A maximum time delay of 158 ns has been achieved for input pump power of 39 mW. We feel the detailed theoretical investigations and simulations carried out in the study have themore » potential impact on the design and development of slow light-based photonic devices.« less

  3. 2-kW single-mode fiber laser employing bidirectional-pump scheme

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zheng, Wenyou; Shi, Pengyang; Zhang, Xinhai

    2018-01-01

    2kW single-mode fiber laser with two cascade home-made cladding light strippers (CLSs) by employing bidirectionalpump scheme has been demonstrated. 2.009 kW signal power is obtained when pump power is 2.63 kW and the slope efficiency is 76.6%. Raman Stokes light is less than -47 dB at 2.009 kW even with a 10-m delivery fiber with core/inner cladding diameter of 20/400um. The beam quality M2<=1.2 and the spectral FWHM bandwidth is 4.34nm. There is no transverse mode instability and the output power stability of +/-0.14% is achieved by special thermal management for a more uniform temperature distribution on the Yb-doped gain fiber.

  4. Adaptable Optical Fiber Displacement-Curvature Sensor Based on a Modal Michelson Interferometer with a Tapered Single Mode Fiber

    PubMed Central

    Salceda-Delgado, G.; Martinez-Rios, A.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A.; Ibarra-Escamilla, B.; Durán-Ramírez, V. M.; Enriquez-Gomez, L. F.

    2017-01-01

    A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes. PMID:28574421

  5. Adaptable Optical Fiber Displacement-Curvature Sensor Based on a Modal Michelson Interferometer with a Tapered Single Mode Fiber.

    PubMed

    Salceda-Delgado, G; Martinez-Rios, A; Selvas-Aguilar, R; Álvarez-Tamayo, R I; Castillo-Guzman, A; Ibarra-Escamilla, B; Durán-Ramírez, V M; Enriquez-Gomez, L F

    2017-06-02

    A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes.

  6. Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi₂Se₃.

    PubMed

    Dou, Zhiyuan; Song, Yanrong; Tian, Jinrong; Liu, Jinghui; Yu, Zhenhua; Fang, Xiaohui

    2014-10-06

    We demonstrated an all-normal-dispersion Yb-doped mode-locked fiber laser based on Bi₂Se₃ topological insulator (TI). Different from previous TI-mode-locked fiber lasers in which TIs were mixed with film-forming agent, we used a special way to paste a well-proportioned pure TI on a fiber end-facet. In this way, the effect of the film-forming agent could be removed, thus the heat deposition was relieved and damage threshold could be improved. The modulation depth of the Bi₂Se₃ film was measured to be 5.2%. When we used the Bi₂Se₃ film in the Yb-doped fiber laser, the mode locked pulses with pulse energy of 0.756 nJ, pulse width of 46 ps and the repetition rate of 44.6 MHz were obtained. The maximum average output power was 33.7 mW. When the pump power exceeded 270 mW, the laser can operate in multiple pulse state that six-pulse regime can be realized. This contribution indicates that Bi₂Se₃ has an attractive optoelectronic property at 1μm waveband.

  7. A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission

    NASA Astrophysics Data System (ADS)

    Zhang, Hu; Zhang, Xiaoguang; Li, Hui; Deng, Yifan; Zhang, Xia; Xi, Lixia; Tang, Xianfeng; Zhang, Wenbo

    2017-08-01

    Based on 5 requirements which are essential for stable OAM mode transmission, we propose an OAM fiber family based on a structure of circular photonic crystal fiber (C-PCF). The proposed C-PCF in the family is made of pure silica, with a big round air hole at the center, several rings of air-hole array as the cladding, and a ring shaped silica area in between as the core where the OAM modes propagate. We also provide a design strategy with which the optimized C-PCF can be obtained with optimum number of high quality OAM modes (up to 42 OAM modes), large effective index separation for corresponding vector modes over a wide bandwidth, relative small and flat dispersion, and low nonlinear coefficient compared with a conventional single mode fiber. The designed fiber can be used in MDM communications and other OAM applications in fibers.

  8. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes.

    PubMed

    Martinez, Amos; Yamashita, Shinji

    2011-03-28

    There is an increasing demand for all-fiber passively mode-locked lasers with pulse repetition rates in the order of gigahertz for their potential applications in fields such as telecommunications and metrology. However, conventional mode-locked fiber lasers typically operate at fundamental repetition rates of only a few megahertz. In this paper, we report all-fiber laser operation with fundamental repetition rates of 4.24 GHz, 9.63 GHz and 19.45 GHz. This is, to date and to the best of our knowledge, the highest fundamental repetition rate reported for an all-fiber laser. The laser operation is based on the passive modelocking of a miniature all-fiber Fabry-Pérot laser (FFPL) by a carbon nanotube (CNT) saturable absorber. The key components for such device are a very high-gain Er:Yb phosphosilicate fiber and a fiber compatible saturable absorber with very small foot print and very low losses. The laser output of the three lasers was close to transform-limited with a pulsewidth of approximately 1 ps and low noise. As a demonstration of potential future applications for this laser, we also demonstrated supercontinuum generation with a longitudinal mode-spacing of 0.08 nm by launching the laser operating at 9.63 GHz into 30 m of a highly nonlinear dispersion shifted fiber.

  9. High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm.

    PubMed

    Fu, Xing; Kutz, J Nathan

    2013-03-11

    We theoretically demonstrate that in a laser cavity mode-locked by nonlinear polarization rotation (NPR) using sets of waveplates and passive polarizer, the energy performance can be significantly increased by incorporating multiple NPR filters. The NPR filters are engineered so as to mitigate the multi-pulsing instability in the laser cavity which is responsible for limiting the single pulse per round trip energy in a myriad of mode-locked cavities. Engineering of the NPR filters for performance is accomplished by implementing a genetic algorithm that is capable of systematically identifying viable and optimal NPR settings in a vast parameter space. Our study shows that five NPR filters can increase the cavity energy by approximately a factor of five, with additional NPRs contributing little or no enhancements beyond this. With the advent and demonstration of electronic controls for waveplates and polarizers, the analysis suggests a general design and engineering principle that can potentially close the order of magnitude energy gap between fiber based mode-locked lasers and their solid state counterparts.

  10. Atom guidance in the TE01 donut mode of a large-core hollow fiber

    NASA Astrophysics Data System (ADS)

    Pechkis, J. A.; Fatemi, F. K.

    2011-05-01

    We report on our progress towards low-light-level nonlinear optics experiments by optically guiding atoms in the TE01 donut mode of a hollow fiber. Atoms are transported over 12 cm from a ``source'' magneto-optical trap (MOT) through a 100- μm-diameter hollow fiber and are recaptured by a ``collection'' MOT situated directly below the fiber. For red-detuned guiding, we compare the guiding efficiency between the fundamental (Gaussian-like) mode and this donut mode, which has a larger guiding area but lower peak intensity. We also discuss our progress in transporting atoms in the dark core of this mode using blue-detuned light, which has more stringent constraints to atom guidance compared to red-detuned light. This work is supported by ONR.

  11. Circularly polarized guided modes in dielectrically chiral photonic crystal fiber.

    PubMed

    Li, Junqing; Su, Qiyao; Cao, Yusheng

    2010-08-15

    The effect of dielectric chirality on the polarization states and mode indices of guided modes in photonic crystal fiber (PCF) is investigated by a modified plane-wave expansion (PWE) method. Using a solid-core chiral PCF as a numerical example, we show that circular polarization is the eigenstate of the fundamental mode. Mode index divergence between right-handed circularly polarized (RCP) and left-handed circularly polarized (LCP) states is demonstrated. Chirality's effect on mode index and circular birefringence (CB) in such a PCF is found to be similar to that in bulk chiral media.

  12. Multi-mode of Four and Six Wave Parametric Amplified Process

    NASA Astrophysics Data System (ADS)

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-01

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  13. Multi-mode of Four and Six Wave Parametric Amplified Process.

    PubMed

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-03

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  14. Novel spot size converter for coupling standard single mode fibers to SOI waveguides

    NASA Astrophysics Data System (ADS)

    Sisto, Marco Michele; Fisette, Bruno; Paultre, Jacques-Edmond; Paquet, Alex; Desroches, Yan

    2016-03-01

    We have designed and numerically simulated a novel spot size converter for coupling standard single mode fibers with 10.4μm mode field diameter to 500nm × 220nm SOI waveguides. Simulations based on the eigenmode expansion method show a coupling loss of 0.4dB at 1550nm for the TE mode at perfect alignment. The alignment tolerance on the plane normal to the fiber axis is evaluated at +/-2.2μm for <=1dB excess loss, which is comparable to the alignment tolerance between two butt-coupled standard single mode fibers. The converter is based on a cross-like arrangement of SiOxNy waveguides immersed in a 12μm-thick SiO2 cladding region deposited on top of the SOI chip. The waveguides are designed to collectively support a single degenerate mode for TE and TM polarizations. This guided mode features a large overlap to the LP01 mode of standard telecom fibers. Along the spot size converter length (450μm), the mode is first gradually confined in a single SiOxNy waveguide by tapering its width. Then, the mode is adiabatically coupled to a SOI waveguide underneath the structure through a SOI inverted taper. The shapes of SiOxNy and SOI tapers are optimized to minimize coupling loss and structure length, and to ensure adiabatic mode evolution along the structure, thus improving the design robustness to fabrication process errors. A tolerance analysis based on conservative microfabrication capabilities suggests that coupling loss penalty from fabrication errors can be maintained below 0.3dB. The proposed spot size converter is fully compliant to industry standard microfabrication processes available at INO.

  15. FIBER AND INTEGRATED OPTICS. FIBER WAVEGUIDE DEVICES: Influence of thermal effects on the dispersive properties of single-mode fiber waveguides

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurkov, Andrei S.; Musatov, A. G.; Semenov, V. A.

    1990-12-01

    Experimental and theoretical investigations were made of the influence of external thermal effects on the dispersive characteristics of single-mode fiber waveguides with different shapes and parameters of the refractive index profile. The temperature coefficients of the group delay were determined. The temperature dependences of the dispersion coefficient (dD/dT = 1.6 × 10-3 and 4.3 × 10-3 ps.nm-1 km-1 K-1, respectively) and of the zero-dispersion wavelength (dλ0/dT = 1.9 × 10-2 and 8.5 × 10-2 nm/K, respectively) were determined at two working wavelengths of 1.3 and 1.55 μm for single-mode fiber waveguides with typical parameters.

  16. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.

    PubMed

    Schmidt, Oliver A; Euser, Tijmen G; Russell, Philip St J

    2013-12-02

    We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems.

  17. Dual-wavelength, mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber.

    PubMed

    Lau, K Y; Abu Bakar, M H; Muhammad, F D; Latif, A A; Omar, M F; Yusoff, Z; Mahdi, M A

    2018-05-14

    Mode-locked fiber laser incorporating a saturable absorber is an attractive configuration due to its stability and simple structure. In this work, we demonstrate a dual-wavelength passively mode-locked erbium-doped fiber laser employing a graphene/polymethyl-methacrylate saturable absorber. A laser resonator is developed based on dual cavity architecture with unidirectional signal oscillation, which is connected by a fiber branch sharing a common gain medium and saturable absorber. Dual wavelength mode-locked fiber lasers are observed at approximately 1530 and 1560 nm with 22.6 mW pump power threshold. Soliton pulse circulates in the laser cavity with pulse duration of 900 and 940 fs at shorter and longer wavelengths, respectively. This work presents a viable option in developing a low threshold mode-locked laser source with closely spaced dual wavelength femtosecond pulses in the C-band wavelength region.

  18. An Extrinsic Fabry-Perot Interferometric Sensor using Intermodal Phase Shifting and Demultiplexing of the Propagating Modes in a Few-Mode Fiber

    NASA Astrophysics Data System (ADS)

    Chatterjee, Julius

    This dissertation demonstrates a fiber-optic phase shifted Fabry-Perot interferometer (PS-FPI) as a sensor using modal demultiplexing. Single wavelength Fabry-Perot interferometers suffer from fringe ambiguity and loss of sensitivity at fringe extremes. These hindrances cause it to be a secondary choice when being selected for a measurement task at hand, and more often than not, white light based sensors are selected in favor of the single wavelength Fabry-Perot sensors. This work aims to introduce a technique involving the demultiplexing of the propagating linearly polarized (LP) modes in few mode fibers to obtain two fringe systems from the same sensing cavity. This results in a few-mode interferometer that effectively has two to three orders of magnitude higher perturbation sensitivity than a conventional few mode interferometer for the same sensing region. In this work, two different modal demultiplexing techniques (MD) are used to demodulate the propagating modes and to obtain two fringe sets. These output fringe sets are shifted in phase with respect to each other by a phase shift due to the propagation of the modes in the fiber-optic layout. A method of controlling this phase shift by straining a length of a two mode fiber located separate from the PS-FPI cavity is demonstrated and corresponding changes in phase shifts are shown. The results show a controllable phase shift for both the MD techniques, which is useful in sensing by permitting quadrature demodulation of interferometric fringes and also results in a novel few-mode sensing system having more than two orders of magnitude sensitivity than conventional few-mode devices.

  19. Programmable controlled mode-locked fiber laser using a digital micromirror device.

    PubMed

    Liu, Wu; Fan, Jintao; Xie, Chen; Song, Youjian; Gu, Chenlin; Chai, Lu; Wang, Chingyue; Hu, Minglie

    2017-05-15

    A digital micromirror device (DMD)-based arbitrary spectrum amplitude shaper is incorporated into a large-mode-area photonic crystal fiber laser cavity. The shaper acts as an in-cavity programmable filter and provides large tunable dispersion from normal to anomalous. As a result, mode-locking is achieved in different dispersion regimes with watt-level high output power. By programming different filter profiles on the DMD, the laser generates femtosecond pulse with a tunable central wavelength and controllable bandwidth. Under conditions of suitable cavity dispersion and pump power, design-shaped spectra are directly obtained by varying the amplitude transfer function of the filter. The results show the versatility of the DMD-based in-cavity filter for flexible control of the pulse dynamics in a mode-locked fiber laser.

  20. NONLINEAR AND FIBER OPTICS: Analysis of the mode noise in interference fiber channels used for the distribution of microwave signals

    NASA Astrophysics Data System (ADS)

    Bratchikov, A. N.; Glukhov, I. P.

    1991-03-01

    The results are given of a statistical theory of the speckle generalized to interference channels used for the distribution of microwave signals using multimode fiber waveguides with step and graded refractive-index profiles. A method is described for estimating the mode noise level in the open and closed regimes with one longitudinal speckle. The influence of the degree of mode filtering, losses at microbends, and spectral properties of a laser source on the statistical properties and the mode noise level is demonstrated. Numerical estimates are obtained of the ratio of the powers of the signal and mode noise for interference channels with typical parameters of fiber waveguides and a qualitative description is given of the effect of the mode noise.

  1. Single transverse mode laser in a center-sunken and cladding-trenched Yb-doped fiber.

    PubMed

    Liu, Yehui; Zhang, Fangfang; Zhao, Nan; Lin, Xianfeng; Liao, Lei; Wang, Yibo; Peng, Jinggang; Li, Haiqing; Yang, LuYun; Dai, NengLi; Li, Jinyan

    2018-02-05

    We report a novel center-sunken and cladding-trenched Yb-doped fiber, which was fabricated by a modified chemical vapor deposition process with a solution-doping technique. The simulation results showed that the fiber with a core diameter of 40 µm and a numerical aperture of 0.043 has a 1217 µm 2 effective mode area at 1080 nm. It is also disclosed that the leakage loss can be reduced lower than 0.01 dB/m for the LP 01 mode, while over 80 dB/m for the LP 11 mode by optimizing the bending radius as 14 cm. A 456 W laser output was observed in a MOPA structure. The laser slope efficiency was measured to be 79% and the M 2 was less than 1.1, which confirmed the single mode operation of the large mode area center-sunken cladding-trenched Yb-doped fiber.

  2. Liquid level sensor based on fiber ring laser with single-mode-offset coreless-single-mode fiber structure

    NASA Astrophysics Data System (ADS)

    Wang, Zixiao; Tan, Zhongwei; Xing, Rui; Liang, Linjun; Qi, Yanhui; Jian, Shuisheng

    2016-10-01

    A novel reflective liquid level sensor based on single-mode-offset coreless-single-mode (SOCS) fiber structure is proposed and experimentally demonstrated. Theory analyses and experimental results indicate that offset fusion can remarkably enhance the sensitivity of sensor. Ending-reflecting structure makes the sensor compact and easy to deploy. Meanwhile, we propose a laser sensing system, and the SOCS structure is used as sensing head and laser filter simultaneously. Experimental results show that laser spectra with high optical signal-to-noise ratio (-30 dB) and narrow 3-dB bandwidth (<0.15 nm) are achieved. Various liquids with different indices are used for liquid level sensing, besides, the refractive index sensitivity is also investigated. In measurement range, the sensing system presents steady laser output.

  3. A fiber optic multi-stress monitoring system for power transformer

    NASA Astrophysics Data System (ADS)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-04-01

    A fiber-optic multi-stress monitoring system which uses 4 FBG sensors and a fiber-optic mandrel acoustic emission sensor is proposed. FBG sensors and a mandrel sensor measure different types of stresses occurring in electrical power transformer, such as temperature and acoustic signals. The sensor system uses single broadband light source to address the outputs of both sensors using single fiber-optic circuitry. An athermal-packaged FBG is used to supply quasi-coherent light for the Sagnac interferometer demodulation which processes the mandrel sensor output. The proposed sensor system could simplify the optical circuit for the multi-stress measurements and enhance the cost-effectiveness of the sensor system.

  4. 980 nm all-fiber NPR mode-locking Yb-doped phosphate fiber oscillator and its amplifier

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Yao, Yifei; Chi, Junjie; Hu, Haowei; Yang, Chun; Zhao, Ziqiang; Zhang, Guangju

    2014-12-01

    We report on a 980 nm all-fiber passively mode-locking Yb-doped phosphate fiber oscillator with the nonlinear polarization rotation (NPR) technique and its amplifier. In order to obtaining the stable self-starting mode-locking oscillator at 980 nm, a bandpass filter with 30 nm transmission bandwidth around 980 nm is inserted into the cavity. The oscillator generates the average output power of 26.1 mW with the repetition rate of 20.38 MHz, corresponding to the single pulse energy of 1.28 nJ. The pulse width is 159.48 ps. The output spectrum of the pulses is centered at 977 nm with a full width half maximum (FWHM) of 10 nm and has the characteristic steep spectral edges of dissipative soliton. No undesired ASE and harmful oscillation around 1030 nm is observed. Moreover, through two stage all-fiber-integrated amplifier by using the 980 nm oscillator as seed source, an amplified output power of 205 mW at 980 nm and pulse duration of 178.10 ps is achieved.

  5. A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop

    NASA Astrophysics Data System (ADS)

    Ruan, Juan; Zhang, Wei-Gang; Zhang, Hao; Geng, Peng-Cheng; Bai, Zhi-Yong

    2013-06-01

    A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated. The filter tunability is achieved by rotating the polarization controller. The spectral shift is dependent on rotation direction and the position of the polarization controller. In addition, the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.

  6. Single-mode hole-assisted fiber as a bending-loss insensitive fiber

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhide; Shimizu, Tomoya; Matsui, Takashi; Fukai, Chisato; Kurashima, Toshio

    2010-12-01

    We investigate the design and characteristics of a single-mode and low bending loss HAF both numerically and experimentally. An air filling fraction S is introduced to enable us to design a HAF with desired characteristics more easily. We show that we can expect to realize a single-mode and low bending loss HAF by considering the S dependence of the bending loss α b and cutoff wavelength λ c as well as their relative index difference Δ dependence. We also show that the mode-field diameter (MFD) and chromatic dispersion characteristics of the single-mode and low bending loss HAF can be tailored by optimizing the distance between the core and the air holes. We also investigate the usefulness of the fabricated HAFs taking the directly modulated transmission and multipath interference (MPI) characteristics into consideration. We show that the designed HAF has sufficient applicability to both analog and digital transmission systems. Our results reveal that the single-mode and low bending loss HAF is beneficial in terms of developing a future fiber to the home (FTTH) network as well as for realizing flexible optical wiring.

  7. Research on dual-parameter optical fiber sensor based on few-mode fiber with two down-tapers

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Tong, Zhengrong; Zhang, Weihua; Xue, Lifang

    2017-10-01

    A dual-parameter optical fiber sensor, which is fabricated by sandwiching a segment of few-mode fiber (FMF) with two down-tapers between two segments of standard single-mode fibers (SMFs), is investigated theoretically and experimentally. The two down-tapers on the FMF can enhance the evanescent field, making the sensor more sensitive to changes in the external environment. The refractive index (RI) and temperature are measured simultaneously using the different sensitivities of the two dips in this experimental interference spectrum. The measured temperature sensitivities are 0.097 and 0.114 nm/°C, and the RI sensitivities are -97.43 and -108.07 nm/RIU, respectively. Meanwhile, the simple SMF-FMF-SMF structure is also measured. By comparing the experimental results of the two structures, the sensitivities of the proposed structure based on the dual-taper FMF are significantly improved. In addition, the sensor is easy to fabricate and cost effective.

  8. Chiral photonic crystal fibers with single mode and single polarization

    NASA Astrophysics Data System (ADS)

    Li, She; Li, Junqing

    2015-12-01

    Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 μm to 1.67 μm for chiral PCF can be realized with moderate chirality strength.

  9. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    NASA Astrophysics Data System (ADS)

    Mou, Chengbo; Arif, Raz; Lobach, Anatoly S.; Khudyakov, Dmitry V.; Spitsina, Nataliya G.; Kazakov, Valery A.; Turitsyn, Sergei; Rozhin, Aleksey

    2015-02-01

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  10. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Chengbo, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk; Turitsyn, Sergei; Rozhin, Aleksey, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  11. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Nanjing University of Posts and Communications, Nanjing 210003; Popa, D., E-mail: dp387@cam.ac.uk

    We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.

  12. FIBER AND INTEGRATED OPTICS: Modulation of the phase and polarization of modes in a few-mode fiber waveguide subjected to axial deformation

    NASA Astrophysics Data System (ADS)

    Belovolov, M. I.; Vitrik, O. B.; Dianov, Evgenii M.; Kulchin, Yurii N.; Obukh, V. F.

    1989-11-01

    An investigation was made of modulation of the phase and polarization of modes in a few-mode fiber waveguide subjected to axial deformation. The simplest and most convenient (for analysis) controlled interference pattern was obtained on addition, at the exit from a waveguide, of the fields of two modes of different order or of components of two orthogonally polarized waves of the same mode when an additional phase shift between these waves was induced by deformation. The two investigated schemes were suitable for the construction of simple and highly sensitive sensors capable of detecting small strains with characteristics which could be varied by suitable selection of the waveguide parameters and of the signal processing method.

  13. Polarization insensitive all-fiber mode-lockers functioned by carbon nanotubes deposited onto tapered fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Morimune, Keiyo; Set, Sze Y.; Yamashita, Shinji

    2007-01-01

    The authors demonstrate a nonblocked all-fiber mode locker operated by the interaction of carbon nanotubes with the evanescent field of propagating light in a tapered fiber. Symmetric cross section of the device with the randomly oriented nanotubes guarantees the polarization insensitive operation of the pulse formation. In order to minimize the scattering, the carbon nanotubes are deposited within a designed area around the tapered waist. The demonstrated passively pulsed laser has the repetition rate of 7.3MHz and the pulse width of 829fs.

  14. FIBER AND INTEGRATED OPTICS: Use of the offset method in an analysis of a non-Gaussian field distribution in single-mode fiber waveguides

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurkov, Andrei S.; Chikolini, A. V.

    1990-08-01

    An offset method is modified to allow an analysis of the distribution of fields in a single-mode fiber waveguide without recourse to the Gaussian approximation. A new approximation for the field is obtained for fiber waveguides with a step refractive index profile and a special analysis employing the Hankel transformation is applied to waveguides with a distributed refractive index. The field distributions determined by this method are compared with the corresponding distributions calculated from the refractive index of a preform from which the fibers are drawn. It is shown that these new approaches can be used to determine the dimensions of a mode spot defined in different ways and to forecast the dispersion characteristics of single-mode fiber waveguides.

  15. Rigorous study of low-complexity adaptive space-time block-coded MIMO receivers in high-speed mode multiplexed fiber-optic transmission links using few-mode fibers

    NASA Astrophysics Data System (ADS)

    Weng, Yi; He, Xuan; Wang, Junyi; Pan, Zhongqi

    2017-01-01

    Spatial-division multiplexing (SDM) techniques have been purposed to increase the capacity of optical fiber transmission links by utilizing multicore fibers or few-mode fibers (FMF). The most challenging impairments of SDMbased long-haul optical links mainly include modal dispersion and mode-dependent loss (MDL), whereas MDL arises from inline component imperfections, and breaks modal orthogonality thus degrading the capacity of multiple-inputmultiple- output (MIMO) receivers. To reduce MDL, optical approaches include mode scramblers and specialty fiber designs, yet these methods were burdened with high cost, yet cannot completely remove the accumulated MDL in the link. Besides, space-time trellis codes (STTC) were purposed to lessen MDL, but suffered from high complexity. In this work, we investigated the performance of space-time block-coding (STBC) scheme to mitigate MDL in SDM-based optical communication by exploiting space and delay diversity, whereas weight matrices of frequency-domain equalization (FDE) were updated heuristically using decision-directed recursive-least-squares (RLS) algorithm for convergence and channel estimation. The STBC was evaluated in a six-mode multiplexed system over 30-km FMF via 6×6 MIMO FDE, with modal gain offset 3 dB, core refractive index 1.49, numerical aperture 0.5. Results show that optical-signal-to-noise ratio (OSNR) tolerance can be improved via STBC by approximately 3.1, 4.9, 7.8 dB for QPSK, 16- and 64-QAM with respective bit-error-rates (BER) and minimum-mean-square-error (MMSE). Besides, we also evaluate the complexity optimization of STBC decoding scheme with zero-forcing decision feedback (ZFDF) equalizer by shortening the coding slot length, which is robust to frequency-selective fading channels, and can be scaled up for SDM systems with more dynamic channels.

