Science.gov

Sample records for multi-target antisense approach

  1. Antisense approaches in prostate cancer.

    PubMed

    Chi, Kim N; Gleave, Martin E

    2004-06-01

    Patients with hormone refractory prostate cancer have limited treatment options and new therapies are urgently needed. Advances in the understanding of the molecular mechanisms implicated in prostate cancer progression have identified many potential therapeutic gene targets that are involved in apoptosis, growth factors, cell signalling and the androgen receptor (AR). Antisense oligonucleotides are short sequences of synthetic modified DNA that are designed to be complimentary to a selected gene's mRNA and thereby specifically inhibit expression of that gene. The antisense approach continues to hold promise as a therapeutic modality to target genes involved in cancer progression, especially those in which the gene products are not amenable to small molecule inhibition or antibodies. The current status and future direction of a number of antisense oligonucleotides targeting several genes, including BCL-2, BCL-XL, clusterin, the inhibitors of apoptosis (IAP) family, MDM2, protein kinase C-alpha, c-raf, insulin-like growth factor binding proteins and the AR, that have potential clinical use in prostate cancer are reviewed. PMID:15174974

  2. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter

    PubMed Central

    Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao

    2015-01-01

    Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low. PMID:26561817

  3. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter.

    PubMed

    Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao

    2015-01-01

    Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low. PMID:26561817

  4. A multi target approach to control chemical reactions in their inhomogeneous solvent environment

    NASA Astrophysics Data System (ADS)

    Keefer, Daniel; Thallmair, Sebastian; Zauleck, Julius P. P.; de Vivie-Riedle, Regina

    2015-12-01

    Shaped laser pulses offer a powerful tool to manipulate molecular quantum systems. Their application to chemical reactions in solution is a promising concept to redesign chemical synthesis. Along this road, theoretical developments to include the solvent surrounding are necessary. An appropriate theoretical treatment is helpful to understand the underlying mechanisms. In our approach we simulate the solvent by randomly selected snapshots from molecular dynamics trajectories. We use multi target optimal control theory to optimize pulses for the various arrangements of explicit solvent molecules simultaneously. This constitutes a major challenge for the control algorithm, as the solvent configurations introduce a large inhomogeneity to the potential surfaces. We investigate how the algorithm handles the new challenges and how well the controllability of the system is preserved with increasing complexity. Additionally, we introduce a way to statistically estimate the efficiency of the optimized laser pulses in the complete thermodynamical ensemble.

  5. Combined analgesics in (headache) pain therapy: shotgun approach or precise multi-target therapeutics?

    PubMed Central

    2011-01-01

    Background Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix") are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics. Discussion In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect. As an example the fixesd-dose combination of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy. Summary Multitarget therapeutics like combined analgesics broaden the array of therapeutic

  6. Functional analysis of mce4A gene of Mycobacterium tuberculosis H37Rv using antisense approach.

    PubMed

    Chandolia, Amita; Rathor, Nisha; Sharma, Monika; Saini, Neeraj Kumar; Sinha, Rajesh; Malhotra, Pawan; Brahmachari, Vani; Bose, Mridula

    2014-01-01

    Antisense strategy is an attractive substitute for knockout mutations created for gene silencing. mce genes have been shown to be involved in mycobacterial uptake and intracellular survival. Here we report reduced expression of mce4A and mce1A genes of Mycobacterium tuberculosis using antisense technology. For this, 1.1 kb region of mce4A and mce1A was cloned in reverse orientation in pSD5 shuttle vector, resulting into antisense constructs pSD5-4AS and pSD5-1AS, respectively. In M. tuberculosis H37Rv approximately 60% reduction in Mce4A and 66% reduction in expression of Mce1A protein were observed. We also observed significantly reduced intracellular survival ability of both antisense strains in comparison to M. tuberculosis containing pSD5 alone. RT-PCR analysis showed antisense did not alter the transcription of upstream and downstream of mceA genes of the respective operon. The colony morphology, in vitro growth characteristics and drug susceptibility profile of the antisense construct remained unchanged. These results demonstrate that antisense can be a promising approach to assign function of a gene in a multiunit operon and could be suitably applied as a strategy. PMID:24556072

  7. Antisense approach to inflammatory bowel disease: prospects and challenges.

    PubMed

    Marafini, Irene; Di Fusco, Davide; Calabrese, Emma; Sedda, Silvia; Pallone, Francesco; Monteleone, Giovanni

    2015-05-01

    Despite the great success of anti-tumour necrosis factor-based therapies, the treatment of Crohn's disease (CD) and ulcerative colitis (UC) still remains a challenge for clinicians, as these drugs are not effective in all patients, their efficacy may wane with time, and their use can increase the risk of adverse events and be associated with the development of new immune-mediated diseases. Therefore, new therapeutic targets are currently being investigated both in pre-clinical studies and in clinical trials. Among the technologies used to build new therapeutic compounds, the antisense oligonucleotide (ASO) approach is slowly gaining space in the field of inflammatory bowel diseases (IBDs), and three ASOs have been investigated in clinical trials. Systemic administration of alicaforsen targeting intercellular adhesion molecule-1, a protein involved in the recruitment of leukocytes to inflamed intestine, was not effective in CD, even though the same compound was of benefit when given as an enema to UC patients. DIMS0150, targeting nuclear factor (NF) κB-p65, a transcription factor that promotes pro-inflammatory responses, was very promising in pre-clinical studies and is currently being tested in clinical trials. Oral mongersen, targeting Smad7, an intracellular protein that inhibits transforming growth factor (TGF)-β1 activity, was safe and well tolerated by CD patients, and the results of a phase II clinical trial showed the efficacy of the drug in inducing clinical remission in patients with active disease. In this leading article, we review the rationale and the clinical data available regarding these three agents, and we discuss the challenge of using ASOs in IBD. PMID:25911184

  8. Epigenetic-based therapy: From single- to multi-target approaches.

    PubMed

    Benedetti, Rosaria; Conte, Mariarosaria; Iside, Concetta; Altucci, Lucia

    2015-12-01

    The treatment of cancer has traditionally been based on the identification of a single molecule and/or enzymatic function (target) responsible for a particular phenotype, and therefore on the ability to stimulate, attenuate or inhibit its activity through the use of selective compounds. However, cancer is no longer considered a disease caused by a single factor, but is now recognized as a multi-factorial disorder. Genetic, epigenetic and metabolic factors all contribute to neoplasia, causing significant changes in molecular networks that govern cell growth, development, death and specialization. Consequently, many antitumor therapies are no longer directed against a single target but the biological system as a whole, in which functions determining the onset and maintenance of a physio-pathological state are modulated. The field of epi-drug discovery is currently in a transitional phase where the search for putative anticancer drugs is shifting from single-target-oriented molecules to network-active compounds and to epi-drugs used in combination with other epi-agents and with traditional chemotherapeutics. This review illustrates the pros and cons of each therapeutic option, providing examples in support of single-target and multi (network)-target epi-drug approaches. PMID:26494003

  9. Ilizarov Treatment of Congenital Pseudarthrosis of the Tibia: A Multi-Targeted Approach Using the Ilizarov Technique

    PubMed Central

    Cho, Tae-Joon; Moon, Hyuk Ju

    2011-01-01

    Congenital pseudarthrosis of the tibia (CPT) is one of the most challenging problems in pediatric orthopaedics. The treatment goals are osteosynthesis, stabilization of the ankle mortise by fibular stabilization, and lower limb-length equalization. Each of these goals is difficult to accomplish but regardless of the surgical options, the basic biological considerations are the same: pseudarthrosis resection, biological bone bridging of the defect by stable fixation, and the correction of any angular deformity. The Ilizarov method is certainly valuable for the treatment of CPT because it can address not only pseudarthrosis but also all complex deformities associated with this condition. Leg-length discrepancy can be managed by proximal tibial lengthening using distraction osteogenesis combined with or without contralateral epiphysiodesis. However, treatment of CPT is fraught with complications due to the complex nature of the disease, and failure is common. Residual challenges, such as refracture, growth disturbance, and poor foot and ankle function with stiffness, are frequent and perplexing. Refracture is the most common and serious complication after primary healing and might result in the re-establishment of pseudarthrosis. Therefore, an effective, safe and practical treatment method that minimizes the residual challenges after healing and accomplishes the multiple goals of treatment is needed. This review describes a multi-targeted approach for tackling these challenges, which utilizes the Ilizarov technique in atrophic-type CPT. PMID:21369472

  10. Combinatorial support vector machines approach for virtual screening of selective multi-target serotonin reuptake inhibitors from large compound libraries.

    PubMed

    Shi, Z; Ma, X H; Qin, C; Jia, J; Jiang, Y Y; Tan, C Y; Chen, Y Z

    2012-02-01

    Selective multi-target serotonin reuptake inhibitors enhance antidepressant efficacy. Their discovery can be facilitated by multiple methods, including in silico ones. In this study, we developed and tested an in silico method, combinatorial support vector machines (COMBI-SVMs), for virtual screening (VS) multi-target serotonin reuptake inhibitors of seven target pairs (serotonin transporter paired with noradrenaline transporter, H(3) receptor, 5-HT(1A) receptor, 5-HT(1B) receptor, 5-HT(2C) receptor, melanocortin 4 receptor and neurokinin 1 receptor respectively) from large compound libraries. COMBI-SVMs trained with 917-1951 individual target inhibitors correctly identified 22-83.3% (majority >31.1%) of the 6-216 dual inhibitors collected from literature as independent testing sets. COMBI-SVMs showed moderate to good target selectivity in misclassifying as dual inhibitors 2.2-29.8% (majority <15.4%) of the individual target inhibitors of the same target pair and 0.58-7.1% of the other 6 targets outside the target pair. COMBI-SVMs showed low dual inhibitor false hit rates (0.006-0.056%, 0.042-0.21%, 0.2-4%) in screening 17 million PubChem compounds, 168,000 MDDR compounds, and 7-8181 MDDR compounds similar to the dual inhibitors. Compared with similarity searching, k-NN and PNN methods, COMBI-SVM produced comparable dual inhibitor yields, similar target selectivity, and lower false hit rate in screening 168,000 MDDR compounds. The annotated classes of many COMBI-SVMs identified MDDR virtual hits correlate with the reported effects of their predicted targets. COMBI-SVM is potentially useful for searching selective multi-target agents without explicit knowledge of these agents. PMID:22064367

  11. Multi-target parallel processing approach for gene-to-structure determination of the influenza polymerase PB2 subunit.

    PubMed

    Armour, Brianna L; Barnes, Steve R; Moen, Spencer O; Smith, Eric; Raymond, Amy C; Fairman, James W; Stewart, Lance J; Staker, Bart L; Begley, Darren W; Edwards, Thomas E; Lorimer, Donald D

    2013-01-01

    Pandemic outbreaks of highly virulent influenza strains can cause widespread morbidity and mortality in human populations worldwide. In the United States alone, an average of 41,400 deaths and 1.86 million hospitalizations are caused by influenza virus infection each year (1). Point mutations in the polymerase basic protein 2 subunit (PB2) have been linked to the adaptation of the viral infection in humans (2). Findings from such studies have revealed the biological significance of PB2 as a virulence factor, thus highlighting its potential as an antiviral drug target. The structural genomics program put forth by the National Institute of Allergy and Infectious Disease (NIAID) provides funding to Emerald Bio and three other Pacific Northwest institutions that together make up the Seattle Structural Genomics Center for Infectious Disease (SSGCID). The SSGCID is dedicated to providing the scientific community with three-dimensional protein structures of NIAID category A-C pathogens. Making such structural information available to the scientific community serves to accelerate structure-based drug design. Structure-based drug design plays an important role in drug development. Pursuing multiple targets in parallel greatly increases the chance of success for new lead discovery by targeting a pathway or an entire protein family. Emerald Bio has developed a high-throughput, multi-target parallel processing pipeline (MTPP) for gene-to-structure determination to support the consortium. Here we describe the protocols used to determine the structure of the PB2 subunit from four different influenza A strains. PMID:23851357

  12. Antisense Therapy in Neurology

    PubMed Central

    Lee, Joshua J.A.; Yokota, Toshifumi

    2013-01-01

    Antisense therapy is an approach to fighting diseases using short DNA-like molecules called antisense oligonucleotides. Recently, antisense therapy has emerged as an exciting and promising strategy for the treatment of various neurodegenerative and neuromuscular disorders. Previous and ongoing pre-clinical and clinical trials have provided encouraging early results. Spinal muscular atrophy (SMA), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy (DMD), Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy (including limb-girdle muscular dystrophy 2B; LGMD2B, Miyoshi myopathy; MM, and distal myopathy with anterior tibial onset; DMAT), and myotonic dystrophy (DM) are all reported to be promising targets for antisense therapy. This paper focuses on the current progress of antisense therapies in neurology. PMID:25562650

  13. Multi-Target QSAR Approaches for Modeling Protein Inhibitors. Simultaneous Prediction of Activities Against Biomacromolecules Present in Gram-Negative Bacteria.

    PubMed

    Speck-Planche, Alejandro; Cordeiro, M N D S

    2015-01-01

    Drug discovery is aimed at finding therapeutic agents for the treatment of many diverse diseases and infections. However, this is a very slow an expensive process, and for this reason, in silico approaches are needed to rationalize the search for new molecular entities with desired biological profiles. Models focused on quantitative structure-activity relationships (QSAR) have constituted useful complementary tools in medicinal chemistry, allowing the virtual predictions of dissimilar pharmacological activities of compounds. In the last 10 years, multi-target (mt) QSAR models have been reported, representing great advances with respect to those models generated from classical approaches. Thus, mt- QSAR models can simultaneously predict activities against different biological targets (proteins, microorganisms, cell lines, etc.) by using large and heterogeneous datasets of chemicals. The present review is devoted to discuss the most promising mt-QSAR models, particularly those developed for the prediction of protein inhibitors. We also report the first multi-tasking QSAR (mtk-QSAR) model for simultaneous prediction of inhibitors against biomacromolecules (specifically proteins) present in Gram-negative bacteria. This model allowed us to consider both different proteins and multiple experimental conditions under which the inhibitory activities of the chemicals were determined. The mtk-QSAR model exhibited accuracies higher than 98% in both training and prediction sets, also displaying a very good performance in the classification of active and inactive cases that depended on the specific elements of the experimental conditions. The physicochemical interpretations of the molecular descriptors were also analyzed, providing important insights regarding the molecular patterns associated with the appearance/enhancement of the inhibitory potency. PMID:25961517

  14. Cis-Antisense Transcription Gives Rise to Tunable Genetic Switch Behavior: A Mathematical Modeling Approach

    PubMed Central

    Bordoy, Antoni E.; Chatterjee, Anushree

    2015-01-01

    Antisense transcription has been extensively recognized as a regulatory mechanism for gene expression across all kingdoms of life. Despite the broad importance and extensive experimental determination of cis-antisense transcription, relatively little is known about its role in controlling cellular switching responses. Growing evidence suggests the presence of non-coding cis-antisense RNAs that regulate gene expression via antisense interaction. Recent studies also indicate the role of transcriptional interference in regulating expression of neighboring genes due to traffic of RNA polymerases from adjacent promoter regions. Previous models investigate these mechanisms independently, however, little is understood about how cells utilize coupling of these mechanisms in advantageous ways that could also be used to design novel synthetic genetic devices. Here, we present a mathematical modeling framework for antisense transcription that combines the effects of both transcriptional interference and cis-antisense regulation. We demonstrate the tunability of transcriptional interference through various parameters, and that coupling of transcriptional interference with cis-antisense RNA interaction gives rise to hypersensitive switches in expression of both antisense genes. When implementing additional positive and negative feed-back loops from proteins encoded by these genes, the system response acquires a bistable behavior. Our model shows that combining these multiple-levels of regulation allows fine-tuning of system parameters to give rise to a highly tunable output, ranging from a simple-first order response to biologically complex higher-order response such as tunable bistable switch. We identify important parameters affecting the cellular switch response in order to provide the design principles for tunable gene expression using antisense transcription. This presents an important insight into functional role of antisense transcription and its importance towards

  15. A Multi-Target Approach toward the Development of Novel Candidates for Antidermatophytic Activity: Ultrastructural Evidence on α-Bisabolol-Treated Microsporum gypseum.

    PubMed

    Romagnoli, Carlo; Baldisserotto, Anna; Malisardi, Gemma; Vicentini, Chiara B; Mares, Donatella; Andreotti, Elisa; Vertuani, Silvia; Manfredini, Stefano

    2015-01-01

    Multi-target strategies are directed toward targets that are unrelated (or distantly related) and can create opportunities to address different pathologies. The antidermatophytic activities of nine natural skin lighteners: α-bisabolol, kojic acid, β-arbutin, azelaic acid, hydroquinone, nicotinamide, glycine, glutathione and ascorbyl tetraisopalmitate, were evaluated, in comparison with the known antifungal drug fluconazole, on nine dermatophytes responsible for the most common dermatomycoses: Microsporum gypseum, Microsporum canis, Trichophyton violaceum, Nannizzia cajetani, Trichophyton mentagrophytes, Epidermophyton floccosum, Arthroderma gypseum, Trichophyton rubrum and Trichophyton tonsurans. α-Bisabolol showed the best antifungal activity against all fungi and in particular; against M. gypseum. Further investigations were conducted on this fungus to evaluate the inhibition of spore germination and morphological changes induced by α-bisabolol by TEM. PMID:26132903

  16. Cubature Information SMC-PHD for Multi-Target Tracking.

    PubMed

    Liu, Zhe; Wang, Zulin; Xu, Mai

    2016-01-01

    In multi-target tracking, the key problem lies in estimating the number and states of individual targets, in which the challenge is the time-varying multi-target numbers and states. Recently, several multi-target tracking approaches, based on the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter, have been presented to solve such a problem. However, most of these approaches select the transition density as the importance sampling (IS) function, which is inefficient in a nonlinear scenario. To enhance the performance of the conventional SMC-PHD filter, we propose in this paper two approaches using the cubature information filter (CIF) for multi-target tracking. More specifically, we first apply the posterior intensity as the IS function. Then, we propose to utilize the CIF algorithm with a gating method to calculate the IS function, namely CISMC-PHD approach. Meanwhile, a fast implementation of the CISMC-PHD approach is proposed, which clusters the particles into several groups according to the Gaussian mixture components. With the constructed components, the IS function is approximated instead of particles. As a result, the computational complexity of the CISMC-PHD approach can be significantly reduced. The simulation results demonstrate the effectiveness of our approaches. PMID:27171088

  17. Cubature Information SMC-PHD for Multi-Target Tracking

    PubMed Central

    Liu, Zhe; Wang, Zulin; Xu, Mai

    2016-01-01

    In multi-target tracking, the key problem lies in estimating the number and states of individual targets, in which the challenge is the time-varying multi-target numbers and states. Recently, several multi-target tracking approaches, based on the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter, have been presented to solve such a problem. However, most of these approaches select the transition density as the importance sampling (IS) function, which is inefficient in a nonlinear scenario. To enhance the performance of the conventional SMC-PHD filter, we propose in this paper two approaches using the cubature information filter (CIF) for multi-target tracking. More specifically, we first apply the posterior intensity as the IS function. Then, we propose to utilize the CIF algorithm with a gating method to calculate the IS function, namely CISMC-PHD approach. Meanwhile, a fast implementation of the CISMC-PHD approach is proposed, which clusters the particles into several groups according to the Gaussian mixture components. With the constructed components, the IS function is approximated instead of particles. As a result, the computational complexity of the CISMC-PHD approach can be significantly reduced. The simulation results demonstrate the effectiveness of our approaches. PMID:27171088

  18. Targeting Cancer with Antisense Oligomers

    SciTech Connect

    Hnatowich, DJ

    2008-10-28

    With financial assistance from the Department of Energy, we have shown definitively that radiolabeled antisense DNAs and other oligomers will accumulate in target cancer cells in vitro and in vivo by an antisense mechanism. We have also shown that the number of mRNA targets for our antisense oligomers in the cancer cell types that we have investigated so far is sufficient to provide and antisense image and/or radiotherapy of cancer in mice. These studies have been reported in about 10 publications. However our observation over the past several years has shown that radiolabeled antisense oligomers administered intravenously in their native and naked form will accumulate and be retained in target xenografts by an antisense mechanism but will also accumulate at high levels in normal organs such as liver, spleen and kidneys. We have investigated unsuccessfully several commercially available vectors. Thus the use of radiolabeled antisense oligomers for the imaging of cancer must await novel approaches to delivery. This laboratory has therefore pursued two new paths, optical imaging of tumor and Auger radiotherapy. We are developing a novel method of optical imaging tumor using antisense oligomers with a fluorophore is administered while hybridized with a shorter complementary oligomer with an inhibitor. In culture and in tumored mice that the duplex remains intact and thus nonfluorescent until it encounters its target mRNA at which time it dissociates and the antisense oligomer binds along with its fluorophore to the target. Simultaneous with the above, we have also observed, as have others, that antisense oligomers migrate rapidly and quantitatively to the nucleus upon crossing cell membranes. The Auger electron radiotherapy path results from this observation since the nuclear migration properties could be used effectively to bring and to retain in the nucleus an Auger emitting radionuclide such as 111In or 125I bound to the antisense oligomer. Since the object becomes

  19. Multi-Target Directed Drugs: A Modern Approach for Design of New Drugs for the treatment of Alzheimer’s Disease

    PubMed Central

    Dias, Kris Simone Tranches; Viegas, Jr, Claudio

    2014-01-01

    Alzheimer’s disease (AD) is a complex neurodegenerative disorder with a multi-faceted pathogenesis. So far, the therapeutic paradigm “one-compound-one-target” has failed and despite enormous efforts to elucidate the pathophysiology of AD, the disease is still incurable. The multiple factors involved in AD include amyloid aggregation to form insoluble neurotoxic plaques of Aβ, hyperphosphorylation of tau protein, oxidative stress, calcium imbalance, mitochondrial dysfunction and deterioration of synaptic transmission. These factors together, accentuate changes in the CNS homeostasis, starting a complex process of interconnected physiological damage, leading to cognitive and memory impairment and neuronal death. A recent approach for the rational design of new drug candidates, also called multitarget-directed ligand (MTDL) approach, has gained increasing attention by many research groups, which have developed a variety of hybrid compounds acting simultaneously on diverse biological targets. This review aims to show some recent advances and examples of the exploitation of MTDL approach in the rational design of novel drug candidate prototypes for the treatment of AD. PMID:24851088

  20. Morpholinos: Antisense and Sensibility.

    PubMed

    Blum, Martin; De Robertis, Edward M; Wallingford, John B; Niehrs, Christof

    2015-10-26

    For over 15 years, antisense morpholino oligonucleotides (MOs) have allowed developmental biologists to make key discoveries regarding developmental mechanisms in numerous model organisms. Recently, serious concerns have been raised as to the specificity of MO effects, and it has been recommended to discontinue their usage, despite the long experience of the scientific community with the MO tool in thousands of studies. Reviewing the many advantages afforded by MOs, we conclude that adequately controlled MOs should continue to be accepted as generic loss-of-function approach, as otherwise progress in developmental biology will greatly suffer. PMID:26506304

  1. Sequential measurement-driven multi-target Bayesian filter

    NASA Astrophysics Data System (ADS)

    Liu, Zong-xiang; Li, Li-juan; Xie, Wei-xin; Li, Liang-qun

    2015-12-01

    Bayesian filter is an efficient approach for multi-target tracking in the presence of clutter. Recently, considerable attention has been focused on probability hypothesis density (PHD) filter, which is an intensity approximation of the multi-target Bayesian filter. However, PHD filter is inapplicable to cases in which target detection probability is low. The use of this filter may result in a delay in data processing because it handles received measurements periodically, once every sampling period. To track multiple targets in the case of low detection probability and to handle received measurements in real time, we propose a sequential measurement-driven Bayesian filter. The proposed filter jointly propagates the marginal distributions and existence probabilities of each target in the filter recursion. We also present an implementation of the proposed filter for linear Gaussian models. Simulation results demonstrate that the proposed filter can more accurately track multiple targets than the Gaussian mixture PHD filter or cardinalized PHD filter.

  2. The Antisense RNA Approach: a New Application for In Vivo Investigation of the Stress Response of Oenococcus oeni, a Wine-Associated Lactic Acid Bacterium

    PubMed Central

    Darsonval, Maud; Msadek, Tarek; Alexandre, Hervé

    2015-01-01

    Oenococcus oeni is a wine-associated lactic acid bacterium mostly responsible for malolactic fermentation in wine. In wine, O. oeni grows in an environment hostile to bacterial growth (low pH, low temperature, and ethanol) that induces stress response mechanisms. To survive, O. oeni is known to set up transitional stress response mechanisms through the synthesis of heat stress proteins (HSPs) encoded by the hsp genes, notably a unique small HSP named Lo18. Despite the availability of the genome sequence, characterization of O. oeni genes is limited, and little is known about the in vivo role of Lo18. Due to the lack of genetic tools for O. oeni, an efficient expression vector in O. oeni is still lacking, and deletion or inactivation of the hsp18 gene is not presently practicable. As an alternative approach, with the goal of understanding the biological function of the O. oeni hsp18 gene in vivo, we have developed an expression vector to produce antisense RNA targeting of hsp18 mRNA. Recombinant strains were exposed to multiple stresses inducing hsp18 gene expression: heat shock and acid shock. We showed that antisense attenuation of hsp18 affects O. oeni survival under stress conditions. These results confirm the involvement of Lo18 in heat and acid tolerance of O. oeni. Results of anisotropy experiments also confirm a membrane-protective role for Lo18, as previous observations had already suggested. This study describes a new, efficient tool to demonstrate the use of antisense technology for modulating gene expression in O. oeni. PMID:26452552

  3. Mid-course multi-target tracking using continuous representation

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Toomarian, Nikzad

    1991-01-01

    The thrust of this paper is to present a new approach to multi-target tracking for the mid-course stage of the Strategic Defense Initiative (SDI). This approach is based upon a continuum representation of a cluster of flying objects. We assume that the velocities of the flying objects can be embedded into a smooth velocity field. This assumption is based upon the impossibility of encounters in a high density cluster between the flying objects. Therefore, the problem is reduced to an identification of a moving continuum based upon consecutive time frame observations. In contradistinction to the previous approaches, here each target is considered as a center of a small continuous neighborhood subjected to a local-affine transformation, and therefore, the target trajectories do not mix. Obviously, their mixture in plane of sensor view is apparent. The approach is illustrated by an example.

  4. A stochastic grid filter for multi-target tracking

    NASA Astrophysics Data System (ADS)

    Kim, Surrey; Kouritzin, Michael A.; Long, Hongwei; McCrosky, Jesse D.; Zhao, Xingqiu

    2004-08-01

    In this paper, we discuss multi-target tracking for a submarine model based on incomplete observations. The submarine model is a weakly interacting stochastic dynamic system with several submarines in the underlying region. Observations are obtained at discrete times from a number of sonobuoys equipped with hydrophones and consist of a nonlinear function of the current locations of submarines corrupted by additive noise. We use filtering methods to find the best estimation for the locations of the submarines. Our signal is a measure-valued process, resulting in filtering equations that can not be readily implemented. We develop Markov chain approximation approach to solve the filtering equation for our model. Our Markov chains are constructed by dividing the multi-target state space into cells, evolving particles in these cells, and employing a random time change approach. These approximations converge to the unnormalized conditional distribution of the signal process based on the back observations. Finally we present some simulation results by using the refining stochastic grid (REST) filter (developed from our Markov chain approximation method).

  5. Random finite set multi-target trackers: stochastic geometry for space situational awareness

    NASA Astrophysics Data System (ADS)

    Vo, Ba-Ngu; Vo, Ba-Tuong

    2015-05-01

    This paper describes the recent development in the random finite set RFS paradigm in multi-target tracking. Over the last decade the Probability Hypothesis Density filter has become synonymous with the RFS approach. As result the PHD filter is often wrongly used as a performance benchmark for the RFS approach. Since there is a suite of RFS-based multi-target tracking algorithms, benchmarking tracking performance of the RFS approach by using the PHD filter, the cheapest of these, is misleading. Such benchmarking should be performed with more sophisticated RFS algorithms. In this paper we outline the high-performance RFS-based multi-target trackers such that the Generalized Labled Multi-Bernoulli filter, and a number of efficient approximations and discuss extensions and applications of these filters. Applications to space situational awareness are discussed.

  6. An intelligent multi-target tracking system

    NASA Astrophysics Data System (ADS)

    Heyerdahl, E.

    1987-07-01

    An implementation of a general tracking system, integrating the target acquisition and tracking subsystems, was developed. It is based on image analysis and extensive use of models. The system permits improvements compared to in-service trackers in the sense that it enables multi-target tracking, automatic acquisition also during tracking and tracking through obscurations. The system is an implementation of a general tracking system. This system produces alternative estimates of a target and projects the corresponding objects into the image plane. To do this estimates of the projecting function are used. The different projections are synthesized through a thresholding process. The implemented system uses parallel Kalman filters to produce the object estimates and estimates the sensor position through a model of sensor dynamics and measurements of sensor angle velocity. Results, produced by the implemented system from IR imagery of a moving target in field are presented.

  7. Upping the Antisense Ante.

    ERIC Educational Resources Information Center

    Weiss, Rick

    1991-01-01

    Discussed is a designer-drug technology called antisense which blocks messenger RNA's ability to carry information to protein producing sites in the cell. The applications of this drug to AIDS research, cancer therapy, and other diseases are discussed. (KR)

  8. Antisense oligonucleotides as therapeutics for malignant diseases.

    PubMed

    Ho, P T; Parkinson, D R

    1997-04-01

    The continued progress in our understanding of the biology of neoplasia and in the identification, cloning, and sequencing of genes critical to tumor cell function permits the exploitation of this information to develop specific agents that may directly modulate the function of these genes or their protein products. Antisense oligonucleotides are being investigated as a potential therapeutic modality that takes direct advantage of molecular sequencing. The antisense approach uses short oligonucleotides designed to hybridize to a target mRNA transcript through Watson-Crick base pairing. The formation of this oligonucleotide: RNA heteroduplex results in mRNA inactivation and consequent inhibition of synthesis of the protein product. A fundamental attraction of the antisense approach is that this method potentially may be applied to any gene product, in theory, for the treatment of malignant and non-malignant diseases. However, this simple and attractive model has proven to be much more complex in practice. A number of important challenges in the preclinical development of antisense oligonucleotides have been identified, including stability, sequence length, cellular uptake, target sequence selection, appropriate negative controls, oligonucleotide: protein interactions, and cost of manufacture. Although the biological activity of an oligonucleotide against its molecular target is theoretically sequence-dependent, the animal pharmacokinetics and toxicology of phosphorothioate analogues directed against vastly disparate gene products appear relatively non-sequence-specific. In oncology, a number of clinical trials have been initiated with antisense oligonucleotides directed against molecular targets including: p53; bcl-2; raf kinase; protein kinase C-alpha; c-myb. The experience gained from these early clinical trials will be applicable to the next generation of antisense agents in development. These may include molecules with novel backbones or other structural

  9. Bayesian multi-target tracking and sequential object recognition

    NASA Astrophysics Data System (ADS)

    Armbruster, Walter

    2008-04-01

    The paper considers the following problem: given a 3D model of a reference target and a sequence of images of a 3D scene, identify the object in the scene most likely to be the reference target and determine its current pose. Finding the best match in each frame independently of previous decisions is not optimal, since past information is ignored. Our solution concept uses a novel Bayesian framework for multi target tracking and object recognition to define and sequentially update the probability that the reference target is any one of the tracked objects. The approach is applied to problems of automatic lock-on and missile guidance using a laser radar seeker. Field trials have resulted in high target hit probabilities despite low resolution imagery and temporarily highly occluded targets.

  10. Multi-target compressive laser ranging

    NASA Astrophysics Data System (ADS)

    Pandit, Pushkar P.; Dahl, Jason R.; Barber, Zeb W.; Babbitt, W. Randall

    2014-05-01

    Compressive laser ranging (CLR) is a method that exploits the sparsity available in the range domain using compressive sensing methods to directly obtain range domain information. Conventional ranging methods are marred by requirements of high bandwidth analog detection which includes severe SNR fall off with bandwidth in analog-to-digital conversion (ADC). Compressive laser ranging solves this problem by obtaining sub-centimeter resolution while using low bandwidth detection. High rate digital pulse pattern generators and off the shelf photonic devices are used to modulate the transmitted and received light from a superluminescent diode. CLR detection is demonstrated using low bandwidth, high dynamic range detectors along with photon counting techniques. The use of an incoherent source eliminates speckle issues and enables simplified CLR methods to get multi-target range profiles with 1-3cm resolution. Using compressive sensing methods CLR allows direct range measurements in the sub-Nyquist regime while reducing system resources, in particular the need for high bandwidth ADC.

  11. A Particle Multi-Target Tracker for Superpositional Measurements Using Labeled Random Finite Sets

    NASA Astrophysics Data System (ADS)

    Papi, Francesco; Kim, Du Yong

    2015-08-01

    In this paper we present a general solution for multi-target tracking with superpositional measurements. Measurements that are functions of the sum of the contributions of the targets present in the surveillance area are called superpositional measurements. We base our modelling on Labeled Random Finite Set (RFS) in order to jointly estimate the number of targets and their trajectories. This modelling leads to a labeled version of Mahler's multi-target Bayes filter. However, a straightforward implementation of this tracker using Sequential Monte Carlo (SMC) methods is not feasible due to the difficulties of sampling in high dimensional spaces. We propose an efficient multi-target sampling strategy based on Superpositional Approximate CPHD (SA-CPHD) filter and the recently introduced Labeled Multi-Bernoulli (LMB) and Vo-Vo densities. The applicability of the proposed approach is verified through simulation in a challenging radar application with closely spaced targets and low signal-to-noise ratio.

