Science.gov

Sample records for multi-qubit ghz state

  1. Multiple Multi-Qubit Quantum States Sharing

    NASA Astrophysics Data System (ADS)

    Qin, Hua-Wang; Dai, Yue-Wei

    2016-04-01

    A multiple multi-qubit quantum states sharing scheme is proposed, in which the dealer can share multiple multi-qubit quantum states among the participants through only one distribution and one recovery. The dealer encodes the secret quantum states into a special entangled state, and then distributes the particles of the entangled state to the participants. The participants perform the single-particle measurements on their particles, and can cooperate to recover the multiple multi-qubit quantum states. Compared to the existing schemes, our scheme is more efficient and more flexible in practice.

  2. Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states

    NASA Astrophysics Data System (ADS)

    Shi, Runhua; Huang, Liusheng; Yang, Wei; Zhong, Hong

    2011-12-01

    We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entanglement state with the help of one or more controllers. Furthermore, our scheme has a very good performance in the measurement and operation complexity, since it only needs to perform Bell state and single-particle measurements and to apply Controlled-Not gate and other single-particle unitary operations. In addition, compared with traditional schemes, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.

  3. Quantum Teleportation of Three and Four-Qubit State Using Multi-qubit Cluster States

    NASA Astrophysics Data System (ADS)

    Li, Yuan-hua; Li, Xiao-lan; Nie, Li-ping; Sang, Ming-huang

    2016-03-01

    We provide various schemes for quantum teleportation by using the four and five qubit cluster states. Explicit protocols for the perfect quantum teleportation of three and four qubit states are illustrated. It is found that the four-qubit cluster state can be used for perfect quantum teleportation of a special form of three-qubit state and the five-qubit cluster state can be used for perfect quantum teleportation of a special form of four-qubit state.

  4. Demonstrating Multi-Qubit Operations in a Superconducting 3D circuit QED Architecture

    NASA Astrophysics Data System (ADS)

    Paik, Hanhee; Sandberg, M. O.; Mezzacapo, A.; McClure, D. T.; Abdo, B.; Dial, O. E.; Cross, A. W.; Corcoles, A. D.; Sheldon, S.; Magesan, E.; Srinivasan, S. J.; Gambetta, J. M.; Chow, J. M.; Bogorin, D.; Plourde, B. L. T.

    We present our recent results on multi-qubit operations in a superconducting 3D circuit QED (cQED) system using a resonator-induced phase (RIP) gate. In our system, four qubits are coupled by a single bus resonator. The RIP gate is implemented by applying a microwave pulse to the bus that performs entangling operations. We demonstrate controlled-phase gates using RIP on 2-qubit subsystems with gate fidelities between 95%-97% evaluated by randomized benchmarking. Via a multi-qubit echo scheme, we perform isolated two-qubit interactions in the full 4-qubit system to generate a GHZ state. We acknowledge support from IARPA under Contract W911NF-10-1-0324.

  5. Generation of multi-qubit entanglement in a superconducting quantum circuit by parallelized parity measurements

    NASA Astrophysics Data System (ADS)

    Poletto, Stefano; Riste', Diego; Huang, Meng-Zi; Bruno, Alessandro; Vesterinen, Visa; Saira, Olli-Pentti; Dicarlo, Leonardo

    2015-03-01

    We present the generation of multi-qubit entanglement using parallelized ancilla-based parity measurements in a five qubit superconducting processor. Two-qubit Bell states and three-qubit GHZ-type states are generated by single and double two-qubit parity measurements on superposition states, respectively, and characterized by both witnessing and state tomography. The protocol for generation of GHZ-type states can be used as the encoding step in the three-qubit bit-flip quantum error correction code, and made deterministic by digital feedback control. We assess its performance by state tomography of the six encoded cardinal states, and compare to the traditional method of encoding by gates. We acknowledge funding from NWO, FOM and EU FP7 project Scale QIT.

  6. Generation of a multi-qubit W entangled state through spatially separated semiconductor quantum-dot-molecules in cavity-quantum electrodynamics arrays

    SciTech Connect

    Liu, Siping; Yu, Rong; Li, Jiahua; Wu, Ying

    2014-04-07

    Generating entangled states attract tremendous interest as the most vivid manifestation of nonlocality of quantum mechanics and also for emerging applications in quantum information processing (QIP). Here, we propose theoretically a scheme for the deterministic generation of a three-qubit W sate with three semiconductor quantum-dot-molecules (QDMs) trapped in spatially separated cavities connected by optical fibers. The proposed scheme takes full advantage of the voltage-controlled tunnelling effects in QDMs, which induces the quantum coherence and further controls the generation of the W entangled state. The influences of the system parameters and various decoherence processes including spontaneous decay and photon leakage on the fidelity of the W state are discussed in details. Numerical results indicate that our scheme is not only robust against these decoherence factors but also insensitive to the deviation of the system parameters from the ideal conditions. Furthermore, the present scheme can be directly extended to realize an N-qubit W state. Also, this scheme can be generically transferred to other physical systems, including circuit quantum electrodynamics and photonic crystal cavities. The results obtained here may be useful in real experiments for realizing QIP in a solid-state platform.

  7. Pairwise Quantum Discord for a Symmetric Multi-Qubit System in Different Types of Noisy Channels

    NASA Astrophysics Data System (ADS)

    Guo, You-Neng; Zeng, Ke; Wang, Guo-You

    2016-06-01

    We study the pairwise quantum discord (QD) for a symmetric multi-qubit system in different types of noisy channels, such as phase-flip, amplitude damping, phase-damping, and depolarizing channels. Using the QD and geometric quantum discord (GMQD) to quantify quantum correlations, some analytical and numerical results are presented. The results show that, the QD dynamics is strongly related to the number of spin particles N as well as the initial parameter 𝜃 of the one-axis twisting collective state. With the number of spin particles N increasing, the amount of the QD increases. However, when the amount of the QD arrives at a stable maximal value, the QD is independence of the number of spin particles N increasing. The behavior of the QD is symmetrical during a period 0 ≤ 𝜃 ≤ 2 π. Moreover, we compare the QD dynamics with the GMQD for a symmetric multi-qubit system in different types of noisy channels.

  8. Teleportation of a 3-dimensional GHZ State

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan

    2012-05-01

    The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.

  9. Multi-qubit measurements with a Josephson Photomultiplier

    NASA Astrophysics Data System (ADS)

    Howington, Caleb; Hutchings, M.; Ribeill, Guilhem; Pechenezhskiy, Ivan; Vavilov, Maxim G.; Wilhelm, Frank K.; McDermott, R.; Plourde, Blt

    The ability to measure multi-qubit parity is critical for the realization of a fault-tolerant quantum information processor. For a system of transmon qubits coupled to a superconducting cavity, a threshold photon detector can provide an efficient path towards the digital readout of qubit parity after the parity information is mapped onto the cavity photon occupation. We will describe progress towards the implementation of such a scheme for measuring the parity of two transmon qubits. On-chip flux bias lines allow us to tune the dispersive cavity shifts related to the state of the two qubits and an appropriately shaped pulse driven to the cavity results in a bright state for one parity but not the other. A Josephson Photomultiplier then serves as a phase-insensitive digital detector of the microwave photons that leak out of the cavity. Future improvements and various technical difficulties will be discussed. We acknowledge support from ARO under Contract W911NF-14-1-0080.

  10. Entanglement and quantum teleportation via decohered tripartite entangled states

    SciTech Connect

    Metwally, N.

    2014-12-15

    The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.

  11. On implementing nondestructive triplet Toffoli gate with entanglement swapping operations via the GHZ state analysis

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Zhao, Zhisheng; Wang, Yijun; Wang, Ping; Huang, Dazu; Lee, Moon Ho

    2014-09-01

    We investigate an novel implementation of a Toffoli gate using multiple independent auxiliary photons prepared beforehand in single-qubit states. This gate can be performed nondestructively with entanglement swapping via the Greenberger-Horne-Zeilinger state analysis. We evaluate the performance of the proposed Toffoli gate with the fidelity based on different computation bases. The multi-qubit-entanglement gate is no longer theoretical since it can be implemented in principle with single-qubit photons.

  12. The 60 GHz solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Mcclymonds, J.

    1991-01-01

    A new amplifier architecture was developed during this contract that is superior to any other solid state approach. The amplifier produced 6 watts with 4 percent efficiency over a 2 GHz band at 61.5 GHz. The unit was 7 x 9 x 3 inches in size, 5.5 pounds in weight, and the conduction cooling through the baseplate is suitable for use in space. The amplifier used high efficiency GaAs IMPATT diodes which were mounted in 1-diode circuits, called modules. Eighteen modules were used in the design, and power combining was accomplished with a proprietary passive component called a combiner plate.

  13. Universal control and error correction in multi-qubit spin registers in diamond.

    PubMed

    Taminiau, T H; Cramer, J; van der Sar, T; Dobrovitski, V V; Hanson, R

    2014-03-01

    Quantum registers of nuclear spins coupled to electron spins of individual solid-state defects are a promising platform for quantum information processing. Pioneering experiments selected defects with favourably located nuclear spins with particularly strong hyperfine couplings. To progress towards large-scale applications, larger and deterministically available nuclear registers are highly desirable. Here, we realize universal control over multi-qubit spin registers by harnessing abundant weakly coupled nuclear spins. We use the electron spin of a nitrogen-vacancy centre in diamond to selectively initialize, control and read out carbon-13 spins in the surrounding spin bath and construct high-fidelity single- and two-qubit gates. We exploit these new capabilities to implement a three-qubit quantum-error-correction protocol and demonstrate the robustness of the encoded state against applied errors. These results transform weakly coupled nuclear spins from a source of decoherence into a reliable resource, paving the way towards extended quantum networks and surface-code quantum computing based on multi-qubit nodes. PMID:24487650

  14. Multiple teleportation via partially entangled GHZ state

    NASA Astrophysics Data System (ADS)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhan, Hai-Tao; Zhang, Zai-Chen

    2016-08-01

    Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger-Horne-Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations.

  15. Information entropy of multi-qubit Rabi system

    NASA Astrophysics Data System (ADS)

    Abo-Kahla, D. A. M.; Abdel-Aty, M.

    2015-09-01

    We consider quantum information entropy phenomenon for multi-qubit Rabi system. By introducing different measurements schemes, we establish the relation between information entropy approach and Von Neumann entropy. It is shown that the information entropy is more sensitive to the time development than the Von Neumann entropy. Furthermore, the suggested protocol exhibits excellent scaling of relevant characteristics, with respect to population dynamics, such that more accurate dynamical results may be obtained using information entropy due to variation of the frequency detuning and the coupling constant.

  16. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement

    PubMed Central

    Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang

    2016-01-01

    Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state. PMID:27346605

  17. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement.

    PubMed

    Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang

    2016-01-01

    Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state. PMID:27346605

  18. Multifrequency multi-qubit entanglement based on plasmonic hot spots

    PubMed Central

    Ren, Jun; Wu, Tong; Zhang, Xiangdong

    2015-01-01

    The theoretical method to study strong coupling between an ensemble of quantum emitters (QEs) and surface plasmons excited by the nanoparticle cluster has been presented by using a rigorous first-principles electromagnetic Green’s tensor technique. We have demonstrated that multi-qubit entanglements for two-level QEs can be produced at different coupling resonance frequencies, when they locate in the hot spots of the metallic nanoparticle cluster. The duration of quantum beats for such an entanglement can reach two orders longer than that for the entanglement in a photonic cavity. The phenomenon originates from collective coupling resonance excitation of the cluster. At the frequency of single scattering resonance, the entanglement cannot be produced although the single QE spontaneous decay rate is very big. PMID:26350051

  19. Highly efficient Bell state purification and GHZ preparation and purification

    NASA Astrophysics Data System (ADS)

    Krastanov, Stefan; Jiang, Liang

    2016-05-01

    We investigate novel protocols for entanglement purification with Bell states. Employing genetic algorithms for the design of the purification circuit, we obtain shorter circuits giving higher success rates and better final fidelities than what is available in the literature. We generalize these circuits in order to prepare GHZ states from Bell pairs and to subsequently purify these GHZ states. We provide new threshold estimates for codes using these GHZ states for fault-tolerant stabilizer measurements.

  20. Modular cryogenic interconnects for multi-qubit devices.

    PubMed

    Colless, J I; Reilly, D J

    2014-11-01

    We have developed a modular interconnect platform for the control and readout of multiple solid-state qubits at cryogenic temperatures. The setup provides 74 filtered dc-bias connections, 32 control and readout connections with -3 dB frequency above 5 GHz, and 4 microwave feed lines that allow low loss (less than 3 dB) transmission 10 GHz. The incorporation of a radio-frequency interposer enables the platform to be separated into two printed circuit boards, decoupling the simple board that is bonded to the qubit chip from the multilayer board that incorporates expensive connectors and components. This modular approach lifts the burden of duplicating complex interconnect circuits for every prototype device. We report the performance of this platform at milli-Kelvin temperatures, including signal transmission and crosstalk measurements. PMID:25430132

  1. Modular cryogenic interconnects for multi-qubit devices

    SciTech Connect

    Colless, J. I.; Reilly, D. J.

    2014-11-15

    We have developed a modular interconnect platform for the control and readout of multiple solid-state qubits at cryogenic temperatures. The setup provides 74 filtered dc-bias connections, 32 control and readout connections with −3 dB frequency above 5 GHz, and 4 microwave feed lines that allow low loss (less than 3 dB) transmission 10 GHz. The incorporation of a radio-frequency interposer enables the platform to be separated into two printed circuit boards, decoupling the simple board that is bonded to the qubit chip from the multilayer board that incorporates expensive connectors and components. This modular approach lifts the burden of duplicating complex interconnect circuits for every prototype device. We report the performance of this platform at milli-Kelvin temperatures, including signal transmission and crosstalk measurements.

  2. Asymptotic entanglement transformation between W and GHZ states

    SciTech Connect

    Vrana, Péter; Christandl, Matthias

    2015-02-15

    We investigate entanglement transformations with stochastic local operations and classical communication in an asymptotic setting using the concepts of degeneration and border rank of tensors from algebraic complexity theory. Results well-known in that field imply that GHZ states can be transformed into W states at rate 1 for any number of parties. As a generalization, we find that the asymptotic conversion rate from GHZ states to Dicke states is bounded as the number of subsystems increases and the number of excitations is fixed. By generalizing constructions of Coppersmith and Winograd and by using monotones introduced by Strassen, we also compute the conversion rate from W to GHZ states.

  3. Dynamical decoupling sequences for multi-qubit dephasing suppression and long-time quantum memory

    NASA Astrophysics Data System (ADS)

    Paz-Silva, Gerardo A.; Lee, Seung-Woo; Green, Todd J.; Viola, Lorenza

    2016-07-01

    We consider a class of multi-qubit dephasing models that combine classical noise sources and linear coupling to a bosonic environment, and are controlled by arbitrary sequences of dynamical decoupling pulses. Building on a general transfer filter-function framework for open-loop control, we provide an exact representation of the controlled dynamics for arbitrary stationary non-Gaussian classical and quantum noise statistics, with analytical expressions emerging when all dephasing sources are Gaussian. This exact characterization is used to establish two main results. First, we construct multi-qubit sequences that ensure maximum high-order error suppression in both the time and frequency domain and that can be exponentially more efficient than existing ones in terms of total pulse number. Next, we show how long-time multi-qubit storage may be achieved by meeting appropriate conditions for the emergence of a fidelity plateau under sequence repetition, thereby generalizing recent results for single-qubit memory under Gaussian dephasing. In both scenarios, the key step is to endow multi-qubit sequences with a suitable displacement anti-symmetry property, which is of independent interest for applications ranging from environment-assisted entanglement generation to multi-qubit noise spectroscopy protocols.

  4. Generation of GHZ states with invariant-based shortcuts

    NASA Astrophysics Data System (ADS)

    Ye, Li-Xiang; Lin, Xiu; Chen, Xiang; He, Juan; Yang, Rong-Can; Liu, Hong-Yu

    2016-07-01

    A scheme is proposed to generate three-atom GHZ states by applying the inversely engineered control method on the basis of Lewis-Riesenfeld invariants. In the proposal, three atoms that have different configurations are trapped in a bimodal cavity. Numerical simulations indicate that our protocol has an obvious improvement of speed for the generation of GHZ states. Moreover, the present scheme is robust against both parameter fluctuations and dissipation.

  5. Tunable All-Solid-State Local Oscillators to 1900 GHz

    NASA Technical Reports Server (NTRS)

    Ward, John; Chattopadhyay, Goutam; Maestrini, Alain; Schlecht, Erich; Gill, John; Javadi, Hamid; Pukala, David; Maiwald, Frank; Mehdi, Imran

    2004-01-01

    We present a status report of an ongoing effort to develop robust tunable all-solid-state sources up to 1900 GHz for the Heterodyne Instrument for the Far Infrared (HIFI) on the Herschel Space Observatory. GaAs based multi-chip power amplifier modules at W-band are used to drive cascaded chains of multipliers. We have demonstrated performance from chains comprised of four doublers up to 1600 GHz as well as from a x2x3x3 chain to 1900 GHz. Measured peak output power of 23 (micro)W at 1782 GHz and 2.6 (micro)W at 1900 GHz has been achieved when the multipliers are cooled to 120K. The 1900 GHz tripler was pumped with a four anode tripler that produces a peak of 4 mW at 630 GHz when cooled to 120 K. We believe that these sources can now be used to pump hot electron bolometer (HEB) heterodyne mixers.ter (HEB) heterodyne mixers.

  6. Quantum Steganography via Greenberger-Horne-Zeilinger GHZ4 State

    NASA Astrophysics Data System (ADS)

    A. El, Allati; M. B. Ould, Medeni; Hassouni, Y.

    2012-04-01

    A quantum steganography communication scheme via Greenberger-Horne-Zeilinger GHZ4 state is constructed to investigate the possibility of remotely transferred hidden information. Moreover, the multipartite entangled states are become a hectic topic due to its important applications and deep effects on aspects of quantum information. Then, the scheme consists of sharing the correlation of four particle GHZ4 states between the legitimate users. After insuring the security of the quantum channel, they begin to hide the secret information in the cover of message. Comparing the scheme with the previous quantum steganographies, capacity and imperceptibility of hidden message are good. The security of the present scheme against many attacks is also discussed.

  7. The 20 GHz spacecraft FET solid state transmitter

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The engineering development of a solid state transmitter amplifier operating in the 20 GHz frequency band using GaAs field effect transistors (FETs) was detailed. The major efforts include GaAs FET device development, single-ended amplifier stage, balanced amplifier stage, cascaded stage and radial combiner designs, and amplifier integration and test. A multistage GaAs FET amplifier capable of 8.2 W CW output over the 17.9 to 19.1 GHz frequency band was developed. The GaAs FET devices developed represent state of the art FET power device technology. Further device improvements are necessary to increase the bandwidth to 2.5 GHz, improve dc-to-RF efficiency, and increase power capability at the device level. Higher power devices will simplify the amplifier combining scheme, reducing the size and weight of the overall amplifier.

  8. Controlled Teleportation of a Qudit State by Partially Entangled GHZ States

    NASA Astrophysics Data System (ADS)

    Wang, Jin-wei; Shu, Lan; Mo, Zhi-wen; Zhang, Zhi-hua

    2014-08-01

    In this paper, we propose a controlled teleportation scheme which communicates an arbitrary ququart state via two sets of partially entangled GHZ state. The necessary measurements and operations are given detailedly. Furthmore the scheme is generalized to teleport a qudit state via s sets of partially entangled GHZ state.

  9. Microwave interferometer using 94-GHz solid-state sources

    SciTech Connect

    Coffield, F.E.; Thomas, S.R.; Lang, D.D.; Stever, R.D.

    1983-11-14

    A 94-GHz microwave interferometer has been designed for the Tandem Mirror Experiment Upgrade and the Mirror Fusion Test Facility to replace the 140-GHz system. The new system is smaller and has modular single-channel units designed for high reliability. It is magnetically shielded and can be mounted close to the machine, which allows the use of lower power solid-state sources. Test results of the 94-GHz prototype indicate that the phase resolution is better than 1/sup 0/, the Impatt FM noise is 5 MHz wide, and the Gunn FM noise is 6 kHz wide. This paper presents the antenna designs along with the test results and discusses the unique problems associated with diagnosing a high electron temperature plasma in the presence of electron cyclotron resonant heating.

  10. Bidirectional Quantum States Sharing

    NASA Astrophysics Data System (ADS)

    Peng, Jia-Yin; Bai, Ming-qiang; Mo, Zhi-Wen

    2016-05-01

    With the help of the shared entanglement and LOCC, multidirectional quantum states sharing is considered. We first put forward a protocol for implementing four-party bidirectional states sharing (BQSS) by using eight-qubit cluster state as quantum channel. In order to extend BQSS, we generalize this protocol from four sharers to multi-sharers utilizing two multi-qubit GHZ-type states as channel, and propose two multi-party BQSS schemes. On the other hand, we generalize the three schemes from two senders to multi-senders with multi GHZ-type states of multi-qubit as quantum channel, and give a multidirectional quantum states sharing protocol. In our schemes, all receivers can reconstruct the original unknown single-qubit state if and only if all sharers can cooperate. Only Pauli operations, Bell-state measurement and single-qubit measurement are used in our schemes, so these schemes are easily realized in physical experiment and their successful probabilities are all one.

  11. The 20 GHz spacecraft IMPATT solid state transmitter

    NASA Technical Reports Server (NTRS)

    Best, T.; Ngan, Y. C.

    1986-01-01

    The engineering development of a solid-state transmitter amplifier operating in the 20-GHz frequency range is described. This effort involved a multitude of disciplines including IMPATT device development, circulator design, multiple-diode circuit design, and amplifier integration and test. The objective was to develop a transmitter amplifier demonstrating the feasibility of providing an efficient, reliable, lightweight solid-state transmitter to be flown on a 30 to 20 GHz communication demonstration satellite. The work was done under contract from NASA/Lewis Research Center for a period of three years. The result was the development of a GaAs IMPACT diode amplifier capable of an 11-W CW output power and a 2-dB bandwidth of 300 MHz. GaAs IMPATT diodes incorporating diamond heatsink and double-Read doping profile capable of 5.3-W CW oscillator output power and 15.5% efficiency were developed. Up to 19% efficiency was also observed for an output power level of 4.4 W. High performance circulators with a 0.2 dB inserting loss and bandwidth of 5 GHz have also been developed. These represent a significant advance in both device and power combiner circuit technologies in K-band frequencies.

  12. Quantum information entropy and multi-qubit entanglement

    NASA Astrophysics Data System (ADS)

    Abdel-Aty, Mahmoud

    The exciting new features of entanglement are burgeoning with revolutionary new advances in the areas of quantum communication, quantum information processing and quantum computing. We review recent theoretical studies and applications of pure and mixed states entanglement of trapped ions interacting with a laser field. After an introduction to the basic concepts of traditional entanglement measures and methodology, the main phenomena and observations of two-, three- and four-level systems are summarized. In particular, we explore the influence of the various parameters of these systems on the entanglement. The particular advantages of using atomic Wehrl entropy and Shannon entropy are highlighted. A general expression of the mixed state entanglement is obtained with the physical significance and without the diagonal approximation. Based on this result, we provide a general expression for the entanglement in a multi-level system. We show that the mixed-state and specific eigenstates of the two or three-level system posses remarkable entanglement properties that can reveal new insight into quantum correlations present in the multi-level models. Furthermore, we propose an intuitive picture of the behavior of mixed-state entanglement in the presence of the decoherence. After a short presentation of the entanglement measures of two qubits, each defined as an effective two-level system (negativity, Bures metric and concurrence) we discuss the general behaviors of the concurrence as a measure of entanglement. We identify and numerically demonstrate the region of parameters where significantly large entanglement can be obtained. Most interestingly, it is shown that features of the entanglement are influenced significantly when the multi-photon process is involved.

  13. Liquid state DNP using a 260 GHz high power gyrotron.

    PubMed

    Denysenkov, Vasyl; Prandolini, Mark J; Gafurov, Marat; Sezer, Deniz; Endeward, Burkhard; Prisner, Thomas F

    2010-06-14

    Dynamic nuclear polarization (DNP) at high magnetic fields (9.2 T, 400 MHz (1)H NMR frequency) requires high microwave power sources to achieve saturation of the EPR transitions. Here we describe the first high-field liquid-state DNP results using a high-power gyrotron microwave source (20 W at 260 GHz). A DNP enhancement of -29 on water protons was obtained for an aqueous solution of Fremy's Salt; in comparison the previous highest value was -10 using a solid-state microwave power source (maximum power 45 mW). The increased enhancements are partly due to larger microwave saturation and elevated sample temperature. These experimentally observed DNP enhancements, which by far exceed the predicted values extrapolated from low-field DNP experiments, demonstrate experimentally that DNP is possible in the liquid state also at high magnetic fields. PMID:20461255

  14. Enhancing the coherence of 3D qubits suitable for multi-qubit experiments

    NASA Astrophysics Data System (ADS)

    Abdo, Baleegh; McClure, Douglas; Paik, Hanhee; Sandberg, Martin; Gambetta, Jay; Dial, Oliver

    2015-03-01

    Superconducting qubits coupled to 3D cavities have several advantages over qubits coupled to planar cavities on the same chip, e.g., 1) they can be individually designed, tested, and integrated, 2) they exhibit better microwave hygiene than their 2D counterpart, and 3) they possess higher coherence times, in part because they have reduced participation ratios for surface dielectric layers that can be lossy. However, in order to implement the surface code using a multi-qubit system, 3D qubits and their corresponding microwave cavities have to meet several competing requirements in addition to preserving long coherence, such as large coupling of the 3D qubit to two adjacent microwave resonators, sufficient coupling to other qubits, and large microwave isolation between different cavities. Finding a qubit design that balances all of these requirements has proved challenging so far. In this work, we apply a combination of simulations and experiments to investigate a variety of loss mechanisms that are particularly relevant for multi-qubit systems. Based on this learning, we identify changes in the design and materials of these systems that can lead to enhancement of their coherence times. We acknowledge support from IARPA under Contract W911NF-10-1-0324.

