A Global Sensitivity Analysis Methodology for Multi-physics Applications
Tong, C H; Graziani, F R
2007-02-02
Experiments are conducted to draw inferences about an entire ensemble based on a selected number of observations. This applies to both physical experiments as well as computer experiments, the latter of which are performed by running the simulation models at different input configurations and analyzing the output responses. Computer experiments are instrumental in enabling model analyses such as uncertainty quantification and sensitivity analysis. This report focuses on a global sensitivity analysis methodology that relies on a divide-and-conquer strategy and uses intelligent computer experiments. The objective is to assess qualitatively and/or quantitatively how the variabilities of simulation output responses can be accounted for by input variabilities. We address global sensitivity analysis in three aspects: methodology, sampling/analysis strategies, and an implementation framework. The methodology consists of three major steps: (1) construct credible input ranges; (2) perform a parameter screening study; and (3) perform a quantitative sensitivity analysis on a reduced set of parameters. Once identified, research effort should be directed to the most sensitive parameters to reduce their uncertainty bounds. This process is repeated with tightened uncertainty bounds for the sensitive parameters until the output uncertainties become acceptable. To accommodate the needs of multi-physics application, this methodology should be recursively applied to individual physics modules. The methodology is also distinguished by an efficient technique for computing parameter interactions. Details for each step will be given using simple examples. Numerical results on large scale multi-physics applications will be available in another report. Computational techniques targeted for this methodology have been implemented in a software package called PSUADE.
Partitioned coupling strategies for multi-physically coupled radiative heat transfer problems
NASA Astrophysics Data System (ADS)
Wendt, Gunnar; Erbts, Patrick; Düster, Alexander
2015-11-01
This article aims to propose new aspects concerning a partitioned solution strategy for multi-physically coupled fields including the physics of thermal radiation. Particularly, we focus on the partitioned treatment of electro-thermo-mechanical problems with an additional fourth thermal radiation field. One of the main goals is to take advantage of the flexibility of the partitioned approach to enable combinations of different simulation software and solvers. Within the frame of this article, we limit ourselves to the case of nonlinear thermoelasticity at finite strains, using temperature-dependent material parameters. For the thermal radiation field, diffuse radiating surfaces and gray participating media are assumed. Moreover, we present a robust and fast partitioned coupling strategy for the fourth field problem. Stability and efficiency of the implicit coupling algorithm are improved drawing on several methods to stabilize and to accelerate the convergence. To conclude and to review the effectiveness and the advantages of the additional thermal radiation field several numerical examples are considered to study the proposed algorithm. In particular we focus on an industrial application, namely the electro-thermo-mechanical modeling of the field-assisted sintering technology.
Specification of the Advanced Burner Test Reactor Multi-Physics Coupling Demonstration Problem
Shemon, E. R.; Grudzinski, J. J.; Lee, C. H.; Thomas, J. W.; Yu, Y. Q.
2015-12-21
This document specifies the multi-physics nuclear reactor demonstration problem using the SHARP software package developed by NEAMS. The SHARP toolset simulates the key coupled physics phenomena inside a nuclear reactor. The PROTEUS neutronics code models the neutron transport within the system, the Nek5000 computational fluid dynamics code models the fluid flow and heat transfer, and the DIABLO structural mechanics code models structural and mechanical deformation. The three codes are coupled to the MOAB mesh framework which allows feedback from neutronics, fluid mechanics, and mechanical deformation in a compatible format.
Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit
Merzari, E.; Shemon, E. R.; Yu, Y. Q.; Thomas, J. W.; Obabko, A.; Jain, Rajeev; Mahadevan, Vijay; Tautges, Timothy; Solberg, Jerome; Ferencz, Robert Mark; Whitesides, R.
2015-12-21
This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models of a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.
DAG Software Architectures for Multi-Scale Multi-Physics Problems at Petascale and Beyond
NASA Astrophysics Data System (ADS)
Berzins, Martin
2015-03-01
The challenge of computations at Petascale and beyond is to ensure how to make possible efficient calculations on possibly hundreds of thousands for cores or on large numbers of GPUs or Intel Xeon Phis. An important methodology for achieving this is at present thought to be that of asynchronous task-based parallelism. The success of this approach will be demonstrated using the Uintah software framework for the solution of coupled fluid-structure interaction problems with chemical reactions. The layered approach of this software makes it possible for the user to specify the physical problems without parallel code, for that specification to be translated into a parallel set of tasks. These tasks are executed using a runtime system that executes tasks asynchronously and sometimes out-of-order. The scalability and portability of this approach will be demonstrated using examples from large scale combustion problems, industrial detonations and multi-scale, multi-physics models. The challenges of scaling such calculations to the next generations of leadership class computers (with more than a hundred petaflops) will be discussed. Thanks to NSF, XSEDE, DOE NNSA, DOE NETL, DOE ALCC and DOE INCITE.
NASA Astrophysics Data System (ADS)
Spiegelman, M. W.; Wilson, C. R.; Van Keken, P. E.
2013-12-01
We announce the release of a new software infrastructure, TerraFERMA, the Transparent Finite Element Rapid Model Assembler for the exploration and solution of coupled multi-physics problems. The design of TerraFERMA is driven by two overarching computational needs in Earth sciences. The first is the need for increased flexibility in both problem description and solution strategies for coupled problems where small changes in model assumptions can often lead to dramatic changes in physical behavior. The second is the need for software and models that are more transparent so that results can be verified, reproduced and modified in a manner such that the best ideas in computation and earth science can be more easily shared and reused. TerraFERMA leverages three advanced open-source libraries for scientific computation that provide high level problem description (FEniCS), composable solvers for coupled multi-physics problems (PETSc) and a science neutral options handling system (SPuD) that allows the hierarchical management of all model options. TerraFERMA integrates these libraries into an easier to use interface that organizes the scientific and computational choices required in a model into a single options file, from which a custom compiled application is generated and run. Because all models share the same infrastructure, models become more reusable and reproducible. TerraFERMA inherits much of its functionality from the underlying libraries. It currently solves partial differential equations (PDE) using finite element methods on simplicial meshes of triangles (2D) and tetrahedra (3D). The software is particularly well suited for non-linear problems with complex coupling between components. We demonstrate the design and utility of TerraFERMA through examples of thermal convection and magma dynamics. TerraFERMA has been tested successfully against over 45 benchmark problems from 7 publications in incompressible and compressible convection, magmatic solitary waves
Final report on LDRD project : coupling strategies for multi-physics applications.
Hopkins, Matthew Morgan; Moffat, Harry K.; Carnes, Brian; Hooper, Russell Warren; Pawlowski, Roger P.
2007-11-01
Many current and future modeling applications at Sandia including ASC milestones will critically depend on the simultaneous solution of vastly different physical phenomena. Issues due to code coupling are often not addressed, understood, or even recognized. The objectives of the LDRD has been both in theory and in code development. We will show that we have provided a fundamental analysis of coupling, i.e., when strong coupling vs. a successive substitution strategy is needed. We have enabled the implementation of tighter coupling strategies through additions to the NOX and Sierra code suites to make coupling strategies available now. We have leveraged existing functionality to do this. Specifically, we have built into NOX the capability to handle fully coupled simulations from multiple codes, and we have also built into NOX the capability to handle Jacobi Free Newton Krylov simulations that link multiple applications. We show how this capability may be accessed from within the Sierra Framework as well as from outside of Sierra. The critical impact from this LDRD is that we have shown how and have delivered strategies for enabling strong Newton-based coupling while respecting the modularity of existing codes. This will facilitate the use of these codes in a coupled manner to solve multi-physic applications.
NASA Astrophysics Data System (ADS)
Spiegelman, M.; Wilson, C. R.
2011-12-01
A quantitative theory of magma production and transport is essential for understanding the dynamics of magmatic plate boundaries, intra-plate volcanism and the geochemical evolution of the planet. It also provides one of the most challenging computational problems in solid Earth science, as it requires consistent coupling of fluid and solid mechanics together with the thermodynamics of melting and reactive flows. Considerable work on these problems over the past two decades shows that small changes in assumptions of coupling (e.g. the relationship between melt fraction and solid rheology), can have profound changes on the behavior of these systems which in turn affects critical computational choices such as discretizations, solvers and preconditioners. To make progress in exploring and understanding this physically rich system requires a computational framework that allows more flexible, high-level description of multi-physics problems as well as increased flexibility in composing efficient algorithms for solution of the full non-linear coupled system. Fortunately, recent advances in available computational libraries and algorithms provide a platform for implementing such a framework. We present results from a new model building system that leverages functionality from both the FEniCS project (www.fenicsproject.org) and PETSc libraries (www.mcs.anl.gov/petsc) along with a model independent options system and gui, Spud (amcg.ese.ic.ac.uk/Spud). Key features from FEniCS include fully unstructured FEM with a wide range of elements; a high-level language (ufl) and code generation compiler (FFC) for describing the weak forms of residuals and automatic differentiation for calculation of exact and approximate jacobians. The overall strategy is to monitor/calculate residuals and jacobians for the entire non-linear system of equations within a global non-linear solve based on PETSc's SNES routines. PETSc already provides a wide range of solvers and preconditioners, from
Module-based Hybrid Uncertainty Quantification for Multi-physics Applications: Theory and Software
Tong, Charles; Chen, Xiao; Iaccarino, Gianluca; Mittal, Akshay
2013-10-08
In this project we proposed to develop an innovative uncertainty quantification methodology that captures the best of the two competing approaches in UQ, namely, intrusive and non-intrusive approaches. The idea is to develop the mathematics and the associated computational framework and algorithms to facilitate the use of intrusive or non-intrusive UQ methods in different modules of a multi-physics multi-module simulation model in a way that physics code developers for different modules are shielded (as much as possible) from the chores of accounting for the uncertain ties introduced by the other modules. As the result of our research and development, we have produced a number of publications, conference presentations, and a software product.
A theory manual for multi-physics code coupling in LIME.
Belcourt, Noel; Bartlett, Roscoe Ainsworth; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren
2011-03-01
The Lightweight Integrating Multi-physics Environment (LIME) is a software package for creating multi-physics simulation codes. Its primary application space is when computer codes are currently available to solve different parts of a multi-physics problem and now need to be coupled with other such codes. In this report we define a common domain language for discussing multi-physics coupling and describe the basic theory associated with multiphysics coupling algorithms that are to be supported in LIME. We provide an assessment of coupling techniques for both steady-state and time dependent coupled systems. Example couplings are also demonstrated.
Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications
NASA Astrophysics Data System (ADS)
Kenjereš, Saša
2014-08-01
We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex blood flow patterns in the patient-specific vascular system (carotid artery bifurcation) and transfer of the so-called "bad" cholesterol (low-density lipoprotein, LDL) within the multi-layered artery wall. This two-way coupling between the blood flow and corresponding mass transfer of LDL within the artery wall is essential for predictions of regions where atherosclerosis can develop. It is demonstrated that a recently developed mathematical model, which takes into account the complex multi-layer arterial-wall structure, produced LDL profiles within the artery wall in good agreement with in-vivo experiments in rabbits, and it can be used for predictions of locations where the initial stage of development of atherosclerosis may take place. The second example includes a combination of pulsating blood flow and medical drug delivery and deposition controlled by external magnetic field gradients in the patient specific carotid artery bifurcation. The results of numerical simulations are compared with own PIV (Particle Image Velocimetry) and MRI (Magnetic Resonance Imaging) in the PDMS (silicon-based organic polymer) phantom. A very good agreement between simulations and experiments is obtained for different stages of the pulsating cycle. Application of the magnetic drug targeting resulted in an increase of up to ten fold in the efficiency of local deposition of the medical drug at desired locations. Finally, the LES (Large Eddy Simulation) of the aerosol distribution within the human respiratory system that includes up to eight bronchial generations is performed. A very good agreement between simulations and MRV (Magnetic Resonance Velocimetry) measurements is obtained
NASA Astrophysics Data System (ADS)
Huang, J. H.; Wang, X. J.; Wang, J.
2016-02-01
The primary purpose of this paper is to propose a mathematical model of PLZT ceramic with coupled multi-physics fields, e.g. thermal, electric, mechanical and light field. To this end, the coupling relationships of multi-physics fields and the mechanism of some effects resulting in the photostrictive effect are analyzed theoretically, based on which a mathematical model considering coupled multi-physics fields is established. According to the analysis and experimental results, the mathematical model can explain the hysteresis phenomenon and the variation trend of the photo-induced voltage very well and is in agreement with the experimental curves. In addition, the PLZT bimorph is applied as an energy transducer for a photovoltaic-electrostatic hybrid actuated micromirror, and the relation of the rotation angle and the photo-induced voltage is discussed based on the novel photostrictive mathematical model.
Salko, Robert K; Schmidt, Rodney; Avramova, Maria N
2014-01-01
This paper describes major improvements to the computational infrastructure of the CTF sub-channel code so that full-core sub-channel-resolved simulations can now be performed in much shorter run-times, either in stand-alone mode or as part of coupled-code multi-physics calculations. These improvements support the goals of the Department Of Energy (DOE) Consortium for Advanced Simulations of Light Water (CASL) Energy Innovation Hub to develop high fidelity multi-physics simulation tools for nuclear energy design and analysis. A set of serial code optimizations--including fixing computational inefficiencies, optimizing the numerical approach, and making smarter data storage choices--are first described and shown to reduce both execution time and memory usage by about a factor of ten. Next, a Single Program Multiple Data (SPMD) parallelization strategy targeting distributed memory Multiple Instruction Multiple Data (MIMD) platforms and utilizing domain-decomposition is presented. In this approach, data communication between processors is accomplished by inserting standard MPI calls at strategic points in the code. The domain decomposition approach implemented assigns one MPI process to each fuel assembly, with each domain being represented by its own CTF input file. The creation of CTF input files, both for serial and parallel runs, is also fully automated through use of a pre-processor utility that takes a greatly reduced set of user input over the traditional CTF input file. To run CTF in parallel, two additional libraries are currently needed; MPI, for inter-processor message passing, and the Parallel Extensible Toolkit for Scientific Computation (PETSc), which is leveraged to solve the global pressure matrix in parallel. Results presented include a set of testing and verification calculations and performance tests assessing parallel scaling characteristics up to a full core, sub-channel-resolved model of Watts Bar Unit 1 under hot full-power conditions (193 17x17
Multi-physical Simulation of Laser Welding
NASA Astrophysics Data System (ADS)
Vázquez, Rodrigo Gómez; Koch, Holger M.; Otto, Andreas
Laser welding is a highly demanded technology for manufacturing of body parts in the automotive industry. Application of powerful multi-physical simulation models permits detailed investigation of the laser process avoiding intricate experimental setups and procedures. Features like the degree of power coupling, keyhole evolution or currents inside the melt pool can be analyzed easily. The implementation of complex physical phenomena, like multi-reflection absorption provides insight into process characteristics under selectable conditions and yields essential information concerning the driving mechanisms. The implementation of additional physical models e. g. for diffusion discloses new potential for investigating welding of dissimilar materials. In this paper we present a computational study of laser welding for different conditions. Applied to a real case model predictions show good agreement with experimental results. Initial tests including species diffusion during welding of dissimilar materials are also presented.
Mechanics: Ideas, problems, applications
NASA Astrophysics Data System (ADS)
Ishlinskii, A. Iu.
The book contains the published articles and reports by academician Ishlinskii which deal with the concepts and ideas of modern mechanics, its role in providing a general understanding of the natural phenomena, and its applications to various problems in science and engineering. Attention is given to the methodological aspects of mechanics, to the history of the theories of plasticity, friction, gyroscopic and inertial systems, and inertial navigation, and to mathematical methods in mechanics. The book also contains essays on some famous scientists and engineers.
NASA Astrophysics Data System (ADS)
Khuwaileh, Bassam
High fidelity simulation of nuclear reactors entails large scale applications characterized with high dimensionality and tremendous complexity where various physics models are integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). Each of the coupled modules represents a high fidelity formulation of the first principles governing the physics of interest. Therefore, new developments in high fidelity multi-physics simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount to the development and competitiveness of reactors achieved through enhanced understanding of the design and safety margins. Accordingly, this dissertation introduces efficient and scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics reactor design and safety problems. This dissertation builds upon previous efforts for adaptive core simulation and reduced order modeling algorithms and extends these efforts towards coupled multi-physics models with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order models. This can be achieved via identifying the important/influential degrees of freedom (DoF) via the subspace analysis, such that the required analysis can be recast by considering the important DoF only. In this dissertation, efficient algorithms for lower dimensional subspace construction have been developed for single physics and multi-physics applications with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) and inverse problems (DA and TAA). Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy assessment and data assimilation analysis can be performed accurately and efficiently for large scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a Karhunen-Loeve (KL
Fracture Characterization through Multi-Physics Joint Inversion
NASA Astrophysics Data System (ADS)
Finsterle, S.; Edmiston, J. K.; Zhang, Y.
2014-12-01
Natural and man-made fractures tend to significantly impact the behavior of a subsurface system - with both desirable and undesirable consequences. Thus, the description, characterization, and prediction of fractured systems requires careful conceptualization and a defensible modeling approach that is tailored to the objectives of a specific application. We review some of these approaches and the related data needs, and discuss the use of multi-physics joint inversion techniques to identify and characterize the relevant features of the fracture system. In particular, we demonstrate the potential use of a non-isothermal, multiphase flow simulator coupled to a thermo-poro-elastic model for the calculation of observable deformations during injection-production operations. This model is integrated into a joint inversion framework for the estimation of geometrical, hydrogeological, rockmechanical, thermal, and statistical parameters representing the fractured porous medium.
Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models
Cetiner, Mustafa Sacit; none,; Flanagan, George F.; Poore III, Willis P.; Muhlheim, Michael David
2014-07-30
An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.
Modelling transport phenomena in a multi-physics context
NASA Astrophysics Data System (ADS)
Marra, Francesco
2015-01-01
Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.
Modelling transport phenomena in a multi-physics context
Marra, Francesco
2015-01-22
Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Chenna, V.; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.; Yavari, R.
2014-11-01
To help overcome the problem of horizontal-axis wind-turbine (HAWT) gear-box roller-bearing premature-failure, the root causes of this failure are currently being investigated using mainly laboratory and field-test experimental approaches. In the present work, an attempt is made to develop complementary computational methods and tools which can provide additional insight into the problem at hand (and do so with a substantially shorter turn-around time). Toward that end, a multi-physics computational framework has been developed which combines: (a) quantum-mechanical calculations of the grain-boundary hydrogen-embrittlement phenomenon and hydrogen bulk/grain-boundary diffusion (the two phenomena currently believed to be the main contributors to the roller-bearing premature-failure); (b) atomic-scale kinetic Monte Carlo-based calculations of the hydrogen-induced embrittling effect ahead of the advancing crack-tip; and (c) a finite-element analysis of the damage progression in, and the final failure of a prototypical HAWT gear-box roller-bearing inner raceway. Within this approach, the key quantities which must be calculated using each computational methodology are identified, as well as the quantities which must be exchanged between different computational analyses. The work demonstrates that the application of the present multi-physics computational framework enables prediction of the expected life of the most failure-prone HAWT gear-box bearing elements.
Multi-Physics Analysis of the Fermilab Booster RF Cavity
Awida, M.; Reid, J.; Yakovlev, V.; Lebedev, V.; Khabiboulline, T.; Champion, M.; /Fermilab
2012-05-14
After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.
Problems of applicability of statistical methods in cosmology
Levin, S. F.
2015-12-15
The problems arising from the incorrect formulation of measuring problems of identification for cosmological models and violations of conditions of applicability of statistical methods are considered.
Solid Oxide Fuel Cell - Multi-Physics and GUI
2013-10-10
SOFC-MP is a simulation tool developed at PNNL to evaluate the tightly coupled multi-physical phenomena in SOFCs. The purpose of the tool is to allow SOFC manufacturers to numerically test changes in planar stack design to meet DOE technical targets. The SOFC-MP 2D module is designed for computational efficiency to enable rapid engineering evaluations for operation of tall symmetric stacks. It can quickly compute distributions for the current density, voltage, temperature, and species composition in tall stacks with co-flow or counter-flow orientations. The 3D module computes distributions in entire 3D domain and handles all planner configurations: co-flow, counter-flow, and cross-flow. The detailed data from 3D simulation can be used as input for structural analysis. SOFC-MP GUI integrates both 2D and 3D modules, and it provides user friendly pre-processing and post-processing capabilities.
Lithium-Ion Battery Safety Study Using Multi-Physics Internal Short-Circuit Model (Presentation)
Kim, G-.H.; Smith, K.; Pesaran, A.
2009-06-01
This presentation outlines NREL's multi-physics simulation study to characterize an internal short by linking and integrating electrochemical cell, electro-thermal, and abuse reaction kinetics models.
Recent research in network problems with applications
NASA Technical Reports Server (NTRS)
Thompson, G. L.
1980-01-01
The capabilities of network codes and their extensions are surveyed in regard to specially structured integer programming problems which are solved by using the solutions of a series of ordinary network problems.
Applications of Symmetry to Problem Solving.
ERIC Educational Resources Information Center
Leikin, Roza; Berman, Abraham; Zaslavsky, Orit
2000-01-01
Symmetry is an important mathematical concept that plays an extremely important role as a problem solving technique. Presents examples of problems from several branches of mathematics that can be solved using different types of symmetry. Discusses teachers' attitudes and beliefs regarding the use of symmetry in the solutions of these problems.…
Solid Oxide Fuel Cell - Multi-Physics and GUI
Energy Science and Technology Software Center (ESTSC)
2013-10-10
SOFC-MP is a simulation tool developed at PNNL to evaluate the tightly coupled multi-physical phenomena in SOFCs. The purpose of the tool is to allow SOFC manufacturers to numerically test changes in planar stack design to meet DOE technical targets. The SOFC-MP 2D module is designed for computational efficiency to enable rapid engineering evaluations for operation of tall symmetric stacks. It can quickly compute distributions for the current density, voltage, temperature, and species composition inmore » tall stacks with co-flow or counter-flow orientations. The 3D module computes distributions in entire 3D domain and handles all planner configurations: co-flow, counter-flow, and cross-flow. The detailed data from 3D simulation can be used as input for structural analysis. SOFC-MP GUI integrates both 2D and 3D modules, and it provides user friendly pre-processing and post-processing capabilities.« less
Application of boundary integral equations to elastoplastic problems
NASA Technical Reports Server (NTRS)
Mendelson, A.; Albers, L. U.
1975-01-01
The application of boundary integral equations to elastoplastic problems is reviewed. Details of the analysis as applied to torsion problems and to plane problems is discussed. Results are presented for the elastoplastic torsion of a square cross section bar and for the plane problem of notched beams. A comparison of different formulations as well as comparisons with experimental results are presented.
The thrust minimization problem and its applications
NASA Astrophysics Data System (ADS)
Ivanyukhin, A. V.; Petukhov, V. G.
2015-07-01
An indirect approach to the optimization of trajectories with finite thrust based on Pontryagin's maximum principle is discussed. The optimization is aimed at calculating the minimum thrust for a point-to-point flight completed within a given interval of time with a constant exhaust velocity and a constant power. This may help calculate the region of existence of the optimum trajectory with thrust switching: it is evident that the latter problem may be solved if minimum thrust is lower than or equal to the available thrust in the problem with switching. A technique for calculating the optimum trajectories with a finite thrust by solving the problem of minimization of the thrust acceleration with a subsequent numerical continuation with respect to the mass flow towards the thrust minimization problem is proposed. This technique offers an opportunity to detect degeneracies associated with the lack of thrust or specific impulse. In effect, it allows one to calculate the boundaries of the region of existence of trajectories with thrust switching and thus makes it possible to automate the process of solving the problem of optimization of trajectories with thrust switching.
Applications of NASTRAN to nuclear problems
NASA Technical Reports Server (NTRS)
Spreeuw, E.
1972-01-01
The extent to which suitable solutions may be obtained for one physics problem and two engineering type problems is traced. NASTRAN appears to be a practical tool to solve one-group steady-state neutron diffusion equations. Transient diffusion analysis may be performed after new levels that allow time-dependent temperature calculations are developed. NASTRAN piecewise linear anlaysis may be applied to solve those plasticity problems for which a smooth stress-strain curve can be used to describe the nonlinear material behavior. The accuracy decreases when sharp transitions in the stress-strain relations are involved. Improved NASTRAN usefulness will be obtained when nonlinear material capabilities are extended to axisymmetric elements and to include provisions for time-dependent material properties and creep analysis. Rigid formats 3 and 5 proved to be very convenient for the buckling and normal-mode analysis of a nuclear fuel element.
The Atmospheric Sciences: Problems and Applications.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Committee on Atmospheric Sciences.
Over the years, the Committee on Atmospheric Sciences of the National Research Council has published a number of scientific and technical reports dealing with many aspects of the atmospheric sciences. This publication is an attempt to present to a broad audience this information about problems and research in the atmospheric sciences. Chapters…
A novel medical image data-based multi-physics simulation platform for computational life sciences
Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels
2013-01-01
Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models. PMID:24427518
A novel medical image data-based multi-physics simulation platform for computational life sciences.
Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels
2013-04-01
Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models. PMID:24427518
NASA Astrophysics Data System (ADS)
Bishay, Peter L.; Dong, Leiting; Atluri, Satya N.
2014-11-01
Conceptually simple and computationally most efficient polygonal computational grains with voids/inclusions are proposed for the direct numerical simulation of the micromechanics of piezoelectric composite/porous materials with non-symmetrical arrangement of voids/inclusions. These are named "Multi-Physics Computational Grains" (MPCGs) because each "mathematical grain" is geometrically similar to the irregular shapes of the physical grains of the material in the micro-scale. So each MPCG element represents a grain of the matrix of the composite and can include a pore or an inclusion. MPCG is based on assuming independent displacements and electric-potentials in each cell. The trial solutions in each MPCG do not need to satisfy the governing differential equations, however, they are still complete, and can efficiently model concentration of electric and mechanical fields. MPCG can be used to model any generally anisotropic material as well as nonlinear problems. The essential idea can also be easily applied to accurately solve other multi-physical problems, such as complex thermal-electro-magnetic-mechanical materials modeling. Several examples are presented to show the capabilities of the proposed MPCGs and their accuracy.