  12. Role of sialosyl Lewis(a) in adhesion of colon cancer cells--the antisense RNA approach.

    PubMed

    Kłopocki, A G; Laskowska, A; Antoniewicz-Papis, J; Duk, M; Lisowska, E; Ugorski, M

    1998-04-01

    To study whether the adhesion of colon cancer cells to E-selectin can be directly affected by changes in the expression level of sialosyl Le(a) antigen we created a specific loss-of-function phenotype. A stable subclone (CX-1.1) with high expression of sialosyl Le(a) structure, obtained from a heterogenous population of colon carcinoma CX-1 cells, was transfected with an expression vector containing a fragment of cDNA for alpha1,3/4-fucosyltransferase in antisense orientation. After transfection, the cell line was isolated which did not express sialosyl Le(a) antigen and lacked the alpha1,3/4-fucosyltransferase activity, despite an unchanged level of mRNA specific for this enzyme. It was found that the specific lack of expression of sialosyl Le(a) carbohydrate structure on the surface of colon cancer cells completely abolished their adhesion to E-selectin. To evaluate which cellular glycoconjugates carry sialosyl Le(a) antigen, glycoproteins as well as glycolipids of CX-1.1 cells were analysed for the expression of this structure. Anti-sialosyl Le(a) antibodies detected multiple glycoprotein bands with apparent molecular masses of 65-280 kDa on western blots, and an intense band representing sialosyl Le(a)-ganglioside on a thin-layer chromatogram. Using O-sialoglycoprotease from Pasteurella haemolytica and an alkaline beta-elimination procedure, it was shown that protein-linked sialosyl Le(a) structures are carried mostly by mucin-type glycoproteins. However, treatment of CX-1.1 cells with O-sialoglycoprotease did not decrease either their binding to E-selectin-expressing Chinese hamster ovary cells, or binding of anti-sialosyl Le(a) antibodies to the cell surface. These results suggested that cleavage of sialomucins uncovered cryptic sialosyl Le(a)-ganglioside, which was inaccessible for the antibody and E-selectin in untreated cells. This hypothesis was confirmed to some extent by the higher accessibility of gangliosides to galactose oxidase on the surface of O

  13. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective

    PubMed Central

    Talevi, Alan

    2015-01-01

    Multi-target drugs have raised considerable interest in the last decade owing to their advantages in the treatment of complex diseases and health conditions linked to drug resistance issues. Prospective drug repositioning to treat comorbid conditions is an additional, overlooked application of multi-target ligands. While medicinal chemists usually rely on some version of the lock and key paradigm to design novel therapeutics, modern pharmacology recognizes that the mid- and long-term effects of a given drug on a biological system may depend not only on the specific ligand-target recognition events but also on the influence of the repeated administration of a drug on the cell gene signature. The design of multi-target agents usually imposes challenging restrictions on the topology or flexibility of the candidate drugs, which are briefly discussed in the present article. Finally, computational strategies to approach the identification of novel multi-target agents are overviewed. PMID:26441661

  14. FISST based method for multi-target tracking in the image plane of optical sensors.

    PubMed

    Xu, Yang; Xu, Hui; An, Wei; Xu, Dan

    2012-01-01

    A finite set statistics (FISST)-based method is proposed for multi-target tracking in the image plane of optical sensors. The method involves using signal amplitude information in probability hypothesis density (PHD) filter which is derived from FISST to improve multi-target tracking performance. The amplitude of signals generated by the optical sensor is modeled first, from which the amplitude likelihood ratio between target and clutter is derived. An alternative approach is adopted for the situations where the signal noise ratio (SNR) of target is unknown. Then the PHD recursion equations incorporated with signal information are derived and the Gaussian mixture (GM) implementation of this filter is given. Simulation results demonstrate that the proposed method achieves significantly better performance than the generic PHD filter. Moreover, our method has much lower computational complexity in the scenario with high SNR and dense clutter. PMID:22736984

  15. FISST Based Method for Multi-Target Tracking in the Image Plane of Optical Sensors

    PubMed Central

    Xu, Yang; Xu, Hui; An, Wei; Xu, Dan

    2012-01-01

    A finite set statistics (FISST)-based method is proposed for multi-target tracking in the image plane of optical sensors. The method involves using signal amplitude information in probability hypothesis density (PHD) filter which is derived from FISST to improve multi-target tracking performance. The amplitude of signals generated by the optical sensor is modeled first, from which the amplitude likelihood ratio between target and clutter is derived. An alternative approach is adopted for the situations where the signal noise ratio (SNR) of target is unknown. Then the PHD recursion equations incorporated with signal information are derived and the Gaussian mixture (GM) implementation of this filter is given. Simulation results demonstrate that the proposed method achieves significantly better performance than the generic PHD filter. Moreover, our method has much lower computational complexity in the scenario with high SNR and dense clutter. PMID:22736984

  16. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    PubMed

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. PMID:26787513

  17. The anti-dementia drug candidate, (-)-clausenamide, improves memory impairment through its multi-target effect.

    PubMed

    Chu, Shifeng; Liu, Shaolin; Duan, Wenzhen; Cheng, Yong; Jiang, Xueying; Zhu, Chuanjiang; Tang, Kang; Wang, Runsheng; Xu, Lin; Wang, Xiaoying; Yu, Xiaoming; Wu, Kemei; Wang, Yan; Wang, Muzou; Huang, Huiyong; Zhang, Juntian

    2016-06-01

    Multi-target drugs, such as the cocktail therapy used for treating AIDS, often show stronger efficacy than single-target drugs in treating complicated diseases. This review will focus on clausenamide (clau), a small molecule compound originally isolated from the traditional Chinese herbal medicine, Clausenalansium. The finding of four chiral centers in clau molecules predicted the presence of 16 clau enantiomers, including (-)-clau and (+)-clau. All of the predicted enantiomers have been successfully synthesized via innovative chemical approaches, and pharmacological studies have demonstrated (-)-clau as a eutomer and (+)-clau as a distomer in improving cognitive function in both normal physiological and pathological conditions. Mechanistically, the nootropic effect of (-)-clau is mediated by its multi-target actions, which include mild elevation of intracellular Ca(2+) concentrations, modulation of the cholinergic system, regulation of synaptic plasticity, and activation of cellular and molecular signaling pathways involved in learning and memory. Furthermore, (-)-clau suppresses the pathogenesis of Alzheimer's disease by inhibiting multiple etiological processes: (1) beta amyloid protein-induced intracellular Ca(2+) overload and apoptosis and (2) tau hyperphosphorylation and neurodegeneration. In conclusion, the nature of the multi-target actions of (-)-clau substantiates it as a promising chiral drug candidate for enhancing human cognition in normal conditions and treating memory impairment in neurodegenerative diseases. PMID:26812265

  18. Sense antisense DNA strand?

    PubMed

    Boldogkói, Z; Kaliman, A V; Murvai, J; Fodor, I

    1994-01-01

    Recent evidence indicates that alphaherpesviruses express latency associated transcripts (LATs) from the antisense strand of immediate-early (IE) genes of the viral genome. It has been suggested that LATs containing extended open reading frames (ORFs), might be translated into (a) protein product(s). We found that a salient feature of some herpesvirus DNAs is a high GC preference at the third codon positions. The consequence of this feature is that the probability of a stop-codon appearing at two of the six reading frames of the DNA strand is very low. Therefore, the presence of an extended ORF does not necessarily mean that it is relevant to real translation. PMID:7810418

  19. The Role of Structural Elements of the 5'-Terminal Region of p53 mRNA in Translation under Stress Conditions Assayed by the Antisense Oligonucleotide Approach

    PubMed Central

    Swiatkowska, Agata; Zydowicz, Paulina; Gorska, Agnieszka; Suchacka, Julia; Dutkiewicz, Mariola; Ciesiołka, Jerzy

    2015-01-01

    The p53 protein is one of the major factors responsible for cell cycle regulation and stress response. In the 5’-terminal region of p53 mRNA, an IRES element has been found which takes part in the translational regulation of p53 expression. Two characteristic hairpin motifs are present in this mRNA region: G56-C169, with the first AUG codon, and U180-A218, which interacts with the Hdm2 protein (human homolog of mouse double minute 2 protein). 2′-OMe modified antisense oligomers hybridizing to the 5'-terminal region of p53 mRNA were applied to assess the role of these structural elements in translation initiation under conditions of cellular stress. Structural changes in the RNA target occurring upon oligomers’ binding were monitored by the Pb2+-induced cleavage method. The impact of antisense oligomers on the synthesis of two proteins, the full-length p53 and its isoform Δ40p53, was analysed in HT-29, MCF-7 and HepG2 cells, under normal conditions and under stress, as well as in vitro conditions. The results revealed that the hairpin U180-A218 and adjacent single-stranded region A219-A228 were predominantly responsible for high efficacy of IRES-mediated translation in the presence of stress factors. These motifs play a role of cis-acting elements which are able to modulate IRES activity, likely via interactions with protein factors. PMID:26513723

  20. Antisense-mediated exon inclusion

    PubMed Central

    Hua, Yimin; Krainer, Adrian R

    2012-01-01

    Exon skipping induced by gene mutations is a common mechanism responsible for many genetic diseases. A practical approach to correct the aberrant splicing of defective genes is to use antisense oligonucleotides (ASOs). The recognition of splice sites and the regulation of splicing involve multiple positive or negative cis-acting elements and trans-acting factors. Base-pairing of ASOs to a negative element in a targeted pre-mRNA blocks the binding of splicing repressors to this cis-element and/or disrupts an unfavorable secondary structure; as a result, the ASO restores exon inclusion. For example, we have recently shown that appropriate 2’-O-(2-methoxyethyl) (MOE) phosphorothioate-modified ASOs can efficiently correct survival motor neuron 2 (SMN2) exon 7 splicing in a cell-free splicing assay, in cultured human cells—including patient fibroblasts—and in both peripheral tissues and the CNS of SMA mouse models. These ASOs are promising drug leads for SMA therapy. PMID:22454070

  1. Antisense mediated exon skipping therapy for duchenne muscular dystrophy (DMD).

    PubMed

    Brolin, Camilla; Shiraishi, Takehiko

    2011-01-01

    Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most promising methods for restoration of dystrophin expression. This approach has been tested extensively targeting different exons in numerous models both in vitro and in vivo. During the past 10 years, there has been a considerable progress by using DMD animal models involving three types of antisense oligonucleotides (2'-O-methyl phosphorothioate (2OME-PS), phosphorodiamidate morpholino oligomer (PMO)) and peptide nucleic acid (PNA). PMID:21686247

  2. Inferring multi-target QSAR models with taxonomy-based multi-task learning

    PubMed Central

    2013-01-01

    Background A plethora of studies indicate that the development of multi-target drugs is beneficial for complex diseases like cancer. Accurate QSAR models for each of the desired targets assist the optimization of a lead candidate by the prediction of affinity profiles. Often, the targets of a multi-target drug are sufficiently similar such that, in principle, knowledge can be transferred between the QSAR models to improve the model accuracy. In this study, we present two different multi-task algorithms from the field of transfer learning that can exploit the similarity between several targets to transfer knowledge between the target specific QSAR models. Results We evaluated the two methods on simulated data and a data set of 112 human kinases assembled from the public database ChEMBL. The relatedness between the kinase targets was derived from the taxonomy of the humane kinome. The experiments show that multi-task learning increases the performance compared to training separate models on both types of data given a sufficient similarity between the tasks. On the kinase data, the best multi-task approach improved the mean squared error of the QSAR models of 58 kinase targets. Conclusions Multi-task learning is a valuable approach for inferring multi-target QSAR models for lead optimization. The application of multi-task learning is most beneficial if knowledge can be transferred from a similar task with a lot of in-domain knowledge to a task with little in-domain knowledge. Furthermore, the benefit increases with a decreasing overlap between the chemical space spanned by the tasks. PMID:23842210

  3. Viral escape from antisense RNA.

    PubMed

    Bull, J J; Jacobson, A; Badgett, M R; Molineux, I J

    1998-05-01

    RNA coliphage SP was propagated for several generations on a host expressing an inhibitory antisense RNA complementary to bases 31-270 of the positive-stranded genome. Phages evolved that escaped inhibition. Typically, these escape mutants contained 3-4 base substitutions, but different sequences were observed among different isolates. The mutations were located within three different types of structural features within the predicted secondary structure of SP genomic RNA: (i) hairpin loops; (ii) hairpin stems; and (iii) the 5' region of the phage genome complementary to the antisense molecule. Computer modelling of the mutant genomic RNAs showed that all of the substitutions within hairpin stems improved the Watson-Crick pairing of the stem. No major structural rearrangements were predicted for any of the mutant genomes, and most substitutions in coding regions did not alter the amino acid sequence. Although the evolved phage populations were polymorphic for substitutions, many substitutions appeared independently in two selected lines. The creation of a new, perfect, antisense RNA against an escape mutant resulted in the inhibition of that mutant but not of other escape mutants nor of the ancestral, unevolved phage. Thus, at least in this system, a population of viruses that evolved to escape from a single antisense RNA would require a cocktail of several antisense RNAs for inhibition. PMID:9643550

  4. Multi-Target Stool DNA Test: Is the Future Here?

    PubMed

    Sweetser, Seth; Ahlquist, David A

    2016-06-01

    Colorectal cancer (CRC) screening reduces CRC incidence and mortality and is widely recommended. However, despite these demonstrated benefits, a large percentage of the population remains unscreened. The multi-target stool DNA (MT-sDNA) test is a new, non-invasive option for CRC screening that has a high accuracy rate in detection of colorectal neoplasia and offers great opportunity to enhance screening uptake. This review provides the current state of the art knowledge about the use of MT-sDNA in CRC screening. PMID:27165404

  5. Network Pharmacology Strategies Toward Multi-Target Anticancer Therapies: From Computational Models to Experimental Design Principles

    PubMed Central

    Tang, Jing; Aittokallio, Tero

    2014-01-01

    Polypharmacology has emerged as novel means in drug discovery for improving treatment response in clinical use. However, to really capitalize on the polypharmacological effects of drugs, there is a critical need to better model and understand how the complex interactions between drugs and their cellular targets contribute to drug efficacy and possible side effects. Network graphs provide a convenient modeling framework for dealing with the fact that most drugs act on cellular systems through targeting multiple proteins both through on-target and off-target binding. Network pharmacology models aim at addressing questions such as how and where in the disease network should one target to inhibit disease phenotypes, such as cancer growth, ideally leading to therapies that are less vulnerable to drug resistance and side effects by means of attacking the disease network at the systems level through synergistic and synthetic lethal interactions. Since the exponentially increasing number of potential drug target combinations makes pure experimental approach quickly unfeasible, this review depicts a number of computational models and algorithms that can effectively reduce the search space for determining the most promising combinations for experimental evaluation. Such computational-experimental strategies are geared toward realizing the full potential of multi-target treatments in different disease phenotypes. Our specific focus is on system-level network approaches to polypharmacology designs in anticancer drug discovery, where we give representative examples of how network-centric modeling may offer systematic strategies toward better understanding and even predicting the phenotypic responses to multi-target therapies.

  6. Antibacterial Drug Leads: DNA and Enzyme Multi-Targeting

    PubMed Central

    Zhu, Wei; Wang, Yang; Li, Kai; Gao, Jian; Huang, Chun-Hsiang; Chen, Chun-Chi; Ko, Tzu-Ping; Zhang, Yonghui; Guo, Rey-Ting; Oldfield, Eric

    2015-01-01

    We report the results of an investigation of the activity of a series of amidine and bisamidine compounds against Staphylococcus aureus and Escherichia coli. The most active compounds bound to an AT-rich DNA dodecamer (CGCGAATTCGCG)2, and using DSC were found to increase the melting transition by up to 24 °C. Several compounds also inhibited undecaprenyl diphosphate synthase (UPPS) with IC50 values of 100–500 nM and we found good correlations (R2 = 0.89, S. aureus; R2 = 0.79, E. coli)) between experimental and predicted cell growth inhibition by using DNA ΔTm and UPPS IC50 experimental results together with 1 computed descriptor. We also solved the structures of three bisamidines binding to DNA as well as three UPPS structures. Overall, the results are of general interest in the context of the development of resistance-resistant antibiotics that involve multi-targeting. PMID:25574764

  7. Multi-Robot, Multi-Target Particle Swarm Optimization Search in Noisy Wireless Environments

    SciTech Connect

    Kurt Derr; Milos Manic

    2009-05-01

    Multiple small robots (swarms) can work together using Particle Swarm Optimization (PSO) to perform tasks that are difficult or impossible for a single robot to accomplish. The problem considered in this paper is exploration of an unknown environment with the goal of finding a target(s) at an unknown location(s) using multiple small mobile robots. This work demonstrates the use of a distributed PSO algorithm with a novel adaptive RSS weighting factor to guide robots for locating target(s) in high risk environments. The approach was developed and analyzed on multiple robot single and multiple target search. The approach was further enhanced by the multi-robot-multi-target search in noisy environments. The experimental results demonstrated how the availability of radio frequency signal can significantly affect robot search time to reach a target.

  8. Development of a multi-target TaqMan assay to detect eastern equine encephalitis virus variants in mosquitoes.

    PubMed

    Armstrong, Philip M; Prince, Nicholanna; Andreadis, Theodore G

    2012-10-01

    Disease outbreaks caused by eastern equine encephalitis virus (EEEV; Togaviridae, Alphavirus) may be prevented by implementing effective surveillance and intervention strategies directed against the mosquito vector. Methods for EEEV detection in mosquitoes include a real-time reverse transcriptase PCR technique (TaqMan assay), but we report its failure to detect variants isolated in Connecticut in 2011, due to a single base-pair mismatch in the probe-binding site. To improve the molecular detection of EEEV, we developed a multi-target TaqMan assay by adding a second primer/probe set to provide redundant targets for EEEV detection. The multi-target TaqMan assay had similar performance characteristics to the conventional assay, but also detected newly-evolving strains of EEEV. The approach described here increases the reliability of the TaqMan assay by creating back-up targets for virus detection without sacrificing sensitivity or specificity. PMID:22835151

  9. On 'polypharmacy' and multi-target agents, complementary strategies for improving the treatment of depression: a comparative appraisal.

    PubMed

    Millan, Mark J

    2014-07-01

    Major depression is a heterogeneous disorder, both in terms of symptoms, ranging from anhedonia to cognitive impairment, and in terms of pathogenesis, with many interacting genetic, epigenetic, developmental and environmental causes. Accordingly, it seems unlikely that depressive states could be fully controlled by a drug possessing one discrete mechanism of action and, in the wake of disappointing results with several classes of highly selective agent, multi-modal treatment concepts are attracting attention. As concerns pharmacotherapy, there are essentially two core strategies. First, multi-target antidepressants that act via two or more complementary mechanisms and, second, polypharmacy, which refers to co-administration of two distinct drugs, usually in separate pills. Both multi-target agents and polypharmacy ideally couple a therapeutically unexploited action to a clinically established mechanism in order to enhance efficacy, moderate side-effects, accelerate onset of action and treat a broader range of symptoms. The melatonin MT1/MT2 agonist and 5-HT(2C) antagonist, agomelatine, which is effective in the short- and long-term treatment of depression, exemplifies the former approach, while evidence-based polypharmacy is illustrated by the adjunctive use of second-generation antipsychotics with serotonin reuptake inhibitors for treatment of resistant depression. Histone acetylation and methylation, ghrelin signalling, inflammatory modulators, metabotropic glutamate-7 receptors and trace amine-associated-1 receptors comprise attractive substrates for new multi-target and polypharmaceutical strategies. The present article outlines the rationale underpinning multi-modal approaches for treating depression, and critically compares and contrasts the pros and cons of established and potentially novel multi-target vs. polypharmaceutical treatments. On balance, the former appear the most promising for the elaboration, development and clinical implementation of

  10. Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo

    NASA Astrophysics Data System (ADS)

    Simons, Michael; Edelman, Elazer R.; Dekeyser, Jean-Luc; Langer, Robert; Rosenberg, Robert D.

    1992-09-01

    SYNTHETIC antisense oligonucleotides have been used to dissect gene function in vitro. Technical difficulties prevented the use of this approach for investigating the effect of gene products in vivo. Here we report the use of local delivery of antisense c-myb oligonu-cleotide to suppress intimal accumulation of rat carotid arterial smooth muscle cells. Our results suggest that antisense oligonucleotides can be used to define the in vivo biological role of specific macromolecules in the blood vessel wall and could potentially serve as a new class of therapeutic agents for cardiovascular disorders.

  11. A Network-Based Multi-Target Computational Estimation Scheme for Anticoagulant Activities of Compounds

    PubMed Central

    Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie

    2011-01-01

    Background Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. Methodology We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. Conclusions This article proposes a network-based multi-target computational estimation method for

  12. Stability measurements of antisense oligonucleotides by capillary gel electrophoresis.

    PubMed

    Bruin, G J; Börnsen, K O; Hüsken, D; Gassmann, E; Widmer, H M; Paulus, A

    1995-08-11

    The approach of using antisense oligonucleotides as potential drugs is based on hybridization of a short chemically-modified oligonucleotide with complementary cellular DNA or RNA sequences. A critical question is the stability of chemically modified antisense oligonucleotides in cellular environments. In a model system, resistance against various nucleases was evaluated by capillary gel electrophoresis (CGE). For some of the samples, matrix assisted laser desorption and ionization mass spectrometry (MALDI-MS) was used as an additional analytical tool to perform stability measurements. Using CGE, the enzymatic degradation of single nucleotides from the oligomer can be followed after different incubation times. 10% T polyacrylamide gels give baseline resolution for oligonucleotides ranging between 5 and 30 bases in length. The kinetic influence of a specific nuclease concentration and the antisense oligonucleotide structure on the cleavage reaction are discussed. Also, a simple desalting method to improve the injection efficiency and sensitivity of the method are described. Examples of measurements of chemically modified antisense 19-mers are presented. PMID:7581844

  13. Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts.

    PubMed

    Kramer, Nicholas J; Carlomagno, Yari; Zhang, Yong-Jie; Almeida, Sandra; Cook, Casey N; Gendron, Tania F; Prudencio, Mercedes; Van Blitterswijk, Marka; Belzil, Veronique; Couthouis, Julien; Paul, Joseph West; Goodman, Lindsey D; Daughrity, Lillian; Chew, Jeannie; Garrett, Aliesha; Pregent, Luc; Jansen-West, Karen; Tabassian, Lilia J; Rademakers, Rosa; Boylan, Kevin; Graff-Radford, Neill R; Josephs, Keith A; Parisi, Joseph E; Knopman, David S; Petersen, Ronald C; Boeve, Bradley F; Deng, Ning; Feng, Yanan; Cheng, Tzu-Hao; Dickson, Dennis W; Cohen, Stanley N; Bonini, Nancy M; Link, Christopher D; Gao, Fen-Biao; Petrucelli, Leonard; Gitler, Aaron D

    2016-08-12

    An expanded hexanucleotide repeat in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal dementia (c9FTD/ALS). Therapeutics are being developed to target RNAs containing the expanded repeat sequence (GGGGCC); however, this approach is complicated by the presence of antisense strand transcription of expanded GGCCCC repeats. We found that targeting the transcription elongation factor Spt4 selectively decreased production of both sense and antisense expanded transcripts, as well as their translated dipeptide repeat (DPR) products, and also mitigated degeneration in animal models. Knockdown of SUPT4H1, the human Spt4 ortholog, similarly decreased production of sense and antisense RNA foci, as well as DPR proteins, in patient cells. Therapeutic targeting of a single factor to eliminate c9FTD/ALS pathological features offers advantages over approaches that require targeting sense and antisense repeats separately. PMID:27516603

  14. Pharmaceutical prerequisites for a multi-target therapy.

    PubMed

    Kroll, U; Cordes, C

    2006-01-01

    The quality of a phytomedicine is defined by the quality of the herbal drug, the manufacturing of the drug preparations and the properties of the finished product, taking into account the special requirements of the individual herbal species in accordance with Good Manufacturing Practice (GMP) standards [2003. Medicinal Products for Human and Veterinary Use. Eudralex, vol. 4 (2003/94/EC)]. The quality control of the complete process is based on pharmacognostic methods, characteristic fingerprint chromatograms, defined amounts of marker substances, physicochemical characteristics and microbiological monitoring. For a herbal multi-component preparation used in multi-target therapy, these pharmaceutical prerequisites have to be ensured for all components and for their combination, as is exemplified by Iberogast((R)) (STW 5) a fixed combination of hydroethanolic extracts of bitter candytuft (Iberis amara), angelica root (Angelicae radix), milk thistle fruit (Silybi mariani fructus), celandine herb (Chelidonii herba), caraway fruit (Carvi fructus), liquorice root (Liquiritiae radix), peppermint herb (Menthae piperitae folium), balm leaf (Melissae folium) and chamomile flower (Matricariae flos) using in the therapy of gastrointestinal complaints (Rösch et al., 2006). The prerequisites for the quality of each of its components according to actual standards are at first the cultivation of the plant material according to the Guidelines for Good Agricultural Practice (GAP) conditions of Medicinal and Aromatic Plants [1998. Z. Arzn. Gew. Pfl. 3, 166-178] to yield a defined raw material of high quality. Characteristic compounds of the extracts had to be identified and different analytical methods such as HPLC, with low coefficients of variation had to be developed to analyze each of the standardized ethanolic extracts and the finished product. At the example of the extract of I. amara these necessary investigations are described. The variability of the plant material in its

  15. Phenolic thio- and selenosemicarbazones as multi-target drugs.

    PubMed

    Calcatierra, Verónica; López, Óscar; Fernández-Bolaños, José G; Plata, Gabriela B; Padrón, José M

    2015-04-13

    A series of isosteric phenolic thio- and selenosemicarbazones have been obtained by condensation of naturally-occurring phenolic aldehydes and thio(seleno)semicarbazides. Title compounds were designed as potential multi-target drugs, and a series of structure-activity relationships could be established upon their in vitro assays: antioxidant activity, α-glucosidase inhibition and antiproliferative activity against six human tumor cell lines: A549 (non-small cell lung), HBL-100 (breast), HeLa (cervix), SW1573 (non-small cell lung), T-47D (breast) and WiDr (colon). For the antiradical activity, selenium atom and 2 or 3 phenolic hydroxyl groups proved to be essential motifs; remarkably, the compound with the most potent activity, with a trihydroxyphenyl scaffold (EC50 = 4.87 ± 1.57 μM) was found to be stronger than natural hydroxytyrosol, a potent antioxidant present in olive oil (EC50 = 13.80 ± 1.41 μM). Furthermore, one of the thiosemicarbazones was found to be a strong non-competitive inhibitor of α-glucosidase (Ki = 9.6 ± 1.6 μM), with an 8-fold increase in activity compared to acarbose (Ki = 77.9 ± 11.4 μM), marketed for the treatment of type-2 diabetes. Most of the synthesized compounds also exhibited relevant antiproliferative activities; in particular, seleno derivatives showed GI50 values lower than 6.0 μM for all the tested cell lines; N-naphthyl mono- and dihydroxylated derivatives behaved as more potent antiproliferative agents than 5-fluorouracil or cisplatin. PMID:25752525

  16. Multi-target siRNA: Therapeutic Strategy for Hepatocellular Carcinoma

    PubMed Central

    Li, Tiejun; Xue, Yuwen; Wang, Guilan; Gu, Tingting; Li, Yunlong; Zhu, York Yuanyuan; Chen, Li

    2016-01-01

    Multiple targets RNAi strategy is a preferred way to treat multigenic diseases, especially cancers. In the study, multi-target siRNAs were designed to inhibit NET-1, EMS1 and VEGF genes in hepatocellular carcinoma (HCC) cells. And multi-target siRNAs showed better silencing effects on NET-1, EMS1 and VEGF, compared with single target siRNA. Moreover, multi-target siRNA showed greater suppression effects on proliferation, migration, invasion, angiogenesis and induced apoptosis in HCC cells. The results suggested that multi-target siRNA might be a preferred strategy for cancer therapy and NET-1, EMS1 and VEGF could be effective targets for HCC treatments. PMID:27390607

  17. Antisense oligodeoxynucleotide to the cystic fibrosis gene inhibits anion transport in normal cultured sweat duct cells

    SciTech Connect

    Sorscher, E.J.; Kirk, K.L.; Weaver, M.L.; Jilling, T.; Blalock, J.E.; LeBoeuf, R.D. )

    1991-09-01

    The authors have tested the hypothesis that the cystic fibrosis (CF) gene product, called the CF transmembrane conductance regulator (CFTR), mediates anion transport in normal human sweat duct cells. Sweat duct cells in primary culture were treated with oligodeoxynucleotides that were antisense to the CFTR gene transcript in order to block the expression of the wild-type CFTR. Anion transport in CFTR transcript antisense-treated cells was then assessed with a halide-specific dye, 6-methoxy-N-(3-sulfopropryl)quinolinium, and fluorescent digital imaging microscopy to monitor halide influx and efflux from single sweat duct cells. Antisense oligodeoxynucleotide treatment for 24 hr virtually abolished Cl{sup {minus}} transport in sweat duct cells compared with untreated cells or control cells treated with sense oligodeoxynucleotides. Br{sup {minus}} uptake into sweat duct cells was also blocked after a 24-hr CFTR transcript antisense treatments, but not after treatments for only 4 hr. Lower concentrations of antisense oligodeoxynucleotides were less effective at inhibiting Cl{sup {minus}} transport. These results indicate that oligodeoxynucleotides that are antisense to CFTR transcript inhibit sweat duct Cl{sup {minus}} permeability in both a time-dependent and dose-dependent manner. This approach provides evidence that inhibition of the expression of the wild-type CFTR gene in a normal, untransfected epithelial cell results in an inhibition of Cl{sup {minus}} permeability.

  18. Antisense oligodeoxynucleotide to the cystic fibrosis gene inhibits anion transport in normal cultured sweat duct cells.

    PubMed Central

    Sorscher, E J; Kirk, K L; Weaver, M L; Jilling, T; Blalock, J E; LeBoeuf, R D

    1991-01-01

    We have tested the hypothesis that the cystic fibrosis (CF) gene product, called the CF transmembrane conductance regulator (CFTR), mediates anion transport in normal human sweat duct cells. Sweat duct cells in primary culture were treated with oligodeoxynucleotides that were antisense to the CFTR gene transcript in order to block the expression of the wild-type CFTR. Anion transport in CFTR transcript antisense-treated cells was then assessed with a halide-specific dye, 6-methoxy-N-(3-sulfopropyl)quinolinium, and fluorescent digital imaging microscopy to monitor halide influx and efflux from single sweat duct cells. Antisense oligodeoxynucleotide treatment (3.9 or 1.3 microM) for 24 hr virtually abolished Cl- transport in sweat duct cells compared with untreated cells or control cells treated with sense oligodeoxynucleotides. Br- uptake into sweat duct cells was also blocked after a 24-hr CFTR transcript antisense treatment, but not after treatment for only 4 hr. Lower concentrations of antisense oligodeoxynucleotides were less effective at inhibiting Cl- transport. These results indicate that oligodeoxynucleotides that are antisense to CFTR transcript inhibit sweat duct Cl- permeability in both a time-dependent and dose-dependent manner. This approach provides evidence that inhibition of the expression of the wild-type CFTR gene in a normal, untransfected epithelial cell results in an inhibition of Cl- permeability. Images PMID:1715578

  19. Antisense Oligonucleotide Therapy for Inherited Retinal Dystrophies.

    PubMed

    Gerard, Xavier; Garanto, Alejandro; Rozet, Jean-Michel; Collin, Rob W J

    2016-01-01

    Inherited retinal dystrophies (IRDs) are an extremely heterogeneous group of genetic diseases for which currently no effective treatment strategies exist. Over the last decade, significant progress has been made utilizing gene augmentation therapy for a few genetic subtypes of IRD, although several technical challenges so far prevent a broad clinical application of this approach for other forms of IRD. Many of the mutations leading to these retinal diseases affect pre-mRNA splicing of the mutated genes . Antisense oligonucleotide (AON)-mediated splice modulation appears to be a powerful approach to correct the consequences of such mutations at the pre-mRNA level , as demonstrated by promising results in clinical trials for several inherited disorders like Duchenne muscular dystrophy, hypercholesterolemia and various types of cancer. In this mini-review, we summarize ongoing pre-clinical research on AON-based therapy for a few genetic subtypes of IRD , speculate on other potential therapeutic targets, and discuss the opportunities and challenges that lie ahead to translate splice modulation therapy for retinal disorders to the clinic. PMID:26427454

  20. Development of Antisense Drugs for Dyslipidemia.

    PubMed

    Yamamoto, Tsuyoshi; Wada, Fumito; Harada-Shiba, Mariko

    2016-09-01

    Abnormal elevation of low-density lipoprotein (LDL) and triglyceride-rich lipoproteins in plasma as well as dysfunction of anti-atherogenic high-density lipoprotein (HDL) have both been recognized as essential components of the pathogenesis of atherosclerosis and are classified as dyslipidemia. This review describes the arc of development of antisense oligonucleotides for the treatment of dyslipidemia. Chemically-armed antisense candidates can act on various kinds of transcripts, including mRNA and miRNA, via several different endogenous antisense mechanisms, and have exhibited potent systemic anti-dyslipidemic effects. Here, we present specific cutting-edge technologies have recently been brought into antisense strategies, and describe how they have improved the potency of antisense drugs in regard to pharmacokinetics and pharmacodynamics. In addition, we discuss perspectives for the use of armed antisense oligonucleotides as new clinical options for dyslipidemia, in the light of outcomes of recent clinical trials and safety concerns indicated by several clinical and preclinical studies. PMID:27466159

  1. Powerful inner/outer controlled multi-target magnetic nanoparticle drug carrier prepared by liquid photo-immobilization

    PubMed Central

    Guan, Yan-Qing; Zheng, Zhe; Huang, Zheng; Li, Zhibin; Niu, Shuiqin; Liu, Jun-Ming

    2014-01-01

    Nanomagnetic materials offer exciting avenues for advancing cancer therapies. Most researches have focused on efficient delivery of drugs in the body by incorporating various drug molecules onto the surface of nanomagnetic particles. The challenge is how to synthesize low toxic nanocarriers with multi-target drug loading. The cancer cell death mechanisms associated with those nanocarriers remain unclear either. Following the cell biology mechanisms, we develop a liquid photo-immobilization approach to attach doxorubicin, folic acid, tumor necrosis factor-α, and interferon-γ onto the oleic acid molecules coated Fe3O4 magnetic nanoparticles to prepare a kind of novel inner/outer controlled multi-target magnetic nanoparticle drug carrier. In this work, this approach is demonstrated by a variety of structural and biomedical characterizations, addressing the anti-cancer effects in vivo and in vitro on the HeLa, and it is highly efficient and powerful in treating cancer cells in a valuable programmed cell death mechanism for overcoming drug resistance. PMID:24845203

  2. Extending multi-tenant architectures: a database model for a multi-target support in SaaS applications

    NASA Astrophysics Data System (ADS)

    Rico, Antonio; Noguera, Manuel; Garrido, José Luis; Benghazi, Kawtar; Barjis, Joseph

    2016-05-01

    Multi-tenant architectures (MTAs) are considered a cornerstone in the success of Software as a Service as a new application distribution formula. Multi-tenancy allows multiple customers (i.e. tenants) to be consolidated into the same operational system. This way, tenants run and share the same application instance as well as costs, which are significantly reduced. Functional needs vary from one tenant to another; either companies from different sectors run different types of applications or, although deploying the same functionality, they do differ in the extent of their complexity. In any case, MTA leaves one major concern regarding the companies' data, their privacy and security, which requires special attention to the data layer. In this article, we propose an extended data model that enhances traditional MTAs in respect of this concern. This extension - called multi-target - allows MT applications to host, manage and serve multiple functionalities within the same multi-tenant (MT) environment. The practical deployment of this approach will allow SaaS vendors to target multiple markets or address different levels of functional complexity and yet commercialise just one single MT application. The applicability of the approach is demonstrated via a case study of a real multi-tenancy multi-target (MT2) implementation, called Globalgest.

  3. Powerful inner/outer controlled multi-target magnetic nanoparticle drug carrier prepared by liquid photo-immobilization

    NASA Astrophysics Data System (ADS)

    Guan, Yan-Qing; Zheng, Zhe; Huang, Zheng; Li, Zhibin; Niu, Shuiqin; Liu, Jun-Ming

    2014-05-01

    Nanomagnetic materials offer exciting avenues for advancing cancer therapies. Most researches have focused on efficient delivery of drugs in the body by incorporating various drug molecules onto the surface of nanomagnetic particles. The challenge is how to synthesize low toxic nanocarriers with multi-target drug loading. The cancer cell death mechanisms associated with those nanocarriers remain unclear either. Following the cell biology mechanisms, we develop a liquid photo-immobilization approach to attach doxorubicin, folic acid, tumor necrosis factor-α, and interferon-γ onto the oleic acid molecules coated Fe3O4 magnetic nanoparticles to prepare a kind of novel inner/outer controlled multi-target magnetic nanoparticle drug carrier. In this work, this approach is demonstrated by a variety of structural and biomedical characterizations, addressing the anti-cancer effects in vivo and in vitro on the HeLa, and it is highly efficient and powerful in treating cancer cells in a valuable programmed cell death mechanism for overcoming drug resistance.

  4. Curcumin: A multi-target disease-modifying agent for late-stage transthyretin amyloidosis

    PubMed Central

    Ferreira, Nelson; Gonçalves, Nádia P.; Saraiva, Maria J.; Almeida, Maria R.