  15. Bidirectional controlled joint remote state preparation

    NASA Astrophysics Data System (ADS)

    Peng, Jia-Yin; Bai, Ming-Qiang; Mo, Zhi-Wen

    2015-11-01

    Fusing the ideas of bidirectional controlled teleportation and joint remote state preparation, we put forward a protocol for implementing five-party bidirectional controlled joint remote state preparation (BCJRSP) by using an eight-qubit cluster state as quantum channel. It can be shown that two distant senders can simultaneously and deterministically exchange their states with the other senders under the control of the supervisor. In order to extend BCJRSP, we generalize this protocol from five participants to multi participants utilizing two multi-qubit GHZ-type states as channel and propose two generalized BCJRSP schemes. On the other hand, we generalize the BCJRSP to multidirectional controlled joint remote state preparation by utilizing multi GHZ-type states of multi-qubit as quantum channel. By integrating bidirectional quantum teleportation, quantum state sharing and joint remote state preparation, some modified versions are discussed. Only Pauli operations and single-qubit measurements are used in our schemes, so the scheme with five-party is easily realized in physical experiment.

  16. Quantum Teleportation of a Two Qubit State Using GHZ- Like State

    NASA Astrophysics Data System (ADS)

    Nandi, Kaushik; Mazumdar, Chandan

    2014-04-01

    Recently Yang et al. (Int. J. Theor. Phys. 48:516, 2009) had shown that using a particular type of GHZ- Like state as quantum channel, it is possible to teleport an arbitrary unknown qubit. We investigate this channel for the teleportation of a particular type of two qubit state.

  17. Proposal for Remotely Realizing Multi-qubit Controlled-Phase Gates

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ye, Liu

    2014-01-01

    A feasible proposal is explored to remotely perform a family of multi-qubit controlled-phase gates (MQCPG), with the aid of entanglement transfer and quantum repeater. To remotely realize the gates, some local transformations, including single-qubit rotating operation, controlled-NOT gate and quantum phase gate, are employed during the realization. It turns out that MQCPG can be implemented among separate spatially agents with nearly unit fidelity and success probability. Besides, required classical information consumption of the proposed scenario is worked out. Furthermore, some attractive issues are discussed including the feature of present proposal and the experimental feasibility based on current technologies. Remarkably, it is revealed that our proposal essentially accesses to several nontrivial features lying in breaking through the limitation that error probability scales exponentially with the length of the channel in the course of the realization of the gates, and well compatibility with today's experimental technologies.

  18. Efficient Three-Party Quantum Dialogue Protocol Based on the Continuous Variable GHZ States

    NASA Astrophysics Data System (ADS)

    Yu, Zhen-Bo; Gong, Li-Hua; Zhu, Qi-Biao; Cheng, Shan; Zhou, Nan-Run

    2016-07-01

    Based on the continuous variable GHZ entangled states, an efficient three-party quantum dialogue protocol is devised, where each legitimate communication party could simultaneously deduce the secret information of the other two parties with perfect efficiency. The security is guaranteed by the correlation of the continuous variable GHZ entangled states and the randomly selected decoy states. Furthermore, the three-party quantum dialogue protocol is directly generalized to an N-party quantum dialogue protocol by using the n-tuple continuous variable GHZ entangled states.

  19. Efficient Three-Party Quantum Dialogue Protocol Based on the Continuous Variable GHZ States

    NASA Astrophysics Data System (ADS)

    Yu, Zhen-Bo; Gong, Li-Hua; Zhu, Qi-Biao; Cheng, Shan; Zhou, Nan-Run

    2016-02-01

    Based on the continuous variable GHZ entangled states, an efficient three-party quantum dialogue protocol is devised, where each legitimate communication party could simultaneously deduce the secret information of the other two parties with perfect efficiency. The security is guaranteed by the correlation of the continuous variable GHZ entangled states and the randomly selected decoy states. Furthermore, the three-party quantum dialogue protocol is directly generalized to an N-party quantum dialogue protocol by using the n-tuple continuous variable GHZ entangled states.

  20. Solid-State Power Amplifier For 61.5 GHz

    NASA Technical Reports Server (NTRS)

    Powers, Michael K.; Mcclymonds, James; Vye, David; Arthur, Thomas

    1992-01-01

    Power amplifiers based on impact-avalanche-transit-time (IMPATT) diodes developed for operation in communication systems at frequencies near 60 GHz. Built in seven modular stages, power transferred through sections of waveguide and isolator/circulator assemblies. Intended as replacements for bulkier and heavier traveling-wave-tube amplifiers.

  1. Quantum Teleportation of an Arbitrary N-qubit State via GHZ-like States

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Liu, Xing-tong; Wang, Jian; Tang, Chao-jing

    2016-03-01

    Recently Zhu (Int. J. Theor. Phys. 53, 4095, 2014) had shown that using GHZ-like states as quantum channel, it is possible to teleport an arbitrary unknown two-qubit state. We investigate this channel for the teleportation of an arbitrary N-qubit state. The strict proof through mathematical induction is presented and the rule for the receiver to reconstruct the desired state is explicitly derived in the most general case. We also discuss that if a system of quantum secret sharing of classical message is established, our protocol can be transformed to a N-qubit perfect controlled teleportation scheme from the controller's point of view.

  2. Bidirectional teleportation of a pure EPR state by using GHZ states

    NASA Astrophysics Data System (ADS)

    Hassanpour, Shima; Houshmand, Monireh

    2016-02-01

    In the present paper, a novel bidirectional quantum teleportation protocol is proposed. By using entanglement swapping technique, two GHZ states are shared as a quantum channel between Alice and Bob as legitimate users. In this scheme, based on controlled-not operation, single-qubit measurement, and appropriate unitary operations, two users can simultaneously transmit a pure EPR state to each other, While, in the previous protocols, the users can just teleport a single-qubit state to each other via more than four-qubit state. Therefore, the proposed scheme is economical compared with previous protocols.

  3. Trojan Horse Attack Free Fault-Tolerant Quantum Key Distribution Protocols Using GHZ States

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hung; Yang, Chun-Wei; Hwang, Tzonelih

    2016-04-01

    Recently, Yang and Hwang (Quantum Inf. Process. 13(3): 781-794, 19) proposed two fault-tolerant QKD protocols based on their proposed coding functions for resisting the collective noise, and their QKD protocols are free from Trojan horse attack without employing any specific detecting devices (e.g., photon number splitter (PNS) and wavelength filter). By using four-particle Greenberger-Horne-Zeilinger (GHZ) state and four-particle GHZ-like state in their proposed coding functions, Yang and Hwang's QKD protocols can resist each kind of the collective noise-collective-dephasing noise, collective-rotation noise. However, their proposed coding function can be improved by the utilization of three-particle GHZ state (three-particle GHZ-like state) instead of four-particle GHZ state (four-particle GHZ-like state) that will eventually reduce the consumption of the qubits. As a result, this study proposed the improved version of Yang and Hwang's coding functions to enhance the qubit efficiency of their schemes from 20 % to 22 %.

  4. Trojan Horse Attack Free Fault-Tolerant Quantum Key Distribution Protocols Using GHZ States

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hung; Yang, Chun-Wei; Hwang, Tzonelih

    2016-09-01

    Recently, Yang and Hwang (Quantum Inf. Process. 13(3): 781-794, 19) proposed two fault-tolerant QKD protocols based on their proposed coding functions for resisting the collective noise, and their QKD protocols are free from Trojan horse attack without employing any specific detecting devices (e.g., photon number splitter (PNS) and wavelength filter). By using four-particle Greenberger-Horne-Zeilinger (GHZ) state and four-particle GHZ-like state in their proposed coding functions, Yang and Hwang's QKD protocols can resist each kind of the collective noise-collective-dephasing noise, collective-rotation noise. However, their proposed coding function can be improved by the utilization of three-particle GHZ state (three-particle GHZ-like state) instead of four-particle GHZ state (four-particle GHZ-like state) that will eventually reduce the consumption of the qubits. As a result, this study proposed the improved version of Yang and Hwang's coding functions to enhance the qubit efficiency of their schemes from 20 % to 22 %.

  5. Fast generation of three-qubit Greenberger-Horne-Zeilinger state based on the Lewis-Riesenfeld invariants in coupled cavities

    PubMed Central

    Huang, Xiao-Bin; Chen, Ye-Hong; Wang, Zhe

    2016-01-01

    In this paper, we propose an efficient scheme to fast generate three-qubit Greenberger-Horne-Zeilinger (GHZ) state by constructing shortcuts to adiabatic passage (STAP) based on the “Lewis-Riesenfeld (LR) invariants” in spatially separated cavities connected by optical fibers. Numerical simulations illustrate that the scheme is not only fast, but robust against the decoherence caused by atomic spontaneous emission, cavity losses and the fiber photon leakages. This might be useful to realize fast and noise-resistant quantum information processing for multi-qubit systems. PMID:27216575

  6. Fusion of entangled coherent W and GHZ states in cavity QED

    NASA Astrophysics Data System (ADS)

    Zang, Xue-Ping; Yang, Ming; Song, Wei; Cao, Zhuo-Liang

    2016-07-01

    Efficient preparation of W and GHZ states encoded in various degrees of freedom of quantum particles is vital in quantum information science. So far, most of the studies have focused on polarization encoded photonic W and GHZ states. In this paper, we focus on W- and GHZ-class entangled coherent states, and propose schemes to fuse small W- and GHZ-entangled coherent states into larger ones. Based on successive detuned interactions between optical modes and an ancilla atom, an (N + M - 2)-mode entangled coherent W state can be probabilistically prepared from an N-mode and an M-mode entangled coherent W states. This fusion scheme applies to entangled coherent GHZ states too, and it can succeed in a deterministic way. The ancilla atom only interacts with a single optical mode, which avoids the problem of synchronizing many atoms in the previous cavity QED based fusion schemes. The detuning property of the interaction makes the current fusion scheme more feasible that the ones based on resonant atom-light interactions. In addition, the two levels of the ancilla atom for encoding quantum information are two degenerate ground states, and the excited state is adiabatically eliminated during the fusion process, so the atomic decay from excited states does not affect the quality of the fusion process.

  7. Wideband 220 GHz solid state power amplifier MMIC within minimal die size

    NASA Astrophysics Data System (ADS)

    Cheron, Jerome; Grossman, Erich N.

    2014-05-01

    A wideband and compact solid state power amplifier MMIC is simulated around 220 GHz. It utilizes 6 μm emitter length common base HBTs from a 250 nm InP HBT technology. Specific power cells and power combiners are simulated in order to minimize the width of the die, which must not exceed 300 μm to avoid multimode propagation in the substrate. Four stages are implemented over a total area of the (275x1840) μm2. Simulations of this power amplifier indicate a minimum output power of 14 dBm associated with 16 dB of power gain from 213 GHz to 240 GHz.

  8. Deterministic Joint Remote Preparation of a Four-Qubit Cluster-Type State via GHZ States

    NASA Astrophysics Data System (ADS)

    Wang, Hai-bin; Zhou, Xiao-Yan; An, Xing-xing; Cui, Meng-Meng; Fu, De-sheng

    2016-08-01

    A scheme for the deterministic joint remote preparation of a four-qubit cluster-type state using only two Greenberger-Horne-Zeilinger (GHZ) states as quantum channels is presented. In this scheme, the first sender performs a two-qubit projective measurement according to the real coefficient of the desired state. Then, the other sender utilizes the measurement result and the complex coefficient to perform another projective measurement. To obtain the desired state, the receiver applies appropriate unitary operations to his/her own two qubits and two CNOT operations to the two ancillary ones. Most interestingly, our scheme can achieve unit success probability, i.e., P s u c =1. Furthermore, comparison reveals that the efficiency is higher than that of most other analogous schemes.

  9. Deterministic Joint Remote Preparation of a Four-Qubit Cluster-Type State via GHZ States

    NASA Astrophysics Data System (ADS)

    Wang, Hai-bin; Zhou, Xiao-Yan; An, Xing-xing; Cui, Meng-Meng; Fu, De-sheng

    2016-04-01

    A scheme for the deterministic joint remote preparation of a four-qubit cluster-type state using only two Greenberger-Horne-Zeilinger (GHZ) states as quantum channels is presented. In this scheme, the first sender performs a two-qubit projective measurement according to the real coefficient of the desired state. Then, the other sender utilizes the measurement result and the complex coefficient to perform another projective measurement. To obtain the desired state, the receiver applies appropriate unitary operations to his/her own two qubits and two CNOT operations to the two ancillary ones. Most interestingly, our scheme can achieve unit success probability, i.e., P s u c =1. Furthermore, comparison reveals that the efficiency is higher than that of most other analogous schemes.

  10. Composite multi-qubit gates dynamically corrected against charge noise and magnetic field noise for singlet-triplet qubits

    NASA Astrophysics Data System (ADS)

    Kestner, Jason; Barnes, Edwin; Wang, Xin; Bishop, Lev; Das Sarma, Sankar

    2013-03-01

    We use previously described single-qubit SUPCODE pulses on both intra-qubit and inter-qubit exchange couplings, integrated with existing strategies such as BB1, to theoretically construct a CNOT gate that is robust against both charge noise and magnetic field gradient fluctuations. We show how this allows scalable, high-fidelity implementation of arbitrary multi-qubit operations using singlet-triplet spin qubits in the presence of experimentally realistic noise. This work is supported by LPS-NSA-CMTC, IARPA-MQCO and CNAM.

  11. A Novel Quantum Blind Signature Scheme with Four-particle GHZ States

    NASA Astrophysics Data System (ADS)

    Fan, Ling; Zhang, Ke-Jia; Qin, Su-Juan; Guo, Fen-Zhuo

    2016-02-01

    In an arbitrated quantum signature scheme, the signer signs the message and the receiver verifies the signature's validity with the assistance of the arbitrator. We present an arbitrated quantum blind signature scheme by using four-particle entangled Greenberger-Horne-Zeilinger (GHZ) states. By using the special relationship of four-particle GHZ states, we cannot only support the security of quantum signature, but also guarantee the anonymity of the message owner. It has a wide application to E-payment system, E-government, E-business, and etc.

  12. Two-party quantum key agreement based on four-particle GHZ states

    NASA Astrophysics Data System (ADS)

    He, Ye-Feng; Ma, Wen-Ping

    2016-04-01

    Based on four-particle GHZ states, the double CNOT operation and the delayed measurement technique, a two-party quantum key agreement (QKA) protocols is proposed. The double CNOT operation makes each four-particle GHZ state collapse into two independent quantum states without any entanglement. Furthermore, one party can directly know the two quantum states and the other party can be aware of the two quantum states by using the corresponding measurement. According to the initial states of the two quantum states, two parties can extract the secret keys of each other by using the publicly announced value or by performing the delayed measurement, respectively. Then the protocol achieves the fair establishment of a shared key. The security analysis shows that the new protocol can resist against participant attacks, the Trojan horse attacks and other outsider attacks. Furthermore, the new protocol also has no information leakage problem and has high qubit efficiency.

  13. Deterministic transfer of multiqubit GHZ entangled states and quantum secret sharing between different cavities

    NASA Astrophysics Data System (ADS)

    He, Xiao-Ling; Yang, Chui-Ping

    2015-12-01

    We propose a way for transferring Greenberger-Horne-Zeilinger (GHZ) entangled states from n qubits in one cavity to another n qubits in the other cavity. It is shown that n-qubit GHZ states α | 00ldots 0rangle +β | 11ldots 1rangle with arbitrary degree of entanglement can be transferred deterministically. Both of the GHZ state transfer and the operation time are not dependent on the number of qubits, and there is no need of measurement. This proposal is quite general and can be applied to accomplish the same task for a wide range of physical qubits. Furthermore, note that the n-qubit GHZ state α | 00ldots 0rangle +β | 11ldots 1rangle is a quantum-secret-sharing code for encoding a single-qubit arbitrary pure state α | 0rangle +β | 1rangle . Thus, this work also provides a way to transfer quantum secret sharing from n qubits in one cavity to another n qubits in the other cavity.

  14. Deterministic generation of many-photon GHZ states using quantum dots in a cavity

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael; Erementchouk, Mikhail; Elhalawany, Ahmed

    2014-03-01

    We propose a novel theoretical scheme based on the off-resonant interaction of N photons with four InAs/GaAs semiconductor quantum dots (QDs) in an GaAs microdisk cavity to create many-photon GHZ states deterministically in the polarization degree of freedom at a wavelength of 1.3 μm with probability p = 1 for N up to 60, without the need of any projective measurement or local unitary operation. Taking advantage of off-resonant interaction, the time evolution of the N-photon state is robust against decoherence due to exciton-phonon and hyperfine interactions. However, decoherence due to leakage of the photons out of the cavity is not negligible and is therefore considered. Remarkably, by taking advantage of a cascaded multi-level Landau-Zener transition, we are able to reduce the GHZ state generation time to below 100 ps for N up to 60, which allows for the creation of GHZ states with N up to 60 in cavities with Q =106 with fidelity above 70% including decoherence due to leakage. Our method paves the way to the miniaturization of many-photon GHZ state sources to the nanoscale regime, with the possibility to integrate them on a computer chip based on semiconductor materials. We acknowledge support from NSF and AFOSR.

  15. Quantum Discord in Photon-Added Glauber Coherent States of GHZ-Type

    NASA Astrophysics Data System (ADS)

    Daoud, M.; Kaydi, W.; El Hadfi, H.

    2015-11-01

    We investigate the influence of photon excitations on quantum correlations in tripartite Glauber coherent states of Greenberger-Horne-Zeilinger type (GHZ-type). The pairwise correlations are measured by means of the entropy-based quantum discord. We also analyze the monogamy property of quantum discord in this class of tripartite states in terms of the strength of Glauber coherent states and the photon excitation order.

  16. Quantum Information Splitting of Arbitrary Three-Qubit State by Using Four-Qubit Cluster State and GHZ-State

    NASA Astrophysics Data System (ADS)

    Li, Dong-fen; Wang, Rui-jin; Zhang, Feng-li

    2014-09-01

    A scheme is proposed for quantum information splitting of arbitrary three-qubit state by using four-qubit cluster state and GHZ state as quantum channel. In the scenario, assume that the sender is called Alice, the receiver is called Bob and the controller id called Charlie. First of all, Alice performs Bell-state measurements on her qubit paris (A, 1), (B, 3), (C, 5), respectively. And then tells Charlie and Bob measure results via a classical channel. It is impossible for Bob to reconstruct the original state with local operation; if Charlie allows Bob to reconstruct the original states, he needs to perform a single particle measurement on his particle and tells Bob the results. According to the information from Alice and Charlie, Bob can reconstruct the original state with an appropriate unitary operation of his qubits 2, 4, 6.We also consider the problem of security attacks .This protocol is considered to be secure.

  17. Quantum Information Splitting of Arbitrary Three-Qubit State by Using Four-Qubit Cluster State and GHZ-State

    NASA Astrophysics Data System (ADS)

    Li, Dong-fen; Wang, Rui-jin; Zhang, Feng-li

    2015-04-01

    A scheme is proposed for quantum information splitting of arbitrary three-qubit state by using four-qubit cluster state and GHZ state as quantum channel. In the scenario, assume that the sender is called Alice, the receiver is called Bob and the controller id called Charlie. First of all, Alice performs Bell-state measurements on her qubit paris (A, 1), (B, 3), (C, 5), respectively. And then tells Charlie and Bob measure results via a classical channel. It is impossible for Bob to reconstruct the original state with local operation; if Charlie allows Bob to reconstruct the original states, he needs to perform a single particle measurement on his particle and tells Bob the results. According to the information from Alice and Charlie, Bob can reconstruct the original state with an appropriate unitary operation of his qubits 2, 4, 6.We also consider the problem of security attacks .This protocol is considered to be secure.

  18. Dynamic quantum secret sharing protocol based on GHZ state

    NASA Astrophysics Data System (ADS)

    Liao, Ci-Hong; Yang, Chun-Wei; Hwang, Tzonelish

    2014-08-01

    This work proposes a new dynamic quantum secret sharing (DQSS) protocol using the measurement property of Greenberger-Horne-Zeilinger state and the controlled-NOT gate. In the proposed DQSS protocol, an agent can obtain a shadow of the secret key by simply performing a measurement on single photons. In comparison with the existing DQSS protocols, it provides better qubit efficiency and has an easy way to add a new agent. The proposed protocol is also free from the eavesdropping attack, the collusion attack, and can have an honesty check on a revoked agent.

  19. Characterization of a 30-GHz IMPATT solid state amplifier

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.

    1988-01-01

    Described are the characterization and testing of a 20 W solid state amplifier operating in the Ka band to be used in low cost experimental ground terminals. The amplifier was developed by the TRW Electronic Systems Group under NASA Contract NAS3-23266 as a proof-of-concept (POC) device in support of the Advanced Communications Technology Satellite (ACTS) program. Additional goals were development of high-power IMPATT devices and circulators, and multistage diode circuits, which are an integral part of the amplifier. The amplifier underwent acceptance testing at the NASA Lewis Research Center, Cleveland, Ohio. Characteristics measured include the output power of 42 dB m, gain of 30 dB, an injection-locking RF bandwidth of 260 MHz, and an overall direct current-to-radiofrequency (dc-to-RF) efficiency of 6.7 percent.

  20. A 32-GHz solid-state power amplifier for deep space communications

    NASA Technical Reports Server (NTRS)

    Wamhof, P. D.; Rascoe, D. L.; Lee, K. A.; Lansing, F. S.

    1994-01-01

    A 1.5-W solid-state power amplifier (SSPA) has been demonstrated as part of an effort to develop and evaluate state-of-the-art transmitter and receiver components at 32 and 35 GHz for future deep space missions. Output power and efficiency measurements for a monolithic millimeter-wave integrated circuit (MMIC)-based SSPA are reported. Technical design details for the various modules and a thermal analysis are discussed, as well as future plans.

  1. Effects of noises on joint remote state preparation via a GHZ-class channel

    NASA Astrophysics Data System (ADS)

    Liang, Hua-Qiu; Liu, Jin-Ming; Feng, Shang-Shen; Chen, Ji-Gen; Xu, Xin-Ye

    2015-10-01

    Using a GHZ-class state as quantum channel, we investigate the joint remote preparation of a qubit state in Pauli noise environments. By analytically solving the master equation in Lindblad form, we calculate the time evolution of the GHZ-class channel under different noisy conditions and then obtain the fidelity of the joint remote state preparation (JRSP) process and the corresponding average fidelity. We find that the fidelity depends on the noise type, the GHZ-class state, the initial state to be remotely prepared, and the Pauli decoherence rate. We also find that how two senders share the polar angle information of initial state plays an important role in the fidelity, and information sharing reduces the ability to resist the influence of Pauli noises in our JRSP protocol. Furthermore, how the two senders share the phase information affects the intensity of the bit-phase flip noise and the bit flip noise acting on the average fidelity. Besides, the fidelity of our JRSP protocol achieved via the maximally entangled channel is larger than that achieved via the partially entangled channel.

  2. Quantum dialogue protocols over collective noise using entanglement of GHZ state

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hung; Yang, Chun-Wei; Hzu, Geng-Rong; Hwang, Tzonelih; Kao, Shih-Hung

    2016-07-01

    In this paper, two quantum dialogue (QD) protocols based on the entanglement of GHZ states are proposed to resist the collective noise. Besides, two new coding functions are designed for each of the proposed protocols, which can resist two types of collective noise: collective-dephasing noise and collective-rotation noise, respectively. Furthermore, it is also argued that these QD protocols are also free from the Trojan horse attacks and the information leakage problem.

  3. Quantum dialogue protocols over collective noise using entanglement of GHZ state

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hung; Yang, Chun-Wei; Hzu, Geng-Rong; Hwang, Tzonelih; Kao, Shih-Hung

    2016-04-01

    In this paper, two quantum dialogue (QD) protocols based on the entanglement of GHZ states are proposed to resist the collective noise. Besides, two new coding functions are designed for each of the proposed protocols, which can resist two types of collective noise: collective-dephasing noise and collective-rotation noise, respectively. Furthermore, it is also argued that these QD protocols are also free from the Trojan horse attacks and the information leakage problem.

  4. Deterministic generation of many-photon GHZ states using quantum dots in a cavity

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael N.; Erementchouk, Mikhail

    2014-05-01

    Compared to classical light sources, quantum sources based on N00N states consisting of N photons achieve an N-times higher phase sensitivity, giving rise to super-resolution.1, 2, 3 N00N-state creation schemes based on linear optics and projective measurements only have a success probability p that decreases exponentially with N,4, 5, 6 e.g. p = 4.4x10-14 for N = 20.7 Feed-forward improves the scaling but N fluctuates nondeterministically in each attempt.8, 9 Schemes based on parametric down-conversion suffer from low production efficiency and low fidelity.9 A recent scheme based on atoms in a cavity combines deterministic time evolution, local unitary operations, and projective measurements.10 Here we propose a novel scheme based on the off-resonant interaction of N photons with four semiconductor quantum dots (QDs) in a cavity to create GHZ states, also called polarization N00N states, deterministically with p = 1 and fidelity above 90% for N<= 60, without the need of any projective measurement or local unitary operation. Using our measure we obtain maximum N-photon entanglement EN = 1 for arbitrary N. Our method paves the way to the miniaturization of N00N and GHZ-state sources to the nanoscale regime, with the possibility to integrate them on a computer chip based on semiconductor materials.