  16. WS2 mode-locked ultrafast fiber laser

    PubMed Central

    Mao, Dong; Wang, Yadong; Ma, Chaojie; Han, Lei; Jiang, Biqiang; Gan, Xuetao; Hua, Shijia; Zhang, Wending; Mei, Ting; Zhao, Jianlin

    2015-01-01

    Graphene-like two dimensional materials, such as WS2 and MoS2, are highly anisotropic layered compounds that have attracted growing interest from basic research to practical applications. Similar with MoS2, few-layer WS2 has remarkable physical properties. Here, we demonstrate for the first time that WS2 nanosheets exhibit ultrafast nonlinear saturable absorption property and high optical damage threshold. Soliton mode-locking operations are achieved separately in an erbium-doped fiber laser using two types of WS2-based saturable absorbers, one of which is fabricated by depositing WS2 nanosheets on a D-shaped fiber, while the other is synthesized by mixing WS2 solution with polyvinyl alcohol, and then evaporating them on a substrate. At the maximum pump power of 600 mW, two saturable absorbers can work stably at mode-locking state without damage, indicating that few-layer WS2 is a promising high-power flexible saturable absorber for ultrafast optics. Numerous applications may benefit from the ultrafast nonlinear features of WS2 nanosheets, such as high-power pulsed laser, materials processing, and frequency comb spectroscopy. PMID:25608729

  17. Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.

    PubMed

    Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis

    2014-02-01

    We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.

  18. A New Three-Dimensional High-Accuracy Automatic Alignment System For Single-Mode Fibers

    NASA Astrophysics Data System (ADS)

    Yun-jiang, Rao; Shang-lian, Huang; Ping, Li; Yu-mei, Wen; Jun, Tang

    1990-02-01

    In order to achieve the low-loss splices of single-mode fibers, a new three-dimension high-accuracy automatic alignment system for single -mode fibers has been developed, which includes a new-type three-dimension high-resolution microdisplacement servo stage driven by piezoelectric elements, a new high-accuracy measurement system for the misalignment error of the fiber core-axis, and a special single chip microcomputer processing system. The experimental results show that alignment accuracy of ±0.1 pin with a movable stroke of -±20μm has been obtained. This new system has more advantages than that reported.

  19. Numerical simulations of fast-axis instability of vector solitons in mode-locked fiber lasers.

    PubMed

    Du, Yueqing; Shu, Xuewen; Cheng, Peiyun

    2017-01-23

    We demonstrate the fast-axis instability in mode-locked fiber lasers numerically for the first time. We find that the energy of the fast mode will be transferred to the slow mode when the strong pump strength makes the soliton period short. A nearly linearly polarized vector soliton along the slow-axis could be generated under certain cavity parameters. The final polarization of the vector soliton is related to the initial polarization of the seed pulse. Two regimes of energy exchanging between the slow mode and the fast mode are explored and the direction of the energy flow between two modes depends on the phase difference. The dip-type sidebands are found to be intrinsic characteristics of the mode-locked fiber lasers under high pulse energy.

  20. Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers.

    PubMed

    Gong, Mali; Yuan, Yanyang; Li, Chen; Yan, Ping; Zhang, Haitao; Liao, Suying

    2007-03-19

    A model based on propagation-rate equations with consideration of transverse gain distribution is built up to describe the transverse mode competition in strongly pumped multimode fiber lasers and amplifiers. An approximate practical numerical algorithm by multilayer method is presented. Based on the model and the numerical algorithm, the behaviors of multitransverse mode competition are demonstrated and individual transverse modes power distributions of output are simulated numerically for both fiber lasers and amplifiers under various conditions.

  1. New optical frequency domain differential mode delay measurement method for a multimode optical fiber.

    PubMed

    Ahn, T; Moon, S; Youk, Y; Jung, Y; Oh, K; Kim, D

    2005-05-30

    A novel mode analysis method and differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.

  2. High energy passively mode-locked erbium-doped fiber laser at tens of kHz repetition rate

    NASA Astrophysics Data System (ADS)

    Chen, Jiong; Jia, Dongfang; Wang, Changle; Wang, Junlong; Wang, Zhaoying; Yang, Tianxin

    2011-12-01

    We demonstrate an ultra-long cavity all-fiber Erbium-doped fiber laser that is passively mode-locked by nonlinear polarization rotation. The length of the resonant cavity amounts to 4.046 km, which is achieved by incorporating a 4 km single mode fiber. The laser generates stable mode-locked pulses with a 50.90 kHz fundamental repetition rate. The maximum average power of output pulses is 2.73 mW, which corresponds to per-pulse energy of 53.63 nJ.

  3. Polarization preserving single mode fiber optic coupler

    NASA Technical Reports Server (NTRS)

    Nelson, M. D.; Goss, W. C.

    1982-01-01

    A technique is described for fabrication of etched single mode fiber optical waveguide couplers which preserve the polarization state to within 0.0001. The coupling ratio is tunable over a broad range (0-9 percent) during fabrication. Back-coupling is less than 0.001, insertion loss is less than 1.5 dB, and coupling ratio thermal coefficient is about 1 percent per degree C.

  4. Bend-insensitive single-mode photonic crystal fiber with ultralarge effective area for dual applications

    NASA Astrophysics Data System (ADS)

    Islam, Md. Asiful; Alam, M. Shah

    2013-05-01

    A novel photonic crystal fiber (PCF) having circular arrangement of cladding air holes has been designed and numerically optimized to obtain a bend insensitive single mode fiber with large mode area for both wavelength division multiplexing (WDM) communication and fiber-to-the-home (FTTH) application. The bending loss of the proposed bent PCF lies in the range of 10-3 to 10-4 dB/turn or lower over 1300 to 1700 nm, and 2 × 10-4 dB/turn at the wavelength of 1550 nm for a 30-mm bend radius with a higher order mode (HOM) cut-off frequency below 1200 nm for WDM application. When the whole structure of the PCF is scaled down, a bending loss of 6.78×10-4 dB/turn at 1550 nm for a 4-mm bend radius is obtained, and the loss remains in the order of 10-4 dB/turn over the same range of wavelength with an HOM cut-off frequency below 700 nm, and makes the fiber useful for FTTH applications. Furthermore, this structure is also optimized to show a splice loss near zero for fusion-splicing to a conventional single-mode fiber (SMF).

  5. Controllable photoinduced optical attenuation in a single-mode optical fiber by irradiation of a femtosecond pulse laser.

    PubMed

    Himei, Yusuke; Qiu, Jianrong; Nakajima, Sotohiro; Sakamoto, Akihiko; Hirao, Kazuyuki

    2004-12-01

    Novel optical attenuation fibers were fabricated by the irradiation of a focused infrared femtosecond pulsed laser onto the core of a silica glass single-mode optical fiber. Optical attenuation at a wavelength of 1.55 microm proportionally increased with increasing numbers of irradiation points and was controllable under laser irradiation conditions. The single-mode property of the waveguide and the mode-field diameter of the optical fiber were maintained after irradiation of the femtosecond laser. It is suggested that the attenuation results from optical scattering at photoinduced spots formed inside the fiber core.

  6. Phase shift of TE and TM modes in an optical fiber due to axial strain (exact solution)

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1992-01-01

    Axial strain may be determined by monitoring the phase shift of modes of a variety of optical fiber sensors. In this paper, the exact solution of a circular optical fiber is used to calculate the phase shift of the TE and TM modes. Whenever an optical fiber is stressed, the optical path length, the index of refraction, and the propagation constants of each fiber mode change. In consequence, the modal phase term, beta(ln)z, of the fields is shifted by an amount Delta phi. In certain cases, it is desirable to control the phase shift term in order to make the fiber either more or less sensitive to certain kinds of strain. It is shown that it can be accomplished by choosing appropriate fiber parameters.

  7. Long-Period Gratings in Highly Germanium-Doped, Single-Mode Optical Fibers for Sensing Applications

    PubMed Central

    Schlangen, Sebastian; Bremer, Kort; Zheng, Yulong; Böhm, Sebastian; Steinke, Michael; Wellmann, Felix; Neumann, Jörg; Overmeyer, Ludger

    2018-01-01

    Long-period fiber gratings (LPGs) are well known for their sensitivity to external influences, which make them interesting for a large number of sensing applications. For these applications, fibers with a high numerical aperture (i.e., fibers with highly germanium (Ge)-doped fused silica fiber cores) are more attractive since they are intrinsically photosensitive, as well as less sensitive to bend- and microbend-induced light attenuations. In this work, we introduce a novel method to inscribe LPGs into highly Ge-doped, single-mode fibers. By tapering the optical fiber, and thus, tailoring the effective indices of the core and cladding modes, for the first time, an LPG was inscribed into such fibers using the amplitude mask technique and a KrF excimer laser. Based on this novel method, sensitive LPG-based fiber optic sensors only a few millimeters in length can be incorporated in bend-insensitive fibers for use in various monitoring applications. Moreover, by applying the described inscription method, the LPG spectrum can be influenced and tailored according to the specific demands of a particular application. PMID:29702600

  8. Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser.

    PubMed

    Wang, P; Cooper, L J; Sahu, J K; Clarkson, W A

    2006-01-15

    A novel approach to achieving robust single-spatial-mode operation of cladding-pumped fiber lasers with multimode cores is reported. The approach is based on the use of a fiber geometry in which the core has a helical trajectory within the inner cladding to suppress laser oscillation on higher-order modes. In a preliminary proof-of-principle study, efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser with a 30 microm diameter core and a numerical aperture of 0.087 has been demonstrated. The laser yielded 60.4 W of output at 1043 nm in a beam with M2 < 1.4 for 92.6 W launched pump power from a diode stack at 976 nm. The slope efficiency at pump powers well above threshold was approximately 84%, which compares favorably with the slope efficiencies achievable with conventional straight-core Yb-doped double-clad fiber lasers.

  9. Femtosecond Mode-locked Fiber Laser at 1 μm Via Optical Microfiber Dispersion Management.

    PubMed

    Wang, Lizhen; Xu, Peizhen; Li, Yuhang; Han, Jize; Guo, Xin; Cui, Yudong; Liu, Xueming; Tong, Limin

    2018-03-16

    Mode-locked Yb-doped fiber lasers around 1 μm are attractive for high power applications and low noise pulse train generation. Mode-locked fiber lasers working in soliton and stretched-pulse regime outperform others in terms of the laser noise characteristics, mechanical stability and easy maintenance. However, conventional optical fibers always show a normal group velocity dispersion around 1 μm, leading to the inconvenience for necessary dispersion management. Here we show that optical microfibers having a large anomalous dispersion around 1 μm can be integrated into mode-locked Yb-doped fiber lasers with ultralow insertion loss down to -0.06 dB, enabling convenient dispersion management of the laser cavity. Besides, optical microfibers could also be adopted to spectrally broaden and to dechirp the ultrashort pulses outside the laser cavity, giving rise to a pulse duration of about 110 fs. We believe that this demonstration may facilitate all-fiber format high-performance ultrashort pulse generation at 1 μm and may find applications in precision measurements, large-scale facility synchronization and evanescent-field-based optical sensing.

  10. Passively mode-locked Yb fiber laser with PbSe colloidal quantum dots as saturable absorber.

    PubMed

    Wei, Kaihua; Fan, Shanhui; Chen, Qingguang; Lai, Xiaomin

    2017-10-16

    A passively mode-locked Yb fiber laser using PbSe colloidal quantum dots (CQDs) as saturable absorber (SA) is experimentally demonstrated. An all-fiber experimental scheme was designed to understand the SA property of PbSe CQDs. The non-saturable loss, modulation depth, and saturable intensity of SA measured were 23%, 7%, and 12 MW/cm 2 , respectively. The PbSe CQDs were sandwiched in a fiber connector, which was further inserted into the Yb fiber laser for mode-locking. As the pump power up to 110 mW, the self-starting mode-locking pulses were observed. Under the pump power of 285 mW, a maximum average laser power with fundamental mode-locking operation was obtained to be 21.3 mW. In this situation, the pulse full width at half maximum (FWHM), pulse repetition rate, and spectral FWHM were measured to be 70 ps, 8.3 MHz, and 4.5 nm, respectively.

  11. Large Contribution of Coarse Mode to Aerosol Microphysical and Optical Properties: Evidence from Ground-Based Observations of a Transpacific Dust Outbreak at a High-Elevation North American Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, E.; Pekour, M.; Flynn, C.

    Our work is motivated by previous studies of the long-range trans-Atlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 µm. We examine coarse mode contributions from the trans-Pacific transport of Asian dust to North American aerosol microphysical and optical properties using a dataset collected at the high-elevation, mountain-top Storm Peak Laboratory (SPL, 3.22 km above sea level [ASL]) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 2.76 km ASL). Data collected during the SPL Cloud Property Validation Experiment (STORMVEX, March 2011) are complemented bymore » quasi-global high-resolution model simulations coupled with aerosol chemistry. We identify dust event associated mostly with Asian plume (about 70% of dust mass) where the coarse mode with moderate (~4 µm) VMD is distinct and contributes substantially to aerosol microphysical (up to 70% for total volume) and optical (up to 45% for total scattering and aerosol optical depth) properties. Our results, when compared with previous Saharan dust studies, suggest a fairly invariant behavior of coarse mode dust aerosols. If confirmed in additional studies, this invariant behavior may simplify considerably model parameterizations for complex and size-dependent processes associated with dust transport and removal.« less

  12. Core-to-core uniformity improvement in multi-core fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Lindley, Emma; Min, Seong-Sik; Leon-Saval, Sergio; Cvetojevic, Nick; Jovanovic, Nemanja; Bland-Hawthorn, Joss; Lawrence, Jon; Gris-Sanchez, Itandehui; Birks, Tim; Haynes, Roger; Haynes, Dionne

    2014-07-01

    Multi-core fiber Bragg gratings (MCFBGs) will be a valuable tool not only in communications but also various astronomical, sensing and industry applications. In this paper we address some of the technical challenges of fabricating effective multi-core gratings by simulating improvements to the writing method. These methods allow a system designed for inscribing single-core fibers to cope with MCFBG fabrication with only minor, passive changes to the writing process. Using a capillary tube that was polished on one side, the field entering the fiber was flattened which improved the coverage and uniformity of all cores.

  13. High-sensitivity fiber optic acoustic sensors

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  14. PLC-based mode multi/demultiplexer for MDM transmission

    NASA Astrophysics Data System (ADS)

    Hanzawa, N.; Saitoh, K.; Sakamoto, T.; Matsui, T.; Tsujikawa, K.; Koshiba, M.; Yamamoto, F.

    2013-12-01

    We propose a PLC-based multi/demultiplexer (MUX/DEMUX) with a mode conversion function for mode division multiplexing (MDM) transmission applications. The PLC-based mode MUX/DEMUX can realize a low insertion loss and a wide working wavelength bandwidth. We designed and demonstrated a two-mode (LP01 and LP11 modes) and a three-mode (LP01, LP11, and LP21 modes) MUX/DEMUX for use in the C-band.

  15. Experiment to Detect Accelerating Modes in a Photonic Bandgap Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, R.J.; /SLAC; Colby, E.R.

    An experimental effort is currently underway at the E-163 test beamline at Stanford Linear Accelerator Center to use a hollow-core photonic bandgap (PBG) fiber as a high-gradient laser-based accelerating structure for electron bunches. For the initial stage of this experiment, a 50pC, 60 MeV electron beam will be coupled into the fiber core and the excited modes will be detected using a spectrograph to resolve their frequency signatures in the wakefield radiation generated by the beam. They will describe the experimental plan and recent simulation studies of candidate fibers.

  16. Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter.

    PubMed

    Jung, Yongmin; Brambilla, Gilberto; Richardson, David J

    2008-09-15

    We report the use of a sub-wavelength optical wire (SOW) with a specifically designed transition region as an efficient tool to filter higher-order modes in multimode waveguides. Higher-order modes are effectively suppressed by controlling the transition taper profile and the diameter of the sub-wavelength optical wire. As a practical example, single-mode operation of a standard telecom optical fiber over a broad spectral window (400 approximately 1700 nm) was demonstrated with a 1microm SOW. The ability to obtain robust and stable single-mode operation over a very broad range of wavelengths offers new possibilities for mode control within fiber devices and is relevant to a range of application sectors including high performance fiber lasers, sensors, photolithography, and optical coherence tomography systems.

  17. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing

    NASA Astrophysics Data System (ADS)

    Ikoma, S.; Nguyen, H. K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D.

    2017-02-01

    A 3 kW single stage all-fiber Yb-doped single-mode fiber laser with bi-directional pumping configuration has been demonstrated. Our newly developed high-power LD modules are employed for a high available pump power of 4.9 kW. The length of the delivery fiber is 20 m which is long enough to be used in most of laser processing machines. An output power of 3 kW was achieved at a pump power of 4.23 kW. The slope efficiency was 70%. SRS was able to be suppressed at the same output power by increasing ratio of backward pump power. The SRS level was improved by 5dB when 57% backward pump ratio was adopted compared with the case of 50%. SRS was 35dB below the laser power at the output power of 3 kW even with a 20-m delivery fiber. The M-squared factor was 1.3. Single-mode beam quality was obtained. To evaluate practical utility of the 3 kW single-mode fiber laser, a Bead-on-Plate (BoP) test onto a pure copper plate was executed. The BoP test onto a copper plate was made without stopping or damaging the laser system. That indicates our high power single-mode fiber lasers can be used practically in processing of materials with high reflectivity and high thermal conductivity.

  18. Optimized mode-field adapter for low-loss fused fiber bundle signal and pump combiners

    NASA Astrophysics Data System (ADS)

    Koška, Pavel; Baravets, Yauhen; Peterka, Pavel; Písařík, Michael; Bohata, Jan

    2015-03-01

    In our contribution we report novel mode field adapter incorporated inside bundled tapered pump and signal combiner. Pump and signal combiners are crucial component of contemporary double clad high power fiber lasers. Proposed combiner allows simultaneous matching to single mode core on input and output. We used advanced optimization techniques to match the combiner to a single mode core simultaneously on input and output and to minimalize losses of the combiner signal branch. We designed two arrangements of combiners' mode field adapters. Our numerical simulations estimates losses in signal branches of optimized combiners of 0.23 dB for the first design and 0.16 dB for the second design for SMF-28 input fiber and SMF-28 matched output double clad fiber for the wavelength of 2000 nm. The splice losses of the actual combiner are expected to be even lower thanks to dopant diffusion during the splicing process.

  19. Superpixel-based segmentation of muscle fibers in multi-channel microscopy.

    PubMed

    Nguyen, Binh P; Heemskerk, Hans; So, Peter T C; Tucker-Kellogg, Lisa

    2016-12-05

    Confetti fluorescence and other multi-color genetic labelling strategies are useful for observing stem cell regeneration and for other problems of cell lineage tracing. One difficulty of such strategies is segmenting the cell boundaries, which is a very different problem from segmenting color images from the real world. This paper addresses the difficulties and presents a superpixel-based framework for segmentation of regenerated muscle fibers in mice. We propose to integrate an edge detector into a superpixel algorithm and customize the method for multi-channel images. The enhanced superpixel method outperforms the original and another advanced superpixel algorithm in terms of both boundary recall and under-segmentation error. Our framework was applied to cross-section and lateral section images of regenerated muscle fibers from confetti-fluorescent mice. Compared with "ground-truth" segmentations, our framework yielded median Dice similarity coefficients of 0.92 and higher. Our segmentation framework is flexible and provides very good segmentations of multi-color muscle fibers. We anticipate our methods will be useful for segmenting a variety of tissues in confetti fluorecent mice and in mice with similar multi-color labels.

  20. Fiber up-tapering and down-tapering for low-loss coupling between anti-resonant hollow-core fiber and solid-core fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Naiqian; Wang, Zefeng; Xi, Xiaoming

    2017-10-01

    In this paper, we demonstrate a novel method for the low-loss coupling between solid-core multi-mode fibers (MMFs) and anti-resonant hollow-core fibers (AR-HCFs). The core/cladding diameter of the MMF is 50/125μm and the mode field diameter of the AR-HCFs are 33.3μm and 71.2μm of the ice-cream type AR-HCFs and the non-node type ARHCFs, respectively. In order to match the mode field diameters of these two specific AR-HCFs, the mode field diameter of the MMFs is increased or decreased by up-tapering or down-tapering the MMFs. Then, according to the principle of coupled fiber mode matching, the optimal diameter of tapered fiber for low-loss coupling is calculated. Based on beam propagation method, the calculated coupling losses without tapering process are 0.31dB and 0.89dB, respectively for a MMF-HCF-MMF structure of the ice-cream type AR-HCFs and the non-node type AR-HCFs. These values can be reduced to 0.096dB and 0.047dB when the outer diameters of the MMF are down-tapered to 116μm and up-tapered to 269μm, respectively. What's more, these results can also be verified by existing experiments.

  1. Design and evaluation of a high-performance broadband fiber access based on coarse wavelength division multiplexing

    NASA Astrophysics Data System (ADS)

    R. Horche, Paloma; del Rio Campos, Carmina

    2004-10-01

    The proliferation of high-bandwidth applications has created a growing interest in upgrading networks to deliver broadband services to homes and small businesses between network providers. There has to be a great efficiency between the total cost of the infrastructures and the services that can be offered to the end users. Coarse Wavelength Division Multiplexing (CWDM) is an ideal solution to the tradeoff between cost and capacity. This technology uses all or part of the 1270 to 1610 nm wavelength fiber range with optical channel separation about 20 nm. The problem in CWDM systems is that for a given reach the performance is not equal for all of transmitted channels because of the very different fiber attenuation and dispersion characteristics for each channel. In this work, by means of an Optical Communication System Design Software, we study a CWDM network configuration, for lengths of up to 100 km, in order to achieve low Bit Error Rate (BER) performance for all optical channels. We show that the type of fiber used will have an impact on both the performance of the systems and on the bit rate of each optical channel. In the study, we use both on the already laid and widely deployed singlemode ITU-T G.652 optical fibers and on the latest "water-peak-suppressed" versions of the same fiber as well as G.655 fibers. We have used two types of DML. One is strongly adiabatic chirp dominated and another is strongly transient chirp dominated. The analysis has demonstrated that all the studied fibers have a similar performance when laser strongly adiabatic chirp dominated is used for lengths of up to 40 Km and that fibers with negative sign of dispersion has a higher performance for long distance, at high bit rates and throughout the spectral range analyzed. An important contribution of this work is that it has demonstrated that when DML are used it produces a dispersion accommodation that is function of the fiber length, wavelength and bit rate. This could put in danger

  2. A passively mode locked thulium doped fiber laser using bismuth telluride deposited multimode interference

    NASA Astrophysics Data System (ADS)

    Jung, M.; Lee, J.; Song, W.; Lee, Y. L.; Lee, J. H.; Shin, W.

    2016-05-01

    We proposed a multimode interference (MMI) fiber based saturable absorber using bismuth telluride at  ∼2 μm region. Our MMI based saturable absorber was fabricated by fusion splicing with single mode fiber and null core fiber. The MMI functioned as both wavelength fixed filter and saturable absorber. The 3 dB bandwidth and insertion loss of MMI were 42 nm and 3.4 dB at wavelength of 1958 nm, respectively. We have also reported a passively mode locked thulium doped fiber laser operating at a wavelength of 1958 nm using a multimode interference. A temporal bandwidth of  ∼46 ps was experimentally obtained at a repetition rate of 8.58 MHz.

  3. Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression.

    PubMed

    Kristensen, Jesper T; Houmann, Andreas; Liu, Xiaomin; Turchinovich, Dmitry

    2008-06-23

    We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62 +/- 0.24 dB, and polarization extinction ratio of 19 +/- 0.68 dB. The reciprocal HC-PCF-to-PM-SMF splice loss is found to be 2.19 +/- 0.33 dB, which is caused by the mode evolution in HC-PCF. The return loss in both cases was measured to be -14 dB. We show that a splice defect is caused by the HC-PCF cleave defect, and the lossy splice can be predicted at an early stage of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond pulse delivery.

  4. High-brightness power delivery for fiber laser pumping: simulation and measurement of low-NA fiber guiding

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya

    2015-02-01

    Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.

  5. All-fiber broadband supercontinuum generation in a single-mode high nonlinear silica fiber

    NASA Astrophysics Data System (ADS)

    Gao, Weiqing; Liao, Meisong; Yang, Lingzhen; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake

    2012-06-01

    We demonstrate an all-fiber broadband supercontinuum (SC) source with high efficiency in a single-mode high nonlinear silica fiber. The SC is pumped by the 1557 nm sub-picosecond pulse, which is generated by a homemade passively mode-locked fiber laser, amplified by an EDFA and compressed to 600 fs. The high nonlinear fiber used in experiments has the zero-dispersion wavelength of 1584 nm with low dispersion slope. The pump pulse is in the normal dispersion region and the SC generation is initiated by the SPM effect. When the long-wave band of the spectrum is extended to the anomalous dispersion region, the soliton effects and intra-pulse Raman effects extend the spectrum further. Meanwhile, the dispersive waves shorter than 1100 nm begin to emerge because the phase matching condition is satisfied and the intensity increases with increasing the pump intensity. The broad SC spectrum with the spectral range from 840 to 2390 nm is obtained at the pump peak power of 46.71 kW, and the 10 dB bandwidth from 1120 nm to 2245 nm of the SC covers one octave assuming the peak near 1550 nm is filtered. The temporal trace of the SC has the repetition rate of 16.7 MHz, and some satellite pulses are generated during the nonlinear process. The SC source system is constructed by all-fiber components, which can be fusion spliced together directly with low loss less than 0.1 dB and improves the energy transfer efficiency from the pump source to the SC greatly. The maximum SC average power of 332 mW is obtained for the total spectral range, and the slop efficiency to the pump source is about 70.3%, which will be lower when the peaks near 1550 nm are filtered, but is higher than those in PCFs. The spectral density for the 10 dB bandwidth is in the range from -17.3 to -7.3 dBm/nm.