    2016-01-01

    Transthyretin amyloidoses encompass a variety of acquired and hereditary diseases triggered by systemic extracellular accumulation of toxic transthyretin aggregates and fibrils, particularly in the peripheral nervous system. Since transthyretin amyloidoses are typically complex progressive disorders, therapeutic approaches aiming multiple molecular targets simultaneously, might improve therapy efficacy and treatment outcome. In this study, we evaluate the protective effect of physiologically achievable doses of curcumin on the cytotoxicity induced by transthyretin oligomers in vitro by showing reduction of caspase-3 activity and the levels of endoplasmic reticulum-resident chaperone binding immunoglobulin protein. When given to an aged Familial Amyloidotic Polyneuropathy mouse model, curcumin not only reduced transthyretin aggregates deposition and toxicity in both gastrointestinal tract and dorsal root ganglia but also remodeled congophilic amyloid material in tissues. In addition, curcumin enhanced internalization, intracellular transport and degradation of transthyretin oligomers by primary macrophages from aged Familial Amyloidotic Polyneuropathy transgenic mice, suggesting an impaired activation of naïve phagocytic cells exposed to transthyretin toxic intermediate species. Overall, our results clearly support curcumin or optimized derivatives as promising multi-target disease-modifying agent for late-stage transthyretin amyloidosis. PMID:27197872

  5. Curcumin: A multi-target disease-modifying agent for late-stage transthyretin amyloidosis.

    PubMed

    Ferreira, Nelson; Gonçalves, Nádia P; Saraiva, Maria J; Almeida, Maria R

    2016-01-01

    Transthyretin amyloidoses encompass a variety of acquired and hereditary diseases triggered by systemic extracellular accumulation of toxic transthyretin aggregates and fibrils, particularly in the peripheral nervous system. Since transthyretin amyloidoses are typically complex progressive disorders, therapeutic approaches aiming multiple molecular targets simultaneously, might improve therapy efficacy and treatment outcome. In this study, we evaluate the protective effect of physiologically achievable doses of curcumin on the cytotoxicity induced by transthyretin oligomers in vitro by showing reduction of caspase-3 activity and the levels of endoplasmic reticulum-resident chaperone binding immunoglobulin protein. When given to an aged Familial Amyloidotic Polyneuropathy mouse model, curcumin not only reduced transthyretin aggregates deposition and toxicity in both gastrointestinal tract and dorsal root ganglia but also remodeled congophilic amyloid material in tissues. In addition, curcumin enhanced internalization, intracellular transport and degradation of transthyretin oligomers by primary macrophages from aged Familial Amyloidotic Polyneuropathy transgenic mice, suggesting an impaired activation of naïve phagocytic cells exposed to transthyretin toxic intermediate species. Overall, our results clearly support curcumin or optimized derivatives as promising multi-target disease-modifying agent for late-stage transthyretin amyloidosis. PMID:27197872

  6. Novel multi-targeted polymerase chain reaction for diagnosis of presumed tubercular uveitis

    PubMed Central

    2013-01-01

    Background The objective of this study was to report the use of multi-targeted polymerase chain reaction (PCR) in the diagnosis of presumed tubercular uveitis. Multi-targeted PCR using three targets specific for Mycobacterium tuberculosis, i.e., IS6110, MPB64, and protein b, was performed on intraocular fluid samples of 25 subjects. Nine had presumed tubercular uveitis, six had intraocular inflammation secondary to a nontubercular etiology (disease controls), and ten had no evidence of intraocular inflammation (normal controls). As described previously, response to antitubercular therapy was considered as the gold standard. Results Multi-targeted PCR was positive in seven out of nine patients with presumed tubercular uveitis and negative in all normal and disease controls. The sensitivity and specificity were 77.77% and 100%, respectively. For the diagnosis of presumed tubercular uveitis, multi-targeted PCR had a positive predictive value of 100% and a negative predictive value of 88.88%. Conclusion Multi-targeted PCR can be a valuable tool for diagnosing presumed tubercular uveitis. PMID:23514226

  7. Multi-Target Tracking Based on Multi-Bernoulli Filter with Amplitude for Unknown Clutter Rate

    PubMed Central

    Yuan, Changshun; Wang, Jun; Lei, Peng; Bi, Yanxian; Sun, Zhongsheng

    2015-01-01

    Knowledge of the clutter rate is of critical importance in multi-target Bayesian tracking. However, estimating the clutter rate is a difficult problem in practice. In this paper, an improved multi-Bernoulli filter based on random finite sets for multi-target Bayesian tracking accommodating non-linear dynamic and measurement models, as well as unknown clutter rate, is proposed for radar sensors. The proposed filter incorporates the amplitude information into the state and measurement spaces to improve discrimination between actual targets and clutters, while adaptively generating the new-born object random finite sets using the measurements to eliminate reliance on prior random finite sets. A sequential Monte-Carlo implementation of the proposed filter is presented, and simulations are used to demonstrate the proposed filter’s improvements in estimation accuracy of the target number and corresponding multi-target states, as well as the clutter rate. PMID:26690148

  8. Multi-Target Tracking Based on Multi-Bernoulli Filter with Amplitude for Unknown Clutter Rate.

    PubMed

    Yuan, Changshun; Wang, Jun; Lei, Peng; Bi, Yanxian; Sun, Zhongsheng

    2015-01-01

    Knowledge of the clutter rate is of critical importance in multi-target Bayesian tracking. However, estimating the clutter rate is a difficult problem in practice. In this paper, an improved multi-Bernoulli filter based on random finite sets for multi-target Bayesian tracking accommodating non-linear dynamic and measurement models, as well as unknown clutter rate, is proposed for radar sensors. The proposed filter incorporates the amplitude information into the state and measurement spaces to improve discrimination between actual targets and clutters, while adaptively generating the new-born object random finite sets using the measurements to eliminate reliance on prior random finite sets. A sequential Monte-Carlo implementation of the proposed filter is presented, and simulations are used to demonstrate the proposed filter's improvements in estimation accuracy of the target number and corresponding multi-target states, as well as the clutter rate. PMID:26690148

  9. Altering behavioral responses and dopamine transporter protein with antisense peptide nucleic acids.

    PubMed

    Tyler-McMahon, B M; Stewart, J A; Jackson, J; Bitner, M D; Fauq, A; McCormick, D J; Richelson, E

    2001-10-01

    The dopamine transporter (DAT) plays a role in locomotion and is an obligatory target for amphetamines. We designed and synthesized an antisense peptide nucleic acid (PNA) to rat DAT to examine the effect of this antisense molecule on locomotion and on responsiveness to amphetamines. Rats were injected intraperitoneally daily for 9 days with either saline, an antisense DAT PNA, a scrambled DAT PNA, or a mismatch DAT PNA. On days 7 and 9 after initial motility measurements were taken, the animals were challenged with 10 mg/kg of amphetamine and scored for motility. On day 7, there was no significant difference between the baseline levels of activity of any of the groups or their responses to amphetamine. On day 9, the antisense PNA-treated rats showed a statistically significant increase in their resting motility (P < 0.01). When these rats were challenged with amphetamine, motility of the saline-, scrambled PNA-, and mismatch PNA-treated animals showed increases of 31-, 36-, and 20-fold, respectively, while the antisense PNA-treated animals showed increases of only 3.4-fold (P < 0.01). ELISA results revealed a 32% decrease in striatal DAT in antisense PNA-treated rats compared with the saline, scrambled PNA, and mismatch PNA controls (P < 0.001). These results extend our previous findings that brain proteins can be knocked down in a specific manner by antisense molecules administered extracranially. Additionally, these results suggest some novel approaches for the treatment of diseases dependent upon the function of the dopamine transporter. PMID:11543728

  10. Cooperative motion control for multi-target observation

    SciTech Connect

    Parker, L.E.

    1997-08-01

    An important issue that arises in the automation of many security, surveillance, and reconnaissance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded area of interest. A key research issue in these problems is that of sensor placement--determining where sensors should be located to maintain the targets in view. In complex applications involving limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this paper, the author investigates the use of a cooperative team of autonomous sensor-based robots for the observation of multiple moving targets. The focus is primarily on developing the distributed control strategies that allow the robot team to attempt to minimize the total time in which targets escape observation by some robot team member in the area of interest. This paper first formalizes the problem and discusses related work. The author then presents a distributed approximate approach to solving this problem that combines low-level multi-robot control with higher-level reasoning control based on the ALLIANCE formalism. The effectiveness of the approach is analyzed by comparing it to three other feasible algorithms for cooperative control, showing the superiority of the approach for a large class of problems.

  11. Classification of compounds with distinct or overlapping multi-target activities and diverse molecular mechanisms using emerging chemical patterns.

    PubMed

    Namasivayam, Vigneshwaran; Hu, Ye; Balfer, Jenny; Bajorath, Jürgen

    2013-06-24

    The emerging chemical patterns (ECP) approach has been introduced for compound classification. Thus far, only very few ECP applications have been reported. Here, we further investigate the ECP methodology by studying complex classification problems. The analysis involves multi-target data sets with systematically organized subsets of compounds having distinct or overlapping target activities and, in addition, data sets containing classes of specifically active compounds with different mechanism-of-action. In systematic classification trials focusing on individual compound subsets or mechanistic classes, ECP calculations utilizing numerical descriptors achieve moderate to high sensitivity, dependent on the data set, and consistently high specificity. Accurate ECP predictions are already obtained on the basis of very small learning sets with only three positive training instances, which distinguishes the ECP approach from many other machine learning techniques. PMID:23692475

  12. Chemical Modification of the Multi-Target Neuroprotective Compound Fisetin

    PubMed Central

    Chiruta, Chandramouli; Schubert, David; Dargusch, Richard; Maher, Pamela

    2012-01-01

    Many factors are implicated in age-related CNS disorders making it unlikely that modulating only a single factor will provide effective treatment. Perhaps a better approach is to identify small molecules that have multiple biological activities relevant to the maintenance of brain function. Recently, we identified an orally active, neuroprotective and cognition-enhancing molecule, the flavonoid fisetin, that is effective in several animal models of CNS disorders. Fisetin has direct antioxidant activity and can also increase the intracellular levels of glutathione (GSH), the major endogenous antioxidant. In addition, fisetin has both neurotrophic and anti-inflammatory activity. However, its relatively high EC50 in cell based assays, low lipophilicity, high tPSA and poor bioavailability suggest that there is room for medicinal chemical improvement. Here we describe a multi-tiered approach to screening that has allowed us to identify fisetin derivatives with significantly enhanced activity in an in vitro neuroprotection model while at the same time maintaining other key activities. PMID:22192055

  13. Functionalization of an Antisense Small RNA

    PubMed Central

    Rodrigo, Guillermo; Prakash, Satya; Cordero, Teresa; Kushwaha, Manish; Jaramillo, Alfonso

    2016-01-01

    In order to explore the possibility of adding new functions to preexisting genes, we considered a framework of riboregulation. We created a new riboregulator consisting of the reverse complement of a known riboregulator. Using computational design, we engineered a cis-repressing 5′ untranslated region that can be activated by this new riboregulator. As a result, both RNAs can orthogonally trans-activate translation of their cognate, independent targets. The two riboregulators can also repress each other by antisense interaction, although not symmetrically. Our work highlights that antisense small RNAs can work as regulatory agents beyond the antisense paradigm and that, hence, they could be interfaced with other circuits used in synthetic biology. PMID:26756967

  14. Does everything now make (anti)sense?

    PubMed

    Timmons, J A; Good, L

    2006-12-01

    The data generated by the FANTOM (Functional Annotation of Mouse) consortium, Compugen and Affymetrix have collectively provided evidence that most of the mammalian genomes are actively transcribed. The emergence of an antisense RNA world brings new practical complexities to the study and detection of gene expression. However, we also need to address the fundamental questions regarding the functional importance of these molecules. In this brief paper, we focus on non-coding natural antisense transcription, as it appears to be a potentially powerful mechanism for extending the complexity of the protein coding genome, which is currently unable to explain inter-species diversification. PMID:17073772

  15. Distributed Multi-Target Tracking and Data Association in Vision Networks.

    PubMed

    Kamal, Ahmed T; Bappy, Jawadul H; Farrell, Jay A; Roy-Chowdhury, Amit K

    2016-07-01

    Distributed algorithms have recently gained immense popularity. With regards to computer vision applications, distributed multi-target tracking in a camera network is a fundamental problem. The goal is for all cameras to have accurate state estimates for all targets. Distributed estimation algorithms work by exchanging information between sensors that are communication neighbors. Vision-based distributed multi-target state estimation has at least two characteristics that distinguishes it from other applications. First, cameras are directional sensors and often neighboring sensors may not be sensing the same targets, i.e., they are naive with respect to that target. Second, in the presence of clutter and multiple targets, each camera must solve a data association problem. This paper presents an information-weighted, consensus-based, distributed multi-target tracking algorithm referred to as the Multi-target Information Consensus (MTIC) algorithm that is designed to address both the naivety and the data association problems. It converges to the centralized minimum mean square error estimate. The proposed MTIC algorithm and its extensions to non-linear camera models, termed as the Extended MTIC (EMTIC), are robust to false measurements and limited resources like power, bandwidth and the real-time operational requirements. Simulation and experimental analysis are provided to support the theoretical results. PMID:26441444

  16. Repair of Thalassemic Human β -globin mRNA in Mammalian Cells by Antisense Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Sierakowska, Halina; Sambade, Maria J.; Agrawal, Sudhir; Kole, Ryszard

    1996-11-01

    In one form of β -thalassemia, a genetic blood disorder, a mutation in intron 2 of the β -globin gene (IVS2-654) causes aberrant splicing of β -globin pre-mRNA and, consequently, β -globin deficiency. Treatment of mammalian cells stably expressing the IVS2-654 human β -globin gene with antisense oligonucleotides targeted at the aberrant splice sites restored correct splicing in a dose-dependent fashion, generating correct human β -globin mRNA and polypeptide. Both products persisted for up to 72 hr posttreatment. The oligonucleotides modified splicing by a true antisense mechanism without overt unspecific effects on cell growth and splicing of other pre-mRNAs. This novel approach in which antisense oligonucleotides are used to restore rather than to down-regulate the activity of the target gene is applicable to other splicing mutants and is of potential clinical interest.

  17. Gold nanoparticle mediated laser transfection for high-throughput antisense applications

    NASA Astrophysics Data System (ADS)

    Kalies, S.; Heinemann, D.; Schomaker, M.; Birr, T.; Ripken, T.; Meyer, H.

    2013-06-01

    The delivery of antisense structures, like siRNA, is beneficial for new therapeutic approaches in regenerative sciences. Optical transfection techniques enable high spatial control combined with minimal invasive treatment of cells due to the use of short laser pulses. However, single cell laser transfection by a tightly focused laser beam, for example femtosecond laser transfection, has the major drawback of low throughput. Compared to this, high-throughput in laser transfection is possible by applying gold nanoparticles irradiated by a weakly focused laser beam scanning over the cell sample. Herein, we show the delivery of antisense molecules and demonstrate the minimal cytotoxicity of a method called gold nanoparticle mediated (GNOME) laser transfection. A 532 nm microchip laser in conjugation with 200 nm gold nanoparticles at a concentration of 0.5 μg/cm2 is used. In addition to antisense molecules, the uptake of dextrans of several sizes is analyzed.

  18. Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration.

    PubMed

    Ramsay, Rona R; Majekova, Magdalena; Medina, Milagros; Valoti, Massimo

    2016-01-01

    HIGHLIGHTS Compounds that interact with multiple targets but minimally with the cytochrome P450 system (CYP) address the many factors leading to neurodegeneration.Acetyl- and Butyryl-cholineEsterases (AChE, BChE) and Monoamine Oxidases A/B (MAO A, MAO B) are targets for Multi-Target Designed Ligands (MTDL).ASS234 is an irreversible inhibitor of MAO A >MAO B and has micromolar potency against the cholinesterases.ASS234 is a poor CYP substrate in human liver, yielding the depropargylated metabolite.SMe1EC2, a stobadine derivative, showed high radical scavenging property, in vitro and in vivo giving protection in head trauma and diabetic damage of endothelium.Control of mitochondrial function and morphology by manipulating fission and fusion is emerging as a target area for therapeutic strategies to decrease the pathological outcome of neurodegenerative diseases. Growing evidence supports the view that neurodegenerative diseases have multiple and common mechanisms in their aetiologies. These multifactorial aspects have changed the broadly common assumption that selective drugs are superior to "dirty drugs" for use in therapy. This drives the research in studies of novel compounds that might have multiple action mechanisms. In neurodegeneration, loss of neuronal signaling is a major cause of the symptoms, so preservation of neurotransmitters by inhibiting the breakdown enzymes is a first approach. Acetylcholinesterase (AChE) inhibitors are the drugs preferentially used in AD and that one of these, rivastigmine, is licensed also for PD. Several studies have shown that monoamine oxidase (MAO) B, located mainly in glial cells, increases with age and is elevated in Alzheimer (AD) and Parkinson's Disease's (PD). Deprenyl, a MAO B inhibitor, significantly delays the initiation of levodopa treatment in PD patients. These indications underline that AChE and MAO are considered a necessary part of multi-target designed ligands (MTDL). However, both of these targets are simply

  19. Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration

    PubMed Central

    Ramsay, Rona R.; Majekova, Magdalena; Medina, Milagros; Valoti, Massimo

    2016-01-01

    HIGHLIGHTS Compounds that interact with multiple targets but minimally with the cytochrome P450 system (CYP) address the many factors leading to neurodegeneration.Acetyl- and Butyryl-cholineEsterases (AChE, BChE) and Monoamine Oxidases A/B (MAO A, MAO B) are targets for Multi-Target Designed Ligands (MTDL).ASS234 is an irreversible inhibitor of MAO A >MAO B and has micromolar potency against the cholinesterases.ASS234 is a poor CYP substrate in human liver, yielding the depropargylated metabolite.SMe1EC2, a stobadine derivative, showed high radical scavenging property, in vitro and in vivo giving protection in head trauma and diabetic damage of endothelium.Control of mitochondrial function and morphology by manipulating fission and fusion is emerging as a target area for therapeutic strategies to decrease the pathological outcome of neurodegenerative diseases. Growing evidence supports the view that neurodegenerative diseases have multiple and common mechanisms in their aetiologies. These multifactorial aspects have changed the broadly common assumption that selective drugs are superior to “dirty drugs” for use in therapy. This drives the research in studies of novel compounds that might have multiple action mechanisms. In neurodegeneration, loss of neuronal signaling is a major cause of the symptoms, so preservation of neurotransmitters by inhibiting the breakdown enzymes is a first approach. Acetylcholinesterase (AChE) inhibitors are the drugs preferentially used in AD and that one of these, rivastigmine, is licensed also for PD. Several studies have shown that monoamine oxidase (MAO) B, located mainly in glial cells, increases with age and is elevated in Alzheimer (AD) and Parkinson's Disease's (PD). Deprenyl, a MAO B inhibitor, significantly delays the initiation of levodopa treatment in PD patients. These indications underline that AChE and MAO are considered a necessary part of multi-target designed ligands (MTDL). However, both of these targets are

  20. Strand-specific community RNA-seq reveals prevalent and dynamic antisense transcription in human gut microbiota

    PubMed Central

    Bao, Guanhui; Wang, Mingjie; Doak, Thomas G.; Ye, Yuzhen

    2015-01-01

    Metagenomics and other meta-omics approaches (including metatranscriptomics) provide insights into the composition and function of microbial communities living in different environments or animal hosts. Metatranscriptomics research provides an unprecedented opportunity to examine gene regulation for many microbial species simultaneously, and more importantly, for the majority that are unculturable microbial species, in their natural environments (or hosts). Current analyses of metatranscriptomic datasets focus on the detection of gene expression levels and the study of the relationship between changes of gene expression and changes of environment. As a demonstration of utilizing metatranscriptomics beyond these common analyses, we developed a computational and statistical procedure to analyze the antisense transcripts in strand-specific metatranscriptomic datasets. Antisense RNAs encoded on the DNA strand opposite a gene’s CDS have the potential to form extensive base-pairing interactions with the corresponding sense RNA, and can have important regulatory functions. Most studies of antisense RNAs in bacteria are rather recent, are mostly based on transcriptome analysis, and have been applied mainly to single bacterial species. Application of our approaches to human gut-associated metatranscriptomic datasets allowed us to survey antisense transcription for a large number of bacterial species associated with human beings. The ratio of protein coding genes with antisense transcription ranges from 0 to 35.8% (median = 10.0%) among 47 species. Our results show that antisense transcription is dynamic, varying between human individuals. Functional enrichment analysis revealed a preference of certain gene functions for antisense transcription, and transposase genes are among the most prominent ones (but we also observed antisense transcription in bacterial house-keeping genes). PMID:26388849

  1. Antisense RNA suppression of peroxidase gene expression

    SciTech Connect

    Lagrimini, L.M.; Bradford, S.; De Leon, F.D. )

    1989-04-01

    The 5{prime} half the anionic peroxidase cDNA of tobacco was inserted into a CaMV 35S promoter/terminator expression cassette in the antisense configuration. This was inserted into the Agrobacterium-mediated plant transformation vector pCIBIO which includes kanamycin selection, transformed into two species of tobacco (N. tabacum and M. sylvestris), and plants were subsequently regenerated on kanamycin. Transgenic plants were analyzed for peroxidase expression and found to have 3-5 fold lower levels of peroxidase than wild-type plants. Isoelectric focusing demonstrated that the antisense RNA only suppressed the anionic peroxidase. Wound-induced peroxidase expression was found not to be affected by the antisense RNA. Northern blots show a greater than 5 fold suppression of anionic peroxidase mRNA in leaf tissue, and the antisense RNA was expressed at a level 2 fold over the endogenous mRNA. Plants were self-pollinated and F1 plants showed normal segregation. N. sylvestris transgenic plants with the lowest level of peroxidase are epinastic, and preliminary results indicate elevated auxin levels. Excised pith tissue from both species of transgenic plants rapidly collapse when exposed to air, while pith tissue from wild-type plants showed little change when exposed to air. Further characterization of these phenotypes is currently being made.

  2. Cardinality Balanced Multi-Target Multi-Bernoulli Filter with Error Compensation.

    PubMed

    He, Xiangyu; Liu, Guixi

    2016-01-01

    The cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter developed recently has been proved an effective multi-target tracking (MTT) algorithm based on the random finite set (RFS) theory, and it can jointly estimate the number of targets and their states from a sequence of sensor measurement sets. However, because of the existence of systematic errors in sensor measurements, the CBMeMBer filter can easily produce different levels of performance degradation. In this paper, an extended CBMeMBer filter, in which the joint probability density function of target state and systematic error is recursively estimated, is proposed to address the MTT problem based on the sensor measurements with systematic errors. In addition, an analytic implementation of the extended CBMeMBer filter is also presented for linear Gaussian models. Simulation results confirm that the proposed algorithm can track multiple targets with better performance. PMID:27589764

  3. A detection method for infrared multi-target in aerospace backgound

    NASA Astrophysics Data System (ADS)

    Wang, Ningming; Zhang, Yazhou

    2015-11-01

    Main task of the infrared search and track system is analyzing and identifying targets of airspace. But first this is needed to detect all targets in infrared image. Therefore, the multi-target detection algorithms are studied and we propose an effective multi-target detection method. Firstly, an improved morphological operator is designed based on airspace background and target traits of infrared image. Background is weakened but targets are enhanced when infrared image is processed by the gray morphological filter. Then, potential targets are found by the maximum local sum algorithm. Finally, true targets are affirmed based on data association of sequence images. The infrared images got from long-wavelength infrared camera are processed with the method of the paper. Experiment results show that the method can detect targets in infrared image quickly and accurately.

  4. Microfluidic immunomagnetic multi-target sorting--a model for controlling deflection of paramagnetic beads.

    PubMed

    Tsai, Scott S H; Griffiths, Ian M; Stone, Howard A

    2011-08-01

    We describe a microfluidic system that uses a magnetic field to sort paramagnetic beads by deflecting them in the direction normal to the flow. In the experiments we systematically study the dependence of the beads' deflection on bead size and susceptibility, magnet strength, fluid speed and viscosity, and device geometry. We also develop a design parameter that can aid in the design of microfluidic devices for immunomagnetic multi-target sorting. PMID:21677937

  5. Dielectrophoresis-based classification of cells using multi-target multiple-hypothesis tracking.

    PubMed

    Dickerson, Samuel J; Chiarulli, Donald M; Levitan, Steven P; Carthel, Craig; Coraluppi, Stefano

    2014-01-01

    In this paper we present a novel methodology for classifying cells by using a combination of dielectrophoresis, image tracking and classification algorithms. We use dielectrophoresis to induce unique motion patterns in cells of interest. Motion is extracted via multi-target multiple-hypothesis tracking. Trajectories are then used to classify cells based on a generalized likelihood ratio test. We present results of a simulation study and of our prototype tracking the dielectrophoretic velocities of cells. PMID:25570230

  6. Sustained Release of Cx43 Antisense Oligodeoxynucleotides from Coated Collagen Scaffolds Promotes Wound Healing.

    PubMed

    Gilmartin, Daniel J; Soon, Allyson; Thrasivoulou, Christopher; Phillips, Anthony R J; Jayasinghe, Suwan N; Becker, David L

    2016-07-01

    Antisense oligodeoxynucleotides targeting the mRNA of the gap junction protein Cx43 promote tissue repair in a variety of different wounds. Delivery of the antisense drug has most often been achieved by a thermoreversible hydrogel, Pluronic F-127, which is very effective in the short term but does not allow for sustained delivery over several days. For chronic wounds that take a long time to heal, repeated dosing with the drug may be desirable but is not always compatible with conventional treatments such as the weekly changing of compression bandages on venous leg ulcers. Here the coating of collagen scaffolds with antisense oligonucleotides is investigated and a way to provide protection of the oligodeoxynucleotide drug is found in conjunction with sustained release over a 7 d period. This approach significantly reduces the normal foreign body reaction to the scaffold, which induces an increase of Cx43 protein and an inhibition of healing. As a result of the antisense integration into the scaffold, inflammation is reduced with the rate of wound healing and contracture is significantly improved. This coated scaffold approach may be very useful for treating venous leg ulcers and also for providing a sustained release of any other types of oligonucleotide drugs that are being developed. PMID:27253638

  7. Identification and characterization of carprofen as a multi-target FAAH/COX inhibitor

    PubMed Central

    Favia, Angelo D.; Habrant, Damien; Scarpelli, Rita; Migliore, Marco; Albani, Clara; Bertozzi, Sine Mandrup; Dionisi, Mauro; Tarozzo, Glauco; Piomelli, Daniele; Cavalli, Andrea; De Vivo, Marco

    2013-01-01

    Pain and inflammation are major therapeutic areas for drug discovery. Current drugs for these pathologies have limited efficacy, however, and often cause a number of unwanted side effects. In the present study, we identify the non-steroid anti-inflammatory drug, carprofen, as a multi-target-directed ligand that simultaneously inhibits cyclooxygenase-1 (COX-1), COX-2 and fatty acid amide hydrolase (FAAH). Additionally, we synthesized and tested several racemic derivatives of carprofen, sharing this multi-target activity. This may result in improved analgesic efficacy and reduced side effects (Naidu, et al (2009) J Pharmacol Exp Ther 329, 48-56; Fowler, C.J. et al. (2012) J Enzym Inhib Med Chem Jan 6; Sasso, et al (2012) Pharmacol Res 65, 553). The new compounds are among the most potent multi-target FAAH/COXs inhibitors reported so far in the literature, and thus may represent promising starting points for the discovery of new analgesic and anti-inflammatory drugs. PMID:23043222

  8. Functional correction by antisense therapy of a splicing mutation in the GALT gene.

    PubMed

    Coelho, Ana I; Lourenço, Sílvia; Trabuco, Matilde; Silva, Maria João; Oliveira, Anabela; Gaspar, Ana; Diogo, Luísa; Tavares de Almeida, Isabel; Vicente, João B; Rivera, Isabel

    2015-04-01

    In recent years, antisense therapy has emerged as an increasingly important therapeutic approach to tackle several genetic disorders, including inborn errors of metabolism. Intronic mutations activating cryptic splice sites are particularly amenable to antisense therapy, as the canonical splice sites remain intact, thus retaining the potential for restoring constitutive splicing. Mutational analysis of Portuguese galactosemic patients revealed the intronic variation c.820+13A>G as the second most prevalent mutation, strongly suggesting its pathogenicity. The aim of this study was to functionally characterize this intronic variation, to elucidate its pathogenic molecular mechanism(s) and, ultimately, to correct it by antisense therapy. Minigene splicing assays in two distinct cell lines and patients' transcript analyses showed that the mutation activates a cryptic donor splice site, inducing an aberrant splicing of the GALT pre-mRNA, which in turn leads to a frameshift with inclusion of a premature stop codon (p.D274Gfs*17). Functional-structural studies of the recombinant wild-type and truncated GALT showed that the latter is devoid of enzymatic activity and prone to aggregation. Finally, two locked nucleic acid oligonucleotides, designed to specifically recognize the mutation, successfully restored the constitutive splicing, thus establishing a proof of concept for the application of antisense therapy as an alternative strategy for the clearly insufficient dietary treatment in classic galactosemia. PMID:25052314

  9. Antisense oligonucleotides bound in the polysaccharide complex and the enhanced antisense effect due to the low hydrolysis.

    PubMed

    Mizu, Masami; Koumoto, Kazuya; Anada, Takahisa; Sakurai, Kazuo; Shinkai, Seiji

    2004-07-01

    Schizophyllan is a beta-(1-->3)-D-glucan and can form a novel complex with some single-chains of DNAs. As the preceding paper revealed, the polynucleotide bound in the complex is more stable to nuclease-mediated hydrolysis than the polynucleotide itself (i.e., naked polynucleotide). This paper examined possibility to apply this complex to an antisense DNA carrier, using an in vitro (cell-free) transcription/translation assay. In this assay, we used a plasmid DNA coding a green fluorescence protein (GFP) and an antisense DNA designed to hybridize the ribosome-binding site in the GFP-coded mRNA. When the antisense DNA was administered as the complex, a lower GFP expression efficiency (or higher antisense effect) is observed over naked DNA. This is because the antisense DNA in the complex is protected from the attack of deoxyribonuclease. When exonuclease I, which specifically hydrolyzes single DNA chains, was present in the GEP assay system, the antisense effect was not changed for the complex while being weakened in the naked antisense DNA system. These results imply that the exonuclease I cannot hydrolyze the antisense DNA in the complex, while it can hydrolyze naked DNA to reduce its antisense effect. PMID:14967546

  10. The landscape of antisense gene expression in human cancers.

    PubMed

    Balbin, O Alejandro; Malik, Rohit; Dhanasekaran, Saravana M; Prensner, John R; Cao, Xuhong; Wu, Yi-Mi; Robinson, Dan; Wang, Rui; Chen, Guoan; Beer, David G; Nesvizhskii, Alexey I; Chinnaiyan, Arul M

    2015-07-01

    High-throughput RNA sequencing has revealed more pervasive transcription of the human genome than previously anticipated. However, the extent of natural antisense transcripts' (NATs) expression, their regulation of cognate sense genes, and the role of NATs in cancer remain poorly understood. Here, we use strand-specific paired-end RNA sequencing (ssRNA-seq) data from 376 cancer samples covering nine tissue types to comprehensively characterize the landscape of antisense expression. We found consistent antisense expression in at least 38% of annotated transcripts, which in general is positively correlated with sense gene expression. Investigation of sense/antisense pair expressions across tissue types revealed lineage-specific, ubiquitous and cancer-specific antisense loci transcription. Comparisons between tumor and normal samples identified both concordant (same direction) and discordant (opposite direction) sense/antisense expression patterns. Finally, we provide OncoNAT, a catalog of cancer-related genes with significant antisense transcription, which will enable future investigations of sense/antisense regulation in cancer. Using OncoNAT we identified several functional NATs, including NKX2-1-AS1 that regulates the NKX2-1 oncogene and cell proliferation in lung cancer cells. Overall, this study provides a comprehensive account of NATs and supports a role for NATs' regulation of tumor suppressors and oncogenes in cancer biology. PMID:26063736

  11. Voltage-gated calcium channel and antisense oligonucleotides thereto

    NASA Technical Reports Server (NTRS)

    Hruska, Keith A. (Inventor); Friedman, Peter A. (Inventor); Barry, Elizabeth L. R. (Inventor); Duncan, Randall L. (Inventor)

    1998-01-01

    An antisense oligonucleotide of 10 to 35 nucleotides in length that can hybridize with a region of the .alpha..sub.1 subunit of the SA-Cat channel gene DNA or mRNA is provided, together with pharmaceutical compositions containing and methods utilizing such antisense oligonucleotide.

  12. The landscape of antisense gene expression in human cancers

    PubMed Central

    Balbin, O. Alejandro; Malik, Rohit; Dhanasekaran, Saravana M.; Prensner, John R.; Cao, Xuhong; Wu, Yi-Mi; Robinson, Dan; Wang, Rui; Chen, Guoan; Beer, David G.; Nesvizhskii, Alexey I.; Chinnaiyan, Arul M.

    2015-01-01

    High-throughput RNA sequencing has revealed more pervasive transcription of the human genome than previously anticipated. However, the extent of natural antisense transcripts’ (NATs) expression, their regulation of cognate sense genes, and the role of NATs in cancer remain poorly understood. Here, we use strand-specific paired-end RNA sequencing (ssRNA-seq) data from 376 cancer samples covering nine tissue types to comprehensively characterize the landscape of antisense expression. We found consistent antisense expression in at least 38% of annotated transcripts, which in general is positively correlated with sense gene expression. Investigation of sense/antisense pair expressions across tissue types revealed lineage-specific, ubiquitous and cancer-specific antisense loci transcription. Comparisons between tumor and normal samples identified both concordant (same direction) and discordant (opposite direction) sense/antisense expression patterns. Finally, we provide OncoNAT, a catalog of cancer-related genes with significant antisense transcription, which will enable future investigations of sense/antisense regulation in cancer. Using OncoNAT we identified several functional NATs, including NKX2-1-AS1 that regulates the NKX2-1 oncogene and cell proliferation in lung cancer cells. Overall, this study provides a comprehensive account of NATs and supports a role for NATs' regulation of tumor suppressors and oncogenes in cancer biology. PMID:26063736

  13. Modulating antibiotic activity towards respiratory bacterial pathogens by co-medications: a multi-target approach.

    PubMed

    Vandevelde, Nathalie M; Tulkens, Paul M; Van Bambeke, Françoise

    2016-07-01

    Non-antibiotic drugs can modulate bacterial physiology and/or antibiotic activity, opening perspectives for innovative therapeutic strategies. Focusing on respiratory pathogens and considering in vitro, in vivo, and clinical data, here we examine the effect of these drugs on the expression of resistance mechanisms, biofilm formation, and intracellular survival, as well as their influence on the activity of antibiotics on bacteria. Beyond the description of the effects observed, we also comment on concentrations that are active and discuss the mechanisms of drug-drug or drug-target interactions. This discussion should be helpful in defining useful targets for adjuvant therapy and establishing the corresponding pharmacophores for further drug fine-tuning. PMID:27094105

  14. Clinical Response of Metastatic Breast Cancer to Multi-targeted Therapeutic Approach: A Single Case Report

    PubMed Central

    Meiners, Christian

    2011-01-01

    The present article describes the ongoing (partial) remission of a female patient (41 years old) from estrogen receptor (ER)-positive/progesterone receptor (PR)-negative metastatic breast cancer in response to a combination treatment directed towards the revitalization of the mitochondrial respiratory chain (oxidative phosphorylation), the suppression of NF-kappaB as a factor triggering the inflammatory response, and chemotherapy with capecitabine. The reduction of tumor mass was evidenced by a continuing decline of CA15-3 and CEA tumor marker serum levels and 18FDG-PET-CT plus magnetic resonance (MR) imaging. It is concluded that such combination treatment might be a useful option for treating already formed metastases and for providing protection against the formation of metastases in ER positive breast cancer. The findings need to be corroborated by clinical trials. Whether similar results can be expected for other malignant tumor phenotypes relying on glycolysis as the main energy source remains to be elucidated. PMID:24212668

  15. Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

    SciTech Connect

    Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina; Jansson, Christer

    2008-01-15

    Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen

  16. Inhibition of the alternative complement pathway by antisense oligonucleotides targeting complement factor B improves lupus nephritis in mice.