  5. Demonstration of Steady State Operation with 1 MW of 170 GHz gyrotron for ITER

    SciTech Connect

    Kasugai, Atsushi; Takahashi, Koji; Kajiwara, Ken; Kobayashi, Noriyuki; Sakamoto, Keishi

    2007-09-28

    A quasi-steady-state operation of 1 MW/800 s with the efficiency of 55%, which exceeded 1 MW/500 s/50% of the performance required in ITER, was demonstrated in a 170 GHz gyrotron. The oscillation characteristics in the long pulse operation was clarified, and the operation scenario to the hard self-excitation region for the high efficiency oscillation was newly established by controlling a pitch factor of the electron and the cavity magnetic field during the pulse with fixed beam voltage in the triode MIG. The result gives a clear outlook for the success of ECH and ECCD in ITER.

  6. Deterministic Secure Quantum Communication and Authentication Protocol based on Extended GHZ-W State and Quantum One-time Pad

    NASA Astrophysics Data System (ADS)

    Li, Na; Li, Jian; Li, Lei-Lei; Wang, Zheng; Wang, Tao

    2016-04-01

    A deterministic secure quantum communication and authentication protocol based on extended GHZ-W state and quantum one-time pad is proposed. In the protocol, state |φ -> is used as the carrier. One photon of |φ -> state is sent to Alice, and Alice obtains a random key by measuring photons with bases determined by ID. The information of bases is secret to others except Alice and Bob. Extended GHZ-W states are used as decoy photons, the positions of which in information sequence are encoded with identity string ID of the legal user, and the eavesdropping detection rate reaches 81%. The eavesdropping detection based on extended GHZ-W state combines with authentication and the secret ID ensures the security of the protocol.

  7. Deterministic Secure Quantum Communication and Authentication Protocol based on Extended GHZ-W State and Quantum One-time Pad

    NASA Astrophysics Data System (ADS)

    Li, Na; Li, Jian; Li, Lei-Lei; Wang, Zheng; Wang, Tao

    2016-08-01

    A deterministic secure quantum communication and authentication protocol based on extended GHZ-W state and quantum one-time pad is proposed. In the protocol, state | φ -> is used as the carrier. One photon of | φ -> state is sent to Alice, and Alice obtains a random key by measuring photons with bases determined by ID. The information of bases is secret to others except Alice and Bob. Extended GHZ-W states are used as decoy photons, the positions of which in information sequence are encoded with identity string ID of the legal user, and the eavesdropping detection rate reaches 81%. The eavesdropping detection based on extended GHZ-W state combines with authentication and the secret ID ensures the security of the protocol.

  8. The 20 GHz solid state transmitter design, impatt diode development and reliability assessment

    NASA Technical Reports Server (NTRS)

    Picone, S.; Cho, Y.; Asmus, J. R.

    1984-01-01

    A single drift gallium arsenide (GaAs) Schottky barrier IMPATT diode and related components were developed. The IMPATT diode reliability was assessed. A proof of concept solid state transmitter design and a technology assessment study were performed. The transmitter design utilizes technology which, upon implementation, will demonstrate readiness for development of a POC model within the 1982 time frame and will provide an information base for flight hardware capable of deployment in a 1985 to 1990 demonstrational 30/20 GHz satellite communication system. Life test data for Schottky barrier GaAs diodes and grown junction GaAs diodes are described. The results demonstrate the viability of GaAs IMPATTs as high performance, reliable RF power sources which, based on the recommendation made herein, will surpass device reliability requirements consistent with a ten year spaceborne solid state power amplifier mission.

  9. All-solid-state radiometers for environmental studies to 700 GHz

    NASA Technical Reports Server (NTRS)

    Zimmermann, Ralph; Zimmermann, Ruediger; Zimmermann, Peter

    1992-01-01

    We report results with an all-solid-state radiometer for measurements of the ClO molecule at 649 GHz. The project is part of a program to provide low-noise, low-weight, low-power radiometers for space operation, and special effort has been expended on the development of high-efficiency solid-state frequency multipliers and Schottky-barrier mixers with low local oscillator power requirements. The best measured system noise temperature was 1750 K with the mixer and preamplifier cooled to 77 K. The mixer diode was easily pumped into saturation, indicating that the design has excellent prospects of operating at higher frequencies - our present design goal being 1 THz. We comment on the principal design features of such systems and will report on stratospheric measurements performed with this system.

  10. Millimeter Wave Spectroscopy of Rydberg States of Molecules in the Region of 260-295 GHz

    NASA Astrophysics Data System (ADS)

    Grimes, David; Zhou, Yan; Barnum, Timothy J.; Field, Robert W.

    2015-06-01

    Free induction decay detected chirped pulse millimeter wave spectroscopy of Rydberg-Rydberg transitions in atoms and molecules is a powerful and flexible method for characterizing the electronic structure of Rydberg states and determining the structure and dynamics of the ion-core. Complicating the use of this technique are the difficulties in reliably and repeatedly accessing not just the most information rich core-nonpenetrating states, but also the low-ℓ core-penetrating Rydberg states in the area of principal quantum number n* >35. Small transition moments and narrow linewidths for transitions between valence electronic states and high Rydberg states are the primary limiting factor. We demonstrate a simple method to avoid the problem entirely by using chirped pulse technology operating in the frequency range of 260-295 GHz, which allows us to sample a lower range of n* values than before with comparable frequency resolution and accuracy as our previous W-band experiments. Further improvements to our experiment in order to accurately capture details of Stark demolition, a technique that provides rapid differentiation between core-penetrating and core-nonpenetrating states, will also be discussed.

  11. RF power upgrade at the superconducting 1.3 GHz CW LINAC "ELBE" with solid state amplifiers

    NASA Astrophysics Data System (ADS)

    Büttig, Hartmut; Arnold, A.; Büchner, A.; Justus, M.; Kuntsch, M.; Lehnert, U.; Michel, P.; Schurig, R.; Staats, G.; Teichert, J.

    2013-03-01

    The RF power for the superconducting 1.3 GHz CW LINAC "ELBE" has been doubled from less than 10 kW to 20 kW per cavity. In January 2012 the four 10 kW klystrons used to drive the four superconducting cavities of the LINAC have been replaced by pairs of 10 kW solid state power amplifiers (SSPA). ELBE is now worldwide the first 1.3 GHz CW LINAC equipped with solid state RF power amplifiers. This technical note details on this project.

  12. The 30 GHz solid state amplifier for low cost low data rate ground terminals

    NASA Technical Reports Server (NTRS)

    Ngan, Y. C.; Quijije, M. A.

    1984-01-01

    This report details the development of a 20-W solid state amplifier operating near 30 GHz. The IMPATT amplifier not only met or exceeded all the program objectives, but also possesses the ability to operate in the pulse mode, which was not called for in the original contract requirements. The ability to operate in the pulse mode is essential for TDMA (Time Domain Multiple Access) operation. An output power of 20 W was achieved with a 1-dB instantaneous bandwidth of 260 MHz. The amplifier has also been tested in pulse mode with 50% duty for pulse lengths ranging from 200 ns to 2 micro s with 10 ns rise and fall times and no degradation in output power. This pulse mode operation was made possible by the development of a stable 12-diode power combiner/amplifier and a single-diode pulsed driver whose RF output power was switched on and off by having its bias current modulated via a fast-switching current pulse modulator. Essential to the overall amplifier development was the successful development of state-of-the-art silicon double-drift IMPATT diodes capable of reproducible 2.5 W CW output power with 12% dc-to-RF conversion efficiency. Output powers of as high as 2.75 W has been observed. Both the device and circuit design are amenable to low cost production.

  13. Teleportation of GHZ-States in QED-Cavities without the Explicit Bell-State Measurement

    NASA Astrophysics Data System (ADS)

    Cardoso, W. B.

    2008-04-01

    In this paper we show how to teleport N-entangled states of N-QED-cavities without Bell-state measurements. The method has potential application in teleportation schemes requiring multipartite entanglements. The success probability and fidelity of the teleportation are also considered.

  14. Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization–enhanced solid-state NMR

    PubMed Central

    Bajaj, Vikram S.; Mak-Jurkauskas, Melody L.; Belenky, Marina; Herzfeld, Judith; Griffin, Robert G.

    2009-01-01

    Observation and structural studies of reaction intermediates of proteins are challenging because of the mixtures of states usually present at low concentrations. Here, we use a 250 GHz gyrotron (cyclotron resonance maser) and cryogenic temperatures to perform high-frequency dynamic nuclear polarization (DNP) NMR experiments that enhance sensitivity in magic-angle spinning NMR spectra of cryo-trapped photocycle intermediates of bacteriorhodopsin (bR) by a factor of ≈90. Multidimensional spectroscopy of U-13C,15N-labeled samples resolved coexisting states and allowed chemical shift assignments in the retinylidene chromophore for several intermediates not observed previously. The correlation spectra reveal unexpected heterogeneity in dark-adapted bR, distortion in the K state, and, most importantly, 4 discrete L substates. Thermal relaxation of the mixture of L's showed that 3 of these substates revert to bR568 and that only the 1 substate with both the strongest counterion and a fully relaxed 13-cis bond is functional. These definitive observations of functional and shunt states in the bR photocycle provide a preview of the mechanistic insights that will be accessible in membrane proteins via sensitivity-enhanced DNP NMR. These observations would have not been possible absent the signal enhancement available from DNP. PMID:19474298

  15. Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization-enhanced solid-state NMR.

    PubMed

    Bajaj, Vikram S; Mak-Jurkauskas, Melody L; Belenky, Marina; Herzfeld, Judith; Griffin, Robert G

    2009-06-01

    Observation and structural studies of reaction intermediates of proteins are challenging because of the mixtures of states usually present at low concentrations. Here, we use a 250 GHz gyrotron (cyclotron resonance maser) and cryogenic temperatures to perform high-frequency dynamic nuclear polarization (DNP) NMR experiments that enhance sensitivity in magic-angle spinning NMR spectra of cryo-trapped photocycle intermediates of bacteriorhodopsin (bR) by a factor of approximately 90. Multidimensional spectroscopy of U-(13)C,(15)N-labeled samples resolved coexisting states and allowed chemical shift assignments in the retinylidene chromophore for several intermediates not observed previously. The correlation spectra reveal unexpected heterogeneity in dark-adapted bR, distortion in the K state, and, most importantly, 4 discrete L substates. Thermal relaxation of the mixture of L's showed that 3 of these substates revert to bR(568) and that only the 1 substate with both the strongest counterion and a fully relaxed 13-cis bond is functional. These definitive observations of functional and shunt states in the bR photocycle provide a preview of the mechanistic insights that will be accessible in membrane proteins via sensitivity-enhanced DNP NMR. These observations would have not been possible absent the signal enhancement available from DNP. PMID:19474298

  16. Multi-Party Quantum Private Comparison Protocol with an Almost-Dishonest Third Party using GHZ States

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Liang; Hwang, Tzonelih; Gope, Prosanta

    2016-06-01

    This article proposes an innovative quantum private comparison (QPC) protocol for n users using GHZ states, where an almost-dishonest third party (TP) is introduced to assist the participants for comparing their secrets. It is argued that as compared to the existing QPC protocols our proposed scheme has some considerable advantages. First, in the existing QPC protocols, the TP can only to determine whether all participants' secrets are equal or not. Instead of that, in our proposed scheme a TP can even compare the secrets between any subsects of users. Second, since our proposed scheme is based on GHZ state; hence it can ensure higher efficiency as compared to other existing multi-party QPC protocols on d-dimension photons.

  17. 250 GHz CW Gyrotron Oscillator for Dynamic Nuclear Polarization in Biological Solid State NMR

    PubMed Central

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2009-01-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP-enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP-enhanced multidimensional NMR. These results include assignment of active site resonances in [U-13C,15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as low

  18. 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR

    NASA Astrophysics Data System (ADS)

    Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.

    2007-12-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9 T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP enhanced multidimensional NMR. These results include assignment of active site resonances in [U- 13C, 15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as

  19. 250GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR.

    PubMed

    Bajaj, Vikram S; Hornstein, Melissa K; Kreischer, Kenneth E; Sirigiri, Jagadishwar R; Woskov, Paul P; Mak-Jurkauskas, Melody L; Herzfeld, Judith; Temkin, Richard J; Griffin, Robert G

    2007-12-01

    In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz (1)H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP enhanced multidimensional NMR. These results include assignment of active site resonances in [U-(13)C, (15)N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents

  20. 0.4- to 10-GHz airborne electromagnetic-environment survey of United States urban areas

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1976-01-01

    An airborne electromagnetic-environment survey of some U.S. metropolitan areas measured terrestrial emissions within the broad-frequency spectrum from 0.4 to 10 GHz. A Cessna 402 commercial aircraft was fitted with both nadir-viewing and horizon-viewing antennas and instrumentation, including a spectrum analyzer, a 35-mm continuous-film camera, and a magnetic-tape recorder. Most of the flights were made at a nominal altitude of 10,000 ft, and Washington, Baltimore, Philadelphia, New York, and Chicago were surveyed. The 450- to 470-MHz land-mobile UHF band is especially crowded, and the 400- to 406-MHz space bands are less active. Test measurements obtained up to 10 GHz are discussed. Sample spectrum-analyzer photographs were selected from a total of 5750 frames representing 38 hours of data.

  1. Simulation of 100-300 GHz solid-state harmonic sources

    NASA Technical Reports Server (NTRS)

    Zybura, Michael F.; Jones, J. Robert; Jones, Stephen H.; Tait, Gregory B.

    1995-01-01

    Accurate and efficient simulations of the large-signal time-dependent characteristics of second-harmonic Transferred Electron Oscillators (TEO's) and Heterostructure Barrier Varactor (HBV) frequency triplers have been obtained. This is accomplished by using a novel and efficient harmonic-balance circuit analysis technique which facilitates the integration of physics-based hydrodynamic device simulators. The integrated hydrodynamic device/harmonic-balance circuit simulators allow TEO and HBV circuits to be co-designed from both a device and a circuit point of view. Comparisons have been made with published experimental data for both TEO's and HBV's. For TEO's, excellent correlation has been obtained at 140 GHz and 188 GHz in second-harmonic operation. Excellent correlation has also been obtained for HBV frequency triplers operating near 200 GHz. For HBV's, both a lumped quasi-static equivalent circuit model and the hydrodynamic device simulator have been linked to the harmonic-balance circuit simulator. This comparison illustrates the importance of representing active devices with physics-based numerical device models rather than analytical device models.

  2. Quantum Fisher information of the GHZ state due to classical phase noise lasers under non-Markovian environment

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Zou, Jian; Yang, Zi-Yi; Li, Longwu; Li, Hai; Shao, Bin

    2016-08-01

    The dynamics of N-qubit GHZ state quantum Fisher information (QFI) under phase noise lasers (PNLs) driving is investigated in terms of non-Markovian master equation. We first investigate the non-Markovian dynamics of the QFI of N-qubit GHZ state and show that when the ratio of the PNL rate and the system-environment coupling strength is very small, the oscillations of the QFIs decay slower which corresponds to the non-Markovian region; yet when it becomes large, the QFIs monotonously decay which corresponds to the Markovian region. When the atom number N increases, QFIs in both regions decay faster. We further find that the QFI flow disappears suddenly followed by a sudden birth depending on the ratio of the PNL rate and the system-environment coupling strength and the atom number N, which unveil a fundamental connection between the non-Markovian behaviors and the parameters of system-environment couplings. We discuss two optimal positive operator-valued measures (POVMs) for two different strategies of our model and find the condition of the optimal measurement. At last, we consider the QFI of two atoms with qubit-qubit interaction under random telegraph noises (RTNs).

  3. Controlled Deterministic Secure Quantum Communication Protocol Based on Three-Particle GHZ States in X-Basis

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Shi-Bin; Yan, Li-Li; Han, Gui-Hua

    2015-03-01

    A controlled deterministic secure quantum communication (CDSQC) protocol is proposed based on three-particle GHZ state in X-basis. Only X-basis and Z1Z2X3-basis (composed of Z-basis and X-basis) measurement are required, which makes the scheme more convenient than others in practical applications. By distributing a random key between both sides of the communication and performing classical XOR operation, we realize a one-time-pad scheme, therefore our protocol achieves unconditional secure. Because only user with legitimate identity string can decrypt the secret, our protocol can resist man-in-the middle attack. The three-particle GHZ state in X-basis is used as decoy photons to detect eavesdropping. The detection rate reaches 75% per qubit. Supported by the National Natural Science Foundation of China under Grant No. 61402058, Science and Technology, Sichuan Province of China under Grant No. 2013GZX0137, Fund for Young Persons Project of Sichuan Province of China under Grant No. 12ZB017, and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions under Grant No. szjj2014-074

  4. High-energy all-solid-state sodium beacon laser with line width of 0.6 GHz

    NASA Astrophysics Data System (ADS)

    Lu, Yan-Hua; Xie, Gang; Zhang, Lei; Fan, Guo-Bin; Pang, Yu; Li, Nan; Wei, Bin; Gao, Song-Xin; Zhang, Wei; Tang, Chun

    2015-02-01

    A high-energy all-solid-state sodium beacon laser at 589 nm with a repetition rate of 50 Hz is introduced, which is based on sum frequency mixing between a 1,064 nm laser and a 1,319 nm laser. The 1,064 nm laser, which features an external modulated CW seed laser and several stages of amplifiers, can provide pulse energy of 740 mJ with ultra-narrow line width (~17 kHz) and superior stability. The 1,319 nm laser can deliver pulse energy of 580 mJ with a narrow line width of 0.6 GHz. By sum frequency mixing in a LBO crystal, pulse energy of 380 mJ is achieved at 589 nm with a conversion efficiency of 29 %. By controlling the center wavelength of 1,064 nm laser, the target beam's central wavelength is locked to be 589.1592 nm with a line width of 0.6 GHz, which is dominated mainly by the 1,319 nm laser. The beam quality factor is measured to be M 2 = 1.6. The pulse duration is measured to be 140 μs in full-width at half-maximum (FWHM). To the best of our knowledge, this represents the highest pulse energy for all-solid-state sodium beacon laser ever reported.

  5. Torsional Splitting in the Rotational Spectrum from 8 TO 650 GHz of the Ground State of 1,1-DIFLUOROACETONE

    NASA Astrophysics Data System (ADS)

    Margules, L.; Motiyenko, R. A.; Groner, P.; De Chirico, F.; Turk, A.; Cooke, S. A.

    2013-06-01

    Measurements on the rotational spectrum of 1,1-difluoroacetone have been extended from the cm-wave region into the mm-wave region. Measurements between 150 GHz and 600 GHz were performed a t Lille at room temperature. About 2000 transitions have been added to the known line listing for the ground state. The range of J and K_{-1} values, for both the A and E torsional substates, now span 1 - 60 and 0 - 30, respectively. Analysis of the cm-wave spectrum was only possible using the Watson S-reduced Hamiltonian, with the A-reduction producing a poor spectral fit. For that analysis only quartic centrifugal distortion terms were required. With the newly recorded higher J and K_{-1} measurements it is necessary to expand the Hamiltonian to now include sextic and octic centrifugal distortion terms. This should allow us to extend the assignment to even higher J and K_{-1} and perhaps to shed more light into failure of the A-reduction Hamiltonian to achieve a satisfactory fit for the cm-wave transitions. The effective barrier to methyl group internal rotation has been determined more accurately. G. S. Grubbs II, P. Groner, S. E. Novick and S. A. Cooke J. Mol. Spectrosc. {280} 21-26, 2012.

  6. Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results†

    PubMed Central

    Rosay, Melanie; Tometich, Leo; Pawsey, Shane; Bader, Reto; Schauwecker, Robert; Blank, Monica; Borchard, Philipp M.; Cauffman, Stephen R.; Felch, Kevin L.; Weber, Ralph T.; Temkin, Richard J.; Griffin, Robert G.; Maas, Werner E.

    2015-01-01

    Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz 1H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water–glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period. PMID:20449524

  7. Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results.

    PubMed

    Rosay, Melanie; Tometich, Leo; Pawsey, Shane; Bader, Reto; Schauwecker, Robert; Blank, Monica; Borchard, Philipp M; Cauffman, Stephen R; Felch, Kevin L; Weber, Ralph T; Temkin, Richard J; Griffin, Robert G; Maas, Werner E

    2010-06-14

    Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz (1)H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water-glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period. PMID:20449524

  8. Optimal Remote Preparation of a Four-Qubit Entangled Cluster-Type State Via Two Non-Maximally Entangled GHZ-Type States

    NASA Astrophysics Data System (ADS)

    Wang, Zhang-yin; Wang, Dong; Han, Lian-fang

    2016-06-01

    We devise an highly efficient protocol for remotely preparing a four-qubit entangled cluster-type state. In this protocol, two non-maximally entangled GHZ-type states are employed to link the sender Alice and the receiver Bob, and the to-be-prepared state can be reconstructed successfully with the probability of (b 1 b 2)2 in general case. Then to achieve our concerns of constructing efficient remote preparation with higher success probability, some special ensembles of four-qubit states are minutely investigated. As a result, it is shown that the total probability of the RSP protocol, in these particular cases, can be improved to twice or even fourfold as that in general case.

  9. Remote preparation of N photon GHZ polarization entangled states within a network

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Song, J.; Ning, Y.; Lu, P.-M.; Song, H.-S.

    2010-02-01

    We propose a new linear optical protocol for remote state preparation (RSP) between two parties under control of a number of controllers in terms of optical elements. The proposed setup involves simple linear optical elements, a N-photon polarization entangled state, and photon de tectors, witch have been widely used in experiment. The realization of this protocol is appealing due to the fact that quantum state of light is robust against the decoherence and photons are ideal carriers for transmitting quantum information over long distances.

  10. GHz Rabi Flopping to Rydberg States in Hot Atomic Vapor Cells

    SciTech Connect

    Huber, B.; Baluktsian, T.; Schlagmueller, M.; Koelle, A.; Kuebler, H.; Loew, R.; Pfau, T.

    2011-12-09

    We report on the observation of Rabi oscillations to a Rydberg state on a time scale below 1 ns in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of {approx}4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor, thus suggesting small vapor cells as a platform for room-temperature quantum devices. Furthermore, the result implies that previous coherent dynamics in single-atom Rydberg gates can be accelerated by 3 orders of magnitude.

  11. A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation

    NASA Astrophysics Data System (ADS)

    Naseri, Mosayeb; Raji, Mehrdad Ahmadzadeh; Hantehzadeh, Mohamad Reza; Farouk, Ahmed; Boochani, Arash; Solaymani, Shahram

    2015-11-01

    We propose a scheme for a secure message communication network with authentication following the idea in controlled teleportation. In this scheme, the servers of the network provide the service to prepare the entangled states as quantum channels. For preventing the eavesdropping, a security checking method is suggested. After the security check, any two users in the network may communicate securely and directly under the control of the servers on the network.

  12. Spectrum allocations above 40 GHz

    NASA Technical Reports Server (NTRS)

    Katzenstein, W. E.; Moore, R. P.; Kimball, H. G.

    1981-01-01

    The 1979 World Administrative Radio Conference (WARC-79) revised the International Table of Frequency Allocations to reflect increased interest and activity in the region of the EM spectrum above 40 GHz. The total width of the spectrum allocated (235 GHz) in the region above 40 GHz indicates the extent of this new spectrum resource, made accessible by advances in the state-of-the-art of telecommunications equipment. There are some striking differences between the approach to allocation above and below 40 GHz. For example, there are not bands allocated exclusively. This reflects the characteristics of propagation and the small antenna beamwidths achievable at these frequencies. Attention is given to atmospheric window and absorption band limits, allocations to satellite services, allocations to scientific services, allocations to terrestrial services, the future refinement of the radio regulations above 40 GHz, and allocations of WARC-79 and frequency management.

  13. First results of LHCD experiments with 4.6 GHz system toward steady-state plasma in EAST

    NASA Astrophysics Data System (ADS)

    Liu, F. K.; Ding, B. J.; Li, J. G.; Wan, B. N.; Shan, J. F.; Wang, M.; Liu, L.; Zhao, L. M.; Li, M. H.; Li, Y. C.; Yang, Y.; Wu, Z. G.; Feng, J. Q.; Hu, H. C.; Jia, H.; Huang, Y. Y.; Wei, W.; Cheng, M.; Xu, L.; Zang, Q.; Lyu, B.; Lin, S. Y.; Duan, Y. M.; Wu, J. H.; Peysson, Y.; Decker, J.; Hillairet, J.; Ekedahl, A.; Luo, Z. P.; Qian, J. P.; Shen, B.; Gong, X. Z.; Hu, L. Q.; the EAST Team

    2015-11-01

    A 4.6 GHz lower-hybrid current drive (LHCD) system has been firstly commissioned in EAST in the 2014 campaign. The first LHCD results with 4.6 GHz show that LHW can be coupled to plasma with a low reflection coefficient, drive plasma current and plasma rotation, modify the plasma current profile, and heat plasma effectively. By means of configuration optimization and local gas puffing near the LHW antenna, good LHW-plasma coupling with a reflection coefficient less than 5% is obtained. The maximum LHW power coupled to plasma is up to 3.5 MW. The current drive (CD) efficiency is up to 1.1  ×  1019 A m-2 W-1 and the central electron temperature is above 4 keV, suggesting that LH power could be mainly deposited in the core region, which is in agreement with code simulation. Experiments show that the current profile is effectively modified and toroidal rotation in the co-current direction is driven by the LHCD. Also, the CD efficiency and current profile depend on the launched wave spectrum, suggesting the possibility of controlling the current profile by changing the phase difference. Repeatable H-mode plasma is obtained by either the 4.6 GHz LHCD system alone, or together with a 2.45 GHz LHCD system, the NBI (neutral beam injection) system. The different ELM features of H-mode between the different heating methods are under investigation.