Fractal applications to complex crustal problems
NASA Technical Reports Server (NTRS)
Turcotte, Donald L.
1989-01-01
Complex scale-invariant problems obey fractal statistics. The basic definition of a fractal distribution is that the number of objects with a characteristic linear dimension greater than r satisfies the relation N = about r exp -D where D is the fractal dimension. Fragmentation often satisfies this relation. The distribution of earthquakes satisfies this relation. The classic relationship between the length of a rocky coast line and the step length can be derived from this relation. Power law relations for spectra can also be related to fractal dimensions. Topography and gravity are examples. Spectral techniques can be used to obtain maps of fractal dimension and roughness amplitude. These provide a quantitative measure of texture analysis. It is argued that the distribution of stress and strength in a complex crustal region, such as the Alps, is fractal. Based on this assumption, the observed frequency-magnitude relation for the seismicity in the region can be derived.
An RCM multi-physics ensemble over Europe: multi-variable evaluation to avoid error compensation
NASA Astrophysics Data System (ADS)
García-Díez, Markel; Fernández, Jesús; Vautard, Robert
2015-12-01
Regional Climate Models are widely used tools to add detail to the coarse resolution of global simulations. However, these are known to be affected by biases. Usually, published model evaluations use a reduced number of variables, frequently precipitation and temperature. Due to the complexity of the models, this may not be enough to assess their physical realism (e.g. to enable a fair comparison when weighting ensemble members). Furthermore, looking at only a few variables makes difficult to trace model errors. Thus, in many previous studies, these biases are described but their underlying causes and mechanisms are often left unknown. In this work the ability of a multi-physics ensemble in reproducing the observed climatologies of many variables over Europe is analysed. These are temperature, precipitation, cloud cover, radiative fluxes and total soil moisture content. It is found that, during winter, the model suffers a significant cold bias over snow covered regions. This is shown to be related with a poor representation of the snow-atmosphere interaction, and is amplified by an albedo feedback. It is shown how two members of the ensemble are able to alleviate this bias, but by generating a too large cloud cover. During summer, a large sensitivity to the cumulus parameterization is found, related to large differences in the cloud cover and short wave radiation flux. Results also show that small errors in one variable are sometimes a result of error compensation, so the high dimensionality of the model evaluation problem cannot be disregarded.
Data-driven prognosis: a multi-physics approach verified via balloon burst experiment
Chandra, Abhijit; Kar, Oliva
2015-01-01
A multi-physics formulation for data-driven prognosis (DDP) is developed. Unlike traditional predictive strategies that require controlled offline measurements or ‘training’ for determination of constitutive parameters to derive the transitional statistics, the proposed DDP algorithm relies solely on in situ measurements. It uses a deterministic mechanics framework, but the stochastic nature of the solution arises naturally from the underlying assumptions regarding the order of the conservation potential as well as the number of dimensions involved. The proposed DDP scheme is capable of predicting onset of instabilities. Because the need for offline testing (or training) is obviated, it can be easily implemented for systems where such a priori testing is difficult or even impossible to conduct. The prognosis capability is demonstrated here via a balloon burst experiment where the instability is predicted using only online visual observations. The DDP scheme never failed to predict the incipient failure, and no false-positives were issued. The DDP algorithm is applicable to other types of datasets. Time horizons of DDP predictions can be adjusted by using memory over different time windows. Thus, a big dataset can be parsed in time to make a range of predictions over varying time horizons.
Analytic semigroups: Applications to inverse problems for flexible structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Rebnord, D. A.
1990-01-01
Convergence and stability results for least squares inverse problems involving systems described by analytic semigroups are presented. The practical importance of these results is demonstrated by application to several examples from problems of estimation of material parameters in flexible structures using accelerometer data.
Applications of Genetic Methods to NASA Design and Operations Problems
NASA Technical Reports Server (NTRS)
Laird, Philip D.
1996-01-01
We review four recent NASA-funded applications in which evolutionary/genetic methods are important. In the process we survey: the kinds of problems being solved today with these methods; techniques and tools used; problems encountered; and areas where research is needed. The presentation slides are annotated briefly at the top of each page.
AI techniques for a space application scheduling problem
NASA Technical Reports Server (NTRS)
Thalman, N.; Sparn, T.; Jaffres, L.; Gablehouse, D.; Judd, D.; Russell, C.
1991-01-01
Scheduling is a very complex optimization problem which can be categorized as an NP-complete problem. NP-complete problems are quite diverse, as are the algorithms used in searching for an optimal solution. In most cases, the best solutions that can be derived for these combinatorial explosive problems are near-optimal solutions. Due to the complexity of the scheduling problem, artificial intelligence (AI) can aid in solving these types of problems. Some of the factors are examined which make space application scheduling problems difficult and presents a fairly new AI-based technique called tabu search as applied to a real scheduling application. the specific problem is concerned with scheduling application. The specific problem is concerned with scheduling solar and stellar observations for the SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) instrument in a constrained environment which produces minimum impact on the other instruments and maximizes target observation times. The SOLSTICE instrument will gly on-board the Upper Atmosphere Research Satellite (UARS) in 1991, and a similar instrument will fly on the earth observing system (Eos).
Application of remote sensing to water resources problems
NASA Technical Reports Server (NTRS)
Clapp, J. L.
1972-01-01
The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.
Bonaccorsi, T.; Di Salvo, J.; Aggery, A.; D'Aletto, C.; Doederlein, C.; Sireta, P.; Willermoz, G.; Daniel, M.
2006-07-01
The physical phenomena involved in irradiation devices within material testing reactors are complex (neutron and photon interactions, nuclear heating, thermal hydraulics, ...). However, the simulation of these phenomena requires a high precision in order to control the condition of the experiment and the development of predictive models. Until now, physicists use different tools with several approximations at each interface. The aim of this work is to develop a calculation platform dedicated to numerical multi-physics simulations of irradiation devices in the future European Jules Horowitz Reactor [1], This platform is based on a multi-physics data model which describes geometries, materials and state parameters associated with a sequence of thematic (neutronics, thermal hydraulics...) computations of these devices. Once the computation is carried out, the results can be returned to the data model (DM). The DM is encapsulated in a dedicated module of the SALOME platform [2] and exchanges data with SALOME native modules. This method allows a parametric description of a study, independent of the code used to perform the simulation. The application proposed in this paper concerns neutronic calculation of a fuel irradiation device with the new method of characteristics implemented in the APOLLO2 code [3]. The device is located at the periphery of the OSIRIS core. This choice is motivated by the possibility to compare the calculation with experimental results, which cannot be done for the Jules Horowitz Reactor, currently in design study phase. (authors)
Application of the program package TURBO problem solver for some fluid dynamics problems
NASA Astrophysics Data System (ADS)
Belotserkovskaya, M. S.; Pronina, A. P.; Fortova, S. V.; Shepelev, V. V.
2016-06-01
A technology for building parallel applications for numerical simulation based on hyperbolic partial differential equations is described. A formalization of problems and methods that makes it possible to describe new problems and methods for their solution by configuring the universal technology for specific cases is proposed. Results of numerical simulation of spatial flows in shear layers of a compressible inviscid perfect medium and of the Rayleigh-Taylor instability are presented.
Multi-scale/multi-physical modeling in head/disk interface of magnetic data storage
NASA Astrophysics Data System (ADS)
Chung, Pil Seung; Smith, Robert; Vemuri, Sesha Hari; Jhon, Young In; Tak, Kyungjae; Moon, Il; Biegler, Lorenz T.; Jhon, Myung S.
2012-04-01
The model integration of the head-disk interface (HDI) in the hard disk drive system, which includes the hierarchy of highly interactive layers (magnetic layer, carbon overcoat (COC), lubricant, and air bearing system (ABS)), has recently been focused upon to resolve technical barriers and enhance reliability. Heat-assisted magnetic recording especially demands that the model simultaneously incorporates thermal and mechanical phenomena by considering the enormous combinatorial cases of materials and multi-scale/multi-physical phenomena. In this paper, we explore multi-scale/multi-physical simulation methods for HDI, which will holistically integrate magnetic layers, COC, lubricants, and ABS in non-isothermal conditions.
Research on TRIZ and CAIs Application Problems for Technology Innovation
NASA Astrophysics Data System (ADS)
Li, Xiangdong; Li, Qinghai; Bai, Zhonghang; Geng, Lixiao
In order to realize application of invent problem solve theory (TRIZ) and computer aided innovation software (CAIs) , need to solve some key problems, such as the mode choice of technology innovation, establishment of technology innovation organization network(TION), and achievement of innovative process based on TRIZ and CAIs, etc.. This paper shows that the demands for TRIZ and CAIs according to the characteristics and existing problem of the manufacturing enterprises. Have explained that the manufacturing enterprises need to set up an open TION of enterprise leading type, and achieve the longitudinal cooperation innovation with institution of higher learning. The process of technology innovation based on TRIZ and CAIs has been set up from researching and developing point of view. Application of TRIZ and CAIs in FY Company has been summarized. The application effect of TRIZ and CAIs has been explained using technology innovation of the close goggle valve product.
The application of three-dimensional photoelasticity to impact problems
Kostin, I.C.; Fedorov, A.V.
1995-12-31
A method is proposed for the solution of three-dimensional dynamic problems in geometrically complex structural configurations under impact. The methodology developed employs the generation of photoelastically observable stress wave propagation in a birefringent material applied to the external surfaces of a structure. This work demonstrated the extension of this technique to impact loading. Problems of practical engineering application, such as the gluing of birefringent material to test models were examined experimentally. Pulsed magnetic fields generated by capacitor discharge were employed on typical complex engineering models to demonstrate that the methodology is adequate for solving practical impact problems.
An application of the matching law to severe problem behavior.
Borrero, John C; Vollmer, Timothy R
2002-01-01
We evaluated problem behavior and appropriate behavior using the matching equation with 4 individuals with developmental disabilities. Descriptive observations were conducted during interactions between the participants and their primary care providers in either a clinical laboratory environment (3 participants) or the participant's home (1 participant). Data were recorded on potential reinforcers, problem behavior, and appropriate behavior. After identifying the reinforcers that maintained each participant's problem behavior by way of functional analysis, the descriptive data were analyzed retrospectively, based on the matching equation. Results showed that the proportional rate of problem behavior relative to appropriate behavior approximately matched the proportional rate of reinforcement for problem behavior for all participants. The results extend prior research because a functional analysis was conducted and because multiple sources of reinforcement (other than attention) were evaluated. Methodological constraints were identified, which may limit the application of the matching law on both practical and conceptual levels. PMID:11936543
Overview of Krylov subspace methods with applications to control problems
NASA Technical Reports Server (NTRS)
Saad, Youcef
1989-01-01
An overview of projection methods based on Krylov subspaces are given with emphasis on their application to solving matrix equations that arise in control problems. The main idea of Krylov subspace methods is to generate a basis of the Krylov subspace Span and seek an approximate solution the the original problem from this subspace. Thus, the original matrix problem of size N is approximated by one of dimension m typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now just becoming popular for solving nonlinear equations. It is shown how they can be used to solve partial pole placement problems, Sylvester's equation, and Lyapunov's equation.
ERIC Educational Resources Information Center
ten Berge, Jos M. F.
1988-01-01
A summary and a unified treatment of fully general computational solutions for two criteria for transforming two or more matrices to maximal agreement are provided. The two criteria--Maxdiff and Maxbet--have applications in the rotation of factor loading or configuration matrices to maximal agreement and the canonical correlation problem. (SLD)
Problem solving in magnetic field: Animation in mobile application
NASA Astrophysics Data System (ADS)
Najib, A. S. M.; Othman, A. P.; Ibarahim, Z.
2014-09-01
This paper is focused on the development of mobile application for smart phone, Android, tablet, iPhone, and iPad as a problem solving tool in magnetic field. Mobile application designs consist of animations that were created by using Flash8 software which could be imported and compiled to prezi.com software slide. The Prezi slide then had been duplicated in Power Point format and instead question bank with complete answer scheme was also additionally generated as a menu in the application. Results of the published mobile application can be viewed and downloaded at Infinite Monkey website or at Google Play Store from your gadgets. Statistics of the application from Google Play Developer Console shows the high impact of the application usage in all over the world.
Osiris: A Modern, High-Performance, Coupled, Multi-Physics Code For Nuclear Reactor Core Analysis
Procassini, R J; Chand, K K; Clouse, C J; Ferencz, R M; Grandy, J M; Henshaw, W D; Kramer, K J; Parsons, I D
2007-02-26
To meet the simulation needs of the GNEP program, LLNL is leveraging a suite of high-performance codes to be used in the development of a multi-physics tool for modeling nuclear reactor cores. The Osiris code project, which began last summer, is employing modern computational science techniques in the development of the individual physics modules and the coupling framework. Initial development is focused on coupling thermal-hydraulics and neutral-particle transport, while later phases of the project will add thermal-structural mechanics and isotope depletion. Osiris will be applicable to the design of existing and future reactor systems through the use of first-principles, coupled physics models with fine-scale spatial resolution in three dimensions and fine-scale particle-energy resolution. Our intent is to replace an existing set of legacy, serial codes which require significant approximations and assumptions, with an integrated, coupled code that permits the design of a reactor core using a first-principles physics approach on a wide range of computing platforms, including the world's most powerful parallel computers. A key research activity of this effort deals with the efficient and scalable coupling of physics modules which utilize rather disparate mesh topologies. Our approach allows each code module to use a mesh topology and resolution that is optimal for the physics being solved, and employs a mesh-mapping and data-transfer module to effect the coupling. Additional research is planned in the area of scalable, parallel thermal-hydraulics, high-spatial-accuracy depletion and coupled-physics simulation using Monte Carlo transport.
Coupling multi-physics models to cardiac mechanics.
Nordsletten, D A; Niederer, S A; Nash, M P; Hunter, P J; Smith, N P
2011-01-01
We outline and review the mathematical framework for representing mechanical deformation and contraction of the cardiac ventricles, and how this behaviour integrates with other processes crucial for understanding and modelling heart function. Building on general conservation principles of space, mass and momentum, we introduce an arbitrary Eulerian-Lagrangian framework governing the behaviour of both fluid and solid components. Exploiting the natural alignment of cardiac mechanical properties with the tissue microstructure, finite deformation measures and myocardial constitutive relations are referred to embedded structural axes. Coupling approaches for solving this large deformation mechanics framework with three dimensional fluid flow, coronary hemodynamics and electrical activation are described. We also discuss the potential of cardiac mechanics modelling for clinical applications. PMID:19917304
Innovative Applications of Genetic Algorithms to Problems in Accelerator Physics
Hofler, Alicia; Terzic, Balsa; Kramer, Matthew; Zvezdin, Anton; Morozov, Vasiliy; Roblin, Yves; Lin, Fanglei; Jarvis, Colin
2013-01-01
The genetic algorithm (GA) is a relatively new technique that implements the principles nature uses in biological evolution in order to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others) fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing CEBAF facility, the proposed MEIC at Jefferson Lab, and a radio frequency (RF) gun based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, including a newly devised enhancement, which leads to improved convergence to the optimum and make recommendations for future GA developments and accelerator applications.
The Application of Acceptance and Commitment Therapy to Problem Anger
ERIC Educational Resources Information Center
Eifert, Georg H.; Forsyth, John P.
2011-01-01
The goal of this paper is to familiarize clinicians with the use of Acceptance and Commitment Therapy (ACT) for problem anger by describing the application of ACT to a case of a 45-year-old man struggling with anger. ACT is an approach and set of intervention technologies that support acceptance and mindfulness processes linked with commitment and…
Conceptions of Efficiency: Applications in Learning and Problem Solving
ERIC Educational Resources Information Center
Hoffman, Bobby; Schraw, Gregory
2010-01-01
The purpose of this article is to clarify conceptions, definitions, and applications of learning and problem-solving efficiency. Conceptions of efficiency vary within the field of educational psychology, and there is little consensus as to how to define, measure, and interpret the efficiency construct. We compare three diverse models that differ…
An Application of Calculus: Optimum Parabolic Path Problem
ERIC Educational Resources Information Center
Atasever, Merve; Pakdemirli, Mehmet; Yurtsever, Hasan Ali
2009-01-01
A practical and technological application of calculus problem is posed to motivate freshman students or junior high school students. A variable coefficient of friction is used in modelling air friction. The case in which the coefficient of friction is a decreasing function of altitude is considered. The optimum parabolic path for a flying object…
Applications and Problems of Computer Assisted Education in Turkey
ERIC Educational Resources Information Center
Usun, Salih
2006-01-01
This paper focuses on the Computer Assisted Education (CAE) in Turkey; reviews of the related literature; examines the projects, applications and problems on the Computer Assisted Education (CAE) in Turkey compares with the World; exposes the positive and negative aspects of the projects; a number of the suggestion presents on the effective use of…
NASA Astrophysics Data System (ADS)
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-06-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).
Fifth international conference on hyperbolic problems -- theory, numerics, applications: Abstracts
1994-12-31
The conference demonstrated that hyperbolic problems and conservation laws play an important role in many areas including industrial applications and the studying of elasto-plastic materials. Among the various topics covered in the conference, the authors mention: the big bang theory, general relativity, critical phenomena, deformation and fracture of solids, shock wave interactions, numerical simulation in three dimensions, the level set method, multidimensional Riemann problem, application of the front tracking in petroleum reservoir simulations, global solution of the Navier-Stokes equations in high dimensions, recent progress in granular flow, and the study of elastic plastic materials. The authors believe that the new ideas, tools, methods, problems, theoretical results, numerical solutions and computational algorithms presented or discussed at the conference will benefit the participants in their current and future research.
Applications of polymeric smart materials to environmental problems.
Gray, H N; Bergbreiter, D E
1997-01-01
New methods for the reduction and remediation of hazardous wastes like carcinogenic organic solvents, toxic materials, and nuclear contamination are vital to environmental health. Procedures for effective waste reduction, detection, and removal are important components of any such methods. Toward this end, polymeric smart materials are finding useful applications. Polymer-bound smart catalysts are useful in waste minimization, catalyst recovery, and catalyst reuse. Polymeric smart coatings have been developed that are capable of both detecting and removing hazardous nuclear contaminants. Such applications of smart materials involving catalysis chemistry, sensor chemistry, and chemistry relevant to decontamination methodology are especially applicable to environmental problems. PMID:9114277
Application of tabu search to deterministic and stochastic optimization problems
NASA Astrophysics Data System (ADS)
Gurtuna, Ozgur
During the past two decades, advances in computer science and operations research have resulted in many new optimization methods for tackling complex decision-making problems. One such method, tabu search, forms the basis of this thesis. Tabu search is a very versatile optimization heuristic that can be used for solving many different types of optimization problems. Another research area, real options, has also gained considerable momentum during the last two decades. Real options analysis is emerging as a robust and powerful method for tackling decision-making problems under uncertainty. Although the theoretical foundations of real options are well-established and significant progress has been made in the theory side, applications are lagging behind. A strong emphasis on practical applications and a multidisciplinary approach form the basic rationale of this thesis. The fundamental concepts and ideas behind tabu search and real options are investigated in order to provide a concise overview of the theory supporting both of these two fields. This theoretical overview feeds into the design and development of algorithms that are used to solve three different problems. The first problem examined is a deterministic one: finding the optimal servicing tours that minimize energy and/or duration of missions for servicing satellites around Earth's orbit. Due to the nature of the space environment, this problem is modeled as a time-dependent, moving-target optimization problem. Two solution methods are developed: an exhaustive method for smaller problem instances, and a method based on tabu search for larger ones. The second and third problems are related to decision-making under uncertainty. In the second problem, tabu search and real options are investigated together within the context of a stochastic optimization problem: option valuation. By merging tabu search and Monte Carlo simulation, a new method for studying options, Tabu Search Monte Carlo (TSMC) method, is
Progress on PRONGHORN Application to NGNP Related Problems
Dana A. Knoll
2009-08-01
We are developing a multiphysics simulation tool for Very High-Temperature gascooled Reactors (VHTR). The simulation tool, PRONGHORN, takes advantages of the Multiphysics Object-Oriented Simulation library, and is capable of solving multidimensional thermal-fluid and neutronics problems implicitly in parallel. Expensive Jacobian matrix formation is alleviated by the Jacobian-free Newton-Krylov method, and physics-based preconditioning is applied to improve the convergence. The initial development of PRONGHORN has been focused on the pebble bed corec concept. However, extensions required to simulate prismatic cores are underway. In this progress report we highlight progress on application of PRONGHORN to PBMR400 benchmark problems, extension and application of PRONGHORN to prismatic core reactors, and progress on simulations of 3-D transients.
SIAM conference on inverse problems: Geophysical applications. Final technical report
1995-12-31
This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devoted to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.
Application of bifurcation methods to nonlinear flight dynamics problems
NASA Astrophysics Data System (ADS)
Goman, M. G.; Zagainov, G. I.; Khramtsovsky, A. V.
Applications of global stability and bifurcational analysis methods are presented for different nonlinear flight dynamics problems, such as roll-coupling, stall, spin, etc. Based on the results for different real aircraft, F-4, F-14, F-15, High Incidence Research Model, (HIRM), the general methods developed by many authors are presented. The outline of basic concepts and methods from dynamcal system theory are also introduced.
Space Life Support Technology Applications to Terrestrial Environmental Problems
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Sleeper, Howard L.
1993-01-01
Many of the problems now facing the human race on Earth are, in fact, life support issues. Decline of air Quality as a result of industrial and automotive emissions, pollution of ground water by organic pesticides or solvents, and the disposal of solid wastes are all examples of environmental problems that we must solve to sustain human life. The technologies currently under development to solve the problems of supporting human life for advanced space missions are extraordinarily synergistic with these environmental problems. The development of these technologies (including both physicochemical and bioregenerative types) is increasingly focused on closing the life support loop by removing and recycling contaminants and wastes to produce the materials necessary to sustain human life. By so doing, this technology development effort also focuses automatically on reducing resupply logistics requirements and increasing crew safety through increased self-sufficiency. This paper describes several technologies that have been developed to support human life in space and illustrates the applicability of the technologies to environmental problems including environmental remediation and pollution prevention.
Application of successive test feature classifier to dynamic recognition problems
NASA Astrophysics Data System (ADS)
Sakata, Yukinobu; Kaneko, Shun'ichi; Tanaka, Takayuki
2005-12-01
A novel successive learning algorithm is proposed for efficiently handling sequentially provided training data based on Test Feature Classifier (TFC), which is non-parametric and effective even for small data. We have proposed a novel classifier TFC utilizing prime test features (PTF) which is combination feature subsets for getting excellent performance. TFC has characteristics as follows: non-parametric learning, no mis-classification of training data. And then, in some real-world problems, the effectiveness of TFC is confirmed through way applications. However, TFC has a problem that it must be reconstructed even when any sub-set of data is changed. In the successive learning, after recognition of a set of unknown objects, they are fed into the classifier in order to obtain a modified classifier. We propose an efficient algorithm for reconstruction of PTFs, which is formalized in cases of addition and deletion of training data. In the verification experiment, using the successive learning algorithm, we can save about 70% on the total computational cost in comparison with a batch learning. We applied the proposed successive TFC to dynamic recognition problems from which the characteristic of training data changes with progress of time, and examine the characteristic by the fundamental experiments. Support Vector Machine (SVM) which is well established in algorithm and on practical application, was compared with the proposed successive TFC. And successive TFC indicated high performance compared with SVM.
Application of traditional CFD methods to nonlinear computational aeroacoustics problems
NASA Technical Reports Server (NTRS)
Chyczewski, Thomas S.; Long, Lyle N.
1995-01-01
This paper describes an implementation of a high order finite difference technique and its application to the category 2 problems of the ICASE/LaRC Workshop on Computational Aeroacoustics (CAA). Essentially, a popular Computational Fluid Dynamics (CFD) approach (central differencing, Runge-Kutta time integration and artificial dissipation) is modified to handle aeroacoustic problems. The changes include increasing the order of the spatial differencing to sixth order and modifying the artificial dissipation so that it does not significantly contaminate the wave solution. All of the results were obtained from the CM5 located at the Numerical Aerodynamic Simulation Laboratory. lt was coded in CMFortran (very similar to HPF), using programming techniques developed for communication intensive large stencils, and ran very efficiently.
Application of existing design software to problems in neuronal modeling.
Vranić-Sowers, S; Fleshman, J W
1994-03-01
In this communication, we describe the application of the Valid/Analog Design Tools circuit simulation package called PC Workbench to the problem of modeling the electrical behavior of neural tissue. A nerve cell representation as an equivalent electrical circuit using compartmental models is presented. Several types of nonexcitable and excitable membranes are designed, and simulation results for different types of electrical stimuli are compared to the corresponding analytical data. It is shown that the hardware/software platform and the models developed constitute an accurate, flexible, and powerful way to study neural tissue. PMID:8045583
Two Error Bounds for Constrained Optimization Problems and Their Applications
Wang Changyu Zhang Jianzhong; Zhao Wenling
2008-06-15
This paper presents a global error bound for the projected gradient and a local error bound for the distance from a feasible solution to the optimal solution set of a nonlinear programming problem by using some characteristic quantities such as value function, trust region radius etc., which are appeared in the trust region method. As applications of these error bounds, we obtain sufficient conditions under which a sequence of feasible solutions converges to a stationary point or to an optimal solution, respectively, and a necessary and sufficient condition under which a sequence of feasible solutions converges to a Kuhn-Tucker point. Other applications involve finite termination of a sequence of feasible solutions. For general optimization problems, when the optimal solution set is generalized non-degenerate or gives generalized weak sharp minima, we give a necessary and sufficient condition for a sequence of feasible solutions to terminate finitely at a Kuhn-Tucker point, and a sufficient condition which guarantees that a sequence of feasible solutions terminates finitely at a stationary point.