    PubMed

    Grossman, Tamar R; Hettrick, Lisa A; Johnson, Robert B; Hung, Gene; Peralta, Raechel; Watt, Andrew; Henry, Scott P; Adamson, Peter; Monia, Brett P; McCaleb, Michael L

    2016-06-01

    Systemic lupus erythematosus is an autoimmune disease that manifests in widespread complement activation and deposition of complement fragments in the kidney. The complement pathway is believed to play a significant role in the pathogenesis and in the development of lupus nephritis. Complement factor B is an important activator of the alternative complement pathway and increasing evidence supports reducing factor B as a potential novel therapy to lupus nephritis. Here we investigated whether pharmacological reduction of factor B expression using antisense oligonucleotides could be an effective approach for the treatment of lupus nephritis. We identified potent and well tolerated factor B antisense oligonucleotides that resulted in significant reductions in hepatic and plasma factor B levels when administered to normal mice. To test the effects of factor B antisense oligonucleotides on lupus nephritis, we used two different mouse models, NZB/W F1 and MRL/lpr mice, that exhibit lupus nephritis like renal pathology. Antisense oligonucleotides mediated reductions in circulating factor B levels were associated with significant improvements in renal pathology, reduced glomerular C3 deposition and proteinuria, and improved survival. These data support the strategy of using factor B antisense oligonucleotides for treatment of lupus nephritis in humans. PMID:26307001

  17. ASS234, As a New Multi-Target Directed Propargylamine for Alzheimer's Disease Therapy

    PubMed Central

    Marco-Contelles, José; Unzeta, Mercedes; Bolea, Irene; Esteban, Gerard; Ramsay, Rona R.; Romero, Alejandro; Martínez-Murillo, Ricard; Carreiras, M. Carmo; Ismaili, Lhassane

    2016-01-01

    Highlights: ASS2324 is a hybrid compound resulting from the juxtaposition of donepezil and the propargylamine PF9601NASS2324 is a multi-target directed propargylamine able to bind to all the AChE/BuChE and MAO A/B enzymesASS2324 shows antioxidant, neuroprotective and suitable permeability propertiesASS2324 restores the scopolamine-induced cognitive impairment to the same extent as donepezil, and is less toxicASS2324 prevents β-amyloid induced aggregation in the cortex of double transgenic miceASS2324 is the most advanced anti-Alzheimer agent for pre-clinical studies that we have identified in our laboratories The complex nature of Alzheimer's disease (AD) has prompted the design of Multi-Target-Directed Ligands (MTDL) able to bind to diverse biochemical targets involved in the progress and development of the disease. In this context, we have designed a number of MTD propargylamines (MTDP) showing antioxidant, anti-beta-amyloid, anti-inflammatory, as well as cholinesterase and monoamine oxidase (MAO) inhibition capacities. Here, we describe these properties in the MTDL ASS234, our lead-compound ready to enter in pre-clinical studies for AD, as a new multipotent, permeable cholinesterase/monoamine oxidase inhibitor, able to inhibit Aβ-aggregation, and possessing antioxidant and neuroprotective properties. PMID:27445665

  18. Multi-target-qubit unconventional geometric phase gate in a multi-cavity system

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping

    2016-02-01

    Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits.

  19. Multi-target-qubit unconventional geometric phase gate in a multi-cavity system.

    PubMed

    Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping

    2016-01-01

    Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits. PMID:26898176

  20. Multi-Targeted Antithrombotic Therapy for Total Artificial Heart Device Patients.

    PubMed

    Ramirez, Angeleah; Riley, Jeffrey B; Joyce, Lyle D

    2016-03-01

    To prevent thrombotic or bleeding events in patients receiving a total artificial heart (TAH), agents have been used to avoid adverse events. The purpose of this article is to outline the adoption and results of a multi-targeted antithrombotic clinical procedure guideline (CPG) for TAH patients. Based on literature review of TAH anticoagulation and multiple case series, a CPG was designed to prescribe the use of multiple pharmacological agents. Total blood loss, Thromboelastograph(®) (TEG), and platelet light-transmission aggregometry (LTA) measurements were conducted on 13 TAH patients during the first 2 weeks of support in our institution. Target values and actual medians for postimplant days 1, 3, 7, and 14 were calculated for kaolinheparinase TEG, kaolin TEG, LTA, and estimated blood loss. Protocol guidelines were followed and anticoagulation management reduced bleeding and prevented thrombus formation as well as thromboembolic events in TAH patients postimplantation. The patients in this study were susceptible to a variety of possible complications such as mechanical device issues, thrombotic events, infection, and bleeding. Among them all it was clear that patients were at most risk for bleeding, particularly on postoperative days 1 through 3. However, bleeding was reduced into postoperative days 3 and 7, indicating that acceptable hemostasis was achieved with the anticoagulation protocol. The multidisciplinary, multi-targeted anticoagulation clinical procedure guideline was successful to maintain adequate antithrombotic therapy for TAH patients. PMID:27134306

  1. Multi-target-qubit unconventional geometric phase gate in a multi-cavity system

    PubMed Central

    Liu, Tong; Cao, Xiao-Zhi; Su, Qi-Ping; Xiong, Shao-Jie; Yang, Chui-Ping

    2016-01-01

    Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits. PMID:26898176

  2. Multi-Target State Extraction for the SMC-PHD Filter.

    PubMed

    Si, Weijian; Wang, Liwei; Qu, Zhiyu

    2016-01-01

    The sequential Monte Carlo probability hypothesis density (SMC-PHD) filter has been demonstrated to be a favorable method for multi-target tracking. However, the time-varying target states need to be extracted from the particle approximation of the posterior PHD, which is difficult to implement due to the unknown relations between the large amount of particles and the PHD peaks representing potential target locations. To address this problem, a novel multi-target state extraction algorithm is proposed in this paper. By exploiting the information of measurements and particle likelihoods in the filtering stage, we propose a validation mechanism which aims at selecting effective measurements and particles corresponding to detected targets. Subsequently, the state estimates of the detected and undetected targets are performed separately: the former are obtained from the particle clusters directed by effective measurements, while the latter are obtained from the particles corresponding to undetected targets via clustering method. Simulation results demonstrate that the proposed method yields better estimation accuracy and reliability compared to existing methods. PMID:27322274

  3. Multi-Target State Extraction for the SMC-PHD Filter

    PubMed Central

    Si, Weijian; Wang, Liwei; Qu, Zhiyu

    2016-01-01

    The sequential Monte Carlo probability hypothesis density (SMC-PHD) filter has been demonstrated to be a favorable method for multi-target tracking. However, the time-varying target states need to be extracted from the particle approximation of the posterior PHD, which is difficult to implement due to the unknown relations between the large amount of particles and the PHD peaks representing potential target locations. To address this problem, a novel multi-target state extraction algorithm is proposed in this paper. By exploiting the information of measurements and particle likelihoods in the filtering stage, we propose a validation mechanism which aims at selecting effective measurements and particles corresponding to detected targets. Subsequently, the state estimates of the detected and undetected targets are performed separately: the former are obtained from the particle clusters directed by effective measurements, while the latter are obtained from the particles corresponding to undetected targets via clustering method. Simulation results demonstrate that the proposed method yields better estimation accuracy and reliability compared to existing methods. PMID:27322274

  4. Transfection of normal primary human skeletal myoblasts with p21 and p57 antisense oligonucleotides to improve their proliferation: a first step towards an alternative molecular therapy approach of Duchenne muscular dystrophy.

    PubMed

    Endesfelder, Stefanie; Bucher, Sabine; Kliche, Alexander; Reszka, Regina; Speer, Astrid

    2003-06-01

    Duchenne muscular dystrophy (DMD), caused by the absence of dystrophin, is associated with decreased muscle cell proliferation. An increased p21 mRNA level in DMD patients may be involved in the process. In this context we are interested to improve the proliferation of primary human skeletal muscle cells (SkMC) by a reduction in the cell cycle proteins p21 and p57 using the appropriate antisense oligonucleotides (ASO). Therefore a transfection procedure needs to be optimized in which the oligonucleotide enters the SkMC with a minimal loss of cell vitality and high efficiency. Three different formulations, Effectene, DAC40, and SuperFect, were compared. Proliferation was analyzed comparing cells transfected with p21 and/or p57 ASO vs. cells transfected with scrambled ASO using a bromodeoxyuridine assay. Under optimal conditions (a mixture of 0.25 microg ASO, 5 microl Effectene, 0.8 microl enhancer) SkMC transfected with p21 ASO reveal an average increase in cell proliferation of 32.5+/-11% after 24 h. p57 ASO shows the same effect, but concomitant transfection of p21 and p57 does not enhance it. A cell vitality of 78+/-14% after 24 h was determined by the MTT test. SkMC transfected with DAC40 reveal a maximal increase in proliferation of 38+/-7% after 48 h and show a vitality of 65+/-8%. In contrast to both these formulations, SuperFect was found to be highly toxic for SkMC, with more than 70% dead cells after 24 h. The increase in proliferation, the functional biological effect of p21 ASO, is well correlated with a decrease in p21 detected by western blot analysis of 31.6% for Effectene. Transfection efficiency was measured directly by FACS analysis using FITC-labeled ASO and data showing ASO internalization in 75.8+/-11.2% of the cell population for Effectene and 74.4+/-6.6% cells for DAC40. Taken together transient transfection of p21 or p57 ASO into primary human SkMC using Effectene significantly improves their proliferation compared to transfection with

  5. Synthesis and pharmacological evaluation of piperidine (piperazine)-substituted benzoxazole derivatives as multi-target antipsychotics.

    PubMed

    Huang, Ling; Zhang, Wenjun; Zhang, Xiaohua; Yin, Lei; Chen, Bangyin; Song, Jinchun

    2015-11-15

    The present study describes the optimization of a series of novel benzoxazole-piperidine (piperazine) derivatives combining high dopamine D2 and serotonin 5-HT1A, 5-HT2A receptor affinities. Of these derivatives, the pharmacological features of compound 29 exhibited high affinities for the DA D2, 5-HT1A and 5-HT2A receptors, but low affinities for the 5-HT2C and histamine H1 receptors and human ether-a-go-go-related gene (hERG) channels. Furthermore, compound 29 reduced apomorphine-induced climbing and 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced head twitching without observable catalepsy, even at the highest dose tested. Thus, compound 29 is a promising candidate as a multi-target antipsychotic treatment. PMID:26483200

  6. Multi-target screening of biological samples using LC-MS/MS: focus on chromatographic innovations.

    PubMed

    Kohler, Isabelle; Guillarme, Davy

    2014-05-01

    Multi-target screening of biological fluids is a key tool in clinical and forensic toxicology. A complete toxicological analysis encompasses the sample preparation, the chromatographic separation and the detection. The present review briefly covers the new trends in sample preparation and detection and mainly focuses on the chromatographic stage, since a lot of technical improvements have been proposed over the last years. Among them, columns packed with sub-2 μm fully porous particles and sub-3 μm core-shell particles allow for significant improvements of resolution and higher throughput. Even if reversed-phase LC remains the most widely used chromatographic mode for toxicological screening, hydrophilic interaction chromatography and supercritical fluid chromatography appear as promising alternatives for attaining orthogonal selectivity, retention of polar compounds, and enhanced MS sensitivity. PMID:24946925

  7. Improved Bearings-Only Multi-Target Tracking with GM-PHD Filtering.

    PubMed

    Zhang, Qian; Song, Taek Lyul

    2016-01-01

    In this paper, an improved nonlinear Gaussian mixture probability hypothesis density (GM-PHD) filter is proposed to address bearings-only measurements in multi-target tracking. The proposed method, called the Gaussian mixture measurements-probability hypothesis density (GMM-PHD) filter, not only approximates the posterior intensity using a Gaussian mixture, but also models the likelihood function with a Gaussian mixture instead of a single Gaussian distribution. Besides, the target birth model of the GMM-PHD filter is assumed to be partially uniform instead of a Gaussian mixture. Simulation results show that the proposed filter outperforms the GM-PHD filter embedded with the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). PMID:27626423

  8. [Possibilities for inhibiting tumor-induced angiogenesis: results with multi-target tyrosine kinase inhibitors].

    PubMed

    Török, Szilvia; Döme, Balázs

    2012-03-01

    Functional blood vasculature is essential for tumor progression. The main signalization pathways that play a key role in the survival and growth of tumor vessels originate from the VEGF-, PDGF- and FGF tyrosine kinase receptors. In the past decade, significant results have been published on receptor tyrosine kinase inhibitors (RTKIs). In this paper, the mechanisms of action and the results so far available of experimental and clinical studies on multi-target antiangiogenic TKIs are discussed. On the one hand, notable achievements have been made recently and these drugs are already used in clinical practice in some patient populations. On the other hand, the optimal combination and dosage of these drugs, selection of the apropriate biomarker and better understanding of the conflicting role of PDGFR and FGFR signaling in angiogenesis remain future challenges. PMID:22403757

  9. Multi-Target Strategy and Experimental Studies of Traditional Chinese Medicine for Alzheimer's Disease Therapy.

    PubMed

    Li, Lin; Zhang, Lan; Yang, Cui-cui

    2016-01-01

    Alzheimer's disease (AD) is a multifactorial complex disease. The pathogenesis of AD is very complicated, and involves the β-amyloid (Aβ) cascade, tau hyperphosphorylation, neuroinflammation, oxidative stress, mitochondrial dysfunction, reduced levels of neurotrophic factors, and damage and loss of synapses as well as cholinergic neurons. The multi-target characteristics of traditional Chinese medicine (TCM) may be advantageous over single-target drugs in the treatment of complex diseases. These drugs have therefore attracted more attention in the research and development of AD therapies. This review describes advances made in experimental studies of TCM for AD treatment. It discusses research, from our group and other laboratories, on TCM compound drugs (Shenwu capsule) and approximately 10 Chinese medicinal herb extracts (tetrahydroxystilbene glucoside, epimedium flavonoid, icariin, cornel iridoid glycoside, ginsenoside, puerarin, clausenamide, huperzine A, and timosaponins). PMID:26268330

  10. Multi-Target Detection from Full-Waveform Airborne Laser Scanner Using Phd Filter

    NASA Astrophysics Data System (ADS)

    Fuse, T.; Hiramatsu, D.; Nakanishi, W.

    2016-06-01

    We propose a new technique to detect multiple targets from full-waveform airborne laser scanner. We introduce probability hypothesis density (PHD) filter, a type of Bayesian filtering, by which we can estimate the number of targets and their positions simultaneously. PHD filter overcomes some limitations of conventional Gaussian decomposition method; PHD filter doesn't require a priori knowledge on the number of targets, assumption of parametric form of the intensity distribution. In addition, it can take a similarity between successive irradiations into account by modelling relative positions of the same targets spatially. Firstly we explain PHD filter and particle filter implementation to it. Secondly we formulate the multi-target detection problem on PHD filter by modelling components and parameters within it. At last we conducted the experiment on real data of forest and vegetation, and confirmed its ability and accuracy.

  11. AVN-101: A Multi-Target Drug Candidate for the Treatment of CNS Disorders

    PubMed Central

    Ivachtchenko, Alexandre V.; Lavrovsky, Yan; Okun, Ilya

    2016-01-01

    Lack of efficacy of many new highly selective and specific drug candidates in treating diseases with poorly understood or complex etiology, as are many of central nervous system (CNS) diseases, encouraged an idea of developing multi-modal (multi-targeted) drugs. In this manuscript, we describe molecular pharmacology, in vitro ADME, pharmacokinetics in animals and humans (part of the Phase I clinical studies), bio-distribution, bioavailability, in vivo efficacy, and safety profile of the multimodal drug candidate, AVN-101. We have carried out development of a next generation drug candidate with a multi-targeted mechanism of action, to treat CNS disorders. AVN-101 is a very potent 5-HT7 receptor antagonist (Ki = 153 pM), with slightly lesser potency toward 5-HT6, 5-HT2A, and 5HT-2C receptors (Ki = 1.2–2.0 nM). AVN-101 also exhibits a rather high affinity toward histamine H1 (Ki = 0.58 nM) and adrenergic α2A, α2B, and α2C (Ki = 0.41–3.6 nM) receptors. AVN-101 shows a good oral bioavailability and facilitated brain-blood barrier permeability, low toxicity, and reasonable efficacy in animal models of CNS diseases. The Phase I clinical study indicates the AVN-101 to be well tolerated when taken orally at doses of up to 20 mg daily. It does not dramatically influence plasma and urine biochemistry, nor does it prolong QT ECG interval, thus indicating low safety concerns. The primary therapeutic area for AVN-101 to be tested in clinical trials would be Alzheimer’s disease. However, due to its anxiolytic and anti-depressive activities, there is a strong rational for it to also be studied in such diseases as general anxiety disorders, depression, schizophrenia, and multiple sclerosis. PMID:27232215

  12. [Development of multi-target multi-spectral high-speed pyrometer].

    PubMed

    Xiao, Peng; Dai, Jing-Min; Wang, Qing-Wei

    2008-11-01

    The plume temperature of a solid propellant rocket engine (SPRE) is a fundamental parameter in denoting combustion status. It is necessary to measure the temperature along both the axis and the radius of the engine. In order to measure the plume temperature distribution of a solid propellant rocket engine, the multi-spectral thermometry has been approved. Previously the pyrometer was developed in the Harbin Institute of Technology of China in 1999, which completed the measurement of SPRE plume temperature and its distribution with multi-spectral technique in aerospace model development for the first time. Following this experience, a new type of multi-target multi-spectral high-speed pyrometer used in the ground experiments of SPRE plume temperature measurement was developed. The main features of the instrument include the use of a dispersing prism and a photo-diode array to cover the entire spectral band of 0.4 to 1.1 microm. The optic fibers are used in order to collect and transmit the thermal radiation fluxes. The instrument can measure simultaneously the temperature and emissivity of eight spectra for six uniformly distributed points on the target surface, which are well defined by the hole on the field stop lens. A specially designed S/H (Sample/Hold) circuit, with 48 sample and hold units that were triggered with a signal, measures the multi-spectral and multi-target outputs. It can sample 48 signals with a less than 10ns time difference which is most important for the temperature calculation. PMID:19271529

  13. AVN-101: A Multi-Target Drug Candidate for the Treatment of CNS Disorders.

    PubMed

    Ivachtchenko, Alexandre V; Lavrovsky, Yan; Okun, Ilya

    2016-05-25

    Lack of efficacy of many new highly selective and specific drug candidates in treating diseases with poorly understood or complex etiology, as are many of central nervous system (CNS) diseases, encouraged an idea of developing multi-modal (multi-targeted) drugs. In this manuscript, we describe molecular pharmacology, in vitro ADME, pharmacokinetics in animals and humans (part of the Phase I clinical studies), bio-distribution, bioavailability, in vivo efficacy, and safety profile of the multimodal drug candidate, AVN-101. We have carried out development of a next generation drug candidate with a multi-targeted mechanism of action, to treat CNS disorders. AVN-101 is a very potent 5-HT7 receptor antagonist (Ki = 153 pM), with slightly lesser potency toward 5-HT6, 5-HT2A, and 5HT-2C receptors (Ki = 1.2-2.0 nM). AVN-101 also exhibits a rather high affinity toward histamine H1 (Ki = 0.58 nM) and adrenergic α2A, α2B, and α2C (Ki = 0.41-3.6 nM) receptors. AVN-101 shows a good oral bioavailability and facilitated brain-blood barrier permeability, low toxicity, and reasonable efficacy in animal models of CNS diseases. The Phase I clinical study indicates the AVN-101 to be well tolerated when taken orally at doses of up to 20 mg daily. It does not dramatically influence plasma and urine biochemistry, nor does it prolong QT ECG interval, thus indicating low safety concerns. The primary therapeutic area for AVN-101 to be tested in clinical trials would be Alzheimer's disease. However, due to its anxiolytic and anti-depressive activities, there is a strong rational for it to also be studied in such diseases as general anxiety disorders, depression, schizophrenia, and multiple sclerosis. PMID:27232215

  14. A Vector Library for Silencing Central Carbon Metabolism Genes with Antisense RNAs in Escherichia coli

    PubMed Central

    Ohno, Satoshi; Yoshikawa, Katsunori; Shimizu, Hiroshi; Tamura, Tomohiro

    2014-01-01

    We describe here the construction of a series of 71 vectors to silence central carbon metabolism genes in Escherichia coli. The vectors inducibly express antisense RNAs called paired-terminus antisense RNAs, which have a higher silencing efficacy than ordinary antisense RNAs. By measuring mRNA amounts, measuring activities of target proteins, or observing specific phenotypes, it was confirmed that all the vectors were able to silence the expression of target genes efficiently. Using this vector set, each of the central carbon metabolism genes was silenced individually, and the accumulation of metabolites was investigated. We were able to obtain accurate information on ways to increase the production of pyruvate, an industrially valuable compound, from the silencing results. Furthermore, the experimental results of pyruvate accumulation were compared to in silico predictions, and both sets of results were consistent. Compared to the gene disruption approach, the silencing approach has an advantage in that any E. coli strain can be used and multiple gene silencing is easily possible in any combination. PMID:24212579

  15. A Novel Square-Root Cubature Information Weighted Consensus Filter Algorithm for Multi-Target Tracking in Distributed Camera Networks

    PubMed Central

    Chen, Yanming; Zhao, Qingjie

    2015-01-01

    This paper deals with the problem of multi-target tracking in a distributed camera network using the square-root cubature information filter (SCIF). SCIF is an efficient and robust nonlinear filter for multi-sensor data fusion. In camera networks, multiple cameras are arranged in a dispersed manner to cover a large area, and the target may appear in the blind area due to the limited field of view (FOV). Besides, each camera might receive noisy measurements. To overcome these problems, this paper proposes a novel multi-target square-root cubature information weighted consensus filter (MTSCF), which reduces the effect of clutter or spurious measurements using joint probabilistic data association (JPDA) and proper weights on the information matrix and information vector. The simulation results show that the proposed algorithm can efficiently track multiple targets in camera networks and is obviously better in terms of accuracy and stability than conventional multi-target tracking algorithms. PMID:25951338

  16. A novel square-root cubature information weighted consensus filter algorithm for multi-target tracking in distributed camera networks.

    PubMed

    Chen, Yanming; Zhao, Qingjie

    2015-01-01

    This paper deals with the problem of multi-target tracking in a distributed camera network using the square-root cubature information filter (SCIF). SCIF is an efficient and robust nonlinear filter for multi-sensor data fusion. In camera networks, multiple cameras are arranged in a dispersed manner to cover a large area, and the target may appear in the blind area due to the limited field of view (FOV). Besides, each camera might receive noisy measurements. To overcome these problems, this paper proposes a novel multi-target square-root cubature information weighted consensus filter (MTSCF), which reduces the effect of clutter or spurious measurements using joint probabilistic data association (JPDA) and proper weights on the information matrix and information vector. The simulation results show that the proposed algorithm can efficiently track multiple targets in camera networks and is obviously better in terms of accuracy and stability than conventional multi-target tracking algorithms. PMID:25951338

  17. Undetected antisense tRNAs in mitochondrial genomes?

    PubMed Central

    2010-01-01

    Background The hypothesis that both mitochondrial (mt) complementary DNA strands of tRNA genes code for tRNAs (sense-antisense coding) is explored. This could explain why mt tRNA mutations are 6.5 times more frequently pathogenic than in other mt sequences. Antisense tRNA expression is plausible because tRNA punctuation signals mt sense RNA maturation: both sense and antisense tRNAs form secondary structures potentially signalling processing. Sense RNA maturation processes by default 11 antisense tRNAs neighbouring sense genes. If antisense tRNAs are expressed, processed antisense tRNAs should have adapted more for translational activity than unprocessed ones. Four tRNA properties are examined: antisense tRNA 5' and 3' end processing by sense RNA maturation and its accuracy, cloverleaf stability and misacylation potential. Results Processed antisense tRNAs align better with standard tRNA sequences with the same cognate than unprocessed antisense tRNAs, suggesting less misacylations. Misacylation increases with cloverleaf fragility and processing inaccuracy. Cloverleaf fragility, misacylation and processing accuracy of antisense tRNAs decrease with genome-wide usage of their predicted cognate amino acid. Conclusions These properties correlate as if they adaptively coevolved for translational activity by some antisense tRNAs, and to avoid such activity by other antisense tRNAs. Analyses also suggest previously unsuspected particularities of aminoacylation specificity in mt tRNAs: combinations of competition between tRNAs on tRNA synthetases with competition between tRNA synthetases on tRNAs determine specificities of tRNA amino acylations. The latter analyses show that alignment methods used to detect tRNA cognates yield relatively robust results, even when they apparently fail to detect the tRNA's cognate amino acid and indicate high misacylation potential. Reviewers This article was reviewed by Dr Juergen Brosius, Dr Anthony M Poole and Dr Andrei S Rodin (nominated

  18. Regulation of the NPT gene by a naturally occurring antisense transcript.

    PubMed

    Werner, Andreas; Preston-Fayers, Keziah; Dehmelt, Leif; Nalbant, Perihan

    2002-01-01

    Xenopus system. However, the regulatory mechanism(s) involving the npt-related antisense transcript is expected to be much more complicated in vivo, (i.e., requiring supplementary factors like double-stranded RNA recognizing proteins or specific RNases). It is planned to test this hypothesis by a transgenic zebrafish approach and/or knockout mice. PMID:12139410

  19. [Treatment with antisense oligonucleotides in Duchenne's disease].

    PubMed

    Pascual-Pascual, Samuel I

    2012-05-21

    In this paper I review the results of the treatments directed to modify the mRNA of dystrophin with the goal of converting the severe Duchenne type to the milder Becker muscular dystrophy. Antisense oligomers potential to modify Duchenne muscular dystrophy (DMD) gene expression and therapeutic strategies to induce ribosomal read-through of nonsense mutations (PTC124) are described. They are an important advance in the treatment of DMD, so far unspecific. Significant expression of new dystrophin is observed in biopsies of peripheral muscle, although the functional improvement is not so encouraging. New modification of chemistries are expected to improve the liberation, broad distribution in muscles, as well as their efficacy and safety enough to allow a positive chronic treatment of DMD. PMID:22605630

  20. Selection of antisense oligodeoxynucleotides against glutathione S-transferase Mu.

    PubMed Central

    't Hoen, Peter A C; Out, Ruud; Commandeur, Jan N M; Vermeulen, Nico P E; van Batenburg, F H D; Manoharan, Muthiah; van Berkel, Theo J C; Biessen, Erik A L; Bijsterbosch, Martin K

    2002-01-01

    The aim of the present study was to identify functional antisense oligodeoxynucleotides (ODNs) against the rat glutathione S-transferase Mu (GSTM) isoforms, GSTM1 and GSTM2. These antisense ODNs would enable the study of the physiological consequences of GSTM deficiency. Because it has been suggested that the effectiveness of antisense ODNs is dependent on the secondary mRNA structures of their target sites, we made mRNA secondary structure predictions with two software packages, Mfold and STAR. The two programs produced only marginally similar structures, which can probably be attributed to differences in the algorithms used. The effectiveness of a set of 18 antisense ODNs was evaluated with a cell-free transcription/translation assay, and their activity was correlated with the predicted secondary RNA structures. Four phosphodiester ODNs specific for GSTM1, two ODNs specific for GSTM2, and four ODNs targeted at both GSTM isoforms were found to be potent, sequence-specific, and RNase H-dependent inhibitors of protein expression. The IC50 value of the most potent ODN was approximately 100 nM. Antisense ODNs targeted against regions that were predicted by STAR to be predominantly single stranded were more potent than antisense ODNs against double-stranded regions. Such a correlation was not found for the Mfold prediction. Our data suggest that simulation of the local folding of RNA facilitates the discovery of potent antisense sequences. In conclusion, we selected several promising antisense sequences, which, when synthesized as biologically stable oligonucleotides, can be applied for study of the physiological impact of reduced GSTM expression. PMID:12515389

  1. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    NASA Astrophysics Data System (ADS)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  2. Antisense RNA-based High-Throughput Screen System for Directed Evolution of Quorum Quenching Enzymes.

    PubMed

    Han, Sang-Soo; Park, Won-Ji; Kim, Hak-Sung; Kim, Geun-Joong

    2015-11-20

    Quorum quenching (QQ) enzymes, which disrupt the quorum sensing signaling process, have attracted considerable attention as new antimicrobial agents. However, their low catalytic efficiency for quorum sensing molecules remains a challenge. Herein, we present an antisense RNA-based high-throughput screen system for directed evolution of a quorum quenching enzyme. The screening system was constructed by incorporating an antisense RNA (RyhB) into a synthetic module to quantitatively regulate the expression of a reporter gene fused with a sense RNA (sodB). To control the expression of a reporter gene in response to the catalytic activity of a quorum quenching enzyme, the region of interaction and mode between a pair of antisense (RyhB) and sense (sodB) RNAs was designed and optimized through the prediction of the secondary structure of the RNA pair. The screening system constructed was shown to lead to a significant reduction in the false-positive rate (average 42%) in the screening of N-acyl-homoserine lactonase (AiiA) with increased catalytic activity, resulting in a true-positive frequency of up to 76%. The utility and efficiency of the screening system were demonstrated by selecting an AiiA with 31-fold higher catalytic efficiency than the wild-type in three rounds of directed evolution. The present approach can be widely used for the screening of quorum quenching enzymes with the desired catalytic property, as well as for a synthetic network for a stringent regulation of the gene expression. PMID:26366664

  3. Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development

    SciTech Connect

    Tian, Hongmei; Ma, Leyuan; Zhao, Cong; Hao, Hui; Gong, Biao; Yu, Xiyan; Wang, Xiufeng

    2010-03-12

    To unravel the roles of sucrose phosphate synthase (SPS) in muskmelon (Cucumis melo L.), we reduced its activity in transgenic muskmelon plants by an antisense approach. For this purpose, an 830 bp cDNA fragment of muskmelon sucrose phosphate synthase was expressed in antisense orientation behind the 35S promoter of the cauliflower mosaic virus. The phenotype of the antisense plants clearly differed from that of control plants. The transgenic plant leaves were markedly smaller, and the plant height and stem diameter were obviously shorter and thinner. Transmission electron microscope observation revealed that the membrane degradation of chloroplast happened in transgenic leaves and the numbers of grana and grana lamella in the chloroplast were significantly less, suggesting that the slow growth and weaker phenotype of transgenic plants may be due to the damage of the chloroplast ultrastructure, which in turn results in the decrease of the net photosynthetic rate. The sucrose concentration and levels of sucrose phosphate synthase decreased in transgenic mature fruit, and the fruit size was smaller than the control fruit. Together, our results suggest that sucrose phosphate synthase may play an important role in regulating the muskmelon plant growth and fruit development.

  4. Layer-by-Layer Assembled Antisense DNA Microsponge Particles for Efficient Delivery of Cancer Therapeutics

    PubMed Central

    2015-01-01

    Antisense oligonucleotides can be employed as a potential approach to effectively treat cancer. However, the inherent instability and inefficient systemic delivery methods for antisense therapeutics remain major challenges to their clinical application. Here, we present a polymerized oligonucleotides (ODNs) that self-assemble during their formation through an enzymatic elongation method (rolling circle replication) to generate a composite nucleic acid/magnesium pyrophosphate sponge-like microstructure, or DNA microsponge, yielding high molecular weight nucleic acid product. In addition, this densely packed ODN microsponge structure can be further condensed to generate polyelectrolyte complexes with a favorable size for cellular uptake by displacing magnesium pyrophosphate crystals from the microsponge structure. Additional layers are applied to generate a blood-stable and multifunctional nanoparticle via the layer-by-layer (LbL) assembly technique. By taking advantage of DNA nanotechnology and LbL assembly, functionalized DNA nanostructures were utilized to provide extremely high numbers of repeated ODN copies for efficient antisense therapy. Moreover, we show that this formulation significantly improves nucleic acid drug/carrier stability during in vivo biodistribution. These polymeric ODN systems can be designed to serve as a potent means of delivering stable and large quantities of ODN therapeutics systemically for cancer treatment to tumor cells at significantly lower toxicity than traditional synthetic vectors, thus enabling a therapeutic window suitable for clinical translation. PMID:25198246

  5. Bimodal expression of PHO84 is modulated by early termination of antisense transcription

    PubMed Central

    Castelnuovo, Manuele; Rahman, Samir; Guffanti, Elisa; Infantino, Valentina; Stutz, Françoise; Zenklusen, Daniel

    2016-01-01

    Many S. cerevisiae genes encode antisense transcripts some of which are unstable and degraded by the exosome component Rrp6. Loss of Rrp6 results in the accumulation of long PHO84 antisense RNAs and repression of sense transcription through PHO84 promoter deacetylation. We used single molecule resolution fluorescent in situ hybridization (smFISH) to investigate antisense-mediated transcription regulation. We show that PHO84 antisense RNA acts as a bimodal switch, where continuous low frequency antisense transcription represses sense expression within individual cells. Surprisingly, antisense RNAs do not accumulate at the PHO84 gene but are exported to the cytoplasm. Furthermore, loss of Rrp6, rather than stabilizing PHO84 antisense RNA, promotes antisense elongation by reducing its early transcription termination by Nrd1-Nab3-Sen1. These observations suggest that PHO84 silencing results from constant low frequency antisense transcription through the promoter rather than its static accumulation at the repressed gene. PMID:23770821

  6. UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma.

    PubMed

    Zhang, Bo; Zhang, Yujie; Liao, Ziwei; Jiang, Ting; Zhao, Jingjing; Tuo, Yanyan; She, Xiaojian; Shen, Shun; Chen, Jun; Zhang, Qizhi; Jiang, Xinguo; Hu, Yu; Pang, Zhiqing

    2015-01-01

    Now it is well evidenced that tumor growth is a comprehensive result of multiple pathways, and glioma parenchyma cells and stroma cells are closely associated and mutually compensatory. Therefore, drug delivery strategies targeting both of them simultaneously might obtain more promising therapeutic benefits. In the present study, we developed a multi-targeting drug delivery system modified with uPA-activated cell-penetrating peptide (ACPP) for the treatment of brain glioma (ANP). In vitro experiments demonstrated nanoparticles (NP) decorated with cell-penetrating peptide (CPP) or ACPP could significantly improve nanoparticles uptake by C6 glioma cells and nanoparticles penetration into glioma spheroids as compared with traditional NP and thus enhanced the therapeutic effects of its payload when paclitaxel (PTX) was loaded. In vivo imaging experiment revealed that ANP accumulated more specifically in brain glioma site than NP decorated with or without CPP. Brain slides further showed that ACPP contributed to more nanoparticles accumulation in glioma site, and ANP could co-localize not only with glioma parenchyma cells, but also with stroma cells including neo-vascular cells and tumor associated macrophages. The pharmacodynamics results demonstrated ACPP could significantly improve the therapeutic benefits of nanoparticles by significantly prolonging the survival time of glioma bearing mice. In conclusion, the results suggested that nanoparticles modified with uPA-sensitive ACPP could reach multiple types of cells in glioma tissues and provide a novel strategy for glioma targeted therapy. PMID:25443789

  7. Crawling and walking infants encounter objects differently in a multi-target environment.

    PubMed

    Dosso, Jill A; Boudreau, J Paul

    2014-10-01

    From birth, infants move their bodies in order to obtain information and stimulation from their environment. Exploratory movements are important for the development of an infant's understanding of the world and are well established as being key to cognitive advances. Newly acquired motor skills increase the potential actions available to the infant. However, the way that infants employ potential actions in environments with multiple potential targets is undescribed. The current work investigated the target object selections of infants across a range of self-produced locomotor experience (11- to 14-month-old crawlers and walkers). Infants repeatedly accessed objects among pairs of objects differing in both distance and preference status, some requiring locomotion. Overall, their object actions were found to be sensitive to object preference status; however, the role of object distance in shaping object encounters was moderated by movement status. Crawlers' actions appeared opportunistic and were biased towards nearby objects while walkers' actions appeared intentional and were independent of object position. Moreover, walkers' movements favoured preferred objects more strongly for children with higher levels of self-produced locomotion experience. The multi-target experimental situation used in this work parallels conditions faced by foraging organisms, and infants' behaviours were discussed with respect to optimal foraging theory. There is a complex interplay between infants' agency, locomotor experience, and environment in shaping their motor actions. Infants' movements, in turn, determine the information and experiences offered to infants by their micro-environment. PMID:24888534

  8. Molecular Investigations of Protriptyline as a Multi-Target Directed Ligand in Alzheimer's Disease

    PubMed Central

    Bansode, Sneha B.; Jana, Asis K.; Batkulwar, Kedar B.; Warkad, Shrikant D.; Joshi, Rakesh S.; Sengupta, Neelanjana; Kulkarni, Mahesh J.