  6. Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing.

    PubMed

    Xie, Shangran; Pang, Meng; Bao, Xiaoyi; Chen, Liang

    2012-03-12

    The dependence of Brillouin linewidth and peak frequency on lightwave state of polarization (SOP) due to fiber inhomogeneity in single mode fiber (SMF) is investigated by using Brillouin optical time domain analysis (BOTDA) system. Theoretical analysis shows fiber inhomogeneity leads to fiber birefringence and sound velocity variation, both of which can cause the broadening and asymmetry of the Brillouin gain spectrum (BGS) and thus contribute to the variation of Brillouin linewidth and peak frequency with lightwave SOP. Due to fiber inhomogeneity both in lateral profile and longitudinal direction, the measured BGS is the superposition of several spectrum components with different peak frequencies within the interaction length. When pump or probe SOP changes, both the peak Brillouin gain and the overlapping area of the optical and acoustic mode profile that determine the peak efficiency of each spectrum component vary within the interaction length, which further changes the linewidth and peak frequency of the superimposed BGS. The SOP dependence of Brillouin linewidth and peak frequency was experimentally demonstrated and quantified by measuring the spectrum asymmetric factor and fitting obtained effective peak frequency respectively via BOTDA system on standard step-index SMF-28 fiber. Experimental results show that on this fiber the Brillouin spectrum asymmetric factor and effective peak frequency vary in the range of 2% and 0.06MHz respectively over distance with orthogonal probe input SOPs. Experimental results also show that in distributed fiber Brillouin sensing, polarization scrambler (PS) can be used to reduce the SOP dependence of Brillouin linewidth and peak frequency caused by fiber inhomogeneity in lateral profile, however it maintains the effects caused by fiber inhomogeneity in longitudinal direction. In the case of non-ideal polarization scrambling using practical PS, the fluctuation of effective Brillouin peak frequency caused by fiber inhomogeneity

  7. Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar.

    PubMed

    Lee, Dongkyoung; Pyo, Sukhoon

    2018-02-10

    This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed.

  8. Experimental Investigation of Multi-mode Fiber Laser Cutting of Cement Mortar

    PubMed Central

    2018-01-01

    This study successfully applied multi-mode laser cutting with the variation of the laser cutting speed to cement mortar for the first time. The effects of the amount of silica sand in the cement mortar on laser cutting are tested and analyzed. The kerf width and penetration depth of the specimens after laser cutting are investigated. As the laser cutting speed increases, the penetration depth decreases for both cement paste and cement mortar, whereas the kerf width becomes saturated and increases, respectively, for cement paste and cement mortar. Cross sections of the specimens are compared with illustrations. Top-view images of the cement mortar with indicators of the physical characteristics, such as re-solidification, burning, and cracks are examined, and the possible causes of these characteristics are explained. The optical absorption rates of cement-based materials are quantified at wide ranges of wavelength to compare the absorption rates in accordance with the materials compositions. The chemical composition variation before and after laser cutting is also compared by EDX (Energy Dispersive X-Ray) analysis. In addition to these observations, material removal mechanisms for cement mortar are proposed. PMID:29439431

  9. A nanodiamond-tapered fiber system with high single-mode coupling efficiency.

    PubMed

    Schröder, Tim; Fujiwara, Masazumi; Noda, Tetsuya; Zhao, Hong-Quan; Benson, Oliver; Takeuchi, Shigeki

    2012-05-07

    We present a fiber-coupled diamond-based single photon system. Single nanodiamonds containing nitrogen vacancy defect centers are deposited on a tapered fiber of 273 nanometer in diameter providing a record-high number of 689,000 single photons per second from a defect center in a single-mode fiber. The system can be cooled to cryogenic temperatures and coupled evanescently to other nanophotonic structures, such as microresonators. The system is suitable for integrated quantum transmission experiments, two-photon interference, quantum-random-number generation and nano-magnetometry.

  10. Multi-channel fiber optic dew and humidity sensor

    NASA Astrophysics Data System (ADS)

    Limodehi, Hamid E.; Mozafari, Morteza; Amiri, Hesam; Légaré, François

    2018-03-01

    In this article, we introduce a multi-channel fiber optic dew and humidity sensor which works using a novel method based on relation between surface plasmon resonance (SPR) and water vapor condensation. The proposed sensor can instantly detect moisture or dew formation through its fiber optic channels, separately situated in different places. It enables to simultaneously measure the ambient Relative Humidity (RH) and dew point temperature of several environments with accuracy of 5%.

  11. Ensemble Empirical Mode Decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels.

    PubMed

    Sharma, Govind K; Kumar, Anish; Jayakumar, T; Purnachandra Rao, B; Mariyappa, N

    2015-03-01

    A signal processing methodology is proposed in this paper for effective reconstruction of ultrasonic signals in coarse grained high scattering austenitic stainless steel. The proposed methodology is comprised of the Ensemble Empirical Mode Decomposition (EEMD) processing of ultrasonic signals and application of signal minimisation algorithm on selected Intrinsic Mode Functions (IMFs) obtained by EEMD. The methodology is applied to ultrasonic signals obtained from austenitic stainless steel specimens of different grain size, with and without defects. The influence of probe frequency and data length of a signal on EEMD decomposition is also investigated. For a particular sampling rate and probe frequency, the same range of IMFs can be used to reconstruct the ultrasonic signal, irrespective of the grain size in the range of 30-210 μm investigated in this study. This methodology is successfully employed for detection of defects in a 50mm thick coarse grain austenitic stainless steel specimens. Signal to noise ratio improvement of better than 15 dB is observed for the ultrasonic signal obtained from a 25 mm deep flat bottom hole in 200 μm grain size specimen. For ultrasonic signals obtained from defects at different depths, a minimum of 7 dB extra enhancement in SNR is achieved as compared to the sum of selected IMF approach. The application of minimisation algorithm with EEMD processed signal in the proposed methodology proves to be effective for adaptive signal reconstruction with improved signal to noise ratio. This methodology was further employed for successful imaging of defects in a B-scan. Copyright © 2014. Published by Elsevier B.V.

  12. Demonstration of multi-wavelength tunable fiber lasers based on a digital micromirror device processor.

    PubMed

    Ai, Qi; Chen, Xiao; Tian, Miao; Yan, Bin-bin; Zhang, Ying; Song, Fei-jun; Chen, Gen-xiang; Sang, Xin-zhu; Wang, Yi-quan; Xiao, Feng; Alameh, Kamal

    2015-02-01

    Based on a digital micromirror device (DMD) processor as the multi-wavelength narrow-band tunable filter, we demonstrate a multi-port tunable fiber laser through experiments. The key property of this laser is that any lasing wavelength channel from any arbitrary output port can be switched independently over the whole C-band, which is only driven by single DMD chip flexibly. All outputs display an excellent tuning capacity and high consistency in the whole C-band with a 0.02 nm linewidth, 0.055 nm wavelength tuning step, and side-mode suppression ratio greater than 60 dB. Due to the automatic power control and polarization design, the power uniformity of output lasers is less than 0.008 dB and the wavelength fluctuation is below 0.02 nm within 2 h at room temperature.

  13. Aligning Arrays of Lenses and Single-Mode Optical Fibers

    NASA Technical Reports Server (NTRS)

    Liu, Duncan

    2004-01-01

    A procedure now under development is intended to enable the precise alignment of sheet arrays of microscopic lenses with the end faces of a coherent bundle of as many as 1,000 single-mode optical fibers packed closely in a regular array (see Figure 1). In the original application that prompted this development, the precise assembly of lenses and optical fibers serves as a single-mode spatial filter for a visible-light nulling interferometer. The precision of alignment must be sufficient to limit any remaining wavefront error to a root-mean-square value of less than 1/10 of a wavelength of light. This wavefront-error limit translates to requirements to (1) ensure uniformity of both the lens and fiber arrays, (2) ensure that the lateral distance from the central axis of each lens and the corresponding optical fiber is no more than a fraction of a micron, (3) angularly align the lens-sheet planes and the fiber-bundle end faces to within a few arc seconds, and (4) axially align the lenses and the fiber-bundle end faces to within tens of microns of the focal distance. Figure 2 depicts the apparatus used in the alignment procedure. The beam of light from a Zygo (or equivalent) interferometer is first compressed by a ratio of 20:1 so that upon its return to the interferometer, the beam will be magnified enough to enable measurement of wavefront quality. The apparatus includes relay lenses that enable imaging of the arrays of microscopic lenses in a charge-coupled-device (CCD) camera that is part of the interferometer. One of the arrays of microscopic lenses is mounted on a 6-axis stage, in proximity to the front face of the bundle of optical fibers. The bundle is mounted on a separate stage. A mirror is attached to the back face of the bundle of optical fibers for retroreflection of light. When a microscopic lens and a fiber are aligned with each other, the affected portion of the light is reflected back by the mirror, recollimated by the microscopic lens, transmitted

  14. A sensitivity-enhanced refractive index sensor using a single-mode thin-core fiber incorporating an abrupt taper.

    PubMed

    Shi, Jie; Xiao, Shilin; Yi, Lilin; Bi, Meihua

    2012-01-01

    A sensitivity-enhanced fiber-optic refractive index (RI) sensor based on a tapered single-mode thin-core diameter fiber is proposed and experimentally demonstrated. The sensor head is formed by splicing a section of tapered thin-core diameter fiber (TCF) between two sections of single-mode fibers (SMFs). The cladding modes are excited at the first SMF-TCF interface, and then interfere with the core mode at the second interface, thus forming an inter-modal interferometer (IMI). An abrupt taper (tens of micrometers long) made by the electric-arc-heating method is utilized, and plays an important role in improving sensing sensitivity. The whole manufacture process only involves fiber splicing and tapering, and all the fabrication process can be achieved by a commercial fiber fusion splicer. Using glycerol and water mixture solution as an example, the experimental results show that the refractive index sensitivity is measured to be 0.591 nm for 1% change of surrounding RI. The proposed sensor structure features simple structure, low cost, easy fabrication, and high sensitivity.

  15. Controlled higher-order transverse mode conversion from a fiber laser by polarization manipulation

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Yi, Qian; Yang, Lingling; Zhao, Chujun; Wen, Shuangchun

    2018-02-01

    We report a vectorial fiber laser with controlled transverse mode conversion by intra-cavity polarization manipulation. By combining a q-plate and two quarter-wave plates (QWPs), we can generate a switchable polarization state output represented by the higher-order Poincaré sphere (l = +1, l = -1), and distinguish the fourfold degenerate LP11 mode. The four transverse vector modes can be obtained and switched in a flexible way, and the slope efficiency of the fiber laser can reach up to 39.4%. This compactness, high efficiency, and switchable operation potential will benefit a range of applications, such as materials processing, particle manipulation, etc.

  16. Multi-longitudinal-mode micro-laser model

    NASA Astrophysics Data System (ADS)

    Staliunas, Kestutis

    2017-10-01

    We derive a convenient model for broad aperture micro-lasers, such as microchip lasers, broad area semiconductor lasers, or VCSELs, taking into account several longitudinal mode families. We provide linear stability analysis, and show characteristic spatio-temporal dynamics in such multi-longitudinal mode laser models. Moreover, we derive the coupled mode model in the presence of intracavity refraction index modulation (intracavity photonic crystal). Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  17. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Chen, Ming; Jian, Shuisheng

    2009-08-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber laser at room temperature is demonstrated. One fiber Bragg grating (FBG) directly written in a polarization-maintaining and photosensitive erbiumdoped fiber (PMPEDF) as the wavelength-selective component is used in a linear laser cavity. Due to the polarization hole burning (PHB) enhanced by the polarization-maintaining fiber Bragg grating (PMFBG), the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.202 nm by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a saturable absorber (SA). The optical signal-tonoise ratio (OSNR) of the laser is over 40 dB. The amplitude variation in nearly one and half an hour is less than 0.5 dB for both wavelengths.

  18. Biomedical and sensing applications of a multi-mode biodegradable phosphate-based optical fiber

    NASA Astrophysics Data System (ADS)

    Podrazky, Ondřej; Peterka, Pavel; Vytykáčová, SoÅa.; Proboštová, Jana; Kuneš, Martin; Lyutakov, Oleksiy; Ceci-Ginistrelli, Edoardo; Pugliese, Diego; Boetti, Nadia G.; Janner, Davide; Milanese, Daniel

    2018-02-01

    We report on the employment of a biodegradable phosphate-based optical fiber as a pH sensing probe in physiological environment. The phosphate-based optical fiber preform was fabricated by the rod-in-tube technique. The fiber biodegradability was first tested in-vitro and then its biodegradability and toxicity were tested in-vivo. Optical probes for pH sensing were prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method. The fluorescence response of the pH-sensor was measured as a ratio of the emission intensities at the excitation wavelengths of 405 and 450 nm.

  19. 152 fs nanotube-mode-locked thulium-doped all-fiber laser

    PubMed Central

    Wang, Jinzhang; Liang, Xiaoyan; Hu, Guohua; Zheng, Zhijian; Lin, Shenghua; Ouyang, Deqin; Wu, Xu; Yan, Peiguang; Ruan, Shuangchen; Sun, Zhipei; Hasan, Tawfique

    2016-01-01

    Ultrafast fiber lasers with broad bandwidth and short pulse duration have a variety of applications, such as ultrafast time-resolved spectroscopy and supercontinuum generation. We report a simple and compact all-fiber thulium-doped femtosecond laser mode-locked by carbon nanotubes. The oscillator operates in slightly normal cavity dispersion at 0.055 ps2, and delivers 152 fs pulses with 52.8 nm bandwidth and 0.19 nJ pulse energy. This is the shortest pulse duration and the widest spectral width demonstrated from Tm-doped all-fiber lasers based on 1 or 2 dimensional nanomaterials, underscoring their growing potential as versatile saturable absorber materials. PMID:27374764

  20. Sub-femtosecond timing jitter, all-fiber, CNT-mode-locked Er-laser at telecom wavelength.

    PubMed

    Kim, Chur; Bae, Sangho; Kieu, Khanh; Kim, Jungwon

    2013-11-04

    We demonstrate a 490-attosecond timing jitter (integration bandwidth: 10 kHz - 39.4 MHz) optical pulse train from a 78.7-MHz repetition rate, all-fiber soliton Er laser mode-locked by a fiber tapered carbon nanotube saturable absorber (ft-CNT-SA). To achieve this jitter performance, we searched for a net cavity dispersion condition where the Gordon-Haus jitter is minimized while maintaining stable soliton mode-locking. Our result shows that optical pulse trains with well below a femtosecond timing jitter can be generated from a self-starting and robust all-fiber laser operating at telecom wavelength.

  1. Interaction and dispersion of waveguide modes in an optical fiber with microirregularities of the core surface

    NASA Astrophysics Data System (ADS)

    Zadorin, A. S.; Kruglov, R. S.; Surkova, G. A.

    2012-08-01

    A self-consistent linear model is proposed for the transformation of the average intensity of the mode spectrum I( z) of the waveguide field in a multimode optical fiber with a stepped refractive index profile and the core having a rough surface. The model is based on the concept of the intermodal dispersion matrix of an elementary segment of the fiber, ∆, whose elements characterize the mutual transfer of energy between the waveguide modes, as well as their conversion to radiation modes on the specified interval. On this basis, the features of the transformation of the mode spectrum I( z) in a multimode optical fiber with a stepped refractive index profile are considered that is due to the effects of multiple dispersion of the signal by the stochastic irregularities of the duct. The effect of self-filtering of I( z) is described that results in the formation of a stable (normalized) distribution I*. The features of the normalization of the radiative damping of a group of modes I i ( z) in an optical fiber are considered.

  2. Reconstructing multi-mode networks from multivariate time series

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Yang, Yu-Xuan; Dang, Wei-Dong; Cai, Qing; Wang, Zhen; Marwan, Norbert; Boccaletti, Stefano; Kurths, Jürgen

    2017-09-01

    Unveiling the dynamics hidden in multivariate time series is a task of the utmost importance in a broad variety of areas in physics. We here propose a method that leads to the construction of a novel functional network, a multi-mode weighted graph combined with an empirical mode decomposition, and to the realization of multi-information fusion of multivariate time series. The method is illustrated in a couple of successful applications (a multi-phase flow and an epileptic electro-encephalogram), which demonstrate its powerfulness in revealing the dynamical behaviors underlying the transitions of different flow patterns, and enabling to differentiate brain states of seizure and non-seizure.

  3. Improved Numerical Calculation of the Single-Mode-No-Core-Single-Mode Fiber Structure Using the Fields Far from Cutoff Approximation

    PubMed Central

    Yang, Xianchao; Xu, Degang; Rong, Feng; Zhao, Junfa; Yao, Jianquan

    2017-01-01

    Multimode interferometers based on the single-mode-no-core-single-mode fiber (SNCS) structure have been widely investigated as functional devices and sensors. However, the theoretical support for the sensing mechanism is still imperfect, especially for the cladding refractive index response. In this paper, a modified model of no-core fiber (NCF) based on far from cut-off approximation is proposed to investigate the spectrum characteristic and sensing mechanism of the SNCS structure. Guided-mode propagation analysis (MPA) is used to analyze the self-image effect and spectrum response to the cladding refractive index and temperature. Verified by experiments, the performance of the SNCS structure can be estimated specifically and easily by the proposed method. PMID:28961174

  4. Single-mode single-frequency high peak power all-fiber MOPA at 1550 nm

    NASA Astrophysics Data System (ADS)

    Kotov, L. V.; Likhachev, M. E.; Bubnov, M. M.; Paramonov, V. M.; Belovolov, M. I.; Lipatov, D. S.; Guryanov, A. N.

    2014-10-01

    In this Report, we present a record-high-peak-power single-frequency master oscillator power amplifier (MOPA) system based on a newly developed double-clad large-mode-area Yb-free Er-doped fiber (DC-LMA-EDF). A fiber Bragg grating wavelength-stabilized fiber-coupled diode laser at λ=1551 nm with ~2 MHz spectral width was used as the master oscillator. Its radiation was externally modulated with a 5 kHz repetition rate and 92 ns pulse duration and then amplified in a core-pumped Er-doped fiber amplifier up to an average power of 4 mW. The amplified spontaneous emission (ASE) generated at the last preamplifier stage was suppressed by a narrow-band (0.7 nm) DWDM filter. The last MOPA stage was based on the recently developed single-mode DC-LMA-EDF with a mode field diameter of 25 microns and pump clad-absorption of 3 dB/m at λ=980 nm. The pump and the signal were launched into this fiber through a commercial pump combiner in a co-propagating amplifier scheme. At first, we used a 3-m long DC-LMAEDF. In such configuration, a peak power of 800 W was achieved at the output of the amplifier together with a ~ 12 % pump conversion slope efficiency. Further power scaling was limited by SBS. After that we shortened the fiber length to 1 m. As a result, owing to large unabsorbed pump power, the efficiency decreased to ~5 %. However, a peak power of more than 3.5 kW was obtained before the SBS threshold. In this case, the pulse shape changed and its duration decreased to ~60 ns owing to inversion depletion after propagation of the forward front of the pulse. To the best of our knowledge, the peak power of more than 3.5 kW reported here is the highest value ever published for a single-frequency single-mode silica-based fiber laser system operating near λ=1550 nm.

  5. Single mode low-NA step index Yb-doped fiber design for output powers beyond 4kW (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Beier, Franz; Proske, Fritz; Hupel, Christian; Kuhn, Stefan; Hein, Sigrun; Sattler, Bettina; Nold, Johannes; Haarlammert, Nicoletta; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas

    2017-03-01

    Fiber amplifiers are representing one of the most promising solid state laser concepts, due to the compact setup size, a simple thermal management and furthermore excellent beam quality. In this contribution, we report on the latest results from a low-NA, large mode area single mode fiber with a single mode output power beyond 4 kW without any indication of mode instabilities or nonlinear effects and high slope efficiency. Furthermore, we quantify the influence of the bending diameter of our manufactured low NA fiber on the average core loss by an OFDR measurement and determine the optimal bending diameter in comparison to a second fiber with a slightly changed NA. The fibers used in the experiments were fabricated by MCVD technology combined with the solution doping technique. The investigation indicates the limitation of the step index fiber design and its influence on the use in high power fiber amplifiers. We demonstrate, that even a slightly change in the core NA crucially influences the minimum bending diameter of the fiber and has to be taken into account in applications. The measured output power represents to the best of our knowledge the highest single mode output power of an amplifier fiber ever reported on.

  6. Scalar-vector soliton fiber laser mode-locked by nonlinear polarization rotation.

    PubMed

    Wu, Zhichao; Liu, Deming; Fu, Songnian; Li, Lei; Tang, Ming; Zhao, Luming

    2016-08-08

    We report a passively mode-locked fiber laser by nonlinear polarization rotation (NPR), where both vector and scalar soliton can co-exist within the laser cavity. The mode-locked pulse evolves as a vector soliton in the strong birefringent segment and is transformed into a regular scalar soliton after the polarizer within the laser cavity. The existence of solutions in a polarization-dependent cavity comprising a periodic combination of two distinct nonlinear waves is first demonstrated and likely to be applicable to various other nonlinear systems. For very large local birefringence, our laser approaches the operation regime of vector soliton lasers, while it approaches scalar soliton fiber lasers under the condition of very small birefringence.

  7. Double spacing multi-wavelength Brillouin Raman fiber laser of eight-shaped structure utilizing Raman amplifier

    NASA Astrophysics Data System (ADS)

    Madin, M. Sya'aer; Ahmad Hambali, N. A. M.; Shahimin, M. M.; Wahid, M. H. A.; Roshidah, N.; Azaidin, M. A. M.

    2017-02-01

    In this paper, double frequency spacing of multi-wavelength Brillouin Raman fiber laser utilizing eight-shaped structure in conjunction with Raman amplifier is simulated and demonstrated using Optisys software. Double frequency multiwavelength Brillouin Raman fiber laser is one of the solution for single frequency spacing channel de-multiplexing from narrow single spacing in the communication systems. The eight-shaped structure has the ability to produce lower noise and double frequency spacing. The 7 km of single mode fiber acting as a nonlinear medium for the generation of Stimulated Brillouin Scattering and Stimulated Raman Scattering. As a results, the optimum results are recorded at 1450 nm of RP power at 22 dBm and 1550 nm of BP power at 20 dBm. These parameters provide a high output peak power, gain and average OSNR. The highest peak power of Stokes 1 is recorded at 90% of coupling ratio which is 29.88 dBm. It is found that the maximum gain and average OSNR of about 1.23 dB and 63.74 dB.

  8. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    NASA Astrophysics Data System (ADS)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  9. General description and understanding of the nonlinear dynamics of mode-locked fiber lasers.

    PubMed

    Wei, Huai; Li, Bin; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng

    2017-05-02

    As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.

  10. Electronic Equalization of Multikilometer 10-Gb/s Multimode Fiber Links: Mode-Coupling Effects

    NASA Astrophysics Data System (ADS)

    Balemarthy, Kasyapa; Polley, Arup; Ralph, Stephen E.

    2006-12-01

    This paper investigates the ability of electronic equalization to compensate for modal dispersion in the presence of mode coupling in multimode fibers (MMFs) at 10 Gb/s. Using a new time-domain experimental method, mode coupling is quantified in MMF. These results, together with a comprehensive link model, allow to determine the impact of mode coupling on the performance of MMF. The equalizer performance on links from 300 m to 8 km is quantified with and without modal coupling. It is shown that the mode-coupling effects are influenced by the specific index profile and increase the equalizer penalty by as much as 1 dBo for 1-km links and 2.3 dBo for 2-km links when using a standard model of fiber profiles at 1310 nm.

  11. Coarse graining Escherichia coli chemotaxis: from multi-flagella propulsion to logarithmic sensing.

    PubMed

    Curk, Tine; Matthäus, Franziska; Brill-Karniely, Yifat; Dobnikar, Jure

    2012-01-01

    Various sensing mechanisms in nature can be described by the Weber-Fechner law stating that the response to varying stimuli is proportional to their relative rather than absolute changes. The chemotaxis of bacteria Escherichia coli is an example where such logarithmic sensing enables sensitivity over large range of concentrations. It has recently been experimentally demonstrated that under certain conditions E. coli indeed respond to relative gradients of ligands. We use numerical simulations of bacteria in food gradients to investigate the limits of validity of the logarithmic behavior. We model the chemotactic signaling pathway reactions, couple them to a multi-flagella model for propelling and take the effects of rotational diffusion into account to accurately reproduce the experimental observations of single cell swimming. Using this simulation scheme we analyze the type of response of bacteria subject to exponential ligand profiles and identify the regimes of absolute gradient sensing, relative gradient sensing, and a rotational diffusion dominated regime. We explore dependance of the swimming speed, average run time and the clockwise (CW) bias on ligand variation and derive a small set of relations that define a coarse grained model for bacterial chemotaxis. Simulations based on this coarse grained model compare well with microfluidic experiments on E. coli diffusion in linear and exponential gradients of aspartate.

  12. Multi-interface level in oil tanks and applications of optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Leal-Junior, Arnaldo G.; Marques, Carlos; Frizera, Anselmo; Pontes, Maria José

    2018-01-01

    On the oil production also involves the production of water, gas and suspended solids, which are separated from the oil on three-phase separators. However, the control strategies of an oil separator are limited due to unavailability of suitable multi-interface level sensors. This paper presents a description of the multi-phase level problem on the oil industry and a review of the current technologies for multi-interface level assessment. Since optical fiber sensors present chemical stability, intrinsic safety, electromagnetic immunity, lightweight and multiplexing capabilities, it can be an alternative for multi-interface level measurement that can overcome some of the limitations of the current technologies. For this reason, Fiber Bragg Gratings (FBGs) based optical fiber sensor system for multi-interface level assessment is proposed, simulated and experimentally assessed. The results show that the proposed sensor system is capable of measuring interface level with a relative error of only 2.38%. Furthermore, the proposed sensor system is also capable of measuring the oil density with an error of 0.8 kg/m3.