  14. 30/20 GHz spacecraft GaAs FET solid state transmitter for trunking and customer-premise-service application

    NASA Technical Reports Server (NTRS)

    Saunier, P.; Nelson, S.

    1983-01-01

    Sixteen 30 dB 0.5 W amplifier modules were combined to satisfy the requirement for a graceful degradation. If one module fails, the output power drops by only 0.43 dB. Also, by incorporating all the gain stages within the combiner the overall combining efficiency is maximized. A 16 way waveguide divider combiner was developed to minimize the insertion loss associated with such a large corporate feed structure. Tests showed that the 16 way insertion loss was less than 0.5 dB. To minimize loss, a direct transition from waveguide to microstrip, using a finline on duroid substrate, was developed. The FETs fabricated on MBE grown material, demonstrated superior performances. For example, a 600 micrometer device was capable of 320 mW output power with 5 dB gain and 26.6% efficiency at 21 GHz. The 16 module amplifier gave 8.95 W saturated output power with 30 dB gain. The overall efficiency was 9%. The 3 dB bandwidth was 2.5 GHz. At 17.7 GHz the amplifier had 5 W output power and at 20.2 GHz it still had 4.4 W.

  15. Multi-state Quantum Teleportation via One Entanglement State

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Zeng, Gui-Hua; Moon Ho, Lee

    2008-08-01

    A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quantum states from different senders to a distance receiver based on only one Einstein Podolsky Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes.

  16. A 20-GHz IMPATT transmitter

    NASA Technical Reports Server (NTRS)

    Chan, J. L.; Sun, C.

    1983-01-01

    The engineering development of a solid state transmitter amplifier operating in the 20 GHz frequency band. The development effort involved a variety of disciplines including IMPATT device development, circulator design, simple and multiple diode circuits designs, and amplifier integration and test.

  17. Optimal GHZ Paradox for Three Qubits.

    PubMed

    Ren, Changliang; Su, Hong-Yi; Xu, Zhen-Peng; Wu, Chunfeng; Chen, Jing-Ling

    2015-01-01

    Quatum nonlocality as a valuable resource is of vital importance in quantum information processing. The characterization of the resource has been extensively investigated mainly for pure states, while relatively less is know for mixed states. Here we prove the existence of the optimal GHZ paradox by using a novel and simple method to extract an optimal state that can saturate the tradeoff relation between quantum nonlocality and the state purity. In this paradox, the logical inequality which is formulated by the GHZ-typed event probabilities can be violated maximally by the optimal state for any fixed amount of purity (or mixedness). Moreover, the optimal state can be described as a standard GHZ state suffering flipped color noise. The maximal amount of noise that the optimal state can resist is 50%. We suggest our result to be a step toward deeper understanding of the role played by the AVN proof of quantum nonlocality as a useful physical resource. PMID:26272658

  18. Optimal GHZ Paradox for Three Qubits

    PubMed Central

    Ren, Changliang; Su, Hong-Yi; Xu, Zhen-Peng; Wu, Chunfeng; Chen, Jing-Ling

    2015-01-01

    Quatum nonlocality as a valuable resource is of vital importance in quantum information processing. The characterization of the resource has been extensively investigated mainly for pure states, while relatively less is know for mixed states. Here we prove the existence of the optimal GHZ paradox by using a novel and simple method to extract an optimal state that can saturate the tradeoff relation between quantum nonlocality and the state purity. In this paradox, the logical inequality which is formulated by the GHZ-typed event probabilities can be violated maximally by the optimal state for any fixed amount of purity (or mixedness). Moreover, the optimal state can be described as a standard GHZ state suffering flipped color noise. The maximal amount of noise that the optimal state can resist is 50%. We suggest our result to be a step toward deeper understanding of the role played by the AVN proof of quantum nonlocality as a useful physical resource. PMID:26272658

  19. Optimal GHZ Paradox for Three Qubits

    NASA Astrophysics Data System (ADS)

    Ren, Changliang; Su, Hong-Yi; Xu, Zhen-Peng; Wu, Chunfeng; Chen, Jing-Ling

    2015-08-01

    Quatum nonlocality as a valuable resource is of vital importance in quantum information processing. The characterization of the resource has been extensively investigated mainly for pure states, while relatively less is know for mixed states. Here we prove the existence of the optimal GHZ paradox by using a novel and simple method to extract an optimal state that can saturate the tradeoff relation between quantum nonlocality and the state purity. In this paradox, the logical inequality which is formulated by the GHZ-typed event probabilities can be violated maximally by the optimal state for any fixed amount of purity (or mixedness). Moreover, the optimal state can be described as a standard GHZ state suffering flipped color noise. The maximal amount of noise that the optimal state can resist is 50%. We suggest our result to be a step toward deeper understanding of the role played by the AVN proof of quantum nonlocality as a useful physical resource.

  20. Towards a beyond 1 GHz solid-state nuclear magnetic resonance: External lock operation in an external current mode for a 500 MHz nuclear magnetic resonance

    SciTech Connect

    Takahashi, Masato; Maeda, Hideaki; Ebisawa, Yusuke; Tennmei, Konosuke; Yanagisawa, Yoshinori; Nakagome, Hideki; Hosono, Masami; Takasugi, Kenji; Hase, Takashi; Miyazaki, Takayoshi; Fujito, Teruaki; Kiyoshi, Tsukasa; Yamazaki, Toshio

    2012-10-15

    Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb{sub 3}Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system based on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a {sup 7}Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm/3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.

  1. Sixty GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Ma, Y. E.; Chen, J.; Benko, E.; Barger, M. J.; Nghiem, H.; Trinh, T. Q.; Kung, J.

    1985-01-01

    The objective of this program is to develop 60 GHz GaAs IMPATT Diodes suitable for communications applications. The performance goal of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10 year life time. During the course of the program, double drift (DD) GaAs IMPATT Diodes have been developed resulting in the state of the art performance at V band frequencies. A CW output power of 1.12 W was demonstrated at 51.9 GHz with 9.7 percent efficiency. The best conversion efficiency achieved was 15.3 percent. V band DD GaAs IMPATTs were developed using both small signal and large signal analyses. GaAs wafers of DD flat, DD hybrid, and DD Read profiles using molecular beam epitaxy (MBE) were developed with excellent doping profile control. Wafer evaluation was routinely made by the capacitance versus voltage (C-V) measurement. Ion mass spectrometry (SIMS) analysis was also used for more detailed profile evaluation.

  2. Graphene based GHz detectors

    NASA Astrophysics Data System (ADS)

    Boyd, Anthony K.; El Fatimy, Abdel; Barbara, Paola; Nath, Anindya; Campbell, Paul M.; Myers-Ward, Rachael; Daniels, Kevin; Gaskill, D. Kurt

    Graphene demonstrates great promise as a detector over a wide spectral range especially in the GHz range. This is because absorption is enhanced due to the Drude contribution. In the GHz range there are viable detection mechanisms for graphene devices. With this in mind, two types of GHz detectors are fabricated on epitaxial graphene using a lift off resist-based clean lithography process to produce low contact resistance. Both device types use asymmetry for detection, consistent with recent thoughts of the photothermoelectric effect (PTE) mechanism. The first is an antenna coupled device. It utilizes two dissimilar contact metals and the work function difference produces the asymmetry. The other device is a field effect transistor constructed with an asymmetric top gate that creates a PN junction and facilitates tuning the photovoltaic response. The response of both device types, tested from 100GHz to 170GHz, are reported. This work was sponsored by the U.S. Office of Naval Research (Award Number N000141310865).

  3. 230 GHz VLBI Observations of M87: Event-horizon-scale Structure during an Enhanced Very-high-energy -Ray State in 2012

    NASA Astrophysics Data System (ADS)

    Akiyama, Kazunori; Lu, Ru-Sen; Fish, Vincent L.; Doeleman, Sheperd S.; Broderick, Avery E.; Dexter, Jason; Hada, Kazuhiro; Kino, Motoki; Nagai, Hiroshi; Honma, Mareki; Johnson, Michael D.; Algaba, Juan C.; Asada, Keiichi; Brinkerink, Christiaan; Blundell, Ray; Bower, Geoffrey C.; Cappallo, Roger; Crew, Geoffrey B.; Dexter, Matt; Dzib, Sergio A.; Freund, Robert; Friberg, Per; Gurwell, Mark; Ho, Paul T. P.; Inoue, Makoto; Krichbaum, Thomas P.; Loinard, Laurent; MacMahon, David; Marrone, Daniel P.; Moran, James M.; Nakamura, Masanori; Nagar, Neil M.; Ortiz-Leon, Gisela; Plambeck, Richard; Pradel, Nicolas; Primiani, Rurik A.; Rogers, Alan E. E.; Roy, Alan L.; SooHoo, Jason; Tavares, Jonathan-León; Tilanus, Remo P. J.; Titus, Michael; Wagner, Jan; Weintroub, Jonathan; Yamaguchi, Paul; Young, Ken H.; Zensus, Anton; Ziurys, Lucy M.

    2015-07-01

    We report on 230 GHz (1.3 mm) very long baseline interferometry (VLBI) observations of M87 with the Event Horizon Telescope using antennas on Mauna Kea in Hawaii, Mt. Graham in Arizona, and Cedar Flat in California. For the first time, we have acquired 230 GHz VLBI interferometric phase information on M87 through measurement of the closure phase on the triangle of long baselines. Most of the measured closure phases are consistent with 0° as expected by physically motivated models for 230 GHz structure such as jet models and accretion disk models. The brightness temperature of the event-horizon-scale structure is ∼ 1× {10}10 K derived from the compact flux density of ∼1 Jy and the angular size of ∼40 μ {as} ∼ 5.5 {R}{{s}}, which is broadly consistent with the peak brightness of the radio cores at 1–86 GHz located within ∼ {10}2 {R}{{s}}. Our observations occurred in the middle of an enhancement in very-high-energy (VHE) γ -ray flux, presumably originating in the vicinity of the central black hole. Our measurements, combined with results of multi-wavelength observations, favor a scenario in which the VHE region has an extended size of ∼20–60 {R}{{s}}.

  4. The interplay between the solid effect and the cross effect mechanisms in solid state 13C DNP at 95 GHz using trityl radicals

    NASA Astrophysics Data System (ADS)

    Banerjee, Debamalya; Shimon, Daphna; Feintuch, Akiva; Vega, Shimon; Goldfarb, Daniella

    2013-05-01

    The 13C solid state Dynamic Nuclear Polarization (DNP) mechanism using trityl radicals (OX63) as polarizers was investigated in the temperature range of 10-60 K. The solutions used were 6 M 13C urea in DMSO/H2O (50% v/v) with 15 mM and 30 mM OX63. The measurements were carried out at ˜3.5 T, which corresponds to Larmor frequencies of 95 GHz and 36 MHz for the OX63 and the 13C nuclei, respectively. Measurements of the 13C signal intensity as a function of the microwave (MW) irradiation frequency yielded 13C DNP spectra with temperature dependent lineshapes for both samples. The maximum enhancement for the 30 mM sample was reached at 40 K, while that of the 15 mM sample at 20-30 K. Furthermore, the lineshapes observed showed that both the cross effect (CE) and the solid effect (SE) DNP mechanisms are active in this temperature range and that their relative contribution is temperature dependent. Simulations of the spectra with the relative contributions of the CE and SE mechanisms as a fit parameter revealed that for both samples the CE contribution decreases with decreasing temperature while the SE contribution increases. In addition, for the 15 mM sample the contributions of the two mechanisms are comparable from 20 K to 60 K while for the 30 mM the CE dominates in this range, as expected from the higher concentration. The steep decrease of the CE contribution towards low temperatures is however unexpected. The temperature dependence of the OX63 longitudinal relaxation, DNP buildup times and 13C spin lattice relaxation times did not reveal any obvious correlation with the DNP temperature dependence. A similar behavior of the CE and SE mechanism was observed for 1H DNP with the nitroxide radical TEMPOL as a polarizer. This suggests that this effect is a general phenomenon involving a temperature dependent competition between the CE and SE mechanisms, the source of which is, however, still unknown.

  5. An SIS Waveguide heterodyne Reciever for 600 GHz - 635 GHz

    NASA Technical Reports Server (NTRS)

    Salez, Morvan; Febvre, Pascal; McGrath, William R.; Bumble, Bruce; LeDuc, Henry G.

    1994-01-01

    A waveguide SIS heterodyne receiver using a Nb/A10xNb junction has been built for astronomical observations of molecular tranitions in the frequency range 600GHz - 635GHZ, and has been successfully used at the Caltech Submillimeter Observatory (CSO).

  6. 180-GHz Interferometric Imager

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Lim, Boon H.; O'Dwyer, Ian J.; Soria, Mary M.; Owen, Heather R.; Gaier, Todd C.; Lambrigtsen, Bjorn, H.; Tanner, Alan B.; Ruf, Christopher

    2011-01-01

    A 180-GHz interferometric imager uses compact receiver modules, combined high- and low-gain antennas, and ASIC (application specific integrated circuit) correlator technology, enabling continuous, all-weather observations of water vapor with 25-km resolution and 0.3-K noise in 15 minutes of observation for numerical weather forecasting and tropical storm prediction. The GeoSTAR-II prototype instrument is broken down into four major subsystems: the compact, low-noise receivers; sub-array modules; IF signal distribution; and the digitizer/correlator. Instead of the single row of antennas adopted in GeoSTAR, this version has four rows of antennas on a coarser grid. This dramatically improves the sensitivity in the desired field of view. The GeoSTAR-II instrument is a 48-element, synthetic, thinned aperture radiometer operating at 165-183 GHz. The instrument has compact receivers integrated into tiles of 16 elements in a 4x4 arrangement. These tiles become the building block of larger arrays. The tiles contain signal distribution for bias controls, IF signal, and local oscillator signals. The IF signals are digitized and correlated using an ASIC correlator to minimize power consumption. Previous synthetic aperture imagers have used comparatively large multichip modules, whereas this approach uses chip-scale modules mounted on circuit boards, which are in turn mounted on the distribution manifolds. This minimizes the number of connectors and reduces system mass. The use of ASIC technology in the digitizers and correlators leads to a power reduction close to an order of magnitude.

  7. Photon polarization version of the GHz-Mermin Gedanken

    NASA Technical Reports Server (NTRS)

    Kiess, Thomas E.

    1992-01-01

    We have defined a photon polarization analog of the Greenberger, Horne, and Zeilinger (GHZ) experiment that was initially proposed for spin-1/2 quanta. Analogs of the ket states and Pauli spin matrix operators are presented.

  8. Pretty good state transfer of entangled states through quantum spin chains

    NASA Astrophysics Data System (ADS)

    Sousa, Rúben; Omar, Yasser

    2014-12-01

    The XX model with uniform couplings represents the most natural choice for quantum state transfer through spin chains. Given that it has long been established that single-qubit states cannot be transferred with perfect fidelity in this model, the notion of pretty good state transfer has been recently introduced as a relaxation of the constraints on fidelity. In this paper, we study the transfer of multi-qubit entangled and unentangled states through unmodulated spin chains, and we prove that it is possible to have pretty good state transfer of any multi-particle state. This significantly generalizes the previous results on single-qubit state transfer and opens the way to using uniformly coupled spin chains as short-distance quantum channels for the transfer of arbitrary states of any dimension. Our results could be tested with current technology.

  9. High efficiency IMPATT diodes for 60 GHz intersatellite link applications

    NASA Technical Reports Server (NTRS)

    Haugland, E. J.

    1984-01-01

    Intersatellite links are expected to play an increasingly important role in future satellite systems. Improved components are required to properly utilize the wide bandwidth allocated for intersatellite link applications around 60 GHz. IMPATT diodes offer the highest potential performance as solid state power sources for a 60 GHz transmitter. Presently available devices do not have the desired power and efficiency. High efficiency, high power IMPATT diodes for intersatellite link applications are being developed by NASA and other government agencies. The development of high efficiency 60 GHz IMPATT diodes by NASA is described.

  10. Entanglement of Multi-qudit States Constructed by Linearly Independent Coherent States: Balanced Case

    NASA Astrophysics Data System (ADS)

    Najarbashi, G.; Mirzaei, S.

    2016-03-01

    Multi-mode entangled coherent states are important resources for linear optics quantum computation and teleportation. Here we introduce the generalized balanced N-mode coherent states which recast in the multi-qudit case. The necessary and sufficient condition for bi-separability of such balanced N-mode coherent states is found. We particularly focus on pure and mixed multi-qubit and multi-qutrit like states and examine the degree of bipartite as well as tripartite entanglement using the concurrence measure. Unlike the N-qubit case, it is shown that there are qutrit states violating monogamy inequality. Using parity, displacement operator and beam splitters, we will propose a scheme for generating balanced N-mode entangled coherent states for even number of terms in superposition.

  11. Quantum state control of trapped Holmium atoms

    NASA Astrophysics Data System (ADS)

    Hostetter, James; Yip, Christopher; Milner, William; Booth, Donald; Collett, Jeffrey; Saffman, Mark

    2016-05-01

    Neutral Holmium with its large number of hyperfine ground states provides a promising approach for collective encoding of a multi-qubit register. A prerequisite for collective encoding is the ability to prepare different states in the 128 state hyperfine ground manifold. We report progress towards optical pumping and control of the hyperfine Zeeman state of trapped Ho atoms. Atoms are transferred from a 410.5 nm MOT into a 455 nm optical dipole trap. The atoms can be optically pumped using light driving the ground 6s2 , F = 11 to 6 s 6 p ,F' = 11 transition together with a F = 10 to F' = 11 repumper. Microwave fields are then used to drive transitions to hyperfine levels with 4 <= F <= 11 . Work supported by NSF award PHY-1404357.

  12. 30 GHz Commercial Satellite Receivers

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ponchak, George E.; Romanofsky, Robert R.

    1989-01-01

    NASA's research and development work in satellite communications for the past 10 years has included a major technology thrust aimed at opening the Ka frequency band to commercial exploitation. This has included the development and testing of advanced system network architectures, on-board switching and processing, multibeam and phased array antennas, and satellite and ground terminal RF and digital hardware. Development work in system hardware has focused on critical components including power amplifiers, satellite IF switch matrices, low noise receivers, baseband processors, and high data rate bandwidth efficient modems. This paper describes NASA's work in developing and testing 30 GHz low noise satellite receivers for commercial space communications uplink applications. Frequencies allotted for fixed service commercial satellite communications in the Ka band are 27.5 - 30.0 GHz for uplink transmission and 17.7 - 20.2 GHz for downlink transmission. The relatively large 2.5 GHz bandwidth lends itself to wideband, high data rate digital transmission applications.

  13. Rain rate and modeled fade distributions at 20 GHz and 30 GHz derived from five years of network rain gauge measurements

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Krichevsky, Vladimir; Gebo, Norman

    1992-01-01

    Five years of rain rate and modeled slant path attenuation distributions at 20 GHz and 30 GHz derived from a network of 10 tipping bucket rain gages was examined. The rain gage network is located within a grid 70 km north-south and 47 km east-west in the Mid-Atlantic coast of the United States in the vicinity of Wallops Island, Virginia. Distributions were derived from the variable integration time data and from one minute averages. It was demonstrated that for realistic fade margins, the variable integration time results are adequate to estimate slant path attenuations at frequencies above 20 GHz using models which require one minute averages. An accurate empirical formula was developed to convert the variable integration time rain rates to one minute averages. Fade distributions at 20 GHz and 30 GHz were derived employing Crane's Global model because it was demonstrated to exhibit excellent accuracy with measured COMSTAR fades at 28.56 GHz.

  14. Rain rate and modeled fade distributions at 20 GHz and 30 GHz derived from five years of network rain gauge measurements

    NASA Astrophysics Data System (ADS)

    Goldhirsh, Julius; Krichevsky, Vladimir; Gebo, Norman

    1992-08-01

    Five years of rain rate and modeled slant path attenuation distributions at 20 GHz and 30 GHz derived from a network of 10 tipping bucket rain gages was examined. The rain gage network is located within a grid 70 km north-south and 47 km east-west in the Mid-Atlantic coast of the United States in the vicinity of Wallops Island, Virginia. Distributions were derived from the variable integration time data and from one minute averages. It was demonstrated that for realistic fade margins, the variable integration time results are adequate to estimate slant path attenuations at frequencies above 20 GHz using models which require one minute averages. An accurate empirical formula was developed to convert the variable integration time rain rates to one minute averages. Fade distributions at 20 GHz and 30 GHz were derived employing Crane's Global model because it was demonstrated to exhibit excellent accuracy with measured COMSTAR fades at 28.56 GHz.

  15. GHz nuclear magnetic resonance

    SciTech Connect

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  16. Phase locking and frequency locking of a 140 GHz klystron and a 280 GHz carcinotron

    SciTech Connect

    Sprehn, D.W.; Rettig, C.L.; Luhmann, N.C. Jr. )

    1992-10-01

    A phase and frequency-locked loop to synchronize two microwave tube oscillators for a high density plasma collective scattering diagnostic has been designed, assembled, and tested. A Varian (VRT2121A16) reflex klystron was down converted by mixing with the eighth harmonic of a 17.437 GHz phase-locked Gunn oscillator, and the resulting baseband was used to lock the klystron phase to a 200 MHz crystal. The down-converted 140 GHz klystron frequency spectrum shows a linewidth {lt}50 Hz and sideband power {lt}50 dB below the carrier (dBc). Frequency locking of a Thomson CSF TH4224S 280 GHz carcinotron was performed and the klystron was then down converted by the stabilized carcinotron and phase locked to the 200 MHz crystal. The klystron would track the frequency excursions of the carcinotron when the system was perturbed by direct modulation with frequencies of up to 10 MHz and remained locked as long as modulation sidebands were kept {lt}15 dBc. The locked states of both configurations show 3 to 4 orders of magnitude improvement in short and long term stability over the unlocked states.

  17. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Molvar, K. M.; Soderstrom, J. R.

    1991-01-01

    Oscillations have been obtained at frequencies from 100 to 712 GHz in InAs/AlSb double-barrier resonant-tunneling diodes at room temperature. The measured power density at 360 GHz was 90 W/sq cm, which is 50 times that generated by GaAs/AlAs diodes at essentially the same frequency. The oscillation at 712 GHz represents the highest frequency reported to date from a solid-state electronic oscillator at room temperature.

  18. Low-temperature pulsed EPR study at 34 GHz of the triplet states of the primary electron Donor P865 and the carotenoid in native and mutant bacterial reaction centers of Rhodobacter sphaeroides.

    PubMed

    Marchanka, Aliaksandr; Paddock, Mark; Lubitz, Wolfgang; van Gastel, Maurice

    2007-12-25

    The photosynthetic charge separation in bacterial reaction centers occurs predominantly along one of two nearly symmetric branches of cofactors. Low-temperature EPR spectra of the triplet states of the chlorophyll and carotenoid pigments in the reaction center of Rhodobacter sphaeroides R-26.1, 2.4.1 and two double-mutants GD(M203)/AW(M260) and LH(M214)/AW(M260) have been recorded at 34 GHz to investigate the relative activities of the "A" and "B" branches. The triplet states are found to derive from radical pair and intersystem crossing mechanisms, and the rates of formation are anisotropic. The former mechanism is operative for Rb. sphaeroides R-26.1, 2.4.1, and mutant GD(M203)/AW(M260) and indicates that A-branch charge separation proceeds at temperatures down to 10 K. The latter mechanism, derived from the spin polarization and operative for mutant LH(M214)/AW(M260), indicates that no long-lived radical pairs are formed upon direct excitation of the primary donor and that virtually no charge separation at the B-branch occurs at low temperatures. When the temperature is raised above 30 K, B-branch charge separation is observed, which is at most 1% of A-branch charge separation. B-branch radical pair formation can be induced at 10 K with low yield by direct excitation of the bacteriopheophytin of the B-branch at 590 nm. The formation of a carotenoid triplet state is observed. The rate of formation depends on the orientation of the reaction center in the magnetic field and is caused by a magnetic field dependence of the oscillation frequency by which the singlet and triplet radical pair precursor states interchange. Combination of these findings with literature data provides strong evidence that the thermally activated transfer step on the B-branch occurs between the primary donor, P865, and the accessory bacteriochlorophyll, whereas this step is barrierless down to 10 K along the A-branch. PMID:18052205

  19. Low temperature pulsed EPR study at 34 GHz of the triplet states of the primary electron donor P865 and the carotenoid in native and mutant bacterial reaction centers of Rhodobacter sphaeroides†

    PubMed Central

    Marchanka, Aliaksandr; Paddock, Mark; Lubitz, Wolfgang; van Gastel, Maurice

    2008-01-01

    The photosynthetic charge separation in bacterial reaction centers occurs predominantly along one of two nearly symmetric branches of cofactors. Low temperature EPR spectra of the triplet states of the chlorophyll and carotenoid pigments in the reaction center of Rb. sphaeroides R-26.1, 2.4.1 and two double mutants GD(M203)/AW(M260) and LH(M214)/AW(M260) have been recorded at 34 GHz to investigate the relative activities of the ‘A’ and ‘B’ branches. The triplet states are found to derive from radical pair and intersystem crossing mechanisms and the rates of formation are anisotropic. The former mechanism is operative for Rb. sphaeroides R-26.1, 2.4.1 and mutant GD(M203)/AW(M260) and indicates that A-branch charge separation proceeds at temperatures down to 10 K. The latter mechanism, derived from the spin polarization and operative for mutant LH(M214)/AW(M260) indicates that no long-lived radical pairs are formed upon direct excitation of the primary donor and that virtually no charge separation at the B-branch occurs at low temperatures. When the temperature is raised above 30 K, B-branch charge separation is observed, which is at most 1% of A-branch charge separation. B-branch radical pair formation can be induced at 10 K with low yield by direct excitation of the bacteriopheophytin of the B-branch at 590 nm. The formation of a carotenoid triplet state is observed. The rate of formation depends on the orientation of the reaction center in the magnetic field and is caused by a magnetic field dependence of the oscillation frequency by which the singlet and triplet radical pair precursor states interchange. Combination of these findings with literature data provides strong evidence that the thermally activated transfer step on the B-branch occurs between the primary donor, P865, and the accessory bacteriochlorophyll, whereas this step is barrierless down to 10 K along the A-branch. PMID:18052205

  20. Atmospheric sounding near 118 GHz

    NASA Technical Reports Server (NTRS)

    Ali, A. D. S.; Rosenkranz, P. W.; Staelin, D. H.