On the Application of the Energy Method to Stability Problems
NASA Technical Reports Server (NTRS)
Marguerre, Karl
1947-01-01
Since stability problems have come into the field of vision of engineers, energy methods have proved to be one of the most powerful aids in mastering them. For finding the especially interesting critical loads special procedures have evolved that depart somewhat from those customary in the usual elasticity theory. A clarification of the connections seemed desirable,especially with regard to the post-critical region, for the treatment of which these special methods are not suited as they are. The present investigation discusses this question-complex (made important by shell construction in aircraft) especially in the classical example of the Euler strut, because in this case - since the basic features are not hidden by difficulties of a mathematical nature - the problem is especially clear. The present treatment differs from that appearing in the Z.f.a.M.M. (1938) under the title "Uber die Behandlung von Stabilittatsproblemen mit Hilfe der energetischen Methode" in that, in order to work out the basic ideas still more clearly,it dispenses with the investigation of behavior at large deflections and of the elastic foundation;in its place the present version gives an elaboration of the 6th section and (in its 7 th and 8th secs.)a new example that shows the applicability of the general criterion to a stability problem that differs from that of Euler in many respects.
Application of inverse heat conduction problem on temperature measurement
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhou, G.; Dong, B.; Li, Q.; Liu, L. Q.
2013-09-01
For regenerative cooling devices, such as G-M refrigerator, pulse tube cooler or thermoacoustic cooler, the gas oscillating bring about temperature fluctuations inevitably, which is harmful in many applications requiring high stable temperatures. To find out the oscillating mechanism of the cooling temperature and improve the temperature stability of cooler, the inner temperature of the cold head has to be measured. However, it is difficult to measure the inner oscillating temperature of the cold head directly because the invasive temperature detectors may disturb the oscillating flow. Fortunately, the outer surface temperature of the cold head can be measured accurately by invasive temperature measurement techniques. In this paper, a mathematical model of inverse heat conduction problem is presented to identify the inner surface oscillating temperature of cold head according to the measured temperature of the outer surface in a GM cryocooler. Inverse heat conduction problem will be solved using control volume approach. Outer surface oscillating temperature could be used as input conditions of inverse problem and the inner surface oscillating temperature of cold head can be inversely obtained. A simple uncertainty analysis of the oscillating temperature measurement also will be provided.
Application of gradient elasticity to benchmark problems of beam vibrations
NASA Astrophysics Data System (ADS)
Kateb, K. M.; Almitani, K. H.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Papadopoulos, P.; Askes, H.; Aifantis, E. C.
2016-04-01
The gradient approach, specifically gradient elasticity theory, is adopted to revisit certain typical configurations on mechanical vibrations. New results on size effects and scale-dependent behavior not captured by classical elasticity are derived, aiming at illustrating the usefulness of this approach to applications in advanced technologies. In particular, elastic prismatic straight beams in bending are discussed using two different governing equations: the gradient elasticity bending moment equation (fourth order) and the gradient elasticity deflection equation (sixth order). Different boundary/support conditions are examined. One problem considers the free vibrations of a cantilever beam loaded by an end force. A second problem is concerned with a simply supported beam disturbed by a concentrated force in the middle of the beam. Both problems are solved analytically. Exact free vibration frequencies and mode shapes are derived and presented. The difference between the gradient elasticity solution and its classical counterpart is revealed. The size ratio c/L (c denotes internal length and L is the length of the beam) induces significant effects on vibration frequencies. For both beam configurations, it turns out that as the ratio c/L increases, the vibration frequencies decrease, a fact which implies lower beam stiffness. Numerical examples show this behavior explicitly and recover the classical vibration behavior for vanishing size ratio c/L.
The application of artificial intelligence to astronomical scheduling problems
NASA Technical Reports Server (NTRS)
Johnston, Mark D.
1992-01-01
Efficient utilization of expensive space- and ground-based observatories is an important goal for the astronomical community; the cost of modern observing facilities is enormous, and the available observing time is much less than the demand from astronomers around the world. The complexity and variety of scheduling constraints and goals has led several groups to investigate how artificial intelligence (AI) techniques might help solve these kinds of problems. The earliest and most successful of these projects was started at Space Telescope Science Institute in 1987 and has led to the development of the Spike scheduling system to support the scheduling of Hubble Space Telescope (HST). The aim of Spike at STScI is to allocate observations to timescales of days to a week observing all scheduling constraints and maximizing preferences that help ensure that observations are made at optimal times. Spike has been in use operationally for HST since shortly after the observatory was launched in Apr. 1990. Although developed specifically for HST scheduling, Spike was carefully designed to provide a general framework for similar (activity-based) scheduling problems. In particular, the tasks to be scheduled are defined in the system in general terms, and no assumptions about the scheduling timescale are built in. The mechanisms for describing, combining, and propagating temporal and other constraints and preferences are quite general. The success of this approach has been demonstrated by the application of Spike to the scheduling of other satellite observatories: changes to the system are required only in the specific constraints that apply, and not in the framework itself. In particular, the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. This talk will discuss recent progress made in scheduling search techniques, the lessons learned from early HST operations, the application of Spike
Solution of the Traffic Jam Problem through Fuzzy Applications
NASA Astrophysics Data System (ADS)
Fernandez, Shery
2010-11-01
The major hurdle of a city planning council is to handle the traffic jam problem. The number of vehicles on roads increases day by day. Also the number of vehicles is directly proportional to the width of the road (including that of parallel roads). But it is not always possible to make roads or to increase width of the road corresponding to the increase in the number of vehicles. Also we cannot tell a person not to buy a vehicle. So trying to minimise the traffic jam is the only possible way to overcome this hurdle. Here we try to develop a method to avoid traffic jam through a mathematical approach (through fuzzy applications). This method helps to find a suitable route from an origin to a destination with lesser time than other routes.
A Geospatial Integrated Problem Solving Environment for Homeland Security Applications
Koch, Daniel B
2010-01-01
Effective planning, response, and recovery (PRR) involving terrorist attacks or natural disasters come with a vast array of information needs. Much of the required information originates from disparate sources in widely differing formats. However, one common attribute the information often possesses is physical location. The organization and visualization of this information can be critical to the success of the PRR mission. Organizing information geospatially is often the most intuitive for the user. In the course of developing a field tool for the U.S. Department of Homeland Security (DHS) Office for Bombing Prevention, a geospatial integrated problem solving environment software framework was developed by Oak Ridge National Laboratory. This framework has proven useful as well in a number of other DHS, Department of Defense, and Department of Energy projects. An overview of the software architecture along with application examples are presented.
Multi-physics and multi-scale characterization of shale anisotropy
NASA Astrophysics Data System (ADS)
Sarout, J.; Nadri, D.; Delle Piane, C.; Esteban, L.; Dewhurst, D.; Clennell, M. B.
2012-12-01
Shales are the most abundant sedimentary rock type in the Earth's shallow crust. In the past decade or so, they have attracted increased attention from the petroleum industry as reservoirs, as well as more traditionally for their sealing capacity for hydrocarbon/CO2 traps or underground waste repositories. The effectiveness of both fundamental and applied shale research is currently limited by (i) the extreme variability of physical, mechanical and chemical properties observed for these rocks, and by (ii) the scarce data currently available. The variability in observed properties is poorly understood due to many factors that are often irrelevant for other sedimentary rocks. The relationships between these properties and the petrophysical measurements performed at the field and laboratory scales are not straightforward, translating to a scale dependency typical of shale behaviour. In addition, the complex and often anisotropic micro-/meso-structures of shales give rise to a directional dependency of some of the measured physical properties that are tensorial by nature such as permeability or elastic stiffness. Currently, fundamental understanding of the parameters controlling the directional and scale dependency of shale properties is far from complete. Selected results of a multi-physics laboratory investigation of the directional and scale dependency of some critical shale properties are reported. In particular, anisotropic features of shale micro-/meso-structures are related to the directional-dependency of elastic and fluid transport properties: - Micro-/meso-structure (μm to cm scale) characterization by electron microscopy and X-ray tomography; - Estimation of elastic anisotropy parameters on a single specimen using elastic wave propagation (cm scale); - Estimation of the permeability tensor using the steady-state method on orthogonal specimens (cm scale); - Estimation of the low-frequency diffusivity tensor using NMR method on orthogonal specimens (<
A novel phenomenological multi-physics model of Li-ion battery cells
NASA Astrophysics Data System (ADS)
Oh, Ki-Yong; Samad, Nassim A.; Kim, Youngki; Siegel, Jason B.; Stefanopoulou, Anna G.; Epureanu, Bogdan I.
2016-09-01
A novel phenomenological multi-physics model of Lithium-ion battery cells is developed for control and state estimation purposes. The model can capture electrical, thermal, and mechanical behaviors of battery cells under constrained conditions, e.g., battery pack conditions. Specifically, the proposed model predicts the core and surface temperatures and reaction force induced from the volume change of battery cells because of electrochemically- and thermally-induced swelling. Moreover, the model incorporates the influences of changes in preload and ambient temperature on the force considering severe environmental conditions electrified vehicles face. Intensive experimental validation demonstrates that the proposed multi-physics model accurately predicts the surface temperature and reaction force for a wide operational range of preload and ambient temperature. This high fidelity model can be useful for more accurate and robust state of charge estimation considering the complex dynamic behaviors of the battery cell. Furthermore, the inherent simplicity of the mechanical measurements offers distinct advantages to improve the existing power and thermal management strategies for battery management.
Advanced computations of multi-physics, multi-scale effects in beam dynamics
Amundson, J.F.; Macridin, A.; Spentzouris, P.; Stern, E.G.; /Fermilab
2009-01-01
Current state-of-the-art beam dynamics simulations include multiple physical effects and multiple physical length and/or time scales. We present recent developments in Synergia2, an accelerator modeling framework designed for multi-physics, multi-scale simulations. We summarize recent several recent results in multi-physics beam dynamics, including simulations of three Fermilab accelerators: the Tevatron, the Main Injector and the Debuncher. Early accelerator simulations focused on single-particle dynamics. To a first approximation, the forces on the particles in an accelerator beam are dominated by the external fields due to magnets, RF cavities, etc., so the single-particle dynamics are the leading physical effects. Detailed simulations of accelerators must include collective effects such as the space-charge repulsion of the beam particles, the effects of wake fields in the beam pipe walls and beam-beam interactions in colliders. These simulations require the sort of massively parallel computers that have only become available in recent times. We give an overview of the accelerator framework Synergia2, which was designed to take advantage of the capabilities of modern computational resources and enable simulations of multiple physical effects. We also summarize some recent results utilizing Synergia2 and BeamBeam3d, a tool specialized for beam-beam simulations.
Application of the general problem of moments to some optimization problems in elasticity theory
NASA Astrophysics Data System (ADS)
Grigoliuk, E. I.; Fil'Shtinskii, V. A.; Fil'Shtinskii, L. A.
1992-04-01
Several optimization problems in elasticity theory are formulated which are relevant to geomechanics. Methods are then presented for reducing these problems to general moment problems in continuous-function space. By using polynomial approximations of nonstandard moment functions, the general moment problems are reduced to the classical power-law moment problem. This allows an a priori evaluation of the optimal control structure. Theoretical and computational examples are presented.
NASA Astrophysics Data System (ADS)
Clark, Martyn; Samaniego, Luis; Freer, Jim
2014-05-01
Multi-model and multi-physics approaches are a popular tool in environmental modelling, with many studies focusing on optimally combining output from multiple model simulations to reduce predictive errors and better characterize predictive uncertainty. However, a careful and systematic analysis of different hydrological models reveals that individual models are simply small permutations of a master modeling template, and inter-model differences are overwhelmed by uncertainty in the choice of the parameter values in the model equations. Furthermore, inter-model differences do not explicitly represent the uncertainty in modeling a given process, leading to many situations where different models provide the wrong results for the same reasons. In other cases, the available morphological data does not support the very fine spatial discretization of the landscape that typifies many modern applications of process-based models. To make the uncertainty characterization problem worse, the uncertain parameter values in process-based models are often fixed (hard-coded), and the models lack the agility necessary to represent the tremendous heterogeneity in natural systems. This presentation summarizes results from a systematic analysis of uncertainty in process-based hydrological models, where we explicitly analyze the myriad of subjective decisions made throughout both the model development and parameter estimation process. Results show that much of the uncertainty is aleatory in nature - given a "complete" representation of dominant hydrologic processes, uncertainty in process parameterizations can be represented using an ensemble of model parameters. Epistemic uncertainty associated with process interactions and scaling behavior is still important, and these uncertainties can be represented using an ensemble of different spatial configurations. Finally, uncertainty in forcing data can be represented using ensemble methods for spatial meteorological analysis. Our systematic
The application of CFD to rotary wing flow problems
NASA Technical Reports Server (NTRS)
Caradonna, F. X.
1990-01-01
Rotorcraft aerodynamics is especially rich in unsolved problems, and for this reason the need for independent computational and experimental studies is great. Three-dimensional unsteady, nonlinear potential methods are becoming fast enough to enable their use in parametric design studies. At present, combined CAMRAD/FPR analyses for a complete trimmed rotor soltution can be performed in about an hour on a CRAY Y-MP (or ten minutes, with multiple processors). These computational speeds indicate that in the near future many of the large CFD problems will no longer require a supercomputer. The ability to convect circulation is routine for integral methods, but only recently was it discovered how to do the same with differential methods. It is clear that the differential CFD rotor analyses are poised to enter the engineering workplace. Integral methods already constitute a mainstay. Ultimately, it is the users who will integrate CFD into the entire engineering process and provide a new measure of confidence in design and analysis. It should be recognized that the above classes of analyses do not include several major limiting phenomena which will continue to require empirical treatment because of computational time constraints and limited physical understanding. Such empirical treatment should be included, however, into the developing CFD, engineering level analyses. It is likely that properly constructed flow models containing corrections from physical testing will be able to fill in unavoidable gaps in the experimental data base, both for basic studies and for specific configuration testing. For these kinds of applications, computational cost is not an issue. Finally, it should be recognized that although rotorcraft are probably the most complex of aircraft, the rotorcraft engineering community is very small compared to the fixed-wing community. Likewise, rotorcraft CFD resources can never achieve fixed-wing proportions and must be used wisely. Therefore the fixed
Inverse Problems in Complex Models and Applications to Earth Sciences
NASA Astrophysics Data System (ADS)
Bosch, M. E.
2015-12-01
The inference of the subsurface earth structure and properties requires the integration of different types of data, information and knowledge, by combined processes of analysis and synthesis. To support the process of integrating information, the regular concept of data inversion is evolving to expand its application to models with multiple inner components (properties, scales, structural parameters) that explain multiple data (geophysical survey data, well-logs, core data). The probabilistic inference methods provide the natural framework for the formulation of these problems, considering a posterior probability density function (PDF) that combines the information from a prior information PDF and the new sets of observations. To formulate the posterior PDF in the context of multiple datasets, the data likelihood functions are factorized assuming independence of uncertainties for data originating across different surveys. A realistic description of the earth medium requires modeling several properties and structural parameters, which relate to each other according to dependency and independency notions. Thus, conditional probabilities across model components also factorize. A common setting proceeds by structuring the model parameter space in hierarchical layers. A primary layer (e.g. lithology) conditions a secondary layer (e.g. physical medium properties), which conditions a third layer (e.g. geophysical data). In general, less structured relations within model components and data emerge from the analysis of other inverse problems. They can be described with flexibility via direct acyclic graphs, which are graphs that map dependency relations between the model components. Examples of inverse problems in complex models can be shown at various scales. At local scale, for example, the distribution of gas saturation is inferred from pre-stack seismic data and a calibrated rock-physics model. At regional scale, joint inversion of gravity and magnetic data is applied
Ensemble Smoother implemented in parallel for groundwater problems applications
NASA Astrophysics Data System (ADS)
Leyva, E.; Herrera, G. S.; de la Cruz, L. M.
2013-05-01
Data assimilation is a process that links forecasting models and measurements using the benefits from both sources. The Ensemble Kalman Filter (EnKF) is a data-assimilation sequential-method that was designed to address two of the main problems related to the use of the Extended Kalman Filter (EKF) with nonlinear models in large state spaces, i-e the use of a closure problem and massive computational requirements associated with the storage and subsequent integration of the error covariance matrix. The EnKF has gained popularity because of its simple conceptual formulation and relative ease of implementation. It has been used successfully in various applications of meteorology and oceanography and more recently in petroleum engineering and hydrogeology. The Ensemble Smoother (ES) is a method similar to EnKF, it was proposed by Van Leeuwen and Evensen (1996). Herrera (1998) proposed a version of the ES which we call Ensemble Smoother of Herrera (ESH) to distinguish it from the former. It was introduced for space-time optimization of groundwater monitoring networks. In recent years, this method has been used for data assimilation and parameter estimation in groundwater flow and transport models. The ES method uses Monte Carlo simulation, which consists of generating repeated realizations of the random variable considered, using a flow and transport model. However, often a large number of model runs are required for the moments of the variable to converge. Therefore, depending on the complexity of problem a serial computer may require many hours of continuous use to apply the ES. For this reason, it is required to parallelize the process in order to do it in a reasonable time. In this work we present the results of a parallelization strategy to reduce the execution time for doing a high number of realizations. The software GWQMonitor by Herrera (1998), implements all the algorithms required for the ESH in Fortran 90. We develop a script in Python using mpi4py, in
ERIC Educational Resources Information Center
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-01-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…
COAMPS Application to Dispersion Scavenging Problem: Heavy Precipitation Simulation
Chin, H; Cederwall, R
2004-05-05
Precipitation scavenging can effectively remove particulates from the atmosphere. Therefore, this process is of importance in the real-time modeling of atmospheric transport for hazardous materials. To account for the rainfall effect in LLNL operational dispersion model, a modified version of a standard below-cloud aerosol scavenging model has been developed to handle the emergency response in this scenario (Loosmore and Cerdewall, 2003, hereafter referred to as LC). Two types of rain data can be used to incorporate precipitation scavenging in the dispersion model; realtime measurements (rain gauge and radar), and model prediction. The former approach has been adopted in LC's study for the below-cloud scavenging problem based on the surface rain measurements. However, the in-cloud scavenging effect remains unresolved as a restriction of available real-time measurements in providing the vertical structure of precipitation systems. The objective of this study is to explore the possibility to incorporate three-dimensional precipitation structure of forecast data into the dispersion model. Therefore, both in-cloud and below-cloud scavenging effects can be included in LLNL aerosol scavenging model. To this end, a mesoscale model (Naval Research Laboratory 3-D weather forecast model, COAMPS) is used to demonstrate this application using a mid-west severe storm case occurring on July 18, 1997.
Application of fractional derivative models in linear viscoelastic problems
NASA Astrophysics Data System (ADS)
Sasso, M.; Palmieri, G.; Amodio, D.
2011-11-01
Appropriate knowledge of viscoelastic properties of polymers and elastomers is of fundamental importance for a correct modelization and analysis of structures where such materials are present, especially when dealing with dynamic and vibration problems. In this paper experimental results of a series of compression and tension tests on specimens of styrene-butadiene rubber and polypropylene plastic are presented; tests consist of creep and relaxation tests, as well as cyclic loading at different frequencies. Experimental data are then used to calibrate some linear viscoelastic models; besides the classical approach based on a combination in series or parallel of standard mechanical elements as springs and dashpots, particular emphasis is given to the application of models whose constitutive equations are based on differential equations of fractional order (Fractional Derivative Model). The two approaches are compared analyzing their capability to reproduce all the experimental data for given materials; also, the main computational issues related with these models are addressed, and the advantage of using a limited number of parameters is demonstrated.
Scalable Adaptive Multilevel Solvers for Multiphysics Problems
Xu, Jinchao
2014-12-01
In this project, we investigated adaptive, parallel, and multilevel methods for numerical modeling of various real-world applications, including Magnetohydrodynamics (MHD), complex fluids, Electromagnetism, Navier-Stokes equations, and reservoir simulation. First, we have designed improved mathematical models and numerical discretizaitons for viscoelastic fluids and MHD. Second, we have derived new a posteriori error estimators and extended the applicability of adaptivity to various problems. Third, we have developed multilevel solvers for solving scalar partial differential equations (PDEs) as well as coupled systems of PDEs, especially on unstructured grids. Moreover, we have integrated the study between adaptive method and multilevel methods, and made significant efforts and advances in adaptive multilevel methods of the multi-physics problems.
Problem Based Learning: Application to Technology Education in Three Countries
ERIC Educational Resources Information Center
Williams, P. John; Iglesias, Juan; Barak, Moshe
2008-01-01
An increasing variety of professional educational and training disciplines are now problem based (e.g., medicine, nursing, engineering, community health), and they may have a corresponding variety of educational objectives. However, they all have in common the use of problems in the instructional sequence. The problems may be as diverse as a…
Application of Problem Based Learning through Research Investigation
ERIC Educational Resources Information Center
Beringer, Jason
2007-01-01
Problem-based learning (PBL) is a teaching technique that uses problem-solving as the basis for student learning. The technique is student-centred with teachers taking the role of a facilitator. Its general aims are to construct a knowledge base, develop problem-solving skills, teach effective collaboration and provide the skills necessary to be a…
Multi-physics nuclear reactor simulator for advanced nuclear engineering education
Yamamoto, A.
2012-07-01
Multi-physics nuclear reactor simulator, which aims to utilize for advanced nuclear engineering education, is being introduced to Nagoya Univ.. The simulator consists of the 'macroscopic' physics simulator and the 'microscopic' physics simulator. The former performs real time simulation of a whole nuclear power plant. The latter is responsible to more detail numerical simulations based on the sophisticated and precise numerical models, while taking into account the plant conditions obtained in the macroscopic physics simulator. Steady-state and kinetics core analyses, fuel mechanical analysis, fluid dynamics analysis, and sub-channel analysis can be carried out in the microscopic physics simulator. Simulation calculations are carried out through dedicated graphical user interface and the simulation results, i.e., spatial and temporal behaviors of major plant parameters are graphically shown. The simulator will provide a bridge between the 'theories' studied with textbooks and the 'physical behaviors' of actual nuclear power plants. (authors)
Multi-Physics Markov Chain Monte Carlo Methods for Subsurface Flows
NASA Astrophysics Data System (ADS)
Rigelo, J.; Ginting, V.; Rahunanthan, A.; Pereira, F.
2014-12-01
For CO2 sequestration in deep saline aquifers, contaminant transport in subsurface, and oil or gas recovery, we often need to forecast flow patterns. Subsurface characterization is a critical and challenging step in flow forecasting. To characterize subsurface properties we establish a statistical description of the subsurface properties that are conditioned to existing dynamic and static data. A Markov Chain Monte Carlo (MCMC) algorithm is used in a Bayesian statistical description to reconstruct the spatial distribution of rock permeability and porosity. The MCMC algorithm requires repeatedly solving a set of nonlinear partial differential equations describing displacement of fluids in porous media for different values of permeability and porosity. The time needed for the generation of a reliable MCMC chain using the algorithm can be too long to be practical for flow forecasting. In this work we develop fast and effective computational methods for generating MCMC chains in the Bayesian framework for the subsurface characterization. Our strategy consists of constructing a family of computationally inexpensive preconditioners based on simpler physics as well as on surrogate models such that the number of fine-grid simulations is drastically reduced in the generated MCMC chains. In particular, we introduce a huff-puff technique as screening step in a three-stage multi-physics MCMC algorithm to reduce the number of expensive final stage simulations. The huff-puff technique in the algorithm enables a better characterization of subsurface near wells. We assess the quality of the proposed multi-physics MCMC methods by considering Monte Carlo simulations for forecasting oil production in an oil reservoir.
Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis
Wilson, Paul; Evans, Thomas; Tautges, Tim
2012-12-24
This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well
NASA Astrophysics Data System (ADS)
Formosa, F.; Fréchette, L. G.
2015-12-01
An electrical circuit equivalent (ECE) approach has been set up allowing elementary oscillatory microengine components to be modelled. They cover gas channel/chamber thermodynamics, viscosity and thermal effects, mechanical structure and electromechanical transducers. The proposed tool has been validated on a centimeter scale Free Piston membrane Stirling engine [1]. We propose here new developments taking into account scaling effects to establish models suitable for any microengines. They are based on simplifications derived from the comparison of the hydraulic radius with respect to the viscous and thermal penetration depths respectively).
NASA Astrophysics Data System (ADS)
Hong, S.; Park, S. K.; Choi, Y.; Myoung, B.
2013-12-01
As the importance of the land surface models (LSMs) has been increasingly magnified due to their pivotal role in the complete Earth environmental system, linking the atmosphere, hydrosphere, and biosphere, modeling accuracy at regional scales has been important to ensure better representations of increased land surface heterogeneities with the increase of spatial resolutions. However, every model has its own weaknesses induced by such problems as the reality of physical schemes by uncertain parameterizing methods and even structural unreality by simplified model designs. One of the major uncertainties is Interrelationships between implemented physical schemes and their impact on simulation accuracy. Using the new version of Noah land surface model with multi-physics option (Noah-MP) that enables to create various scheme combinations, we examined how each scheme in different scheme combinations contributes to better simulations and how their interrelationships vary with uncertain parameter changes. Targeting long term (5 year) monthly surface hydrology of Han River watershed in South Korea, we mainly explored the simulation accuracy of runoff and evapotranspiration, and additionally that of leaf area index in order to see the vegetation impact on surface water partitioning. The result indicates that the primary contributor for simulation accuracies were the schemes of surface heat exchange coefficient. These schemes are very sensitive to vegetation amount due to their different treatment of heat transfer between on bare and vegetated surface. Showing that further improvement through uncertain parameter calibration, this study also demonstrated that the combination of analyses of scheme interrelationships and parameter calibration promises improved model calibration. In addition, revealing remained uncertainty about the vegetation effect on surface energy and water partitioning, this study also showed that the scheme interrelationship analyses is useful for model
Bhardwaj, M.; Day, D.; Farhat, C.; Lesoinne, M; Pierson, K.; Rixen, D.