  13. Design and characterization of 16-mode PANDA polarization-maintaining few-mode ring-core fiber for spatial division multiplexing

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Zhao, Yongli; Yu, Xiaosong; Han, Jiawei; Zhang, Jie

    2017-11-01

    A PANDA polarization-maintaining few-mode ring-core fiber (PM-FM-RCF) structure with two air holes around the ring core is proposed. The relative mode multiplicity factor (RMMF) is defined to evaluate the spatial efficiency of the designed PM-FM-RCF. The performance analysis and comparison of the proposed PANDA PM-FM-RCFs considering three different types of step-index profiles are detailed. Through modal characteristic analysis and numerical simulation, the PM-FM-RCF with a lower refractive index difference (Δnoi=1.5%) between the ring core and the inner central circle can support up to 16 polarization modes with large RMMF at C-band, which shows the optimum modal properties compared with the PM-FM-RCF with higher Δnoi. All the supported polarization modes are effectively separated from their adjacent polarization modes with effective refractive index differences (Δn) larger than 10-4, which also show relatively small chromatic dispersion (-20 to 25 ps/nm/km), low attenuation (<1.4 dB/km), and small bending radius (˜8 mm) over the C-band. The designed PM-FM-RCF can be compatible with standard single-mode fibers and applied in multiple-input multiple-output-free spatial division multiplexing optical networks for short-reach optical interconnection.

  14. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction.

    PubMed

    Li, Xiaohui; Yu, Xuechao; Sun, Zhipei; Yan, Zhiyu; Sun, Biao; Cheng, Yuanbing; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2015-11-16

    Mid-infrared ultrafast fiber lasers are valuable for various applications, including chemical and biomedical sensing, material processing and military applications. Here, we report all-fiber high-power graphene mode-locked Tm/Ho co-doped fiber laser at long wavelength with evanescent field interaction. Ultrafast pulses up to 7.8 MHz are generated at a center wavelength of 1879.4 nm, with a pulse width of 4.7 ps. A graphene absorber integrated with a side-polished fiber can increase the damage threshold significantly. Harmonics mode-locking can be obtained till to the 21(th) harmonics at a pump power of above 500 mW. By using one stage amplifier in the anomalous dispersion regime, the laser can be amplified up to 450 mW and the narrowest pulse duration of 1.4 ps can be obtained simultaneously. Our work paves the way to graphene Tm/Ho co-doped mode-locked all-fiber master oscillator power amplifiers as potentially efficient and economic laser sources for high-power laser applications, such as special material processing and nonlinear optical studies.

  15. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range

    PubMed Central

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu

    2017-01-01

    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ∼3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers. PMID:28322327

  16. Carbon Nanotube Mode-Locked Thulium Fiber Laser With 200 nm Tuning Range

    NASA Astrophysics Data System (ADS)

    Meng, Yafei; Li, Yao; Xu, Yongbing; Wang, Fengqiu

    2017-03-01

    We demonstrated a mode-locked thulium/holmium (Tm/Ho) fiber laser continuously tunable across 200 nm (from 1860 nm to 2060 nm), which to the best of our knowledge represents the widest tuning range ever achieved for a passively mode-locked fiber laser oscillator. The combined use of a broadband carbon nanotube (CNT) saturable absorber and a diffraction grating mirror ensures ultra-broad tuning range, superb stability and repeatability, and makes the demonstrated laser a highly practical source for spectroscopy, imaging and optical communications. The laser emits <5 ps pulses with an optical spectral bandwidth of ˜3 nm across the full tuning range. Our results indicate that carbon nanotubes can be an excellent saturable absorber for achieving gain-bandwidth-limited tunable operation for 2 μm thulium fiber lasers.

  17. Investigation of the relative fine and coarse mode aerosol loadings and properties in the Southern Arabian Gulf region

    NASA Astrophysics Data System (ADS)

    Kaku, Kathleen C.; Reid, Jeffrey S.; Reid, Elizabeth A.; Ross-Langerman, Kristy; Piketh, Stuart; Cliff, Steven; Al Mandoos, Abdulla; Broccardo, Stephen; Zhao, Yongjing; Zhang, Jianglong; Perry, Kevin D.

    2016-03-01

    The aerosol chemistry environment of the Arabian Gulf region is extraordinarily complex, with high concentrations of dust aerosols from surrounding deserts mixed with anthropogenic aerosols originating from a large petrochemical industry and pockets of highly urbanized areas. Despite the high levels of aerosols experienced by this region, little research has been done to explore the chemical composition of both the anthropogenic and mineral dust portion of the aerosol burden. The intensive portion of the United Arab Emirates Unified Aerosol Experiment (UAE2), conducted during August and September 2004 was designed in part to resolve the aerosol chemistry through the use of multiple size-segregated aerosol samplers. The coarse mode mass (derived by subtracting the PM2.5 aerosol mass from the PM10 mass) is largely dust at 76% ± 7% of the total coarse mode mass, but is significantly impacted by anthropogenic pollution, primarily sulfate and nitrate. The PM2.5 aerosol mass also contains a large dust burden, at 38% ± 26%, but the anthropogenic component dominates. The total aerosol burden has significant impact not only on the atmosphere, but also the local population, as the air quality levels for both the PM10 and PM2.5 aerosol masses reached unhealthy levels for 24% of the days sampled.

  18. Study on the effect of ellipticity and misalignment on OAM modes in a ring fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Li-li; Zhang, Xia; Bai, Cheng-lin

    2018-05-01

    Based on the optical fiber mode theory and employing the expertized software COMSOL, we study the effect of ellipticity and misalignment on the effective refractive indices, walk-off and intensity distribution of the even and odd eigenmodes that form the basis of the orbital angular momentum (OAM) modes in a ring fiber. Our results show that the effective refractive index difference and the walk-off increase with the ellipticity and misalignment, thus reducing the stability of the OAM modes. We find that the misalignment has a greater impact on the OAM modes than the ellipticity, and both the misalignment and ellipticity affect the lower-order OAM modes more significantly, suggesting that the higher-order OAM modes are more stable during propagation.

  19. Stack-and-Draw Manufacture Process of a Seven-Core Optical Fiber for Fluorescence Measurements

    NASA Astrophysics Data System (ADS)

    Samir, Ahmed; Batagelj, Bostjan

    2018-01-01

    Multi-core, optical-fiber technology is expected to be used in telecommunications and sensory systems in a relatively short amount of time. However, a successful transition from research laboratories to industry applications will only be possible with an optimized design and manufacturing process. The fabrication process is an important aspect in designing and developing new multi-applicable, multi-core fibers, where the best candidate is a seven-core fiber. Here, the basics for designing and manufacturing a single-mode, seven-core fiber using the stack-and-draw process is described for the example of a fluorescence sensory system.

  20. Study of distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Tian, Jiajun; Zhang, Qi; Han, Ming

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  1. Low threshold linear cavity mode-locked fiber laser using microfiber-based carbon nanotube saturable absorber

    NASA Astrophysics Data System (ADS)

    Lau, K. Y.; Ng, E. K.; Abu Bakar, M. H.; Abas, A. F.; Alresheedi, M. T.; Yusoff, Z.; Mahdi, M. A.

    2018-06-01

    In this work, we demonstrate a linear cavity mode-locked erbium-doped fiber laser in C-band wavelength region. The passive mode-locking is achieved using a microfiber-based carbon nanotube saturable absorber. The carbon nanotube saturable absorber has low saturation fluence of 0.98 μJ/cm2. Together with the linear cavity architecture, the fiber laser starts to produce soliton pulses at low pump power of 22.6 mW. The proposed fiber laser generates fundamental soliton pulses with a center wavelength, pulse width, and repetition rate of 1557.1 nm, 820 fs, and 5.41 MHz, respectively. This mode-locked laser scheme presents a viable option in the development of low threshold ultrashort pulse system for deployment as a seed laser.

  2. Micro-device for coupling, multiplexing and demultiplexing using elliptical-core two-mode fiber

    NASA Technical Reports Server (NTRS)

    Wang, A.; Murphy, K. A.; Wang, G. Z.; Vengsarkar, A. M.; Claus, R. O.

    1990-01-01

    We propose and demonstrate experimentally a fiber optic micro-device that is capable of tunably splitting, multiplexing, and demultiplexing optical signals using elliptical-core two-mode optical fiber. A crosstalk of 15 dB with an insertion loss of 1.2 dB was obtained.

  3. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    PubMed

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  4. All-fiber mode-locked laser via short single-wall carbon nanotubes interacting with evanescent wave in photonic crystal fiber.

    PubMed

    Li, Yujia; Gao, Lei; Huang, Wei; Gao, Cong; Liu, Min; Zhu, Tao

    2016-10-03

    We report an all-fiber passively mode-locked laser based on a saturable absorber fabricated by filling short single-wall carbon nanotubes into cladding holes of grapefruit-type photonic crystal fiber. The single-wall carbon nanotube is insensitive to polarization of light for its one-dimensional structure, which suppresses the polarization dependence loss. Carbon nanotubes interact with photonic crystal fiber with ultra-weak evanescent field, which enhances the damage threshold of the saturable absorber and improves the operating stability. In our experiment, conventional soliton with a pulse duration of 1.003 ps and center wavelength of 1566.36 nm under a pump power of 240 mW is generated in a compact erbium-doped fiber laser cavity with net anomalous dispersion of -0.4102 ps2. The signal to noise ratio of the fundamental frequency component is ~80 dB. The maximum average output power of the mode-locked laser reaches 9.56 mW under a pump power of 360 mW. The output power can be further improved by a higher pump power.

  5. Wavelength shifts of cladding-mode resonance in corrugated long-period fiber gratings under torsion.

    PubMed

    Ivanov, Oleg V; Wang, Lon A

    2003-05-01

    A finite deformation theory of elasticity and a theory of nonlinear photoelasticity are applied to describe the wavelength shifts of cladding-mode resonance in corrugated long-period fiber gratings under torsion. The deformation of fiber is found by use of the Murnaghan model of a solid elastic body. The quadratic photoelastic effect that is proportional to the second-order displacement gradient is investigated and compared with the classical photoelastic effect. The electromagnetic field in the twisted corrugated structure is presented as a superposition of circularly polarized modes of the etched fiber section. The wavelength shift is found to be proportional to the square of the twist angle. As predicted by our theory, a wavelength shift of the same nature has been found in a conventionally photoinduced long-period fiber grating.

  6. Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency

    NASA Astrophysics Data System (ADS)

    Jiang, Man; Zhou, Pu; Gu, Xijia

    2018-01-01

    Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.

  7. Quasi-interferometric scheme improved by fiber Bragg grating written on macrostructure defect in silica multimode optical fiber operating in a few-mode regime

    NASA Astrophysics Data System (ADS)

    Evtushenko, Alexander S.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Kuznetzov, Artem A.; Minaeva, Alina Yu.; Sevruk, Nikita L.; Nureev, Ilnur I.; Vasilets, Alexander A.; Andreev, Vladimir A.; Morozov, Oleg G.; Burdin, Vladimir A.; Bourdine, Anton V.

    2017-04-01

    This work presents results of experimental approbation of earlier on proposed modified fiber optic stress sensor based on a few-mode effects occurring during laser-excited optical signal propagation over silica multimode optical fiber (MMF). Modification is concerned with a passage to quasi-interferometric scheme realized by two multimode Y-couplers with equalized arm lengths improved by fiber Bragg grating (FBG) written on preliminary formed precision macrostructure defects in silica multimode graded-index optical fibers and special offset launching conditions providing laser-based excitation of higher-order modes. The "arms" of quasi-interferometer are two equalized lengths of MMF Cat. OM2 with great central dip of refractive index profile and strong pulse splitting due to high differential mode delay (DMD). We tested FBGs with Bragg wavelength both 1310 nm and 1550 nm written over tapers or up-tapers preliminary formed in short pieces of MMF Cat. OM2+/OM3 and further jointed to the end of one of the arms before output Y-coupler. Researches were focused on comparison analysis of pulse responses under changing of selected excited mode mixing and power diffusion processes due to stress distributed action to sensor fiber depending. Here we considered FBGs not only as particular wavelength reflector during spectral response measurement but also as local periodic microstructure defect which strongly effects on few-mode signal components mixing process also improved by combination with macro-defect like taper or up-taper that should provide response variation. Some results pulse response measurements produced for different scheme configuration and their comparison analysis are represented.

  8. Infrared fibers in the 1.5um to 18um range: availability and measured properties

    NASA Astrophysics Data System (ADS)

    Felkel, Robert; Leeb, Walter

    2017-11-01

    With a view towards the application in space-borne optical instruments, we first performed a world-wide market survey of infrared fibers designed for the wavelength range of 1.5 μm to 18 μm. Fiber samples purchased and tested comprise fluoride fibers, chalcogenide fibers, a germanate fiber and a silver-halide fiber, as well as hollow fibers. While the majority of infrared fibers offered are of the multi-mode type, three of the fluoride fibers are single-mode. We report on the polarization degrading effect of a single-mode fiber and present a possible solution to achieve polarization maintainance by twisting the fiber. Secondly we report on measurements of numerical aperture, output beam profile, and attenuation of a hollow fiber. The measurements were performed at the wavelengths of λ= 3.39 μm and λ= 10.6 μm.

  9. Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber

    NASA Astrophysics Data System (ADS)

    Cao, Liming; Li, Xing; Zhang, Rui; Wu, Duanduan; Dai, Shixun; Peng, Jian; Weng, Jian; Nie, Qiuhua

    2018-03-01

    We have designed an all-fiber passive mode-locking thulium-doped fiber laser that uses molybdenum disulfide (MoS2) as a saturable absorber (SA) material. A free-standing few-layer MoS2-polyvinyl alcohol (PVA) film is fabricated by liquid phase exfoliation (LPE) and is then transferred onto the end face of a fiber connector. The excellent saturable absorption of the fabricated MoS2-based SA allows the laser to output soliton pulses at a pump power of 500 mW. Fundamental frequency mode-locking is realized at a repetition frequency of 13.9 MHz. The central wavelength is 1926 nm, the 3 dB spectral bandwidth is 2.86 nm and the pulse duration is 1.51 ps. Additionally, third-order harmonic mode-locking of the laser is also achieved. The pulse duration is 1.33 ps, which is slightly narrower than the fundamental frequency mode-locking bandwidth. The experimental results demonstrate that the few-layer MoS2-PVA SA is promising for use in 2 μm laser systems.

  10. Effect of the Microstructure on the Fracture Mode of Short-Fiber Reinforced Plastic Composites

    NASA Astrophysics Data System (ADS)

    Nishikawa, Masaaki; Okabe, Tomonaga; Takeda, Nobuo

    A numerical simulation was presented to discuss the microscopic damage and its influence on the strength and energy-absorbing capability of short-fiber reinforced plastic composites. The dominant damage includes matrix crack and/or interfacial debonding, when the fibers are shorter than the critical length for fiber breakage. The simulation addressed the matrix crack with a continuum damage mechanics (CDM) model and the interfacial debonding with an embedded process zone (EPZ) model. Fictitious free-edge effects on the fracture modes were successfully eliminated with the periodic-cell simulation. The advantage of our simulation was pointed out by demonstrating that the simulation with edge effects significantly overestimates the dissipative energy of the composites. We then investigated the effect of the material microstructure on the fracture modes in the composites. The simulated results clarified that the inter-fiber distance affects the breaking strain of the composites and the fiber-orientation angle affects the position of the damage initiation. These factors influence the strength and energy-absorbing capability of short fiber-reinforced composites.

  11. Single-fiber multi-color pyrometry

    DOEpatents

    Small, IV, Ward; Celliers, Peter

    2004-01-27

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  12. Single-fiber multi-color pyrometry

    DOEpatents

    Small, IV, Ward; Celliers, Peter

    2000-01-01

    This invention is a fiber-based multi-color pyrometry set-up for real-time non-contact temperature and emissivity measurement. The system includes a single optical fiber to collect radiation emitted by a target, a reflective rotating chopper to split the collected radiation into two or more paths while modulating the radiation for lock-in amplification (i.e., phase-sensitive detection), at least two detectors possibly of different spectral bandwidths with or without filters to limit the wavelength regions detected and optics to direct and focus the radiation onto the sensitive areas of the detectors. A computer algorithm is used to calculate the true temperature and emissivity of a target based on blackbody calibrations. The system components are enclosed in a light-tight housing, with provision for the fiber to extend outside to collect the radiation. Radiation emitted by the target is transmitted through the fiber to the reflective chopper, which either allows the radiation to pass straight through or reflects the radiation into one or more separate paths. Each path includes a detector with or without filters and corresponding optics to direct and focus the radiation onto the active area of the detector. The signals are recovered using lock-in amplification. Calibration formulas for the signals obtained using a blackbody of known temperature are used to compute the true temperature and emissivity of the target. The temperature range of the pyrometer system is determined by the spectral characteristics of the optical components.

  13. FIBER AND INTEGRATED OPTICS: Polarization characteristics of anisotropic single-mode fiber waveguides

    NASA Astrophysics Data System (ADS)

    Arutyunyan, Z. É.; Grudinin, A. B.; Gur'yanov, A. N.; Gusovskiĭ, D. D.; Dianov, Evgenii M.; Ignat'ev, S. V.; Smirnov, O. B.; Khrushchev, I. Yu

    1990-01-01

    An experimental investigation was made of the polarization characteristics of anisotropic fiber waveguides with an elliptic stress-inducing cladding, operating in a wide spectral range. The maximum birefringence amounted to 3.4 × 10 - 4, the minimum mode coupling parameter was 2.5 × 10 - 5 m - 1 (λ = 1.1 μm), and the minimum losses were 0.7 dB/km (λ = 1.5 μm). A qualitative comparison was made with the theoretical data.

  14. 60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode

    PubMed Central

    Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-01-01

    A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, −85 dBm and −110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz2/3. This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10−3 and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications. PMID:27297267

  15. Spectral Discrimination of Fine and Coarse Mode Aerosol Optical Depth from AERONET Direct Sun Data of Singapore and South-East Asia

    NASA Astrophysics Data System (ADS)

    Salinas Cortijo, S.; Chew, B.; Liew, S.

    2009-12-01

    Aerosol optical depth combined with the Angstrom exponent and its derivative, are often used as a qualitative indicator of aerosol particle size, with Angstrom exp. values greater than 2 indicating small (fine mode) particles associated with urban pollution and bio-mass burning. Around this region, forest fires are a regular occurrence during the dry season, specially near the large land masses of Sumatra and Borneo. The practice of clearing land by burning the primary and sometimes secondary forest, results in a smog-like haze covering large areas of regional cities such as cities Singapore, Kuala Lumpur and sometimes the south of Thailand, often reducing visibility and increasing health problems for the local population. In Singapore, the sources of aerosols are mostly from fossil fuel burning (energy stations, incinerators, urban transport etc.) and from the industrial and urban areas. The proximity to the sea adds a possible oceanic source. However, as stated above and depending on the time of the year, there can be a strong bio-mass component coming from forest fires from various regions of the neighboring countries. Bio-mass related aerosol particles are typically characterized by showing a large optical depth and small, sub-micron particle size distributions. In this work, we analyze three years of direct Sun measurements performed with a multi-channel Cimel Sun-Photometer (part of the AERONET network) located at our site. In order to identify bio-mass burning events in this region, we perform a spectral discrimination between coarse and fine mode optical depth; subsequently, the fine mode parameters such as optical depth, optical ratio and fine mode Angstrom exponents (and its derivative) are used to identify possible bio-mass related events within the data set.

  16. Temperature measurements in an ytterbium fiber amplifier up to the mode instability threshold

    NASA Astrophysics Data System (ADS)

    Beier, F.; Heinzig, M.; Sattler, Bettina; Walbaum, Till; Haarlammert, N.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.

    2016-03-01

    We report on the measurement of the longitudinal temperature distribution in a fiber amplifier fiber during high power operation. The measurement signal of an optical frequency domain reflectometer is coupled to an ytterbium doped amplifier fiber via a wavelength division multiplexer. The longitudinal temperature distribution was examined for different pump powers with a sub mm resolution. The results show even small temperature variations induced by slight changes of the environmental conditions along the fiber. The mode instability threshold of the fiber under investigation was determined to be 480W and temperatures could be measured overall the measured output power values.

  17. Design and fabrication of elliptical-core few-mode fiber for MIMO-less data transmission.

    PubMed

    Liang, Junpeng; Mo, Qi; Fu, Songnian; Tang, Ming; Shum, P; Liu, Deming

    2016-07-01

    We propose a design strategy of elliptical core few-mode fiber (e-FMF) that supports three spatial modes with enhanced mode spacing between LP11a and LP11b, to suppress intra-mode coupling during mode-division multiplexing (MDM) transmission. Our theoretical investigations show that there exist two optimization regimes for the e-FMF, as a comparison with traditional circular core FMF(c-FMF). At the regime of three-mode operation, there occurs a trade-off between mode spacing and bending-induced loss. Meanwhile, in terms of five-mode regime, a trade-off between mode spacing and high-order mode crosstalk happens. Finally, we fabricate 7.94 km e-FMF with the optimal parameters, based on the commercial fiber manufacture facility. The primary characterizations at 1550 nm show that three spatial modes of e-FMF can be transmitted with a loss less than 0.3 dB/km. Meanwhile, -22.44  dB crosstalk between LP11a and LP11b is observed, even when the 2 km e-FMF is under stress-induced strong perturbation.

  18. Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.

    PubMed

    Akosman, Ahmet E; Sander, Michelle Y

    2017-08-07

    Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

  19. Deep Broad-Band Infrared Nulling Using A Single-Mode Fiber Beam Combiner and Baseline Rotation

    NASA Technical Reports Server (NTRS)

    Mennesson, Bertrand; Haguenauer, P.; Serabyn, E.; Liewer, K.

    2006-01-01

    The basic advantage of single-mode fibers for deep nulling applications resides in their spatial filtering ability, and has now long been known. However, and as suggested more recently, a single-mode fiber can also be used for direct coherent recombination of spatially separated beams, i.e. in a 'multi-axial' nulling scheme. After the first successful demonstration of deep (<2e-6) visible LASER nulls using this technique (Haguenauer & Serabyn, Applied Optics 2006), we decided to work on an infrared extension for ground based astronomical observations, e.g. using two or more off-axis sub-apertures of a large ground based telescope. In preparation for such a system, we built and tested a laboratory infrared fiber nuller working in a wavelength regime where atmospheric turbulence can be efficiently corrected, over a pass band (approx.1.5 to 1.8 micron) broad enough to provide reasonable sensitivity. In addition, since no snapshot images are readily accessible with a (single) fiber nuller, we also tested baseline rotation as an approach to detect off-axis companions while keeping a central null. This modulation technique is identical to the baseline rotation envisioned for the TPF-I space mission. Within this context, we report here on early laboratory results showing deep stable broad-band dual polarization infrared nulls <5e-4 (currently limited by detector noise), and visible LASER nulls better than 3e-4 over a 360 degree rotation of the baseline. While further work will take place in the laboratory to achieve deeper stable broad-band nulls and test off-axis sources detection through rotation, the emphasis will be put on bringing such a system to a telescope as soon as possible. Detection capability at the 500:1 contrast ratio in the K band (2.2 microns) seem readily accessible within 50-100 mas of the optical axis, even with a first generation system mounted on a >5m AO equipped telescope such as the Palomar Hale 200 inch, the Keck, Subaru or Gemini telescopes.

  20. Mode power distribution effect in white-light multimode fiber extrinsic Fabry-Perot interferometric sensor systems.

    PubMed

    Han, Ming; Wang, Anbo

    2006-05-01

    Theoretical and experimental results have shown that mode power distribution (MPD) variations could significantly vary the phase of spectral fringes from multimode fiber extrinsic Fabry-Perot interferometric (MMF-EFPI) sensor systems, owing to the fact that different modes introduce different extra phase shifts resulting from the coupling of modes reflected at the second surface to the lead-in fiber end. This dependence of fringe pattern on MPD could cause measurement errors in signal demodulation methods of white-light MMF-EFPI sensors that implement the phase information of the fringes.

  1. Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber.

    PubMed

    Verhoef, A J; Zhu, L; Israelsen, S Møller; Grüner-Nielsen, L; Unterhuber, A; Kautek, W; Rottwitt, K; Baltuška, A; Fernández, A

    2015-10-05

    We present an Yb-fiber oscillator with an all-polarization-maintaining cavity with a higher-order-mode fiber for dispersion compensation. The polarization maintaining higher order mode fiber introduces not only negative second order dispersion but also negative third order dispersion in the cavity, in contrast to dispersion compensation schemes used in previous demonstrations of all-polarization maintaining Yb-fiber oscillators. The performance of the saturable absorber mirror modelocked oscillator, that employs a free space scheme for coupling onto the saturable absorber mirror and output coupling, was investigated for different settings of the intracavity dispersion. When the cavity is operated with close to zero net dispersion, highly stable 0.5-nJ pulses externally compressed to sub-100-fs are generated. These are to our knowledge the shortest pulses generated from an all-polarization-maintaining Yb-fiber oscillator. The spectral phase of the output pulses is well behaved and can be compensated such that wing-free Fourier transform limited pulses can be obtained. Further reduction of the net intracavity third order dispersion will allow generating broader output spectra and consequently shorter pulses, without sacrificing pulse fidelity.