    1980-01-01

    The thermal emission spectrum of the atmosphere near the 118 GHz oxygen resonance has been measured from the NASA Convair-990 aircraft as it flew over clear air and storms. The instrument viewed the ground 45 deg from nadir with a 7.5 deg beamwidth. Brightness temperatures were measured in six bands 200 MHz wide centered at frequencies 821-1891 MHz from the line at 118.7505 GHz. The double-sideband super-heterodyne receiver had 1 K sensitivity for 1 s integration. Comparison of observed clear air brightness temperatures (from 238 mb) with those computed for a coincident dropsonde yielded agreement within 1.4 K; the retrieved temperature profile agreed with the dropsonde with an average magnitude error of 1.4 K.

  1. 338-GHz Semiconductor Amplifier Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin; Uyeda, Jansen; Lai, Richard

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.

  2. Severe storm detection with passive 37 GHz observations

    NASA Technical Reports Server (NTRS)

    Spencer, R. W.; Howland, M. R.; Martin, D. W.

    1985-01-01

    The research objective was to determine the information content of satellite passive 37 GHz brightness temperatures on the severity of thunderstorms through the measurement of the attenuation (scattering) signature of precipitation. The severe storm detection potential of satellite-observed passive 37 GHz radiances was evaluated by comparing Nimbus-7 Scanning Multi-channel Microwave Radiometer (SMMR) data to reports of severe weather contained in the NSSFC severe weather log for calendar years 1979 and 1980 over the United States east of the Rocky Mountains. Heavy thunderstorms have a characteristic signature in the form of localized very low 37 GHz T sub B from scattering by precipitation-size ice particles (thick cirrus being transparent at this frequency). The local noon and midnight snapshots taken by the SMMR on alternating days (with incomplete areal coverage of the U.S. on any given day) were scanned to find cases of strong scattering by precipitation, revealed by large differences between the 18 and 37 GHz brightness temperatures, the 37 GHz T sub B being at least 20 C lower than the 18 GHz T sub B. The value of the 37 GHz T sub b was then compared to severe weather reports within one hour of the SMMR observation time, in the vicinity of the SMMR-observed storm. It was found that the degree to which the T sub B were lowered was a fairly good indicator of the probability that the storm was severe. Of 263 storms observed by the SMMR during 1979 and 1980, 54 percent had severe weather associated with them for a T sub b below 203 K, while 8 percent of those above this threshold were severe.

  3. A 640 GHz Planar-Diode Fundamental Mixer/Receiver

    NASA Technical Reports Server (NTRS)

    Siegel, P.; Mehdi, I.; Dengler, R.; Lee, T.; Humphrey, D.; Pease, A.

    1998-01-01

    The design and performance of a 640 GHz solid-state receiver using a fundamental planar-Schottky-diode mixer, InP Gunn diode oscillator, whisker-contacted Schottky-varactor-diode sextupler and folded-Fabry-Perot diplexer are reported.

  4. Test results for 20-GHz GaAs FET spacecraft power amplifier

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.

    1985-01-01

    Test were conducted to measure the performance of the 20-GHz solid state, proof-of-concept amplifier. The amplifier operates over the 17.7 to 20.2-GHz frequency range and uses high power gallium arsenide field effect transistors. The amplifier design and test methods are briefly described. NASA and contractor performance data are compared.

  5. A 492 GHz cooled Schottky receiver for radio-astronomy

    NASA Technical Reports Server (NTRS)

    Hernichel, J.; Schieder, R.; Stutzki, J.; Vowinkel, B.; Winnewisser, G.; Zimmermann, Peter

    1992-01-01

    We developed a 492 GHz cooled GaAs Schottky receiver driven by a solid state local oscillator with a DSB noise temperature of 550 K measured at the telescope. The receiver-bandwidth is approx. equal to 1.0 GHz. Quasi-optical mirrors focus the sky and local oscillator radiation into the mixer. Stability analysis via the Allan variance method shows that the total system including a 1 GHz bandwidth acousto-optical spectrometer built in Cologne allows integration times up to 100 sec per half switching cycle. We successfully used the receiver at the KOSMA 3 m telescope on Gornergrat (3150m) located in the central Swiss Alps near Zermatt during January-February 1992 for observations of the 492 GHz, (CI) (3)P1 to (3)P0 fine structure line in several galactic sources. These observations confirm that Gornergrat is an excellent winter submillimeter site in accordance with previous predictions based on the atmospheric opacity from KOSMA 345 GHz measurements.

  6. Ka-band (32 GHz) allocations for deep space

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1987-01-01

    At the 1979 World Administrative Conference, two new bands were allocated for deep space telecommunications: 31.8 to 32.3 GHz, space-to-Earth, and 34.2 to 34.7 GHz, Earth-to-space. These bands provide opportunity for further development of the Deep Space Network and its support of deep space research. The history of the process by which JPL/NASA developed the rationale, technical background, and statement of requirement for the bands are discussed. Based on this work, United States proposals to the conference included the bands, and subsequent U.S. and NASA participation in the conference led to successful allocations for deep space telecommunications in the 30 GHz region of the spectrum. A detailed description of the allocations is included.

  7. IMPATT power building blocks for 20 GHz spaceborne transmit amplifier

    NASA Technical Reports Server (NTRS)

    Asmus, J.; Cho, Y.; Degruyl, J.; Ng, E.; Giannakopoulos, A.; Okean, H. C.

    1982-01-01

    Single-stage circulator coupled IMPATT building block constituents of a 20-GHz solid state power amplifier (SSPA) currently under development for spaceborne downlink transmitter usage have been demonstrated as providing 1.5 to 2.0W RF power output at 4 to 5 dB operating gain over a 1 GHz bandwidth. Using either commercially available or recently developed in-house GaAs Schottky Read-profile IMPATT diodes, DC/RF power added efficiencies of 14 to 15% were achieved in these amplifier stages. A two stage IMPATT driver amplifier with similar RF output power capability exhibited 13 + or - 0.5 dB operating gain over a 1 GHz bandwidth.

  8. High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation.

    PubMed

    Fan, Li; Xia, Guangqiong; Chen, Jianjun; Tang, Xi; Liang, Qing; Wu, Zhengmao

    2016-08-01

    Based on an optically injected semiconductor laser (OISL) operating at period-one (P1) nonlinear dynamical state, high-purity millimeter-wave generation at 60 GHz band is experimentally demonstrated via 1/4 and 1/9 subharmonic microwave modulation (the order of subharmonic is with respect to the frequency fc of the acquired 60 GHz band millimeter-wave but not the fundamental frequency f0 of P1 oscillation). Optical injection is firstly used to drive a semiconductor laser into P1 state. For the OISL operates at P1 state with a fundamental frequency f0 = 49.43 GHz, by introducing 1/4 subharmonic modulation with a modulation frequency of fm = 15.32 GHz, a 60 GHz band millimeter-wave with central frequency fc = 61.28 GHz ( = 4fm) is experimentally generated, whose linewidth is below 1.6 kHz and SSB phase noise at offset frequency 10 kHz is about -96 dBc/Hz. For fm is varied between 13.58 GHz and 16.49 GHz, fc can be tuned from 54.32 GHz to 65.96 GHz under matched modulation power Pm. Moreover, for the OISL operates at P1 state with f0 = 45.02 GHz, a higher order subharmonic modulation (1/9) is introduced into the OISL for obtaining high-purity 60 GHz band microwave signal. With (fm, Pm) = (7.23 GHz, 13.00 dBm), a microwave signal at 65.07 GHz ( = 9fm) with a linewidth below 1.6 kHz and a SSB phase noise less than -98 dBc/Hz is experimentally generated. Also, the central frequency fc can be tuned in a certain range through adjusting fm and selecting matched Pm. PMID:27505789

  9. Monolithic 20-GHz Transmitting Module

    NASA Technical Reports Server (NTRS)

    Kascak, T.; Kaelin, G.; Gupta, A.

    1986-01-01

    20-GHz monolithic microwave/millimeter-wave integrated circuit (MMIC) with amplification and phase-shift (time-delay) capabilities developed. Use of MMIC module technology promises to make feasible development of weight- and cost-effective phased-array antenna systems, identified as major factor in achieving minimum cost and efficient use of frequency and orbital resources of future generations of communication satellite systems. Use of MMIC transmitting modules provides for relatively simple method for phase-shift control of many separate radio-frequency (RF) signals required for phased-array antenna systems.

  10. The 94 GHz MMW imaging radar system

    NASA Technical Reports Server (NTRS)

    Alon, Yair; Ulmer, Lon

    1993-01-01

    The 94 GHz MMW airborne radar system that provides a runway image in adverse weather conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, which consists of a solid state FMCW transceiver, antenna, and digital signal processor, has an update rate of 10 times per second, 0.35x azimuth resolution and up to 3.5 meter range resolution. The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited visibility conditions.

  11. Contact gating at GHz frequency in graphene.

    PubMed

    Wilmart, Q; Inhofer, A; Boukhicha, M; Yang, W; Rosticher, M; Morfin, P; Garroum, N; Fève, G; Berroir, J-M; Plaçais, B

    2016-01-01

    The paradigm of graphene transistors is based on the gate modulation of the channel carrier density by means of a local channel gate. This standard architecture is subject to the scaling limit of the channel length and further restrictions due to access and contact resistances impeding the device performance. We propose a novel design, overcoming these issues by implementing additional local gates underneath the contact region which allow a full control of the Klein barrier taking place at the contact edge. In particular, our work demonstrates the GHz operation of transistors driven by independent contact gates. We benchmark the standard channel and novel contact gating and report for the later dynamical transconductance levels at the state of the art. Our finding may find applications in electronics and optoelectronics whenever there is need to control independently the Fermi level and the electrostatic potential of electronic sources or to get rid of cumbersome local channel gates. PMID:26879709

  12. Contact gating at GHz frequency in graphene

    NASA Astrophysics Data System (ADS)

    Wilmart, Q.; Inhofer, A.; Boukhicha, M.; Yang, W.; Rosticher, M.; Morfin, P.; Garroum, N.; Fève, G.; Berroir, J.-M.; Plaçais, B.

    2016-02-01

    The paradigm of graphene transistors is based on the gate modulation of the channel carrier density by means of a local channel gate. This standard architecture is subject to the scaling limit of the channel length and further restrictions due to access and contact resistances impeding the device performance. We propose a novel design, overcoming these issues by implementing additional local gates underneath the contact region which allow a full control of the Klein barrier taking place at the contact edge. In particular, our work demonstrates the GHz operation of transistors driven by independent contact gates. We benchmark the standard channel and novel contact gating and report for the later dynamical transconductance levels at the state of the art. Our finding may find applications in electronics and optoelectronics whenever there is need to control independently the Fermi level and the electrostatic potential of electronic sources or to get rid of cumbersome local channel gates.

  13. Contact gating at GHz frequency in graphene

    PubMed Central

    Wilmart, Q.; Inhofer, A.; Boukhicha, M.; Yang, W.; Rosticher, M.; Morfin, P.; Garroum, N.; Fève, G.; Berroir, J.-M.; Plaçais, B.

    2016-01-01

    The paradigm of graphene transistors is based on the gate modulation of the channel carrier density by means of a local channel gate. This standard architecture is subject to the scaling limit of the channel length and further restrictions due to access and contact resistances impeding the device performance. We propose a novel design, overcoming these issues by implementing additional local gates underneath the contact region which allow a full control of the Klein barrier taking place at the contact edge. In particular, our work demonstrates the GHz operation of transistors driven by independent contact gates. We benchmark the standard channel and novel contact gating and report for the later dynamical transconductance levels at the state of the art. Our finding may find applications in electronics and optoelectronics whenever there is need to control independently the Fermi level and the electrostatic potential of electronic sources or to get rid of cumbersome local channel gates. PMID:26879709

  14. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. 25.136 Section 25.136 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS..., 1.5/1.6 GHz, and 2 GHz Mobile Satellite Services. In addition to the technical...

  15. MMIC Amplifiers for 90 to 130 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Pukala, David; Peralta, Alejandro; Bryerton, Eric; Morgan, Matt; Boyd, T.; Hu, Ming; Schmitz, Adele

    2007-01-01

    This brief describes two monolithic microwave integrated-circuit (MMIC) amplifier chips optimized to function in the frequency range of 90 to 130 GHz, covering nearly all of F-band (90 - 140 GHz). These amplifiers were designed specifically for local-oscillator units in astronomical radio telescopes such as the Atacama Large Millimeter Array (ALMA). They could also be readily adapted for use in electronic test equipment, automotive radar systems, and communications systems that operate between 90 and 130 GHz.

  16. Superconducting Complementary Output Switching Logic Operating at 10 - 18 GHz

    NASA Astrophysics Data System (ADS)

    Jeffery, Mark; van Duzer, T.; Perold, Willem

    1998-03-01

    We have developed a new type of superconducting voltage-state logic called Complementary Output Switching Logic (COSL)(M. Jeffery, W. Perold, and T. Van Duzer, Appl. Phys. Lett., 69) (18), 2746 (1996). The basic COSL gates have been demonstrated at 10 GHz and complex 2-bit encoder circuits have operated at 5 - 8 GHz. The COSL gates have extremely low power dissipation, of order 10 μW/gate, and we have measured bit error rates less than 10-12 at 2 GHz. For these results we used the HYPRES 1 kA/cm^2 critical current density Nb Josephson fabrication process. In the present work we describe our recent test results using the new HYPRES 2.5 kA/cm^2 process. The increased critical current density process significantly improves the switching speed of the COSL devices. We will describe the Monte Carlo method used to optimize the COSL gates for 20 - 30 GHz operation, and the optimal circuit layouts including moats, or ground plane holes, to shield the circuits from trapped magnetic flux. Experimental test results will be presented for the basic COSL devices operating at 10 - 18 GHz. These are the fastest superconducting voltage-state logic devices ever reported, and may have many applications in low power ultra-high-speed digital systems of the future.

  17. THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. I. ASTROMETRY

    SciTech Connect

    Lanyi, G. E.; Jacobs, C. S.; Naudet, C. J.; Sovers, O. J.; Zhang, L. D.; Boboltz, D. A.; Fey, A. L.; Charlot, P.; Fomalont, E. B.; Geldzahler, B. J.; Gordon, D.; Romney, J. D.

    2010-05-15

    We present astrometric results for compact extragalactic objects observed with the Very Long Baseline Array at radio frequencies of 24 and 43 GHz. Data were obtained from ten 24 hr observing sessions made over a five-year period. These observations were motivated by the need to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies to enable improved deep space navigation after 2016 and to improve state-of-the-art astrometry. Source coordinates for 268 sources were estimated at 24 GHz and for 131 sources at 43 GHz. The median formal uncertainties of right ascension and declination at 24 GHz are 0.08 and 0.15 mas, respectively. Median formal uncertainties at 43 GHz are 0.20 and 0.35 mas, respectively. Weighted root-mean-square differences between the 24 and 43 GHz positions and astrometric positions based on simultaneous 2.3 and 8.4 GHz Very Long Baseline Interferometry observations, such as the ICRF, are less than about 0.3 mas in both coordinates. With observations over five years we have achieved a precision at 24 GHz approaching that of the ICRF but unaccounted systematic errors limit the overall accuracy of the catalogs.

  18. A 32-GHz phased array transmit feed for spacecraft telecommunications

    NASA Technical Reports Server (NTRS)

    Lee, K. A.; Rascoe, D. L.; Crist, R. A.; Huang, J.; Wamhof, P. D.; Lansing, F. S.

    1992-01-01

    A 21-element phased array transmit feed was demonstrated as part of an effort to develop and evaluate state-of-the-art transmitter and receiver components at 32 and 34 GHz for future deep-space missions. Antenna pattern measurements demonstrating electronic beam steering of the two-dimensional array are reported and compared with predictions based on measured performance of MMIC-based phase shifter and amplifier modules and Vivaldi slotline radiating elements.

  19. Next generation ECR ion sources: First results of the superconducting 28 GHz ECRIS VENUS

    NASA Astrophysics Data System (ADS)

    Leitner, D.; Lyneis, C. M.; Abbott, S. R.; Collins, D.; Dwinell, R. D.; Galloway, M. L.; Leitner, M.; Todd, D. S.

    2005-07-01

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (rare isotope accelerator) front end. The goal of the VENUS ECR ion source project as the RIA R&D injector is the production of 200 eμA of U30+, a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5 eμA of U48+, a low current, very high charge state beam. To achieve those ambitious goals, the VENUS ECR ion source has been designed for optimum operation at 28 GHz. The nominal design fields of the axial magnets are 4 T at injection and 3 T at extraction; the nominal radial design field strength at the plasma chamber wall is 2 T, making VENUS currently the world’s most powerful ECR plasma confinement structure. Recently, the six year project has made significant progress. In June 2002, the first plasma was ignited at 18 GHz. During 2003, the VENUS ECR ion source was commissioned at 18 GHz, while preparations for 28 GHz operation were being conducted. In May 2004 28 GHz microwave power has been coupled into the VENUS ECR ion source for the first time. Preliminary performance-tests with oxygen, xenon and bismuth at 18 GHz and 28 GHz have shown promising results. Intensities close to or exceeding the RIA requirements have been produced for those few test beams. The paper will briefly describe the design of the VENUS source and its beam analyzing system. Results at 18 GHz and 28 GHz including first emittance measurements will be described.

  20. 60 GHz low noise wideband receiver

    NASA Technical Reports Server (NTRS)

    Knust-Graichen, R. A.; Bui, L.

    1985-01-01

    The printed circuit and GaAs beam lead technology-based, low noise integrated receiver presented was developed for low cost space communications and operates in the 59-64 GHz range, using a phase-locked Gunn oscillator at 51.5 GHz. An IF output of 7.5-12.5 GHz is obtained. With the exception of the IF amplifier, and of the E-plane technology-based RF preselect filter, all circuits of the device employ suspended stripline construction.

  1. 183-GHz Radiometer Handbook - November 2006

    SciTech Connect

    MP Cadeddu

    2006-11-30

    The G-Band Vapor Radiometer (GVR) provides time-series measurements of brightness temperatures from four double sideband channels centered at ± 1, ± 3, ± 7, and ± 14 GHz around the 183.31-GHz water vapor line. Atmospheric emission in this spectral region is primarily due to water vapor, with some influence from liquid water. The 183.31 ± 14-GHz channel is particularly sensitive to the presence of liquid water. The sensitivity to water vapor of the 183.31-GHz line is approximately 30 times higher than at the frequencies of the two-channel microwave radiometer (MWR) for a precipitable water vapor (PWV) amount of less than 2.5 mm. Measurements from this nstrument are therefore especially useful during low-humidity conditions (PWV < 5 mm).

  2. Medium power amplifiers covering 90 - 130 GHz for telescope local oscillators

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Bryerton, Eric; Pukala, David; Peralta, Alejandro; Hu, Ming; Schmitz, Adele

    2005-01-01

    This paper describes a set of power amplifier (PA) modules containing InP High Electron Mobility Transistor (HEMT) Monolithic Millimeter-wave Integrated Circuit (MMIC) chips. The chips were designed and optimized for local oscillator sources in the 90-130 GHz band for the Atacama Large Millimeter Array telescope. The modules feature 20-45 mW of output power, to date the highest power from solid state HEMT MMIC modules above 110 GHz.

  3. Quantum state sharing against the controller's cheating

    NASA Astrophysics Data System (ADS)

    Shi, Run-hua; Zhong, Hong; Huang, Liu-sheng

    2013-08-01

    Most existing QSTS schemes are equivalent to the controlled teleportation, in which a designated agent (i.e., the recoverer) can recover the teleported state with the help of the controllers. However, the controller may attempt to cheat the recoverer during the phase of recovering the secret state. How can we detect this cheating? In this paper, we considered the problem of detecting the controller's cheating in Quantum State Sharing, and further proposed an effective Quantum State Sharing scheme against the controller's cheating. We cleverly use Quantum Secret Sharing, Multiple Quantum States Sharing and decoy-particle techniques. In our scheme, via a previously shared entanglement state Alice can teleport multiple arbitrary multi-qubit states to Bob with the help of Charlie. Furthermore, by the classical information shared previously, Alice and Bob can check whether there is any cheating of Charlie. In addition, our scheme only needs to perform Bell-state and single-particle measurements, and to apply C-NOT gate and other single-particle unitary operations. With the present techniques, it is feasible to implement these necessary measurements and operations.

  4. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    NASA Technical Reports Server (NTRS)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  5. Recent operating experience with Varian 70 GHz and 140 GHz gyrotrons

    SciTech Connect

    Felch, K.; Bier, R.; Fox, L.; Huey, H.; Ives, L.; Jory, H.; Lopez, N.; Shively, J.; Spang, S.

    1985-01-01

    The design features and initial test results of Varian 70 GHz and 140 GHz CW gyrotrons are presented. The first experimental 140 GHz tube has achieved an output power of 102 kW at 24% efficiency under pulsed conditions in the desired TE031 cavity mode. Further tests aimed at achieving the design goal of 100 kW CW are currently underway. The 70 GHz tube has achieved an output power of 200 kW under pulsed conditions and possesses a wide dynamic range for output power variations. 6 refs., 8 figs.

  6. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz

  7. MMIC DHBT Common-Base Amplifier for 172 GHz

    NASA Technical Reports Server (NTRS)

    Paidi, Vamsi; Griffith, Zack; Wei, Yun; Dahlstrom, Mttias; Urteaga, Miguel; Rodwell, Mark; Samoska, Lorene; Fung, King Man; Schlecht, Erich

    2006-01-01

    Figure 1 shows a single-stage monolithic microwave integrated circuit (MMIC) power amplifier in which the gain element is a double-heterojunction bipolar transistor (DHBT) connected in common-base configuration. This amplifier, which has been demonstrated to function well at a frequency of 172 GHz, is part of a continuing effort to develop compact, efficient amplifiers for scientific instrumentation, wide-band communication systems, and radar systems that will operate at frequencies up to and beyond 180 GHz. The transistor is fabricated from a layered structure formed by molecular beam epitaxy in the InP/InGaAs material system. A highly doped InGaAs base layer and a collector layer are fabricated from the layered structure in a triple mesa process. The transistor includes two separate emitter fingers, each having dimensions of 0.8 by 12 m. The common-base configuration was chosen for its high maximum stable gain in the frequency band of interest. The input-matching network is designed for high bandwidth. The output of the transistor is matched to a load line for maximum saturated output power under large-signal conditions, rather than being matched for maximum gain under small-signal conditions. In a test at a frequency of 172 GHz, the amplifier was found to generate an output power of 7.5 mW, with approximately 5 dB of large-signal gain (see Figure 2). Moreover, the amplifier exhibited a peak small-signal gain of 7 dB at a frequency of 176 GHz. This performance of this MMIC single-stage amplifier containing only a single transistor represents a significant advance in the state of the art, in that it rivals the 170-GHz performance of a prior MMIC three-stage, four-transistor amplifier. [The prior amplifier was reported in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 49.] This amplifier is the first heterojunction- bipolar-transistor (HBT) amplifier built for medium power operation in this

  8. First Results of the Superconducting ECR Ion Source Venus with 28 GHz

    NASA Astrophysics Data System (ADS)

    Leitner, D.; Lyneis, C. M.; Abbott, S. R.; Dwinell, R. D.; Collins, D.; Leitner, M.

    2005-03-01

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement configuration consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration. The nominal design fields of the axial magnets are 4T at injection and 3T at extraction; the nominal radial design field strength at the plasma chamber wall is 2T, making VENUS the world most powerful ECR plasma confinement structure. From the beginning, VENUS has been designed for optimum operation at 28 GHz with high power (10 kW). In 2003 the VENUS ECR ion source was commissioned at 18 GHz, while preparations for 28 GHz operation were being conducted. During this commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. At the initial commissioning tests at 18 GHz, 1100 eμA of O6+, 160 eμA of Xe20+, 160 eμA of Bi25+ and 100 eμA of Bi30+ and 11 eμA of Bi41+ were produced. In May 2004 the 28 GHz microwave power has been coupled into the VENUS ECR ion source. At initial operation more than 320 eμA of Xe20+ (twice the amount extracted at 18 GHz), 240 eμA of Bi24+ and Bi25+, and 245 eμA of Bi29+ were extracted. The paper briefly describes the design of the VENUS source, the 28 GHz microwave system and its beam analyzing system. First results at 28 GHz including emittance measurements are presented.

  9. 47 CFR 101.525 - 24 GHz system operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false 24 GHz system operations. 101.525 Section 101... FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.525 24 GHz system operations. (a) A licensee using the 24 GHz band may construct and operate any number of fixed...

  10. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  11. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  12. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  13. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  14. 47 CFR 15.251 - Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation within the bands 2.9-3.26 GHz, 3.267-3.332 GHz, 3.339-3.3458 GHz, and 3.358-3.6 GHz. 15.251 Section 15.251 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Intentional Radiators Radiated Emission...