1999-04-01
We report on the application of the one-level FETI method to the solution of a class of substructural problems associated with the Department of Energy's Accelerated Strategic Computing Initiative (ASCI). We focus on numerical and parallel scalability issues, and on preliminary performance results obtained on the ASCI Option Red supercomputer configured with as many as one thousand processors, for problems with as many as 5 million degrees of freedom.
Application of TRIZ approach to machine vibration condition monitoring problems
NASA Astrophysics Data System (ADS)
Cempel, Czesław
2013-12-01
Up to now machine condition monitoring has not been seriously approached by TRIZ1TRIZ= Russian acronym for Inventive Problem Solving System, created by G. Altshuller ca 50 years ago. users, and the knowledge of TRIZ methodology has not been applied there intensively. However, there are some introductory papers of present author posted on Diagnostic Congress in Cracow (Cempel, in press [11]), and Diagnostyka Journal as well. But it seems to be further need to make such approach from different sides in order to see, if some new knowledge and technology will emerge. In doing this we need at first to define the ideal final result (IFR) of our innovation problem. As a next we need a set of parameters to describe the problems of system condition monitoring (CM) in terms of TRIZ language and set of inventive principles possible to apply, on the way to IFR. This means we should present the machine CM problem by means of contradiction and contradiction matrix. When specifying the problem parameters and inventive principles, one should use analogy and metaphorical thinking, which by definition is not exact but fuzzy, and leads sometimes to unexpected results and outcomes. The paper undertakes this important problem again and brings some new insight into system and machine CM problems. This may mean for example the minimal dimensionality of TRIZ engineering parameter set for the description of machine CM problems, and the set of most useful inventive principles applied to given engineering parameter and contradictions of TRIZ.
NASA Astrophysics Data System (ADS)
Gasymov, E. A.; Guseinova, A. O.; Gasanova, U. N.
2016-07-01
One of the methods for solving mixed problems is the classical separation of variables (the Fourier method). If the boundary conditions of the mixed problem are irregular, this method, generally speaking, is not applicable. In the present paper, a generalized separation of variables and a way of application of this method to solving some mixed problems with irregular boundary conditions are proposed. Analytical representation of the solution to this irregular mixed problem is obtained.
NASA Astrophysics Data System (ADS)
Arróyave, R.; Gibbons, S. L.; Galvan, E.; Malak, R. J.
2016-05-01
In general, the forward phase stability problem consists of mapping thermodynamic conditions (e.g., composition, temperature, pressure) to corresponding equilibrium states. In this paper, we instead focus on the generalized inverse phase stability problem (GIPSP) that deals with mapping a set of phase constitutions to a set of corresponding thermodynamic conditions. Specifically, we define the GIPSP as mapping of sets of phase constitution definitions in a multidimensional phase constitution search space to corresponding ranges of thermodynamic conditions. Mathematically, the solution to the GIPSP corresponds to all solutions to a continuous constraint satisfaction problem (CCSP). We present novel algorithms combining computational thermodynamics, evolutionary computation, and machine learning to approximate solution sets to the GIPSP as a CCSP. Some preliminary examples demonstrating the algorithms are presented. Moreover, the implications of the proposed framework for the larger problem of materials design are discussed, and future work is suggested.
Applications of decision analysis and related techniques to industrial engineering problems at KSC
NASA Technical Reports Server (NTRS)
Evans, Gerald W.
1995-01-01
This report provides: (1) a discussion of the origination of decision analysis problems (well-structured problems) from ill-structured problems; (2) a review of the various methodologies and software packages for decision analysis and related problem areas; (3) a discussion of how the characteristics of a decision analysis problem affect the choice of modeling methodologies, thus providing a guide as to when to choose a particular methodology; and (4) examples of applications of decision analysis to particular problems encountered by the IE Group at KSC. With respect to the specific applications at KSC, particular emphasis is placed on the use of the Demos software package (Lumina Decision Systems, 1993).
Application of remote sensing to state and regional problems
NASA Technical Reports Server (NTRS)
Bouchillon, C. W.; Miller, W. F.; Landphair, H.; Zitta, V. L.
1974-01-01
The use of remote sensing techniques to help the state of Mississippi recognize and solve its environmental, resource, and socio-economic problems through inventory, analysis, and monitoring is suggested.
Application of nonlinear Krylov acceleration to radiative transfer problems
Till, A. T.; Adams, M. L.; Morel, J. E.
2013-07-01
The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)
Application of genetics knowledge to the solution of pedigree problems
NASA Astrophysics Data System (ADS)
Hackling, Mark W.
1994-12-01
This paper reports on a study of undergraduate genetics students' conceptual and procedural knowledge and how that knowledge influences students' success in pedigree problem solving. Findings indicate that many students lack the knowledge needed to test hypotheses relating to X-linked modes of inheritance using either patterns of inheritance or genotypes. Case study data illustrate how these knowledge deficiencies acted as an impediment to correct and conclusive solutions of pedigree problems.
Computation of Thermodynamic Equilibria Pertinent to Nuclear Materials in Multi-Physics Codes
NASA Astrophysics Data System (ADS)
Piro, Markus Hans Alexander
Nuclear energy plays a vital role in supporting electrical needs and fulfilling commitments to reduce greenhouse gas emissions. Research is a continuing necessity to improve the predictive capabilities of fuel behaviour in order to reduce costs and to meet increasingly stringent safety requirements by the regulator. Moreover, a renewed interest in nuclear energy has given rise to a "nuclear renaissance" and the necessity to design the next generation of reactors. In support of this goal, significant research efforts have been dedicated to the advancement of numerical modelling and computational tools in simulating various physical and chemical phenomena associated with nuclear fuel behaviour. This undertaking in effect is collecting the experience and observations of a past generation of nuclear engineers and scientists in a meaningful way for future design purposes. There is an increasing desire to integrate thermodynamic computations directly into multi-physics nuclear fuel performance and safety codes. A new equilibrium thermodynamic solver is being developed with this matter as a primary objective. This solver is intended to provide thermodynamic material properties and boundary conditions for continuum transport calculations. There are several concerns with the use of existing commercial thermodynamic codes: computational performance; limited capabilities in handling large multi-component systems of interest to the nuclear industry; convenient incorporation into other codes with quality assurance considerations; and, licensing entanglements associated with code distribution. The development of this software in this research is aimed at addressing all of these concerns. The approach taken in this work exploits fundamental principles of equilibrium thermodynamics to simplify the numerical optimization equations. In brief, the chemical potentials of all species and phases in the system are constrained by estimates of the chemical potentials of the system
Application of remote sensing to hydrological problems and floods
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.
1983-01-01
The main applications of remote sensors to hydrology are identified as well as the principal spectral bands and their advantages and disadvantages. Some examples of LANDSAT data applications to flooding-risk evaluation are cited. Because hydrology studies the amount of moisture and water involved in each phase of hydrological cycle, remote sensing must be emphasized as a technique for hydrological data acquisition.
Publication misrepresentation among neurosurgery residency applicants: an increasing problem.
Kistka, Heather M; Nayeri, Arash; Wang, Li; Dow, Jamie; Chandrasekhar, Rameela; Chambless, Lola B
2016-01-01
OBJECT Misrepresentation of scholarly achievements is a recognized phenomenon, well documented in numerous fields, yet the accuracy of reporting remains dependent on the honor principle. Therefore, honest self-reporting is of paramount importance to maintain scientific integrity in neurosurgery. The authors had observed a trend toward increasing numbers of publications among applicants for neurosurgery residency at Vanderbilt University and undertook this study to determine whether this change was a result of increased academic productivity, inflated reporting, or both. They also aimed to identify application variables associated with inaccurate citations. METHODS The authors retrospectively reviewed the residency applications submitted to their neurosurgery department in 2006 (n = 148) and 2012 (n = 194). The applications from 2006 were made via SF Match and those from 2012 were made using the Electronic Residency Application Service. Publications reported as "accepted" or "in press" were verified via online search of Google Scholar, PubMed, journal websites, and direct journal contact. Works were considered misrepresented if they did not exist, incorrectly listed the applicant as first author, or were incorrectly listed as peer reviewed or published in a printed journal rather than an online only or non-peer-reviewed publication. Demographic data were collected, including applicant sex, medical school ranking and country, advanced degrees, Alpha Omega Alpha membership, and USMLE Step 1 score. Zero-inflated negative binomial regression was used to identify predictors of misrepresentation. RESULTS Using univariate analysis, between 2006 and 2012 the percentage of applicants reporting published works increased significantly (47% vs 97%, p < 0.001). However, the percentage of applicants with misrepresentations (33% vs 45%) also increased. In 2012, applicants with a greater total of reported works (p < 0.001) and applicants from unranked US medical schools (those not
Application of Improved Grammatical Evolution to Santa Fe Trail Problems
NASA Astrophysics Data System (ADS)
Kuroda, Takuya; Iwasawa, Hiroto; Awgichew, Tewodros; Kita, Eisuke
Grammatical Evolution (GE) is one of the evolutionary algorithms, which can deal with the rules with tree structure by one-dimensional chromosome. Syntax rules are defined in Backus Naur Form (BNF) to translate binary number (genotype) to function or program (phenotype). In this study, three algorithms are introduced for improving the convergence speed. First, an original GE are compared with Genetic Programming (GP) in the function identification problem. Next, the improved GE algorithms are applied to Santa Fe Trail problem. The results show that the improved schemes are effective for improving the convergence speed.
NASA Astrophysics Data System (ADS)
Ma, Z.; Hou, Z.; Zang, X.
2015-09-01
As a large-scale flexible inflatable structure by a huge inner lifting gas volume of several hundred thousand cubic meters, the stratospheric airship's thermal characteristic of inner gas plays an important role in its structural performance. During the floating flight, the day-night variation of the combined thermal condition leads to the fluctuation of the flow field inside the airship, which will remarkably affect the pressure acted on the skin and the structural safety of the stratospheric airship. According to the multi-physics coupling mechanism mentioned above, a numerical procedure of structural safety analysis of stratospheric airships is developed and the thermal model, CFD model, finite element code and criterion of structural strength are integrated. Based on the computation models, the distributions of the deformations and stresses of the skin are calculated with the variation of day-night time. The effects of loads conditions and structural configurations on the structural safety of stratospheric airships in the floating condition are evaluated. The numerical results can be referenced for the structural design of stratospheric airships.
Coupling between a multi-physics workflow engine and an optimization framework
NASA Astrophysics Data System (ADS)
Di Gallo, L.; Reux, C.; Imbeaux, F.; Artaud, J.-F.; Owsiak, M.; Saoutic, B.; Aiello, G.; Bernardi, P.; Ciraolo, G.; Bucalossi, J.; Duchateau, J.-L.; Fausser, C.; Galassi, D.; Hertout, P.; Jaboulay, J.-C.; Li-Puma, A.; Zani, L.
2016-03-01
A generic coupling method between a multi-physics workflow engine and an optimization framework is presented in this paper. The coupling architecture has been developed in order to preserve the integrity of the two frameworks. The objective is to provide the possibility to replace a framework, a workflow or an optimizer by another one without changing the whole coupling procedure or modifying the main content in each framework. The coupling is achieved by using a socket-based communication library for exchanging data between the two frameworks. Among a number of algorithms provided by optimization frameworks, Genetic Algorithms (GAs) have demonstrated their efficiency on single and multiple criteria optimization. Additionally to their robustness, GAs can handle non-valid data which may appear during the optimization. Consequently GAs work on most general cases. A parallelized framework has been developed to reduce the time spent for optimizations and evaluation of large samples. A test has shown a good scaling efficiency of this parallelized framework. This coupling method has been applied to the case of SYCOMORE (SYstem COde for MOdeling tokamak REactor) which is a system code developed in form of a modular workflow for designing magnetic fusion reactors. The coupling of SYCOMORE with the optimization platform URANIE enables design optimization along various figures of merit and constraints.
Multi-physics model of a thermo-magnetic energy harvester
NASA Astrophysics Data System (ADS)
Joshi, Keyur B.; Priya, Shashank
2013-05-01
Harvesting small thermal gradients effectively to generate electricity still remains a challenge. Ujihara et al (2007 Appl. Phys. Lett. 91 093508) have recently proposed a thermo-magnetic energy harvester that incorporates a combination of hard and soft magnets on a vibrating beam structure and two opposing heat transfer surfaces. This design has many advantages and could present an optimum solution to harvest energy in low temperature gradient conditions. In this paper, we describe a multi-physics numerical model for this harvester configuration that incorporates all the relevant parameters, including heat transfer, magnetic force, beam vibration, contact surface and piezoelectricity. The model was used to simulate the complete transient behavior of the system. Results are presented for the evolution of the magnetic force, changes in the internal temperature of the soft magnet (gadolinium (Gd)), thermal contact conductance, contact pressure and heat transfer over a complete cycle. Variation of the vibration frequency with contact stiffness and gap distance was also modeled. Limit cycle behavior and its bifurcations are illustrated as a function of device parameters. The model was extended to include a piezoelectric energy harvesting mechanism and, using a piezoelectric bimorph as spring material, a maximum power of 318 μW was predicted across a 100 kΩ external load.
Validation of a 3D multi-physics model for unidirectional silicon solidification
NASA Astrophysics Data System (ADS)
Simons, Philip; Lankhorst, Adriaan; Habraken, Andries; Faber, Anne-Jans; Tiuleanu, Dumitru; Pingel, Roger
2012-02-01
A model for transient movements of solidification fronts has been added to X-stream, an existing multi-physics simulation program for high temperature processes with flow and chemical reactions. The implementation uses an enthalpy formulation and works on fixed grids. First we show the results of a 2D tin solidification benchmark case, which allows a comparison of X-stream to two other codes and to measurements. Second, a complete 3D solar silicon Heat Exchange Method (HEM) furnace, as built by PVA TePla is modeled. Here, it was necessary to model the complete geometry including the quartz crucible, radiative heaters, bottom cooling, inert flushing gas, etc. For one specific recipe of the transient heater power steering, PVA TePla conducted dip-rod measurements of the silicon solidification front position as function of time. This yields a validation of the model when applied to a real life industrial crystallization process. The results indicate that melt convection does influence the energy distribution up to the start of crystallization at the crucible bottom. But from that point on, the release of latent heat seems to dominate the solidification process, and convection in the melt does not significantly influence the transient front shape.
Multi-physical model of cation and water transport in ionic polymer-metal composite sensors
NASA Astrophysics Data System (ADS)
Zhu, Zicai; Chang, Longfei; Horiuchi, Tetsuya; Takagi, Kentaro; Aabloo, Alvo; Asaka, Kinji
2016-03-01
Ion-migration based electrical potential widely exists not only in natural systems but also in ionic polymer materials. We presented a multi-physical model and investigated the transport process of cation and water of ionic polymer-metal composites based on our thorough understanding on the ionic sensing mechanisms in this paper. The whole transport process was depicted by transport equations concerning convection flux under the total pressure gradient, electrical migration by the built-in electrical field, and the inter-coupling effect between cation and water. With numerical analysis, the influence of critical material parameters, the elastic modulus Ewet, the hydraulic permeability coefficient K, the diffusion coefficient of cation dII and water dWW, and the drag coefficient of water ndW, on the distribution of cation and water was investigated. It was obtained how these parameters correlate to the voltage characteristics (both magnitude and response speed) under a step bending. Additionally, it was found that the effective relative dielectric constant ɛr has little influence on the voltage but is positively correlated to the current. With a series of optimized parameters, the predicted voltage agreed with the experimental results well, which validated our model. Based on our physical model, it was suggested that an ionic polymer sensor can benefit from a higher modulus Ewet, a higher coefficient K and a lower coefficient dII, and a higher constant ɛr.
NASA Astrophysics Data System (ADS)
Mu, Xiyu; Cheng, Hao; Liu, Guoqing
2016-04-01
It is often difficult to provide the exact boundary condition in the practical use of variational method. The Euler equation derived from variational method cannot be solved without boundary condition. However, in some application problems such as the assimilation of remote sensing data, the values can be easily obtained in the inner region of the domain. Since the solution of elliptic partial differential equations continuously depends on the boundary condition, the boundary condition can be retrieved using part solutions in the inner area. In this paper, the variational problem of remote sensing data assimilation within a circular area is first established. The Klein-Gordon elliptic equation is derived from the Euler method of variational problems with assumed boundary condition. Secondly, a computer-friendly Green function is constructed for the Dirichlet problem of two-dimensional Klein-Gordon equation, with the formal solution according to Green formula. Thirdly, boundary values are retrieved by solving the optimal problem which is constructed according to the smoothness of boundary value function and the best approximation between formal solutions and high-accuracy measurements in the interior of the domain. Finally, the assimilation problem is solved on substituting the retrieved boundary values into the Klein-Gordon equation. It is a type of inverse problem in mathematics. The advantage of our method lies in that it needs no assumptions of the boundary condition. It thus alleviates the error introduced by artificial boundary condition in data fusion using variational method in the past.
NASA Astrophysics Data System (ADS)
Corrado, Cesare; Gerbeau, Jean-Frédéric; Moireau, Philippe
2015-02-01
This work addresses the inverse problem of electrocardiography from a new perspective, by combining electrical and mechanical measurements. Our strategy relies on the definition of a model of the electromechanical contraction which is registered on ECG data but also on measured mechanical displacements of the heart tissue typically extracted from medical images. In this respect, we establish in this work the convergence of a sequential estimator which combines for such coupled problems various state of the art sequential data assimilation methods in a unified consistent and efficient framework. Indeed, we aggregate a Luenberger observer for the mechanical state and a Reduced-Order Unscented Kalman Filter applied on the parameters to be identified and a POD projection of the electrical state. Then using synthetic data we show the benefits of our approach for the estimation of the electrical state of the ventricles along the heart beat compared with more classical strategies which only consider an electrophysiological model with ECG measurements. Our numerical results actually show that the mechanical measurements improve the identifiability of the electrical problem allowing to reconstruct the electrical state of the coupled system more precisely. Therefore, this work is intended to be a first proof of concept, with theoretical justifications and numerical investigations, of the advantage of using available multi-modal observations for the estimation and identification of an electromechanical model of the heart.
Applications of parallel global optimization to mechanics problems
NASA Astrophysics Data System (ADS)
Schutte, Jaco Francois
Global optimization of complex engineering problems, with a high number of variables and local minima, requires sophisticated algorithms with global search capabilities and high computational efficiency. With the growing availability of parallel processing, it makes sense to address these requirements by increasing the parallelism in optimization strategies. This study proposes three methods of concurrent processing. The first method entails exploiting the structure of population-based global algorithms such as the stochastic Particle Swarm Optimization (PSO) algorithm and the Genetic Algorithm (GA). As a demonstration of how such an algorithm may be adapted for concurrent processing we modify and apply the PSO to several mechanical optimization problems on a parallel processing machine. Desirable PSO algorithm features such as insensitivity to design variable scaling and modest sensitivity to algorithm parameters are demonstrated. A second approach to parallelism and improving algorithm efficiency is by utilizing multiple optimizations. With this method a budget of fitness evaluations is distributed among several independent sub-optimizations in place of a single extended optimization. Under certain conditions this strategy obtains a higher combined probability of converging to the global optimum than a single optimization which utilizes the full budget of fitness evaluations. The third and final method of parallelism addressed in this study is the use of quasiseparable decomposition, which is applied to decompose loosely coupled problems. This yields several sub-problems of lesser dimensionality which may be concurrently optimized with reduced effort.
Problem Analysis: Application in Developing Marketing Strategies for Colleges.
ERIC Educational Resources Information Center
Martin, John; Moore, Thomas
1991-01-01
The problem analysis technique can help colleges understand students' salient needs in a competitive market. A preliminary study demonstrates the usefulness of the approach for developing strategies aimed at maintaining student loyalty and improving word-of-mouth promotion to other prospective students. (Author/MSE)
Application of University Resources to Local Government Problems. Final Report.
ERIC Educational Resources Information Center
Shamblin, James E.; And Others
The report details the results of a unique experimental demonstration of applying university resources to local government problems. Faculty-student teams worked with city and county personnel on projects chosen by mutual agreement, including work in areas of traffic management, law enforcement, waste heat utilization, solid waste conversion, and…
Fictitious domain method for unsteady problems: Application to electromagnetic scattering
Collino, F.; Joly, P.; Millot, F.
1997-12-01
This paper investigates the use of a fictitious domain method as an alternative numerical method (compared to finite difference and finite element methods) for handling problems dealing with two-dimensional scattering by an obstacle. An example of this would be electromagnetic waves scattered from a perfectly conducting boundaries.
Application of firefly algorithm to the dynamic model updating problem
NASA Astrophysics Data System (ADS)
Shabbir, Faisal; Omenzetter, Piotr
2015-04-01
Model updating can be considered as a branch of optimization problems in which calibration of the finite element (FE) model is undertaken by comparing the modal properties of the actual structure with these of the FE predictions. The attainment of a global solution in a multi dimensional search space is a challenging problem. The nature-inspired algorithms have gained increasing attention in the previous decade for solving such complex optimization problems. This study applies the novel Firefly Algorithm (FA), a global optimization search technique, to a dynamic model updating problem. This is to the authors' best knowledge the first time FA is applied to model updating. The working of FA is inspired by the flashing characteristics of fireflies. Each firefly represents a randomly generated solution which is assigned brightness according to the value of the objective function. The physical structure under consideration is a full scale cable stayed pedestrian bridge with composite bridge deck. Data from dynamic testing of the bridge was used to correlate and update the initial model by using FA. The algorithm aimed at minimizing the difference between the natural frequencies and mode shapes of the structure. The performance of the algorithm is analyzed in finding the optimal solution in a multi dimensional search space. The paper concludes with an investigation of the efficacy of the algorithm in obtaining a reference finite element model which correctly represents the as-built original structure.
APPLICATIONS OF RESEARCH TO THE PROBLEM OF INSTRUCTIONAL FLEXIBILITY.
ERIC Educational Resources Information Center
SARTAIN, HARRY W.
SELECTED RESEARCH ON THE PROBLEM OF INSTRUCTIONAL FLEXIBILITY IS SURVEYED AND DISCUSSED. BROAD TOPICS OF DISCUSSION ARE DEPARTMENTALIZATION, HOMOGENEOUS SECTIONING, INTERCLASS ABILITY SECTIONING, THE EXTENT OF VARIABILITY IN READING DEVELOPMENT, AND PRACTICES THAT MAY INCREASE FLEXIBILITY. AMONG THOSE PRACTICES TO INCREASE FLEXIBILITY ARE TEAM…
The Application of Physical Organic Chemistry to Biochemical Problems.
ERIC Educational Resources Information Center
Westheimer, Frank
1986-01-01
Presents the synthesis of the science of enzymology from application of the concepts of physical organic chemistry from a historical perspective. Summarizes enzyme and coenzyme mechanisms elucidated prior to 1963. (JM)
Application of remote sensing to state and regional problems
NASA Technical Reports Server (NTRS)
Miller, W. F.; Clark, J. R.; Solomon, J. L.; Duffy, B.; Minchew, K.; Wright, L. H. (Principal Investigator)
1981-01-01
The objectives, accomplishments, and future plans of several LANDSAT applications projects in Mississippi are discussed. The applications include land use planning in Lowandes County, strip mine inventory and reclamation, white tailed deer habitat evaluation, data analysis support systems, discrimination of forest habitats in potential lignite areas, changes in gravel operations, and determination of freshwater wetlands for inventory and monitoring. In addition, a conceptual design for a LANDSAT based information system is discussed.
Application of remote sensing to state and regional problems. [Mississippi
NASA Technical Reports Server (NTRS)
Miller, W. F.; Carter, B. D.; Solomon, J. L.; Williams, S. G.; Powers, J. S.; Clark, J. R. (Principal Investigator)
1980-01-01
Progress is reported in the following areas: remote sensing applications to land use planning Lowndes County, applications of LANDSAT data to strip mine inventory and reclamation, white tailed deer habitat evaluation using LANDSAT data, remote sensing data analysis support system, and discrimination of unique forest habitats in potential lignite areas of Mississippi. Other projects discussed include LANDSAT change discrimination in gravel operations, environmental impact modeling for highway corridors, and discrimination of fresh water wetlands for inventory and monitoring.
Hybrid Ant Algorithm and Applications for Vehicle Routing Problem
NASA Astrophysics Data System (ADS)
Xiao, Zhang; Jiang-qing, Wang
Ant colony optimization (ACO) is a metaheuristic method that inspired by the behavior of real ant colonies. ACO has been successfully applied to several combinatorial optimization problems, but it has some short-comings like its slow computing speed and local-convergence. For solving Vehicle Routing Problem, we proposed Hybrid Ant Algorithm (HAA) in order to improve both the performance of the algorithm and the quality of solutions. The proposed algorithm took the advantages of Nearest Neighbor (NN) heuristic and ACO for solving VRP, it also expanded the scope of solution space and improves the global ability of the algorithm through importing mutation operation, combining 2-opt heuristics and adjusting the configuration of parameters dynamically. Computational results indicate that the hybrid ant algorithm can get optimal resolution of VRP effectively.
Bounded multi-scale plasma simulation: Application to sheath problems
Parker, S.E. ); Friedman, A.; Ray. S.L. ); Birdsall, C.K. )
1993-08-01
In our previous paper we introduced the multi-scale method, a self-consistent plasma simulation technique that allowed particles to have independent timesteps. Here we apply the method to one-dimensional electrostatic bounded plasma problems and demonstrate a significant reduction in computing time. We describe a technique to allow for variable grid spacing and develop consistent boundary conditions for the direct implicit method. Also discussed are criteria for specifying timestep size as a function of position in phase space. Next, an analytically solvable sheath problem is presented, and a comparison to simulation results in made. Finally, we show results for an ion acoustic shock front propagating toward a conducting wall. 20 refs., 16 figs., 2 tabs.