    2014-01-01

    Alzheimer's disease (AD) is a complex neurodegenerative disorder involving multiple cellular and molecular processes. The discovery of drug molecules capable of targeting multiple factors involved in AD pathogenesis would greatly facilitate in improving therapeutic strategies. The repositioning of existing non-toxic drugs could dramatically reduce the time and costs involved in developmental and clinical trial stages. In this study, preliminary screening of 140 FDA approved nervous system drugs by docking suggested the viability of the tricyclic group of antidepressants against three major AD targets, viz. Acetylcholinesterase (AChE), β-secretase (BACE-1), and amyloid β (Aβ) aggregation, with one member, protriptyline, showing highest inhibitory activity. Detailed biophysical assays, together with isothermal calorimetry, fluorescence quenching experiments, kinetic studies and atomic force microscopy established the strong inhibitory activity of protriptyline against all three major targets. The molecular basis of inhibition was supported with comprehensive molecular dynamics simulations. Further, the drug inhibited glycation induced amyloid aggregation, another important causal factor in AD progression. This study has led to the discovery of protriptyline as a potent multi target directed ligand and established its viability as a promising candidate for AD treatment. PMID:25141174

  9. Gait Measurement System for the Multi-Target Stepping Task Using a Laser Range Sensor

    PubMed Central

    Yorozu, Ayanori; Nishiguchi, Shu; Yamada, Minoru; Aoyama, Tomoki; Moriguchi, Toshiki; Takahashi, Masaki

    2015-01-01

    For the prevention of falling in the elderly, gait training has been proposed using tasks such as the multi-target stepping task (MTST), in which participants step on assigned colored targets. This study presents a gait measurement system using a laser range sensor for the MTST to evaluate the risk of falling. The system tracks both legs and measures general walking parameters such as stride length and walking speed. Additionally, it judges whether the participant steps on the assigned colored targets and detects cross steps to evaluate cognitive function. However, situations in which one leg is hidden from the sensor or the legs are close occur and are likely to lead to losing track of the legs or false tracking. To solve these problems, we propose a novel leg detection method with five observed leg patterns and global nearest neighbor-based data association with a variable validation region based on the state of each leg. In addition, methods to judge target steps and detect cross steps based on leg trajectory are proposed. From the experimental results with the elderly, it is confirmed that the proposed system can improve leg-tracking performance, judge target steps and detect cross steps with high accuracy. PMID:25985161

  10. ATP as a multi-target danger signal in the brain

    PubMed Central

    Rodrigues, Ricardo J.; Tomé, Angelo R.; Cunha, Rodrigo A.

    2015-01-01

    ATP is released in an activity-dependent manner from different cell types in the brain, fulfilling different roles as a neurotransmitter, neuromodulator, in astrocyte-to-neuron communication, propagating astrocytic responses and formatting microglia responses. This involves the activation of different ATP P2 receptors (P2R) as well as adenosine receptors upon extracellular ATP catabolism by ecto-nucleotidases. Notably, brain noxious stimuli trigger a sustained increase of extracellular ATP, which plays a key role as danger signal in the brain. This involves a combined action of extracellular ATP in different cell types, namely increasing the susceptibility of neurons to damage, promoting astrogliosis and recruiting and formatting microglia to mount neuroinflammatory responses. Such actions involve the activation of different receptors, as heralded by neuroprotective effects resulting from blockade mainly of P2X7R, P2Y1R and adenosine A2A receptors (A2AR), which hierarchy, cooperation and/or redundancy is still not resolved. These pleiotropic functions of ATP as a danger signal in brain damage prompt a therapeutic interest to multi-target different purinergic receptors to provide maximal opportunities for neuroprotection. PMID:25972780

  11. Multi-target camera tracking, hand-off and display LDRD 158819 final report

    SciTech Connect

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldnt lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that takes live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of currently capability.

  12. Multi-target camera tracking, hand-off and display LDRD 158819 final report.

    SciTech Connect

    Anderson, Robert J.

    2014-10-01

    Modern security control rooms gather video and sensor feeds from tens to hundreds of cameras. Advanced camera analytics can detect motion from individual video streams and convert unexpected motion into alarms, but the interpretation of these alarms depends heavily upon human operators. Unfortunately, these operators can be overwhelmed when a large number of events happen simultaneously, or lulled into complacency due to frequent false alarms. This LDRD project has focused on improving video surveillance based security systems by changing the fundamental focus from the cameras to the targets being tracked. If properly integrated, more cameras shouldnt lead to more alarms, more monitors, more operators, and increased response latency but instead should lead to better information and more rapid response times. For the course of the LDRD we have been developing algorithms that takes live video imagery from multiple video cameras, identifies individual moving targets from the background imagery, and then displays the results in a single 3D interactive video. In this document we summarize the work in developing this multi-camera, multi-target system, including lessons learned, tools developed, technologies explored, and a description of currently capability.

  13. Joint decision and Naive Bayes learning for detection of space multi-target

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Li, Zhulian; Zhou, Yu; Xiong, Yaoheng; Zhang, Haitao

    2014-07-01

    In the photoelectric tracking system, the detection of space multi-target is crucial for target localization and tracking. The difficulties include the interferences from CCD smear and strong noise, the few characteristics of spot-like targets and the challenge of multiple targets. In this paper, we propose a hybrid algorithm of joint decision and Naive Bayes (JD-NB) learning, and present the duty ratio feature to discriminate the target and smear blocks. Firstly, we extract the proper features and train the parameters of the Naive Bayes classifier. Secondly, target blocks are preliminarily estimated with the Naive Bayes. Lastly, the 4-adjacent blocks of the candidate target blocks are jointed to analyze the distribution pattern and the true target blocks are secondarily extracted by the method of pattern matching. Experimental results indicate that the proposed JD-NB algorithm not only possesses a high recognition rate of better than 90% for the target block, but also effectively overcomes the disturbance of the smear block. Moreover, it performs well in the detection of small and faint targets when the SNR of the block is higher than about 0.014.

  14. Antenna Allocation in MIMO Radar with Widely Separated Antennas for Multi-Target Detection

    PubMed Central

    Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong

    2014-01-01

    In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes. PMID:25350505

  15. Gait measurement system for the multi-target stepping task using a laser range sensor.

    PubMed

    Yorozu, Ayanori; Nishiguchi, Shu; Yamada, Minoru; Aoyama, Tomoki; Moriguchi, Toshiki; Takahashi, Masaki

    2015-01-01

    For the prevention of falling in the elderly, gait training has been proposed using tasks such as the multi-target stepping task (MTST), in which participants step on assigned colored targets. This study presents a gait measurement system using a laser range sensor for the MTST to evaluate the risk of falling. The system tracks both legs and measures general walking parameters such as stride length and walking speed. Additionally, it judges whether the participant steps on the assigned colored targets and detects cross steps to evaluate cognitive function. However, situations in which one leg is hidden from the sensor or the legs are close occur and are likely to lead to losing track of the legs or false tracking. To solve these problems, we propose a novel leg detection method with five observed leg patterns and global nearest neighbor-based data association with a variable validation region based on the state of each leg. In addition, methods to judge target steps and detect cross steps based on leg trajectory are proposed. From the experimental results with the elderly, it is confirmed that the proposed system can improve leg-tracking performance, judge target steps and detect cross steps with high accuracy. PMID:25985161

  16. ATP as a multi-target danger signal in the brain.

    PubMed

    Rodrigues, Ricardo J; Tomé, Angelo R; Cunha, Rodrigo A

    2015-01-01

    ATP is released in an activity-dependent manner from different cell types in the brain, fulfilling different roles as a neurotransmitter, neuromodulator, in astrocyte-to-neuron communication, propagating astrocytic responses and formatting microglia responses. This involves the activation of different ATP P2 receptors (P2R) as well as adenosine receptors upon extracellular ATP catabolism by ecto-nucleotidases. Notably, brain noxious stimuli trigger a sustained increase of extracellular ATP, which plays a key role as danger signal in the brain. This involves a combined action of extracellular ATP in different cell types, namely increasing the susceptibility of neurons to damage, promoting astrogliosis and recruiting and formatting microglia to mount neuroinflammatory responses. Such actions involve the activation of different receptors, as heralded by neuroprotective effects resulting from blockade mainly of P2X7R, P2Y1R and adenosine A2A receptors (A2AR), which hierarchy, cooperation and/or redundancy is still not resolved. These pleiotropic functions of ATP as a danger signal in brain damage prompt a therapeutic interest to multi-target different purinergic receptors to provide maximal opportunities for neuroprotection. PMID:25972780

  17. Topology of classical molecular optimal control landscapes for multi-target objectives

    SciTech Connect

    Joe-Wong, Carlee; Ho, Tak-San; Rabitz, Herschel; Wu, Rebing

    2015-04-21

    This paper considers laser-driven optimal control of an ensemble of non-interacting molecules whose dynamics lie in classical phase space. The molecules evolve independently under control to distinct final states. We consider a control landscape defined in terms of multi-target (MT) molecular states and analyze the landscape as a functional of the control field. The topology of the MT control landscape is assessed through its gradient and Hessian with respect to the control. Under particular assumptions, the MT control landscape is found to be free of traps that could hinder reaching the objective. The Hessian associated with an optimal control field is shown to have finite rank, indicating an inherent degree of robustness to control noise. Both the absence of traps and rank of the Hessian are shown to be analogous to the situation of specifying multiple targets for an ensemble of quantum states. Numerical simulations are presented to illustrate the classical landscape principles and further characterize the system behavior as the control field is optimized.

  18. In Vitro and In Vivo Activity of Multi-Target Inhibitors Against Trypanosoma brucei

    PubMed Central

    Yang, Gyongseon; Zhu, Wei; Wang, Yang; Huang, Guozhong; Byun, Sooyoung; Choi, Gahee; Li, Kai; Huang, Zhuoli; Docampo, Roberto; Oldfield, Eric; No, Joo Hwan

    2015-01-01

    We tested a series of amidine and related compounds against Trypanosoma brucei. The most active compound was a biphenyldiamidine which had an EC50 of 7.7 nM against bloodstream form parasites. There was little toxicity against two human cell lines with CC50 > 100 μM. There was also good in vivo activity in a mouse model of infection with 100% survival at 3 mg/kg i.p. The most potent lead blocked replication of kinetoplast DNA (k-DNA), but not nuclear DNA, in the parasite. Some compounds also inhibited the enzyme farnesyl diphosphate synthase (FPPS) and some were uncouplers of oxidative phosphorylation. We developed a computational model for T. brucei cell growth inhibition (R2 = 0.76) using DNA ΔTm values for inhibitor binding, combined with T. brucei FPPS IC50 values. Overall, the results suggest that it may be possible to develop multi-target drug leads against T. brucei that act by inhibiting both k-DNA replication and isoprenoid biosynthesis. PMID:26295062

  19. Natural antisense transcription from a comparative perspective.

    PubMed

    Piatek, Monica J; Henderson, Victoria; Zynad, Hany S; Werner, Andreas

    2016-08-01

    Natural antisense transcripts (NATs) can interfere with the expression of complementary sense transcripts with exquisite specificity. We have previously cloned NATs of Slc34a loci (encoding Na-phosphate transporters) from fish and mouse. Here we report the cloning of a human SLC34A1-related NAT that represents an alternatively spliced PFN3 transcript (Profilin3). The transcript is predominantly expressed in testis. Phylogenetic comparison suggests two distinct mechanisms producing Slc34a-related NATs: Alternative splicing of a transcript from a protein coding downstream gene (Pfn3, human/mouse) and transcription from the bi-directional promoter (Rbpja, zebrafish). Expression analysis suggested independent regulation of the complementary Slc34a mRNAs. Analysis of randomly selected bi-directionally transcribed human/mouse loci revealed limited phylogenetic conservation and independent regulation of NATs. They were reduced on X chromosomes and clustered in regions that escape inactivation. Locus structure and expression pattern suggest a NATs-associated regulatory mechanisms in testis unrelated to the physiological role of the sense transcript encoded protein. PMID:27241791

  20. Optimizing antisense oligonucleotides using phosphorodiamidate morpholino oligomers.

    PubMed

    Popplewell, Linda J; Malerba, Alberto; Dickson, George

    2012-01-01

    Duchenne muscular dystrophy (DMD) is caused by mutations that disrupt the reading frame of the human DMD gene. Selective removal of exons flanking an out-of-frame DMD mutation can result in an in-frame mRNA transcript that may be translated into an internally deleted Becker muscular dystrophy-like functionally active dystrophin protein with therapeutic activity. Antisense oligonucleotides (AOs) can be designed to bind to complementary sequences in the targeted mRNA and modify pre-mRNA splicing to correct the reading frame of a mutated transcript. AO-induced exon skipping resulting in functional truncated dystrophin has been demonstrated in animal models of DMD both in vitro and in vivo, in DMD patient cells in vitro in culture, and in DMD muscle explants. The recent advances made in this field suggest that it is likely that AO-induced exon skipping will be the first gene therapy for DMD to reach the clinic. However, it should be noted that personalized molecular medicine may be necessary, since the various reading frame-disrupting mutations are spread across the DMD gene. The different deletions that cause DMD would require skipping of different exons, which would require the optimization and clinical trial workup of many specific AOs. This chapter describes the methodologies available for the optimization of AOs, in particular phosphorodiamidate morpholino oligomers, for the targeted skipping of specific exons on the DMD gene. PMID:22454060

  1. Splice-switching antisense oligonucleotides as therapeutic drugs.

    PubMed

    Havens, Mallory A; Hastings, Michelle L

    2016-08-19

    Splice-switching oligonucleotides (SSOs) are short, synthetic, antisense, modified nucleic acids that base-pair with a pre-mRNA and disrupt the normal splicing repertoire of the transcript by blocking the RNA-RNA base-pairing or protein-RNA binding interactions that occur between components of the splicing machinery and the pre-mRNA. Splicing of pre-mRNA is required for the proper expression of the vast majority of protein-coding genes, and thus, targeting the process offers a means to manipulate protein production from a gene. Splicing modulation is particularly valuable in cases of disease caused by mutations that lead to disruption of normal splicing or when interfering with the normal splicing process of a gene transcript may be therapeutic. SSOs offer an effective and specific way to target and alter splicing in a therapeutic manner. Here, we discuss the different approaches used to target and alter pre-mRNA splicing with SSOs. We detail the modifications to the nucleic acids that make them promising therapeutics and discuss the challenges to creating effective SSO drugs. We highlight the development of SSOs designed to treat Duchenne muscular dystrophy and spinal muscular atrophy, which are currently being tested in clinical trials. PMID:27288447

  2. RNA therapeutics: RNAi and antisense mechanisms and clinical applications

    PubMed Central

    Chery, Jessica; Näär, Anders

    2016-01-01

    RNA therapeutics refers to the use of oligonucleotides to target primarily ribonucleic acids (RNA) for therapeutic efforts or in research studies to elucidate functions of genes. Oligonucleotides are distinct from other pharmacological modalities, such as small molecules and antibodies that target mainly proteins, due to their mechanisms of action and chemical properties. Nucleic acids come in two forms: deoxyribonucleic acids (DNA) and ribonucleic acids (RNA). Although DNA is more stable, RNA offers more structural variety ranging from messenger RNA (mRNA) that codes for protein to non-coding RNAs, microRNA (miRNA), transfer RNA (tRNA), short interfering RNAs (siRNAs), ribosomal RNA (rRNA), and long-noncoding RNAs (lncRNAs). As our understanding of the wide variety of RNAs deepens, researchers have sought to target RNA since >80% of the genome is estimated to be transcribed. These transcripts include non-coding RNAs such as miRNAs and siRNAs that function in gene regulation by playing key roles in the transfer of genetic information from DNA to protein, the final product of the central dogma in biology1. Currently there are two main approaches used to target RNA: double stranded RNA-mediated interference (RNAi) and antisense oligonucleotides (ASO). Both approaches are currently in clinical trials for targeting of RNAs involved in various diseases, such as cancer and neurodegeneration. In fact, ASOs targeting spinal muscular atrophy and amyotrophic lateral sclerosis have shown positive results in clinical trials2. Advantages of ASOs include higher affinity due to the development of chemical modifications that increase affinity, selectivity while decreasing toxicity due to off-target effects. This review will highlight the major therapeutic approaches of RNA medicine currently being applied with a focus on RNAi and ASOs. PMID:27570789

  3. Selenium induces a multi-targeted cell death process in addition to ROS formation.

    PubMed

    Wallenberg, Marita; Misra, Sougat; Wasik, Agata M; Marzano, Cristina; Björnstedt, Mikael; Gandin, Valentina; Fernandes, Aristi P

    2014-04-01

    Selenium compounds inhibit neoplastic growth. Redox active selenium compounds are evolving as promising chemotherapeutic agents through tumour selectivity and multi-target response, which are of great benefit in preventing development of drug resistance. Generation of reactive oxygen species is implicated in selenium-mediated cytotoxic effects on cancer cells. Recent findings indicate that activation of diverse intracellular signalling leading to cell death depends on the chemical form of selenium applied and/or cell line investigated. In the present study, we aimed at deciphering different modes of cell death in a single cell line (HeLa) upon treatment with three redox active selenium compounds (selenite, selenodiglutathione and seleno-DL-cystine). Both selenite and selenodiglutathione exhibited equipotent toxicity (IC50 5 μM) in these cells with striking differences in toxicity mechanisms. Morphological and molecular alterations provided evidence of necroptosis-like cell death in selenite treatment, whereas selenodiglutathione induced apoptosis-like cell death. We demonstrate that selenodiglutathione efficiently glutathionylated free protein thiols, which might explain the early differences in cytotoxic effects induced by selenite and selenodiglutathione. In contrast, seleno-DL-cystine treatment at an IC50 concentration of 100 μM induced morphologically two distinct different types of cell death, one with apoptosis-like phenotype, while the other was reminiscent of paraptosis-like cell death, characterized by induction of unfolded protein response, ER-stress and occurrence of large cytoplasmic vacuoles. Collectively, the current results underline the diverse cytotoxic effects and variable potential of redox active selenium compounds on the survival of HeLa cells and thereby substantiate the potential of chemical species-specific usage of selenium in the treatment of cancers. PMID:24400844

  4. Piezo-microfluidic transport system for multi-targets biochip detections

    NASA Astrophysics Data System (ADS)

    Li, Chia-Chin; Wang, Pei-Wen; Lee, Chih-Kung

    2016-03-01

    Detecting minute trace of interferon-gamma and various bio-markers by using a single biochip was adopted as a platform to examine the technology advancements presented. As bio-detection faces the restriction that only very small quantity of specimen is available, ways to make the best use of the sample available are a must. Since samples concentration will affect the binding rate of an immunoassay, the testing order will become an influencing factor if multiple biomarkers testing situation are needed by using only a single trace of sample. More specifically, if we test disease A first and then detect disease B using the sample just been measured by testing disease A, we most likely will get different results if we reverse the testing order. With an attempt to examine and maybe resolve the issues mentioned above, a micro-fluid control system was developed. The design requirements not only ask for microfluidic control but also demand the system developed has the potential to be integrated within the biochip once its performance is verified. A piezo-vibrating system that can generate traveling waves for microfluidic control was chosen due to its versatility and large force to volume ratio. A simulation software COMSOL was adopted first to predict the microfluidic behavior of the two-mode excited piezo-microfluidic transport system. Secondly, fluorescent particles was used to analyze the microfluidic behavior of system fabricated based on the simulation. Finally, Electrochemistry Impedance Spectroscopy (EIS) was implemented to verify the performance and extendibility of this newly developed system for multi-target detections.

  5. On primordial sense-antisense coding

    PubMed Central

    Rodin, Andrei S.; Rodin, Sergei N.; Carter, Charles W.

    2010-01-01

    The genetic code is implemented by aminoacyl-tRNA synthetases (aaRS). These twenty enzymes are divided into two classes that, despite performing same functions, have nothing common in structure. The mystery of this striking partition of aaRSs might have been concealed in their sterically complementary modes of tRNA recognition that, as we have found recently, protect the tRNAs with complementary anticodons from confusion in translation. This finding implies that, in the beginning, life increased its coding repertoire by the pairs of complementary codons (rather than one-by-one) and used both complementary strands of genes as templates for translation. The class I and class II aaRSs may represent one of the most important examples of such primordial sence-antisence (SAS) coding (Rodin and Ohno, 1995). In this report, we address the issue of SAS coding in a wider scope. We suggest a variety of advantages that such coding would have had in exploring a wider sequence space before translation became highly specific. In particular, we confirm that in Achylia klebsiana a single gene might have originally coded for an HSP70 chaperonin (class II aaRS homolog) and an NAD-specific GDH-like enzyme (class I aaRS homolog) via its sense and antisense strands. Thus, in contrast to the conclusions in (Williams et al., 2009), this could indeed be a “Rosetta stone” (eroded somewhat, though) gene for the SAS origin of the two aaRS classes (Carter and Duax, 2002). PMID:19956936

  6. Experimental demonstration of a multi-target detection technique using an X-band optically steered phased array radar.

    PubMed

    Shi, Nuannuan; Li, Ming; Deng, Ye; Zhang, Lihong; Sun, Shuqian; Tang, Jian; Li, Wei; Zhu, Ninghua

    2016-06-27

    An X-band optically-steered phased array radar is developed to demonstrate high resolution multi-target detection. The beam forming is implemented based on wavelength-swept true time delay (TTD) technique. The beam forming system has a wide direction tuning range of ± 54 degree, low magnitude ripple of ± 0.5 dB and small delay error of 0.13 ps/nm. To further verify performance of the proposed optically-steered phased array radar, three experiments are then carried out to implement the single and multiple target detection. A linearly chirped X-band microwave signal is used as radar signal which is finally compressed at the receiver to improve the detection accuracy. The ranging resolution for multi-target detection is up to 2 cm within the measuring distance over 4 m and the azimuth angle error is less than 4 degree. PMID:27410597

  7. A novel dysferlin mutant pseudoexon bypassed with antisense oligonucleotides

    PubMed Central

    Dominov, Janice A; Uyan, Özgün; Sapp, Peter C; McKenna-Yasek, Diane; Nallamilli, Babi R R; Hegde, Madhuri; Brown, Robert H

    2014-01-01

    Objective Mutations in dysferlin (DYSF), a Ca2+-sensitive ferlin family protein important for membrane repair, vesicle trafficking, and T-tubule function, cause Miyoshi myopathy, limb-girdle muscular dystrophy type 2B, and distal myopathy. More than 330 pathogenic DYSF mutations have been identified within exons or near exon–intron junctions. In ~17% of patients who lack normal DYSF, only a single disease-causing mutation has been identified. We studied one family with one known mutant allele to identify both the second underlying genetic defect and potential therapeutic approaches. Methods We sequenced the full DYSF cDNA and investigated antisense oligonucleotides (AONs) as a tool to modify splicing of the mRNA transcripts in order to process out mutant sequences. Results We identified a novel pseudoexon between exons 44 and 45, (pseudoexon 44.1, PE44.1), which inserts an additional 177 nucleotides into the mRNA and 59 amino acids within the conserved C2F domain of the DYSF protein. Two unrelated dysferlinopathy patients were also found to carry this mutation. Using AONs targeting PE44.1, we blocked the abnormal splicing event, yielding normal, full-length DYSF mRNA, and increased DYSF protein expression. Interpretation This is the first report of a deep intronic mutation in DYSF that alters mRNA splicing to include a mutant peptide fragment within a key DYSF domain. We report that AON-mediated exon-skipping restores production of normal, full-length DYSF in patients’ cells in vitro, offering hope that this approach will be therapeutic in this genetic context, and providing a foundation for AON therapeutics targeting other pathogenic DYSF alleles. PMID:25493284

  8. Inhibition of dengue virus by novel, modified antisense oligonucleotides.

    PubMed Central

    Raviprakash, K; Liu, K; Matteucci, M; Wagner, R; Riffenburgh, R; Carl, M

    1995-01-01

    Five different target regions along the length of the dengue virus type 2 genome were compared for inhibition of the virus following intracellular injection of the cognate antisense oligonucleotides and their analogs. Unmodified phosphodiester oligonucleotides as well as the corresponding phosphorothioate oligonucleotides were ineffective in bringing about a significant inhibition of the virus. Novel modified phosphorothioate oligonucleotides in which the C-5 atoms of uridines and cytidines were replaced by propynyl groups caused a significant inhibition of the virus. Antisense oligonucleotide directed against the target region near the translation initiation site of dengue virus RNA was the most effective, followed by antisense oligonucleotide directed against a target in the 3' untranslated region of the virus RNA. It is suggested that the inhibitory effect of these novel modified oligonucleotides is due to their increased affinity for the target sequences and that they probably function via an RNase H cleavage of the oligonucleotide:RNA heteroduplex. PMID:7983769

  9. Inhibition of Human Immunodeficiency Virus Replication by Antisense Oligodeoxynucleotides

    NASA Astrophysics Data System (ADS)

    Goodchild, John; Agrawal, Sudhir; Civeira, Maria P.; Sarin, Prem S.; Sun, Daisy; Zamecnik, Paul C.

    1988-08-01

    Twenty different target sites within human immunodeficiency virus (HIV) RNA were selected for studies of inhibition of HIV replication by antisense oligonucleotides. Target sites were selected based on their potential capacity to block recognition functions during viral replication. Antisense oligomers complementary to sites within or near the sequence repeated at the ends of retrovirus RNA (R region) and to certain splice sites were most effective. The effect of antisense oligomer length on inhibiting virus replication was also investigated, and preliminary toxicity studies in mice show that these compounds are toxic only at high levels. The results indicate potential usefulness for these oligomers in the treatment of patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex either alone or in combination with other drugs.

  10. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters

    PubMed Central

    Lavender, Christopher A.; Hoffman, Jackson A.; Trotter, Kevin W.; Gilchrist, Daniel A.; Bennett, Brian D.; Burkholder, Adam B.; Fargo, David C.; Archer, Trevor K.

    2016-01-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment. PMID:27487356

  11. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    PubMed

    Lavender, Christopher A; Cannady, Kimberly R; Hoffman, Jackson A; Trotter, Kevin W; Gilchrist, Daniel A; Bennett, Brian D; Burkholder, Adam B; Burd, Craig J; Fargo, David C; Archer, Trevor K

    2016-08-01

    Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment. PMID:27487356

  12. Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility.

    PubMed

    Thipyapong, Piyada; Hunt, Michelle D; Steffens, John C

    2004-11-01

    Polyphenol oxidases (PPOs; EC 1.14.18.1 or EC 1.10.3.2) catalyze the oxidation of phenolics to quinones, highly reactive intermediates whose secondary reactions are responsible for much of the oxidative browning that accompanies plant senescence, wounding, and responses to pathogens. To assess the impact of PPO expression on resistance to Pseudomonas syringae pv. tomato we introduced a chimeric antisense potato PPO cDNA into tomato (Lycopersicon esculentum L.). Oxidation of caffeic acid, the dominant o-diphenolic aglycone of tomato foliage, was decreased ca. 40-fold by antisense expression of PPO. All members of the PPO gene family were downregulated: neither immunoreactive PPO nor PPO-specific mRNA were detectable in the transgenic plants. In addition, the antisense PPO construct suppressed inducible increases in PPO activity. Downregulation of PPO in antisense plants did not affect growth, development, or reproduction of greenhouse-grown plants. However, antisense PPO expression dramatically increased susceptibility to P. syringae expressing the avirulence gene avrPto in both Pto and pto backgrounds. In a compatible (pto) interaction, plants constitutively expressing an antisense PPO construct exhibited a 55-fold increase in bacterial growth, three times larger lesion area, and ten times more lesions cm(-2) than nontransformed plants. In an incompatible (Pto) interaction, antisense PPO plants exhibited 100-fold increases in bacterial growth and ten times more lesions cm(-2) than nontransformed plants. Although it is not clear whether hypersusceptibility of antisense plants is due to low constitutive PPO levels or failure to induce PPO upon infection, these findings suggest a critical role for PPO-catalyzed phenolic oxidation in limiting disease development. As a preliminary effort to understand the role of induced PPO in limiting disease development, we also examined the response of PPO promoter::beta-glucuronidase constructs when plants are challenged with P

  13. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides.

    PubMed

    Igreja, Susana; Clarke, Luka A; Botelho, Hugo M; Marques, Luís; Amaral, Margarida D

    2016-02-01

    Cystic fibrosis (CF), the most common life-threatening genetic disease in Caucasians, is caused by ∼2,000 different mutations in the CF transmembrane conductance regulator (CFTR) gene. A significant fraction of these (∼13%) affect pre-mRNA splicing for which novel therapies have been somewhat neglected. We have previously described the effect of the CFTR splicing mutation c.2657+5G>A in IVS16, showing that it originates transcripts lacking exon 16 as well as wild-type transcripts. Here, we tested an RNA-based antisense oligonucleotide (AON) strategy to correct the aberrant splicing caused by this mutation. Two AONs (AON1/2) complementary to the pre-mRNA IVS16 mutant region were designed and their effect on splicing was assessed at the RNA and protein levels, on intracellular protein localization and function. To this end, we used the 2657+5G>A mutant CFTR minigene stably expressed in HEK293 Flp-In cells that express a single copy of the transgene. RNA data from AON1-treated mutant cells show that exon 16 inclusion was almost completely restored (to 95%), also resulting in increased levels of correctly localized CFTR protein at the plasma membrane (PM) and with increased function. A novel two-color CFTR splicing reporter minigene developed here allowed the quantitative monitoring of splicing by automated microscopy localization of CFTR at the PM. The AON strategy is thus a promising therapeutic approach for the specific correction of alternative splicing. PMID:26553470

  14. Neighboring Gene Regulation by Antisense Long Non-Coding RNAs

    PubMed Central

    Villegas, Victoria E.; Zaphiropoulos, Peter G.

    2015-01-01

    Antisense transcription, considered until recently as transcriptional noise, is a very common phenomenon in human and eukaryotic transcriptomes, operating in two ways based on whether the antisense RNA acts in cis or in trans. This process can generate long non-coding RNAs (lncRNAs), one of the most diverse classes of cellular transcripts, which have demonstrated multifunctional roles in fundamental biological processes, including embryonic pluripotency, differentiation and development. Antisense lncRNAs have been shown to control nearly every level of gene regulation—pretranscriptional, transcriptional and posttranscriptional—through DNA–RNA, RNA–RNA or protein–RNA interactions. This review is centered on functional studies of antisense lncRNA-mediated regulation of neighboring gene expression. Specifically, it addresses how these transcripts interact with other biological molecules, nucleic acids and proteins, to regulate gene expression through chromatin remodeling at the pretranscriptional level and modulation of transcriptional and post-transcriptional processes by altering the sense mRNA structure or the cellular compartmental distribution, either in the nucleus or the cytoplasm. PMID:25654223

  15. Natural antisense transcripts associated with salinity response in alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural antisense transcripts (NATs) are long non-coding RNAs (lncRNAs) complimentary to the messenger (sense) RNA (Wang et al. 2014). Many of them are involved in regulation of their own sense transcripts thus playing pivotal biological roles in all processes of organismal development and responses...

  16. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides.