  15. A 12 GHz RF Power Source for the CLIC Study

    SciTech Connect

    Schirm, Karl; Curt, Stephane; Dobert, Steffen; McMonagle, Gerard; Rossat, Ghislain; Syratchev, Igor; Timeo, Luca; Haase, Andrew Jensen, Aaron; Jongewaard, Erik; Nantista, Christopher; Sprehn, Daryl; Vlieks, Arnold; Hamdi, Abdallah; Peauger, Franck; Kuzikov, Sergey; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  16. Low-Noise Amplifier for 100 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Pukala, David; Fung, King Man; Gaier, Todd; Mei, Xiaobing; Lai, Richard; Deal, William

    2009-01-01

    A three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifier designed to exhibit low noise in operation at frequencies from about 100 to somewhat above 180 GHz has been built and tested. This is a prototype of broadband amplifiers that have potential utility in diverse applications, including measurement of atmospheric temperature and humidity and millimeter-wave imaging for inspecting contents of opaque containers. Figure 1 depicts the amplifier as it appears before packaging. Figure 2 presents data from measurements of the performance of the amplifier as packaged in a WR-05 waveguide and tested in the frequency range from about 150 to about 190 GHz. The amplifier exhibited substantial gain throughout this frequency range. Especially notable is the fact that at 165 GHz, the noise figure was found to be 3.7 dB, and the noise temperature was found to be 370 K: This is less than half the noise temperature of the prior state of the art.

  17. First results of the 2.45 GHz Oshima electron cyclotron resonance ion source.

    PubMed

    Asaji, T; Nakamura, T; Furuse, M; Hitobo, T; Uchida, T; Muramatsu, M; Kato, Y

    2016-02-01

    A new electron cyclotron resonance ion source has been constructed at Oshima College with a 2.45 GHz magnetron microwave source and permanent magnets employed as the main components. In addition, a solid-state power amplifier with a frequency range of 2.5-6.0 GHz was installed to study two-frequency plasma heating. Three solenoid coils were set up for adjusting the axial magnetic fields. Argon plasma generation and ion beam production have been conducted during the first year of operation. Ion current densities in the ECR plasma were measured using a biased disk. For 2.45 and 4.65 GHz two-frequency plasma heating, the ion density was approximately 1.5 times higher than that of 2.45 GHz single-frequency heating. PMID:26931948

  18. First results of the 2.45 GHz Oshima electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Asaji, T.; Nakamura, T.; Furuse, M.; Hitobo, T.; Uchida, T.; Muramatsu, M.; Kato, Y.

    2016-02-01

    A new electron cyclotron resonance ion source has been constructed at Oshima College with a 2.45 GHz magnetron microwave source and permanent magnets employed as the main components. In addition, a solid-state power amplifier with a frequency range of 2.5-6.0 GHz was installed to study two-frequency plasma heating. Three solenoid coils were set up for adjusting the axial magnetic fields. Argon plasma generation and ion beam production have been conducted during the first year of operation. Ion current densities in the ECR plasma were measured using a biased disk. For 2.45 and 4.65 GHz two-frequency plasma heating, the ion density was approximately 1.5 times higher than that of 2.45 GHz single-frequency heating.

  19. High power pulsed magnicon at 34-GHz

    SciTech Connect

    Nezhevenko, O.A.; Yakovlev, V.P.; Ganguly, A.K.; Hirshfield, J.L.

    1999-05-01

    A high efficiency, high power magnicon amplifier at 34.272 GHz has been designed as a radiation source to drive multi-TeV electron-positron linear colliders. Simulations show peak output power of 45 MW in a 1.5 microsecond wide pulse with an efficiency of 45{percent} and gain of 55 dB. The repetition rate is 10 Hz. The amplifier is a frequency tripler, or third harmonic amplifier, in that the output frequency of 34.272 GHz is three times the input drive frequency of 11.424 GHz. Thus the rotating TM{sub 110} modes in the drive cavity, 3 gain cavities and double decoupled penultimate cavities are resonant near 11.424 GHz; and the rotating TM{sub 310} mode in the output cavity is resonant at 34.272 GHz. A 500 kV, 200 A high area compression electron gun will provide a low emittance electron beam with a diameter of about 0.8 mm. A superconducting solenoid magnet will provide a magnetic field of 13 kG in the deflection system and 22 kG in the output cavity. A collector for the spent beam has also been designed. Detailed simulation results for the operation of the entire magnicon amplifier (gun, magnetic system, rf system and collector) will be given. {copyright} {ital 1999 American Institute of Physics.}

  20. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .../2.4 GHz Mobile-Satellite Service or 2 GHz Mobile-Satellite Service may not be operated on civil... rules and regulations in this Part and the applicable engineering standards. Prior to engaging in...

  1. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .../2.4 GHz Mobile-Satellite Service or 2 GHz Mobile-Satellite Service may not be operated on civil... rules and regulations in this Part and the applicable engineering standards. Prior to engaging in...

  2. Two compact preamps cover 38-GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Osbrink, N. K.; Fake, S. R.; Rosenberg, J. C.

    1985-09-01

    The design and performance characteristics of two compact preamplifiers that provide complete coverage of the 2-18 and 18-40 GHz frequency bands are examined. The 2-18-GHz prototype amplifier consists of four stages of thin-film hybrid microwave integrated circuit (MIC) amplification modules each of which incorporates a single GaAs distributed microwave integrated circuit (MMIC). The amplifier weights about 2 ounces and measures 1.75 x 1.15 x 0.67 inches. The 18-40-GHz amplifier consists of five thin-film MIC balanced gain stages and a MIC voltage regulator module with a throughline. The amplifier displays worst-case noise figures of 11.6 dB at the low frequency end of the band and less than 8 dB over much of the band.

  3. A 30 GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Mondal, J.; Contolatis, T.; Geddes, J.; Bauhahn, P.; Sokolov, V.

    1990-01-01

    The technical achievements and deliveries made during the duration of the program to develop a 30 GHz monolithic receive module for communication feed array applications and to deliver submodules and 30 GHz monolithic receive modules for experimental evaluation are discussed. Key requirements include an overall receive module noise figure of 5 dB, a 30 dB RF-to-RF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. In addition, the monolithic receive module design addresses a cost goal of less than one thousand dollars (1980 dollars) per module in unit buys of 5,000 or more, and a mechanical configuration that is applicable to a spaceborne phase array system. An additional task for the development and delivery of 32 GHz phase shifter integrated circuit (IC) for deep space communication is also described.

  4. 17 GHz High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  5. 95 GHz gyrotron with ferroelectric cathode.

    PubMed

    Einat, M; Pilossof, M; Ben-Moshe, R; Hirshbein, H; Borodin, D

    2012-11-01

    Ferroelectric cathodes were reported as a feasible electron source for microwave tubes. However, due to the surface plasma emission characterizing this cathode, operation of millimeter wave tubes based on it remains questionable. Nevertheless, the interest in compact high power sources of millimeter waves and specifically 95 GHz is continually growing. In this experiment, a ferroelectric cathode is used as an electron source for a gyrotron with the output frequency extended up to 95 GHz. Power above a 5 kW peak and ~0.5 μs pulses are reported; a duty cycle of 10% is estimated to be achievable. PMID:23215293

  6. 47 CFR 25.136 - Licensing provisions for user transceivers in the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Footnote 5.353A in 47 CFR 2.106 and the priority and real-time preemption requirements imposed by Footnote... the 1.6/2.4 GHz, 1.5/1.6 GHz, and 2 GHz Mobile-Satellite Services. 25.136 Section 25.136 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE...

  7. Controlled Quantum Teleportation via the GHZ Entangled Ions in the Ion-Trapped System

    NASA Astrophysics Data System (ADS)

    Xu, Xiong; Wang, Xiaoxue

    2016-08-01

    In this paper, we present a controlled quantum teleportation protocol. In the protocol, quantum information of an unknown state is faithfully transmitted from a sender (Alice) to a remote receiver (Bob) via the GHZ entangled ions under the control of the supervisor Charlie. The apparent Bell-state measurements that Alice should perform in order to teleport her ions are not needed.

  8. Controlled Quantum Teleportation via the GHZ Entangled Ions in the Ion-Trapped System

    NASA Astrophysics Data System (ADS)

    Xu, Xiong; Wang, Xiaoxue

    2016-03-01

    In this paper, we present a controlled quantum teleportation protocol. In the protocol, quantum information of an unknown state is faithfully transmitted from a sender (Alice) to a remote receiver (Bob) via the GHZ entangled ions under the control of the supervisor Charlie. The apparent Bell-state measurements that Alice should perform in order to teleport her ions are not needed.

  9. Miniature MMIC Low Mass/Power Radiometer Modules for the 180 GHz GeoSTAR Array

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Tanner, Alan; Pukala, David; Lambrigtsen, Bjorn; Lim, Boon; Mei, Xiaobing; Lai, Richard

    2010-01-01

    We have developed and demonstrated miniature 180 GHz Monolithic Microwave Integrated Circuit (MMIC) radiometer modules that have low noise temperature, low mass and low power consumption. These modules will enable the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) of the Precipitation and All-weather Temperature and Humidity (PATH) Mission for atmospheric temperature and humidity profiling. The GeoSTAR instrument has an array of hundreds of receivers. Technology that was developed included Indium Phosphide (InP) MMIC Low Noise Amplifiers (LNAs) and second harmonic MMIC mixers and I-Q mixers, surface mount Multi-Chip Module (MCM) packages at 180 GHz, and interferometric array at 180 GHz. A complete MMIC chip set for the 180 GHz receiver modules (LNAs and I-Q Second harmonic mixer) was developed. The MMIC LNAs had more than 50% lower noise temperature (NT=300K) than previous state-of-art and MMIC I-Q mixers demonstrated low LO power (3 dBm). Two lots of MMIC wafers were processed with very high DC transconductance of up to 2800 mS/mm for the 35 nm gate length devices. Based on these MMICs a 180 GHz Multichip Module was developed that had a factor of 100 lower mass/volume (16x18x4.5 mm3, 3g) than previous generation 180 GHz receivers.

  10. Propagation handbook, frequencies above 10 GHz

    NASA Technical Reports Server (NTRS)

    Ippolito, Louis J.

    1988-01-01

    The progress and accomplishments in the developmet of the Fourth Edition of the NASA Propagation Effects Handbook for Satellite Systems Design, for frequencies 10 to 100 GHz, NASA Reference Publication 1082(04), dated May 1988, prepared by Westighouse Electric Corporation for the Jet Propulsion Laboratory are discussed.

  11. Gyroharmonic Conversion at 11.4 GHz

    NASA Astrophysics Data System (ADS)

    Lapointe, M. A.; Wang, Changbiao; Yoder, R. B.; Ganguly, A. K.; Wang, Mei; Hirshfield, J. L.

    1997-11-01

    First results on the generation of 11.4 GHz microwaves by gyroharmonic conversion are presented. A helical rotating beam is prepared in a 2.857 GHz cyclotron autoresonant accelerator (CARA(M.A. LaPointe, R.B. Yoder, Changbiao Wang, A.K. Ganguly and J.L. Hirshfield, Phys. Rev. Lett. 76), 2718 (1996); J.L. Hirshfield, M.A. LaPointe, A.K. Ganguly, R.B. Yoder and Changbiao Wang, Phys. Plasmas 3, 2163 (1996).). The resulting 27A, 190 kV beam is injected into a cavity whose TE_411 mode is resonant at the 4th harmonic of the CARA drive frequency. With an appropriate magnetic field profile, power at 11.428 GHz has been observed. The spectrum at the 4th harmonic has a FWHM of 400 kHz, the Fourier limit for a 3 μsec pulse. Calorimeter measurements give an 11.4 GHz power level of about 300 kW, more than 20 dB above the nearest competing mode (TE_311). These results are compared with theory, especially regarding spreads in beam guiding center and axial velocity.

  12. On board low noise 30 GHz receiver

    NASA Astrophysics Data System (ADS)

    Dambrosio, A.; Castelli, G.; Mazzini, C.

    An advanced receiver for onboard application in a 30/20 GHz SS-TDMA satellite communication system is described. The basic requirements of the receiver are a total noise temperature of 1000 K and a bandwidth of 250 MHz. Attention is given to system requirements, the receiver configuration, the parametric preamplifier, and the down converter and IF preamplifier.

  13. Commissioning of the superconducting ECR ion source VENUS at 18 GHz

    SciTech Connect

    Leitner, Daniela; Abbott, Steven R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde E.; Lyneis, Claude M.

    2004-06-01

    During the last year, the VENUS ECR ion source was commissioned at 18 GHz and preparations for 28 GHz operation are now underway. During the commissioning phase with 18 GHz, tests with various gases and metals have been performed with up to 2000 W RF power. The ion source performance is very promising [1,2]. VENUS (Versatile ECR ion source for Nuclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The goal of the VENUS ECR ion source project as the RIA R&D injector is the production of 240e{micro}A of U{sup 30+}, a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5e{micro}A of U{sup 48+}, a low current, very high charge state beam. To meet these ambitious goals, VENUS has been designed for optimum operation at 28 GHz. This frequency choice has several design consequences. To achieve the required magnetic confinement, superconducting magnets have to be used. The size of the superconducting magnet structure implies a relatively large plasma volume. Consequently, high power microwave coupling becomes necessary to achieve sufficient plasma heating power densities. The 28 GHz power supply has been delivered in April 2004.

  14. A 10 GHz bandwidth, single transient, digitized oscilloscope with 20 GHz capability

    SciTech Connect

    Hudson, C.L.; Kocimski, S.M.; Spector, J.; Thomas, J.B.; Woodstra, R.R.

    1993-12-31

    EG&G/EM has developed an oscilloscope with a {minus}3 dB bandwidth greater than 10 GHz. Its rolloff characteristics are such that single-transient data greater than 20 GHz may be captured. A demountable CCD camera records the oscilloscope trace and is provided with PC-compatible capture and data processing software. The capabilities of the oscilloscope, camera, and its processing software are described and examples of the system`s performance is shown.

  15. 164-GHz MMIC HEMT Frequency Doubler

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Radisic, Vesna; Micovic, Miro; Hu, Ming; Janke, Paul; Ngo, Catherine; Nguyen, Loi; Morgan, Matthew

    2003-01-01

    A monolithic microwave integrated circuit (MMIC) that includes a high-electron-mobility transistor (HEMT) has been developed as a prototype of improved frequency doublers for generating signals at frequencies greater than 100 GHz. Signal sources that operate in this frequency range are needed for a variety of applications, notably including general radiometry and, more specifically, radiometric remote sensing of the atmosphere. Heretofore, it has been common practice to use passive (diode-based) frequency multipliers to obtain frequencies greater than 100 GHz. Unfortunately, diode-based frequency multipliers are plagued by high DC power consumption and low conversion efficiency. Moreover, multiplier diodes are not easily integrated with such other multiplier-circuit components as amplifiers and oscillators. The goals of developing the present MMIC HEMT frequency doubler were (1) to utilize the HEMT as an amplifier to increase conversion efficiency (more precisely, to reduce conversion loss), thereby increasing the output power for a given DC power consumption or, equivalently, reducing the DC power consumption for a given output power; and (2) to provide for the integration of amplifier and oscillator components on the same chip. The MMIC frequency doubler (see Figure 1) contains an AlInAs/GaInAs/InP HEMT biased at pinch-off to make it function as a class-B amplifier (meaning that it conducts in half-cycle pulses). Grounded coplanar waveguides (GCPWs) are used as impedance-matching transmission lines. Air bridges are placed at discontinuities to suppress undesired slot electromagnetic modes. Another combination of GCPWs also serves both as a low-pass filter to suppress undesired oscillations at frequencies below 60 GHz and as a DC blocker. Large decoupling capacitors and epitaxial resistors are added in the drain and gate lines to suppress bias oscillations. At the output terminal, the fundamental frequency is suppressed by a quarter-wave open stub, which presents

  16. Traveling-Wave Maser for 32 GHz

    NASA Technical Reports Server (NTRS)

    Shell, James; Clauss, Robert

    2009-01-01

    The figure depicts a traveling-wave ruby maser that has been designed (though not yet implemented in hardware) to serve as a low-noise amplifier for reception of weak radio signals in the frequency band of 31.8 to 32.3 GHz. The design offers significant improvements over previous designs of 32-GHz traveling-wave masers. In addition, relative to prior designs of 32-GHz amplifiers based on high-electron-mobility transistors, this design affords higher immunity to radio-frequency interference and lower equivalent input noise temperature. In addition to the basic frequency-band and low-noise requirements, the initial design problem included a requirement for capability of operation in a closed-cycle helium refrigerator at a temperature .4 K and a requirement that the design be mechanically simplified, relative to prior designs, in order to minimize the cost of fabrication and assembly. Previous attempts to build 32- GHz traveling-wave masers involved the use of metallic slow-wave structures comprising coupled transverse electromagnetic (TEM)-mode resonators that were subject to very tight tolerances and, hence, were expensive to fabricate and assemble. Impedance matching for coupling signals into and out of these earlier masers was very difficult. A key feature of the design is a slow-wave structure, the metallic portions of which would be mechanically relatively simple in that, unlike in prior slow-wave structures, there would be no internal metal steps, irises, or posts. The metallic portions of the slow-wave structure would consist only of two rectangular metal waveguide arms. The arms would contain sections filled with the active material (ruby) alternating with evanescent-wave sections. This structure would be transparent in both the signal-frequency band (the aforementioned range of 31.8 to 32.3 GHz) and the pump-frequency band (65.75 to 66.75 GHz), and would impose large slowing factors in both frequency bands. Resonant ferrite isolators would be placed in the

  17. 47 CFR 101.525 - 24 GHz system operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.525 24 GHz system... 47 Telecommunication 5 2010-10-01 2010-10-01 false 24 GHz system operations. 101.525 Section 101... construction under § 17.4 of this chapter. (b) Whenever a licensee constructs or makes system changes...

  18. 25 GHz methanol masers in regions of massive star formation

    NASA Astrophysics Data System (ADS)

    Britton, Tui R.; Voronkov, Maxim A.

    2012-07-01

    The bright 25 GHz series of methanol masers is formed in highly energetic regions of massive star formation and provides a natural signpost of shocked gas surrounding newly forming stars. A systematic survey for the 25 GHz masers has only recently been carried out. We present the preliminary results from the interferometric follow up of 51 masers at 25 GHz in the southern sky.

  19. 802GHz integrated horn antennas imaging array

    NASA Astrophysics Data System (ADS)

    Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.; Dave, Hemant; Chin, Gordon

    1991-05-01

    Pattern measurements at 802GHz of a single element in 256-element integrated horn imaging array are presented. The integrated-horn antenna consists of a dipole-antenna suspended on a 1-micron dielectric membrane inside a pyramidal cavity etched in silicon. The theoretical far-field patterns, calculated using reciprocity and Floquet-modes representation of the free-space field, agree well with the measured far-field patterns at 802GHz. The associated directivity for a 1.40 lambda horn aperture, calculated from the measured E and H-plane patterns is 12.3dB + or - 0.2dB. This work demonstrates that high-efficiency integrated-horn antennas are easily scalable to terahertz frequencies and could be used for radio-astronomical and plasma-diagnostic applications.

  20. Tree attenuation at 20 GHz: Foliage effects

    NASA Astrophysics Data System (ADS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-08-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  1. Tree attenuation at 20 GHz: Foliage effects

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-01-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  2. SEVENTH HARMONIC 20 GHz CO-GENERATOR

    SciTech Connect

    Hirshfield, Jay L

    2014-04-08

    To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.

  3. VLBI survey at 2. 29 GHz

    SciTech Connect

    Preston, R.A.; Morabito, D.D.; Williams, J.G.; Faulkner, J.; Jauncey, D.L.

    1985-09-01

    VLBI observations at 2.29 GHz with fringe spacings of about 3 milliarcsec have been performed on 1398 radio sources spread over the entire sky. 917 sources were detected, including 93 percent of the identified BL Lacertae objects, 86 percent of the quasars, and 36 percent of the galaxies. The resulting catalog of compact radio sources is useful for various astrophysical studies and in the formation of VLBI celestial reference frames. 252 references.

  4. Novel 140 GHz gyro-TWT amplifier

    SciTech Connect

    Hu, W.; Kreischer, K.E.; Shapiro, M.; Temkin, R.J.

    1996-12-31

    The authors have designed and are currently building a novel gyro-TWT amplifier at powers up to 100 kW at a frequency of 140 GHz. The electron beam will be provided by an existing MIG electron gun which has been previously used in gyrotron oscillator research at the 100 kW power level at 140 GHz. The gun operates at 65 kV and up to 8A with {nu}{sub {perpendicular}}/{nu}{sub {parallel}} equal to 1.5. The novel wave circuit consists of two facing mirrors with confocal profiles in the transverse direction and flat profiles in the longitudinal direction. The mode is Gaussian-like in the transverse direction. This cavity design effectively reduces the mode competition problem in conventional amplifiers from two dimensions to one dimension. Another advantage of this circuit is the relatively large circuit size, which improves power capacity. Preliminary calculations indicate that the linear gain is about 2.7 dB/cm with an efficiency exceeding 20%. The driver of the Gyro-TWT amplifier is a 95 GHz Varian EIO generator with 100 W peak output power. The amplifier also employs a confocal mode converter which launches a gaussian beam along the axis. The slot size of the cavity is optimized to have minimal operating mode loss while maximizing losses of competing modes. A preliminary experiment using an oscillator configuration has also been designed. The device could easily be scaled to 95 GHz to meet D.O.D. needs at that frequency.

  5. 35-GHz Measurements of Carbon Dioxide Crystals

    NASA Technical Reports Server (NTRS)

    Foster, J.; Chang, A.; Hall, D.; Tait, A.; Klein, A.

    1998-01-01

    In order to maximize our knowledge of the martian polar caps, it is important to compare and contrast the behavior of both frozen H2O and CO2 in different parts of the electromagnetic spectrum. Relatively little attention has been given, thus far, to observing the thermal microwave part of the spectrum. In this experiment, passive microwave radiation emanating from within a 33-cm snowpack was measured with a 35-GHz hand-held radiometer, and in addition to the natural snow measurements, the radiometer was used to measure the microwave emission and scattering from layers of manufactured CO2 (dry ice) crystals. A 1 square meter plate of aluminum sheet metal was positioned beneath the natural snow so that microwave emissions from the underlying soil layers would be minimized. 35 GHz measurements of this plate were made through the 33-cm snowpack. Layers of the snow were removed and measurements were repeated for the diminishing snowpack until the bare plate was in view. Then, 9 cm of CO2 crystals were deposited onto the sheet-metal plate, and as was the case for the natural snow, hand-held measurements were made each time the thickness of the deposit was altered. These CO2 crystals were -0.65 cm in diameter and were cylindrical. The temperature of the dry ice was -76 C, whereas the temperature at the top of the snowpack was -1.9 C (the air temperature was -3 C). Two additional 9-cm increments were placed on top of the existing CO2 crystals, resulting in a total thickness of 27 cm of dry ice. After this series of measurements was made, the CO2 crystals were then placed on top of the snowpack, and as before, measurements were made using the 35-GHz radiometer. As a final part of this experiment, soil particles were spread on top of the dry ice, and once again, microwave measurements were made with the 35-GHz radiometer.

  6. Australia 31-GHz brightness temperature exceedance statistics

    NASA Technical Reports Server (NTRS)

    Gary, B. L.

    1988-01-01

    Water vapor radiometer measurements were made at DSS 43 during an 18 month period. Brightness temperatures at 31 GHz were subjected to a statistical analysis which included correction for the effects of occasional water on the radiometer radome. An exceedance plot was constructed, and the 1 percent exceedance statistics occurs at 120 K. The 5 percent exceedance statistics occurs at 70 K, compared with 75 K in Spain. These values are valid for all of the three month groupings that were studied.

  7. The 60 GHz IMPATT diode development

    NASA Technical Reports Server (NTRS)

    Dat, Rovindra; Ayyagari, Murthy; Hoag, David; Sloat, David; Anand, Yogi; Whitely, Stan

    1986-01-01

    The objective is to develop 60 GHz IMPATT diodes suitable for communications applications. The performance goals of the 60 GHz IMPATT is 1W CW output power with a conversion efficiency of 15 percent and 10-year lifetime. The final design of the 60 GHz IMPATT structure evolved from computer simulations performed at the University of Michigan. The initial doping profile, involving a hybrid double-drift (HDD) design, was derived from a drift-diffusion model that used the static velocity-field characteristics for GaAs. Unfortunately, the model did not consider the effects of velocity undershoot and delay of the avalanche process due to energy relaxation. Consequently, the initial devices were oscillating at a much lower frequency than anticipated. With a revised simulation program that included the two effects given above, a second HDD profile was generated and was used as a basis for fabrication efforts. In the area of device fabrication, significant progress was made in epitaxial growth and characterization, wafer processing, and die assembly. The organo-metallic chemical vapor deposition (OMCVD) was used. Starting with a baseline X-Band IMPATT technology, appropriate processing steps were modified to satisfy the device requirements at V-Band. In terms of efficiency and reliability, the device requirements dictate a reduction in its series resistance and thermal resistance values. Qualitatively, researchers were able to reduce the diodes' series resistance by reducing the thickness of the N+ GaAs substrate used in its fabrication.

  8. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Sokolov, V.; Geddes, J.; Bauhahn, P.

    1983-01-01

    Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.

  9. Comprehensive Analysis of Prebiotic Propenal up to 660 GHz

    NASA Astrophysics Data System (ADS)

    Daly, A. M.; Bermúdez, C.; Kolesniková, L.; Alonso, J. L.