  2. High-sensitivity and low-temperature magnetic field sensor based on tapered two-mode fiber interference.

    PubMed

    Sun, Bing; Fang, Fang; Zhang, Zuxing; Xu, Jing; Zhang, Lin

    2018-03-15

    A high-sensitivity and low-temperature fiber-optic magnetic field sensor based on a tapered two-mode fiber (TTMF) sandwiched between two single-mode fibers has been proposed and demonstrated. The section of TTMF has a specifically designed transition region as an efficient tool to filter higher-order modes, where the uniform modal interferometer just involved with LP 01 and LP 11 modes is achieved. The transmission spectral characteristics and the magnetic response of the proposed sensors have been investigated. The experimental results show that a maximum sensitivity of 98.2  pm/Oe within a linear magnetic field intensity ranging from 0 to 140 Oe can be achieved. Significantly, the temperature cross-sensitivity problem can be resolved owing to the lower thermal expansion coefficient of the TTMF. Finally, with its low insertion loss, compactness, and ease of fabrication, the proposed sensor would find potential applications in the measurement of a magnetic field.

  3. Buckling Modes of Structural Elements of Off-Axis Fiber-Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Polyakova, N. V.; Kholmogorov, S. A.; Shishov, M. A.

    2018-05-01

    The structures of two types of unidirectional fiber-reinforced composites — with an ELUR-P carbon fiber tape, an XT-118 cold-cure binder with an HSE 180 REM prepreg, and a hot-cure binder — were investigated. The diameters of fibers and fiber bundles (threads) of both the types of composites were measured, and their mutual arrangement was examined both in the semifinished products (in the uncured state) and in the finished composites. The defects characteristic of both the types of binder and manufacturing technique were detected in the cured composites. Based on an analysis of the results obtained, linearized problems on the internal multiscale buckling modes of an individual fiber (with and without account of its interaction with the surrounding matrix) or of a fiber bundle are formulated. In the initial atate, these structural elements of the fibrous composites are in a subcritical (unperturbed) state under the action of shear stresses and tension (compression) in the transverse direction. Such an initial stress state is formed in them in tension and compression tests on flat specimens made of off-axis-reinforced composites with straight fibers. To formulate the problems, the equations derived earlier from a consistent variant of geometrically nonlinear equations of elasticity theory by reducing them to the one-dimensional equations of the theory of straight rods on the basis of a refined Timoshenko shear model with account of tensile-compressive strains in the transverse direction are used. It is shown that, in loading test specimens, a continuous rearrangement of composite structure can occur due to the realization and continuous change of internal buckling modes as the wave-formation parameter varies continuously, which apparently explain the decrease revealed in the tangential shear modulus of the fibrous composites with increasing shear strains.

  4. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction

    PubMed Central

    Li, Xiaohui; Yu, Xuechao; Sun, Zhipei; Yan, Zhiyu; Sun, Biao; Cheng, Yuanbing; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2015-01-01

    Mid-infrared ultrafast fiber lasers are valuable for various applications, including chemical and biomedical sensing, material processing and military applications. Here, we report all-fiber high-power graphene mode-locked Tm/Ho co-doped fiber laser at long wavelength with evanescent field interaction. Ultrafast pulses up to 7.8 MHz are generated at a center wavelength of 1879.4 nm, with a pulse width of 4.7 ps. A graphene absorber integrated with a side-polished fiber can increase the damage threshold significantly. Harmonics mode-locking can be obtained till to the 21th harmonics at a pump power of above 500 mW. By using one stage amplifier in the anomalous dispersion regime, the laser can be amplified up to 450 mW and the narrowest pulse duration of 1.4 ps can be obtained simultaneously. Our work paves the way to graphene Tm/Ho co-doped mode-locked all-fiber master oscillator power amplifiers as potentially efficient and economic laser sources for high-power laser applications, such as special material processing and nonlinear optical studies. PMID:26567536

  5. Mode demultiplexer using angularly multiplexed volume holograms.

    PubMed

    Wakayama, Yuta; Okamoto, Atsushi; Kawabata, Kento; Tomita, Akihisa; Sato, Kunihiro

    2013-05-20

    This study proposes a volume holographic demultiplexer (VHDM) for extracting the spatial modes excited in a multimode fiber. A unique feature of the demultiplexer is that it can separate a number of multiplexed modes output from a fiber in different directions by using multi-recorded holograms without beam splitters, which results in a simple configuration as compared with that using phase plates instead of holograms. In this study, an experiment is conducted to demonstrate the basic operations for three LP mode groups to confirm the performance of the proposed VHDM and to estimate the signal-to-crosstalk noise ratio (SNR). As a result, an SNR of greater than 20 dB is obtained.

  6. Novel wireless-communicating textiles made from multi-material and minimally-invasive fibers.

    PubMed

    Bélanger-Garnier, Victor; Gorgutsa, Stephan; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes

    2014-01-01

    The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.

  7. Novel wireless-communicating textiles made from multi-material and minimally-invasive fibers.

    PubMed

    Gorgutsa, Stepan; Bélanger-Garnier, Victor; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes

    2014-10-16

    The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications.

  8. Novel Wireless-Communicating Textiles Made from Multi-Material and Minimally-Invasive Fibers

    PubMed Central

    Gorgutsa, Stepan; Bélanger-Garnier, Victor; Ung, Bora; Viens, Jeff; Gosselin, Benoit; LaRochelle, Sophie; Messaddeq, Younes

    2014-01-01

    The ability to integrate multiple materials into miniaturized fiber structures enables the realization of novel biomedical textile devices with higher-level functionalities and minimally-invasive attributes. In this work, we present novel textile fabrics integrating unobtrusive multi-material fibers that communicate through 2.4 GHz wireless networks with excellent signal quality. The conductor elements of the textiles are embedded within the fibers themselves, providing electrical and chemical shielding against the environment, while preserving the mechanical and cosmetic properties of the garments. These multi-material fibers combine insulating and conducting materials into a well-defined geometry, and represent a cost-effective and minimally-invasive approach to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications. PMID:25325335

  9. TeraSCREEN: multi-frequency multi-mode Terahertz screening for border checks

    NASA Astrophysics Data System (ADS)

    Alexander, Naomi E.; Alderman, Byron; Allona, Fernando; Frijlink, Peter; Gonzalo, Ramón; Hägelen, Manfred; Ibáñez, Asier; Krozer, Viktor; Langford, Marian L.; Limiti, Ernesto; Platt, Duncan; Schikora, Marek; Wang, Hui; Weber, Marc Andree

    2014-06-01

    The challenge for any security screening system is to identify potentially harmful objects such as weapons and explosives concealed under clothing. Classical border and security checkpoints are no longer capable of fulfilling the demands of today's ever growing security requirements, especially with respect to the high throughput generally required which entails a high detection rate of threat material and a low false alarm rate. TeraSCREEN proposes to develop an innovative concept of multi-frequency multi-mode Terahertz and millimeter-wave detection with new automatic detection and classification functionalities. The system developed will demonstrate, at a live control point, the safe automatic detection and classification of objects concealed under clothing, whilst respecting privacy and increasing current throughput rates. This innovative screening system will combine multi-frequency, multi-mode images taken by passive and active subsystems which will scan the subjects and obtain complementary spatial and spectral information, thus allowing for automatic threat recognition. The TeraSCREEN project, which will run from 2013 to 2016, has received funding from the European Union's Seventh Framework Programme under the Security Call. This paper will describe the project objectives and approach.

  10. Multi-mode multi-band power amplifier module with high low-power efficiency

    NASA Astrophysics Data System (ADS)

    Xuguang, Zhang; Jie, Jin

    2015-10-01

    Increasingly, mobile communications standards require high power efficiency and low currents in the low power mode. This paper proposes a fully-integrated multi-mode and multi-band power amplifier module (PAM) to meet these requirements. A dual-path PAM is designed for high-power mode (HPM), medium-power mode (MPM), and low-power mode (LPM) operations without any series switches for different mode selection. Good performance and significant current saving can be achieved by using an optimized load impedance design for each power mode. The PAM is tapeout with the InGaP/GaAs heterojunction bipolar transistor (HBT) process and the 0.18-μm complementary metal-oxide semiconductor (CMOS) process. The test results show that the PAM achieves a very low quiescent current of 3 mA in LPM. Meanwhile, across the 1.7-2.0 GHz frequency, the PAM performs well. In HPM, the output power is 28 dBm with at least 39.4% PAE and -40 dBc adjacent channel leakage ratio 1 (ACLR1). In MPM, the output power is 17 dBm, with at least 21.3% PAE and -43 dBc ACLR1. In LPM, the output power is 8 dBm, with at least 18.2% PAE and -40 dBc ACLR1. Project supported by the National Natural Science Foundation of China (No. 61201244).

  11. Channel estimation in few mode fiber mode division multiplexing transmission system

    NASA Astrophysics Data System (ADS)

    Hei, Yongqiang; Li, Li; Li, Wentao; Li, Xiaohui; Shi, Guangming

    2018-03-01

    It is abundantly clear that obtaining the channel state information (CSI) is of great importance for the equalization and detection in coherence receivers. However, to the best of the authors' knowledge, in most of the existing literatures, CSI is assumed to be perfectly known at the receiver. So far, few literature discusses the effects of imperfect CSI on MDM system performance caused by channel estimation. Motivated by that, in this paper, the channel estimation in few mode fiber (FMF) mode division multiplexing (MDM) system is investigated, in which two classical channel estimation methods, i.e., least square (LS) method and minimum mean square error (MMSE) method, are discussed with the assumption of the spatially white noise lumped at the receiver side of MDM system. Both the capacity and BER performance of MDM system affected by mode-dependent gain or loss (MDL) with different channel estimation errors have been studied. Simulation results show that the capacity and BER performance can be further deteriorated in MDM system by the channel estimation, and an 1e-3 variance of channel estimation error is acceptable in MDM system with 0-6 dB MDL values.

  12. Multi-mJ energy extraction using Yb-fiber based coherent pulse stacking amplification of fs pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ruppe, John M.; Pei, Hanzhang; Chen, Siyun; Sheikhsofla, Morteza; Wilcox, Russell B.; Nees, John A.; Galvanauskas, Almantas

    2017-03-01

    We report multi-mJ energy (>5mJ) extraction from femtosecond-pulse Yb-doped fiber CPA using coherent pulse stacking amplification (CPSA) technique. This high energy extraction has been enabled by amplifying 10's of nanosecond long pulse sequence, and by using 85-µm core Yb-doped CCC fiber based power amplification stage. The CPSA system consists of 1-GHz repetition rate mode-locked fiber oscillator, followed by a pair of fast phase and amplitude electro-optic modulators, a diffraction-grating based pulse stretcher, a fiber amplifier chain, a GTI-cavity based pulse stacker, and a diffraction grating pulse compressor. Electro-optic modulators are used to carve out from the 1-GHz mode-locked pulse train an amplitude and phase modulated pulse burst, which after stretching and amplification, becomes equal-amplitude pulse burst consisting of 27 stretched pulses, each approximately 1-ns long. Initial pulse-burst shaping accounts for the strong amplifier saturation effects, so that it is compensated at the power amplifier output. This 27-pulse burst is then coherently stacked into a single pulse using a multiplexed sequence of 5 GTI cavities. The compact-footprint 4+1 multiplexed pulse stacker consists of 4 cavities having rountrip of 1 ns, and one Herriott-cell folded cavity - with 9ns roundtrip. After stacking, stretched pulses are compressed down to the bandwidth-limited 300 fs duration using a standard diffraction-grating pulse compressor.

  13. Fine and coarse modes of dicarboxylic acids in the Arctic aerosols collected during the Polar Sunrise Experiment 1997

    NASA Astrophysics Data System (ADS)

    Narukawa, M.; Kawamura, K.; Anlauf, K. G.; Barrie, L. A.

    2003-09-01

    Fine (<1 μm) and coarse (>1 μm) aerosol particles were collected at Alert, Canada (82°27'N, 62°30'W), during the Arctic spring as part of the Polar Sunrise Experiment 1997 and were analyzed for low molecular weight dicarboxylic acids (C2-C11) using gas chromatography with flame ionization detector (GC-FID) and GC/mass spectrometry (GC/MS). More than 80% of total diacids were detected in the fine fraction, suggesting the production by gas-to-particle conversion in the Arctic. In both fractions, oxalic acid was the dominant diacid species followed by succinic and malonic acids. Shorter chain diacids (C2-C5) showed the concentration maximum on 5-7 April; however, longer chain diacids (coarse aerosols. During this event, we also observed the enhanced concentration of filterable bromine in both modes. Peaks of dicarboxylic acids in both coarse and fine aerosols during ozone depletion events indicate that heterogeneous reactions are occurring on coarse particle and possibly on fine particles as well. Dicarboxylic acids may be produced by the oxidation of precursor compounds such as glyoxal and glyoxylic and other ω-oxocarboxylic acids that contain aldehyde (hydrated form) group, being involved with ozone and halogen chemistry in the Arctic marine boundary layer.

  14. Enhanced optical fiber fluorometer using a periodic perturbation in the fiber core

    NASA Astrophysics Data System (ADS)

    Chiniforooshan, Yasser; Bock, Wojtek J.; Ma, Jianjun

    2013-10-01

    Tracing of the specific chemicals and biological agents in a solution is becoming a vital interest in health, security and safety industries. Although a number of standard laboratory-based testing systems exists for detecting such targets, but the fast, real-time and on-site methods could be more efficient and cost-effective. One of the most common ways to detect a target in the solution is to use the fluorophore molecules which will be selectively attached to the targets and will emit or quench the fluorescence in presence of the target. The fiber-optic fluorometers are developed for inexpensive and portable detection. In this paper, we explain a novel multi-segment fiber structure which uses the periodic perturbation on the side-wall of a highly multi-mode fiber to enhance collecting the fluorescent light. This periodic perturbation is fabricated and optimized on the core of the fiber using a CO2 laser. The theoretical explanation to show the physical principle of the structure is followed by the experimental evidence of its functioning.

  15. Single-longitudinal-mode, narrow bandwidth double-ring fiber laser stabilized by an efficiently taper-coupled high roundness microsphere resonator

    NASA Astrophysics Data System (ADS)

    Wan, Hongdan; Liu, Linqian; Ding, Zuoqin; Wang, Jie; Xiao, Yu; Zhang, Zuxing

    2018-06-01

    This paper proposes and demonstrates a single-longitudinal-mode, narrow bandwidth fiber laser, using an ultra-high roundness microsphere resonator (MSR) with a stabilized package as the single-longitudinal-mode selector inside a double-ring fiber cavity. By improving the heating technology and surface cleaning process, MSR with high Q factor are obtained. With the optimized coupling condition, light polarization state and fiber taper diameter, we achieve whispering gallery mode (WGM) spectra with a high extinction ratio of 23 dB, coupling efficiency of 99.5%, a 3 dB bandwidth of 1 pm and a side-mode-suppression-ratio of 14.5 dB. The proposed fiber laser produces single-longitudinal-mode laser output with a 20-dB frequency linewidth of about 340 kHz, a signal-to-background ratio of 54 dB and a high long-term stability without mode-hopping, which is potential for optical communication and sensing applications.

  16. Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies

    DTIC Science & Technology

    2016-07-07

    technology of visible fiber laser, Pr-doped waterproof fluoro-aluminate glass fiber (Pr:WPFGF) laser. The significant achievements are as follows; 1...greater than 1-W and multi-color visible fiber laser oscillations, 2) visible laser pulse generation in a Pr-doped waterproof fluoride glass fiber ...for more high power operation, fabrication of a Pr-doped double-clad structured waterproof fluoride glass fiber with a single-mode beam. These results

  17. Deterministic chaos in an ytterbium-doped mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Mélo, Lucas B. A.; Palacios, Guillermo F. R.; Carelli, Pedro V.; Acioli, Lúcio H.; Rios Leite, José R.; de Miranda, Marcio H. G.

    2018-05-01

    We experimentally study the nonlinear dynamics of a femtosecond ytterbium doped mode-locked fiber laser. With the laser operating in the pulsed regime a route to chaos is presented, starting from stable mode-locking, period two, period four, chaos and period three regimes. Return maps and bifurcation diagrams were extracted from time series for each regime. The analysis of the time series with the laser operating in the quasi mode-locked regime presents deterministic chaos described by an unidimensional Rossler map. A positive Lyapunov exponent $\\lambda = 0.14$ confirms the deterministic chaos of the system. We suggest an explanation about the observed map by relating gain saturation and intra-cavity loss.

  18. Qualitative analysis of ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor heterolasers with an external fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Pons Aglio, Alicia

    2011-02-01

    An advanced qualitative characterization of simultaneously existing various low-power trains of ultra-short optical pulses with an internal frequency modulation in a distributed laser system based on semiconductor heterostructure is presented. The scheme represents a hybrid cavity consisting of a single-mode heterolaser operating in the active mode-locking regime and an external long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. In fact, we consider the trains of optical dissipative solitons, which appear within double balance between the second-order dispersion and cubic-law nonlinearity as well as between the active-medium gain and linear optical losses in a hybrid cavity. Moreover, we operate on specially designed modulating signals providing non-conventional composite regimes of simultaneous multi-pulse active mode-locking. As a result, the mode-locking process allows shaping regular trains of picosecond optical pulses excited by multi-pulse independent on each other sequences of periodic modulations. In so doing, we consider the arranged hybrid cavity as a combination of a quasi-linear part responsible for the active mode-locking by itself and a nonlinear part determining the regime of dissipative soliton propagation. Initially, these parts are analyzed individually, and then the primarily obtained data are coordinated with each other. Within this approach, a contribution of the appeared cubically nonlinear Ginzburg-Landau operator is analyzed via exploiting an approximate variational procedure involving the technique of trial functions.

  19. Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Lee, Hwi Don; Lee, Ju Han; Yung Jeong, Myung; Kim, Chang-Seok

    2011-07-01

    The static and dynamic characteristics of a wavelength-swept active mode locking (AML) fiber laser are presented in both the time-region and wavelength-region. This paper shows experimentally that the linewidth of a laser spectrum and the bandwidth of the sweeping wavelength are dependent directly on the length and dispersion of the fiber cavity as well as the modulation frequency and sweeping rate under the mode-locking condition. To achieve a narrower linewidth, a longer length and higher dispersion of the fiber cavity as well as a higher order mode locking condition are required simultaneously. For a broader bandwidth, a lower order of the mode locking condition is required using a lower modulation frequency. The dynamic sweeping performance is also analyzed experimentally to determine its applicability to optical coherence tomography imaging. It is shown that the maximum sweeping rate can be improved by the increased free spectral range from the shorter length of the fiber cavity. A reflective semiconductor optical amplifier (RSOA) was used to enhance the modulation and dispersion efficiency. Overall a triangular electrical signal can be used instead of the sinusoidal signal to sweep the lasing wavelength at a high sweeping rate due to the lack of mechanical restrictions in the wavelength sweeping mechanism.

  20. Harmonically mode-locked erbium-doped waveguide laser

    NASA Astrophysics Data System (ADS)

    Fanto, Michael L.; Malowicki, John E.; Bussjager, Rebecca J.; Johns, Steven T.; Vettese, Elizabeth K.; Hayduk, Michael J.

    2004-08-01

    The generation of ultrastable picosecond pulses in the 1550 nm range is required for numerous applications that include photonic analog-to-digital converter systems and high-bit rate optical communication systems. Mode-locked erbium-doped fiber ring lasers (EDFLs) are typically used to generate pulses at this wavelength. In addition to timing stability and output power, the physical size of the laser cavity is of primary importance to the Air Force. The length of the erbium (Er)-doped fiber used as the gain medium may be on the order of meters or even tens of meters which adds complexity to packaging. However, with the recent advancements in the production of multi-component glasses, higher doping concentrations can be achieved as compared to silicate glasses. Even more recent is the introduction of Er-doped multi-component glass waveguides, thus allowing the overall footprint of the gain medium to be reduced. We have constructed a novel harmonically mode-locked fiber ring laser using the Er-doped multi-component glass waveguide as the gain medium. The performance characteristics of this Er-doped waveguide laser (EDWL) including pulse width, spectral width, harmonic suppression, optical output power, laser stability and single sideband residual phase noise will be discussed in this paper.

  1. Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser

    PubMed Central

    Wen, Xin; Tang, Guowu; Yang, Qi; Chen, Xiaodong; Qian, Qi; Zhang, Qinyuan; Yang, Zhongmin

    2016-01-01

    Highly Tm3+ doped optical fibers are urgently desirable for 2.0 μm compact single-frequency fiber laser and high-repetition-rate mode-locked fiber laser. Here, we systematically investigated the optical parameters, energy transfer processes and thermal properties of Tm3+ doped barium gallo-germanate (BGG) glasses. Highly Tm3+ doped BGG glass single mode (SM) fibers were fabricated by the rod-in-tube technique. The Tm3+ doping concentration reaches 7.6 × 1020 ions/cm3, being the reported highest level in Tm3+ doped BGG SM fibers. Using ultra short (1.6 cm) as-drawn highly Tm3+ doped BGG SM fiber, a single-frequency fiber laser at 1.95 μm has been demonstrated with a maximum output power of 35 mW when in-band pumped by a home-made 1568 nm fiber laser. Additionally, a multilongitudinal-mode fiber laser at 1.95 μm has also been achieved in a 10 cm long as-drawn active fiber, yielding a maximum laser output power of 165 mW and a slope efficiency of 17%. The results confirm that the as-drawn highly Tm3+ doped BGG SM fibers are promising in applications that require high gain and high power from a short piece of active optical fiber. PMID:26828920

  2. Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability

    NASA Astrophysics Data System (ADS)

    Zervas, Michalis N.

    2018-02-01

    We introduced a simple formula providing the mode-field diameter shrinkage, due to heat load in fiber amplifiers, and used it to compare the traditional thermal-lensing power limit (PTL) to a newly developed transverse-mode instability (TMI) power limit (PTMI), giving a fixed ratio of PTMI/PTL≍0.6, in very good agreement with experiment. Using a failure-in-time analysis we also introduced a new power limiting factor due to mechanical reliability of bent fibers. For diode (tandem) pumping power limits of 28kW (52kW) are predicted. Setting a practical limit of maximum core diameter to 35μm, the limits reduce to 15kW (25kW).

  3. Spectral efficiency in crosstalk-impaired multi-core fiber links

    NASA Astrophysics Data System (ADS)

    Luís, Ruben S.; Puttnam, Benjamin J.; Rademacher, Georg; Klaus, Werner; Agrell, Erik; Awaji, Yoshinari; Wada, Naoya

    2018-02-01

    We review the latest advances on ultra-high throughput transmission using crosstalk-limited single-mode multicore fibers and compare these with the theoretical spectral efficiency of such systems. We relate the crosstalkimposed spectral efficiency limits with fiber parameters, such as core diameter, core pitch, and trench design. Furthermore, we investigate the potential of techniques such as direction interleaving and high-order MIMO to improve the throughput or reach of these systems when using various modulation formats.

  4. Few Mode Multicore Photonic Lantern Multiplexer

    DTIC Science & Technology

    2016-01-01

    2015, Valencia (2015). [6] S. G. Leon-Saval, T. A. Birks, J. Bland- Hawthorn , and M. Englund, “Multimode fiber devices with single-mode performance...Opt. Lett. 30, 2545–2547 (2005). [7] D. Noordegraaf, P. M. W. Skovgaard, M. D. Nielsen, and J. Bland- Hawthorn , “Efficient multi-mode to single mode...coupling in a photonic lantern,” Opt. Express 17, 1988–1994 (2009). [8] S. G. Leon-Saval, A. Argyros, and J. Bland- Hawthorn , “Photonic lanterns: a

  5. High power passive mode-locked L-band fiber laser based on microfiber topological insulator saturable absorber

    NASA Astrophysics Data System (ADS)

    Semaan, Georges; Meng, Yichang; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois

    2016-04-01

    In this communication, we demonstrate a passive mode-locked Er:Yb co-doped double-clad fiber laser using a tapered microfiber topological insulator (Bi2Se3) saturable absorber (TISA). The topological insulator is drop-casted onto the tapered fiber and optically deposited by optical tweezer effect. We use a ring laser setup including the fabricated TISA. By carefully optimizing the cavity losses and output coupling ratio, the mode-locked laser can operate in L-band with a high average output power. At a maximum pump power of 5 W, we obtain the 91st harmonic mode-locking of soliton bunches with a 3dB spectral bandwidth of 1.06nm, a repetition rate of 640.9 MHz and an average output power of 308mW. As far as we know, this is the highest output power yet reported of a mode-locked fiber laser operating with a TISA.

  6. INTEGRATED AND FIBER OPTICS: Calculation and measurement of waveguide characteristics of single-mode fiber waveguides with a depressed cladding

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Kurkov, Andrei S.; Chikolini, A. V.

    1989-02-01

    A method was developed for calculating the effective cutoff length, the size of a mode spot, and the chromatic dispersion over the profile of the refractive index (measured in the preform stage) of single-mode fiber waveguides with a depressed cladding. The results of such calculations are shown to agree with the results of measurements of these quantities.

  7. Hybrid mode-locked fiber ring laser using graphene and charcoal nanoparticles as saturable absorbers

    NASA Astrophysics Data System (ADS)

    Hu, Hongyu; Zhang, Xiang; Li, Wenbo; Dutta, Niloy K.

    2016-05-01

    A fiber ring laser which implements hybrid mode locking technique has been proposed and experimentally demonstrated to generate pulse train at 20 GHz repetition rate with ultrashort pulse width. Graphene and charcoal nano-particles acting as passive mode lockers are inserted into a rational harmonic mode-locked fiber laser to improve the performance. With graphene saturable absorbers, the pulse duration is shortened from 5.3 ps to 2.8 ps, and with charcoal nano-particles, it is shortened to 3.2 ps. The RF spectra show that supermode noise can be removed in the presence of the saturable absorbers. Numerical simulation of the pulse transmission has also been carried out, which shows good agreement with the experimental results.