Conformal mapping on rough boundaries. II. Applications to biharmonic problems
NASA Astrophysics Data System (ADS)
Vandembroucq, Damien; Roux, Stéphane
1997-05-01
We use a conformal mapping method introduced in a companion paper [Damien Vandembroucq and Stéphane Roux, Phys. Rev. E 55, 6171 (1997)] to study the properties of biharmonic fields in the vicinity of rough boundaries. We focus our analysis on two different situations where such biharmonic problems are encountered: a Stokes flow near a rough wall and the stress distribution on the rough interface of a material in uniaxial tension. We perform a complete numerical solution of these two-dimensional problems for any univalued rough surfaces. We present results for a sinusoidal and a self-affine surface whose slope can locally reach 2.5. Beyond the numerical solution we present perturbative solutions of these problems. We show in particular that at first order in roughness amplitude, the surface stress of a material in uniaxial tension can be directly obtained from the Hilbert transform of the local slope. In the case of self-affine surfaces, we show that the stress distribution presents, for large stresses, a power-law tail whose exponent continuously depends on the roughness amplitude.
Statistical Risk Assessment: Old Problems and New Applications
ERIC Educational Resources Information Center
Gottfredson, Stephen D.; Moriarty, Laura J.
2006-01-01
Statistically based risk assessment devices are widely used in criminal justice settings. Their promise remains largely unfulfilled, however, because assumptions and premises requisite to their development and application are routinely ignored and/or violated. This article provides a brief review of the most salient of these assumptions and…
The Application of Geocoded Data to Educational Problems.
ERIC Educational Resources Information Center
McIsaac, Donald N.; And Others
The papers presented at a symposium on geocoding describe the preparation of a geocoded data file, some basic applications for education planning, and its use in trend analysis to produce contour maps for any desired characteristic. Geocoding data involves locating each entity, such as students or schools, in terms of grid coordinates on a…
Common Problems of Mobile Applications for Foreign Language Testing
ERIC Educational Resources Information Center
Garcia Laborda, Jesus; Magal-Royo, Teresa; Lopez, Jose Luis Gimenez
2011-01-01
As the use of mobile learning educational applications has become more common anywhere in the world, new concerns have appeared in the classroom, human interaction in software engineering and ergonomics. new tests of foreign languages for a number of purposes have become more and more common recently. However, studies interrelating language tests…
Application of Genetic Algorithms in Nonlinear Heat Conduction Problems
Khan, Waqar A.
2014-01-01
Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry. PMID:24695517
Application of partial sliding mode in guidance problem.
Shafiei, M H; Binazadeh, T
2013-03-01
In this paper, the problem of 3-dimensional guidance law design is considered and a new guidance law based on partial sliding mode technique is presented. The approach is based on the classification of the state variables within the guidance system dynamics with respect to their required stabilization properties. In the proposed law by using a partial sliding mode technique, only trajectories of a part of states variables are forced to reach the partial sliding surfaces and slide on them. The resulting guidance law enables the missile to intercept highly maneuvering targets within a finite interception time. Effectiveness of the proposed guidance law is demonstrated through analysis and simulations. PMID:23260528
Application of computational fluid mechanics to atmospheric pollution problems
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liaw, G. S.; Smith, R. E.
1986-01-01
One of the most noticeable effects of air pollution on the properties of the atmosphere is the reduction in visibility. This paper reports the results of investigations of the fluid dynamical and microphysical processes involved in the formation of advection fog on aerosols from combustion-related pollutants, as condensation nuclei. The effects of a polydisperse aerosol distribution, on the condensation/nucleation processes which cause the reduction in visibility are studied. This study demonstrates how computational fluid mechanics and heat transfer modeling can be applied to simulate the life cycle of the atmosphereic pollution problems.
Problems of Safety Codes Evaluation in Practical Applications
NASA Astrophysics Data System (ADS)
Franeková, Mária; Rástočný, Karol
The paper deals with a methodology of the safety codes evaluation used in the safety-related communication systems. The problems of determining the probability of undetected error of block detection codes generally used in praxis are mentioned in comparison with the theoretical knowledge. The main part is oriented at the description of the mathematical apparatus for determination of the residual error probabilities of the safety block codes. The practical part describes the results of modelling the failure effect cause by Electromagnetic Interferences (EMI) to safety of the closed industrial transmission system.
Application of clustering global optimization to thin film design problems.
Lemarchand, Fabien
2014-03-10
Refinement techniques usually calculate an optimized local solution, which is strongly dependent on the initial formula used for the thin film design. In the present study, a clustering global optimization method is used which can iteratively change this initial formula, thereby progressing further than in the case of local optimization techniques. A wide panel of local solutions is found using this procedure, resulting in a large range of optical thicknesses. The efficiency of this technique is illustrated by two thin film design problems, in particular an infrared antireflection coating, and a solar-selective absorber coating. PMID:24663856
Towards a multi-physics modelling framework for thrombolysis under the influence of blood flow
Piebalgs, Andris
2015-01-01
Thrombolytic therapy is an effective means of treating thromboembolic diseases but can also give rise to life-threatening side effects. The infusion of a high drug concentration can provoke internal bleeding while an insufficient dose can lead to artery reocclusion. It is hoped that mathematical modelling of the process of clot lysis can lead to a better understanding and improvement of thrombolytic therapy. To this end, a multi-physics continuum model has been developed to simulate the dissolution of clot over time upon the addition of tissue plasminogen activator (tPA). The transport of tPA and other lytic proteins is modelled by a set of reaction–diffusion–convection equations, while blood flow is described by volume-averaged continuity and momentum equations. The clot is modelled as a fibrous porous medium with its properties being determined as a function of the fibrin fibre radius and voidage of the clot. A unique feature of the model is that it is capable of simulating the entire lytic process from the initial phase of lysis of an occlusive thrombus (diffusion-limited transport), the process of recanalization, to post-canalization thrombolysis under the influence of convective blood flow. The model has been used to examine the dissolution of a fully occluding clot in a simplified artery at different pressure drops. Our predicted lytic front velocities during the initial stage of lysis agree well with experimental and computational results reported by others. Following canalization, clot lysis patterns are strongly influenced by local flow patterns, which are symmetric at low pressure drops, but asymmetric at higher pressure drops, which give rise to larger recirculation regions and extended areas of intense drug accumulation. PMID:26655469
Variability of West African monsoon patterns generated by a WRF multi-physics ensemble
NASA Astrophysics Data System (ADS)
Klein, Cornelia; Heinzeller, Dominikus; Bliefernicht, Jan; Kunstmann, Harald
2015-11-01
The credibility of regional climate simulations over West Africa stands and falls with the ability to reproduce the West African monsoon (WAM) whose precipitation plays a pivotal role for people's livelihood. In this study, we simulate the WAM for the wet year 1999 with a 27-member multi-physics ensemble of the Weather Research and Forecasting (WRF) model. We investigate the inter-member differences in a process-based manner in order to extract generalizable information on the behavior of the tested cumulus (CU), microphysics (MP), and planetary boundary layer (PBL) schemes. Precipitation, temperature and atmospheric dynamics are analyzed in comparison to the Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, the Global Precipitation Climatology Centre (GPCC) gridded gauge-analysis, the Global Historical Climatology Network (GHCN) gridded temperature product and the forcing data (ERA-Interim) to explore interdependencies of processes leading to a certain WAM regime. We find that MP and PBL schemes contribute most to the ensemble spread (147 mm month-1) for monsoon precipitation over the study region. Furthermore, PBL schemes have a strong influence on the movement of the WAM rainband because of their impact on the cloud fraction, that ranges from 8 to 20 % at 600 hPa during August. More low- and mid-level clouds result in less incoming radiation and a weaker monsoon. Ultimately, we identify the differing intensities of the moist Hadley-type meridional circulation that connects the monsoon winds to the Tropical Easterly Jet as the main source for inter-member differences. The ensemble spread of Sahel precipitation and associated dynamics for August 1999 is comparable to the observed inter-annual spread (1979-2010) between dry and wet years, emphasizing the strong potential impact of regional processes and the need for a careful selection of model parameterizations.
A theory of information with special application to search problems.
Wilbur, W J; Neuwald, A F
2000-01-01
Classical information theory concerns itself with communication through a noisy channel and how much one can infer about the channel input from a knowledge of the channel output. Because the channel is noisy the input and output are only related statistically and the rate of information transmission is a statistical concept with little meaning for the individual symbol used in transmission. Here we develop a more intuitive notion of information that is concerned with asking the right questions--that is, with finding those questions whose answer conveys the most information. We call this confirmatory information. In the first part of the paper we develop the general theory, show how it relates to classical information theory, and how in the special case of search problems it allows us to quantify the efficacy of information transmission regarding individual events. That is, confirmatory information measures how well a search for items having certain observable properties retrieves items having some unobserved property of interest. Thus confirmatory information facilitates a useful analysis of search problems and contrasts with classical information theory, which quantifies the efficiency of information transmission but is indifferent to the nature of the particular information being transmitted. The last part of the paper presents several examples where confirmatory information is used to quantify protein structural properties in a search setting. PMID:10642878
Application of remote sensing to state and regional problems
NASA Technical Reports Server (NTRS)
Miller, W. F. (Principal Investigator); Tingle, J.; Wright, L. H.; Tebbs, B.
1984-01-01
Progress was made in the hydroclimatology, habitat modeling and inventory, computer analysis, wildlife management, and data comparison programs that utilize LANDSAT and SEASAT data provided to Mississippi researchers through the remote sensing applications program. Specific topics include water runoff in central Mississippi, habitat models for the endangered gopher tortoise, coyote, and turkey Geographic Information Systems (GIS) development, forest inventory along the Mississipppi River, and the merging of LANDSAT and SEASAT data for enhanced forest type discrimination.
Inference of Stochastic Nonlinear Oscillators with Applications to Physiological Problems
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadim N.; Luchinsky, Dmitry G.
2004-01-01
A new method of inferencing of coupled stochastic nonlinear oscillators is described. The technique does not require extensive global optimization, provides optimal compensation for noise-induced errors and is robust in a broad range of dynamical models. We illustrate the main ideas of the technique by inferencing a model of five globally and locally coupled noisy oscillators. Specific modifications of the technique for inferencing hidden degrees of freedom of coupled nonlinear oscillators is discussed in the context of physiological applications.
Remote sensing applications to resource problems in South Dakota
NASA Technical Reports Server (NTRS)
Myers, V. I. (Principal Investigator)
1981-01-01
The procedures used as well as the results obtained and conclusions derived are described for the following applications of remote sensing in South Dakota: (1) sage grouse management; (2) censusing Canada geese; (3) monitoring grasshopper infestation in rangeland; (4) detecting Dutch elm disease in an urban environment; (5) determining water usage from the Belle Fourche River; (6) resource management of the Lower James River; and (7) the National Model Implantation Program: Lake Herman watershed.
Some problems in applications of the linear variational method
NASA Astrophysics Data System (ADS)
Pupyshev, Vladimir I.; Montgomery, H. E.
2015-09-01
The linear variational method is a standard computational method in quantum mechanics and quantum chemistry. As taught in most classes, the general guidance is to include as many basis functions as practical in the variational wave function. However, if it is desired to study the patterns of energy change accompanying the change of system parameters such as the shape and strength of the potential energy, the problem becomes more complicated. We use one-dimensional systems with a particle in a rectangular or in a harmonic potential confined in an infinite rectangular box to illustrate situations where a variational calculation can give incorrect results. These situations result when the energy of the lowest eigenvalue is strongly dependent on the parameters that describe the shape and strength of the potential. The numerical examples described in this work are provided as cautionary notes for practitioners of numerical variational calculations.
Application of Papkovich-Neuber potentials to a crack problem.
NASA Technical Reports Server (NTRS)
Kassir, M. K.; Sih, G. C.
1973-01-01
The problem of an elastic solid containing a semi-infinite plane crack subjected to concentrated shears parallel to the edge of the crack is considered in this paper. A closed form solution using four harmonic functions is found to satisfy the finite displacement and inverse square root stress singularity at the edge of the crack. Explicit expressions in terms of elementary functions are given for the distribution of stress and displacement in the solid. These are obtained by employing Fourier and Kontorovich-Lebedev integral transforms and certain singular solutions of Laplace equations in three dimensions. The variations of the intensity of the local stress field along the crack border are shown graphically.
Application of PDSLin to the magnetic reconnection problem
NASA Astrophysics Data System (ADS)
Yuan, Xuefei; Li, Xiaoye S.; Yamazaki, Ichitaro; Jardin, Stephen C.; Koniges, Alice E.; Keyes, David E.
2013-01-01
Magnetic reconnection is a fundamental process in a magnetized plasma at both low and high magnetic Lundquist numbers (the ratio of the resistive diffusion time to the Alfvén wave transit time), which occurs in a wide variety of laboratory and space plasmas, e.g. magnetic fusion experiments, the solar corona and the Earth's magnetotail. An implicit time advance for the two-fluid magnetic reconnection problem is known to be difficult because of the large condition number of the associated matrix. This is especially troublesome when the collisionless ion skin depth is large so that the Whistler waves, which cause the fast reconnection, dominate the physics (Yuan et al 2012 J. Comput. Phys. 231 5822-53). For small system sizes, a direct solver such as SuperLU can be employed to obtain an accurate solution as long as the condition number is bounded by the reciprocal of the floating-point machine precision. However, SuperLU scales effectively only to hundreds of processors or less. For larger system sizes, it has been shown that physics-based (Chacón and Knoll 2003 J. Comput. Phys. 188 573-92) or other preconditioners can be applied to provide adequate solver performance. In recent years, we have been developing a new algebraic hybrid linear solver, PDSLin (Parallel Domain decomposition Schur complement-based Linear solver) (Yamazaki and Li 2010 Proc. VECPAR pp 421-34 and Yamazaki et al 2011 Technical Report). In this work, we compare numerical results from a direct solver and the proposed hybrid solver for the magnetic reconnection problem and demonstrate that the new hybrid solver is scalable to thousands of processors while maintaining the same robustness as a direct solver.
Application of remote sensing to state and regional problems. [mississippi
NASA Technical Reports Server (NTRS)
Miller, W. F.; Powers, J. S.; Clark, J. R.; Solomon, J. L.; Williams, S. G. (Principal Investigator)
1981-01-01
The methods and procedures used, accomplishments, current status, and future plans are discussed for each of the following applications of LANDSAT in Mississippi: (1) land use planning in Lowndes County; (2) strip mine inventory and reclamation; (3) white-tailed deer habitat evaluation; (4) remote sensing data analysis support systems; (5) discrimination of unique forest habitats in potential lignite areas; (6) changes in gravel operations; and (7) determining freshwater wetlands for inventory and monitoring. The documentation of all existing software and the integration of the image analysis and data base software into a single package are now considered very high priority items.
Application of wave mechanics theory to fluid dynamics problems: Fundamentals
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the basic formalistic elements of wave mechanics theory is discussed. The theory is used to describe the physical phenomena on the microscopic level, the fluid dynamics of gases and liquids, and the analysis of physical phenomena on the macroscopic (visually observable) level. The practical advantages of relating the two fields of wave mechanics and fluid mechanics through the use of the Schroedinger equation constitute the approach to this relationship. Some of the subjects include: (1) fundamental aspects of wave mechanics theory, (2) laminarity of flow, (3) velocity potential, (4) disturbances in fluids, (5) introductory elements of the bifurcation theory, and (6) physiological aspects in fluid dynamics.
Applications of vacuum technology to novel accelerator problems
Garwin, E.L.
1983-01-01
Vacuum requirements for electron storage rings are most demanding to fulfill, due to the presence of gas desorption caused by large quantities of synchrotron radiation, the very limited area accessible for pumping ports, the need for 10/sup -9/ torr pressures in the ring, and for pressures a decade lower in the interaction regions. Design features of a wide variety of distributed ion sublimation pumps (DIP) developed at SLAC to meet these requirements are discussed, as well as NEG (non-evaporable getter) pumps tested for use in the Large Electron Positron Collider at CERN. Application of DIP to much higher pressures in electron damping rings for the Stanford Linear Collider are discussed.
Constrained variational problem with applications to the Ising model
NASA Astrophysics Data System (ADS)
Schonmann, Roberto H.; Shlosman, Senya B.
1996-06-01
We continue our study of the behavior of the two-dimensional nearest neighbor ferromagnetic Ising model under an external magnetic field h, initiated in our earlier work. We strengthen further a result previously proven by Martirosyan at low enough temperature, which roughly states that for finite systems with (-)-boundary conditions under a positive external field, the boundary effect dominates in the system if the linear size of the system is of order B/h with B small enough, while if B is large enough, then the external field dominates in the system. In our earlier work this result was extended to every subcritical value of the temperature. Here for every subcritical value of the temperature we show the existence of a critical value B 0 (T) which separates the two regimes specified above. We also find the asymptotic shape of the region occupied by the (+)-phase in the second regime, which turns out to be a "squeezed Wulff shape". The main step in our study is the solution of the variational problem of finding the curve minimizing the Wulff functional, which curve is constrained to the unit square. Other tools used are the results and techniques developed to study large deviations for the block magnetization in the absence of the magnetic field, extended to all temperatures below the critical one.
Quantum Iterative Deepening with an Application to the Halting Problem
Tarrataca, Luís; Wichert, Andreas
2013-01-01
Classical models of computation traditionally resort to halting schemes in order to enquire about the state of a computation. In such schemes, a computational process is responsible for signaling an end of a calculation by setting a halt bit, which needs to be systematically checked by an observer. The capacity of quantum computational models to operate on a superposition of states requires an alternative approach. From a quantum perspective, any measurement of an equivalent halt qubit would have the potential to inherently interfere with the computation by provoking a random collapse amongst the states. This issue is exacerbated by undecidable problems such as the Entscheidungsproblem which require universal computational models, e.g. the classical Turing machine, to be able to proceed indefinitely. In this work we present an alternative view of quantum computation based on production system theory in conjunction with Grover's amplitude amplification scheme that allows for (1) a detection of halt states without interfering with the final result of a computation; (2) the possibility of non-terminating computation and (3) an inherent speedup to occur during computations susceptible of parallelization. We discuss how such a strategy can be employed in order to simulate classical Turing machines. PMID:23520465
COAMPS Application to Global and Homeland Security Threat Problems
Chin, H S; Glascoe, L G
2004-09-14
Atmospheric dispersion problems have received more attention with regard to global and homeland security than their conventional roles in air pollution and local hazard assessment in the post 9/11 era. Consequently, there is growing interest to characterize meteorology uncertainty at both low and high altitudes (below and above 30 km, respectively). A 3-D Coupled Ocean Atmosphere Prediction System (COAMPS, developed by Naval Research Laboratory; Hodur, 1997) is used to address LLNL's task. The objective of this report is focused on the effort at the improvement of COAMPS forecast to address the uncertainty issue, and to provide new capability for high-altitude forecast. To assess the atmospheric dispersion behavior in a wider range of meteorological conditions and to expand its vertical scope for the potential threat at high altitudes, several modifications of COAMPS are needed to meet the project goal. These improvements include (1) the long-range forecast capability to show the variability of meteorological conditions at a much larger time scale (say, a year), and (2) the model physics enhancement to provide new capability for high-altitude forecast.
Application of the artificial bee colony algorithm for solving the set covering problem.
Crawford, Broderick; Soto, Ricardo; Cuesta, Rodrigo; Paredes, Fernando
2014-01-01
The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee colony algorithm to solve the non-unicost set covering problem. The artificial bee colony algorithm is a recent swarm metaheuristic technique based on the intelligent foraging behavior of honey bees. Experimental results show that our artificial bee colony algorithm is competitive in terms of solution quality with other recent metaheuristic approaches for the set covering problem. PMID:24883356
Applications of Desensitization Procedures for School-Related Problems; A Review.
ERIC Educational Resources Information Center
Prout, H. Thompson; Harvey, John R.
1978-01-01
A variety of desensitization and counterconditioning procedures have been utilized to deal with school-related problems. These procedures are reviewed with respect to applications for treating school phobia, test anxiety, and other academic anxieties. (Author)
NASA Technical Reports Server (NTRS)
Hidalgo, J. U.
1975-01-01
The applicability of remote sensing to transportation and traffic analysis, urban quality, and land use problems is discussed. Other topics discussed include preliminary user analysis, potential uses, traffic study by remote sensing, and urban condition analysis using ERTS.
On the range of applicability of Baker`s approach to the frame problem
Kartha, G.N.
1996-12-31
We investigate the range of applicability of Baker`s approach to the frame problem using an action language. We show that for temporal projection and deterministic domains, Baker`s approach gives the intuitively expected results.
NASA Astrophysics Data System (ADS)
Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.
2015-12-01
scalabilities showing almost linear speedup against number of processors up to over ten thousand cores. Generally this allows us to perform coupled multi-physics (THC) simulations on high resolution geologic models with multi-million grid in a practical time (e.g., less than a second per time step).
Design and Analysis of a New Hair Sensor for Multi-Physical Signal Measurement
Yang, Bo; Hu, Di; Wu, Lei
2016-01-01
A new hair sensor for multi-physical signal measurements, including acceleration, angular velocity and air flow, is presented in this paper. The entire structure consists of a hair post, a torsional frame and a resonant signal transducer. The hair post is utilized to sense and deliver the physical signals of the acceleration and the air flow rate. The physical signals are converted into frequency signals by the resonant transducer. The structure is optimized through finite element analysis. The simulation results demonstrate that the hair sensor has a frequency of 240 Hz in the first mode for the acceleration or the air flow sense, 3115 Hz in the third and fourth modes for the resonant conversion, and 3467 Hz in the fifth and sixth modes for the angular velocity transformation, respectively. All the above frequencies present in a reasonable modal distribution and are separated from interference modes. The input-output analysis of the new hair sensor demonstrates that the scale factor of the acceleration is 12.35 Hz/g, the scale factor of the angular velocity is 0.404 nm/deg/s and the sensitivity of the air flow is 1.075 Hz/(m/s)2, which verifies the multifunction sensitive characteristics of the hair sensor. Besides, the structural optimization of the hair post is used to improve the sensitivity of the air flow rate and the acceleration. The analysis results illustrate that the hollow circular hair post can increase the sensitivity of the air flow and the II-shape hair post can increase the sensitivity of the acceleration. Moreover, the thermal analysis confirms the scheme of the frequency difference for the resonant transducer can prominently eliminate the temperature influences on the measurement accuracy. The air flow analysis indicates that the surface area increase of hair post is significantly beneficial for the efficiency improvement of the signal transmission. In summary, the structure of the new hair sensor is proved to be feasible by comprehensive
Design and Analysis of a New Hair Sensor for Multi-Physical Signal Measurement.
Yang, Bo; Hu, Di; Wu, Lei
2016-01-01
A new hair sensor for multi-physical signal measurements, including acceleration, angular velocity and air flow, is presented in this paper. The entire structure consists of a hair post, a torsional frame and a resonant signal transducer. The hair post is utilized to sense and deliver the physical signals of the acceleration and the air flow rate. The physical signals are converted into frequency signals by the resonant transducer. The structure is optimized through finite element analysis. The simulation results demonstrate that the hair sensor has a frequency of 240 Hz in the first mode for the acceleration or the air flow sense, 3115 Hz in the third and fourth modes for the resonant conversion, and 3467 Hz in the fifth and sixth modes for the angular velocity transformation, respectively. All the above frequencies present in a reasonable modal distribution and are separated from interference modes. The input-output analysis of the new hair sensor demonstrates that the scale factor of the acceleration is 12.35 Hz/g, the scale factor of the angular velocity is 0.404 nm/deg/s and the sensitivity of the air flow is 1.075 Hz/(m/s)², which verifies the multifunction sensitive characteristics of the hair sensor. Besides, the structural optimization of the hair post is used to improve the sensitivity of the air flow rate and the acceleration. The analysis results illustrate that the hollow circular hair post can increase the sensitivity of the air flow and the II-shape hair post can increase the sensitivity of the acceleration. Moreover, the thermal analysis confirms the scheme of the frequency difference for the resonant transducer can prominently eliminate the temperature influences on the measurement accuracy. The air flow analysis indicates that the surface area increase of hair post is significantly beneficial for the efficiency improvement of the signal transmission. In summary, the structure of the new hair sensor is proved to be feasible by comprehensive
Application Problem of Biomass Combustion in Greenhouses for Crop Production
NASA Astrophysics Data System (ADS)
Kawamura, Atsuhiro; Akisawa, Atsushi; Kashiwagi, Takao
It is consumed much energy in fossil fuels to production crops in greenhouses in Japan. And fl ue gas as CO2 fertilization is used for growing crops in modern greenhouses. If biomass as renewable energy can use for production vegetables in greenhouses, more than 800,000 kl of energy a year (in crude oil equivalent) will be saved. In this study, at fi rst, we made the biomass combustion equipment, and performed fundamental examination for various pellet fuel. We performed the examination that considered an application to a real greenhouse next. We considered biomass as both a source of energy and CO2 gas for greenhouses, and the following fi ndings were obtained: 1) Based on the standard of CO2 gas fertilization to greenhouses, it is diffi cult to apply biomass as a CO2 fertilizer, so that biomass should be applied to energy use only, at least for the time being. 2) Practical biomass energy machinery for economy, high reliability and greenhouses satisfying the conservatism that it is easy is necessary. 3) It is necessary to develop crop varieties and cultivation systems requiring less strict environmental control. 4) Disposal of combustion ash occurring abundantly, effective practical use is necessary.
The preview control problem with application to man-machine system analysis
NASA Technical Reports Server (NTRS)
Tomizuka, M.; Whitney, D. E.
1973-01-01
The preview control problem is formulated in a general form and its solution is obtained. The analytical tool used is discrete stochastic optimal control theory. Aiming the application to manual control situations with preview, time delay, observation noise, motor noise, etc. were included in formulating the problem. Manual preview control experiments were performed to qualitatively check the validity of the model, and it was found that the mechanism of the manual control problem was explained by the developed model.