    2015-06-01

    Since interstellar detection of propenal is only based on two rotational transitions in the centimeter wave region, its high resolution rotational spectrum has been measured up to 660 GHz and fully characterized by assignment of more than 12,000 transitions to provide direct laboratory data to the astronomical community. Spectral assignments and analysis include transitions from the ground state of the trans and cis isomers, three trans-13C isotopologues, and ten excited vibrational states of the trans form. Combining new millimeter and submillimeter data with those from the far-infrared region has yielded the most precise set of spectroscopic constants of trans-propenal obtained to date. Newly determined rotational constants, centrifugal distortion constants, vibrational energies, and Coriolis and Fermi interaction constants are given with high accuracy and were used to predict transition frequencies and intensities over a wide frequency range. Results of this work should facilitate astronomers further observation of propenal in the interstellar medium.

  10. The 20 GHz GaAs monolithic power amplifier module development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of a 20 GHz GaAs FET monlithic power amplifier module for advanced communication applications is described. Four-way power combing of four 0.6 W amplifier modules is used as the baseline approach. For this purpose, a monolithic four-way traveling-wave power divider/combiner was developed. Over a 20 GHz bandwidth (10 to 30 GHz), an insertion loss of no more than 1.2 dB was measured for a pair of back-to-back connected divider/combiners. Isolation between output ports is better than 20 dB, and VSWRs are better than 21:1. A distributed amplifier with six 300 micron gate width FETs and gate and drain transmission line tapers has been designed, fabricated, and evaluated for use as an 0.6 W module. This amplifier has achieved state-of-the-art results of 0.5 W output power with at least 4 dB gain across the entire 2 to 21 GHz frequency range. An output power of 2 W was achieved at a measurement frequency of 18 GHz when four distributed amplifiers were power-combined using a pair of traveling-wave divider/combiners. Another approach is the direct common-source cascading of three power FET stages. An output power of up to 2W with 12 dB gain and 20% power-added efficiency has been achieved with this approach (at 17 GHz). The linear gain was 14 dB at 1 W output. The first two stages of the three-stage amplifier have achieved an output power of 1.6 W with 9 dB gain and 26% power-added efficiency at 16 GHz.

  11. The 30/20 GHz fixed communications systems service demand assessment. Volume 3: Annex

    NASA Technical Reports Server (NTRS)

    Gamble, R. B.; Seltzer, H. R.; Speter, K. M.; Westheimer, M.

    1979-01-01

    A review of studies forecasting the communication market in the United States is given. The applicability of these forecasts to assessment of demand for the 30/20 GHz fixed communications system is analyzed. Costs for the 30/20 satellite trunking systems are presented and compared with the cost of terrestrial communications.

  12. MMIC Amplifier Produces Gain of 10 dB at 235 GHz

    NASA Technical Reports Server (NTRS)

    Dawson, Douglas; Fung, King Man; Lee, Karen; Samoska, Lorene; Wells, Mary; Gaier, Todd; Kangaslahti, Pekka; Grundbacher, Ronald; Lai, Richard; Raja, Rohit; Liu, Po-Hsin

    2007-01-01

    The first solid-state amplifier capable of producing gain at a frequency >215 GHz has been demonstrated. This amplifier was fabricated as a monolithic microwave integrated-circuit (MMIC) chip containing InP high-electron-mobility transistors (HEMTs) of 0.07 micron gate length on a 50- m-thick InP substrate.

  13. 4-GHz high-efficiency broadband FET power amplifiers

    NASA Astrophysics Data System (ADS)

    Chou, S.; Chang, C.

    1982-11-01

    The development and performance of a 4-GHz high-efficiency broadband FET power amplifier module for use in communications satellite transponders is discussed. The design, which is based on the parameters of a commercially available 7.2-mm multicell FET device, was optimized by the use of a CAD program, with broader bandwidth achieved by the addition of two open stubs to the input matching circuit. Six single-ended amplifier modules have been fabricated, tuned and tested, two being high-gain, 17.5% bandwidth designs and four being lower-gain, 25% bandwidth designs. The higher-gain modules, with a 0.5-dB bandwidth of 700 MHz (3.6 to 4.3 GHz) show a 6-dB gain and 3.23-W output power at the maximum efficiency of 48.6%, while broadband modules (0.5-dB bandwidth 900 MHz) deliver 5-W RF power at the maximum efficiency of 36%. The high-performance amplifiers may thus be used in satellite solid-state power amplifiers as replacements for traveling wave tubes.

  14. Twenty and thirty GHz millimeter wave experiments with the ATS-6 satellite

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J. (Compiler)

    1975-01-01

    The ATS-6 millimeter wave experiment, provided the first direct measurements of 20 and 30 GHz earth-space links from an orbiting satellite. Studies at eleven locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques. In addition to direct measurements on the 20 and 30 GHz links, methods of attenuation prediction with radars, rain gages, and radiometers were developed and compared with the directly measured attenuation. Initial data results of the ATS-6 millimeter wave experiment from the major participating organizations are presented.

  15. Amplitude scintillation at 2 and 30 GHz on earth space paths

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.; Theobold, D. M.; Devasirvatham, D. M. J.

    1977-01-01

    Extensive amplitude scintillation measurements were made simultaneously at 2.075 and 30 GHz on earth-space propagation paths. These measurements were performed as the Applications Technology Satellite (ATS-6) was moved slowly from a synchronous position over India to a new synchronous position over the United States. The variance, path loss, covariance, and spectra are discussed as functions of the path elevation angle. These results are also compared with earlier simultaneous scintillation measurements at 20 and 30 GHz during the movement of ATS-6 to its position over India.

  16. Amplitude scintillation at 2 and 30 GHz on earth space paths

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.; Theobold, D. M.; Devasirvatham, D. M. J.

    1977-01-01

    Extensive amplitude scintillation measurements have been made simultaneously at 2.075 and 30 GHz on earth-space propagation paths. These measurements were performed as the Applications Technology Satellite (ATS-6) was moved slowly from a synchronous position over India to a new synchronous position over the United States. The variance, path loss, covariance, and spectra are discussed as functions of the path elevation angle. These results are also compared with earlier simultaneous scintillation measurements at 20 and 30 GHz during the movement of ATS-6 to its position over India.

  17. High precision 6.8GHz phase locking of coherent laser beams for optical lattice experiment

    NASA Astrophysics Data System (ADS)

    Ding, Xun; Sang, Linlin; Zhang, Chen; Jin, Ge; Jiang, Xiao

    2013-12-01

    With the optical phase lock loop (OPLL) we made, we can achieve phase locking at frequency differences ranging from 0.5GHz to 7.5 GHz. This OPLL is fully applicable in atomic physics experiments, mostly in coherent lasers frequency locking. Two kinds of modulation modes were brought to ensure the frequency range and precision: the fast feedback current as the injection current and the slow feedback current to adjust the piezo-electric transducer. This device has been put into an optical lattice platform to lock a laser used for cooling and trapping atoms. The beat signal has a -3dB band width of 1Hz at 6.834GHz, corresponding to the hyperfine splitting of the ground state 87Rb atom.

  18. On the origin of 140 GHz emission from the 4 July 2012 solar flare

    NASA Astrophysics Data System (ADS)

    Tsap, Yuriy T.; Smirnova, Victoria V.; Morgachev, Alexander S.; Motorina, Galina G.; Kontar, Eduard P.; Nagnibeda, Valery G.; Strekalova, Polina V.

    2016-04-01

    The sub-THz event observed on the 4 July 2012 with the Bauman Moscow State Technical University Radio Telescope RT-7.5 at 93 and 140 GHz as well as Kislovodsk and Metsähovi radio telescopes, Radio Solar Telescope Network (RSTN), GOES, RHESSI, and SDO orbital stations is analyzed. The spectral flux between 93 and 140 GHz has been observed increasing with frequency. On the basis of the SDO/AIA data the differential emission measure has been calculated. It is shown that the thermal coronal plasma with the temperature above 0.5 MK cannot be responsible for the observed sub-THz flare emission. The non-thermal gyrosynchrotron mechanism can be responsible for the microwave emission near 10 GHz but the observed millimeter spectral characteristics are likely to be produced by the thermal bremsstrahlung emission from plasma with a temperature of about 0.1 MK.

  19. Spacecraft mass trade-offs versus radio-frequency power and antenna size at 8 GHz and 32 GHz

    NASA Technical Reports Server (NTRS)

    Gilchriest, C. E.

    1987-01-01

    The purpose of this analysis is to help determine the relative merits of 32 GHz over 8 GHz for future deep space communications. This analysis is only a piece of the overall analysis and only considers the downlink communication mass, power, and size comparisons for 8 and 32 GHz. Both parabolic antennas and flat-plate arrays are considered. The Mars Sample Return mission is considered in some detail as an example of the tradeoffs involved; for this mission the mass, power, and size show a definite advantage of roughly 2:1 in using the 32 GHz over 8 GHz.

  20. A 75-116-Ghz LNA with 23-K Noise Temperature at 108 Ghz

    NASA Technical Reports Server (NTRS)

    Varonen, Mikko; Reeves, Rodrigo; Kangaslahti, Pekka; Samoska, Lorene; Cleary, Kieran; Gawande, Rohit; Fung, Andy; Gaier, Todd; Weinreb, Sander; Readhead, Anthony C. S.; Sarkozy, Stephen; Lai, Richard

    2013-01-01

    In this paper we present the design and measurement results, both on-wafer and in package, of an ultra-low-noise and wideband monolithic microwave integrated circuit (MMIC) amplifier in the frequency range of 75 to 116 GHz. The three-stage amplifier packaged in a WR10 waveguide housing and fabricated using a 35-nm InP HEMT technology achieves a record noise temperature of 23 K at 108 GHz when cryogenically cooled to 27 K. The measured gain is 22 to 27 dB for frequency range of 75 to 116 GHz. Furthermore, the amplifier utilizes four finger devices with total gate width of 60 um resulting for improved linearity.

  1. The 30-GHz monolithic receive module

    NASA Technical Reports Server (NTRS)

    Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.

    1988-01-01

    The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.

  2. An LTCC 94 GHz Antenna Array

    SciTech Connect

    Aguirre, J; Pao, H; Lin, H; Garland, P; O'Neill, D; Horton, K

    2007-12-21

    An antenna array is designed in low-temperature cofired ceramic (LTCC) Ferro A6M{trademark} for a mm-wave application. The antenna is designed to operate at 94 GHz with a few percent bandwidth. A key manufacturing technology is the use of 3 mil diameter vias on a 6 mil pitch to construct the laminated waveguides that form the beamforming network and radiating elements. Measurements for loss in the laminated waveguide are presented. The slot-fed cavity-radiating element is designed to account for extremely tight mutual coupling between elements. The array incorporates a slot-fed multi-layer beamforming network.

  3. 600-GHz Electronically Tunable Vector Measurement System

    NASA Technical Reports Server (NTRS)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter

    2007-01-01

    A compact, high-dynamic-range, electronically tunable vector measurement system that operates in the frequency range from approximately 560 to approximately 635 GHz has been developed as a prototype of vector measurement systems that would be suitable for use in nearly-real-time active submillimeter-wave imaging. As used here, 'vector measurement system" signifies an instrumentation system that applies a radio-frequency (RF) excitation to an object of interest and measures the resulting amplitude and phase response, relative to either the applied excitatory signal or another reference signal related in a known way to applied excitatory signal.

  4. Electron gun simulation for 95 GHz gyrotron

    SciTech Connect

    Singh, Udaybir; Kumar, Nitin; Sinha, A.K. E-mail: aksinha@ceeri.ernet.in; Purohit, L.P.

    2011-07-01

    A triode type Magnetron Injection Gun (MIG) for a 2 MW, 95 GHz Gyrotron has been designed by using commercially available code EGUN and another in-house developed code MIGANS. The operating mode of the gyrotron is TE{sub 24.8} and it is operated in the fundamental harmonic. The operating voltages of the modulating anode and the accelerating anode are 61 kV and 85 kV respectively. The parametric dependences of modulating anode voltage and cathode magnetic field on the beam quality have also been studied. (author)

  5. 5-GHz fully differential multifunctional circuit

    NASA Astrophysics Data System (ADS)

    Plessas, F.; Tsitouras, A.; Kalivas, G.

    2012-09-01

    This letter presents a multifunctional circuit realising the functions of oscillation, frequency multiplication and frequency division at 5-GHz. A theoretical and experimental description of the circuit is given. The injection signal, which is used to stabilise the oscillation, is at a sub- or super-harmonic of the oscillation frequency having a power level as low as -30 dBm. Calculations and measurements of the phase noise are reported which indicate a phase noise improvement. The implementation of the circuit exhibits a phase noise of -110 dBc/Hz at 100 KHz offset whereas the improvement depends on the relative noise of the injected signal.

  6. The 8-18 GHz radar spectrometer

    NASA Technical Reports Server (NTRS)

    Bush, T. F.; Ulaby, F. T.

    1973-01-01

    The design, construction, testing, and accuracy of an 8-18 GHz radar spectrometer, an FM-CW system which employs a dual antenna system, is described. The antennas, transmitter, and a portion of the receiver are mounted at the top of a 26 meter hydraulic boom which is in turn mounted on a truck for system mobility. HH and VV polarized measurements are possible at incidence angles ranging from 0 deg. to 80 deg. Calibration is accomplished by referencing the measurements against a Luneberg lens of known radar cross section.

  7. A wideband 12 GHz down converter

    NASA Technical Reports Server (NTRS)

    Newman, B. A.; Rosenbaum, F. J.

    1972-01-01

    The design, fabrication, and evaluation of a single ended 12 GHz down-converter suitable for use in a low cost satellite ground terminal is described. The mixer uses waveguide, coaxial and MIC (microwave integrated circuit) transmission line components. Theoretical and experimental analyses of several microstrip circuit elements are presented including the traveling wave-directional filter, quarter wave-length proximity directional coupler, low pass filter and the quarterwave band stop filter. The optimum performance achieved for the mixer using a packaged diode was 9.4 db conversion loss and a bandwidth of 275 MHz.

  8. Improved Speed and Functionality of a 580-GHz Imaging Radar

    NASA Technical Reports Server (NTRS)

    Dengler, Robert; Cooper, Ken; Chattopadhyay, Goutam; Siegel, Peter; Schlecht, Erich; Mehdi, Imran; Skalare, Anders; Gill, John

    2010-01-01

    With this high-resolution imaging radar system, coherent illumination in the 576-to-589-GHz range and phase-sensitive detection are implemented in an all-solid-state design based on Schottky diode sensors and sources. By employing the frequency-modulated, continuous-wave (FMCW) radar technique, centimeter-scale range resolution has been achieved while using fractional bandwidths of less than 3 percent. The high operating frequencies also permit centimeter-scale cross-range resolution at several-meter standoff distances without large apertures. Scanning of a single-pixel transceiver enables targets to be rapidly mapped in three dimensions, so that the technology can be applied to the detection of concealed objects on persons.

  9. 35 GHz gyroklystron amplifier development at NRL

    SciTech Connect

    Choi, J.J.; Ganguly, A.K.; Blank, M.

    1996-12-31

    Experiments on a two-cavity gyroklystron are underway to demonstrate a 140 kW, 35 GHz gyroklystron amplifier, operating at a fundamental beam cyclotron mode and a TE{sub 011} cylindrical cavity mode. A high power electron beam of 70 kV, 6.6A is produced from a magnetron-injection-gun which is optimally designed for the TE{sub 01} mode at 35 GHz. Drift tubes consisting of lossy ceramic rings (80% BeO, 20% SiC) are designed to suppress undesired oscillations. A drive power is injected into the first cavity through a multi-hole coaxial coupler. A capacitive probe is placed directly before the input cavity to measure the beam velocity ratio. Large signal nonlinear calculations predict a peak efficiency of 30% (extracted power = 140 kW) and a saturated gain of 20dB over a 0.3% bandwidth at {alpha} = 1.5, {Delta}v{sub z}/v{sub z} = 20% at 13.3 kG and Q{sub 1} = Q{sub 2} = 200. Design parameters and initial hot-test results of the amplifier will be presented.

  10. 28 GHz Gyrotron ECRH Upgrade for LDX

    NASA Astrophysics Data System (ADS)

    Michael, P. C.; Woskov, P. P.; Ellsworth, J. L.; Kesner, J.; Garnier, D. T.; Mauel, M. E.; Ellis, R. F.

    2009-11-01

    A 10 kW, CW, 28 GHz gyrotron is being implemented on LDX to increase the plasma density and to more fully explore the potential of high beta plasma stability in a dipole magnetic configuration. Higher density increases the heating of ions by thermal equilibration and allows for improved wave propagation in planned ICRF experiments. This represents over a 50% increase in the 17 kW ECRH from sources at 2.45, 6.4, and 10.5 GHz. The higher frequency will also make possible access to plasma densities of up to 10^13 cm-3. The 1 Tesla resonances are located above and below the floating coil near the dipole axial region. The gyrotron beam will be transmitted in TE01 mode in 32.5 mm diameter guide using one 90 bend and a short < 5 m straight waveguide run. A Vlasov launch antenna in LDX will direct the beam to the upper 1 Tesla resonance region. A layout of the planned system will be presented.

  11. 28 GHz Gyrotron ECRH on LDX

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.; Kesner, J.; Michael, P. C.; Garnier, D. T.; Mauel, M. E.

    2010-12-01

    A 10 kW, CW, 28 GHz gyrotron has been implemented on LDX to increase the plasma density and to more fully explore the potential of high beta plasma stability in a dipole magnetic configuration. This added power represents about a 60% increase in ECRH to a new total of 26.9 kW with sources at 2.45, 6.4, and 10.5 GHz. The 1 Tesla resonances in LDX form small rings encompassing the entire plasma cross-section above and below the floating coil (F-coil) near the dipole axial region. A 32.5 mm diameter TE01 waveguide with a partial Vlasov step cut launches a diverging beam from above the F-coil that depends on internal wall reflections for plasma coupling. Initial gyrotron only plasmas exhibit steep natural profiles with fewer hot electrons than with the other sources. The background scattered radiation suggests that only about half the power is being absorbed with the present launcher.

  12. High Power 35GHz Gyroklystron Amplifiers

    NASA Astrophysics Data System (ADS)

    Choi, Jin; McCurdy, A.; Wood, F.; Kyser, R.; Danly, B.; Levush, B.; Parker, R.

    1997-05-01

    High power coherent radiation sources at 35GHz are attractive for next generation high gradient particle accelerators. A multi-cavity gyroklystron amplifier is considered a promising candidate for high power millimeter wave generation. Experiments on two-cavity and three cavity gyroklystron amplifiers are underway to demonstrate a 140kW, 35GHz coherent radiation amplification. Though this power is low compared with that needed for colliders, many of the issues associated with the bandwidth of such devices can be addressed in the present experiments. High bandwidth is important to permit the rapid phase shifts required for RF pulse compression schemes presently under investigation. Large signal calculations (P.E. Latham, W. Lawson, V. Irwin, IEEE Trans. Plasma Sci., Vol. 22, No. 5, pp. 804-817, 1994.) predict that the two-cavity gyroklystron produces a peak power of 140kW, corresponding to 33% efficiency. Calculations also show that a stagger tuned three cavity circuit increases a bandwidth to more than 0.7%. Experimental results of the amplifier will be presented and compared with the theory.

  13. Study of controlled dense coding with some discrete tripartite and quadripartite states

    NASA Astrophysics Data System (ADS)

    Roy, Sovik; Ghosh, Biplab

    2015-07-01

    The paper presents a detailed study of controlled dense coding scheme for different types of three and four-particle states. It consists of GHZ state, GHZ type states, maximal slice (MS), state, 4-particle GHZ state and W class of states. It is shown that GHZ-type states can be used for controlled dense coding in a probabilistic sense. We have shown relations among parameter of GHZ type state, concurrence of the shared bipartite state by two parties with respect to GHZ type and Charlie's measurement angle θ. The GHZ states as a special case of MS states, depending on parameters, have also been considered here. We have seen that tripartite W state and quadripartite W state cannot be used in controlled dense coding whereas |Wn>ABC states can be used probabilistically. Finally, we have investigated controlled dense coding scheme for tripartite qutrit states.

  14. Status report of the 28 GHz superconducting electron cyclotron resonance ion source VENUS (invited)

    SciTech Connect

    Leitner, D.; Lyneis, C.M.; Loew, T.; Todd, D.S.; Virostek, S.; Tarvainen, O.

    2006-03-15

    The superconducting versatile electron cyclotron resonance (ECR) ion source for nuclear science (VENUS) is a next generation superconducting ECR ion source designed to produce high-current, high-charge-state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the rare isotope accelerator (RIA) front end, where the goal is to produce intense beams of medium-charge-state ions. Example beams for the RIA accelerator are 15 p {mu}A of Kr{sup 17+}(260 e {mu}A), 12 p {mu}A of Xe{sup 20+} (240 e {mu}A of Xe{sup 20+}), and 8 p {mu}A of U{sup 28+}(230 e {mu}A). To achieve these high currents, VENUS has been optimized for operation at 28 GHz, reaching maximal confinement fields of 4 and 3 T axially and over 2.2 T on the plasma chamber wall radially. After a commissioning phase at 18 GHz, the source started the 28 GHz operation in the summer of 2004. During that ongoing 28 GHz commissioning process, record ion-beam intensities have been extracted. For instance, measured extracted currents for the low to medium charge states were 270 e {mu}A of Xe{sup 27+} and 245 e {mu}A of Bi{sup 29+}, while for the higher charge states 15 e {mu}A of Xe{sup 34+}, 15 e {mu}A of Bi{sup 41+}, and 0.5 e {mu}A of Bi{sup 50+} could be produced. Results from the ongoing 28 GHz commissioning as well as results using double-frequency heating with 18 and 28 GHz for oxygen and xenon are presented. The effect of the minimum B field on the ion source performance has been systematically measured for 18 and 28 GHz. In both cases the performance peaked at a minimum B field of about 80% of the resonance field. In addition, a strong dependence of the x-ray flux and energy on the minimum B field value was found.

  15. Status report of the 28 GHz superconducting electron cyclotron resonance ion source VENUS (invited)

    NASA Astrophysics Data System (ADS)

    Leitner, D.; Lyneis, C. M.; Loew, T.; Todd, D. S.; Virostek, S.; Tarvainen, O.

    2006-03-01

    The superconducting versatile electron cyclotron resonance (ECR) ion source for nuclear science (VENUS) is a next generation superconducting ECR ion source designed to produce high-current, high-charge-state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the rare isotope accelerator (RIA) front end, where the goal is to produce intense beams of medium-charge-state ions. Example beams for the RIA accelerator are 15 p μA of Kr17+(260 e μA), 12 p μA of Xe20+ (240 e μA of Xe20+), and 8 p μA of U28+(230 e μA). To achieve these high currents, VENUS has been optimized for operation at 28 GHz, reaching maximal confinement fields of 4 and 3 T axially and over 2.2 T on the plasma chamber wall radially. After a commissioning phase at 18 GHz, the source started the 28 GHz operation in the summer of 2004. During that ongoing 28 GHz commissioning process, record ion-beam intensities have been extracted. For instance, measured extracted currents for the low to medium charge states were 270 e μA of Xe27+ and 245 e μA of Bi29+, while for the higher charge states 15 e μA of Xe34+, 15 e μA of Bi41+, and 0.5 e μA of Bi50+ could be produced. Results from the ongoing 28 GHz commissioning as well as results using double-frequency heating with 18 and 28 GHz for oxygen and xenon are presented. The effect of the minimum B field on the ion source performance has been systematically measured for 18 and 28 GHz. In both cases the performance peaked at a minimum B field of about 80% of the resonance field. In addition, a strong dependence of the x-ray flux and energy on the minimum B field value was found.

  16. 32 GHz Celestial Reference Frame Survey for Dec < -45 deg.

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shinji; Phillips, Chris; Jacobs, Christopher; Sotuela, Ioana; Garcia miro, Cristina

    2012-04-01

    We propose to conduct a LBA survey of compact radio sources at 32 GHz near the south pole region. This is the first attempt to fill the gap in the existing 32 GHz catalogue establish by NASA Deep Space Network toward completing the full sky celestial reference frame at 32 GHz. The catalogue will be used for future spacecraft navigation by NASA and other space agencies as well as for radio astronomical observations with southern radio telescope arrays such as ATCA and LBA.

  17. Frequencies above 10 GHz. [for satellite communication services

    NASA Technical Reports Server (NTRS)

    Mcavoy, N.

    1976-01-01

    The paper discusses some of the problems associated with extending the frequencies used by satellite communication services above 10 GHz. The principal propagation limitation above 10 GHz occurs when precipitation intercepts the earth-space propagation path and causes attenuation and depolarization of the transmitted signal. World attenuation statistics at 12 GHz for earth-space paths are discussed, revealing the effect of climate on attenuation properties. Space diversity is discussed as an effective means of overcoming precipitation-caused attenuation problems.

  18. Double dipole antenna SIS receivers at 100 and 400 GHz

    NASA Technical Reports Server (NTRS)

    Skalare, A.; Vandestadt, H.; Degraauw, T.; Panhuyzen, R. A.; Dierichs, M. M. T. M.

    1992-01-01

    Antenna patterns were measured between 95 and 120 GHz for a double dipole antenna / ellipsoidal lens combination. The structure produces a non-astigmatic beam with low side lobe levels over that whole band. A heterodyne SIS receiver based on this concept gave a best noise temperature of 145 K DSB at 98 GHz. Measurements were also made with a 400 GHz heterodyne SIS receiver, using a double dipole antenna in conjunction with a hyperhemispherical lens. The best noise temperature was 220 K DSB at 402 GHz. On-chip stubs were used to tune out the SIS junction capacitance.