    PubMed

    Sztainberg, Yehezkel; Chen, Hong-mei; Swann, John W; Hao, Shuang; Tang, Bin; Wu, Zhenyu; Tang, Jianrong; Wan, Ying-Wooi; Liu, Zhandong; Rigo, Frank; Zoghbi, Huda Y

    2015-12-01

    Copy number variations have been frequently associated with developmental delay, intellectual disability and autism spectrum disorders. MECP2 duplication syndrome is one of the most common genomic rearrangements in males and is characterized by autism, intellectual disability, motor dysfunction, anxiety, epilepsy, recurrent respiratory tract infections and early death. The broad range of deficits caused by methyl-CpG-binding protein 2 (MeCP2) overexpression poses a daunting challenge to traditional biochemical-pathway-based therapeutic approaches. Accordingly, we sought strategies that directly target MeCP2 and are amenable to translation into clinical therapy. The first question that we addressed was whether the neurological dysfunction is reversible after symptoms set in. Reversal of phenotypes in adult symptomatic mice has been demonstrated in some models of monogenic loss-of-function neurological disorders, including loss of MeCP2 in Rett syndrome, indicating that, at least in some cases, the neuroanatomy may remain sufficiently intact so that correction of the molecular dysfunction underlying these disorders can restore healthy physiology. Given the absence of neurodegeneration in MECP2 duplication syndrome, we propose that restoration of normal MeCP2 levels in MECP2 duplication adult mice would rescue their phenotype. By generating and characterizing a conditional Mecp2-overexpressing mouse model, here we show that correction of MeCP2 levels largely reverses the behavioural, molecular and electrophysiological deficits. We also reduced MeCP2 using an antisense oligonucleotide strategy, which has greater translational potential. Antisense oligonucleotides are small, modified nucleic acids that can selectively hybridize with messenger RNA transcribed from a target gene and silence it, and have been successfully used to correct deficits in different mouse models. We find that antisense oligonucleotide treatment induces a broad phenotypic rescue in adult

  17. Multi-exon Skipping Using Cocktail Antisense Oligonucleotides in the Canine X-linked Muscular Dystrophy.

    PubMed

    Miskew Nichols, Bailey; Aoki, Yoshitsugu; Kuraoka, Mutsuki; Lee, Joshua J A; Takeda, Shin'ichi; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to only 13% of patients can be treated with a single AON drug), and uncertain function of truncated proteins. These issues were addressed with a cocktail AON approach. While approximately 70% of DMD patients can be treated by single exon skipping (all exons combined), one could potentially treat more than 90% of DMD patients if multiple exon skipping using cocktail antisense drugs can be realized. The canine X-linked muscular dystrophy (CXMD) dog model, whose phenotype is more similar to human DMD patients, was used to test the systemic efficacy and safety of multi-exon skipping of exons 6 and 8. The CXMD dog model harbors a splice site mutation in intron 6, leading to a lack of exon 7 in dystrophin mRNA. To restore the reading frame in CXMD requires multi-exon skipping of exons 6 and 8; therefore, CXMD is a good middle-sized animal model for testing the efficacy and safety of multi-exon skipping. In the current study, a cocktail of antisense morpholinos targeting exon 6 and exon 8 was designed and it restored dystrophin expression in body-wide skeletal muscles. Methods for transfection/injection of cocktail oligos and evaluation of the efficacy and safety of multi-exon skipping in the CXMD dog model are presented. PMID:27285612

  18. Multi-exon Skipping Using Cocktail Antisense Oligonucleotides in the Canine X-linked Muscular Dystrophy

    PubMed Central

    Kuraoka, Mutsuki; Lee, Joshua J.A.; Takeda, Shin'ichi; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic diseases worldwide, caused by mutations in the dystrophin (DMD) gene. Exon skipping employs short DNA/RNA-like molecules called antisense oligonucleotides (AONs) that restore the reading frame and produce shorter but functional proteins. However, exon skipping therapy faces two major hurdles: limited applicability (up to only 13% of patients can be treated with a single AON drug), and uncertain function of truncated proteins. These issues were addressed with a cocktail AON approach. While approximately 70% of DMD patients can be treated by single exon skipping (all exons combined), one could potentially treat more than 90% of DMD patients if multiple exon skipping using cocktail antisense drugs can be realized. The canine X-linked muscular dystrophy (CXMD) dog model, whose phenotype is more similar to human DMD patients, was used to test the systemic efficacy and safety of multi-exon skipping of exons 6 and 8. The CXMD dog model harbors a splice site mutation in intron 6, leading to a lack of exon 7 in dystrophin mRNA. To restore the reading frame in CXMD requires multi-exon skipping of exons 6 and 8; therefore, CXMD is a good middle-sized animal model for testing the efficacy and safety of multi-exon skipping. In the current study, a cocktail of antisense morpholinos targeting exon 6 and exon 8 was designed and it restored dystrophin expression in body-wide skeletal muscles. Methods for transfection/injection of cocktail oligos and evaluation of the efficacy and safety of multi-exon skipping in the CXMD dog model are presented. PMID:27285612

  19. Open reading frames provide a rich pool of potential natural antisense transcripts in fungal genomes.

    PubMed

    Steigele, Stephan; Nieselt, Kay

    2005-01-01

    Natural antisense transcripts are reported from all kingdoms of life and several recent reports of genomewide screens indicate that they are widely distributed. These transcripts seem to be involved in various biological functions and may govern the expression of their respective sense partner. Very little, however, is known about the degree of evolutionary conservation of antisense transcripts. Furthermore, none of the earlier analyses has studied whether antisense relationships are solely dual or involved in more complex relationships. Here we present a systematic screen for cis- and trans-located antisense transcripts based on open reading frames (ORFs) from five fungal species. The relative number of ORFs involved in antisense relationships varies greatly between the five species. In addition, other significant differences are found between the species, such as the mean length of the antisense region. The majority of trans-located antisense transcripts is found to be involved in complex relationships, resulting in highly connected networks. The analysis of the degree of evolutionary conservation of antisense transcripts shows that most antisense transcripts have no ortholog in any other species. An annotation of antisense transcripts based on Gene Ontology directs to common terms and shows that proteins of genes involved in antisense relationships preferentially localize to the nucleus with common functions in the regulation or maintenance of nucleic acids. PMID:16147987

  20. Antisense-Based Progerin Downregulation in HGPS-Like Patients' Cells.

    PubMed

    Harhouri, Karim; Navarro, Claire; Baquerre, Camille; Da Silva, Nathalie; Bartoli, Catherine; Casey, Frank; Mawuse, Guedenon Koffi; Doubaj, Yassamine; Lévy, Nicolas; De Sandre-Giovannoli, Annachiara

    2016-01-01

    Progeroid laminopathies, including Hutchinson-Gilford Progeria Syndrome (HGPS, OMIM #176670), are premature and accelerated aging diseases caused by defects in nuclear A-type Lamins. Most HGPS patients carry a de novo point mutation within exon 11 of the LMNA gene encoding A-type Lamins. This mutation activates a cryptic splice site leading to the deletion of 50 amino acids at its carboxy-terminal domain, resulting in a truncated and permanently farnesylated Prelamin A called Prelamin A Δ50 or Progerin. Some patients carry other LMNA mutations affecting exon 11 splicing and are named "HGPS-like" patients. They also produce Progerin and/or other truncated Prelamin A isoforms (Δ35 and Δ90) at the transcriptional and/or protein level. The results we present show that morpholino antisense oligonucleotides (AON) prevent pathogenic LMNA splicing, markedly reducing the accumulation of Progerin and/or other truncated Prelamin A isoforms (Prelamin A Δ35, Prelamin A Δ90) in HGPS-like patients' cells. Finally, a patient affected with Mandibuloacral Dysplasia type B (MAD-B, carrying a homozygous mutation in ZMPSTE24, encoding an enzyme involved in Prelamin A maturation, leading to accumulation of wild type farnesylated Prelamin A), was also included in this study. These results provide preclinical proof of principle for the use of a personalized antisense approach in HGPS-like and MAD-B patients, who may therefore be eligible for inclusion in a therapeutic trial based on this approach, together with classical HGPS patients. PMID:27409638

  1. Antisense-mediated exon skipping: A versatile tool with therapeutic and research applications

    PubMed Central

    Aartsma-Rus, Annemieke; van Ommen, Gert-Jan B.

    2007-01-01

    Antisense-mediated modulation of splicing is one of the few fields where antisense oligonucleotides (AONs) have been able to live up to their expectations. In this approach, AONs are implemented to restore cryptic splicing, to change levels of alternatively spliced genes, or, in case of Duchenne muscular dystrophy (DMD), to skip an exon in order to restore a disrupted reading frame. The latter allows the generation of internally deleted, but largely functional, dystrophin proteins and would convert a severe DMD into a milder Becker muscular dystrophy phenotype. In fact, exon skipping is currently one of the most promising therapeutic tools for DMD, and a successful first-in-man trial has recently been completed. In this review the applicability of exon skipping for DMD and other diseases is described. For DMD AONs have been designed for numerous exons, which has given us insight into their mode of action, splicing in general, and splicing of the DMD gene in particular. In addition, retrospective analysis resulted in guidelines for AON design for DMD and most likely other genes as well. This knowledge allows us to optimize therapeutic exon skipping, but also opens up a range of other applications for the exon skipping approach. PMID:17684229

  2. Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease.

    PubMed

    Unzeta, Mercedes; Esteban, Gerard; Bolea, Irene; Fogel, Wieslawa A; Ramsay, Rona R; Youdim, Moussa B H; Tipton, Keith F; Marco-Contelles, José

    2016-01-01

    HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimer's disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept®) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands

  3. Multi-Target Directed Donepezil-Like Ligands for Alzheimer's Disease

    PubMed Central

    Unzeta, Mercedes; Esteban, Gerard; Bolea, Irene; Fogel, Wieslawa A.; Ramsay, Rona R.; Youdim, Moussa B. H.; Tipton, Keith F.; Marco-Contelles, José

    2016-01-01

    HIGHLIGHTS ASS234 is a MTDL compound containing a moiety from Donepezil and the propargyl group from the PF 9601N, a potent and selective MAO B inhibitor. This compound is the most advanced anti-Alzheimer agent for preclinical studies identified in our laboratory.Derived from ASS234 both multipotent donepezil-indolyl (MTDL-1) and donepezil-pyridyl hybrids (MTDL-2) were designed and evaluated as inhibitors of AChE/BuChE and both MAO isoforms. MTDL-2 showed more high affinity toward the four enzymes than MTDL-1.MTDL-3 and MTDL-4, were designed containing the N-benzylpiperidinium moiety from Donepezil, a metal- chelating 8-hydroxyquinoline group and linked to a N-propargyl core and they were pharmacologically evaluated.The presence of the cyano group in MTDL-3, enhanced binding to AChE, BuChE and MAO A. It showed antioxidant behavior and it was able to strongly complex Cu(II), Zn(II) and Fe(III).MTDL-4 showed higher affinity toward AChE, BuChE.MTDL-3 exhibited good brain penetration capacity (ADMET) and less toxicity than Donepezil. Memory deficits in scopolamine-lesioned animals were restored by MTDL-3.MTDL-3 particularly emerged as a ligand showing remarkable potential benefits for its use in AD therapy. Alzheimer's disease (AD), the most common form of adult onset dementia, is an age-related neurodegenerative disorder characterized by progressive memory loss, decline in language skills, and other cognitive impairments. Although its etiology is not completely known, several factors including deficits of acetylcholine, β-amyloid deposits, τ-protein phosphorylation, oxidative stress, and neuroinflammation are considered to play significant roles in the pathophysiology of this disease. For a long time, AD patients have been treated with acetylcholinesterase inhibitors such as donepezil (Aricept®) but with limited therapeutic success. This might be due to the complex multifactorial nature of AD, a fact that has prompted the design of new Multi-Target-Directed Ligands

  4. In vitro characterization of two novel biodegradable vectors for the delivery of radiolabeled antisense oligonucleotides.

    PubMed

    von Guggenberg, Elisabeth; Shahhosseini, Soraya; Koslowsky, Ingrid; Lavasanifar, Afsaneh; Murray, David; Mercer, John

    2010-12-01

    The development of antisense oligonucleotides suitable for tumor targeting applications is hindered by low stability and bioavailability of oligonucleotides in vivo and by the absence of efficient and safe vectors for oligonucleotide delivery. Stabilization in vivo has been achieved through chemical modification of oligonucleotides by various means, but effective approaches to enhance their intracellular delivery are lacking. This study reports on the characterization in vitro of a fully phosphorothioated 20-mer oligonucleotide, complementary to p21 mRNA, radiolabeled with fluorine-18 using a thiol reactive prosthetic group. The potential of two novel synthetic block copolymers containing grafted polyamines on their hydrophobic blocks for vector-assisted cell delivery was studied in vitro. Extensive cellular uptake studies were performed in human colon carcinoma cell lines with enhanced or deficient p21 expression to evaluate and compare the uptake mechanism of naked and vectorized radiolabeled formulations. Uptake studies with the two novel biodegradable vectors showed a moderate increase in cell uptake of the radiofluorinated antisense oligonucleotide. The two vectors show, however, promising advantages over conventional lipidic vectors regarding their biocompatibility and subcellular distribution. PMID:21204767

  5. Vector insert-targeted integrative antisense expression system for plasmid stabilization.

    PubMed

    Luke, Jeremy M; Carnes, Aaron E; Hodgson, Clague P; Williams, James A

    2011-01-01

    Some DNA vaccine and gene therapy vector-encoded transgenes are toxic to the E. coli plasmid production host resulting in poor production yields. For plasmid products undergoing clinical evaluation, sequence modification to eliminate toxicity is undesirable because an altered vector is a new chemical entity. We hypothesized that: (1) insert-encoded toxicity is mediated by unintended expression of a toxic insert-encoded protein from spurious bacterial promoters; and (2) that toxicity could be eliminated with antisense RNA-mediated translation inhibition. We developed the pINT PR PL vector, a chromosomally integrable RNA expression vector, and utilized it to express insert-complementary (anti-insert) RNA from a single defined site in the bacterial chromosome. Anti-insert RNA eliminated leaky fluorescent protein expression from a target plasmid. A toxic retroviral gag pol helper plasmid produced in a gag pol anti-insert strain had fourfold improved plasmid fermentation yields. Plasmid fermentation yields were also fourfold improved when a DNA vaccine plasmid containing a toxic Influenza serotype H1 hemagglutinin transgene was grown in an H1 sense strand anti-insert production strain, suggesting that in this case toxicity was mediated by an antisense alternative reading frame-encoded peptide. This anti-insert chromosomal RNA expression technology is a general approach to improve production yields with plasmid-based vectors that encode toxic transgenes, or toxic alternative frame peptides. PMID:20607625

  6. Antisense Mediated Splicing Modulation For Inherited Metabolic Diseases: Challenges for Delivery

    PubMed Central

    Pérez, Belen; Vilageliu, Lluisa; Grinberg, Daniel

    2014-01-01

    In the past few years, research in targeted mutation therapies has experienced significant advances, especially in the field of rare diseases. In particular, the efficacy of antisense therapy for suppression of normal, pathogenic, or cryptic splice sites has been demonstrated in cellular and animal models and has already reached the clinical trials phase for Duchenne muscular dystrophy. In different inherited metabolic diseases, splice switching oligonucleotides (SSOs) have been used with success in patients' cells to force pseudoexon skipping or to block cryptic splice sites, in both cases recovering normal transcript and protein and correcting the enzyme deficiency. However, future in vivo studies require individual approaches for delivery depending on the gene defect involved, given the different patterns of tissue and organ expression. Herein we review the state of the art of antisense therapy targeting RNA splicing in metabolic diseases, grouped according to their expression patterns—multisystemic, hepatic, or in central nervous system (CNS)—and summarize the recent progress achieved in the field of in vivo delivery of oligonucleotides to each organ or system. Successful body-wide distribution of SSOs and preferential distribution in the liver after systemic administration have been reported in murine models for different diseases, while for CNS limited data are available, although promising results with intratechal injections have been achieved. PMID:24506780

  7. Antisense mediated splicing modulation for inherited metabolic diseases: challenges for delivery.

    PubMed

    Pérez, Belen; Vilageliu, Lluisa; Grinberg, Daniel; Desviat, Lourdes R

    2014-02-01

    In the past few years, research in targeted mutation therapies has experienced significant advances, especially in the field of rare diseases. In particular, the efficacy of antisense therapy for suppression of normal, pathogenic, or cryptic splice sites has been demonstrated in cellular and animal models and has already reached the clinical trials phase for Duchenne muscular dystrophy. In different inherited metabolic diseases, splice switching oligonucleotides (SSOs) have been used with success in patients' cells to force pseudoexon skipping or to block cryptic splice sites, in both cases recovering normal transcript and protein and correcting the enzyme deficiency. However, future in vivo studies require individual approaches for delivery depending on the gene defect involved, given the different patterns of tissue and organ expression. Herein we review the state of the art of antisense therapy targeting RNA splicing in metabolic diseases, grouped according to their expression patterns-multisystemic, hepatic, or in central nervous system (CNS)-and summarize the recent progress achieved in the field of in vivo delivery of oligonucleotides to each organ or system. Successful body-wide distribution of SSOs and preferential distribution in the liver after systemic administration have been reported in murine models for different diseases, while for CNS limited data are available, although promising results with intratechal injections have been achieved. PMID:24506780

  8. Regulation of Antisense Transcription by NuA4 Histone Acetyltransferase and Other Chromatin Regulatory Factors.

    PubMed

    Uprety, Bhawana; Kaja, Amala; Ferdoush, Jannatul; Sen, Rwik; Bhaumik, Sukesh R

    2016-01-01

    NuA4 histone lysine (K) acetyltransferase (KAT) promotes transcriptional initiation of TATA-binding protein (TBP)-associated factor (TAF)-dependent ribosomal protein genes. TAFs have also been recently found to enhance antisense transcription from the 3' end of the GAL10 coding sequence. However, it remains unknown whether, like sense transcription of the ribosomal protein genes, TAF-dependent antisense transcription of GAL10 also requires NuA4 KAT. Here, we show that NuA4 KAT associates with the GAL10 antisense transcription initiation site at the 3' end of the coding sequence. Such association of NuA4 KAT depends on the Reb1p-binding site that recruits Reb1p activator to the GAL10 antisense transcription initiation site. Targeted recruitment of NuA4 KAT to the GAL10 antisense transcription initiation site promotes GAL10 antisense transcription. Like NuA4 KAT, histone H3 K4/36 methyltransferases and histone H2B ubiquitin conjugase facilitate GAL10 antisense transcription, while the Swi/Snf and SAGA chromatin remodeling/modification factors are dispensable for antisense, but not sense, transcription of GAL10. Taken together, our results demonstrate for the first time the roles of NuA4 KAT and other chromatin regulatory factors in controlling antisense transcription, thus illuminating chromatin regulation of antisense transcription. PMID:26755557

  9. Development and application of a multi-targeting reference plasmid as calibrator for analysis of five genetically modified soybean events.

    PubMed

    Pi, Liqun; Li, Xiang; Cao, Yiwei; Wang, Canhua; Pan, Liangwen; Yang, Litao

    2015-04-01

    Reference materials are important in accurate analysis of genetically modified organism (GMO) contents in food/feeds, and development of novel reference plasmid is a new trend in the research of GMO reference materials. Herein, we constructed a novel multi-targeting plasmid, pSOY, which contained seven event-specific sequences of five GM soybeans (MON89788-5', A2704-12-3', A5547-127-3', DP356043-5', DP305423-3', A2704-12-5', and A5547-127-5') and sequence of soybean endogenous reference gene Lectin. We evaluated the specificity, limit of detection and quantification, and applicability of pSOY in both qualitative and quantitative PCR analyses. The limit of detection (LOD) was as low as 20 copies in qualitative PCR, and the limit of quantification (LOQ) in quantitative PCR was 10 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and Lectin assays were higher than 90%, and the squared regression coefficients (R(2)) were more than 0.999. The quantification bias varied from 0.21% to 19.29%, and the relative standard deviations were from 1.08% to 9.84% in simulated samples analysis. All the results demonstrated that the developed multi-targeting plasmid, pSOY, was a credible substitute of matrix reference materials, and could be used as a reliable reference calibrator in the identification and quantification of multiple GM soybean events. PMID:25673245

  10. Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer's disease.

    PubMed

    Xie, Sai-Sai; Wang, Xiaobing; Jiang, Neng; Yu, Wenying; Wang, Kelvin D G; Lan, Jin-Shuai; Li, Zhong-Rui; Kong, Ling-Yi

    2015-05-01

    A series of novel tacrine-coumarin hybrids were designed, synthesized and evaluated as multi-target agents against Alzheimer's disease. The biological assays indicated that most of compounds displayed potent inhibitory activity toward AChE and BuChE, and clearly selective inhibition for MAO-B. Among these compounds, 14c exhibited strong inhibitory activity for AChE (IC50 values of 33.63 nM for eeAChE and 16.11 nM for hAChE) and BuChE (IC50 values of 80.72 nM for eqBuChE and 112.72 nM for hBuChE), and the highest inhibitory activity against hMAO-B (IC50 value of 0.24 μM). Kinetic and molecular modeling studies revealed that 14c was a mixed-type inhibitor, binding simultaneously to catalytic, peripheral and mid-gorge sites of AChE. It was also a competitive inhibitor, which covered the substrate and entrance cavities of MAO-B. Moreover, 14c could penetrate the CNS and show low cell toxicity. Overall, these results suggested that 14c might be an excellent multi-target agent for AD treatment. PMID:25812965

  11. Evaluation of multi-target immunogenic reagents for the detection of latent and body fluid-contaminated fingermarks.

    PubMed

    Lam, Rolanda; Hofstetter, Oliver; Lennard, Chris; Roux, Claude; Spindler, Xanthe

    2016-07-01

    Fingermark enhancement reagents capable of molecular recognition offer a highly selective and sensitive method of detection. Antibodies and aptamers provide a high degree of adaptability for visualisation, allowing for the selection of the most appropriate visualisation wavelength for a particular substrate without the need for specialist equipment or image processing. However, the major hurdle to overcome is the balance between sensitivity and selectivity. Single-target molecular recognition is highly specific, purported to have better detection limits than chemical reactions or stains, and can provide information about the donor or activity, but often results in incomplete ridge pattern development. Consequently, the development and evaluation of multi-target biomolecular reagents for fingermark enhancement was investigated, with the focus on endogenous eccrine secretions. To assess the suitability of the immunogenic reagents for potential operational use, a variety of parameters (i.e., processing time, fixing and working solution conditions) were optimised on a wide range of non-porous and semi-porous substrates. The relative performance of immunogenic reagents was compared to that of routine techniques applied to latent marks and marks in blood, semen and saliva. The incorporation of these novel reagents into routine technique sequences was also investigated. The experimental results indicated that the multi-target immunogenic reagents were not a suitable alternative to routine detection methods or sequences, but may have promise as a "last resort" method for difficult substrates or cases. PMID:27174074

  12. In Vivo Characterization of ARN14140, a Memantine/Galantamine-Based Multi-Target Compound for Alzheimer's Disease.

    PubMed

    Reggiani, Angelo M; Simoni, Elena; Caporaso, Roberta; Meunier, Johann; Keller, Emeline; Maurice, Tangui; Minarini, Anna; Rosini, Michela; Cavalli, Andrea

    2016-01-01

    Alzheimer's disease (AD) is a chronic pathological condition that leads to neurodegeneration, loss of intellectual abilities, including cognition and memory, and ultimately to death. It is widely recognized that AD is a multifactorial disease, where different pathological cascades (mainly amyloid and tau) contribute to neural death and to the clinical outcome related to the disease. The currently available drugs for AD were developed according to the one-target, one-drug paradigm. In recent times, multi-target strategies have begun to play an increasingly central role in the discovery of more efficacious candidates for complex neurological conditions, including AD. In this study, we report on the in vivo pharmacological characterization of ARN14140, a new chemical entity, which was obtained through a multi-target structure-activity relationship campaign, and which showed a balanced inhibiting profile against the acetylcholinesterase enzyme and the NMDA receptor. Based on the initial promising biochemical data, ARN14140 is here studied in mice treated with the amyloidogenic fragment 25-35 of the amyloid-β peptide, a consolidated non-transgenic AD model. Sub-chronically treating animals with ARN14140 leads to a prevention of the cognitive impairment and of biomarker levels connected to neurodegeneration, demonstrating its neuroprotective potential as new AD agent. PMID:27609215

  13. In Vivo Characterization of ARN14140, a Memantine/Galantamine-Based Multi-Target Compound for Alzheimer’s Disease

    PubMed Central

    Reggiani, Angelo M.; Simoni, Elena; Caporaso, Roberta; Meunier, Johann; Keller, Emeline; Maurice, Tangui; Minarini, Anna; Rosini, Michela; Cavalli, Andrea

    2016-01-01

    Alzheimer’s disease (AD) is a chronic pathological condition that leads to neurodegeneration, loss of intellectual abilities, including cognition and memory, and ultimately to death. It is widely recognized that AD is a multifactorial disease, where different pathological cascades (mainly amyloid and tau) contribute to neural death and to the clinical outcome related to the disease. The currently available drugs for AD were developed according to the one-target, one-drug paradigm. In recent times, multi-target strategies have begun to play an increasingly central role in the discovery of more efficacious candidates for complex neurological conditions, including AD. In this study, we report on the in vivo pharmacological characterization of ARN14140, a new chemical entity, which was obtained through a multi-target structure-activity relationship campaign, and which showed a balanced inhibiting profile against the acetylcholinesterase enzyme and the NMDA receptor. Based on the initial promising biochemical data, ARN14140 is here studied in mice treated with the amyloidogenic fragment 25–35 of the amyloid-β peptide, a consolidated non-transgenic AD model. Sub-chronically treating animals with ARN14140 leads to a prevention of the cognitive impairment and of biomarker levels connected to neurodegeneration, demonstrating its neuroprotective potential as new AD agent. PMID:27609215

  14. Molecular and cellular effects of multi-targeted cyclin-dependent kinase inhibition in myeloma: biological and clinical implications.

    PubMed

    McMillin, Douglas W; Delmore, Jake; Negri, Joseph; Buon, Leutz; Jacobs, Hannah M; Laubach, Jacob; Jakubikova, Jana; Ooi, Melissa; Hayden, Patrick; Schlossman, Robert; Munshi, Nikhil C; Lengauer, Christoph; Richardson, Paul G; Anderson, Kenneth C; Mitsiades, Constantine S

    2011-02-01

    Cell cycle regulators, such as cyclin-dependent kinases (CDKs), are appealing targets for multiple myeloma (MM) therapy given the increased proliferative rates of tumour cells in advanced versus early stages of MM. We hypothesized that a multi-targeted CDK inhibitor with a different spectrum of activity compared to existing CDK inhibitors could trigger distinct molecular sequelae with therapeutic implications for MM. We therefore studied the small molecule heterocyclic compound NVP-LCQ195/AT9311 (LCQ195), which inhibits CDK1, CDK2 and CDK5, as well as CDK3 and CDK9. LCQ195 induced cell cycle arrest and eventual apoptotic cell death of MM cells, even at sub-μmol/l concentrations, spared non-malignant cells, and overcame the protection conferred to MM cells by stroma or cytokines of the bone marrow milieu. In MM cells, LCQ195 triggered decreased amplitude of transcriptional signatures associated with oncogenesis, drug resistance and stem cell renewal, including signatures of activation of key transcription factors for MM cells e.g. myc, HIF-1α, IRF4. Bortezomib-treated MM patients whose tumours had high baseline expression of genes suppressed by LCQ195 had significantly shorter progression-free and overall survival than those with low levels of these transcripts in their MM cells. These observations provide insight into the biological relevance of multi-targeted CDK inhibition in MM. PMID:21223249

  15. Episome-generated N-myc antisense RNA restricts the differentiation potential of primitive neuroectodermal cell lines.

    PubMed Central

    Whitesell, L; Rosolen, A; Neckers, L M

    1991-01-01

    Neuroectodermal tumors of childhood provide a unique opportunity to examine the role of genes potentially regulating neuronal growth and differentiation because many cell lines derived from these tumors are composed of at least two distinct morphologic cell types. These types display variant phenotypic characteristics and spontaneously interconvert, or transdifferentiate, in vitro. The factors that regulate transdifferentiation are unknown. Application of antisense approaches to the transdifferentiation process has allowed us to explore the precise role that N-myc may play in regulating developing systems. We now report construction of an episomally replicating expression vector designed to generate RNA antisense to part of the human N-myc gene. Such a vector is able to specifically inhibit N-myc expression in cell lines carrying both normal and amplified N-myc alleles. Inhibition of N-myc expression blocks transdifferentiation in these lines, with accumulation of cells of an intermediate phenotype. A concomitant decrease in growth rate but not loss of tumorigenicity was observed in the N-myc nonamplified cell line CHP-100. Vector-generated antisense RNA should allow identification of genes specifically regulated by the proto-oncogene N-myc. Images PMID:1996098

  16. Nucleolin antisense oligodeoxynucleotides induce apoptosis and may be used as a potential drug for nasopharyngeal carcinoma therapy.

    PubMed

    Wu, Cheng-Der; Chou, Hung-Wen; Kuo, Yuan-Sung; Lu, Ruei-Min; Hwang, Yu-Chyi; Wu, Han-Chung; Lin, Chin-Tarng

    2012-01-01

    Nucleolin (C23, NCL) mRNA was up-regulated in nasopharyngeal carcinoma (NPC) cells compared to that of normal nasomucosal (NNM) cells using a cDNA microarray approach. The level of nucleolin protein was also up-regulated in 13 NPC cell lines, 30 biopsy specimens and nine other cancer cell lines compared to five NNM cells or normal stromal cells, which were analyzed using immunoblotting or immunohistochemistry. We transfected nucleolin antisense oligodeoxynucleotides (phosphorothioate-modified oligodeoxynucleotides; S-ODNs) into NPC-TW01 cells to knockdown nucleolin expression to evaluate the function of nucleolin in cancer cells. Nucleolin knockdown induced NPC cells but not NNM cells to undergo apoptosis. Furthermore, treatment of NPC-TW01 xenograft tumors with nucleolin antisense oligodeoxynucleotides suppressed the growth of xenograft tumors without obvious side effects. Therefore, we suggest that nucleolin may be a potential cancer therapeutic target and that nucleolin antisense oligodeoxynucleotides may be used as a potential drug for therapy in NPC. PMID:21956494

  17. Bacterial antisense RNAs are mainly the product of transcriptional noise.

    PubMed

    Lloréns-Rico, Verónica; Cano, Jaime; Kamminga, Tjerko; Gil, Rosario; Latorre, Amparo; Chen, Wei-Hua; Bork, Peer; Glass, John I; Serrano, Luis; Lluch-Senar, Maria

    2016-03-01

    cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA production indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substantially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome. PMID:26973873

  18. Bacterial antisense RNAs are mainly the product of transcriptional noise

    PubMed Central

    Lloréns-Rico, Verónica; Cano, Jaime; Kamminga, Tjerko; Gil, Rosario; Latorre, Amparo; Chen, Wei-Hua; Bork, Peer; Glass, John I.; Serrano, Luis; Lluch-Senar, Maria

    2016-01-01

    cis-Encoded antisense RNAs (asRNAs) are widespread along bacterial transcriptomes. However, the role of most of these RNAs remains unknown, and there is an ongoing discussion as to what extent these transcripts are the result of transcriptional noise. We show, by comparative transcriptomics of 20 bacterial species and one chloroplast, that the number of asRNAs is exponentially dependent on the genomic AT content and that expression of asRNA at low levels exerts little impact in terms of energy consumption. A transcription model simulating mRNA and asRNA production indicates that the asRNA regulatory effect is only observed above certain expression thresholds, substantially higher than physiological transcript levels. These predictions were verified experimentally by overexpressing nine different asRNAs in Mycoplasma pneumoniae. Our results suggest that most of the antisense transcripts found in bacteria are the consequence of transcriptional noise, arising at spurious promoters throughout the genome. PMID:26973873

  19. Prolonged-acting, Multi-targeting Gallium Nanoparticles Potently Inhibit Growth of Both HIV and Mycobacteria in Co-Infected Human Macrophages

    PubMed Central

    Narayanasamy, Prabagaran; Switzer, Barbara L.; Britigan, Bradley E.

    2015-01-01

    Human immunodeficiency virus (HIV) infection and Mycobacterium tuberculosis (TB) are responsible for two of the major global human infectious diseases that result in significant morbidity, mortality and socioeconomic impact. Furthermore, severity and disease prevention of both infections is enhanced by co-infection. Parallel limitations also exist in access to effective drug therapy and the emergence of resistance. Furthermore, drug-drug interactions have proven problematic during treatment of co-incident HIV and TB infections. Thus, improvements in drug access and simplified treatment regimens are needed immediately. One of the key host cells infected by both HIV and TB is the mononuclear phagocyte (MP; monocyte, macrophage and dendritic cell). Therefore, we hypothesized that one way this can be achieved is through drug-targeting by a nanoformulated drug that ideally would be active against both HIV and TB. Accordingly, we validated macrophage targeted long acting (sustained drug release) gallium (Ga) nanoformulation against HIV-mycobacterium co-infection. The multi-targeted Ga nanoparticle agent inhibited growth of both HIV and TB in the macrophage. The Ga nanoparticles reduced the growth of mycobacterium and HIV for up to 15 days following single drug loading. These results provide a potential new approach to treat HIV-TB co-infection that could eventually lead to improved clinical outcomes. PMID:25744727

  20. Dovitinib (TKI258), a multi-target angiokinase inhibitor, is effective regardless of KRAS or BRAF mutation status in colorectal cancer

    PubMed Central

    Lee, Choong-Kun; Lee, Myung Eun; Lee, Won Suk; Kim, Jeong Min; Park, Kyu Hyun; Kim, Tae Soo; Lee, Kang Young; Ahn, Joong Bae; Chung, Hyun Cheol; Rha, Sun Young

    2015-01-01

    Introduction: We aimed to determine whether KRAS and BRAF mutant colorectal cancer (CRC) cells exhibit distinct sensitivities to the multi-target angiokinase inhibitor, TKI258 (dovitinib). Materials and methods: We screened 10 CRC cell lines by using receptor tyrosine kinase (RTK) array to identify activated RTKs. MTT assays, anchorage-independent colony-formation assays, and immunoblotting assays were performed to evaluate the in vitro anti-tumor effects of TKI258. In vivo efficacy study followed by pharmacodynamic evaluation was done. Results: Fibroblast Growth Factor Receptor 1 (FGFR1) and FGFR3 were among the most highly activated RTKs in CRC cell lines. In in vitro assays, the BRAF mutant HT-29 cells were more resistant to the TKI258 than the KRAS mutant LoVo cells. However, in xenograft assays, TKI258 equally delayed the growth of tumors induced by both cell lines. TUNEL assays showed that the apoptotic index was unchanged following TKI258 treatment, but staining for Ki-67 and CD31 was substantially reduced in both xenografts, implying an anti-angiogenic effect of the drug. TKI258 treatment was effective in delaying CRC tumor growth in vivo regardless of the KRAS and BRAF mutation status. Conclusions: Our results identify FGFRs as potential targets in CRC treatment and suggest that combined targeting of multiple RTKs with TKI258 might serve as a novel approach to improve outcome of patients with CRC. PMID:25628921

  1. From the dual function lead AP2238 to AP2469, a multi-target-directed ligand for the treatment of Alzheimer's disease

    PubMed Central

    Tarozzi, Andrea; Bartolini, Manuela; Piazzi, Lorna; Valgimigli, Luca; Amorati, Riccardo; Bolondi, Cecilia; Djemil, Alice; Mancini, Francesca; Andrisano, Vincenza; Rampa, Angela

    2014-01-01

    The development of drugs with different pharmacological properties appears to be an innovative therapeutic approach for Alzheimer's disease. In this article, we describe a simple structural modification of AP2238, a first dual function lead, in particular the introduction of the catechol moiety performed in order to search for multi-target ligands. The new compound AP2469 retains anti-acetylcholinesterase (AChE) and beta-site amyloid precursor protein cleaving enzyme (BACE)1 activities compared to the reference, and is also able to inhibit Aβ42 self-aggregation, Aβ42 oligomer-binding to cell membrane and subsequently reactive oxygen species formation in both neuronal and microglial cells. The ability of AP2469 to interfere with Aβ42 oligomer-binding to neuron and microglial cell membrane gives this molecule both neuroprotective and anti-inflammatory properties. These findings, together with its strong chain-breaking antioxidant performance, make AP2469 a potential drug able to modify the course of the disease. PMID:25505579

  2. Analytic Performance Prediction of Track-to-Track Association with Biased Data in Multi-Sensor Multi-Target Tracking Scenarios

    PubMed Central

    Tian, Wei; Wang, Yue; Shan, Xiuming; Yang, Jian

    2013-01-01

    An analytic method for predicting the performance of track-to-track association (TTTA) with biased data in multi-sensor multi-target tracking scenarios is proposed in this paper. The proposed method extends the existing results of the bias-free situation by accounting for the impact of sensor biases. Since little insight of the intrinsic relationship between scenario parameters and the performance of TTTA can be obtained by numerical simulations, the proposed analytic approach is a potential substitute for the costly Monte Carlo simulation method. Analytic expressions are developed for the global nearest neighbor (GNN) association algorithm in terms of correct association probability. The translational biases of sensors are incorporated in the expressions, which provide good insight into how the TTTA performance is affected by sensor biases, as well as other scenario parameters, including the target spatial density, the extraneous track density and the average association uncertainty error. To show the validity of the analytic predictions, we compare them with the simulation results, and the analytic predictions agree reasonably well with the simulations in a large range of normally anticipated scenario parameters. PMID:24036583

  3. Multi-Target Tracking With Time-Varying Clutter Rate and Detection Profile: Application to Time-Lapse Cell Microscopy Sequences.