Application of fluorescent dyes for some problems of bioelectromagnetics
NASA Astrophysics Data System (ADS)
Babich, Danylo; Kylsky, Alexandr; Pobiedina, Valentina; Yakunov, Andrey
2016-04-01
Fluorescent organic dyes solutions are used for non-contact measurement of the millimeter wave absorption in liquids simulating biological tissue. There is still not any certain idea of the physical mechanism describing this process despite the widespread technology of microwave radiation in the food industry, biotechnology and medicine. For creating adequate physical model one requires an accurate command of knowledge concerning to the relation between millimeter waves and irradiated object. There were three H-bonded liquids selected as the samples with different coefficients of absorption in the millimeter range like water (strong absorption), glycerol (medium absorption) and ethylene glycol (light absorption). The measurements showed that the greatest response to the action of microwaves occurs for glycerol solutions: R6G (building-up luminescence) and RC (fading luminescence). For aqueous solutions the signal is lower due to lower quantum efficiency of luminescence, and for ethylene glycol — due to the low absorption of microwaves. In the area of exposure a local increase of temperature was estimated. For aqueous solutions of both dyes the maximum temperature increase is about 7° C caused with millimeter waves absorption, which coincides with the direct radio physical measurements and confirmed by theoretical calculations. However, for glycerol solution R6G temperature equivalent for building-up luminescence is around 9° C, and for the solution of ethylene glycol it's about 15°. It is assumed the possibility of non-thermal effect of microwaves on the different processes and substances. The application of this non-contact temperature sensing is a simple and novel method to detect temperature change in small biological objects.
Application of CHAD hydrodynamics to shock-wave problems
Trease, H.E.; O`Rourke, P.J.; Sahota, M.S.
1997-12-31
CHAD is the latest in a sequence of continually evolving computer codes written to effectively utilize massively parallel computer architectures and the latest grid generators for unstructured meshes. Its applications range from automotive design issues such as in-cylinder and manifold flows of internal combustion engines, vehicle aerodynamics, underhood cooling and passenger compartment heating, ventilation, and air conditioning to shock hydrodynamics and materials modeling. CHAD solves the full unsteady Navier-Stoke equations with the k-epsilon turbulence model in three space dimensions. The code has four major features that distinguish it from the earlier KIVA code, also developed at Los Alamos. First, it is based on a node-centered, finite-volume method in which, like finite element methods, all fluid variables are located at computational nodes. The computational mesh efficiently and accurately handles all element shapes ranging from tetrahedra to hexahedra. Second, it is written in standard Fortran 90 and relies on automatic domain decomposition and a universal communication library written in standard C and MPI for unstructured grids to effectively exploit distributed-memory parallel architectures. Thus the code is fully portable to a variety of computing platforms such as uniprocessor workstations, symmetric multiprocessors, clusters of workstations, and massively parallel platforms. Third, CHAD utilizes a variable explicit/implicit upwind method for convection that improves computational efficiency in flows that have large velocity Courant number variations due to velocity of mesh size variations. Fourth, CHAD is designed to also simulate shock hydrodynamics involving multimaterial anisotropic behavior under high shear. The authors will discuss CHAD capabilities and show several sample calculations showing the strengths and weaknesses of CHAD.
Multi-physics design and analyses of long life reactors for lunar outposts
NASA Astrophysics Data System (ADS)
Schriener, Timothy M.
event of a launch abort accident. Increasing the amount of fuel in the reactor core, and hence its operational life, would be possible by launching the reactor unfueled and fueling it on the Moon. Such a reactor would, thus, not be subject to launch criticality safety requirements. However, loading the reactor with fuel on the Moon presents a challenge, requiring special designs of the core and the fuel elements, which lend themselves to fueling on the lunar surface. This research investigates examples of both a solid core reactor that would be fueled at launch as well as an advanced concept which could be fueled on the Moon. Increasing the operational life of a reactor fueled at launch is exercised for the NaK-78 cooled Sectored Compact Reactor (SCoRe). A multi-physics design and analyses methodology is developed which iteratively couples together detailed Monte Carlo neutronics simulations with 3-D Computational Fluid Dynamics (CFD) and thermal-hydraulics analyses. Using this methodology the operational life of this compact, fast spectrum reactor is increased by reconfiguring the core geometry to reduce neutron leakage and parasitic absorption, for the same amount of HEU in the core, and meeting launch safety requirements. The multi-physics analyses determine the impacts of the various design changes on the reactor's neutronics and thermal-hydraulics performance. The option of increasing the operational life of a reactor by loading it on the Moon is exercised for the Pellet Bed Reactor (PeBR). The PeBR uses spherical fuel pellets and is cooled by He-Xe gas, allowing the reactor core to be loaded with fuel pellets and charged with working fluid on the lunar surface. The performed neutronics analyses ensure the PeBR design achieves a long operational life, and develops safe launch canister designs to transport the spherical fuel pellets to the lunar surface. The research also investigates loading the PeBR core with fuel pellets on the Moon using a transient Discrete
Multi-physics design and analyses of long life reactors for lunar outposts
NASA Astrophysics Data System (ADS)
Schriener, Timothy M.
event of a launch abort accident. Increasing the amount of fuel in the reactor core, and hence its operational life, would be possible by launching the reactor unfueled and fueling it on the Moon. Such a reactor would, thus, not be subject to launch criticality safety requirements. However, loading the reactor with fuel on the Moon presents a challenge, requiring special designs of the core and the fuel elements, which lend themselves to fueling on the lunar surface. This research investigates examples of both a solid core reactor that would be fueled at launch as well as an advanced concept which could be fueled on the Moon. Increasing the operational life of a reactor fueled at launch is exercised for the NaK-78 cooled Sectored Compact Reactor (SCoRe). A multi-physics design and analyses methodology is developed which iteratively couples together detailed Monte Carlo neutronics simulations with 3-D Computational Fluid Dynamics (CFD) and thermal-hydraulics analyses. Using this methodology the operational life of this compact, fast spectrum reactor is increased by reconfiguring the core geometry to reduce neutron leakage and parasitic absorption, for the same amount of HEU in the core, and meeting launch safety requirements. The multi-physics analyses determine the impacts of the various design changes on the reactor's neutronics and thermal-hydraulics performance. The option of increasing the operational life of a reactor by loading it on the Moon is exercised for the Pellet Bed Reactor (PeBR). The PeBR uses spherical fuel pellets and is cooled by He-Xe gas, allowing the reactor core to be loaded with fuel pellets and charged with working fluid on the lunar surface. The performed neutronics analyses ensure the PeBR design achieves a long operational life, and develops safe launch canister designs to transport the spherical fuel pellets to the lunar surface. The research also investigates loading the PeBR core with fuel pellets on the Moon using a transient Discrete
NASA Astrophysics Data System (ADS)
Jerez, Sonia; Montavez, Juan P.; Gomez-Navarro, Juan J.; Jimenez-Guerrero, Pedro; Lorente, Raquel; Garcia-Valero, Juan A.; Jimenez, Pedro A.; Gonzalez-Rouco, Jose F.; Zorita, Eduardo
2010-05-01
Regional climate change projections are affected by several sources of uncertainty. Some of them come from Global Circulation Models and scenarios.; others come from the downscaling process. In the case of dynamical downscaling, mainly using Regional Climate Models (RCM), the sources of uncertainty may involve nesting strategies, related to the domain position and resolution, soil characterization, internal variability, methods of solving the equations, and the configuration of model physics. Therefore, a probabilistic approach seems to be recommendable when projecting regional climate change. This problem is usually faced by performing an ensemble of simulations. The aim of this study is to evaluate the range of uncertainty in regional climate projections associated to changing the physical configuration in a RCM (MM5) as well as the capability when reproducing the observed climate. This study is performed over the Iberian Peninsula and focuses on the reproduction of the Probability Density Functions (PDFs) of daily mean temperature. The experiments consist on a multi-physics ensemble of high resolution climate simulations (30 km over the target region) for the periods 1970-1999 (present) and 2070-2099 (future). Two sets of simulations for the present have been performed using ERA40 (MM5-ERA40) and ECHAM5-3CM run1 (MM5-E5-PR) as boundary conditions. The future the experiments are driven by ECHAM5-A2-run1 (MM5-E5-A2). The ensemble has a total of eight members, as the result of combining the schemes for PBL (MRF and ETA), cumulus (GRELL and Kain-Fritch) and microphysics (Simple-Ice and Mixed phase). In a previous work this multi-physics ensemble has been analyzed focusing on the seasonal mean values of both temperature and precipitation. The main results indicate that those physics configurations that better reproduce the observed climate project the most dramatic changes for the future (i.e, the largest temperature increase and precipitation decrease). Among the
Numerical Analysis of a Multi-Physics Model for Trace Gas Sensors
NASA Astrophysics Data System (ADS)
Brennan, Brian
Trace gas sensors are currently used in many applications from leak detection to national security and may some day help with disease diagnosis. These sensors are modelled by a coupled system of complex elliptic partial differential equations for pressure and temperature. Solutions are approximated using the finite element method which we will show admits a continuous and coercive variational problem with optimal H1 and L2 error estimates. Numerically, the finite element discretization yields a skew-Hermitian dominant matrix for which classical algebraic preconditioners quickly degrade. We develop a block preconditioner that requires scalar Helmholtz solutions to apply but gives a very low outer iteration count. To handle this, we explore three preconditoners for the resulting linear system. First we analyze the classical block Jacobi and block Gauss-Seidel preconditions before presenting a custom, physics based preconditioner. We also present analysis showing eigenvalues of the custom preconditioned system are mesh-dependent but with a small coefficient. Numerical experiments confirm our theoretical discussion.
NASA Technical Reports Server (NTRS)
Rado, B. Q.
1975-01-01
Automatic classification techniques are described in relation to future information and natural resource planning systems with emphasis on application to Georgia resource management problems. The concept, design, and purpose of Georgia's statewide Resource AS Assessment Program is reviewed along with participation in a workshop at the Earth Resources Laboratory. Potential areas of application discussed include: agriculture, forestry, water resources, environmental planning, and geology.
Application of the INSTANT-HPS PN Transport Code to the C5G7 Benchmark Problem
Y. Wang; H. Zhang; R. H. Szilard; R. C. Martineau
2011-06-01
INSTANT is the INL's next generation neutron transport solver to support high-fidelity multi-physics reactor simulation INSTANT is in continuous development to extend its capability Code is designed to take full advantage of middle to large cluster (10-1000 processors) Code is designed to focus on method adaptation while also mesh adaptation will be possible. It utilizes the most modern computing techniques to generate a neutronics tool of full-core transport calculations for reactor analysis and design. It can perform calculations on unstructured 2D/3D triangular, hexagonal and Cartesian geometries. Calculations can be easily extended to more geometries because of the independent mesh framework coded with the model Fortran. This code has a multigroup solver with thermal rebalance and Chebyshev acceleration. It employs second-order PN and Hybrid Finite Element method (PNHFEM) discretization scheme. Three different in-group solvers - preconditioned Conjugate Gradient (CG) method, preconditioned Generalized Minimal Residual Method (GMRES) and Red-Black iteration - have been implemented and parallelized with the spatial domain decomposition in the code. The input is managed with extensible markup language (XML) format. 3D variables including the flux distributions are outputted into VTK files, which can be visualized by tools such as VisIt and ParaView. An extension of the code named INSTANTHPS provides the capability to perform 3D heterogeneous transport calculations within fuel pins. C5G7 is an OECD/NEA benchmark problem created to test the ability of modern deterministic transport methods and codes to treat reactor core problems without spatial homogenization. This benchmark problem had been widely analyzed with various code packages. In this transaction, results of the applying the INSTANT-HPS code to the C5G7 problem are summarized.
NASA Astrophysics Data System (ADS)
Deniz, Sinan; Bildik, Necdet
2016-06-01
In this paper, we use Adomian Decomposition Method (ADM) to solve the singularly perturbed fourth order boundary value problem. In order to make the calculation process easier, first the given problem is transformed into a system of two second order ODEs, with suitable boundary conditions. Numerical illustrations are given to prove the effectiveness and applicability of this method in solving these kinds of problems. Obtained results shows that this technique provides a sequence of functions which converges rapidly to the accurate solution of the problems.
Application of symbolic and algebraic manipulation software in solving applied mechanics problems
NASA Technical Reports Server (NTRS)
Tsai, Wen-Lang; Kikuchi, Noboru
1993-01-01
As its name implies, symbolic and algebraic manipulation is an operational tool which not only can retain symbols throughout computations but also can express results in terms of symbols. This report starts with a history of symbolic and algebraic manipulators and a review of the literatures. With the help of selected examples, the capabilities of symbolic and algebraic manipulators are demonstrated. These applications to problems of applied mechanics are then presented. They are the application of automatic formulation to applied mechanics problems, application to a materially nonlinear problem (rigid-plastic ring compression) by finite element method (FEM) and application to plate problems by FEM. The advantages and difficulties, contributions, education, and perspectives of symbolic and algebraic manipulation are discussed. It is well known that there exist some fundamental difficulties in symbolic and algebraic manipulation, such as internal swelling and mathematical limitation. A remedy for these difficulties is proposed, and the three applications mentioned are solved successfully. For example, the closed from solution of stiffness matrix of four-node isoparametrical quadrilateral element for 2-D elasticity problem was not available before. Due to the work presented, the automatic construction of it becomes feasible. In addition, a new advantage of the application of symbolic and algebraic manipulation found is believed to be crucial in improving the efficiency of program execution in the future. This will substantially shorten the response time of a system. It is very significant for certain systems, such as missile and high speed aircraft systems, in which time plays an important role.
Applications of numerical optimization methods to helicopter design problems - A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1985-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
Applications of numerical optimization methods to helicopter design problems - A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1984-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
Applications of numerical optimization methods to helicopter design problems: A survey
NASA Technical Reports Server (NTRS)
Miura, H.
1984-01-01
A survey of applications of mathematical programming methods is used to improve the design of helicopters and their components. Applications of multivariable search techniques in the finite dimensional space are considered. Five categories of helicopter design problems are considered: (1) conceptual and preliminary design, (2) rotor-system design, (3) airframe structures design, (4) control system design, and (5) flight trajectory planning. Key technical progress in numerical optimization methods relevant to rotorcraft applications are summarized.
NASA Astrophysics Data System (ADS)
Dorn, O.; Lesselier, D.
2010-07-01
practically relevant inverse problems. The contribution by M Li, A Abubakar and T Habashy, `Application of a two-and-a-half dimensional model-based algorithm to crosswell electromagnetic data inversion', deals with a model-based inversion technique for electromagnetic imaging which addresses novel challenges such as multi-physics inversion, and incorporation of prior knowledge, such as in hydrocarbon recovery. 10. Non-stationary inverse problems, considered as a special class of Bayesian inverse problems, are framed via an orthogonal decomposition representation in the contribution by A Lipponen, A Seppänen and J P Kaipio, `Reduced order estimation of nonstationary flows with electrical impedance tomography'. The goal is to simultaneously estimate, from electrical impedance tomography data, certain characteristics of the Navier--Stokes fluid flow model together with time-varying concentration distribution. 11. Non-iterative imaging methods of thin, penetrable cracks, based on asymptotic expansion of the scattering amplitude and analysis of the multi-static response matrix, are discussed in the contribution by W-K Park, `On the imaging of thin dielectric inclusions buried within a half-space', completing, for a shallow burial case at multiple frequencies, the direct imaging of small obstacles (here, along their transverse dimension), MUSIC and non-MUSIC type indicator functions being used for that purpose. 12. The contribution by R Potthast, `A study on orthogonality sampling' envisages quick localization and shaping of obstacles from (portions of) far-field scattering patterns collected at one or more time-harmonic frequencies, via the simple calculation (and summation) of scalar products between those patterns and a test function. This is numerically exemplified for Neumann/Dirichlet boundary conditions and homogeneous/heterogeneous embedding media. 13. The contribution by J D Shea, P Kosmas, B D Van Veen and S C Hagness, `Contrast-enhanced microwave imaging of breast
Applications of space teleoperator technology to the problems of the handicapped
NASA Technical Reports Server (NTRS)
Malone, T. B.; Deutsch, S.; Rubin, G.; Shenk, S. W.
1973-01-01
The identification of feasible and practical applications of space teleoperator technology for the problems of the handicapped were studied. A teleoperator system is defined by NASA as a remotely controlled, cybernetic, man-machine system designed to extend and augment man's sensory, manipulative, and locomotive capabilities. Based on a consideration of teleoperator systems, the scope of the study was limited to an investigation of these handicapped persons limited in sensory, manipulative, and locomotive capabilities. If the technology being developed for teleoperators has any direct application, it must be in these functional areas. Feasible and practical applications of teleoperator technology for the problems of the handicapped are described, and design criteria are presented with each application. A development plan is established to bring the application to the point of use.
NASA Astrophysics Data System (ADS)
Yaakob, Shamshul Bahar; Watada, Junzo
In this paper, a hybrid neural network approach to solve mixed integer quadratic bilevel programming problems is proposed. Bilevel programming problems arise when one optimization problem, the upper problem, is constrained by another optimization, the lower problem. The mixed integer quadratic bilevel programming problem is transformed into a double-layered neural network. The combination of a genetic algorithm (GA) and a meta-controlled Boltzmann machine (BM) enables us to formulate a hybrid neural network approach to solving bilevel programming problems. The GA is used to generate the feasible partial solutions of the upper level and to provide the parameters for the lower level. The meta-controlled BM is employed to cope with the lower level problem. The lower level solution is transmitted to the upper level. This procedure enables us to obtain the whole upper level solution. The iterative processes can converge on the complete solution of this problem to generate an optimal one. The proposed method leads the mixed integer quadratic bilevel programming problem to a global optimal solution. Finally, a numerical example is used to illustrate the application of the method in a power system environment, which shows that the algorithm is feasible and advantageous.
The Application of an Etiological Model of Personality Disorders to Problem Gambling.
Brown, Meredith; Allen, J Sabura; Dowling, Nicki A
2015-12-01
Problem gambling is a significant mental health problem that creates a multitude of intrapersonal, interpersonal, and social difficulties. Recent empirical evidence suggests that personality disorders, and in particular borderline personality disorder (BPD), are commonly co-morbid with problem gambling. Despite this finding there has been very little research examining overlapping factors between these two disorders. The aim of this review is to summarise the literature exploring the relationship between problem gambling and personality disorders. The co-morbidity of personality disorders, particularly BPD, is reviewed and the characteristics of problem gamblers with co-morbid personality disorders are explored. An etiological model from the more advanced BPD literature-the biosocial developmental model of BPD-is used to review the similarities between problem gambling and BPD across four domains: early parent-child interactions, emotion regulation, co-morbid psychopathology and negative outcomes. It was concluded that personality disorders, in particular BPD are commonly co-morbid among problem gamblers and the presence of a personality disorder complicates the clinical picture. Furthermore BPD and problem gambling share similarities across the biosocial developmental model of BPD. Therefore clinicians working with problem gamblers should incorporate routine screening for personality disorders and pay careful attention to the therapeutic alliance, client motivations and therapeutic boundaries. Furthermore adjustments to therapy structure, goals and outcomes may be required. Directions for future research include further research into the applicability of the biosocial developmental model of BPD to problem gambling. PMID:25373399
Application of evolution strategies for the solution of an inverse problem in near-field optics.
Macías, Demetrio; Vial, Alexandre; Barchiesi, Dominique
2004-08-01
We introduce an inversion procedure for the characterization of a nanostructure from near-field intensity data. The method proposed is based on heuristic arguments and makes use of evolution strategies for the solution of the inverse problem as a nonlinear constrained-optimization problem. By means of some examples we illustrate the performance of our inversion method. We also discuss its possibilities and potential applications. PMID:15330475
NASA Astrophysics Data System (ADS)
Zheng, Jiajia; Li, Yancheng; Li, Zhaochun; Wang, Jiong
2015-10-01
This paper presents multi-physics modeling of an MR absorber considering the magnetic hysteresis to capture the nonlinear relationship between the applied current and the generated force under impact loading. The magnetic field, temperature field, and fluid dynamics are represented by the Maxwell equations, conjugate heat transfer equations, and Navier-Stokes equations. These fields are coupled through the apparent viscosity and the magnetic force, both of which in turn depend on the magnetic flux density and the temperature. Based on a parametric study, an inverse Jiles-Atherton hysteresis model is used and implemented for the magnetic field simulation. The temperature rise of the MR fluid in the annular gap caused by core loss (i.e. eddy current loss and hysteresis loss) and fluid motion is computed to investigate the current-force behavior. A group of impulsive tests was performed for the manufactured MR absorber with step exciting currents. The numerical and experimental results showed good agreement, which validates the effectiveness of the proposed multi-physics FEA model.
[30 years animal welfare legislation: where are the problems of application?].
Steiger, A
2008-09-01
The contribution deals with legal structure, organization and problems of application of the Swiss animal welfare legislation of 1978. Besides positive effects considerable problems with the application of the legislation occurred, in particular in housing of bovines, swine and laying hens. Punishable acts of animal protection in companion and pet animals were markedly increasing in the last years, particularly in dogs. There were also loopholes in the legislation, which could be filled by the new animal welfare law of 2005 and the animal welfare ordinance of 2008 with only a few exceptions. PMID:18925554
NASA Astrophysics Data System (ADS)
Schröder, Jörg; Keip, Marc-André
2012-08-01
The contribution addresses a direct micro-macro transition procedure for electromechanically coupled boundary value problems. The two-scale homogenization approach is implemented into a so-called FE2-method which allows for the computation of macroscopic boundary value problems in consideration of microscopic representative volume elements. The resulting formulation is applicable to the computation of linear as well as nonlinear problems. In the present paper, linear piezoelectric as well as nonlinear electrostrictive material behavior are investigated, where the constitutive equations on the microscale are derived from suitable thermodynamic potentials. The proposed direct homogenization procedure can also be applied for the computation of effective elastic, piezoelectric, dielectric, and electrostrictive material properties.
Inverse problems with Poisson data: statistical regularization theory, applications and algorithms
NASA Astrophysics Data System (ADS)
Hohage, Thorsten; Werner, Frank
2016-09-01
Inverse problems with Poisson data arise in many photonic imaging modalities in medicine, engineering and astronomy. The design of regularization methods and estimators for such problems has been studied intensively over the last two decades. In this review we give an overview of statistical regularization theory for such problems, the most important applications, and the most widely used algorithms. The focus is on variational regularization methods in the form of penalized maximum likelihood estimators, which can be analyzed in a general setup. Complementing a number of recent convergence rate results we will establish consistency results. Moreover, we discuss estimators based on a wavelet-vaguelette decomposition of the (necessarily linear) forward operator. As most prominent applications we briefly introduce Positron emission tomography, inverse problems in fluorescence microscopy, and phase retrieval problems. The computation of a penalized maximum likelihood estimator involves the solution of a (typically convex) minimization problem. We also review several efficient algorithms which have been proposed for such problems over the last five years.
Preface to foundations of information/decision fusion with applications to engineering problems
Madan, R.N.; Rao, N.S.V.
1996-10-01
In engineering design, it was shown by von Neumann that a reliable system can be built using unreliable components by employing simple majority rule fusers. If error densities are known for individual pattern recognizers then an optimal fuser was shown to be implementable as a threshold function. Many applications have been developed for distributed sensor systems, sensor-based robotics, face recognition, decision fusion, recognition of handwritten characters, and automatic target recognition. Recently, information/decision fusion has been recognized as an independently growing field with its own principles and methods. While some of the fusion problems in engineering systems could be solved by applying existing results from other domains, many others require original approaches and solutions. In turn, these new approaches would lead to new applications in other areas. There are two paradigms at the extrema of the spectrum of the information/decision methods: (i) Fusion as Problem: In certain applications, fusion is explicitly specified in the problem statement. Particularly in robotics applications, many researchers realized the fundamental limitations of single sensor systems, thereby motivating the deployment of multiple sensors. In more general engineering applications, similar sensors are employed for fault tolerance, while in several others, different sensor modalities are required to achieve the given task. In these scenarios, fusion methods have to be first designed to solve the problem at hand. (ii) Fusion as Solution: In many instances (e.g., DNA analysis), a number of different solutions to a particular problem already exist. Often these solutions can be combined to obtain solutions that outperform any individual one. The area of forecasting is a good example of such paradigm. Although fusion is not explicitly specified in these problems, it is used as an ingredient of the solution.