  8. Calibration for single multi-mode fiber digital scanning microscopy imaging system

    NASA Astrophysics Data System (ADS)

    Yin, Zhe; Liu, Guodong; Liu, Bingguo; Gan, Yu; Zhuang, Zhitao; Chen, Fengdong

    2015-11-01

    Single multimode fiber (MMF) digital scanning imaging system is a development tendency of modern endoscope. We concentrate on the calibration method of the imaging system. Calibration method comprises two processes, forming scanning focused spots and calibrating the couple factors varied with positions. Adaptive parallel coordinate algorithm (APC) is adopted to form the focused spots at the multimode fiber (MMF) output. Compare with other algorithm, APC contains many merits, i.e. rapid speed, small amount calculations and no iterations. The ratio of the optics power captured by MMF to the intensity of the focused spots is called couple factor. We setup the calibration experimental system to form the scanning focused spots and calculate the couple factors for different object positions. The experimental result the couple factor is higher in the center than the edge.

  9. Simple immunoglobulin G sensor based on thin core single-mode fiber

    NASA Astrophysics Data System (ADS)

    Zheng, Yingfang; Lang, Tingting; Shen, Tingting; Shen, Changyu

    2018-03-01

    In this paper, a simple fiber biosensor (FOB) for immunoglobulin G (IgG) detection is designed and experimentally verified. The FOB is constructed by a 20 mm long thin core single-mode fiber (TCSMF) sandwiched between two single-mode optical fibers (SMFs). First, the refractive index (RI) sensitivity of the fiber structures is calculated by the beam propagation method. The refractive index sensing experiment is performed using different concentrations of glycerol solutions, and the experimental results are mostly consistent with the simulation predictions. The experimental RI sensitivity increases with the surrounding RI and reaches 82.7 nm/RIU. Then the surface of the FOB is functionalized by APTES for covalent bonding. The human IgG and goat anti-human IgG are chosen as a bioconjugated pair to examine the bio-sensing effectiveness of this FOB. The sensitivity of IgG detection is determined to be 10.4 nm/(mg/ml). And the serum IgG concentration in normal adults lies within the range of 6-16 mg/ml (Worsfold et al., 1985), so the sensor is applicable to human IgG monitoring. The specificity of the FOB is also verified by a contrast experiment conducted using rabbit immunoglobulin G. The proposed FOB is simple, low loss, cost-effective, and can be used for various biological and chemical applications.

  10. All-fiber thulium/holmium-doped mode-locked laser by tungsten disulfide saturable absorber

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Zheng, Xin; Yin, Ke; Cheng, Xiang'ai; Jiang, Tian

    2017-01-01

    A passively mode-locked thulium/holmium-doped fiber laser (THDFL) based on tungsten disulfide (WS2) saturable absorber (SA) was demonstrated. The WS2 nanosheets were prepared by liquid phase exfoliation method and the SA was fabricated by depositing the few-layer WS2 nanosheets on the surface of a fiber taper. The modulation depth, saturable intensity, and non-saturable loss of this SA were measured to be 8.2%, 0.82 GW cm-2, and 29.4%, respectively. Based on this SA, a stable mode-locked laser operated at 1.91 µm was achieved with pulse duration of 825 fs and repetition rate of 15.49 MHz, and signal-to-noise ratio (SNR) of 67 dB. Meanwhile, by increasing the pump power and adjusting the position of polarization controller, harmonic mode-locking operations were obtained. These results showed that the WS2 nanosheet-based SA could be served as a desirable candidate for a short-pulse mode locker at 2 µm wavelength.

  11. Two-Channel SPR Sensor Combined Application of Polymer- and Vitreous-Clad Optic Fibers.

    PubMed

    Wei, Yong; Su, Yudong; Liu, Chunlan; Nie, Xiangfei; Liu, Zhihai; Zhang, Yu; Zhang, Yonghui

    2017-12-09

    By combining a polymer-clad optic fiber and a vitreous-clad optic fiber, we proposed and fabricated a novel optic fiber surface plasmon resonance (SPR) sensor to conduct two-channel sensing at the same detection area. The traditional optic fiber SPR sensor has many disadvantages; for example, removing the cladding requires corrosion, operating it is dangerous, adjusting the dynamic response range is hard, and producing different resonance wavelengths in the sensing area to realize a multi-channel measurement is difficult. Therefore, in this paper, we skillfully used bare fiber grinding technology and reverse symmetry welding technology to remove the cladding in a multi-mode fiber and expose the evanescent field. On the basis of investigating the effect of the grinding angle on the dynamic range change of the SPR resonance valley wavelength and sensitivity, we combined polymer-clad fiber and vitreous-clad fiber by a smart design structure to realize at a single point a two-channel measurement fiber SPR sensor. In this paper, we obtained a beautiful spectral curve from a multi-mode fiber two-channel SPR sensor. In the detection range of the refractive rate between 1.333 RIU and 1.385 RIU, the resonance valley wavelength of channel Ⅰ shifted from 622 nm to 724 nm with a mean average sensitivity of 1961 nm/RIU and the resonance valley wavelength of channel Ⅱ shifted from 741 nm to 976 nm with a mean average sensitivity of 4519 nm/RIU.

  12. Two-Channel SPR Sensor Combined Application of Polymer- and Vitreous-Clad Optic Fibers

    PubMed Central

    Wei, Yong; Su, Yudong; Liu, Chunlan; Nie, Xiangfei; Liu, Zhihai; Zhang, Yu; Zhang, Yonghui

    2017-01-01

    By combining a polymer-clad optic fiber and a vitreous-clad optic fiber, we proposed and fabricated a novel optic fiber surface plasmon resonance (SPR) sensor to conduct two-channel sensing at the same detection area. The traditional optic fiber SPR sensor has many disadvantages; for example, removing the cladding requires corrosion, operating it is dangerous, adjusting the dynamic response range is hard, and producing different resonance wavelengths in the sensing area to realize a multi-channel measurement is difficult. Therefore, in this paper, we skillfully used bare fiber grinding technology and reverse symmetry welding technology to remove the cladding in a multi-mode fiber and expose the evanescent field. On the basis of investigating the effect of the grinding angle on the dynamic range change of the SPR resonance valley wavelength and sensitivity, we combined polymer-clad fiber and vitreous-clad fiber by a smart design structure to realize at a single point a two-channel measurement fiber SPR sensor. In this paper, we obtained a beautiful spectral curve from a multi-mode fiber two-channel SPR sensor. In the detection range of the refractive rate between 1.333 RIU and 1.385 RIU, the resonance valley wavelength of channel Ⅰ shifted from 622 nm to 724 nm with a mean average sensitivity of 1961 nm/RIU and the resonance valley wavelength of channel Ⅱ shifted from 741 nm to 976 nm with a mean average sensitivity of 4519 nm/RIU. PMID:29232841

  13. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements

    PubMed Central

    He, Lian; Lin, Yu; Shang, Yu; Shelton, Brent J.

    2013-01-01

    Abstract. The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measurements. Experiments on liquid phantom solutions and in vivo muscle tissues show only slight improvements in flow measurements when using the few-mode fiber compared with using the single-mode fiber. However, light intensities detected by the few-mode and multimode fibers are increased, leading to significant SNR improvements in detections of phantom optical property and tissue blood oxygenation. The outcomes from this study provide useful guidance for the selection of optical fibers to improve DCS flow-oximeter measurements. PMID:23455963

  14. Density-cluster NMA: A new protein decomposition technique for coarse-grained normal mode analysis.

    PubMed

    Demerdash, Omar N A; Mitchell, Julie C

    2012-07-01

    Normal mode analysis has emerged as a useful technique for investigating protein motions on long time scales. This is largely due to the advent of coarse-graining techniques, particularly Hooke's Law-based potentials and the rotational-translational blocking (RTB) method for reducing the size of the force-constant matrix, the Hessian. Here we present a new method for domain decomposition for use in RTB that is based on hierarchical clustering of atomic density gradients, which we call Density-Cluster RTB (DCRTB). The method reduces the number of degrees of freedom by 85-90% compared with the standard blocking approaches. We compared the normal modes from DCRTB against standard RTB using 1-4 residues in sequence in a single block, with good agreement between the two methods. We also show that Density-Cluster RTB and standard RTB perform well in capturing the experimentally determined direction of conformational change. Significantly, we report superior correlation of DCRTB with B-factors compared with 1-4 residue per block RTB. Finally, we show significant reduction in computational cost for Density-Cluster RTB that is nearly 100-fold for many examples. Copyright © 2012 Wiley Periodicals, Inc.

  15. Multi-focus image fusion based on window empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Qin, Xinqiang; Zheng, Jiaoyue; Hu, Gang; Wang, Jiao

    2017-09-01

    In order to improve multi-focus image fusion quality, a novel fusion algorithm based on window empirical mode decomposition (WEMD) is proposed. This WEMD is an improved form of bidimensional empirical mode decomposition (BEMD), due to its decomposition process using the adding window principle, effectively resolving the signal concealment problem. We used WEMD for multi-focus image fusion, and formulated different fusion rules for bidimensional intrinsic mode function (BIMF) components and the residue component. For fusion of the BIMF components, the concept of the Sum-modified-Laplacian was used and a scheme based on the visual feature contrast adopted; when choosing the residue coefficients, a pixel value based on the local visibility was selected. We carried out four groups of multi-focus image fusion experiments and compared objective evaluation criteria with other three fusion methods. The experimental results show that the proposed fusion approach is effective and performs better at fusing multi-focus images than some traditional methods.

  16. Comparative investigation of methods to determine the group velocity dispersion of an endlessly single-mode photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Baselt, Tobias; Popp, Tobias; Nelsen, Bryan; Lasagni, Andrés. Fabián.; Hartmann, Peter

    2017-05-01

    Endlessly single-mode fibers, which enable single mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode guidance. There are two possible ways to determine the dispersion: measurement and calculation. We calculate the group velocity dispersion GVD based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array and compare the calculation with two methods to measure the wavelength-dependent time delay. We measure the time delay on a three hundred meter test fiber with a homemade supercontinuum light source, a set of bandpass filters and a fast detector and compare the results with a white light interferometric setup. To measure the dispersion of optical fibers with high accuracy, a time-frequency-domain setup based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelength dependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the endlessly single-mode fiber.

  17. FIBER OPTICS: Method of calculation of the propagation constant for guided modes

    NASA Astrophysics Data System (ADS)

    Ardasheva, L. I.; Sadykov, Nail R.; Chernyakov, V. E.

    1992-09-01

    A new method of calculating the propagation constants and wave eigenfunctions of guided modes is proposed for axisymmetric translationally invariant fiber-optic waveguides with arbitrary refractive index profiles. The method is based on solving a parabolic scalar wave equation. A comparison is made between the numerical solution under steady-state conditions and the eigenfunctions of single-mode and multimode waveguides.

  18. Multi-mode reliability-based design of horizontal curves.

    PubMed

    Essa, Mohamed; Sayed, Tarek; Hussein, Mohamed

    2016-08-01

    Recently, reliability analysis has been advocated as an effective approach to account for uncertainty in the geometric design process and to evaluate the risk associated with a particular design. In this approach, a risk measure (e.g. probability of noncompliance) is calculated to represent the probability that a specific design would not meet standard requirements. The majority of previous applications of reliability analysis in geometric design focused on evaluating the probability of noncompliance for only one mode of noncompliance such as insufficient sight distance. However, in many design situations, more than one mode of noncompliance may be present (e.g. insufficient sight distance and vehicle skidding at horizontal curves). In these situations, utilizing a multi-mode reliability approach that considers more than one failure (noncompliance) mode is required. The main objective of this paper is to demonstrate the application of multi-mode (system) reliability analysis to the design of horizontal curves. The process is demonstrated by a case study of Sea-to-Sky Highway located between Vancouver and Whistler, in southern British Columbia, Canada. Two noncompliance modes were considered: insufficient sight distance and vehicle skidding. The results show the importance of accounting for several noncompliance modes in the reliability model. The system reliability concept could be used in future studies to calibrate the design of various design elements in order to achieve consistent safety levels based on all possible modes of noncompliance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. 1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers.

    PubMed

    Emami, Siamak Dawazdah; Dashtabi, Mahdi Mozdoor; Lee, Hui Jing; Arabanian, Atoosa Sadat; Rashid, Hairul Azhar Abdul

    2017-10-06

    This paper presents short wavelength operation of tunable thulium-doped mode-locked lasers with sweep ranges of 1702 to 1764 nm and 1788 to 1831 nm. This operation is realized by a combination of the partial amplified spontaneous emission suppression method, the bidirectional pumping mechanism and the nonlinear polarization rotation (NPR) technique. Lasing at emission bands lower than the 1800 nm wavelength in thulium-doped fiber lasers is achieved using mode confinement loss in a specially designed photonic crystal fiber (PCF). The enlargement of the first outer ring air holes around the core region of the PCF attenuates emissions above the cut-off wavelength and dominates the active region. This amplified spontaneous emission (ASE) suppression using our presented PCF is applied to a mode-locked laser cavity and is demonstrated to be a simple and compact solution to widely tunable all-fiber lasers.

  20. Multi-mode Intravascular RF Coil for MRI-guided Interventions

    PubMed Central

    Kurpad, Krishna N.; Unal, Orhan

    2011-01-01

    Purpose To demonstrate the feasibility of using a single intravascular RF probe connected to the external MRI system via a single coaxial cable to perform active tip tracking and catheter visualization, and high SNR intravascular imaging. Materials and Methods A multi-mode intravascular RF coil was constructed on a 6F balloon catheter and interfaced to a 1.5T MRI scanner via a decoupling circuit. Bench measurements of coil impedances were followed by imaging experiments in saline and phantoms. Results The multi-mode coil behaves as an inductively-coupled transmit coil. Forward looking capability of 6mm is measured. Greater than 3-fold increase in SNR compared to conventional imaging using optimized external coil is demonstrated. Simultaneous active tip tracking and catheter visualization is demonstrated. Conclusions It is feasible to perform 1) active tip tracking, 2) catheter visualization, and 3) high SNR imaging using a single multi-mode intravascular RF coil that is connected to the external system via a single coaxial cable. PMID:21448969

  1. A pratical deconvolution algorithm in multi-fiber spectra extraction

    NASA Astrophysics Data System (ADS)

    Zhang, Haotong; Li, Guangwei; Bai, Zhongrui

    2015-08-01

    Deconvolution algorithm is a very promising method in multi-fiber spectroscopy data reduction, the method can extract spectra to the photo noise level as well as improve the spectral resolution, but as mentioned in Bolton & Schlegel (2010), it is limited by its huge computation requirement and thus can not be implemented directly in actual data reduction. We develop a practical algorithm to solve the computation problem. The new algorithm can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. We further consider the influence of noise, which is thought to be an intrinsic ill-posed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. A series of simulations based on LAMOST data are carried out to test our method under more real situations with poisson noise and extreme cross talk, i.e., the fiber-to-fiber distance is comparable to the FWHM of the fiber profile. Compared with the results of traditional extraction methods, i.e., the Aperture Extraction Method and the Profile Fitting Method, our method shows both higher S/N and spectral resolution. The computaion time for a noise added image with 250 fibers and 4k pixels in wavelength direction, is about 2 hours when the fiber cross talk is not in the extreme case and 3.5 hours for the extreme fiber cross talk. We finally apply our method to real LAMOST data. We find that the 1D spectrum extracted by our method has both higher SNR and resolution than the traditional methods, but there are still some suspicious weak features possibly caused by the noise sensitivity of the method around the strong emission lines. How to further attenuate the noise influence will be the topic of our future work. As we have demonstrated, multi-fiber spectra extracted by our method will have higher resolution and signal to noise ratio thus will provide more accurate information (such as higher radial velocity and

  2. Multi-species detection using multi-mode absorption spectroscopy (MUMAS)

    NASA Astrophysics Data System (ADS)

    Northern, J. H.; Thompson, A. W. J.; Hamilton, M. L.; Ewart, P.

    2013-06-01

    The detection of multiple species using a single laser and single detector employing multi-mode absorption spectroscopy (MUMAS) is reported. An in-house constructed, diode-pumped, Er:Yb:glass micro-laser operating at 1,565 nm with 10 modes separated by 18 GHz was used to record MUMAS signals in a gas mixture containing C2H2, N2O and CO. The components of the mixture were detected simultaneously by identifying multiple transitions in each of the species. By using temperature- and pressure-dependent modelled spectral fits to the data, partial pressures of each species in the mixture were determined with an uncertainty of ±2 %.

  3. Dynamics of shaping ultrashort optical dissipative solitary pulses in the actively mode-locked semiconductor laser with an external long-haul single-mode fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Moreno Zarate, Pedro

    2010-02-01

    We describe the conditions of shaping regular trains of optical dissipative solitary pulses, excited by multi-pulse sequences of periodic modulating signals, in the actively mode-locked semiconductor laser heterostructure with an external long-haul single-mode silicon fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. The presented model for the analysis includes three principal contributions associated with the modulated gain, optical losses, as well as linear and nonlinear phase shifts. In fact, the trains of optical dissipative solitary pulses appear within simultaneous presenting and a balance of mutually compensating interactions between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in the combined cavity. Within such a model, a contribution of the nonlinear Ginzburg-Landau operator to shaping the parameters of optical dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions. Finally, the results of the illustrating proof-of-principle experiments are briefly presented and discussed in terms of optical dissipative solitary pulses.

  4. Multi-material micro-electromechanical fibers with bendable functional domains

    NASA Astrophysics Data System (ADS)

    Nguyen-Dang, Tung; Page, Alexis G.; Qu, Yunpeng; Volpi, Marco; Yan, Wei; Sorin, Fabien

    2017-04-01

    The integration of increasingly complex functionalities within thermally drawn multi-material fibers is heralding a novel path towards advanced soft electronics and smart fabrics. Fibers capable of electronic, optoelectronic, piezoelectric or energy harvesting functions are created by assembling new materials in intimate contact within increasingly complex architectures. Thus far, however, the opportunities associated with the integration of cantilever-like structures with freely moving functional domains within multi-material fibers have not been explored. Used extensively in the micro-electromechanical system (MEMS) technology, electro-mechanical transductance from moving and bendable domains is used in a myriad of applications. In this article we demonstrate the thermal drawing of micro-electromechanical fibers (MEMF) that can detect and localize pressure with high accuracy along their entire length. This ability results from an original cantilever-like design where a freestanding electrically conductive polymer composite film bends under an applied pressure. As it comes into contact with another conducting domain, placed at a prescribed position in the fiber cross-section, an electrical signal is generated. We show that by a judicious choice of materials and electrical connectivity, this signal can be uniquely related to a position along the fiber axis. We establish a model that predicts the position of a local touch from the measurement of currents generated in the 1D MEMF device, and demonstrate an excellent agreement with the experimental data. This ability to detect and localize touch over large areas, curved surfaces and textiles holds significant opportunities in robotics and prosthetics, flexible electronic interfaces, and medical textiles. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Fabien Sorin

  5. Hybrid mode-locked erbium-doped all-fiber soliton laser with a distributed polarizer.

    PubMed

    Chernykh, D S; Krylov, A A; Levchenko, A E; Grebenyukov, V V; Arutunyan, N R; Pozharov, A S; Obraztsova, E D; Dianov, E M

    2014-10-10

    A soliton-type erbium-doped all-fiber ring laser hybrid mode-locked with a co-action of arc-discharge single-walled carbon nanotubes (SWCNTs) and nonlinear polarization evolution (NPE) is demonstrated. For the first time, to the best of our knowledge, boron nitride-doped SWCNTs were used as a saturable absorber for passive mode-locking initiation. Moreover, the NPE was introduced through the implementation of the short-segment polarizing fiber. Owing to the NPE action in the laser cavity, significant pulse length shortening as well as pulse stability improvement were observed as compared with a SWCNTs-only mode-locked laser. The shortest achieved pulse width of near transform-limited solitons was 222 fs at the output average power of 9.1 mW and 45.5 MHz repetition frequency, corresponding to the 0.17 nJ pulse energy.

  6. Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers

    NASA Astrophysics Data System (ADS)

    O'Hagan, S.; Northern, J. H.; Gras, B.; Ewart, P.; Kim, C. S.; Kim, M.; Merritt, C. D.; Bewley, W. W.; Canedy, C. L.; Vurgaftman, I.; Meyer, J. R.

    2016-06-01

    The application of an interband cascade laser, ICL, to multi-mode absorption spectroscopy, MUMAS, in the mid-infrared region is reported. Measurements of individual mode linewidths of the ICL, derived from the pressure dependence of lineshapes in MUMAS signatures of single, isolated, lines in the spectrum of HCl, were found to be in the range 10-80 MHz. Multi-line spectra of methane were recorded using spectrally limited bandwidths, of approximate width 27 cm-1, defined by an interference filter, and consist of approximately 80 modes at spectral locations spanning the 100 cm-1 bandwidth of the ICL output. Calibration of the methane pressures derived from MUMAS data using a capacitance manometer provided measurements with an uncertainty of 1.1 %. Multi-species sensing is demonstrated by the simultaneous detection of methane, acetylene and formaldehyde in a gas mixture. Individual partial pressures of the three gases are derived from best fits of model MUMAS signatures to the data with an experimental error of 10 %. Using an ICL, with an inter-mode interval of ~10 GHz, MUMAS spectra were recorded at pressures in the range 1-10 mbar, and, based on the data, a potential minimum detection limit of the order of 100 ppmv is estimated for MUMAS at atmospheric pressure using an inter-mode interval of 80 GHz.

  7. Optical techniques: using coarse and detailed scans for the preventive acquisition of fingerprints with chromatic white-light sensors

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus

    2011-11-01

    The preventive application of automated latent fingerprint acquisition devices can enhance the Homeland Defence, e.g. by improving the border security. Here, contact-less optical acquisition techniques for the capture of traces are subject to research; chromatic white light sensors allow for multi-mode operation using coarse or detailed scans. The presence of potential fingerprints could be detected using fast coarse scans. Those Regions-of- Interest can be acquired afterwards with high-resolution detailed scans to allow for a verification or identification of individuals. An acquisition and analysis of fingerprint traces on different objects that are imported or pass borders might be a great enhancement for security. Additionally, if suspicious objects require a further investigation, an initial securing of potential fingerprints could be very useful. In this paper we show current research results for the coarse detection of fingerprints to prepare the detailed acquisition from various surface materials that are relevant for preventive applications.

  8. An accelerated gamma irradiation test of low dose rate for a single mode fiber

    NASA Astrophysics Data System (ADS)

    Chiou, Chung-An; Peng, Tz-Shiuan; Liu, Ren-Young

    2017-09-01

    Conventional single mode fiber (SMF), due to its electromagnetic interference immunity, light weight, physical flexibility and broad bandwidth for data transmission, has been well employed in space, such as optical communication [1], structural health monitoring of spacecraft [2], and attitude determining applications, e.g. interferometric fiber optic gyroscope (IFOG).

  9. Photonic crystal fiber Fabry-Perot interferometers with high-reflectance internal mirrors

    NASA Astrophysics Data System (ADS)

    Fan, Rong; Hou, Yuanbin; Sun, Wei

    2015-06-01

    We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (SMF). The fringe visibility of the interference pattern was up to 20 dB by reshaping the air cavity. Experimental results showed that such a device could be used as a highly sensitive strain sensor with the sensitivity of 4.5 pm/μɛ. Moreover, it offered some other outstanding advantages, such as the extremely compact structure, easy fabrication, low cost, and high accuracy.

  10. Multi-Mode Cavity Accelerator Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10 -7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2ndmore » harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E sur max< 260 MV/m and pulsed surface heating ΔT max< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.« less

  11. Crosstalk-aware virtual network embedding over inter-datacenter optical networks with few-mode fibers

    NASA Astrophysics Data System (ADS)

    Huang, Haibin; Guo, Bingli; Li, Xin; Yin, Shan; Zhou, Yu; Huang, Shanguo

    2017-12-01

    Virtualization of datacenter (DC) infrastructures enables infrastructure providers (InPs) to provide novel services like virtual networks (VNs). Furthermore, optical networks have been employed to connect the metro-scale geographically distributed DCs. The synergistic virtualization of the DC infrastructures and optical networks enables the efficient VN service over inter-DC optical networks (inter-DCONs). While the capacity of the used standard single-mode fiber (SSMF) is limited by their nonlinear characteristics. Thus, mode-division multiplexing (MDM) technology based on few-mode fibers (FMFs) could be employed to increase the capacity of optical networks. Whereas, modal crosstalk (XT) introduced by optical fibers and components deployed in the MDM optical networks impacts the performance of VN embedding (VNE) over inter-DCONs with FMFs. In this paper, we propose a XT-aware VNE mechanism over inter-DCONs with FMFs. The impact of XT is considered throughout the VNE procedures. The simulation results show that the proposed XT-aware VNE can achieves better performances of blocking probability and spectrum utilization compared to conventional VNE mechanisms.

  12. Shape sensing using multi-core fiber optic cable and parametric curve solutions.

    PubMed

    Moore, Jason P; Rogge, Matthew D

    2012-01-30

    The shape of a multi-core optical fiber is calculated by numerically solving a set of Frenet-Serret equations describing the path of the fiber in three dimensions. Included in the Frenet-Serret equations are curvature and bending direction functions derived from distributed fiber Bragg grating strain measurements in each core. The method offers advantages over prior art in that it determines complex three-dimensional fiber shape as a continuous parametric solution rather than an integrated series of discrete planar bends. Results and error analysis of the method using a tri-core optical fiber is presented. Maximum error expressed as a percentage of fiber length was found to be 7.2%.

  13. Multi-mode ultrasonic welding control and optimization

    DOEpatents

    Tang, Jason C.H.; Cai, Wayne W

    2013-05-28

    A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.

  14. Advanced specialty fiber designs for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Gu, Guancheng

    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a

  15. Multi-scale Rule-of-Mixtures Model of Carbon Nanotube/Carbon Fiber/Epoxy Lamina

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Roddick, Jaret C.; Gates, Thomas S.

    2005-01-01

    A unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes is modeled with a multi-scale method, the atomistically informed rule-of-mixtures. This multi-scale model is designed to include the effect of the carbon nanotubes on the constitutive properties of the lamina. It included concepts from the molecular dynamics/equivalent continuum methods, micromechanics, and the strength of materials. Within the model both the nanotube volume fraction and nanotube distribution were varied. It was found that for a lamina with 60% carbon fiber volume fraction, the Young's modulus in the fiber direction varied with changes in the nanotube distribution, from 138.8 to 140 GPa with nanotube volume fractions ranging from 0.0001 to 0.0125. The presence of nanotube near the surface of the carbon fiber is therefore expected to have a small, but positive, effect on the constitutive properties of the lamina.