    PubMed

    Rezatofighi, Seyed Hamid; Gould, Stephen; Vo, Ba Tuong; Vo, Ba-Ngu; Mele, Katarina; Hartley, Richard

    2015-06-01

    Quantitative analysis of the dynamics of tiny cellular and sub-cellular structures, known as particles, in time-lapse cell microscopy sequences requires the development of a reliable multi-target tracking method capable of tracking numerous similar targets in the presence of high levels of noise, high target density, complex motion patterns and intricate interactions. In this paper, we propose a framework for tracking these structures based on the random finite set Bayesian filtering framework. We focus on challenging biological applications where image characteristics such as noise and background intensity change during the acquisition process. Under these conditions, detection methods usually fail to detect all particles and are often followed by missed detections and many spurious measurements with unknown and time-varying rates. To deal with this, we propose a bootstrap filter composed of an estimator and a tracker. The estimator adaptively estimates the required meta parameters for the tracker such as clutter rate and the detection probability of the targets, while the tracker estimates the state of the targets. Our results show that the proposed approach can outperform state-of-the-art particle trackers on both synthetic and real data in this regime. PMID:25594963

  4. Analytic performance prediction of track-to-track association with biased data in multi-sensor multi-target tracking scenarios.

    PubMed

    Tian, Wei; Wang, Yue; Shan, Xiuming; Yang, Jian

    2013-01-01

    An analytic method for predicting the performance of track-to-track association (TTTA) with biased data in multi-sensor multi-target tracking scenarios is proposed in this paper. The proposed method extends the existing results of the bias-free situation by accounting for the impact of sensor biases. Since little insight of the intrinsic relationship between scenario parameters and the performance of TTTA can be obtained by numerical simulations, the proposed analytic approach is a potential substitute for the costly Monte Carlo simulation method. Analytic expressions are developed for the global nearest neighbor (GNN) association algorithm in terms of correct association probability. The translational biases of sensors are incorporated in the expressions, which provide good insight into how the TTTA performance is affected by sensor biases, as well as other scenario parameters, including the target spatial density, the extraneous track density and the average association uncertainty error. To show the validity of the analytic predictions, we compare them with the simulation results, and the analytic predictions agree reasonably well with the simulations in a large range of normally anticipated scenario parameters. PMID:24036583

  5. Targeting Several CAG Expansion Diseases by a Single Antisense Oligonucleotide

    PubMed Central

    Evers, Melvin M.; Pepers, Barry A.; van Deutekom, Judith C. T.; Mulders, Susan A. M.; den Dunnen, Johan T.; Aartsma-Rus, Annemieke; van Ommen, Gert-Jan B.; van Roon-Mom, Willeke M. C.

    2011-01-01

    To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the HTT gene, which results in an expansion of a glutamine stretch at the N-terminal end of the huntingtin protein. This polyglutamine expansion plays a central role in the disease and results in the accumulation of cytoplasmic and nuclear aggregates. Here, we make use of modified 2′-O-methyl phosphorothioate (CUG)n triplet-repeat antisense oligonucleotides to effectively reduce mutant huntingtin transcript and protein levels in patient-derived Huntington's disease fibroblasts and lymphoblasts. The most effective antisense oligonucleotide, (CUG)7, also reduced mutant ataxin-1 and ataxin-3 mRNA levels in spinocerebellar ataxia 1 and 3, respectively, and atrophin-1 in dentatorubral-pallidoluysian atrophy patient derived fibroblasts. This antisense oligonucleotide is not only a promising therapeutic tool to reduce mutant huntingtin levels in Huntington's disease but our results in spinocerebellar ataxia and dentatorubral-pallidoluysian atrophy cells suggest that this could also be applicable to other polyglutamine expansion disorders as well. PMID:21909428

  6. Targeting several CAG expansion diseases by a single antisense oligonucleotide.

    PubMed

    Evers, Melvin M; Pepers, Barry A; van Deutekom, Judith C T; Mulders, Susan A M; den Dunnen, Johan T; Aartsma-Rus, Annemieke; van Ommen, Gert-Jan B; van Roon-Mom, Willeke M C

    2011-01-01

    To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the HTT gene, which results in an expansion of a glutamine stretch at the N-terminal end of the huntingtin protein. This polyglutamine expansion plays a central role in the disease and results in the accumulation of cytoplasmic and nuclear aggregates. Here, we make use of modified 2'-O-methyl phosphorothioate (CUG)n triplet-repeat antisense oligonucleotides to effectively reduce mutant huntingtin transcript and protein levels in patient-derived Huntington's disease fibroblasts and lymphoblasts. The most effective antisense oligonucleotide, (CUG)(7), also reduced mutant ataxin-1 and ataxin-3 mRNA levels in spinocerebellar ataxia 1 and 3, respectively, and atrophin-1 in dentatorubral-pallidoluysian atrophy patient derived fibroblasts. This antisense oligonucleotide is not only a promising therapeutic tool to reduce mutant huntingtin levels in Huntington's disease but our results in spinocerebellar ataxia and dentatorubral-pallidoluysian atrophy cells suggest that this could also be applicable to other polyglutamine expansion disorders as well. PMID:21909428

  7. Phosphorothioate Antisense Oligonucleotides Induce the Formation of Nuclear Bodies

    PubMed Central

    Lorenz, Peter; Baker, Brenda F.; Bennett, C. Frank; Spector, David L.

    1998-01-01

    Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20–30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150–300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides. PMID:9571236

  8. Design, synthesis, and biological evaluation of benzoselenazole-stilbene hybrids as multi-target-directed anti-cancer agents.

    PubMed

    Yan, Jun; Guo, Yueyan; Wang, Yali; Mao, Fei; Huang, Ling; Li, Xingshu

    2015-05-01

    To identify novel multi-target-directed drug candidates for the treatment of cancer, a series of benzoselenazole-stilbene hybrids were synthesised by combining the pharmacophores of resveratrol and ebselen. The biological assay indicated that all of the hybrids exhibited antiproliferative activities against four human cancer cell lines and demonstrated good TrxR inhibitory activities. The mechanism of cell apoptosis was investigated in G2/M cell cycle arrest induced by compound 6e and the apoptosis of the human liver carcinoma Bel-7402 cell line. The significant increase in intracellular ROS confirmed that compound 6e was capable of causing oxidative stress-induced apoptosis in cancer cells. Our results support the potential of compound 6e as a candidate for further studies examining the development of novel drugs for cancer treatment. PMID:25817772

  9. Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram

    NASA Astrophysics Data System (ADS)

    Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Yu, Haijun; Mao, Shirui; Li, Yaping

    2014-03-01

    Metastasis, the main cause of cancer related deaths, remains the greatest challenge in cancer treatment. Disulfiram (DSF), which has multi-targeted anti-tumor activity, was encapsulated into redox-sensitive shell crosslinked micelles to achieve intracellular targeted delivery and finally inhibit tumor growth and metastasis. The crosslinked micelles demonstrated good stability in circulation and specifically released DSF under a reductive environment that mimicked the intracellular conditions of tumor cells. As a result, the DSF-loaded redox-sensitive shell crosslinked micelles (DCMs) dramatically inhibited cell proliferation, induced cell apoptosis and suppressed cell invasion, as well as impairing tube formation of HMEC-1 cells. In addition, the DCMs could accumulate in tumor tissue and stay there for a long time, thereby causing significant inhibition of 4T1 tumor growth and marked prevention in lung metastasis of 4T1 tumors. These results suggested that DCMs could be a promising delivery system in inhibiting the growth and metastasis of breast cancer.

  10. Multi-target screening mines hesperidin as a multi-potent inhibitor: Implication in Alzheimer's disease therapeutics.

    PubMed

    Chakraborty, Sandipan; Bandyopadhyay, Jaya; Chakraborty, Sourav; Basu, Soumalee

    2016-10-01

    Alzheimer's disease (AD) is the most frequent form of neurodegenerative disorder in elderly people. Involvement of several pathogenic events and their interconnections make this disease a complex disorder. Therefore, designing compounds that can inhibit multiple toxic pathways is the most attractive therapeutic strategy in complex disorders like AD. Here, we have designed a multi-tier screening protocol combining ensemble docking to mine BACE1 inhibitor, as well as 2-D QSAR models for anti-amyloidogenic and antioxidant activities. An in house developed phytochemical library of 200 phytochemicals has been screened through this multi-target procedure which mine hesperidin, a flavanone glycoside commonly found in citrus food items, as a multi-potent phytochemical in AD therapeutics. Steady-state and time-resolved fluorescence spectroscopy reveal that binding of hesperidin to the active site of BACE1 induces a conformational transition of the protein from open to closed form. Hesperidin docks close to the catalytic aspartate residues and orients itself in a way that blocks the cavity opening thereby precluding substrate binding. Hesperidin is a high affinity BACE1 inhibitor and only 500 nM of the compound shows complete inhibition of the enzyme activity. Furthermore, ANS and Thioflavin-T binding assay show that hesperidin completely inhibits the amyloid fibril formation which is further supported by atomic force microscopy. Hesperidin exhibits moderate ABTS(+) radical scavenging assay but strong hydroxyl radical scavenging ability, as evident from DNA nicking assay. Present study demonstrates the applicability of a novel multi-target screening procedure to mine multi-potent agents from natural origin for AD therapeutics. PMID:27068363

  11. Avoidance of antisense, antiterminator tRNA anticodons in vertebrate mitochondria.

    PubMed

    Seligmann, Hervé

    2010-07-01

    Protein synthesis (translation) stops at stop codons, codons not complemented by tRNA anticodons. tRNAs matching stops, antitermination (Ter) tRNAs, prevent translational termination, producing dysfunctional proteins. Genomes avoid tRNAs with anticodons whose complement (the anticodon of the 'antisense' tRNA) matches stops. This suggests that antisense tRNAs, which also form cloverleaves, are occasionally expressed. Mitochondrial antisense tRNA expression is plausible, because both DNA strands are transcribed as single RNAs, and tRNA structures signal RNA maturation. Results describe potential antisense Ter tRNAs in mammalian mitochondrial genomes detected by tRNAscan-SE, and evidence for adaptations preventing translational antitermination: genomes possessing Ter tRNAs use less corresponding stop codons; antisense Ter tRNAs form weaker cloverleaves than homologuous non-Ter antisense tRNAs; and genomic stop codon usages decrease with stabilities of codon-anticodon interactions and of Ter tRNA cloverleaves. This suggests that antisense tRNAs frequently function in translation. Results suggest that opposite strand coding is exceptional in modern genes, yet might be frequent for mitochondrial tRNAs. This adds antisense tRNA templating to other mitochondrial tRNA functions: sense tRNA templating, formation and regulation of secondary (light strand DNA) replication origins. Antitermination probably affects mitochondrial degenerative diseases and ageing: pathogenic mutations are twice as frequent in tRNAs with antisense Ter anticodons than in other tRNAs, and species lacking mitochondrial antisense Ter tRNAs have longer mean maximal lifespans than those possessing antisense Ter tRNAs. PMID:20399828

  12. Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery.

    PubMed

    Aoki, Yoshitsugu; Yokota, Toshifumi; Nagata, Tetsuya; Nakamura, Akinori; Tanihata, Jun; Saito, Takashi; Duguez, Stephanie M R; Nagaraju, Kanneboyina; Hoffman, Eric P; Partridge, Terence; Takeda, Shin'ichi

    2012-08-21

    Duchenne muscular dystrophy (DMD), the commonest form of muscular dystrophy, is caused by lack of dystrophin. One of the most promising therapeutic approaches is antisense-mediated elimination of frame-disrupting mutations by exon skipping. However, this approach faces two major hurdles: limited applicability of each individual target exon and uncertain function and stability of each resulting truncated dystrophin. Skipping of exons 45-55 at the mutation hotspot of the DMD gene would address both issues. Theoretically it could rescue more than 60% of patients with deletion mutations. Moreover, spontaneous deletions of this specific region are associated with asymptomatic or exceptionally mild phenotypes. However, such multiple exon skipping of exons 45-55 has proved technically challenging. We have therefore designed antisense oligo (AO) morpholino mixtures to minimize self- or heteroduplex formation. These were tested as conjugates with cell-penetrating moieties (vivo-morpholinos). We have tested the feasibility of skipping exons 45-55 in H2K-mdx52 myotubes and in mdx52 mice, which lack exon 52. Encouragingly, with mixtures of 10 AOs, we demonstrated skipping of all 10 exons in vitro, in H2K-mdx52 myotubes and on intramuscular injection into mdx52 mice. Moreover, in mdx52 mice in vivo, systemic injections of 10 AOs induced extensive dystrophin expression at the subsarcolemma in skeletal muscles throughout the body, producing up to 15% of wild-type dystrophin protein levels, accompanied by improved muscle strength and histopathology without any detectable toxicity. This is a unique successful demonstration of effective rescue by exon 45-55 skipping in a dystrophin-deficient animal model. PMID:22869723

  13. Simultaneous SPECT imaging of multi-targets to assist in identifying hepatic lesions

    PubMed Central

    Guo, Zhide; Gao, Mengna; Zhang, Deliang; Li, Yesen; Song, Manli; Zhuang, Rongqiang; Su, Xinhui; Chen, Guibing; Liu, Ting; Liu, Pingguo; Wu, Hua; Du, Jin; Zhang, Xianzhong

    2016-01-01

    Molecular imaging technique is an attractive tool to detect liver disease at early stage. This study aims to develop a simultaneous dual-isotope single photon emission computed tomography (SPECT)/CT imaging method to assist diagnosis of hepatic tumor and liver fibrosis. Animal models of liver fibrosis and orthotopic human hepatocellular carcinoma (HCC) were established. The tracers of 131I-NGA and 99mTc-3P-RGD2 were selected to target asialoglycoprotein receptor (ASGPR) on the hepatocytes and integrin αvβ3 receptor in tumor or fibrotic liver, respectively. SPECT imaging and biodistribution study were carried out to verify the feasibility and superiority. As expected, 99mTc-3P-RGD2 had the ability to evaluate liver fibrosis and detect tumor lesions. 131I-NGA showed that it was effective in assessing the anatomy and function of the liver. In synchronized dual-isotope SPECT/CT imaging, clear fusion images can be got within 30 minutes for diagnosing liver fibrosis and liver cancer. This new developed imaging approach enables the acquisition of different physiological information for diagnosing liver fibrosis, liver cancer and evaluating residual functional liver volume simultaneously. So synchronized dual-isotope SPECT/CT imaging with 99mTc-3P-RGD2 and 131I-NGA is an effective approach to detect liver disease, especially liver fibrosis and liver cancer. PMID:27377130

  14. Simultaneous SPECT imaging of multi-targets to assist in identifying hepatic lesions.

    PubMed

    Guo, Zhide; Gao, Mengna; Zhang, Deliang; Li, Yesen; Song, Manli; Zhuang, Rongqiang; Su, Xinhui; Chen, Guibing; Liu, Ting; Liu, Pingguo; Wu, Hua; Du, Jin; Zhang, Xianzhong

    2016-01-01

    Molecular imaging technique is an attractive tool to detect liver disease at early stage. This study aims to develop a simultaneous dual-isotope single photon emission computed tomography (SPECT)/CT imaging method to assist diagnosis of hepatic tumor and liver fibrosis. Animal models of liver fibrosis and orthotopic human hepatocellular carcinoma (HCC) were established. The tracers of (131)I-NGA and (99m)Tc-3P-RGD2 were selected to target asialoglycoprotein receptor (ASGPR) on the hepatocytes and integrin αvβ3 receptor in tumor or fibrotic liver, respectively. SPECT imaging and biodistribution study were carried out to verify the feasibility and superiority. As expected, (99m)Tc-3P-RGD2 had the ability to evaluate liver fibrosis and detect tumor lesions. (131)I-NGA showed that it was effective in assessing the anatomy and function of the liver. In synchronized dual-isotope SPECT/CT imaging, clear fusion images can be got within 30 minutes for diagnosing liver fibrosis and liver cancer. This new developed imaging approach enables the acquisition of different physiological information for diagnosing liver fibrosis, liver cancer and evaluating residual functional liver volume simultaneously. So synchronized dual-isotope SPECT/CT imaging with (99m)Tc-3P-RGD2 and (131)I-NGA is an effective approach to detect liver disease, especially liver fibrosis and liver cancer. PMID:27377130

  15. A riboswitch-regulated antisense RNA in Listeria monocytogenes.

    PubMed

    Mellin, J R; Tiensuu, Teresa; Bécavin, Christophe; Gouin, Edith; Johansson, Jörgen; Cossart, Pascale

    2013-08-01

    Riboswitches are ligand-binding elements located in 5' untranslated regions of messenger RNAs, which regulate expression of downstream genes. In Listeria monocytogenes, a vitamin B12-binding (B12) riboswitch was identified, not upstream of a gene but downstream, and antisense to the adjacent gene, pocR, suggesting it might regulate pocR in a nonclassical manner. In Salmonella enterica, PocR is a transcription factor that is activated by 1,2-propanediol, and subsequently activates expression of the pdu genes. The pdu genes mediate propanediol catabolism and are implicated in pathogenesis. As enzymes involved in propanediol catabolism require B12 as a cofactor, we hypothesized that the Listeria B12 riboswitch might be involved in pocR regulation. Here we demonstrate that the B12 riboswitch is transcribed as part of a noncoding antisense RNA, herein named AspocR. In the presence of B12, the riboswitch induces transcriptional termination, causing aspocR to be transcribed as a short transcript. In contrast, in the absence of B12, aspocR is transcribed as a long antisense RNA, which inhibits pocR expression. Regulation by AspocR ensures that pocR, and consequently the pdu genes, are maximally expressed only when both propanediol and B12 are present. Strikingly, AspocR can inhibit pocR expression in trans, suggesting it acts through a direct interaction with pocR mRNA. Together, this study demonstrates how pocR and the pdu genes can be regulated by B12 in bacteria and extends the classical definition of riboswitches from elements governing solely the expression of mRNAs to a wider role in controlling transcription of noncoding RNAs. PMID:23878253

  16. Pseudogenes as an alternative source of natural antisense transcripts

    PubMed Central

    2010-01-01

    Background Naturally occurring antisense transcripts (NATs) are non-coding RNAs that may regulate the activity of sense transcripts to which they bind because of complementarity. NATs that are not located in the gene they regulate (trans-NATs) have better chances to evolve than cis-NATs, which is evident when the sense strand of the cis-NAT is part of a protein coding gene. However, the generation of a trans-NAT requires the formation of a relatively large region of complementarity to the gene it regulates. Results Pseudogene formation may be one evolutionary mechanism that generates trans-NATs to the parental gene. For example, this could occur if the parental gene is regulated by a cis-NAT that is copied as a trans-NAT in the pseudogene. To support this we identified human pseudogenes with a trans-NAT to the parental gene in their antisense strand by analysis of the database of expressed sequence tags (ESTs). We found that the mutations that appeared in these trans-NATs after the pseudogene formation do not show the flat distribution that would be expected in a non functional transcript. Instead, we found higher similarity to the parental gene in a region nearby the 3' end of the trans-NATs. Conclusions Our results do not imply a functional relation of the trans-NAT arising from pseudogenes over their respective parental genes but add evidence for it and stress the importance of duplication mechanisms of genetic material in the generation of non-coding RNAs. We also provide a plausible explanation for the large transcripts that can be found in the antisense strand of some pseudogenes. PMID:21047404

  17. Behavior-based cooperative robotics applied to multi-target observation

    SciTech Connect

    Parker, L.E.

    1996-12-31

    An important issue that arises in the automation of many security, surveillance, and reconnaissance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded area of interest. A key research issue in these problems is that of sensor placement - determining where sensors should be located to maintain the targets in view. In complex applications involving limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this paper, the author investigates the use of a cooperative team of autonomous sensor-based robots for the observation of multiple moving targets. The author focuses primarily on developing the distributed control strategies that allow the robot team to attempt to minimize the total time in which targets escape observation by some robot team member in the area of interest. The initial efforts on this problem address the aspects of distributed control in homogeneous robot teams with equivalent sensing and movement capabilities working in an uncluttered, bounded area. This paper first formalizes the problem, discusses related work, and then shows that this problem is NP-hard. The author then presents a distributed approximate approach to solving this problem that combines low-level multi-robot control with higher-level control. The low-level control is described in terms of force fields emanating from the targets and the robots. The higher level control is presented in the ALLIANCE formalism, which provides mechanisms for fault tolerant cooperative control, and allows robot team members to adjust their low-level actions based upon the actions of their teammates. The author then presents the results of the ongoing implementation of this approach, both in simulation and on physical robots. To the authors knowledge, this is the first paper addressing this research problem that has been implemented on physical robot teams.

  18. Naphthoquinone Derivatives Exert Their Antitrypanosomal Activity via a Multi-Target Mechanism

    PubMed Central

    Mazet, Muriel; Perozzo, Remo; Bergamini, Christian; Prati, Federica; Fato, Romana; Lenaz, Giorgio; Capranico, Giovanni; Brun, Reto; Bakker, Barbara M.; Michels, Paul A. M.; Scapozza, Leonardo; Bolognesi, Maria Laura; Cavalli, Andrea

    2013-01-01

    Background and Methodology Recently, we reported on a new class of naphthoquinone derivatives showing a promising anti-trypanosomatid profile in cell-based experiments. The lead of this series (B6, 2-phenoxy-1,4-naphthoquinone) showed an ED50 of 80 nM against Trypanosoma brucei rhodesiense, and a selectivity index of 74 with respect to mammalian cells. A multitarget profile for this compound is easily conceivable, because quinones, as natural products, serve plants as potent defense chemicals with an intrinsic multifunctional mechanism of action. To disclose such a multitarget profile of B6, we exploited a chemical proteomics approach. Principal Findings A functionalized congener of B6 was immobilized on a solid matrix and used to isolate target proteins from Trypanosoma brucei lysates. Mass analysis delivered two enzymes, i.e. glycosomal glycerol kinase and glycosomal glyceraldehyde-3-phosphate dehydrogenase, as potential molecular targets for B6. Both enzymes were recombinantly expressed and purified, and used for chemical validation. Indeed, B6 was able to inhibit both enzymes with IC50 values in the micromolar range. The multifunctional profile was further characterized in experiments using permeabilized Trypanosoma brucei cells and mitochondrial cell fractions. It turned out that B6 was also able to generate oxygen radicals, a mechanism that may additionally contribute to its observed potent trypanocidal activity. Conclusions and Significance Overall, B6 showed a multitarget mechanism of action, which provides a molecular explanation of its promising anti-trypanosomatid activity. Furthermore, the forward chemical genetics approach here applied may be viable in the molecular characterization of novel multitarget ligands. PMID:23350008

  19. Online Multi-Target Tracking With Unified Handling of Complex Scenarios.

    PubMed

    Jiang, Huaizu; Wang, Jinjun; Gong, Yihong; Rong, Na; Chai, Zhenhua; Zheng, Nanning

    2015-11-01

    Complex scenarios, including miss detections, occlusions, false detections, and trajectory terminations, make the data association challenging. In this paper, we propose an online tracking-by-detection method to track multiple targets with unified handling of aforementioned complex scenarios, where current detection responses are linked to the previous trajectories. We introduce a dummy node to each trajectory to allow it to temporally disappear. If a trajectory fails to find its matching detection, it will be linked to its corresponding dummy node until the emergence of its matching detection. Source nodes are also incorporated to account for the entrance of new targets. The standard Hungarian algorithm, extended by the dummy nodes, can be exploited to solve the online data association implicitly in a global manner, although it is formulated between two consecutive frames. Moreover, as dummy nodes tend to accumulate in a fake or disappeared trajectory while they only occasionally appear in a real trajectory, we can deal with false detections and trajectory terminations by simply checking the number of consecutive dummy nodes. Our approach works on a single, uncalibrated camera, and requires neither scene prior knowledge nor explicit occlusion reasoning, running at 132 frames/s on the PETS09-S2L1 benchmark sequence. The experimental results validate the effectiveness of the dummy nodes in complex scenarios and show that our proposed approach is robust against false detections and miss detections. Quantitative comparisons with other methods on five benchmark sequences demonstrate that we can achieve comparable results with the most existing offline methods and better results than other online algorithms. PMID:26087489

  20. Intra-Amygdala Injections of CREB Antisense Impair Inhibitory Avoidance Memory: Role of Norepinephrine and Acetylcholine

    ERIC Educational Resources Information Center

    Canal, Clinton E.; Chang, Qing; Gold, Paul E.

    2008-01-01

    Infusions of CREB antisense into the amygdala prior to training impair memory for aversive tasks, suggesting that the antisense may interfere with CRE-mediated gene transcription and protein synthesis important for the formation of new memories within the amygdala. However, the amygdala also appears to modulate memory formation in distributed…

  1. 3'-modified antisense oligodeoxyribonucleotides complementary to calmodulin mRNA alter behavioral responses in Paramecium.

    PubMed Central

    Hinrichsen, R D; Fraga, D; Reed, M W

    1992-01-01

    The calcium-binding protein calmodulin has been shown to modulate the Ca(2+)-dependent ion channels of Paramecium tetraurelia. Mutations in the calmodulin gene of Paramecium result in an altered pattern of behavioral responses. Antisense oligodeoxyribonucleotides (ODNs), complementary to calmodulin mRNA in Paramecium, were synthesized from a modified solid support that introduced a 3'-hydroxyhexyl phosphate. These 3'-modified ODNs were tested for their ability to alter the behavioral response of Paramecium. The microinjection of antisense ODNs temporarily reduced the backward swimming behavior of the cells in test solutions containing Na+. The injection of sense and random 3'-modified ODNs, or unmodified antisense ODNs, had no effect. The antisense ODN-induced effect was reversed by the injection of calmodulin protein. The pattern of response of the injected cells in various behavioral test solutions indicated that the calmodulin antisense ODNs reduce the Ca(2+)-dependent Na+ current. Antisense ODNs, complementary either to the 5' start site or to an internal sequence of the calmodulin mRNA, were similarly effective in altering behavior. These results show that antisense ODNs may be utilized in ciliated protozoa as a tool for reducing the expression of specific gene products. In addition, Paramecium represents a powerful model system with which to study and develop antisense ODN technology. PMID:1528867

  2. Characteristics of Antisense Transcript Promoters and the Regulation of Their Activity

    PubMed Central

    Lin, Shudai; Zhang, Li; Luo, Wen; Zhang, Xiquan

    2015-01-01

    Recently, an increasing number of studies on natural antisense transcripts have been reported, especially regarding their classification, temporal and spatial expression patterns, regulatory functions and mechanisms. It is well established that natural antisense transcripts are produced from the strand opposite to the strand encoding a protein. Despite the pivotal roles of natural antisense transcripts in regulating the expression of target genes, the transcriptional mechanisms initiated by antisense promoters (ASPs) remain unknown. To date, nearly all of the studies conducted on this topic have focused on the ASP of a single gene of interest, whereas no study has systematically analyzed the locations of ASPs in the genome, ASP activity, or factors influencing this activity. This review focuses on elaborating on and summarizing the characteristics of ASPs to extend our knowledge about the mechanisms of antisense transcript initiation. PMID:26703594

  3. Multi-Targeted Mechanisms Underlying the Endothelial Protective Effects of the Diabetic-Safe Sweetener Erythritol

    PubMed Central

    de Cock, Peter; Dong, Hua; Hammock, Bruce D.; den Hartog, Gertjan J. M.; Bast, Aalt

    2013-01-01

    Diabetes is characterized by hyperglycemia and development of vascular pathology. Endothelial cell dysfunction is a starting point for pathogenesis of vascular complications in diabetes. We previously showed the polyol erythritol to be a hydroxyl radical scavenger preventing endothelial cell dysfunction onset in diabetic rats. To unravel mechanisms, other than scavenging of radicals, by which erythritol mediates this protective effect, we evaluated effects of erythritol in endothelial cells exposed to normal (7 mM) and high glucose (30 mM) or diabetic stressors (e.g. SIN-1) using targeted and transcriptomic approaches. This study demonstrates that erythritol (i.e. under non-diabetic conditions) has minimal effects on endothelial cells. However, under hyperglycemic conditions erythritol protected endothelial cells against cell death induced by diabetic stressors (i.e. high glucose and peroxynitrite). Also a number of harmful effects caused by high glucose, e.g. increased nitric oxide release, are reversed. Additionally, total transcriptome analysis indicated that biological processes which are differentially regulated due to high glucose are corrected by erythritol. We conclude that erythritol protects endothelial cells during high glucose conditions via effects on multiple targets. Overall, these data indicate a therapeutically important endothelial protective effect of erythritol under hyperglycemic conditions. PMID:23755276

  4. Multi-target detection and estimation with the use of massive independent, identical sensors

    NASA Astrophysics Data System (ADS)

    Li, Tiancheng; Corchado, Juan M.; Bajo, Javier; Chen, Genshe

    2015-05-01

    This paper investigates the problem of using a large number of independent, identical sensors jointly for multi-object detection and estimation (MODE), namely massive sensor MODE. This is significantly different to the general target tracking using few sensors. The massive sensor data allows very accurate estimation in theory (but may instead go conversely in fact) but will also cause a heavy computational burden for the traditional filter-based tracker. Instead, we propose a clustering method to fuse massive sensor data in the same state space, which is shown to be able to filter clutter and to estimate states of the targets without the use of any traditional filter. This non-Bayesian solution as referred to massive sensor observation-only (O2) inference needs neither to assume the target/clutter model nor to know the system noises. Therefore it can handle challenging scenarios with few prior information and do so very fast computationally. Simulations with the use of massive homogeneous (independent identical distributed) sensors have demonstrated the validity and superiority of the proposed approach.

  5. Multi-targeted therapy of cancer by omega-3 fatty acids.

    PubMed

    Berquin, Isabelle M; Edwards, Iris J; Chen, Yong Q

    2008-10-01

    Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are essential fatty acids necessary for human health. Currently, the Western diet contains a disproportionally high amount of n-6 PUFAs and low amount of n-3 PUFAs, and the resulting high n-6/n-3 ratio is thought to contribute to cardiovascular disease, inflammation, and cancer. Studies in human populations have linked high consumption of fish or fish oil to reduced risk of colon, prostate, and breast cancer, although other studies failed to find a significant association. Nonetheless, the available epidemiological evidence, combined with the demonstrated effects of n-3 PUFAs on cancer in animal and cell culture models, has motivated the development of clinical interventions using n-3 PUFAs in the prevention and treatment of cancer, as well as for nutritional support of cancer patients to reduce weight loss and modulate the immune system. In this review, we discuss the rationale for using long-chain n-3 PUFAs in cancer prevention and treatment and the challenges that such approaches pose in the design of clinical trials. PMID:18479809

  6. A modeling study for structure features of β-N-acetyl-D-hexosaminidase from Ostrinia furnacalis and its novel inhibitor allosamidin: species selectivity and multi-target characteristics.

    PubMed

    Wang, Yanli; Liu, Tian; Yang, Qing; Li, Zhong; Qian, Xuhong

    2012-04-01

    Insect β-N-acetyl-D-hexosaminidase, a chitin degrading enzyme, is physiologically important during the unique life cycle of the insect. OfHex1, a β-N-acetyl-D-hexosaminidase from the insect, Ostrinia furna, which was obtained by our laboratory (Gen Bank No.: ABI81756.1), was studied by molecular modeling as well as by molecular docking with its inhibitor, allosamidin. 3D model of OfHex1 was built through the ligand-supported homology modeling approach. The binding modes of its substrate and inhibitor were proposed through docking and cluster analysis. The pocket's size and shape of OfHex1 differ from that of human β-N-acetyl-D-hexosaminidase, which determined that allosamidin can selectively inhibit OfHex1 instead of human β-N-acetyl-D-hexosaminidase. Moreover, the multi-target characteristics of allosamidin that inhibit enzymes from different families, OfHex1 (EC 3.2.1.52; GH20) and chitinase (EC 3.2.1.14; GH18), were compared. The common -1/+1 sugar-binding site of chitinase and OfHex1, and the -2/-3 sugar-binding site in chitinase contribute to the binding of allosamidin. This work, at molecular level, proved that OfHex1 could be a potential species-specific target for novel green pesticide design and also provide the possibility to develop allosamidin or its derivatives as a new type of insecticide to 'hit two birds with one stone', which maybe become a novel strategy in pest control. PMID:22177554

  7. Synthesis and evaluation of multi-target-directed ligands for the treatment of Alzheimer's disease based on the fusion of donepezil and melatonin.

    PubMed

    Wang, Jin; Wang, Zhi-Min; Li, Xue-Mei; Li, Fan; Wu, Jia-Jia; Kong, Ling-Yi; Wang, Xiao-Bing

    2016-09-15

    A novel series of compounds obtained by fusing the acetylcholinesterase (AChE) inhibitor donepezil and the antioxidant melatonin were designed as multi-target-directed ligands for the treatment of Alzheimer's disease (AD). In vitro assay indicated that most of the target compounds exhibited a significant ability to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (eqBuChE and hBuChE), and β-amyloid (Aβ) aggregation, and to act as potential antioxidants and biometal chelators. Especially, 4u displayed a good inhibition of AChE (IC50 value of 193nM for eeAChE and 273nM for hAChE), strong inhibition of BuChE (IC50 value of 73nM for eqBuChE and 56nM for hBuChE), moderate inhibition of Aβ aggregation (56.3% at 20μM) and good antioxidant activity (3.28trolox equivalent by ORAC assay). Molecular modeling studies in combination with kinetic analysis revealed that 4u was a mixed-type inhibitor, binding simultaneously to catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 4u could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood-brain barrier (BBB). Taken together, these results strongly indicated the hybridization approach is an efficient strategy to identify novel scaffolds with desired bioactivities, and further optimization of 4u may be helpful to develop more potent lead compound for AD treatment. PMID:27460699

  8. Biodegradable polymer nanocarriers for therapeutic antisense microRNA delivery in living animals

    NASA Astrophysics Data System (ADS)

    Paulmurugan, Ramasamy; Sekar, Narayana M.; Sekar, Thillai V.

    2012-03-01

    MicroRNAs are endogenous regulators of gene expression, deregulated in several cellular diseases including cancer. Altering the cellular microenvironment by modulating the microRNAs functions can regulate different genes involved in major cellular processes, and this approach is now being investigated as a promising new generation of molecularly targeted anti-cancer therapies. AntagomiRs (Antisense-miRNAs) are a novel class of chemically modified stable oligonucleotides used for blocking the functions of endogenous microRNAs, which are overexpressed. A key challenge in achieving effective microRNAbased therapeutics lies in the development of an efficient delivery system capable of specifically delivering antisense oligonucleotides and target cancer cells in living animals. We are now developing an effective delivery system designed to selectively deliver antagomiR- 21 and antagomiR-10b to triple negative breast cancer cells, and to revert tumor cell metastasis and invasiveness. The FDA-approved biodegradable PLGA-nanoparticles were selected as a carrier for antagomiRs delivery. Chemically modified antagomiRs (antagomiR-21 and antagomiR-10b) were co-encapsulated in PEGylated-PLGA-nanoparticles by using the double-emulsification (W/O/W) solvent evaporation method, and the resulting average particle size of 150-200nm was used for different in vitro and in vivo experiments. The antagomiR encapsulated PLGA-nanoparticles were evaluated for their in vitro antagomiRs delivery, intracellular release profile, and antagomiRs functional effects, by measuring the endogenous cellular targets, and the cell growth and metastasis. The xenografts of tumor cells in living mice were used for evaluating the anti-metastatic and anti-invasive properties of cells. The results showed that the use of PLGA for antagomiR delivery is not only efficient in crossing cell membrane, but can also maintain functional intracellular antagomiRs level for a extended period of time and achieve

  9. MYCNOS functions as an antisense RNA regulating MYCN

    PubMed Central

    Vadie, Nadia; Saayman, Sheena; Lenox, Alexandra; Ackley, Amanda; Clemson, Mathew; Burdach, Jon; Hart, Jonathan; Vogt, Peter K; Morris, Kevin V

    2015-01-01

    Amplification or overexpression of neuronal MYC (MYCN) is associated with poor prognosis of human neuroblastoma. Three isoforms of the MYCN protein have been described as well as a protein encoded by an antisense transcript (MYCNOS) that originates from the opposite strand at the MYCN locus. Recent findings suggest that some antisense long non-coding RNAs (lncRNAs) can play a role in epigenetically regulating gene expression. Here we report that MYCNOS transcripts function as a modulator of the MYCN locus, affecting MYCN promoter usage and recruiting various proteins, including the Ras GTPase-activating protein-binding protein G3BP1, to the upstream MYCN promoter. Overexpression of MYCNOS results in a reduction of upstream MYCN promoter usage and increased MYCN expression, suggesting that the protein-coding MYCNOS also functions as a regulator of MYCN ultimately controlling MYCN transcriptional variants. The observations presented here demonstrate that protein-coding transcripts can regulate gene transcription and can tether regulatory proteins to target loci. PMID:26156430

  10. Antisense Reduction of Tau in Adult Mice Protects against Seizures

    PubMed Central

    DeVos, Sarah L.; Goncharoff, Dustin K.; Chen, Guo; Kebodeaux, Carey S.; Yamada, Kaoru; Stewart, Floy R.; Schuler, Dorothy R.; Maloney, Susan E.; Wozniak, David F.; Rigo, Frank; Bennett, C. Frank; Cirrito, John R.; Holtzman, David M.