The application of geographical information systems to important public health problems in Africa
Tanser, Frank C; le Sueur, David
2002-01-01
Africa is generally held to be in crisis, and the quality of life for the majority of the continent's inhabitants has been declining in both relative and absolute terms. In addition, the majority of the world's disease burden is realised in Africa. Geographical information systems (GIS) technology, therefore, is a tool of great inherent potential for health research and management in Africa. The spatial modelling capacity offered by GIS is directly applicable to understanding the spatial variation of disease, and its relationship to environmental factors and the health care system. Whilst there have been numerous critiques of the application of GIS technology to developed world health problems it has been less clear whether the technology is both applicable and sustainable in an African setting. If the potential for GIS to contribute to health research and planning in Africa is to be properly evaluated then the technology must be applicable to the most pressing health problems in the continent. We briefly outline the work undertaken in HIV, malaria and tuberculosis (diseases of significant public health impact and contrasting modes of transmission), outline GIS trends relevant to Africa and describe some of the obstacles to the sustainable implementation of GIS. We discuss types of viable GIS applications and conclude with a discussion of the types of African health problems of particular relevance to the application of GIS. PMID:12537589
The 9-Step Problem Design Process for Problem-Based Learning: Application of the 3C3R Model
ERIC Educational Resources Information Center
Hung, Woei
2009-01-01
The design of problems is crucial for the effectiveness of problem-based learning (PBL). Research has shown that PBL problems have not always been effective. Ineffective PBL problems could affect whether students acquire sufficient domain knowledge, activate appropriate prior knowledge, and properly direct their own learning. This paper builds on…
NASA Astrophysics Data System (ADS)
Schuster, Thomas; Hofmann, Bernd; Kaltenbacher, Barbara
2012-10-01
of concrete instances with special properties. The aim of this special section is to provide a forum for highly topical ongoing work in the area of regularization in Banach spaces, its numerics and its applications. Indeed, we have been lucky enough to obtain a number of excellent papers both from colleagues who have previously been contributing to this topic and from researchers entering the field due to its relevance in practical inverse problems. We would like to thank all contributers for enabling us to present a high quality collection of papers on topics ranging from various aspects of regularization via efficient numerical solution to applications in PDE models. We give a brief overview of the contributions included in this issue (here ordered alphabetically by first author). In their paper, Iterative regularization with general penalty term—theory and application to L1 and TV regularization, Radu Bot and Torsten Hein provide an extension of the Landweber iteration for linear operator equations in Banach space to general operators in place of the inverse duality mapping, which corresponds to the use of general regularization functionals in variational regularization. The L∞ topology in data space corresponds to the frequently occuring situation of uniformly distributed data noise. A numerically efficient solution of the resulting Tikhonov regularization problem via a Moreau-Yosida appriximation and a semismooth Newton method, along with a δ-free regularization parameter choice rule, is the topic of the paper L∞ fitting for inverse problems with uniform noise by Christian Clason. Extension of convergence rates results from classical source conditions to their generalization via variational inequalities with a priori and a posteriori stopping rules is the main contribution of the paper Regularization of linear ill-posed problems by the augmented Lagrangian method and variational inequalities by Klaus Frick and Markus Grasmair, again in the context of some
Development and application of unified algorithms for problems in computational science
NASA Technical Reports Server (NTRS)
Shankar, Vijaya; Chakravarthy, Sukumar
1987-01-01
A framework is presented for developing computationally unified numerical algorithms for solving nonlinear equations that arise in modeling various problems in mathematical physics. The concept of computational unification is an attempt to encompass efficient solution procedures for computing various nonlinear phenomena that may occur in a given problem. For example, in Computational Fluid Dynamics (CFD), a unified algorithm will be one that allows for solutions to subsonic (elliptic), transonic (mixed elliptic-hyperbolic), and supersonic (hyperbolic) flows for both steady and unsteady problems. The objectives are: development of superior unified algorithms emphasizing accuracy and efficiency aspects; development of codes based on selected algorithms leading to validation; application of mature codes to realistic problems; and extension/application of CFD-based algorithms to problems in other areas of mathematical physics. The ultimate objective is to achieve integration of multidisciplinary technologies to enhance synergism in the design process through computational simulation. Specific unified algorithms for a hierarchy of gas dynamics equations and their applications to two other areas: electromagnetic scattering, and laser-materials interaction accounting for melting.
ERIC Educational Resources Information Center
Hamadneh, Iyad M.; Al-Masaeed, Aslan
2015-01-01
This study aimed at finding out mathematics teachers' attitudes towards photo math application in solving mathematical problems using mobile camera; it also aim to identify significant differences in their attitudes according to their stage of teaching, educational qualifications, and teaching experience. The study used judgmental/purposive…
Application of NASA management approach to solve complex problems on earth
NASA Technical Reports Server (NTRS)
Potate, J. S.
1972-01-01
The application of NASA management approach to solving complex problems on earth is discussed. The management of the Apollo program is presented as an example of effective management techniques. Four key elements of effective management are analyzed. Photographs of the Cape Kennedy launch sites and supporting equipment are included to support the discussions.
The Views of Undergraduates about Problem-Based Learning Applications in a Biochemistry Course
ERIC Educational Resources Information Center
Tarhan, Leman; Ayyildiz, Yildizay
2015-01-01
The effect of problem-based learning (PBL) applications in an undergraduate biochemistry course on students' interest in this course was investigated through four modules during one semester. Students' views about active learning and improvement in social skills were also collected and evaluated. We conducted the study with 36 senior students from…
Applications of dynamic scheduling technique to space related problems: Some case studies
NASA Technical Reports Server (NTRS)
Nakasuka, Shinichi; Ninomiya, Tetsujiro
1994-01-01
The paper discusses the applications of 'Dynamic Scheduling' technique, which has been invented for the scheduling of Flexible Manufacturing System, to two space related scheduling problems: operation scheduling of a future space transportation system, and resource allocation in a space system with limited resources such as space station or space shuttle.
Applications of dynamic scheduling technique to space related problems: Some case studies
NASA Astrophysics Data System (ADS)
Nakasuka, Shinichi; Ninomiya, Tetsujiro
1994-10-01
The paper discusses the applications of 'Dynamic Scheduling' technique, which has been invented for the scheduling of Flexible Manufacturing System, to two space related scheduling problems: operation scheduling of a future space transportation system, and resource allocation in a space system with limited resources such as space station or space shuttle.
Thinking about Applications: Effects on Mental Models and Creative Problem-Solving
ERIC Educational Resources Information Center
Barrett, Jamie D.; Peterson, David R.; Hester, Kimberly S.; Robledo, Issac C.; Day, Eric A.; Hougen, Dean P.; Mumford, Michael D.
2013-01-01
Many techniques have been used to train creative problem-solving skills. Although the available techniques have often proven to be effective, creative training often discounts the value of thinking about applications. In this study, 248 undergraduates were asked to develop advertising campaigns for a new high-energy soft drink. Solutions to this…
ERIC Educational Resources Information Center
Yang, Eunice
2016-01-01
This paper discusses the use of a free mobile engineering application (app) called Autodesk® ForceEffect™ to provide students assistance with spatial visualization of forces and more practice in solving/visualizing statics problems compared to the traditional pencil-and-paper method. ForceEffect analyzes static rigid-body systems using free-body…
Janovsky, L.S.; Mitin, M.B.; Antonov, A.N.; Abashina, L.W.
1996-12-31
Authors of this paper analyzed results of mathematical researches of thermophysical problems of freezing and cryogenic fuels application for the aircraft gas-turbine engines (AGTE). These fuels are derived from hydrogen, propane, natural gas (methane) and oil gas (freezing mixture of hydrocarbons C{sub 2}-C{sub 10}). At present use of alternative fuels in AGTE is of great interest.
On October 25 and 26, 1984, the U.S. EPA sponsored a workshop to consider the potential applications of the techniques of computational biological chemistry to problems in environmental health. Eleven extramural scientists from the various related disciplines and a similar number...
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Hou, Gene J. W.
1994-01-01
A method for eigenvalue and eigenvector approximate analysis for the case of repeated eigenvalues with distinct first derivatives is presented. The approximate analysis method developed involves a reparameterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations to changes in the eigenvalues and the eigenvectors associated with the repeated eigenvalue problem. This work also presents a numerical technique that facilitates the definition of an eigenvector derivative for the case of repeated eigenvalues with repeated eigenvalue derivatives (of all orders). Examples are given which demonstrate the application of such equations for sensitivity and approximate analysis. Emphasis is placed on the application of sensitivity analysis to large-scale structural and controls-structures optimization problems.
NASA Astrophysics Data System (ADS)
Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie
2016-06-01
High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show
Plank, G; Prassl, AJ; Augustin, C
2014-01-01
Despite the evident multiphysics nature of the heart – it is an electrically controlled mechanical pump – most modeling studies considered electrophysiology and mechanics in isolation. In no small part, this is due to the formidable modeling challenges involved in building strongly coupled anatomically accurate and biophyically detailed multi-scale multi-physics models of cardiac electro-mechanics. Among the main challenges are the selection of model components and their adjustments to achieve integration into a consistent organ-scale model, dealing with technical difficulties such as the exchange of data between electro-physiological and mechanical model, particularly when using different spatio-temporal grids for discretization, and, finally, the implementation of advanced numerical techniques to deal with the substantial computational. In this study we report on progress made in developing a novel modeling framework suited to tackle these challenges. PMID:24043050
NASA Astrophysics Data System (ADS)
Li, Jingsong; Yang, Qingxin; Niu, Pingjuan; Jin, Liang; Meng, Bo; Li, Yang; Xiao, Zhaoxia; Zhang, Xian
This paper obtained the average integrated heat transfer coefficient for the thermal resistance of a classic of integrated LED light source and its cooling fin-root on the basis of thermal circuit method. Simulation analysis on its steady-state temperature field distribution using COMSOL Multi-physics finite element method was carried out. This method has high precision and intuitive simulation results. The iteration method of the Numerical Analysis is introduced into method for the first time. The results have significant promotion on the LED cast light structure optimization and the affection of reduced heat coupling on the light temperature distribution. The comparison between thermocouple experimental data and calculation results proved the correctness and validity of the proposed method. This experimental study plays a guiding role to thermal analysis and design of other integrated lights.
NASA Astrophysics Data System (ADS)
Achiamah-Ampomah, N.; Cheng, Kai
2016-02-01
An investigation was carried out to improve the slow surface finishing times of integrally bladed rotors (IBRs) in the aerospace industry. Traditionally they are finished by hand, or more currently by abrasive flow machining. The use of a vibratory finishing technique to improve process times has been suggested; however as a largely empirical process, very few studies have been done to improve and optimize the cycle times, showing that critical and ongoing research is still needed in this area. An extensive review of the literature was carried out, and the findings used to identify the key parameters and model equations which govern the vibratory process. Recommendations were made towards a multi-physics-based simulation model, as well as projections made for the future of vibratory finishing and optimization of surface finishes and cycle times.
On well-partial-order theory and its application to combinatorial problems of VLSI design
NASA Technical Reports Server (NTRS)
Fellows, M.; Langston, M.
1990-01-01
We nonconstructively prove the existence of decision algorithms with low-degree polynomial running times for a number of well-studied graph layout, placement, and routing problems. Some were not previously known to be in p at all; others were only known to be in p by way of brute force or dynamic programming formulations with unboundedly high-degree polynomial running times. Our methods include the application of the recent Robertson-Seymour theorems on the well-partial-ordering of graphs under both the minor and immersion orders. We also briefly address the complexity of search versions of these problems.
The potential application of the blackboard model of problem solving to multidisciplinary design
NASA Technical Reports Server (NTRS)
Rogers, James L.
1989-01-01
The potential application of the blackboard model of problem solving to multidisciplinary design is discussed. Multidisciplinary design problems are complex, poorly structured, and lack a predetermined decision path from the initial starting point to the final solution. The final solution is achieved using data from different engineering disciplines. Ideally, for the final solution to be the optimum solution, there must be a significant amount of communication among the different disciplines plus intradisciplinary and interdisciplinary optimization. In reality, this is not what happens in today's sequential approach to multidisciplinary design. Therefore it is highly unlikely that the final solution is the true optimum solution from an interdisciplinary optimization standpoint. A multilevel decomposition approach is suggested as a technique to overcome the problems associated with the sequential approach, but no tool currently exists with which to fully implement this technique. A system based on the blackboard model of problem solving appears to be an ideal tool for implementing this technique because it offers an incremental problem solving approach that requires no a priori determined reasoning path. Thus it has the potential of finding a more optimum solution for the multidisciplinary design problems found in today's aerospace industries.
Stefan problem for a finite liquid phase and its application to laser or electron beam welding
Kasuya, T.; Shimoda, N.
1997-10-01
An exact solution of a heat conduction problem with the effect of latent heat of solidification (Stefan problem) is derived. The solution of the one dimensional Stefan problem for a finite liquid phase initially existing in a semi-infinite body is applied to evaluate temperature fields produced by laser or electron beam welding. The solution of the model has not been available before, as Carslaw and Jaeger [{ital Conduction of Heat in Solids}, 2nd ed. (Oxford University Press, New York, 1959)] pointed out. The heat conduction calculations are performed using thermal properties of carbon steel, and the comparison of the Stefan problem with a simplified linear heat conduction model reveals that the solidification rate and cooling curve over 1273 K significantly depend on which model (Stefan or linear heat conduction problem) is applied, and that the type of the thermal model applied has little meaning for cooling curve below 1273 K. Since the heat conduction problems with a phase change arise in many important industrial fields, the solution derived in this study is ready to be used not only for welding but also for other industrial applications. {copyright} {ital 1997 American Institute of Physics.}
Complimentary single technique and multi-physics modeling tools for NDE challenges
NASA Astrophysics Data System (ADS)
Le Lostec, Nechtan; Budyn, Nicolas; Sartre, Bernard; Glass, S. W.
2014-02-01
The challenges of modeling and simulation for Non Destructive Examination (NDE) research and development at AREVA NDE Solutions Technical Center (NETEC) are presented. In particular, the choice of a relevant software suite covering different applications and techniques and the process/scripting tools required for simulation and modeling are discussed. The software portfolio currently in use is then presented along with the limitations of the different software: CIVA for ultrasound (UT) methods, PZFlex for UT probes, Flux for eddy current (ET) probes and methods, plus Abaqus for multiphysics modeling. The finite element code, Abaqus is also considered as the future direction for many of our NDE modeling and simulation tasks. Some application examples are given on modeling of a piezoelectric acoustic phased array transducer and preliminary thermography configurations.
Application of chaos theory to solving the problems of social and environmental decline in Lesotho.
Kakonge, John O
2002-05-01
This paper examines the definition of chaos theory and its use in different circumstances. The paper explains that environmental crisis is complex, chaotic and unstable and will remain so unless actions are taken to reverse the trend. It further suggests that chaos theory could be used to interpret the crisis and help identify solutions. By recommending the application of chaos theory to the environmental problems in Lesotho, the paper explores some of the key issues that contribute to and perpetuate the environmental situation, for example, the current land tenure system and the problem of overgrazing. In addition, it identifies appropriate and realistic government policies that could be implemented to address the environmental degradation in the country. The paper concludes that the application of chaos theory may be unable to help solve the environmental crisis in Lesotho unless there is political will and commitment and collective effort from all stakeholders, coupled with an attitudinal change. PMID:12173423
NASA Technical Reports Server (NTRS)
Muravyov, Alexander A.
1999-01-01
In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.
NASA Astrophysics Data System (ADS)
Hamamuki, Nao; Nakayasu, Atsushi; Namba, Tokinaga
2015-12-01
We study a cell problem arising in homogenization for a Hamilton-Jacobi equation whose Hamiltonian is not coercive. We introduce a generalized notion of effective Hamiltonians by approximating the equation and characterize the solvability of the cell problem in terms of the generalized effective Hamiltonian. Under some sufficient conditions, the result is applied to the associated homogenization problem. We also show that homogenization for non-coercive equations fails in general.
Romero, Vicente Jose; Ayon, Douglas V.; Chen, Chun-Hung
2003-09-01
A very general and robust approach to solving optimization problems involving probabilistic uncertainty is through the use of Probabilistic Ordinal Optimization. At each step in the optimization problem, improvement is based only on a relative ranking of the probabilistic merits of local design alternatives, rather than on crisp quantification of the alternatives. Thus, we simply ask the question: 'Is that alternative better or worse than this one?' to some level of statistical confidence we require, not: 'HOW MUCH better or worse is that alternative to this one?'. In this paper we illustrate an elementary application of probabilistic ordinal concepts in a 2-D optimization problem. Two uncertain variables contribute to uncertainty in the response function. We use a simple Coordinate Pattern Search non-gradient-based optimizer to step toward the statistical optimum in the design space. We also discuss more sophisticated implementations, and some of the advantages and disadvantages versus non-ordinal approaches for optimization under uncertainty.
NASA Astrophysics Data System (ADS)
Casadei, F.; Ruzzene, M.
2011-04-01
This work illustrates the possibility to extend the field of application of the Multi-Scale Finite Element Method (MsFEM) to structural mechanics problems that involve localized geometrical discontinuities like cracks or notches. The main idea is to construct finite elements with an arbitrary number of edge nodes that describe the actual geometry of the damage with shape functions that are defined as local solutions of the differential operator of the specific problem according to the MsFEM approach. The small scale information are then brought to the large scale model through the coupling of the global system matrices that are assembled using classical finite element procedures. The efficiency of the method is demonstrated through selected numerical examples that constitute classical problems of great interest to the structural health monitoring community.
Optimization-based additive decomposition of weakly coercive problems with applications
Bochev, Pavel B.; Ridzal, Denis
2016-01-27
In this study, we present an abstract mathematical framework for an optimization-based additive decomposition of a large class of variational problems into a collection of concurrent subproblems. The framework replaces a given monolithic problem by an equivalent constrained optimization formulation in which the subproblems define the optimization constraints and the objective is to minimize the mismatch between their solutions. The significance of this reformulation stems from the fact that one can solve the resulting optimality system by an iterative process involving only solutions of the subproblems. Consequently, assuming that stable numerical methods and efficient solvers are available for every subproblem,more » our reformulation leads to robust and efficient numerical algorithms for a given monolithic problem by breaking it into subproblems that can be handled more easily. An application of the framework to the Oseen equations illustrates its potential.« less
NASA Technical Reports Server (NTRS)
Jackson, C. E., Jr.
1977-01-01
A sample problem library containing 20 problems covering most facets of Nastran Thermal Analyzer modeling is presented. Areas discussed include radiative interchange, arbitrary nonlinear loads, transient temperature and steady-state structural plots, temperature-dependent conductivities, simulated multi-layer insulation, and constraint techniques. The use of the major control options and important DMAP alters is demonstrated.
Aditya, Satabdi; DasGupta, Bhaskar; Karpinski, Marek
2013-01-01
In this survey paper, we will present a number of core algorithmic questions concerning several transitive reduction problems on network that have applications in network synthesis and analysis involving cellular processes. Our starting point will be the so-called minimum equivalent digraph problem, a classic computational problem in combinatorial algorithms. We will subsequently consider a few non-trivial extensions or generalizations of this problem motivated by applications in systems biology. We will then discuss the applications of these algorithmic methodologies in the context of three major biological research questions: synthesizing and simplifying signal transduction networks, analyzing disease networks, and measuring redundancy of biological networks. PMID:24833332
Solutions to the Inverse LQR Problem with Application to Biological Systems Analysis
Priess, M Cody; Conway, Richard; Choi, Jongeun; Popovich, John M; Radcliffe, Clark
2015-01-01
In this paper, we present a set of techniques for finding a cost function to the time-invariant Linear Quadratic Regulator (LQR) problem in both continuous- and discrete-time cases. Our methodology is based on the solution to the inverse LQR problem, which can be stated as: does a given controller K describe the solution to a time-invariant LQR problem, and if so, what weights Q and R produce K as the optimal solution? Our motivation for investigating this problem is the analysis of motion goals in biological systems. We first describe an efficient Linear Matrix Inequality (LMI) method for determining a solution to the general case of this inverse LQR problem when both the weighting matrices Q and R are unknown. Our first LMI-based formulation provides a unique solution when it is feasible. Additionally, we propose a gradient-based, least-squares minimization method that can be applied to approximate a solution in cases when the LMIs are infeasible. This new method is very useful in practice since the estimated gain matrix K from the noisy experimental data could be perturbed by the estimation error, which may result in the infeasibility of the LMIs. We also provide an LMI minimization problem to find a good initial point for the minimization using the proposed gradient descent algorithm. We then provide a set of examples to illustrate how to apply our approaches to several different types of problems. An important result is the application of the technique to human subject posture control when seated on a moving robot. Results show that we can recover a cost function which may provide a useful insight on the human motor control goal. PMID:26640359
Application of advanced plasma technology to energy materials and environmental problems
NASA Astrophysics Data System (ADS)
Kobayashi, Akira
2015-04-01
Advanced plasma system has been proposed for various energy materials and for its application to environmental problems. The gas tunnel type plasma device developed by the author exhibits high energy density and also high efficiency. Regarding the application to thermal processing, one example is the plasma spraying of ceramics such as Al2O3 and ZrO2 as thermal barrier coatings (TBCs). The performances of these ceramic coatings are superior to conventional ones, namely, the properties such as the mechanical and chemical properties, thermal behavior and high temperature oxidation resistance of the alumina/zirconia thermal barrier coatings (TBCs) have been clarified and discussed. The ZrO2 composite coating has a possibility for the development of high functionally graded TBC. The results showed that the alumina/zirconia composite system exhibited an improvement of mechanical properties and oxidation resistance. Another application of gas tunnel type plasma to a functional material is the surface modification of metals. TiN films were formed in a short time of 5 s on Ti and its alloy. Also, thick TiN coatings were easily obtained by gas tunnel type plasma reactive spraying on any metals. Regarding the application to the environmental problems, the decomposition of CO2 gas is also introduced by applying the gas tunnel type plasma system.
Infante, L.J.; Aller, P.F.; Fay, R.E.
1983-01-01
An unbonded fiberglass loose-fill insulation was selected for this sidewall application study. The insert tube technique is described and the parameters that affect pneumatic application of the product are identified. The initial evaluation was conducted in the laboratory and included density and thermal testing. The laboratory results were then utilized in field studies. Ten homes with no sidewall insulation were retrofitted. Thermographic scans of sidewalls before and after retrofit confirmed the predicted reductions in heat loss based on calculation techniques given in the ASHRAE Handbook of Fundamentals. The improvement was further confirmed by comparing utility bills. Typical problems that occur while preparing a house for sidewall retrofit are discussed. The simple payback for typical houses is presented. Good correlation is shown between laboratory test results and field performance. Test data indicate that the application procedure used gave an effective R-value per product claim.
NASA Astrophysics Data System (ADS)
Di Luca, Alejandro; Flaounas, Emmanouil; Drobinski, Philippe; Brossier, Cindy Lebeaupin
2014-11-01
The use of high resolution atmosphere-ocean coupled regional climate models to study possible future climate changes in the Mediterranean Sea requires an accurate simulation of the atmospheric component of the water budget (i.e., evaporation, precipitation and runoff). A specific configuration of the version 3.1 of the weather research and forecasting (WRF) regional climate model was shown to systematically overestimate the Mediterranean Sea water budget mainly due to an excess of evaporation (~1,450 mm yr-1) compared with observed estimations (~1,150 mm yr-1). In this article, a 70-member multi-physics ensemble is used to try to understand the relative importance of various sub-grid scale processes in the Mediterranean Sea water budget and to evaluate its representation by comparing simulated results with observed-based estimates. The physics ensemble was constructed by performing 70 1-year long simulations using version 3.3 of the WRF model by combining six cumulus, four surface/planetary boundary layer and three radiation schemes. Results show that evaporation variability across the multi-physics ensemble (˜10 % of the mean evaporation) is dominated by the choice of the surface layer scheme that explains more than ˜70 % of the total variance and that the overestimation of evaporation in WRF simulations is generally related with an overestimation of surface exchange coefficients due to too large values of the surface roughness parameter and/or the simulation of too unstable surface conditions. Although the influence of radiation schemes on evaporation variability is small (˜13 % of the total variance), radiation schemes strongly influence exchange coefficients and vertical humidity gradients near the surface due to modifications of temperature lapse rates. The precipitation variability across the physics ensemble (˜35 % of the mean precipitation) is dominated by the choice of both cumulus (˜55 % of the total variance) and planetary boundary layer (˜32 % of
NASA Astrophysics Data System (ADS)
Yoon, Young-Cheol; Song, Jeong-Hoon
2014-06-01
The Extended Particle Difference Method is developed for interfacial singularity problems based on the Extended Particle Derivative Approximation scheme. Node-wise strong formulations are adopted for transient heat transfer problems, potential problems, and elasticity problems with various interfacial boundaries. The governing partial differential equations are directly discretized at interior and boundary nodes and the interface condition is immersed in the derivative approximation or is enforced at interfacial points. Assemblage of the discretized equations generates a linear algebraic system of equations, which accelerates computation speed due to the avoidance of numerical integration. Solving the system gives the nodal solution together with the jump solutions. We also demonstrate the robustness and effectiveness of the developed method with various numerical examples. Despite the existence of the singularity in the solution fields, the method overcomes the geometrical complexity inherent in interface modeling and thus achieves the second-order accuracy.
Applicability of the flow-net program to solution of Space Station fluid dynamics problems
NASA Astrophysics Data System (ADS)
Navickas, J.; Rivard, W. C.
The Space Station design encompasses a variety of fluid systems that require extensive flow and combined flow-thermal analyses. The types of problems encountered range from two-phase cryogenic to high-pressure gaseous systems. Design of such systems requires the most advanced analytical tools. Because Space Station applications are a new area for existing two-phase flow programs, typically developed for nuclear safety applications, a careful evaluation of their capabilities to treat generic Space Station flows is appropriate. The results from an assessment of one particular program, FLOW-NET, developed by Flow Science, In., are presented. Three typical problems are analyzed: (1) fill of a hyperbaric module with gaseous nitrogen from a high-pressure supply system, (2) response of a liquid ammonia line to a rapid pressure decrease, and (3) performance of a basic two-phase, thermal control network. The three problems were solved successfully. Comparison of the results with those obtained by analytical methods supports the FLOW-NET calculations.
NASA Technical Reports Server (NTRS)
Hu, Fang Q.; Manthey, Joe L.