  19. Synchrotron Spectral Curvature from 22 MHZ to 23 GHZ

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    We combine surveys of the radio sky at frequencies 22 MHz to 1.4 GHz with data from the ARCADE-2 instrument at frequencies 3 GHz to 10 GHz to characterize the frequency spectrum of diffuse synchrotron emission in the Galaxy. The radio spectrum steepens with frequency from 22 MHz to 10 GHz. The projected spectral index at 23 GHz derived from the low-frequency data agrees well with independent measurements using only data at frequencies 23 GHz and above. Comparing the spectral index at 23 GHz to the value from previously published analyses allows extension of the model to higher frequencies. The combined data are consistent with a power-law index beta = -2.64 +/-= 0.03 at 0.31 GHz, steepening by an amount of Delta-beta = 0.07 every octave in frequency. Comparison of the radio data to models including the cosmic-ray energy spectrum suggests that any break in the synchrotron spectrum must occur at frequencies above 23 GHz.

  20. A 94/183 GHz multichannel radiometer for Convair flights

    NASA Technical Reports Server (NTRS)

    Gagliano, J. A.; Stratigos, J. A.; Forsythe, R. E.; Schuchardt, J. M.

    1979-01-01

    A multichannel 94/183 GHz radiometer was designed, built, and installed on the NASA Convair 990 research aircraft to take data for hurricane penetration flights, SEASAT-A underflights for measuring rain and water vapor, and Nimbus-G underflights for new sea ice signatures and sea surface temperature data (94 GHz only). The radiometer utilized IF frequencies of 1, 5, and 8.75 GHz about the peak of the atmospheric water vapor absorption line, centered at 183.3 GHz, to gather data needed to determine the shape of the water molecule line. Another portion of the radiometer operated at 94 GHz and obtained data on the sea brightness temperature, sea ice signatures, and on areas of rain near the ocean surface. The radiometer used a multiple lens antenna/temperature calibration technique using 3 lenses and corrugated feed horns at 94 GHz and 183 GHz. Alignment of the feed beams at 94 GHz and 183 GHz was accomplished using a 45 deg oriented reflecting surface which permitted simultaneous viewing of the feeds on alternate cycles of the chopping intervals.

  1. SYNCHROTRON SPECTRAL CURVATURE FROM 22 MHz TO 23 GHz

    SciTech Connect

    Kogut, A.

    2012-07-10

    We combine surveys of the radio sky at frequencies 22 MHz to 1.4 GHz with data from the ARCADE-2 instrument at frequencies 3 GHz to 10 GHz to characterize the frequency spectrum of diffuse synchrotron emission in the Galaxy. The radio spectrum steepens with frequency from 22 MHz to 10 GHz. The projected spectral index at 23 GHz derived from the low-frequency data agrees well with independent measurements using only data at frequencies 23 GHz and above. Comparing the spectral index at 23 GHz to the value from previously published analyses allows extension of the model to higher frequencies. The combined data are consistent with a power-law index {beta} = -2.64 {+-} 0.03 at 0.31 GHz, steepening by an amount of {Delta}{beta} = 0.07 every octave in frequency. Comparison of the radio data to models including the cosmic-ray energy spectrum suggests that any break in the synchrotron spectrum must occur at frequencies above 23 GHz.

  2. Quantum limited quasiparticle mixers at 100 GHz

    SciTech Connect

    Mears, C.A; Hu, Qing; Richards, P.L. ); Worsham, A.H.; Prober, D.E. . Dept. of Applied Physics); Raeisaenen, A.V. . Radio Lab.)

    1990-09-01

    We have made accurate measurements of the noise and gain of superconducting-insulating-superconducting (SIS) mixers employing small area (1{mu}m{sup 2}) Ta/Ta{sub 2}O{sub 5}/Pb{sub 0.9}Bi{sub 0.1} tunnel junctions. We have measured an added mixer noise of 0.61 +/{minus} 0.31 quanta at 95.0 GHz, which is within 25 percent of the quantum limit of 0.5 quanta. We have carried out a detailed comparison between theoretical predictions of the quantum theory of mixing and experimentally measured noise and gain. We used the shapes of I-V curves pumped at the upper and lower sideband frequencies to deduce values of the embedding admittances at these frequencies. Using these admittances, the mixer noise and gain predicted by quantum theory are in excellent agreement with experiment. 21 refs., 9 figs.

  3. Development of 20 GHz monolithic transmit modules

    NASA Technical Reports Server (NTRS)

    Higgins, J. A.

    1988-01-01

    The history of the development of a transmit module for the band 17.7 to 20.2 GHz is presented. The module was to monolithically combine, on one chip, five bits of phase shift, a buffer amplifier and a power amplifier to produce 200 mW to the antenna element. The approach taken was MESFET ion implanted device technology. A common pinch-off voltage was decided upon for each application. The beginning of the total integration phases revealed hitherto unencountered hazards of large microwave circuit integration which were successfully overcome. Yield and customer considerations finally led to two separate chips, one containing the power amplifiers and the other containing the complete five bit phase shifter.

  4. Operation of the SUPARAMP at 33GHz

    NASA Technical Reports Server (NTRS)

    Chiao, R. Y.; Parrish, P. T.

    1975-01-01

    A 9mm degenerate parametric amplifier was constructed using a linear, series array of unbiased Josephson junctions as the active, nonlinear element. A balanced diode mixer was used as a synchronous detector, with a single source serving both as the pump and as the mixer local oscillator. A stable, net gain of 15 dB in an instantaneous bandwith (FWHM) of 3.4 GHz was achieved. A system noise temperature of 220 K + or - 5 K (DSB) was measured with a SUPARAMP contribution of only 20 K x or - 10 K. Output saturation was observed and complicates the interpretation of the noise temperature measurements and may render them upper limits. A comparison was made with the results of an earlier 3 cm suparamp. The data is in substantial agreement with theoretical predictions.

  5. Status of the DIII-D 110 GHz ECH system

    SciTech Connect

    Callis, R.W.; Lohr, J.; O`Neill, R.C.; Tooker, J.F.; Ponce, D.

    1996-06-01

    The DIII-D program is presently commissioning the first NM gyrotron of a planned 3 MW, I 10 GHz electron cyclotron heating (ECH) system for off-axis electron heating and current drive. Advanced tokamak (AT) research in DIII-D and other tokamaks requires the ability to control the current density profile. ECH offers the ability to localize the heating and driven current in a controllable manner and is not dependent upon, the local plasma conditions, so it appears to be an ideal tool for AT research. The planned rf sources for the DIII-D system are I MW state-of-the-art internal mode-converter gyrotrons, with one gyrotron being manufactured by GYCOM, a Russian company, and two gyrotrons being manufactured by CPI (formerly Varian). The GYCOM gyrotron has been tested at the factory to 960 kW, 2 seconds and has been shipped to GA where it is now undergoing initial checkout and testing. The first CPI gyrotron has been assembled and factory tested to 530 kW, 2 seconds and 350 1352 kW, 10 seconds. Both the GYCOM and CPI gyrotrons are limited in pulse length at full power by thermal limits on the output window. The second CPI gyrotron is expected to be ready for testing in April 1996. This paper will report on the initial experiences of using the GYCOM I MW, 110 GHz internal mode- converter gyrotron, at General Atomics, and the observed effects the ECRH power has on the DIII-D plasma.

  6. 120-GHz HEMT Oscillator With Surface-Wave-Assisted Antenna

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Siegel, Peter; Leong, Kevin; Itoh, Tatsuo; Qian, Yongxi; Radisic, Vesna

    2003-01-01

    Two monolithic microwave integrated circuits (MMICs) have been designed and built to function together as a source of electromagnetic radiation at a frequency of 120 GHz. One of the MMICs is an oscillator and is the highest-power 120-GHz oscillator reported thus far in the literature. The other MMIC is an end-fire antenna that radiates the oscillator signal. Although these MMICs were constructed as separate units and electrically connected with wire bonds, future oscillator/ antenna combinations could readily be fabricated as monolithic integrated units. Such units could be used as relatively high-power solid-state microwave sources in diverse applications that include automotive radar, imaging, scientific instrumentation, communications, and radio astronomy. As such, these units would be attractive alternatives to vacuum-tube oscillators, which are still used to obtain acceptably high power in the frequency range of interest. The oscillator (see figure) includes a high-electron-mobility transistor (HEMT), with gate-periphery dimensions of 4 by 37 m, in a common-source configuration. The series feedback element of the oscillator is a grounded coplanar waveguide (CPW) at the source. The HEMT is biased for class-A operation (meaning that current is conducted throughout the oscillation cycle) to maximize the output power of the oscillator. Input and output impedance-matching circuit elements are designed to maximize output power and to establish the conditions needed for oscillation. The design of the antenna takes advantage of surface waves, which, heretofore, have been regarded as highly disadvantageous because they can leak power and degrade the performances of antennas that have not been designed to exploit them. Measures taken to suppress surface waves have included complex machining of circuit substrates and addition of separate substrates. These measures are difficult to implement in standard MMIC fabrication processes. In contrast, because the design of the

  7. GHz - THz plasmonic circuits using low dimensional electronic systems

    NASA Astrophysics Data System (ADS)

    Ham, Donhee

    2012-02-01

    Nature offers a broad variety of plasma systems consisting of electrons unbound from atoms, e.g.; astrophysical plasmas in intergalactic, interstellar, and stellar media; the Earth's ionosphere; and solid-state plasma, the free electrons in metals and semiconductors, only to name a few. A key feature of many plasma systems is collective motions of electrons; as the electron density profile is perturbed from equilibrium, Coulomb restoring forces (and sometimes quantum pressure in dense plasma) arise to power these collective motions, usually in the form of bulk electron density oscillations or electron density waves. Solid-state plasmas are particularly interesting, as the fabrication technologies available for solid-state materials allow us to alter the boundaries and interfaces of the plasma media in various ways to engineer the collective motion. A notable example is the surface plasmons, which have been a source of many breakthroughs in photonics. I will talk about a set of our recent developments where the plasmons are brought down to the electronics-regime (GHz˜THz) and manipulated to produce a range of functionalities, while offering unique advantages to electronics over their purely electromagnetic counterparts. (Co-workers) William Andress (Harvard), Hosang Yoon (Harvard), Kitty Yeung (Harvard), Ling Qin (Harvard), Ken West (Princeton), and Loren Pfeiffer (Princeton).

  8. A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization.

    PubMed

    Barnes, Alexander B; Nanni, Emilio A; Herzfeld, Judith; Griffin, Robert G; Temkin, Richard J

    2012-08-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE(₅,₂,q) mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211

  9. A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-08-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin.

  10. Design of 132 GHz gyrotron with 3 GHz tunability for 200 MHz DNP/NMR spectrometer

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Sinha, Ashok Kumar

    2015-01-01

    A complete design of 132 GHz gyrotron for 200 MHz DNP-NMR spectroscopy application is presented in this article. The design is performed considering a frequency tunability range of 3 GHz and output power around 100 W. A smooth frequency tunability is achieved via the excitation of TE03p modes (p = 1-6) through the variation of cavity magnetic field. The start oscillation current calculation is performed to estimate the required magnetic field for each TE03p mode. Cold cavity analysis and beam-wave interaction computation are carried out for the estimation of quality factor, resonant frequency corresponding to each TE03p mode, axial electric field profile and output power. Other important components of gyrotron such as magnetron injection gun, non-linear taper and RF window are also designed considering the smooth frequency tunability a main design parameter.

  11. A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization

    PubMed Central

    Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.

    2012-01-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211

  12. Noise in waveguide between 18 GHz and 26.5 GHz

    NASA Astrophysics Data System (ADS)

    Allal, D.

    2016-01-01

    This report summarises the results of the Key Comparison CCEM.RF-K22.W on noise temperature, performed between October 2007 and February 2011. In this comparison, the available noise temperature of three noise sources was determined by six National Metrology Institutes (NMIs) in the frequency range from 18 GHz to 26.5 GHz. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  13. Rectenna Technology Program: Ultra light 2.45 GHz rectenna 20 GHz rectenna

    NASA Technical Reports Server (NTRS)

    Brown, William C.

    1987-01-01

    The program had two general objectives. The first objective was to develop the two plane rectenna format for space application at 2.45 GHz. The resultant foreplane was a thin-film, etched-circuit format fabricated from a laminate composed of 2 mil Kapton F sandwiched between sheets of 1 oz copper. The thin-film foreplane contains half wave dipoles, filter circuits, rectifying Schottky diode, and dc bussing lead. It weighs 160 grams per square meter. Efficiency and dc power output density were measured at 85% and 1 kw/sq m, respectively. Special testing techniques to measure temperature of circuit and diode without perturbing microwave operation using the fluoroptic thermometer were developed. A second objective was to investigate rectenna technology for use at 20 GHz and higher frequencies. Several fabrication formats including the thin-film scaled from 2.45 GHz, ceramic substrate and silk-screening, and monolithic were investigated, with the conclusion that the monolithic approach was the best. A preliminary design of the monolithic rectenna structure and the integrated Schottky diode were made.

  14. A low-noise 492 GHz SIS waveguide receiver

    NASA Technical Reports Server (NTRS)

    Walker, C. K.; Kooi, J. W.; Chant, M.; Leduc, H. G.; Schaffer, P. L.; Carlstrom, J. E.; Phillips, T. G.

    1992-01-01

    The design and performance are described of an SIS waveguide receiver which provides low noise performance from 375 to 510 GHz. At its design frequency of 492 GHz the receiver has a double-sideband noise temperature of about 172 K. By using embedded magnetic-field concentrators Josephson pair tunneling is effectively suppressed. Techniques for improving receiver performance are discussed.

  15. A low-noise 492 GHz SIS waveguide receiver

    NASA Technical Reports Server (NTRS)

    Walker, C. K.; Kooi, J. W.; Chan, M.; Leduc, Henry G.; Schaffer, P. L.; Carlstrom, J. E.; Phillips, T. G.

    1992-01-01

    We discuss the design and performance of an SIS waveguide receiver which provides low noise performance from 375 to 510 GHz. At its design frequency of 492 GHz, the receiver has a double sideband noise temperature of approx. 172 K. By using embedded magnetic field concentrators, we are able to effectively suppress Josephson pair tunneling. Techniques for improving receiver performance are discussed.

  16. Spain 31-GHz observations of sky brightness temperatures

    NASA Technical Reports Server (NTRS)

    Gary, B. L.

    1988-01-01

    A water vapor radiometer was deployed at DSS 63 for 3 months of sky brightness temperature measurements at 31 GHz. An exceedance plot was derived from this data showing the fraction of time that 31 GHz 30 degree elevation angle brightness temperature exceeds specified values. The 5 percent exceedance statistics occurs at 75 K, compared with 70 K in Australia.

  17. 177-207 GHz Radiometer Front End: Single Sideband Measurements

    NASA Technical Reports Server (NTRS)

    Galin, I.; Schnitzer, C. A.; Dengler, R. J.; Quintero, O.

    1999-01-01

    Twenty years of progress in 200 GHz receivers for spaceborne remote sensing has yielded a 180-220 GHz technology with maturing characteristics, as evident by increasing availability of relevant hardware, paralleled by further refinement in receiver performance requirements at this spectrum band. The 177-207 GHz superheterodyne receiver, for the Earth observing system (EOS) microwave limb sounder (MLS), effectively illustrates such technology developments. This MLS receiver simultaneously detects six different signals, located at sidebands below and above its 191.95 GHZ local-oscillator (LO). The paper describes the MLS 177-207 GHz receiver front-end (RFE), and provides measured data for its lower and upper sidebands. Sideband ratio data is provided as a function of IF frequency, at different LO power drive, and for variation in the ambient temperature.

  18. 160-190 GHz Monolithic Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Kok, Y. L.; Wang, H.; Huang, T. W.; Lai, R.; Chen, Y. C.; Sholley, M.; Block, T.; Streit, D. C.; Liu, P. H.; Allen, B. R.; Samoska, L.; Gaier, T.; Barsky, Mike

    1998-01-01

    This paper presents the results of two 160-190 GHz monolithic low noise amplifiers (LNAs) fabricated with 0.07-microns pseudomorphic (PM) InAlAs/InGaAs/InP HEMT technology using a reactive ion etch (RIE) via hole process. A peak small signal gain of 9 dB was measured at 188 GHz for the first LNA with a 3-dB bandwidth from 164 to 192 GHz while the second LNA has achieved over 6-dB gain from 142 to 180 GHz. The same design (second LNA) was also fabricated with 0.08-micron gate and a wet etch process, showing a small signal gain of 6 dB with noise figure 6 dB. All the measurement results were obtained via on-wafer probing. The LNA noise measurement at 170 GHz is also the first attempt at this frequency.

  19. The 30 GHz communications satellite low noise receiver

    NASA Astrophysics Data System (ADS)

    Steffek, L. J.; Smith, D. W.

    1983-10-01

    A Ka-band low noise front end in proof of concept (POC) model form for ultimate spaceborne communications receiver deployment was developed. The low noise receiver consists of a 27.5 to 30.0 GHz image enhanced mixer integrated with a 3.7 to 6.2 GHz FET low noise IF amplifier and driven by a self contained 23.8 GHz phase locked local oscillator source. The measured level of receiver performance over the 27.3 to 30.0 GHz RF/3.7 to 6.2 GHz IF band includes 5.5 to 6.5 dB (typ) SSB noise figure, 20.5 + or - 1.5 dB conversion gain and +23 dBm minimum third order two tone intermodulation output intercept point.

  20. Broadband Characterization of a 100 to 180 GHz Amplifier

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Deal, W. R.; Mei, X. B.; Lai, R.

    2007-01-01

    Atmospheric science and weather forecasting require measurements of the temperature and humidity vs. altitude. These sounding measurements are obtained at frequencies close to the resonance frequencies of oxygen (118 GHz) and water (183 GHz) molecules. We have characterized a broadband amplifier that will increase the sensitivity of sounding and other instruments at these frequencies. This study demonstrated for the first t1me continuous low noise amplification from 100 to 180 GHz. The measured InP monolithic millimeter-wave Integrated circuit (MMIC) amplifier had more than 18 dB of gain from 100 to 180 GHz and 15 dB of gain up to 220 GHz. This is the widest bandwidth low noise amplifier result at these frequencies to date. The circuit was fabricated in Northrop Grumman Corporation 35 nm InP high electron mobility transistor (HEMT).

  1. The 30 GHz communications satellite low noise receiver

    NASA Technical Reports Server (NTRS)

    Steffek, L. J.; Smith, D. W.

    1983-01-01

    A Ka-band low noise front end in proof of concept (POC) model form for ultimate spaceborne communications receiver deployment was developed. The low noise receiver consists of a 27.5 to 30.0 GHz image enhanced mixer integrated with a 3.7 to 6.2 GHz FET low noise IF amplifier and driven by a self contained 23.8 GHz phase locked local oscillator source. The measured level of receiver performance over the 27.3 to 30.0 GHz RF/3.7 to 6.2 GHz IF band includes 5.5 to 6.5 dB (typ) SSB noise figure, 20.5 + or - 1.5 dB conversion gain and +23 dBm minimum third order two tone intermodulation output intercept point.

  2. Millimetre Astronomy Legacy Team 90 GHz Survey (MALT 90)

    NASA Astrophysics Data System (ADS)

    Jackson, James; Lo, Nadia; Rathborne, Jill; Jones, Paul; Muller, Erik; Cunningham, Maria; Brooks, Kate; Fuller, Gary; Barnes, Peter; Menten, Karl; Schilke, Peter; Garay, Guido; Mardones, Diego; Minier, Vincent; Longmore, Steven; Wyrowski, Friedrich; Herpin, Fabrice; Hill, Tracey; Bronfman, Leonardo; Deharveng, Lise; Finn, Susanna; Schuller, Frederic; Motte, Frédérique; Peretto, Nicolas; Bontemps, Sylvain; Wienen, Marion; Contreras, Yanett; Lenfestey, Clare; Foster, Jonathan; Sanhueza, Patricio; Claysmith, Christopher

    2011-04-01

    We request Mopra telescope time to complete MALT90, a new, international project to survey molecular line emission from 3,000 dense cores. MALT90 exploits Mopra's capability for fast mapping and simultaneous imaging of 16 molecular lines near 90 GHz. These molecular lines will probe the cores physical, chemical, and evolutionary state. The target cores are selected from the 870 um ATLASGAL survey to host the early stages of high-mass star formation and to span the complete range of evolutionary states from pre-stellar cores, to protostellar cores, and on to H II regions. Each core will be mapped at excellent angular (40'') and spectral (0.1 km/s) resolution. The survey data will be made available to the public via the internet. We require 875 hours per year for the next 4 winter seasons to complete the project, and request pre-graded (continuing) status. MALT90 will provide a key legacy database for the star-formation community and supply the definitive source list of high-mass dense cores for ALMA.

  3. Detection of the 610 micron /492 GHz/ line of interstellar atomic carbon

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.; Huggins, P. J.; Kuiper, T. B. H.; Miller, R. E.

    1980-01-01

    The ground-state transition of neutral atomic carbon, 3P1-3P0, has been detected in the interstellar medium at the frequency of 492.162 GHz determined in the laboratory by Saykally and Evenson (1980). The observations were made from the NASA Kuiper Airborne Observatory using an InSb heterodyne bolometer receiver. The line was detected as strong emission from eight molecular clouds and apparently provides a widely useful probe of the interstellar medium.

  4. Q-Band (37-41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    NASA Technical Reports Server (NTRS)

    Simmons, Rainee N.; Wintucky, Edwin G.

    2012-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37-41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cut-paraboloidal reflector.

  5. Q-Band (37 to 41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37 to 41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cutparaboloidal reflector.

  6. Fractional-N PLL based FMCW sweep generator for an 80 GHz radar system with 24.5 GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Jaeschke, T.; Bredendiek, C.; Vogt, M.; Pohl, N.

    2012-09-01

    A phase-locked loop (PLL) based frequency synthesizer capable of generating highly linear broadband frequency sweeps as signal source of a high resolution 80 GHz FMCW radar system is presented. The system achieves a wide output range of 24.5 GHz starting from 68 GHz up to 92.5 GHz. High frequencies allow the use of small antennas for small antenna beam angles. The wide bandwidth results in a radar system with a very high range resolution of below 1.5 cm. Furthermore, the presented synthesizer provides a very low phase noise performance of -80 dBc/Hz at 80 GHz carrier frequency and 10 kHz offset, which enables high precision distance measurements with low range errors. This is achieved by using two nested phase-looked loops with high order loop filters. The use of a fractional PLL divider and a high phase frequency discriminator (PFD) frequency assures an excellent ramp linearity.

  7. 30/20 GHz and 6/4 GHz band transponder development for communications satellite CS-3

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayoshi; Nakamura, Makoto; Okamoto, Teruki; Kumazawa, Hiroyuki

    The next phase communications satellite CS-3 will be launched in 1988 as a successor to CS-2. The CS-3 is composed of two 6/4 GHz band and ten 30/20 GHz band transponders and its mission life is seven years. This paper describes the newly developed CS-3 transponder, especially a 4 GHz band 7 watt GaAs FET amplifier, Ka-band frequency single-conversion, a 30 GHz band low noise amplifier, and a 20 GHz band 10 watt TWTA. The introduction of these new technologies contributes significantly to reducing the CS-3 transponder weight and size, and to improving performance characteristics and insuring a long life.

  8. A 30-GHz Hexagonal Ferrite Phase Shifter

    NASA Astrophysics Data System (ADS)

    Semenov, A. S.; Slavin, A. N.; Mantese, J. V.

    2005-03-01

    Highly-anisotropic hexaferrites, such as barium ferrite BaFe12O19 (BFO), are ideal for millimeter wave phase shifters due to a large ferromagnetic resonance frequency at low magnetic bias field H. It enables one to make millimeter-wave devices with compact magnetic systems. Here we discuss the design, fabrication and characterization of a BFO phase shifter. A microstrip line deposited on a ferrite substrate supports the propagation of electromagnetic wave, leading to a phase shift kb, where k is the wave number and b is the length of the microstrip line. As k is a function of the bias H, we obtain a differential phase shift with a change of H. A phase shifter consisting of a single crystal (7 x 7 x 0.5 mm^3) BFO and a 500 μm wide stripline was evaluated at 30 GHz. A differential phase shift of 30 deg. was measured for H=1.2 kOe. The measured value of the insertion loss was about 10 dB. -Work supported by a grant from the Delphi Automotive Corporation.

  9. Surveillance receiver spans VHF to 40 GHz

    NASA Astrophysics Data System (ADS)

    Manz, B.

    1986-06-01

    A new addition to a line of surveillance receivers is described: the SMR-1600 from Adams-Russell's Micro-Tel Division. The system can be configured to operate from 100 MHz to 40 GHz and can accommodate up to 64 separate tuners. Nearly all functions are maintained and orchestrated by the receiver's on-board microprocessor. Programming can be performed by either the internal processor or an external computer (such as the IBM PC) via an IEEE-488 bus. The SMR-1600 consists of up to seven basic instruments. The SMR1610 controller allows the operator to program each instrument in the system from the front panel. The SMR-1615 system interface unit can communicate with up to 18 instruments in the system via 18 RS-422 balanced digital blocks. The SMR-1620 series tuners are independent units with internal power supplies, microprocessors, and RF circuitry to provide two different IF outputs. The SMR-1635 IF demodulators have four bandwidths that are field-replaceable. The SMR-1638 analysis demodulator accepts eight IF inputs and simultaneously supplies outputs of 160 MHz, 21.4 MHz, log video, and scan video for each of the eight channels. The SMR-1640 scan display shows up to four channels at a time, with each trace independently controllable for the store/erase functions, sweep rate, and decay. The SMR-1650 log video matrix switch connects up to 16 inputs to any of the eight outputs.

  10. The 17 GHz active region number

    SciTech Connect

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Giménez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.