  16. Optical arbitrary waveform generation based on multi-wavelength semiconductor fiber ring laser

    NASA Astrophysics Data System (ADS)

    Li, Peili; Ma, Xiaolu; Shi, Weihua; Xu, Enming

    2017-09-01

    A new scheme of generating optical arbitrary waveforms based on multi-wavelength semiconductor fiber ring laser (SFRL) is proposed. In this novel scheme, a wide and flat optical frequency comb (OFC) is provided directly by multi-wavelength SFRL, whose central frequency and comb spacing are tunable. OFC generation, de-multiplexing, amplitude and phase modulation, and multiplexing are implementing in an intensity and phase tunable comb filter, as induces the merits of high spectral coherence, satisfactory waveform control and low system loss. By using the mode couple theory and the transfer matrix method, the theoretical model of the scheme is established. The impacts of amplitude control, phase control, number of spectral line, and injection current of semiconductor optical amplifier (SOA) on the waveform similarity are studied using the theoretical model. The results show that, amplitude control and phase control error should be smaller than 1% and 0.64% respectively to achieve high similarity. The similarity of the waveform is improved with the increase of the number of spectral line. When the injection current of SOA is in a certain range, the optical arbitrary waveform reaches a high similarity.

  17. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves.

    PubMed

    Ning, Huiming; Li, Yuan; Hu, Ning; Cao, Yanping; Yan, Cheng; Azuma, Takesi; Peng, Xianghe; Wu, Liangke; Li, Jinhua; Li, Leilei

    2014-06-01

    The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m -2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%-73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.

  18. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves

    PubMed Central

    Ning, Huiming; Li, Yuan; Hu, Ning; Cao, Yanping; Yan, Cheng; Azuma, Takesi; Peng, Xianghe; Wu, Liangke; Li, Jinhua; Li, Leilei

    2014-01-01

    The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates. PMID:27877680

  19. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop

    PubMed Central

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-01-01

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700

  20. An enhanced effective mode area fluorine doped octagonal photonic crystal fiber with extremely low loss

    NASA Astrophysics Data System (ADS)

    Kabir, Sumaiya; Razzak, S. M. Abdur

    2018-07-01

    In our paper an enhanced effective mode area octagonal photonic crystal fiber (PCF) is presented. This PCF ensures large effective mode area along with ultra-low confinement loss and bending loss. Both the elimination of air-holes from the rings near the core region and inclusion of low index fluorine doped silica rods in an octagonal pattern are the vital design features. We have used full vectorial finite element method (FEM) based software with circularly perfectly matched layer (PML) to simulate the guiding properties of PCF. Our proposed fiber achieves effective mode area of 1110 μm2. Moreover, it offers ultra-low confinement loss of 1.14 × 10-15 dB/m and can be bent as small as 30 cm without any significant bending loss of 6.49 × 10-9 dB/m. The PCF also ensures low non-linearity with small amount of splice loss. However, our proposed PCF can be used in applications like fiber amplifiers and lasers.

  1. Theoretical and experimental study of bent fully aperiodic large-pitch fibers for enhancing the high-order modes delocalization

    NASA Astrophysics Data System (ADS)

    du Jeu, Rémi; Dauliat, Romain; Darwich, Dia; Auguste, Jean-Louis; Benoît, Aurélien; Leconte, Baptiste; Malleville, Marie-Alicia; Jamier, Raphaël.; Schuster, Kay; Roy, Philippe

    2018-02-01

    The power scaling of fiber lasers and amplifiers has triggered an extensive development of large-mode area fibers among which the most promising are the distributed mode filtering fibers and the large-pitch fibers. These structures enable for an effective higher-order modes delocalization and subsequently a singlemode emission. An interesting alternative consists in using the fully-aperiodic large-pitch fibers, into which the standard air-silica photonic crystal cladding is replaced by an aperiodic pattern made of solid low-index inclusions cladding. However, in such a structure, the core and the background cladding material surrounding it must have rigorously the same refractive index. Current synthesis processes and measurement techniques offer respectively a maximum resolution of 5×10-4 and 1×10-4 while the indexmatching must be as precise as 1×10-5 . Lately a gain material with a refractive index 1.5×10-4 higher than that of the background cladding material was fabricated, thus re-confining the first higher-order modes in the core. A numerical study is carried out on the benefit of bending such fully-aperiodic fiber to counteract this phenomenon. Optimized bending axis and radius have been determined. Experiments are done in a laser cavity operating at 1030 nm using an 88cm-long 51μm core diameter ytterbium-doped fiber. Results demonstrate an improvement of the M2 from 1.7 when the fiber is kept straight to 1.2 when it is bent with a 100 to 60 cm bend radius. These primary results are promising for future power scaling.

  2. FIBER AND INTEGRATED OPTICS. FIBER WAVEGUIDE DEVICES: Stability of solitons in a two-mode fiber waveguide with a group velocity mismatch

    NASA Astrophysics Data System (ADS)

    Kivshar', Yu S.

    1990-12-01

    A study is reported of the stability of soliton pulses propagating in a two-mode fiber waveguide under conditions of a mismatch between the group velocities of the optical modes. An analytic explanation is proposed of the dependence of the threshold amplitude of an initial pulse, responsible for intermode locking of the pulses, on the mismatch between the group velocities. An analytically derived dependence is shown to be in good agreement with earlier numerical experiments. Decay of coupled intermode states of solitons due to dissipative losses is predicted.

  3. Multi-Wavelength Q-Switched Ytterbium-Doped Fiber Laser with Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Al-Masoodi, A. H. H.; Ahmed, M. H. M.; Arof, H.; Harun, S. W.

    2018-03-01

    We demonstrate a passively multi-wavelength Q-switched Ytterbium-doped fiber laser (YDFL) based on a multi-wall carbon nanotubes embedded in polyethylene oxide film as saturable absorber. The YDFL generates a stable multi-wavelength with spacing of 1.9 nm as the 980 nm pump power is fixed within 62. 4 mW and 78.0 mW. The repetition rate of the laser is tunable from 10.41 to 29.04 kHz by increasing the pump power from the threshold power of 62.4 mW to 78 mW. At 78 mW pump power, the maximum pulse energy of 38 nJ and the shortest pulse width of 8.87 µs are obtained.

  4. High strength fusion splicing of hollow core photonic crystal fiber and single-mode fiber by large offset reheating

    NASA Astrophysics Data System (ADS)

    Song, Ningfang; Wu, Chunxiao; Luo, Wenyong; Zhang, Zuchen; Li, Wei

    2016-12-01

    High strength fusion splicing hollow core photonic crystal fiber (HC-PCF) and single-mode fiber (SMF) requires sufficient energy, which results in collapse of the air holes inside HC-PCF. Usually the additional splice loss induced by the collapse of air holes is too large. By large offset reheating, the collapse length of HC-PCF is reduced, thus the additional splice loss induced by collapse is effectively suppressed. This method guarantees high-strength fusion splicing between the two types of fiber with a low splice loss. The strength of the splice compares favorably with the strength of HC-PCF itself. This method greatly improves the reliability of splices between HC-PCFs and SMFs.

  5. Distributed measurement of polarization mode coupling in fiber ring based on P-OTDR complete polarization state detection.

    PubMed

    Huang, Zejia; Wu, Chongqing; Wang, Zhi; Wang, Jian; Liu, Lanlan

    2018-02-19

    Using a quaternion method, the polarization mode-coupling coefficient can be derived from three components of the Stokes vectors at three adjacent points along a fiber. A complete polarization optical time-domain reflectometry scheme for polarization mode coupling distributed measurement in polarization-maintaining fiber ring is proposed based on the above theoretical derivations. By comparing the measurement results of two opposite incident directions and two orthogonal polarization axes of polarization-maintaining fiber rings with different lengths, the feasibility and repeatability of the measurement scheme are verified experimentally with a positioning spatial resolution of 1 meter.

  6. Vector solitons in harmonic mode-locked erbium-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Habruseva, Tatiana; Mkhitaryan, Mkhitar; Mou, Chengbo; Rozhin, Aleksey; Turitsyn, Sergei K.; Sergeyev, Sergey V.

    2014-05-01

    We report experimental study of vector solitons for the fundamental and harmonic mode-locked operation in erbiumdoper fiber lasers with carbon nanotubes based saturable absorbers and anomalous dispersion cavities. We measure evolution of the output pulses polarization and demonstrate vector solitons with various polarization attractors, including locked polarization, periodic polarization switching, and polarization precession.

  7. L-band ultrafast fiber laser mode locked by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Rozhin, A. G.; Wang, F.; Scardaci, V.; Milne, W. I.; White, I. H.; Hennrich, F.; Ferrari, A. C.

    2008-08-01

    We fabricate a nanotube-polyvinyl alcohol saturable absorber with a broad absorption at 1.6 μm. We demonstrate a pulsed fiber laser working in the telecommunication L band by using this composite as a mode locker. This gives ˜498±16 fs pulses at 1601 nm with a 26.7 MHz repetition rate.

  8. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber and feedback fiber loop

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Ning, Tigang; Jian, Shuisheng

    2009-06-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber ring laser based on one polarization-maintaining fiber Bragg grating (PMFBG) is demonstrated. Due to the enhancement of the polarization hole burning (PHB) by the PMFBG, the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.336 nm at room temperature by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a compound-ring cavity and a saturable absorber (SA). The optical signal-to-noise ratio (OSNR) is over 45 dB. The amplitude variation in nearly one and half an hour is less than 0.2 dB.

  9. Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration

    NASA Astrophysics Data System (ADS)

    Liu, Wenjun; Liu, Mengli; OuYang, Yuyi; Hou, Huanran; Ma, Guoli; Lei, Ming; Wei, Zhiyi

    2018-04-01

    In this paper, a WSe2 film prepared by chemical vapor deposition (CVD) is transferred onto a tapered fiber, and a WSe2 saturable absorber (SA) is fabricated. In order to measure the third-order optical nonlinearity of the WSe2, the Z-scan technique is applied. The modulation depth of the WSe2 SA is measured as being 21.89%. Taking advantage of the remarkable nonlinear absorption characteristic of the WSe2 SA, a mode-locked erbium-doped fiber laser is demonstrated at 1557.4 nm with a bandwidth of 25.8 nm and signal to noise ratio of 96 dB. To the best of our knowledge, the pulse duration of 163.5 fs is confirmed to be the shortest compared with previous mode-locked fiber lasers based on transition-metal dichalcogenides SAs. These results indicate that WSe2 is a powerful competitor in the application of ultrashort pulse lasers.

  10. Orientation-Dependent Displacement Sensor Using an Inner Cladding Fiber Bragg Grating.

    PubMed

    Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia

    2016-09-11

    An orientation-dependent displacement sensor based on grating inscription over a fiber core and inner cladding has been demonstrated. The device comprises a short piece of multi-cladding fiber sandwiched between two standard single-mode fibers (SMFs). The grating structure is fabricated by a femtosecond laser side-illumination technique. Two well-defined resonances are achieved by the downstream both core and cladding fiber Bragg gratings (FBGs). The cladding resonance presents fiber bending dependence, together with a strong orientation dependence because of asymmetrical distribution of the "cladding" FBG along the fiber cross-section.

  11. Orientation-Dependent Displacement Sensor Using an Inner Cladding Fiber Bragg Grating

    PubMed Central

    Yang, Tingting; Qiao, Xueguang; Rong, Qiangzhou; Bao, Weijia

    2016-01-01

    An orientation-dependent displacement sensor based on grating inscription over a fiber core and inner cladding has been demonstrated. The device comprises a short piece of multi-cladding fiber sandwiched between two standard single-mode fibers (SMFs). The grating structure is fabricated by a femtosecond laser side-illumination technique. Two well-defined resonances are achieved by the downstream both core and cladding fiber Bragg gratings (FBGs). The cladding resonance presents fiber bending dependence, together with a strong orientation dependence because of asymmetrical distribution of the “cladding” FBG along the fiber cross-section. PMID:27626427

  12. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution.

    PubMed

    Liu, Zhi-Bo; He, Xiaoying; Wang, D N

    2011-08-15

    We demonstrate a nanosecond-pulse erbium-doped fiber laser that is passively mode locked by a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Owing to the good solution processing capability of few-layered graphene oxide, which can be filled into the core of a hollow-core photonic crystal fiber through a selective hole filling process, a graphene saturable absorber can be successfully fabricated. The output pulses obtained have a center wavelength, pulse width, and repetition rate of 1561.2 nm, 4.85 ns, and 7.68 MHz, respectively. This method provides a simple and efficient approach to integrate the graphene into the optical fiber system. © 2011 Optical Society of America

  13. Comparison of fiber length analyzers

    Treesearch

    Don Guay; Nancy Ross Sutherland; Walter Rantanen; Nicole Malandri; Aimee Stephens; Kathleen Mattingly; Matt Schneider

    2005-01-01

    In recent years, several fiber new fiber length analyzers have been developed and brought to market. The new instruments provide faster measurements and the capability of both laboratory and on-line analysis. Do the various fiber analyzers provide the same length, coarseness, width, and fines measurements for a given fiber sample? This paper provides a comparison of...

  14. Tunable triple-wavelength mode-locked fiber laser with topological insulator Bi2Se3 solution

    NASA Astrophysics Data System (ADS)

    Guo, Bo; Yao, Yong

    2016-08-01

    We experimentally demonstrated a tunable triple-wavelength mode-locked erbium-doped fiber laser with few-layer topological insulator: Bi2Se3/polyvinyl alcohol solution. By properly adjusting the pump power and the polarization state, the single-, dual-, and triple-wavelength mode-locking operation could be stably initiated with a wavelength-tunable range (˜1 nm) and a variable wavelength spacing (1.7 or 2 nm). Meanwhile, it exhibits the maximum output power of 10 mW and pulse energy of 1.12 nJ at the pump power of 175 mW. The simple, low-cost triple-wavelength mode-locked fiber laser might be applied in various potential fields, such as optical communication, biomedical research, and sensing system.

  15. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.

    2007-01-01

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  16. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers.

    PubMed

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y

    2007-01-15

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  17. Impact of fiber ring laser configuration on detection capabilities in FBG based sensor systems

    NASA Astrophysics Data System (ADS)

    Osuch, Tomasz; Kossek, Tomasz; Markowski, Konrad

    2014-11-01

    In this paper fiber ring lasers (FRL) as interrogation units for distributed fiber Bragg grating (FBG) based sensor networks are studied. In particular, two configurations of the fiber laser with erbium-doped fiber amplifier (EDFA) and semiconductor optical amplifier (SOA) as gain medium were analyzed. In the case of EDFA-based fiber interrogation systems, CW as well as active-mode locking operation were taken into account. The influence of spectral overlapping of FBGs spectra on detection capabilities of examined FRLs are presented. Experimental results show that the SOA-based fiber laser interrogation unit can operate as a multi-parametric sensing system. In turn, using an actively mode-locked fiber ring laser with an EDFA, an electronically switchable FBG based sensing system can be realized.

  18. Actively mode-locked erbium fiber ring laser using a Fabry-Perot semiconductor modulator as mode locker and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Chan, K. T.

    1999-05-01

    A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.

  19. High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure.

    PubMed

    Liu, Dejun; Mallik, Arun Kumar; Yuan, Jinhui; Yu, Chongxiu; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2015-09-01

    A high sensitivity refractive index (RI) sensor based on a tapered small core single-mode fiber (SCSMF) structure sandwiched between two traditional single-mode fibers (SMF28) is reported. The microheater brushing technique was employed to fabricate the tapered fiber structures with different waist diameters of 12.5, 15.0, and 18.8 μm. Experiments demonstrate that the fiber sensor with a waist diameter of 12.5 μm offers the best sensitivity of 19212.5  nm/RIU (RI unit) in the RI range of 1.4304 to 1.4320. All sensors fabricated in this Letter show good linearity in terms of the spectral wavelength shift versus changes in RI. Furthermore, the sensor with the best sensitivity to RI was also used to measure relative humidity (RH) without any coating materials applied to the fiber surface. Experimental results show that the spectral wavelength shift changes exponentially as the RH varies from 60% to 95%. A maximum sensitivity of 18.3 nm per relative humidity unit (RHU) was achieved in the RH range of 90.4% to 94.5% RH.

  20. Transverse mode instabilities in burst operation of high-power fiber laser systems

    NASA Astrophysics Data System (ADS)

    Jauregui, Cesar; Stihler, Christoph; Tünnermann, Andreas; Limpert, Jens

    2018-02-01

    We propose, to the best of our knowledge, the first mitigation strategy for TMI based on controlling the phase shift between the thermally-induced index grating and the modal intensity pattern. In particular, in this work we present a study of transverse mode instabilities in burst operation in a high-power fiber laser system. It is shown that, with a careful choice of the parameters, this operation regime can potentially lead to the mitigation of TMI by forcing an energy transfer from the higher-order-modes into the fundamental mode during the burst.

  1. Structural dissipative solitons in passive mode-locked fiber lasers.

    PubMed

    Komarov, Andrey; Sanchez, François

    2008-06-01

    On the basis of numerical simulation of fiber laser passive mode locking with anomalous dispersion we have found the dissipative solitons with powerful pedestals having oscillating structure. The pedestal structure causes a complex structural spectrum. These solitons can be multistable: with the same laser parameters the pedestals can have different structures. For some nonlinear-dispersion parameters there exist solitons with asymmetric structural pedestals moving relatively solitons with symmetric ones.

  2. Tunable arbitrary unitary transformer based on multiple sections of multicore fibers with phase control.

    PubMed

    Zhou, Junhe; Wu, Jianjie; Hu, Qinsong

    2018-02-05

    In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.

  3. Linear Transformation of the Polarization Modes in Coiled Optical Spun-Fibers with Strong Unperturbed Linear Birefringence. I. Nonresonant Transformation

    NASA Astrophysics Data System (ADS)

    Malykin, G. B.; Pozdnyakova, V. I.

    2018-03-01

    A linear transformation of orthogonal polarization modes in coiled optical spun-fibers with strong unperturbed linear birefringence, which causes the emergence of the dependences of the integrated elliptical birefringence and the ellipticity and azimuth of the major axis of the ellipse, as well as the polarization state of radiation (PSR), on the length of optical fiber has been considered. Optical spun-fibers are subjected to a strong mechanical twisting, which is frozen into the structure of the optical fiber upon cooling, in the process of being drawn out from the workpiece. Since the values of the local polarization parameters of coiled spunwaveguides vary according to a rather complex law, the calculations were carried out by numerical modeling of the parameters of the Jones matrices. Since the rotation speed of the axes of the birefringence is constant on a relatively short segment of a coiled optical spun-fiber in the accompanying torsion (helical) coordinate system, the so-called "Ginzburg helical polarization modes" (GHPMs)—two mutually orthogonal ellipses with the opposite directions of traversal, the axis of which rotate relative to the fixed coordinate system uniformly and unidirectionally—are approximately the local normal polarization modes of such optical fiber. It has been shown that, despite the fact that the unperturbed linear birefringence of the spun-fibers significantly exceeds the linear birefringence, which is caused by the winding on a coil, the integral birefringence of an extended segment of such a fiber coincides in order of magnitude with the linear birefringence, which is caused by the winding on the coil, and the integral polarization modes tend asymptotically to circular ones. It has been also shown that the values of the circular birefringence of twisted single-mode fibers, which were calculated in a nonrotating and torsion helical coordinate systems, differ significantly. It has been shown that the polarization phenomena occur

  4. Quantum propagation in single mode fiber

    NASA Technical Reports Server (NTRS)

    Joneckis, Lance G.; Shapiro, Jeffrey H.

    1994-01-01

    This paper presents a theory for quantum light propagation in a single-mode fiber which includes the effects of the Kerr nonlinearity, group-velocity dispersion, and linear loss. The theory reproduces the results of classical self-phase modulation, quantum four-wave mixing, and classical solution physics, within their respective regions of validity. It demonstrates the crucial role played by the Kerr-effect material time constant, in limiting the quantum phase shifts caused by the broadband zero-point fluctuations that accompany any quantized input field. Operator moment equations - approximated, numerically, via a terminated cumulant expansion - are used to obtain results for homodyne-measurement noise spectra when dispersion is negligible. More complicated forms of these equations can be used to incorporate dispersion into the noise calculations.

  5. Electrostatic twisted modes in multi-component dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayub, M. K.; National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000; Pohang University of Sciences and Technology, Pohang, Gyeongbuk 790-784

    Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular modemore » numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas.« less

  6. Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining

    NASA Astrophysics Data System (ADS)

    Zhang, Junwei; Zhu, Guoxuan; Liu, Jie; Wu, Xiong; Zhu, Jiangbo; Du, Cheng; Luo, Wenyong; Chen, Yujie; Yu, Siyuan

    2018-02-01

    An orbital-angular-momentum (OAM) mode-group multiplexing (MGM) scheme based on a graded-index ring-core fiber (GIRCF) is proposed, in which a single-input two-output (or receive diversity) architecture is designed for each MG channel and simple digital signal processing (DSP) is utilized to adaptively resist the mode partition noise resulting from random intra-group mode crosstalk. There is no need of complex multiple-input multiple-output (MIMO) equalization in this scheme. Furthermore, the signal-to-noise ratio (SNR) of the received signals can be improved if a simple maximal ratio combining (MRC) technique is employed on the receiver side to efficiently take advantage of the diversity gain of receiver. Intensity-modulated direct-detection (IM-DD) systems transmitting three OAM mode groups with total 100-Gb/s discrete multi-tone (DMT) signals over a 1-km GIRCF and two OAM mode groups with total 40-Gb/s DMT signals over an 18-km GIRCF are experimentally demonstrated, respectively, to confirm the feasibility of our proposed OAM-MGM scheme.

  7. The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers

    NASA Astrophysics Data System (ADS)

    Youssefi, Mostafa; Safaie, Banafsheh

    2018-06-01

    Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.

  8. The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers

    NASA Astrophysics Data System (ADS)

    Youssefi, Mostafa; Safaie, Banafsheh

    2018-01-01

    Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.

  9. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers

    PubMed Central

    Li, Xiaohui; Wu, Kan; Sun, Zhipei; Meng, Bo; Wang, Yonggang; Wang, Yishan; Yu, Xuechao; Yu, Xia; Zhang, Ying; Shum, Perry Ping; Wang, Qi Jie

    2016-01-01

    Low phase noise mode-locked fiber laser finds important applications in telecommunication, ultrafast sciences, material science, and biology, etc. In this paper, two types of carbon nano-materials, i.e. single-wall carbon nanotube (SWNT) and graphene oxide (GO), are investigated as efficient saturable absorbers (SAs) to achieve low phase noise mode-locked fiber lasers. Various properties of these wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the performance of the ultrafast pulses. Reduced-noise femtosecond fiber lasers based on such carbon-based SAs are experimentally demonstrated, for which the phase noise has been reduced by more than 10 dB for SWNT SAs and 8 dB for GO SAs at 10 kHz. To the best of our knowledge, this is the first investigation on the relationship between different carbon material based SAs and the phase noise of mode-locked lasers. This work paves the way to generate high-quality low phase noise ultrashort pulses in passively mode-locked fiber lasers. PMID:27126900

  10. Simultaneous directional curvature and temperature sensor based on a tilted few-mode fiber Bragg grating.

    PubMed

    Zhao, Yunhe; Wang, Changle; Yin, Guolu; Jiang, Biqiang; Zhou, Kaiming; Mou, Chengbo; Liu, Yunqi; Zhang, Lin; Wang, Tingyun

    2018-03-01

    We demonstrate a directional curvature sensor based on tilted few-mode fiber Bragg gratings (FM-FBGs) inscribed by a UV laser. The eigenmodes of LP 01 and LP 11 mode groups are simulated along with the fiber bending. The directional curvature sensor is based on the LP 11 mode resonance in the tilted FM-FBG. For curvature from 4.883 to 7.625  m -1 , the curvature sensitivities at direction of 0° and 90° are measured to be -2.67 and 0.128  dB/m -1 , respectively. The temperature variation barely affects the resonance depth of LP 11 mode. The proposed curvature sensor clearly demonstrates the potential to simultaneous directional curvature and temperature measurement with the resolutions of 9.15×10 -4   m -1 and 0.952°C, respectively.

  11. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    PubMed

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  12. Coarse-graining and self-dissimilarity of complex networks

    NASA Astrophysics Data System (ADS)

    Itzkovitz, Shalev; Levitt, Reuven; Kashtan, Nadav; Milo, Ron; Itzkovitz, Michael; Alon, Uri

    2005-01-01

    Can complex engineered and biological networks be coarse-grained into smaller and more understandable versions in which each node represents an entire pattern in the original network? To address this, we define coarse-graining units as connectivity patterns which can serve as the nodes of a coarse-grained network and present algorithms to detect them. We use this approach to systematically reverse-engineer electronic circuits, forming understandable high-level maps from incomprehensible transistor wiring: first, a coarse-grained version in which each node is a gate made of several transistors is established. Then the coarse-grained network is itself coarse-grained, resulting in a high-level blueprint in which each node is a circuit module made of many gates. We apply our approach also to a mammalian protein signal-transduction network, to find a simplified coarse-grained network with three main signaling channels that resemble multi-layered perceptrons made of cross-interacting MAP-kinase cascades. We find that both biological and electronic networks are “self-dissimilar,” with different network motifs at each level. The present approach may be used to simplify a variety of directed and nondirected, natural and designed networks.