1997-01-01
Accurate numerical non-reflecting boundary conditions are important in all the proposed benchmark problems of the Second Workshop. Recently, a new absorbing boundary condition has been developed using Perfectly Matched Layer (PML) equations for the Euler equations. In this approach, a region with a width of a few grid points is introduced adjacent to the non-reflecting boundaries. In the added region, Perfectly Matched Layer equations are constructed and applied so that the out-going waves are absorbed inside the layer with little reflection to the interior domain. It will be demonstrated in the present paper that the proposed absorbing boundary condition is quite general and versatile, applicable to radiation boundaries as well as inflow and outflow boundaries. It is also easy to implement. The emphasis of the paper will be on the application of the PML absorbing boundary condition to problems in Categories 1, 2, and 3. In Category 1, solutions of problems 1 and 2 are presented. Both problems are solved using a multi-domain polar grid system. Perfectly Matched Layer equations for a circular boundary are constructed and their effectiveness assessed. In Category 2, solutions of problem 2 are presented. Here, in addition to the radiation boundary conditions at the far field in the axisymmetric coordinate system, the inflow boundary condition at the duct inlet is also dealt with using the proposed Perfectly Match Layer equations. At the inlet, a PML domain is introduced in which the incident duct mode is simulated while the waves reflected from the open end of the duct are absorbed at the same time. In Category 3, solutions of all three problems are presented. Again, the PML absorbing boundary condition is used at the inflow boundary so that the incoming vorticity wave is simulated while the outgoing acoustic waves are absorbed with very little numerical reflection. All the problems are solved using central difference schemes for spatial discretizations and the
Jiang, Mingfeng; Xia, Ling; Huang, Wenqing; Shou, Guofa; Liu, Feng; Crozier, Stuart
2009-10-01
Regularization is an effective method for the solution of ill-posed ECG inverse problems, such as computing epicardial potentials from body surface potentials. The aim of this work was to explore more robust regularization-based solutions through the application of subspace preconditioned LSQR (SP-LSQR) to the study of model-based ECG inverse problems. Here, we presented three different subspace splitting methods, i.e., SVD, wavelet transform and cosine transform schemes, to the design of the preconditioners for ill-posed problems, and to evaluate the performance of algorithms using a realistic heart-torso model simulation protocol. The results demonstrated that when compared with the LSQR, LSQR-Tik and Tik-LSQR method, the SP-LSQR produced higher efficiency and reconstructed more accurate epcicardial potential distributions. Amongst the three applied subspace splitting schemes, the SVD-based preconditioner yielded the best convergence rate and outperformed the other two in seeking the inverse solutions. Moreover, when optimized by the genetic algorithms (GA), the performances of SP-LSQR method were enhanced. The results from this investigation suggested that the SP-LSQR was a useful regularization technique for cardiac inverse problems. PMID:19564127
NASA Astrophysics Data System (ADS)
Ivanyshyn Yaman, Olha; Le Louër, Frédérique
2016-09-01
This paper deals with the material derivative analysis of the boundary integral operators arising from the scattering theory of time-harmonic electromagnetic waves and its application to inverse problems. We present new results using the Piola transform of the boundary parametrisation to transport the integral operators on a fixed reference boundary. The transported integral operators are infinitely differentiable with respect to the parametrisations and simplified expressions of the material derivatives are obtained. Using these results, we extend a nonlinear integral equations approach developed for solving acoustic inverse obstacle scattering problems to electromagnetism. The inverse problem is formulated as a pair of nonlinear and ill-posed integral equations for the unknown boundary representing the boundary condition and the measurements, for which the iteratively regularized Gauss-Newton method can be applied. The algorithm has the interesting feature that it avoids the numerous numerical solution of boundary value problems at each iteration step. Numerical experiments are presented in the special case of star-shaped obstacles.
Application of different variants of the BEM in numerical modeling of bioheat transfer problems.
Majchrzak, Ewa
2013-09-01
Heat transfer processes proceeding in the living organisms are described by the different mathematical models. In particular, the typical continuous model of bioheat transfer bases on the most popular Pennes equation, but the Cattaneo-Vernotte equation and the dual phase lag equation are also used. It should be pointed out that in parallel are also examined the vascular models, and then for the large blood vessels and tissue domain the energy equations are formulated separately. In the paper the different variants of the boundary element method as a tool of numerical solution of bioheat transfer problems are discussed. For the steady state problems and the vascular models the classical BEM algorithm and also the multiple reciprocity BEM are presented. For the transient problems connected with the heating of tissue, the various tissue models are considered for which the 1st scheme of the BEM, the BEM using discretization in time and the general BEM are applied. Examples of computations illustrate the possibilities of practical applications of boundary element method in the scope of bioheat transfer problems. PMID:24396977
Typical applications of a microcomputer database manager to power system problems
Rao, N.D.
1987-08-01
This paper reports on the application of a popular DBMS (database management system) to the solution of selected problems in Power Systems with the IBM Personal Computer in the context of the Power Engineering Curriculum at the University of Calgary. The problems selected are inductance and capacitance calculations of overhead transmission lines and per unit calculations for large power networks. These examples illustrate how to structure, organize, manipulate and query a database and also use it to service one or more independent application program modules to perform specific tasks without unnecessary data duplication. The power and flexibility of command file programming involving multiple database file access as well as program demodulation are also shown. The application programs developed in the paper amply demonstrate not only the benefits of the built-in query language, but also the ability of the DBMS to interface these programs with one or several database files. Because of these versatile features, microcomputer database management systems hold considerable promise as important, cost effective supplementary tools to conventional programming for power utilities as well.
NASA Astrophysics Data System (ADS)
Soleimani, Meisam; Wriggers, Peter; Rath, Henryke; Stiesch, Meike
2016-06-01
In this paper, a 3D computational model has been developed to investigate biofilms in a multi-physics framework using smoothed particle hydrodynamics (SPH) based on a continuum approach. Biofilm formation is a complex process in the sense that several physical phenomena are coupled and consequently different time-scales are involved. On one hand, biofilm growth is driven by biological reaction and nutrient diffusion and on the other hand, it is influenced by fluid flow causing biofilm deformation and interface erosion in the context of fluid and deformable solid interaction. The geometrical and numerical complexity arising from these phenomena poses serious complications and challenges in grid-based techniques such as finite element. Here the solution is based on SPH as one of the powerful meshless methods. SPH based computational modeling is quite new in the biological community and the method is uniquely robust in capturing the interface-related processes of biofilm formation such as erosion. The obtained results show a good agreement with experimental and published data which demonstrates that the model is capable of simulating and predicting overall spatial and temporal evolution of biofilm.
Gasmi, A.; Sprague, M. A.; Jonkman, J. M.; Jones, W. B.
2013-02-01
In this paper we examine the stability and accuracy of numerical algorithms for coupling time-dependent multi-physics modules relevant to computer-aided engineering (CAE) of wind turbines. This work is motivated by an in-progress major revision of FAST, the National Renewable Energy Laboratory's (NREL's) premier aero-elastic CAE simulation tool. We employ two simple examples as test systems, while algorithm descriptions are kept general. Coupled-system governing equations are framed in monolithic and partitioned representations as differential-algebraic equations. Explicit and implicit loose partition coupling is examined. In explicit coupling, partitions are advanced in time from known information. In implicit coupling, there is dependence on other-partition data at the next time step; coupling is accomplished through a predictor-corrector (PC) approach. Numerical time integration of coupled ordinary-differential equations (ODEs) is accomplished with one of three, fourth-order fixed-time-increment methods: Runge-Kutta (RK), Adams-Bashforth (AB), and Adams-Bashforth-Moulton (ABM). Through numerical experiments it is shown that explicit coupling can be dramatically less stable and less accurate than simulations performed with the monolithic system. However, PC implicit coupling restored stability and fourth-order accuracy for ABM; only second-order accuracy was achieved with RK integration. For systems without constraints, explicit time integration with AB and explicit loose coupling exhibited desired accuracy and stability.
Le Pallec, J. C.; Crouzet, N.; Bergeaud, V.; Delavaud, C.
2012-07-01
The control of uncertainties in the field of reactor physics and their propagation in best-estimate modeling are a major issue in safety analysis. In this framework, the CEA develops a methodology to perform multi-physics simulations including uncertainties analysis. The present paper aims to present and apply this methodology for the analysis of an accidental situation such as REA (Rod Ejection Accident). This accident is characterized by a strong interaction between the different areas of the reactor physics (neutronic, fuel thermal and thermal hydraulic). The modeling is performed with CRONOS2 code. The uncertainties analysis has been conducted with the URANIE platform developed by the CEA: For each identified response from the modeling (output) and considering a set of key parameters with their uncertainties (input), a surrogate model in the form of a neural network has been produced. The set of neural networks is then used to carry out a sensitivity analysis which consists on a global variance analysis with the determination of the Sobol indices for all responses. The sensitivity indices are obtained for the input parameters by an approach based on the use of polynomial chaos. The present exercise helped to develop a methodological flow scheme, to consolidate the use of URANIE tool in the framework of parallel calculations. Finally, the use of polynomial chaos allowed computing high order sensitivity indices and thus highlighting and classifying the influence of identified uncertainties on each response of the analysis (single and interaction effects). (authors)
Powell, Adam; Pati, Soobhankar
2012-03-11
Solid Oxide Membrane (SOM) Electrolysis is a new energy-efficient zero-emissions process for producing high-purity magnesium and high-purity oxygen directly from industrial-grade MgO. SOM Recycling combines SOM electrolysis with electrorefining, continuously and efficiently producing high-purity magnesium from low-purity partially oxidized scrap. In both processes, electrolysis and/or electrorefining take place in the crucible, where raw material is continuously fed into the molten salt electrolyte, producing magnesium vapor at the cathode and oxygen at the inert anode inside the SOM. This paper describes a three-dimensional multi-physics finite-element model of ionic current, fluid flow driven by argon bubbling and thermal buoyancy, and heat and mass transport in the crucible. The model predicts the effects of stirring on the anode boundary layer and its time scale of formation, and the effect of natural convection at the outer wall. MOxST has developed this model as a tool for scale-up design of these closely-related processes.
Procassini, R.J.
1997-12-31
The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution of particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.
NASA Astrophysics Data System (ADS)
Fredman, T. P.
2004-12-01
A boundary identification problem in inverse heat conduction is studied, based on data from internal measurement of temperature and heat flux. Formulated as a sideways heat conduction equation, a spatial continuation technique is applied to extend the solution to a known boundary condition at the desired boundary position. Recording the positions traversed in the continuation for each time instant yields the boundary position trajectory and hence the solution of the identification problem. A prospective application of the method can be found in the ironmaking blast furnace, where it is desired to monitor the thickness of the accreted refractory wall based on measurement of its internal state. Simulations featuring noisy measurement data demonstrate the feasibility of the identification method for blast furnace wall thickness estimation.
Application of High Order Acoustic Finite Elements to Transmission Losses and Enclosure Problems
NASA Technical Reports Server (NTRS)
Craggs, A.; Stevenson, G.
1985-01-01
A family of acoustic finite elements was developed based on C continuity (acoustic pressure being the nodal variable) and the no-flow condition. The family include triangular, quadrilateral and hexahedral isoparametric elements with linear quadratic and cubic variation in modelling and distortion. Of greatest use in problems with irregular boundaries are the cubic isoparametric elements: the 32 node hexahedral element for three-dimensional systems; and the twelve node quadrilateral and ten node triangular elements for two-dimensional/axisymmetric applications. These elements were applied to problems involving cavity resonances, transmission loss in silencers and the study of end effects, using a Floating Point Systems 164 attached array processor accessed through an Amdahl 5860 mainframe. The elements are presently being used to study the end effects associated with duct terminations within finite enclosures. The transmission losses with various silencers and sidebranches in ducts is also being studied using the same elements.
Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems
NASA Astrophysics Data System (ADS)
Peng, Juan-juan; Wang, Jian-qiang; Wang, Jing; Zhang, Hong-yu; Chen, Xiao-hong
2016-07-01
As a variation of fuzzy sets and intuitionistic fuzzy sets, neutrosophic sets have been developed to represent uncertain, imprecise, incomplete and inconsistent information that exists in the real world. Simplified neutrosophic sets (SNSs) have been proposed for the main purpose of addressing issues with a set of specific numbers. However, there are certain problems regarding the existing operations of SNSs, as well as their aggregation operators and the comparison methods. Therefore, this paper defines the novel operations of simplified neutrosophic numbers (SNNs) and develops a comparison method based on the related research of intuitionistic fuzzy numbers. On the basis of these operations and the comparison method, some SNN aggregation operators are proposed. Additionally, an approach for multi-criteria group decision-making (MCGDM) problems is explored by applying these aggregation operators. Finally, an example to illustrate the applicability of the proposed method is provided and a comparison with some other methods is made.
NASA Astrophysics Data System (ADS)
Marwati, Rini; Yulianti, Kartika; Pangestu, Herny Wulandari
2016-02-01
A fuzzy evolutionary algorithm is an integration of an evolutionary algorithm and a fuzzy system. In this paper, we present an application of a genetic algorithm to a fuzzy evolutionary algorithm to detect and to solve chromosomes conflict. A chromosome conflict is identified by existence of any two genes in a chromosome that has the same values as two genes in another chromosome. Based on this approach, we construct an algorithm to solve a lecture scheduling problem. Time codes, lecture codes, lecturer codes, and room codes are defined as genes. They are collected to become chromosomes. As a result, the conflicted schedule turns into chromosomes conflict. Built in the Delphi program, results show that the conflicted lecture schedule problem is solvable by this algorithm.
Applications of Fourier Analysis in Homogenization of the Dirichlet Problem: L p Estimates
NASA Astrophysics Data System (ADS)
Aleksanyan, Hayk; Shahgholian, Henrik; Sjölin, Per
2015-01-01
Let u ɛ be a solution to the system where , is a smooth uniformly convex domain, and g is 1-periodic in its second variable, and both A ɛ and g are sufficiently smooth. Our results in this paper are twofold. First we prove L p convergence results for solutions of the above system and for the non oscillating operator , with the following convergence rate for all which we prove is (generically) sharp for . Here u 0 is the solution to the averaging problem. Second, combining our method with the recent results due to Kenig, Lin and Shen (Commun Pure Appl Math 67(8):1219-1262, 2014), we prove (for certain class of operators and when ) for both the oscillating operator and boundary data. For this case, we take , where A is 1-periodic as well. Some further applications of the method to the homogenization of the Neumann problem with oscillating boundary data are also considered.
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer. PMID
Application of remote sensing to state and regional problems. [for Mississippi
NASA Technical Reports Server (NTRS)
Miller, W. F.; Bouchillon, C. W.; Harris, J. C.; Carter, B.; Whisler, F. D.; Robinette, R.
1974-01-01
The primary purpose of the remote sensing applications program is for various members of the university community to participate in activities that improve the effective communication between the scientific community engaged in remote sensing research and development and the potential users of modern remote sensing technology. Activities of this program are assisting the State of Mississippi in recognizing and solving its environmental, resource and socio-economic problems through inventory, analysis, and monitoring by appropriate remote sensing systems. Objectives, accomplishments, and current status of the following individual projects are reported: (1) bark beetle project; (2) state park location planning; and (3) waste source location and stream channel geometry monitoring.
Application of a hybrid generation/utility assessment heuristic to a class of scheduling problems
NASA Technical Reports Server (NTRS)
Heyward, Ann O.
1989-01-01
A two-stage heuristic solution approach for a class of multiobjective, n-job, 1-machine scheduling problems is described. Minimization of job-to-job interference for n jobs is sought. The first stage generates alternative schedule sequences by interchanging pairs of schedule elements. The set of alternative sequences can represent nodes of a decision tree; each node is reached via decision to interchange job elements. The second stage selects the parent node for the next generation of alternative sequences through automated paired comparison of objective performance for all current nodes. An application of the heuristic approach to communications satellite systems planning is presented.
NASA Technical Reports Server (NTRS)
Horton, F. E.
1970-01-01
The utility of remote sensing techniques to urban data acquisition problems in several distinct areas was identified. This endeavor included a comparison of remote sensing systems for urban data collection, the extraction of housing quality data from aerial photography, utilization of photographic sensors in urban transportation studies, urban change detection, space photography utilization, and an application of remote sensing techniques to the acquisition of data concerning intra-urban commercial centers. The systematic evaluation of variable extraction for urban modeling and planning at several different scales, and the model derivation for identifying and predicting economic growth and change within a regional system of cities are also studied.
Scattering by randomly oriented ellipsoids: Application to aerosol and cloud problems
NASA Technical Reports Server (NTRS)
Asano, S.; Sato, M.; Hansen, J. E.
1979-01-01
A program was developed for computing the scattering and absorption by arbitrarily oriented and randomly oriented prolate and oblate spheroids. This permits examination of the effect of particle shape for cases ranging from needles through spheres to platelets. Applications of this capability to aerosol and cloud problems are discussed. Initial results suggest that the effect of nonspherical particle shape on transfer of radiation through aerosol layers and cirrus clouds, as required for many climate studies, can be readily accounted for by defining an appropriate effective spherical particle radius.
Application of a substructuring technique to the problem of crack extension and closure
NASA Technical Reports Server (NTRS)
Armen, H., Jr.
1974-01-01
A substructuring technique, originally developed for the efficient reanalysis of structures, is incorporated into the methodology associated with the plastic analysis of structures. An existing finite-element computer program that accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing kinematic constraint conditions - crack growth and intermittent contact of crack surfaces in two dimensional regions. Application of the analysis is presented for a problem of a centercrack panel to demonstrate the efficiency and accuracy of the technique.
ERIC Educational Resources Information Center
Seyhan, Hatice Güngör
2015-01-01
This study was conducted with 98 prospective science teachers, who were composed of 50 prospective teachers that had participated in problem-solving applications and 48 prospective teachers who were taught within a more researcher-oriented teaching method in science laboratories. The first aim of this study was to determine the levels of…
Application of ultrasonic stress measurements to problems in the electricity supply industry
Williams, H.D.; Armstrong, D.; Robins, R.H.
1982-09-01
The potential advantages of an ultrasonic method of stress measurement stem from the speed with which individual determinations can be made, the ability to determine stresses throughout the bulk of a component, and the nondestructive nature of the test. These advantages may be paramount where large numbers of components are involved, where stress contour mapping is required, where quality control is to be exercised over fabrication or structural erection, or where remote measurement is required in hostile environments or inaccessible locations. The basis of the ultrasonic method is reviewed in terms of the interaction between acoustic wave motion and stress, materials properties, and the principle of superposition. Methods of analysis are considered and the practical limitations of the technique are assessed. Its application to problems on pipes, bolts, and electrical rotors is discussed and consideration is given to the work required to provide a rigorous basis for each application.
ERIC Educational Resources Information Center
Dogru, Mustafa
2008-01-01
Helping students to improve their problems solving skills is the primary target of science teacher trainees. In modern science, for training the students, methods should be used for improving their thinking skills, making connections with events and concepts and scientific operations skills rather than information and definition giving. One of…
NASA Technical Reports Server (NTRS)
Hu, F. Q.; Hussaini, M. Y.; Manthey, J.
1995-01-01
We investigate accurate and efficient time advancing methods for computational aeroacoustics, where non-dissipative and non-dispersive properties are of critical importance. Our analysis pertains to the application of Runge-Kutta methods to high-order finite difference discretization. In many CFD applications, multi-stage Runge-Kutta schemes have often been favored for their low storage requirements and relatively large stability limits. For computing acoustic waves, however, the stability consideration alone is not sufficient, since the Runge-Kutta schemes entail both dissipation and dispersion errors. The time step is now limited by the tolerable dissipation and dispersion errors in the computation. In the present paper, it is shown that if the traditional Runge-Kutta schemes are used for time advancing in acoustic problems, time steps greatly smaller than that allowed by the stability limit are necessary. Low Dissipation and Dispersion Runge-Kutta (LDDRK) schemes are proposed, based on an optimization that minimizes the dissipation and dispersion errors for wave propagation. Optimizations of both single-step and two-step alternating schemes are considered. The proposed LDDRK schemes are remarkably more efficient than the classical Runge-Kutta schemes for acoustic computations. Numerical results of each Category of the Benchmark Problems are presented. Moreover, low storage implementations of the optimized schemes are discussed. Special issues of implementing numerical boundary conditions in the LDDRK schemes are also addressed.
A special application of absolute value techniques in authentic problem solving
NASA Astrophysics Data System (ADS)
Stupel, Moshe
2013-06-01
There are at least five different equivalent definitions of the absolute value concept. In instances where the task is an equation or inequality with only one or two absolute value expressions, it is a worthy educational experience for learners to solve the task using each one of the definitions. On the other hand, if more than two absolute value expressions are involved, the definition that is most helpful is the one involving solving by intervals and evaluating critical points. In point of fact, application of this technique is one reason that the topic of absolute value is important in mathematics in general and in mathematics teaching in particular. We present here an authentic practical problem that is solved using absolute values and the 'intervals' method, after which the solution is generalized with surprising results. This authentic problem also lends itself to investigation using educational technological tools such as GeoGebra dynamic geometry software: mathematics teachers can allow their students to initially cope with the problem by working in an inductive environment in which they conduct virtual experiments until a solid conjecture has been reached, after which they should prove the conjecture deductively, using classic theoretical mathematical tools.
Resolving all-order method convergence problems for atomic physics applications
Gharibnejad, H.; Derevianko, A.; Eliav, E.; Safronova, M. S.
2011-05-15
The development of the relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Hartree-Fock wave function are included to all orders of perturbation theory led to many important results for the study of fundamental symmetries, development of atomic clocks, ultracold atom physics, and others, as well as provided recommended values of many atomic properties critically evaluated for their accuracy for a large number of monovalent systems. This approach requires iterative solutions of the linearized coupled-cluster equations leading to convergence issues in some cases where correlation corrections are particularly large or lead to an oscillating pattern. Moreover, these issues also lead to similar problems in the configuration-interaction (CI)+all-order method for many-particle systems. In this work, we have resolved most of the known convergence problems by applying two different convergence stabilizer methods, namely, reduced linear equation and direct inversion of iterative subspace. Examples are presented for B, Al, Zn{sup +}, and Yb{sup +}. Solving these convergence problems greatly expands the number of atomic species that can be treated with the all-order methods and is anticipated to facilitate many interesting future applications.
The Optimal Solution of a Non-Convex State-Dependent LQR Problem and Its Applications
Xu, Xudan; Zhu, J. Jim; Zhang, Ping
2014-01-01
This paper studies a Non-convex State-dependent Linear Quadratic Regulator (NSLQR) problem, in which the control penalty weighting matrix in the performance index is state-dependent. A necessary and sufficient condition for the optimal solution is established with a rigorous proof by Euler-Lagrange Equation. It is found that the optimal solution of the NSLQR problem can be obtained by solving a Pseudo-Differential-Riccati-Equation (PDRE) simultaneously with the closed-loop system equation. A Comparison Theorem for the PDRE is given to facilitate solution methods for the PDRE. A linear time-variant system is employed as an example in simulation to verify the proposed optimal solution. As a non-trivial application, a goal pursuit process in psychology is modeled as a NSLQR problem and two typical goal pursuit behaviors found in human and animals are reproduced using different control weighting . It is found that these two behaviors save control energy and cause less stress over Conventional Control Behavior typified by the LQR control with a constant control weighting , in situations where only the goal discrepancy at the terminal time is of concern, such as in Marathon races and target hitting missions. PMID:24747417
NASA Astrophysics Data System (ADS)
Yang, Eunice
2016-02-01
This paper discusses the use of a free mobile engineering application (app) called Autodesk® ForceEffect™ to provide students assistance with spatial visualization of forces and more practice in solving/visualizing statics problems compared to the traditional pencil-and-paper method. ForceEffect analyzes static rigid-body systems using free-body diagrams (FBDs) and provides solutions in real time. It is a cost-free software that is available for download on the Internet. The software is supported on the iOS™, Android™, and Google Chrome™ platforms. It is easy to use and the learning curve is approximately two hours using the tutorial provided within the app. The use of ForceEffect has the ability to provide students different problem modalities (textbook, real-world, and design) to help them acquire and improve on skills that are needed to solve force equilibrium problems. Although this paper focuses on the engineering mechanics statics course, the technology discussed is also relevant to the introductory physics course.
NASA Technical Reports Server (NTRS)
Johnson, O. W.
1964-01-01
A modified spray gun, with separate containers for resin and additive components, solves the problems of quick hardening and nozzle clogging. At application, separate atomizers spray the liquids in front of the nozzle face where they blend.
Multi-Scale Multi-physics Methods Development for the Calculation of Hot-Spots in the NGNP
Downar, Thomas; Seker, Volkan
2013-04-30
Radioactive gaseous fission products are released out of the fuel element at a significantly higher rate when the fuel temperature exceeds 1600°C in high-temperature gas-cooled reactors (HTGRs). Therefore, it is of paramount importance to accurately predict the peak fuel temperature during all operational and design-basis accident conditions. The current methods used to predict the peak fuel temperature in HTGRs, such as the Next-Generation Nuclear Plant (NGNP), estimate the average fuel temperature in a computational mesh modeling hundreds of fuel pebbles or a fuel assembly in a pebble-bed reactor (PBR) or prismatic block type reactor (PMR), respectively. Experiments conducted in operating HTGRs indicate considerable uncertainty in the current methods and correlations used to predict actual temperatures. The objective of this project is to improve the accuracy in the prediction of local "hot" spots by developing multi-scale, multi-physics methods and implementing them within the framework of established codes used for NGNP analysis.The multi-scale approach which this project will implement begins with defining suitable scales for a physical and mathematical model and then deriving and applying the appropriate boundary conditions between scales. The macro scale is the greatest length that describes the entire reactor, whereas the meso scale models only a fuel block in a prismatic reactor and ten to hundreds of pebbles in a pebble bed reactor. The smallest scale is the micro scale--the level of a fuel kernel of the pebble in a PBR and fuel compact in a PMR--which needs to be resolved in order to calculate the peak temperature in a fuel kernel.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Namburu, Raju R.
1990-01-01
The present paper describes recent advances and trends in finite element developments and applications for solidification problems. In particular, in comparison to traditional methods of approach, new enthalpy-based architectures based on a generalized trapezoidal family of representations are presented which provide different perspectives, physical interpretation and solution architectures for effective numerical simulation of phase change processes encountered in solidification problems. Various numerical test models are presented and the results support the proposition for employing such formulations for general phase change applications.
Study on the Uneven cells Problem of the Power Battery Pack in the Automotive Application by ECM
NASA Astrophysics Data System (ADS)
Jiayuan, Wang; Zechang, Sun; Xuezhe, Wei; Haifeng, Dai
Uneven cells problem is a universal phenomenon in the cell grouping application. It will cause performance and safety problems if the uneven is not considered during pack design and application, especially for the automotive application. The ECM model is used for the study of the uneven cells phenomenon of the power battery pack in the automotive application. An EV model and a FCV model are used for simulating the current profiles for two representative powertrain systems. The links of the ECM are set in five conditions for separate study on the impact. The results show different impact on the SOC and voltage with the same sets of links for the two powertrain model. The cell grouping design and the balance algorithm should be adjusted according to the different application background when the uneven cells problems are considered.