  13. Toward single-mode active crystal fibers for next-generation high-power fiber devices.

    PubMed

    Lai, Chien-Chih; Gao, Wan-Ting; Nguyen, Duc Huy; Ma, Yuan-Ron; Cheng, Nai-Chia; Wang, Shih-Chang; Tjiu, Jeng-Wei; Huang, Chun-Ming

    2014-08-27

    We report what we believe to be the first demonstration of a facile approach with controlled geometry for the production of crystal-core ceramic-clad hybrid fibers for scaling fiber devices to high average powers. The process consists of dip coating a solution of polycrystalline alumina onto a high-crystallinity 40-μm-diameter Ti:sapphire single-crystalline core followed by thermal treatments. Comparison of the measured refractive index with high-resolution transmission electron microscopy reveals that a Ca/Si-rich intragranular layer is precipitated at grain boundaries by impurity segregation and liquid-phase formation due to the relief of misfit strain energy in the Al2O3 matrix, slightly perturbing the refractive index and hence the optical properties. Additionally, electron backscatter diffractions supply further evidence that the Ti:sapphire single-crystalline core provides the template for growth into a sacrificial polycrystalline cladding, bringing the core and cladding into a direct bond. The thus-prepared doped crystal core with the undoped crystal cladding was achieved through the abnormal grain-growth process. The presented results provide a general guideline both for controlling crystal growth and for the performance of hybrid materials and provides insights into how one might design single-mode high-power crystal fiber devices.

  14. Tailoring light-sound interactions in a single mode fiber for the high-power transmission or sensing applications

    NASA Astrophysics Data System (ADS)

    Gulistan, Aamir; Rahman, M. M.; Ghosh, Souvik; Rahman, B. M. A.

    2018-03-01

    A full-vectorial numerically efficient Finite Element Method (FEM) based computer code is developed to study complex light-sound interactions in a single mode fiber (SMF). The SBS gain or SBS threshold in a fiber is highly related to the overlap between the optical and acoustic modes. For a typical SMF the acoustic-optic overlap strongly depends on the optical and acoustic mode profiles and it is observed that the acoustic mode is more confined in the core than the optical mode and reported overlap is around 94 % between these fundamental optical and acoustic modes. However, it is shown here that selective co-doping of Aluminum and Germanium in core reduces the acoustic index while keeping the optical index of the same value and thus results in increased acoustic- optic overlap of 99.7%. On the other hand, a design of acoustic anti-guide fiber for high-power transmission systems is also proposed, where the overlap between acoustic and optical modes is reduced. Here, we show that by keeping the optical properties same as a standard SMF and introducing a Boron doped 2nd layer in the cladding, a very low value of 2.7% overlap is achieved. Boron doping in cladding 2nd layer results in a high acoustic index and acoustic modes shifts in the cladding from the core, allowing much high power delivery through this SMF.

  15. All-fiber, single-frequency, and single-mode Er3+:Yb3+ fiber amplifier at 1556  nm core-pumped at 1018  nm.

    PubMed

    Varona, Omar de; Steinke, Michael; Neumann, Jörg; Kracht, Dietmar

    2018-06-01

    Emerging applications, such as gravitational wave astronomy, demand single-frequency lasers with diffraction-limited emission at 1.5 μm. Fiber amplifiers have greatly evolved to fulfill these requirements. Hundreds of watts are feasible using large-mode-area and specialty fibers. However, their application in a few watts to tens of watts in monolithic systems is unnecessarily complex due to the poor commercial availability of fiber components and standard integration procedures. In this Letter we propose and experimentally demonstrate a novel and simple method to amplify single-frequency signals at 1.5 μm up to tens of watts by core-pumping single-mode Er 3+ :Yb 3+ fiber amplifiers at 1018 nm. The proof-of-principle system is tested with different active fibers, lengths, and seed power levels. Over 11 W with an efficiency of more than 48% versus launched power is achieved. Additionally, performance degradation during operation was observed for which photodarkening due to P1 defects might be an explanation.

  16. Coupling Single-Mode Fiber to Uniform and Symmetrically Tapered Thin-Film Waveguide Structures Using Gadolinium Gallium Garnet

    NASA Technical Reports Server (NTRS)

    Gadi, Jagannath; Yalamanchili, Raj; Shahid, Mohammad

    1995-01-01

    The need for high efficiency components has grown significantly due to the expanding role of fiber optic communications for various applications. Integrated optics is in a state of metamorphosis and there are many problems awaiting solutions. One of the main problems being the lack of a simple and efficient method of coupling single-mode fibers to thin-film devices for integrated optics. In this paper, optical coupling between a single-mode fiber and a uniform and tapered thin-film waveguide is theoretically modeled and analyzed. A novel tapered structure presented in this paper is shown to produce perfect match for power transfer.

  17. Simple and reliable light launch from a conventional single-mode fiber into a helical-core fiber through an adiabatically tapered splice.

    PubMed

    Kim, Hyuntai; Kim, Jongki; Jung, Yongmin; Vazquez-Zuniga, Luis Alonso; Lee, Seung Jong; Choi, Geunchang; Oh, Kyunghwan; Wang, Pu; Clarkson, W A; Jeong, Yoonchan

    2012-11-05

    We propose a simple and efficient light launch scheme for a helical-core fiber (HCF) by using an adiabatically tapered splice technique, through which we overcome its inherent difficulty with light launch owing to the large lateral offset and angular tilt of its core. We experimentally demonstrate single-mode excitation in the HCF in this configuration, which yields the coupling efficiency of around -5.9 dB (26%) for a ~1.1-μm light input when the splice joint is tapered down to 30 μm in diameter. To our knowledge, this is the first proof-of-principle report on the fusion-splice coupling between an HCF and a conventional single-mode fiber.

  18. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    PubMed Central

    Reyes, Mauricio; Monzón-Hernández, David; Martínez-Ríos, Alejandro; Silvestre, Enrique; Díez, Antonio; Cruz, José Luis; Andrés, Miguel V.

    2013-01-01

    We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions. PMID:23979478

  19. Compact Mach-Zehnder interferometer based on photonic crystal fiber and its application in switchable multi-wavelength fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Weiguo; Lou, Shuqin; Wang, Liwen; Li, Honglei; Guo, Tieying; Jian, Shuisheng

    2009-08-01

    The compact Mach-Zehnder interferometer is proposed by splicing a section of photonic crystal fiber (PCF) and two pieces of single mode fiber (SMF) with the air-holes of PCF intentionally collapsed in the vicinity of the splices. The depedence of the fringe spacing on the length of PCF is investigated. Based on the Mach-Zehnder interferometer as wavelength-selective filter, a switchable dual-wavelength fiber ring laser is demonstrated with a homemade erbiumdoped fiber amplifier (EDFA) as the gain medium at room temperature. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-and dual -wavelength lasing operations by exploiting polarization hole burning (PHB) effect.

  20. Widely-pulsewidth-tunable ultrashort pulse generation from a birefringent carbon nanotube mode-locked fiber laser.

    PubMed

    Liu, Ya; Zhao, Xin; Liu, Jiansheng; Hu, Guoqing; Gong, Zheng; Zheng, Zheng

    2014-08-25

    We demonstrate the generation of soliton pulses covering a nearly one order-of-magnitude pulsewidth range from a simple carbon nanotube (CNT) mode-locked fiber laser with birefringence. A polarization-maintaining-fiber-pigtailed, inline polarization beam splitter and its associated birefringence is leveraged to either enable additional nonlinear polarization evolution (NPE) mode-locking effect or result in a bandwidth-tunable Lyot filter, through adjusting the intracavity polarization settings. The large pulsewidth tuning range is achieved by exploiting both the nonlinear CNT-NPE hybrid mode-locking mechanism that narrows the pulses and the linear filtering effect that broadens them. Induced vector soliton pulses with pulsewidth from 360 fs to 3 ps can be generated, and their time-bandwidth products indicate they are close to transform-limited.

  1. New multicore low mode noise scrambling fiber for applications in high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Haynes, Dionne M.; Gris-Sanchez, Itandehui; Ehrlich, Katjana; Birks, Tim A.; Giannone, Domenico; Haynes, Roger

    2014-07-01

    We present a new type of multicore fiber (MCF) and photonic lantern that consists of 511 individual cores designed to operate over a broadband visible wavelength range (380-860nm). It combines the coupling efficiency of a multimode fiber with modal stability intrinsic to a single mode fibre. It is designed to provide phase and amplitude scrambling to achieve a stable near field and far field illumination pattern during input coupling variations; it also has low modal noise for increased photometric stability. Preliminary results are presented for the new MCF as well as current state of the art octagonal fiber for comparison.

  2. Spectral dynamics of square pulses in passively mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Semaan, Georges; Komarov, Andrey; Niang, Alioune; Salhi, Mohamed; Sanchez, François

    2018-02-01

    We investigate experimentally and numerically the spectral dynamics of square pulses generated in passively mode-locked fiber lasers under the dissipative soliton resonance. The features of the transition from the single-peak spectral profile to the doublet spectrum with increasing pump power are studied. The used master equation takes into account the gain saturation, the quadratic frequency dispersion of the gain and the refractive index, and the cubic-quintic nonlinearity of the losses and refractive index. Experimental data are obtained for an Er:Yb-doped fiber ring laser. The theoretical and experimental results are in good agreement with each other.

  3. Long-period grating fabricated by periodically tapering standard single-mode fiber.

    PubMed

    Shao, Li-Yang; Zhao, Jian; Dong, Xinyong; Tam, H Y; Lu, C; He, Sailing

    2008-04-01

    We fabricated an asymmetric long-period grating (LPG) by periodically tapering a section of standard single-mode fiber using a resistive filament heating. The LPG exhibits large peak transmission attenuation of -30.31 dB with only 22 periods in a 1.0 cm long optical fiber and possesses unique characteristics for sensing applications. The bending and strain sensitivities are 1.74 nm m and 1.11 pm/mu epsilon, respectively. The polarization dependent loss is large, up to 11.65 dB, which is caused by an asymmetric index profile in the cross section of the tapered LPG.

  4. Multi-wavelength and multiband RE-doped optical fiber source array for WDM-GPON applications

    NASA Astrophysics Data System (ADS)

    Perez-Sanchez, G. G.; Bertoldi-Martins, I.; Gallion, P.; Gosset, C.; Álvarez-Chávez, J. A.

    2013-12-01

    In this paper, a multiband, multi-wavelength, all-fibre source array consisting of an 810nm pump laser diode, thretwo fiber splitters and three segments of Er-, Tm- and Nd-doped fiber is proposed for PON applications. In the set-up, cascaded pairs of standard fiber gratings are used for extracting the required multiple wavelengths within their corresponding bands. A thorough design parameter description, optical array details and full simulation results, such as: full multi-wavelength spectrum, peak and average powers for each generated wavelength, linewidth at FWHM for each generated signal, and individual and overall conversion efficiency, will be included in the manuscript.

  5. Direct detection of the optical field beyond single polarization mode.

    PubMed

    Che, Di; Sun, Chuanbowen; Shieh, William

    2018-02-05

    Direct detection is traditionally regarded as a detection method that recovers only the optical intensity. Compared with coherent detection, it owns a natural advantage-the simplicity-but lacks a crucial capability of field recovery that enables not only the multi-dimensional modulation, but also the digital compensation of the fiber impairments linear with the optical field. Full-field detection is crucial to increase the capacity-distance product of optical transmission systems. A variety of methods have been investigated to directly detect the optical field of the single polarization mode, which normally sends a carrier traveling with the signal for self-coherent detection. The crux, however, is that any optical transmission medium supports at least two propagating modes (e.g. single mode fiber supports two polarization modes), and until now there is no direct detection that can recover the complete set of optical fields beyond one polarization, due to the well-known carrier fading issue after mode demultiplexing induced by the random mode coupling. To avoid the fading, direct detection receivers should recover the signal in an intensity space isomorphic to the optical field without loss of any degrees of freedom, and a bridge should be built between the field and its isomorphic space for the multi-mode field recovery. Based on this thinking, we propose, for the first time, the direct detection of dual polarization modes by a novel receiver concept, the Stokes-space field receiver (SSFR) and its extension, the generalized SSFR for multiple spatial modes. The idea is verified by a dual-polarization field recovery of a polarization-multiplexed complex signal over an 80-km single mode fiber transmission. SSFR can be applied to a much wider range of fields beyond optical communications such as coherent sensing and imaging, where simple field recovery without an extra local laser is desired for enhanced system performance.

  6. Washable hydrophobic smart textiles and multi-material fibers for wireless communication

    NASA Astrophysics Data System (ADS)

    Gorgutsa, Stepan; Bachus, Kyle; LaRochelle, Sophie; Oleschuk, Richard D.; Messaddeq, Younes

    2016-11-01

    This paper reports on the performance and environmental endurance of the recently presented wirelessly communicating smart textiles with integrated multi-material fiber antennas. Metal-glass-polymer fiber composites were fabricated using sub-1 mm hollow-core silica fibers and liquid state silver deposition technique. These fibers were then integrated into textiles in the form of center-fed dipole and loop antennas during standard weaving procedure. Fiber antennas performance was found to be directly comparable to classic ‘rigid’ solutions in terms of return loss, gain and radiation patterns, which allowed transmitting data through Bluetooth protocol at 2.4 GHz frequency. Applied superhydrophobic coatings (water contact angle = 152°, sliding angle = 6°) allow uninterrupted wireless communication of the textiles under direct water application even after multiple washing cycles.

  7. Infrared wavelength dependence of leaky mode losses and steady state distribution in W-type glass optical fibers

    NASA Astrophysics Data System (ADS)

    Djordjevich, Alexandar; Simović, Ana; Savović, Svetislav; Drljača, Branko

    2018-07-01

    Infrared wavelength dependence of leaky mode losses and steady state distribution (SSD) in W-type glass optical fibers (doubly clad fibers with three layers) is investigated in this paper for parametrically varied depths and widths of the fiber's intermediate optical layer. This enables a tailoring of configuration of the W-type fiber to suit an application at hand. We have shown that the proposed W-type fiber has better transmission characteristics at longer infrared wavelengths.

  8. Annealing of linear birefringence in single-mode fiber coils - Application to optical fiber current sensors

    NASA Technical Reports Server (NTRS)

    Tang, Dingding; Rose, A. H.; Day, G. W.; Etzel, Shelley M.

    1991-01-01

    Annealing procedures that greatly reduce linear birefringence in single-mode fiber coils are described. These procedures have been successfully applied to coils ranging from 5 mm to 10 cm in diameter and up to 200 or more turns. They involve temperature cycles that last 3-4 days and reach maximum temperatures of about 850 C. The residual birefringence and induced loss are minimized by proper selection of fiber. The primary application of these coils is optical fiber current sensors, where they yield small sensors that are more stable than those achieved by other techniques. A current sensor with a temperature stability of 8.4 x 10 to the -5th/K over the range from -75 to 145 C has been demonstrated. This is approximately 20 percent greater than the temperature dependence of the Verdet constant. Packaging degrades the stability, but a packaged sensor coil with a temperature stability of about 1.6 + 10 to the -4th/K over the range from -20 to 120 C has also been demonstrated.

  9. Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the ‘elimination’ era

    PubMed Central

    Borlase, Anna; Rudge, James W.

    2017-01-01

    Multi-host infectious agents challenge our abilities to understand, predict and manage disease dynamics. Within this, many infectious agents are also able to use, simultaneously or sequentially, multiple modes of transmission. Furthermore, the relative importance of different host species and modes can itself be dynamic, with potential for switches and shifts in host range and/or transmission mode in response to changing selective pressures, such as those imposed by disease control interventions. The epidemiology of such multi-host, multi-mode infectious agents thereby can involve a multi-faceted community of definitive and intermediate/secondary hosts or vectors, often together with infectious stages in the environment, all of which may represent potential targets, as well as specific challenges, particularly where disease elimination is proposed. Here, we explore, focusing on examples from both human and animal pathogen systems, why and how we should aim to disentangle and quantify the relative importance of multi-host multi-mode infectious agent transmission dynamics under contrasting conditions, and ultimately, how this can be used to help achieve efficient and effective disease control. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289259

  10. Analysis of self-homodyne detection for 6-mode fiber with low-modal crosstalk

    NASA Astrophysics Data System (ADS)

    Guo, Meng; Hu, Guijun

    2017-12-01

    In this paper, we present an appropriate analysis on self-homodyne coherent system with 56 × 5 × 3 Gb / s WDM-PDM-MDM quadrature phase-shift keying (QPSK) signals using 6-mode weakly coupled few mode fiber. The mode division technology can effectively improve the spectral efficiency (SE) of self-homodyne detection. Of all the LP modes, LP01 mode is used to transmit the pilot tone (PT), while the others for signal channels. The influence of inter-mode crosstalk is analyzed. The proposed frequency domain MMA shows a better BER performance for intra-mode crosstalk elimination. The path-length misalignment's influence caused by mode differential group delay (MDGD) is also investigated. The system tolerance for different laser's line-width is compared as well as the influence of PT filter's bandwidth.

  11. High-order orbital angular momentum mode generator based on twisted photonic crystal fiber.

    PubMed

    Fu, Cailing; Liu, Shen; Wang, Ying; Bai, Zhiyong; He, Jun; Liao, Changrui; Zhang, Yan; Zhang, Feng; Yu, Bin; Gao, Shecheng; Li, Zhaohui; Wang, Yiping

    2018-04-15

    High-order orbital angular momentum (OAM) modes, namely, OAM +5 and OAM +6 , were generated and demonstrated experimentally by twisting a solid-core hexagonal photonic crystal fiber (PCF) during hydrogen-oxygen flame heating. Leaky orbital resonances in the cladding depend strongly on the twist rate and length of the helical PCF. Moreover, the generated high-order OAM mode could be a polarized mode. The secret of the successful observation of high-order modes is that leaky orbital resonances in the twisted PCF cladding have a high coupling efficiency of more than -20  dB.

  12. 1.6 μm dissipative soliton fiber laser mode-locked by cesium lead halide perovskite quantum dots.

    PubMed

    Liu, Bang; Gao, Lei; Cheng, Wei Wei; Tang, Xiao Sheng; Gao, Chao; Cao, Yu Long; Li, Yu Jia; Zhu, Tao

    2018-03-19

    We demonstrate a stable, picosecond fiber laser mode-locked by cesium lead halide perovskite quantum dots (CsPbBr 3 -QDs). The saturable absorber is produced by depositing the CsPbBr3-QDs nanocrystals onto the endface of a fiber ferrule through light pressure. A balanced two-detector measurement shows that it has a modulation depth of 2.5% and a saturation power of 17.29 MW/cm 2 . After incorporating the fabricated device into an Er 3+ -doped fiber ring cavity with a net normal dispersion of 0.238 ps 2 , we obtain stable dissipative soliton with a pulse duration of 14.4 ps and a center wavelength at 1600 nm together with an edge-to-dege bandwidth of 4.5 nm. The linear chirped phase can be compensated by 25 m single mode fiber, resulting into a compressed pulse duration of 1.046 ps. This experimental works proves that such CsPbBr3-QDs materials are effective choice for ultrafast laser operating with devious mode-locking states.

  13. Carbon nanotube-based mode-locked wavelength-switchable fiber laser via net gain cross section alteration

    NASA Astrophysics Data System (ADS)

    Latif, A. A.; Mohamad, H.; Abu Bakar, M. H.; Muhammad, F. D.; Mahdi, M. A.

    2016-02-01

    We have proposed and demonstrated a carbon nanotube-based mode-locked erbium-doped fiber laser with switchable wavelength in the C-band wavelength region by varying the net gain cross section of erbium. The carbon nanotube is coated on a tapered fiber to form the saturable absorber for the purpose of mode-locking by exploiting the concept of evanescent field interaction on the tapered fiber with the carbon nanotube in a ring cavity configuration. The propagation loss is adjusted by inducing macrobend losses of the optical fiber in the cavity through a fiber spooling technique. Since the spooling radius can be gradually adjusted to achieve continuous tuning of attenuation, this passive tuning approach can be an alternative to optical tunable attenuator, with freedom of external device integration into the laser cavity. Based on this alteration, the net gain cross section of the laser system can be tailored to three different lasing wavelength ranges; 1533, 1560 nm and both (1533 and 1560 nm) with the minimum pulse duration of 734 fs. The proposed design is simple and stable with high beam quality and good reliability for multiple applications.

  14. Yb-doped passively mode-locked fiber laser with Bi2Te3-deposited

    NASA Astrophysics Data System (ADS)

    Li, Lu; Yan, Pei-Guang; Wang, Yong-Gang; Duan, Li-Na; Sun, Hang; Si, Jin-Hai

    2015-12-01

    In this study we present an all-normal-dispersion Yb-doped fiber laser passively mode-locked with topological insulator (Bi2Te3) saturable absorber. The saturable absorber device is fabricated by depositing Bi2Te3 on a tapered fiber through using pulsed laser deposition (PLD) technology, which can give rise to less non-saturable losses than most of the solution processing methods. Owing to the long interaction length, Bi2Te3 is not exposed to high optical power, which allows the saturable absorber device to work in a high power regime. The modulation depth of this kind of saturable absorber is measured to be 10%. By combining the saturable absorber device with Yb-doped fiber laser, a mode-locked pulse operating at a repetition rate of 19.8 MHz is achieved. The 3-dB spectral width and pulse duration are measured to be 1.245 nm and 317 ps, respectively. Project supported by the National Natural Science Foundation of China (Grant No. 61378024) and the Natural Science Fund of Guangdong Province, China (Grant No. S2013010012235).

  15. Observation and discrimination of the mode patterns in a micron-sized hollow optical fiber and its synthetic measurements: far-field micro-imaging technique

    NASA Astrophysics Data System (ADS)

    Yin, Jianping; Kim, Kihwan; Shim, Wooshik; Zhu, Yifu; Jhe, Wonho

    1998-08-01

    We report a far-field micro-imaging technique that is used for the observation and discrimination of the mode patterns in a micron-sized hollow optical fiber as well as for the synthetic measurement of the fiber. By using an M-20X microscope objective lens, we obtained images, magnified by a factor of about 460, from the mode patterns at an output end facet of the hollow fiber with relative measurement accuracy better than 3%. This method can be used for clear identification of the mode patterns in the hollow fiber and detailed study of the relationship between the excitation conditions and the excited modes in the hollow fiber. Moreover, it is useful for the measurement of the geometrical sizes of the hollow fiber end and for testing the coupling efficiencies of the core and cladding modes in their mixed mode pattern. In addition, this method can be also used in the generation of a dark hollow laser beam with 10-micrometers dark-spot size and the measurement of the focused- spot size of a Gaussian laser beam with about 1-micrometers diameter.

  16. Limiting of microjoule femtosecond pulses in air-guided modes of a hollow photonic-crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konorov, S.O.; Serebryannikov, E.E.; Sidorov-Biryukov, D.A.

    Self-phase-modulation-induced spectral broadening of laser pulses in air-guided modes of hollow photonic-crystal fibers (PCFs) is shown to allow the creation of fiber-optic limiters for high-intensity ultrashort laser pulses. The performance of PCF limiters is analyzed in terms of elementary theory of self-phase modulation. Experiments performed with 100 fs microjoule pulses of 800 nm Ti:sapphire laser radiation demonstrate the potential of hollow PCFs as limiters for 10 MW ultrashort laser pulses and show the possibility to switch the limiting level of output radiation energy by guiding femtosecond pulses in different PCF modes.

  17. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array

    PubMed Central

    Navruz, Isa; Coskun, Ahmet F.; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan

    2013-01-01

    We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ∼9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ∼3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also gets rid of spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears. PMID:23939637

  18. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.

    PubMed

    Navruz, Isa; Coskun, Ahmet F; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan

    2013-10-21

    We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.

  19. A double-taper optical fiber-based radiation wave other than evanescent wave in all-fiber immunofluorescence biosensor for quantitative detection of Escherichia coli O157:H7.

    PubMed

    Zhang, Zhonghuan; Hua, Fei; Liu, Ting; Zhao, Yong; Li, Jun; Yang, Ruifu; Yang, Changxi; Zhou, Lei

    2014-01-01

    Cylindrical or taper-and-cylinder combination optical fiber probe based on evanescent wave has been widely used for immunofluorescence biosensor to detect various analytes. In this study, in contrast to the contradiction between penetration depth and analyte diameter of optical fiber probe-based evanescent wave, we demonstrate that double-taper optical fiber used in a radiation wave-based all-fiber immunofluorescence biosensor (RWAIB) can detect micron-scale analytes using Escherichia coli O157:H7 as representative target. Finite-difference time-domain method was used to compare the properties of evanescent wave and radiation wave (RW). Ray-tracing model was formulated to optimize the taper geometry of the probe. Based on a commercial multi-mode fiber, a double-taper probe was fabricated and connected with biosensor through a "ferrule connector" optical fiber connector. The RWAIB configuration was accomplished using commercial multi-mode fibers and fiber-based devices according to the "all-fiber" method. The standard sample tests revealed that the sensitivity of the proposed technique for E. coli O157:H7 detection was 10(3) cfu · mL(-1). Quantitation could be achieved within the concentration range of 10(3) cfu · mL(-1) to 107 cfu · mL(-1). No non-specific recognition to ten kinds of food-borne pathogens was observed. The results demonstrated that based on the double-taper optical fiber RWAIB can be used for the quantitative detection of micron-scale targets, and RW sensing is an alternative for traditional evanescent wave sensing during the fabrication of fiber-optic biosensors.

  20. Switchable multiwavelength erbium-doped photonic crystal fiber ring laser based on a length of polarization-maintaining photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Ruan, Shuangchen

    2011-11-01

    A switchable multi-wavelength Erbium-doped photonic crystal fiber (ED-PCF) ring laser based on a length of polarization-maintaining photonic crystal fiber(PM-PCF) is presented and demonstrated experimentally. A segment of ED-PCF is used as linear gain medium in the resonant cavity. Due to the polarization hole burning (PHB) caused by the PM-PCF and a polarization controller (PC), the laser can operate in stable dual- or triple- wavelength modes at room temperature. The optical signal-to-noise ratio (OSNR) of the laser without any wavelength-selective components is greater than 30 dB. The amplitude variations of lasing peaks in ten minutes are less than 0.26dB for two different operating modes.