    2013-01-01

    Tau, a microtubule-associated protein, is implicated in the pathogenesis of Alzheimer's Disease (AD) in regard to both neurofibrillary tangle formation and neuronal network hyperexcitability. The genetic ablation of tau substantially reduces hyperexcitability in AD mouse lines, induced seizure models, and genetic in vivo models of epilepsy. These data demonstrate that tau is an important regulator of network excitability. However, developmental compensation in the genetic tau knock-out line may account for the protective effect against seizures. To test the efficacy of a tau reducing therapy for disorders with a detrimental hyperexcitability profile in adult animals, we identified antisense oligonucleotides that selectively decrease endogenous tau expression throughout the entire mouse CNS—brain and spinal cord tissue, interstitial fluid, and CSF—while having no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced tau protein had less severe seizures than control mice. Total tau protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of tau. Our results demonstrate that endogenous tau is integral for regulating neuronal hyperexcitability in adult animals and suggest that an antisense oligonucleotide reduction of tau could benefit those with epilepsy and perhaps other disorders associated with tau-mediated neuronal hyperexcitability. PMID:23904623

  11. Extensive Polycistronism and Antisense Transcription in the Mammalian Hox Clusters

    PubMed Central

    Mainguy, Gaëll; Koster, Jan; Woltering, Joost; Jansen, Hans; Durston, Antony

    2007-01-01

    The Hox clusters play a crucial role in body patterning during animal development. They encode both Hox transcription factor and micro-RNA genes that are activated in a precise temporal and spatial sequence that follows their chromosomal order. These remarkable collinear properties confer functional unit status for Hox clusters. We developed the TranscriptView platform to establish high resolution transcriptional profiling and report here that transcription in the Hox clusters is far more complex than previously described in both human and mouse. Unannotated transcripts can represent up to 60% of the total transcriptional output of a cluster. In particular, we identified 14 non-coding Transcriptional Units antisense to Hox genes, 10 of which (70%) have a detectable mouse homolog. Most of these Transcriptional Units in both human and mouse present conserved sizeable sequences (>40 bp) overlapping Hox transcripts, suggesting that these Hox antisense transcripts are functional. Hox clusters also display at least seven polycistronic clusters, i.e., different genes being co-transcribed on long isoforms (up to 30 kb). This work provides a reevaluated framework for understanding Hox gene function and dys-function. Such extensive transcriptions may provide a structural explanation for Hox clustering. PMID:17406680

  12. Does Active Learning through an Antisense Jigsaw Make Sense?

    NASA Astrophysics Data System (ADS)

    Seetharaman, Mahadevan; Musier-Forsyth, Karin

    2003-12-01

    Three journal articles on nucleic acid antisense modification strategies were assigned to 12 students as part of an active learning "jigsaw" exercise for a graduate-level chemistry course on nucleic acids. Each student was required to read one of the three articles. This assignment was preceded by an hour-long lecture on the basic concepts in antisense antigene technology. On the day of the jigsaw, the students with the same article (three groups of four students) discussed their article briefly, and then formed four new groups where no one had read the same article. Each student spent about five minutes teaching his or her article to the other group members, using specific questions provided to guide the discussion. This exercise laid the foundation for bringing the discussion to the entire class, where most of the students actively participated. To test the students' comprehension of the reading materials, a problem set was designed that required not only an understanding of the three articles, but also application of the concepts learned. The effectiveness of this active learning strategy and its applicability to other topics are discussed in this article.

  13. Inhibition of atrial natriuretic peptide (ANP) C receptor expression by antisense oligodeoxynucleotides in A10 vascular smooth-muscle cells is associated with attenuation of ANP-C-receptor-mediated inhibition of adenylyl cyclase.

    PubMed Central

    Palaparti, A; Li, Y; Anand-Srivastava, M B

    2000-01-01

    Atrial natriuretic peptide (ANP) mediates a variety of physiological effects through its interaction with ANP-A, ANP-B or ANP-C receptors. However, controversies exist regarding the involvement of ANP-C receptor and adenylyl cyclase/cAMP signal-transduction systems to which these receptors are coupled in mediating these responses. In the present studies, we have employed an antisense approach to eliminate the ANP-C receptor and to examine the effect of this elimination on adenylyl cyclase inhibition. An 18-mer antisense phosphorothioate oligodeoxynucleotide (OH-2) targeted at the initiation codon of the ANP-C receptor was used to examine its effects on the expression of the ANP-C receptor and ANP-C-receptor-mediated inhibition of adenylyl cyclase in vascular smooth-muscle cells (A10). Treatment of the cells with antisense oligonucleotide resulted in complete attenuation of C-ANP(4-23) [des(Gln(18), Ser(19), Gln(20), Leu(21), Gly(22))ANP(4-23)-NH(2)]-mediated inhibition of adenylyl cyclase, whereas sense and missense oligomers did not affect the inhibition of adenylyl cyclase by C-ANP(4-23). In addition, the stimulatory effects of guanine nucleotides, isoproterenol, sodium fluoride and forskolin as well as the inhibitory effects of angiotensin II on adenylyl cyclase were not affected by antisense-oligonucleotide treatment. The attenuation of C-ANP(4-23)-mediated inhibition of adenylyl cyclase by antisense oligonucleotide was dose- and time-dependent. A complete attenuation of ANP-C-receptor-mediated inhibition of adenylyl cyclase was observed at 2.5 microM. In addition, treatment of the cells with antisense oligonucleotide and not with sense or missense oligomers resulted in the inhibition of the levels of ANP-C-receptor protein and mRNA as determined by immunoblotting and Northern blotting using antisera against the ANP-C receptor and a cDNA probe of the ANP-C receptor respectively. On the other hand, ANP-A/B-receptor-mediated increases in cGMP levels were not

  14. Strand-Specific RNA-Seq Reveals Ordered Patterns of Sense and Antisense Transcription in Bacillus anthracis

    PubMed Central

    Passalacqua, Karla D.; Varadarajan, Anjana; Weist, Charlotte; Ondov, Brian D.; Byrd, Benjamin; Read, Timothy D.; Bergman, Nicholas H.

    2012-01-01

    Background Although genome-wide transcriptional analysis has been used for many years to study bacterial gene expression, many aspects of the bacterial transcriptome remain undefined. One example is antisense transcription, which has been observed in a number of bacteria, though the function of antisense transcripts, and their distribution across the bacterial genome, is still unclear. Methodology/Principal Findings Single-stranded RNA-seq results revealed a widespread and non-random pattern of antisense transcription covering more than two thirds of the B. anthracis genome. Our analysis revealed a variety of antisense structural patterns, suggesting multiple mechanisms of antisense transcription. The data revealed several instances of sense and antisense expression changes in different growth conditions, suggesting that antisense transcription may play a role in the ways in which B. anthracis responds to its environment. Significantly, genome-wide antisense expression occurred at consistently higher levels on the lagging strand, while the leading strand showed very little antisense activity. Intrasample gene expression comparisons revealed a gene dosage effect in all growth conditions, where genes farthest from the origin showed the lowest overall range of expression for both sense and antisense directed transcription. Additionally, transcription from both strands was verified using a novel strand-specific assay. The variety of structural patterns we observed in antisense transcription suggests multiple mechanisms for this phenomenon, suggesting that some antisense transcription may play a role in regulating the expression of key genes, while some may be due to chromosome replication dynamics and transcriptional noise. Conclusions/Significance Although the variety of structural patterns we observed in antisense transcription suggest multiple mechanisms for antisense expression, our data also clearly indicate that antisense transcription may play a genome-wide role

  15. Unconstrained underwater multi-target tracking in passive sonar systems using two-stage PF-based technique

    NASA Astrophysics Data System (ADS)

    Georgy, Jacques; Noureldin, Aboelmagd

    2014-03-01

    A robust particle filter (PF)-based multi-target tracking solution for passive sonar systems able to track an unknown time-varying number of multiple targets, while keeping continuous tracks of such targets, is presented in this article. PF is a nonlinear filtering technique that can accommodate arbitrary sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF is employed and is called Mixture PF. The commonly used sampling/importance resampling PF samples from the prior importance density, while Mixture PF samples from both the prior and the observation likelihood. In order to be able to track an unknown time-varying number of multiple targets, two Mixture PFs are used, one for target detection and the other for tracking multiple targets, and a density-based clustering technique is used after the first filter. This article demonstrates the applicability of the proposed technique for the passive problem, which suffers from the lack of measurements and the small detection range of the buoys, especially for weak signals. A contact-level simulation was used to generate different scenarios and the performance of the proposed technique called Clustered-Mixture PF was examined with either bearing measurement only or bearing and Doppler measurements, and it demonstrated its high performance.

  16. Multi-Target-Directed Ligands and other Therapeutic Strategies in the Search of a Real Solution for Alzheimer's Disease

    PubMed Central

    Agis-Torres, Angel; Sölhuber, Monica; Fernandez, Maria; Sanchez-Montero, J.M.

    2014-01-01

    The lack of an adequate therapy for Alzheimer's Disease (AD) contributes greatly to the continuous growing amount of papers and reviews, reflecting the important efforts made by scientists in this field. It is well known that AD is the most common cause of dementia, and up-to-date there is no prevention therapy and no cure for the disease, which contrasts with the enormous efforts put on the task. On the other hand many aspects of AD are currently debated or even unknown. This review offers a view of the current state of knowledge about AD which includes more relevant findings and processes that take part in the disease; it also shows more relevant past, present and future research on therapeutic drugs taking into account the new paradigm “Multi-Target-Directed Ligands” (MTDLs). In our opinion, this paradigm will lead from now on the research toward the discovery of better therapeutic solutions, not only in the case of AD but also in other complex diseases. This review highlights the strategies followed by now, and focuses other emerging targets that should be taken into account for the future development of new MTDLs. Thus, the path followed in this review goes from the pathology and the processes involved in AD to the strategies to consider in on-going and future researches. PMID:24533013

  17. Nano-crystalline Ag-PbTe thermoelectric thin films by a multi-target PLD system

    NASA Astrophysics Data System (ADS)

    Cappelli, E.; Bellucci, A.; Medici, L.; Mezzi, A.; Kaciulis, S.; Fumagalli, F.; Di Fonzo, F.; Trucchi, D. M.

    2015-05-01

    It has been evaluated the ability of ArF pulsed laser ablation to grow nano-crystalline thin films of high temperature PbTe thermoelectric material, and to obtain a uniform and controlled Ag blending, through the entire thickness of the film, using a multi-target system in vacuum. The substrate used was a mirror polished technical alumina slab. The increasing atomic percentage of Ag effect on physical-chemical and electronic properties was evaluated in the range 300-575 K. The stoichiometry and the distribution of the Ag component, over the whole thickness of the samples deposited, have been studied by XPS (X-ray photoelectron spectroscopy) and corresponding depth profiles. The crystallographic structure of the film was analyzed by grazing incidence X-ray diffraction (GI-XRD) system. Scherrer analysis for crystallite size shows the presence of nano-structures, of the order of 30-35 nm. Electrical resistivity of the samples, studied by the four point probe method, as a function of increasing Ag content, shows a typical semi-conductor behavior. From conductivity values, carrier concentration and Seebeck parameter determination, the power factor of deposited films was calculated. Both XPS, Hall mobility and Seebeck analysis seem to indicate a limit value to the Ag solubility of the order of 5%, for thin films of ∼200 nm thickness, deposited at 350 °C. These data resulted to be comparable to theoretical evaluation for thin films but order of magnitude lower than the corresponding bulk materials.

  18. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    PubMed

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com . PMID:27167132

  19. Synthesis and evaluation of multi-target-directed ligands against Alzheimer's disease based on the fusion of donepezil and ebselen.

    PubMed

    Luo, Zonghua; Sheng, Jianfei; Sun, Yang; Lu, Chuanjun; Yan, Jun; Liu, Anqiu; Luo, Hai-Bin; Huang, Ling; Li, Xingshu

    2013-11-27

    A novel series of compounds obtained by fusing the cholinesterase inhibitor donepezil and the antioxidant ebselen were designed as multi-target-directed ligands against Alzheimer's disease. An in vitro assay showed that some of these molecules did not exhibit highly potent cholinesterase inhibitory activity but did have various other ebselen-related pharmacological effects. Among the molecules, compound 7d, one of the most potent acetylcholinesterase inhibitors (IC50 values of 0.042 μM for Electrophorus electricus acetylcholinesterase and 0.097 μM for human acetylcholinesterase), was found to be a strong butyrylcholinesterase inhibitor (IC50 = 1.586 μM), to possess rapid H2O2 and peroxynitrite scavenging activity and glutathione peroxidase-like activity (ν0 = 123.5 μM min(-1)), and to be a substrate of mammalian TrxR. A toxicity test in mice showed no acute toxicity at doses of up to 2000 mg/kg. According to an in vitro blood-brain barrier model, 7d is able to penetrate the central nervous system. PMID:24160297

  20. Multi-Target Joint Detection and Estimation Error Bound for the Sensor with Clutter and Missed Detection

    PubMed Central

    Lian, Feng; Zhang, Guang-Hua; Duan, Zhan-Sheng; Han, Chong-Zhao

    2016-01-01

    The error bound is a typical measure of the limiting performance of all filters for the given sensor measurement setting. This is of practical importance in guiding the design and management of sensors to improve target tracking performance. Within the random finite set (RFS) framework, an error bound for joint detection and estimation (JDE) of multiple targets using a single sensor with clutter and missed detection is developed by using multi-Bernoulli or Poisson approximation to multi-target Bayes recursion. Here, JDE refers to jointly estimating the number and states of targets from a sequence of sensor measurements. In order to obtain the results of this paper, all detectors and estimators are restricted to maximum a posteriori (MAP) detectors and unbiased estimators, and the second-order optimal sub-pattern assignment (OSPA) distance is used to measure the error metric between the true and estimated state sets. The simulation results show that clutter density and detection probability have significant impact on the error bound, and the effectiveness of the proposed bound is verified by indicating the performance limitations of the single-sensor probability hypothesis density (PHD) and cardinalized PHD (CPHD) filters for various clutter densities and detection probabilities. PMID:26828499

  1. Multi-Target Joint Detection and Estimation Error Bound for the Sensor with Clutter and Missed Detection.

    PubMed

    Lian, Feng; Zhang, Guang-Hua; Duan, Zhan-Sheng; Han, Chong-Zhao

    2016-01-01

    The error bound is a typical measure of the limiting performance of all filters for the given sensor measurement setting. This is of practical importance in guiding the design and management of sensors to improve target tracking performance. Within the random finite set (RFS) framework, an error bound for joint detection and estimation (JDE) of multiple targets using a single sensor with clutter and missed detection is developed by using multi-Bernoulli or Poisson approximation to multi-target Bayes recursion. Here, JDE refers to jointly estimating the number and states of targets from a sequence of sensor measurements. In order to obtain the results of this paper, all detectors and estimators are restricted to maximum a posteriori (MAP) detectors and unbiased estimators, and the second-order optimal sub-pattern assignment (OSPA) distance is used to measure the error metric between the true and estimated state sets. The simulation results show that clutter density and detection probability have significant impact on the error bound, and the effectiveness of the proposed bound is verified by indicating the performance limitations of the single-sensor probability hypothesis density (PHD) and cardinalized PHD (CPHD) filters for various clutter densities and detection probabilities. PMID:26828499

  2. Multi-target Chromogenic Whole-mount In Situ Hybridization for Comparing Gene Expression Domains in Drosophila Embryos

    PubMed Central

    Hauptmann, Giselbert; Söll, Iris; Krautz, Robert; Theopold, Ulrich

    2016-01-01

    To analyze gene regulatory networks active during embryonic development and organogenesis it is essential to precisely define how the different genes are expressed in spatial relation to each other in situ. Multi-target chromogenic whole-mount in situ hybridization (MC-WISH) greatly facilitates the instant comparison of gene expression patterns, as it allows distinctive visualization of different mRNA species in contrasting colors in the same sample specimen. This provides the possibility to relate gene expression domains topographically to each other with high accuracy and to define unique and overlapping expression sites. In the presented protocol, we describe a MC-WISH procedure for comparing mRNA expression patterns of different genes in Drosophila embryos. Up to three RNA probes, each specific for another gene and labeled by a different hapten, are simultaneously hybridized to the embryo samples and subsequently detected by alkaline phosphatase-based colorimetric immunohistochemistry. The described procedure is detailed here for Drosophila, but works equally well with zebrafish embryos. PMID:26862978

  3. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    PubMed

    Yu, Xing Xian; Watts, Lynnetta M; Manchem, Vara Prasad; Chakravarty, Kaushik; Monia, Brett P; McCaleb, Michael L; Bhanot, Sanjay

    2013-01-01

    Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders. PMID:23922646

  4. Modulation of splicing of the preceding intron by antisense oligonucleotide complementary to intra-exon sequence deleted in dystrophin Kobe

    SciTech Connect

    Takeshima, Y.; Matuso, M.; Sakamoto, H.; Nishio, H.

    1994-09-01

    Molecular analysis of dystrophin Kobe showed that exon 19 of the dystrophin gene bearing a 52 bp deletion was skipped during splicing, although the known consensus sequences at the 5{prime} and 3{prime} splice site of exon 19 were maintained. These data suggest that the deleted sequence of exon 19 may function as a cis-acting factor for exact splicing for the upstream intron. To investigate this potential role, an in vitro splicing system using dystrophin precursors was established. A two-exon precursor containing exon 18, truncated intron 18, and exon 19 was accurately spliced. However, splicing of intron 18 was dramatically inhibited when wild exon 19 was replaced with mutated exon 19. Even though the length of exon 19 was restored to normal by replacing the deleted sequence with other sequence, splicing of intron 18 was not fully reactivated. Characteristically, splicing of intron 18 was inactivated more markedly when the replaced sequence contained less polypurine stretches. These data suggested that modification of the exon sequence would result in a splicing abnormality. Antisense 31 mer 2`-O-methyl ribonucleotide was targeted against 5{prime} end of deleted region of exon 19 to modulate splicing of the mRNA precursor. Splicing of intron 18 was inhibited in a dose- and time-dependent manner. This is the first in vitro evidence to show splicing of dystrophin pre-mRNA can be managed by antisense oligonucleotides. These experiments represent an approach in which antisense oligonucleotides are used to restore the function of a defective dystrophin gene in Duchenne muscular dystrophy by inducing skipping of certain exons during splicing.

  5. Gene Silencing by Gold Nanoshell-Mediated Delivery and Laser-Triggered Release of Antisense Oligonucleotide and siRNA

    PubMed Central

    Huschka, Ryan; Barhoumi, Aoune; Liu, Qing; Roth, Jack A.; Ji, Lin; Halas, Naomi J.

    2013-01-01

    The approach of RNA interference (RNAi)- using antisense DNA or RNA oligonucleotides to silence activity of a specific pathogenic gene transcript and reduce expression of the encoded protein- is very useful in dissecting genetic function and holds significant promise as a molecular therapeutic. A major obstacle in achieving gene silencing with RNAi technology is the systemic delivery of therapeutic oligonucleotides. Here we demonstrate an engineered gold nanoshell (NS)-based therapeutic oligonucleotide delivery vehicle, designed to release its cargo on demand upon illumination with a near-infrared (NIR) laser. A poly(L)lysine peptide (PLL) epilayer covalently attached to the NS surface (NS-PLL) is used to capture intact, single-stranded antisense DNA oligonucleotides, or alternatively, double-stranded short-interfering RNA (siRNA) molecules. Controlled release of the captured therapeutic oligonucleotides in each case is accomplished by continuous wave NIR laser irradiation at 800 nm, near the resonance wavelength of the nanoshell. Fluorescently tagged oligonucleotides were used to monitor the time-dependent release process and light-triggered endosomal release. A green fluorescent protein (GFP)-expressing human lung cancer H1299 cell line was used to determine cellular uptake and gene silencing mediated by the NS-PLL carrying GFP gene-specific single-stranded DNA antisense oligonucleotide (AON-GFP), or a double-stranded siRNA (siRNA-GFP), in vitro. Light-triggered delivery resulted in ∼ 47% and ∼49% downregulation of the targeted GFP expression by AON-GFP and siRNA-GFP, respectively. Cytotoxicity induced by both the NS-PLL delivery vector and by laser irradiation is minimal, as demonstrated by a XTT cell proliferation assay. PMID:22862291

  6. Cholesterol-lowering Action of BNA-based Antisense Oligonucleotides Targeting PCSK9 in Atherogenic Diet-induced Hypercholesterolemic Mice

    PubMed Central

    Yamamoto, Tsuyoshi; Harada-Shiba, Mariko; Nakatani, Moeka; Wada, Shunsuke; Yasuhara, Hidenori; Narukawa, Keisuke; Sasaki, Kiyomi; Shibata, Masa-Aki; Torigoe, Hidetaka; Yamaoka, Tetsuji; Imanishi, Takeshi; Obika, Satoshi

    2012-01-01

    Recent findings in molecular biology implicate the involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in low-density lipoprotein receptor (LDLR) protein regulation. The cholesterol-lowering potential of anti-PCSK9 antisense oligonucleotides (AONs) modified with bridged nucleic acids (BNA-AONs) including 2′,4′-BNA (also called as locked nucleic acid (LNA)) and 2′,4′-BNANC chemistries were demonstrated both in vitro and in vivo. An in vitro transfection study revealed that all of the BNA-AONs induce dose-dependent reductions in PCSK9 messenger RNA (mRNA) levels concomitantly with increases in LDLR protein levels. BNA-AONs were administered to atherogenic diet-fed C57BL/6J mice twice weekly for 6 weeks; 2′,4′-BNA-AON that targeted murine PCSK9 induced a dose-dependent reduction in hepatic PCSK9 mRNA and LDL cholesterol (LDL-C); the 43% reduction of serum LDL-C was achieved at a dose of 20 mg/kg/injection with only moderate increases in toxicological indicators. In addition, the serum high-density lipoprotein cholesterol (HDL-C) levels increased. These results support antisense inhibition of PCSK9 as a potential therapeutic approach. When compared with 2′,4′-BNA-AON, 2′,4′-BNANC-AON showed an earlier LDL-C–lowering effect and was more tolerable in mice. Our results validate the optimization of 2′,4′-BNANC-based anti-PCSK9 antisense molecules to produce a promising therapeutic agent for the treatment of hypercholesterolemia. PMID:23344002

  7. rasiRNA pathway controls antisense expression of Drosophila telomeric retrotransposons in the nucleus

    PubMed Central

    Shpiz, Sergey; Kwon, Dmitry; Rozovsky, Yakov; Kalmykova, Alla

    2009-01-01

    Telomeres in Drosophila are maintained by the specialized telomeric retrotransposons HeT-A, TART and TAHRE. Sense transcripts of telomeric retroelements were shown to be the targets of a specialized RNA-interference mechanism, a repeat-associated short interfering (rasi)RNA-mediated system. Antisense rasiRNAs play a key role in this mechanism, highlighting the importance of antisense expression in retrotransposon silencing. Previously, bidirectional transcription was reported for the telomeric element TART. Here, we show that HeT-A is also bidirectionally transcribed, and HeT-A antisense transcription in ovaries is regulated by a promoter localized within its 3′ untranslated region. A remarkable feature of noncoding HeT-A antisense transcripts is the presence of multiple introns. We demonstrate that sense and antisense HeT-A-specific rasiRNAs are present in the same tissue, indicating that transcripts of both directions may be considered as natural targets of the rasiRNA pathway. We found that the expression of antisense transcripts of telomeric elements is regulated by the RNA silencing machinery, suggesting rasiRNA-mediated interplay between sense and antisense transcripts in the cell. Finally, this regulation occurs in the nucleus since disruption of the rasiRNA pathway leads to an accumulation of TART and HeT-A transcripts in germ cell nuclei. PMID:19036789

  8. Photosynthetic Performance and Fertility Are Repressed in GmAOX2b Antisense Soybean1[OA

    PubMed Central

    Chai, Tsun-Thai; Simmonds, Daina; Day, David A.; Colmer, Timothy D.; Finnegan, Patrick M.

    2010-01-01

    The alternative oxidase (AOX) is a cyanide-resistant oxidase that provides an alternative outlet for electrons from the respiratory electron transport chain embedded in the inner membrane of plant mitochondria. Examination of soybean (Glycine max) plants carrying a GmAOX2b antisense gene showed AOX to have a central role in reproductive development and fecundity. In three independently transformed antisense lines, seed set was reduced by 16% to 43%, whereas ovule abortion increased by 1.2- to 1.7-fold when compared with nontransgenic transformation control plants. Reduced fecundity was associated with reductions in whole leaf cyanide-resistant, salicylhydroxamic acid-sensitive respiration and net photosynthesis, but there was no change in total respiration in the dark. The frequency of potential fertilization events was reduced by at least one-third in the antisense plants as a likely consequence of prefertilization defects. Pistils of the antisense plants contained a higher proportion of immature-sized, nonfertile embryo sacs compared with nontransgenic control plants. Increased rates of pollen abortion in vivo and reduced rates of pollen germination in vitro suggested that the antisense gene compromised pollen development and function. Reciprocal crosses between antisense and nontransgenic plants revealed that pollen produced by antisense plants was less active in fertilization. Taken together, the results presented here indicate that AOX expression has an important role in determining normal gametophyte development and function. PMID:20097793

  9. Functional analysis of polyphenol oxidases by antisense/sense technology.

    PubMed

    Thipyapong, Piyada; Stout, Michael J; Attajarusit, Jutharat

    2007-01-01

    Polyphenol oxidases (PPOs) catalyze the oxidation of phenolics to quinones, the secondary reactions of which lead to oxidative browning and postharvest losses of many fruits and vegetables. PPOs are ubiquitous in angiosperms, are inducible by both biotic and abiotic stresses, and have been implicated in several physiological processes including plant defense against pathogens and insects, the Mehler reaction, photoreduction of molecular oxygen by PSI, regulation of plastidic oxygen levels, aurone biosynthesis and the phenylpropanoid pathway. Here we review experiments in which the roles of PPO in disease and insect resistance as well as in the Mehler reaction were investigated using transgenic tomato (Lycopersicon esculentum) plants with modified PPO expression levels (suppressed PPO and overexpressing PPO). These transgenic plants showed normal growth, development and reproduction under laboratory, growth chamber and greenhouse conditions. Antisense PPO expression dramatically increased susceptibility while PPO overexpression increased resistance of tomato plants to Pseudomonas syringae. Similarly, PPO-overexpressing transgenic plants showed an increase in resistance to various insects, including common cutworm (Spodoptera litura (F.)), cotton bollworm (Helicoverpa armigera (Hübner)) and beet army worm (Spodoptera exigua (Hübner)), whereas larvae feeding on plants with suppressed PPO activity had higher larval growth rates and consumed more foliage. Similar increases in weight gain, foliage consumption, and survival were also observed with Colorado potato beetles (Leptinotarsa decemlineata (Say)) feeding on antisense PPO transgenic tomatoes. The putative defensive mechanisms conferred by PPO and its interaction with other defense proteins are discussed. In addition, transgenic plants with suppressed PPO exhibited more favorable water relations and decreased photoinhibition compared to nontransformed controls and transgenic plants overexpressing PPO, suggesting

  10. A Universal Positive-Negative Selection System for Gene Targeting in Plants Combining an Antibiotic Resistance Gene and Its Antisense RNA.

    PubMed

    Nishizawa-Yokoi, Ayako; Nonaka, Satoko; Osakabe, Keishi; Saika, Hiroaki; Toki, Seiichi

    2015-09-01

    Gene targeting (GT) is a useful technology for accurate genome engineering in plants. A reproducible approach based on a positive-negative selection system using hygromycin resistance and the diphtheria toxin A subunit gene as positive and negative selection markers, respectively, is now available. However, to date, this selection system has been applied exclusively in rice (Oryza sativa). To establish a universally applicable positive-negative GT system in plants, we designed a selection system using a combination of neomycin phosphotransferaseII (nptII) and an antisense nptII construct. The concomitant transcription of both sense and antisense nptII suppresses significantly the level of expression of the sense nptII gene, and transgenic calli and plants become sensitive to the antibiotic geneticin. In addition, we were able to utilize the sense nptII gene as a positive selection marker and the antisense nptII construct as a negative selection marker for knockout of the endogenous rice genes Waxy and 33-kD globulin through GT, although negative selection with this system is relatively less efficient compared with diphtheria toxin A subunit. The approach developed here, with some additional improvements, could be applied as a universal selection system for the enrichment of GT cells in several plant species. PMID:26143254

  11. Antisense oligonucleotide for tissue factor inhibits hepatic ischemic reperfusion injury.

    PubMed

    Nakamura, Kenji; Kadotani, Yayoi; Ushigome, Hidetaka; Akioka, Kiyokazu; Okamoto, Masahiko; Ohmori, Yoshihiro; Yaoi, Takeshi; Fushiki, Shinji; Yoshimura, Rikio; Yoshimura, Norio

    2002-09-27

    Tissue factor (TF) is an initiation factor for blood coagulation and its expression is induced on endothelial cells during inflammatory or immune responses. We designed an antisense oligodeoxynucleotide (AS-1/TF) for rat TF and studied its effect on hepatic ischemic reperfusion injury. AS-1/TF was delivered intravenously to Lewis rats. After 10 h, hepatic artery and portal vein were partially clamped. Livers were reperfused after 180 min and harvested. TF expression was studied using immunohistochemical staining. One of 10 rats survived in a 5-day survival rate and TF was strongly stained on endothelial cells in non-treatment group. However, by treatment with AS-1/TF, six of seven survived and TF staining was significantly reduced. Furthermore, we observed that fluorescein-labeled AS-1/TF was absorbed into endothelial cells. These results suggest that AS-1/TF can strongly suppress the expression of TF and thereby inhibit ischemic reperfusion injury to the rat liver. PMID:12270110

  12. Antisense modulation of both exonic and intronic splicing motifs induces skipping of a DMD pseudo-exon responsible for x-linked dilated cardiomyopathy.

    PubMed

    Rimessi, Paola; Fabris, Marina; Bovolenta, Matteo; Bassi, Elena; Falzarano, Sofia; Gualandi, Francesca; Rapezzi, Claudio; Coccolo, Fabio; Perrone, Daniela; Medici, Alessandro; Ferlini, Alessandra

    2010-09-01

    Antisense-mediated exon skipping has proven to be efficacious for subsets of Duchenne muscular dystrophy mutations. This approach is based on targeting specific splicing motifs that interfere with the spliceosome assembly by steric hindrance. Proper exon recognition by the splicing machinery is thought to depend on exonic splicing enhancer sequences, often characterized by purine-rich stretches, representing potential targets for antisense-mediated exon skipping. We identified and functionally characterized two purine-rich regions located within dystrophin intron 11 and involved in splicing regulation of a pseudo-exon. A functional role for these sequences was suggested by a pure intronic DMD deletion causing X-linked dilated cardiomyopathy through the prevalent cardiac incorporation of the aberrant pseudo-exon, marked as Alu-exon, into the dystrophin transcript. The first splicing sequence is contained within the pseudo-exon, whereas the second is localized within its 3' intron. We demonstrated that the two sequences actually behave as splicing enhancers in cell-free splicing assays because their deletion strongly interferes with the pseudo-exon inclusion. Cell-free results were then confirmed in myogenic cells derived from the patient with X-linked dilated cardiomyopathy, by targeting the identified motifs with antisense molecules and obtaining a reduction in dystrophin pseudo-exon recognition. The splicing motifs identified could represent target sequences for a personalized molecular therapy in this particular DMD mutation. Our results demonstrated for the first time the role of intronic splicing sequences in antisense modulation with implications in exon skipping-mediated therapeutic approaches. PMID:20486769

  13. Antisense oligonucleotide induction of progerin in human myogenic cells.

    PubMed

    Luo, Yue-Bei; Mitrpant, Chalermchai; Adams, Abbie M; Johnsen, Russell D; Fletcher, Sue; Mastaglia, Frank L; Wilton, Steve D

    2014-01-01

    We sought to use splice-switching antisense oligonucleotides to produce a model of accelerated ageing by enhancing expression of progerin, translated from a mis-spliced lamin A gene (LMNA) transcript in human myogenic cells. The progerin transcript (LMNA Δ150) lacks the last 150 bases of exon 11, and is translated into a truncated protein associated with the severe premature ageing disease, Hutchinson-Gilford progeria syndrome (HGPS). HGPS arises from de novo mutations that activate a cryptic splice site in exon 11 of LMNA and result in progerin accumulation in tissues of mesodermal origin. Progerin has also been proposed to play a role in the 'natural' ageing process in tissues. We sought to test this hypothesis by producing a model of accelerated muscle ageing in human myogenic cells. A panel of splice-switching antisense oligonucleotides were designed to anneal across exon 11 of the LMNA pre-mRNA, and these compounds were transfected into primary human myogenic cells. RT-PCR showed that the majority of oligonucleotides were able to modify LMNA transcript processing. Oligonucleotides that annealed within the 150 base region of exon 11 that is missing in the progerin transcript, as well as those that targeted the normal exon 11 donor site induced the LMNA Δ150 transcript, but most oligonucleotides also generated variable levels of LMNA transcript missing the entire exon 11. Upon evaluation of different oligomer chemistries, the morpholino phosphorodiamidate oligonucleotides were found to be more efficient than the equivalent sequences prepared as oligonucleotides with 2'-O-methyl modified bases on a phosphorothioate backbone. The morpholino oligonucleotides induced nuclear localised progerin, demonstrated by immunostaining, and morphological nuclear changes typical of HGPS cells. We show that it is possible to induce progerin expression in myogenic cells using splice-switching oligonucleotides to redirect splicing of LMNA. This may offer a model to investigate

  14. Structural Mechanisms Determining Inhibition of the Collagen Receptor DDR1 by Selective and Multi-Targeted Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Tan, Li; Chu, Kiki; Lee, Sam W.; Gray, Nathanael S.; Bullock, Alex N.

    2014-01-01

    The discoidin domain receptors (DDRs), DDR1 and DDR2, form a unique subfamily of receptor tyrosine kinases that are activated by the binding of triple-helical collagen. Excessive signaling by DDR1 and DDR2 has been linked to the progression of various human diseases, including fibrosis, atherosclerosis and cancer. We report the inhibition of these unusual receptor tyrosine kinases by the multi-targeted cancer drugs imatinib and ponatinib, as well as the selective type II inhibitor DDR1-IN-1. Ponatinib is identified as the more potent molecule, which inhibits DDR1 and DDR2 with an IC50 of 9 nM. Co-crystal structures of human DDR1 reveal a DFG-out conformation (DFG, Asp-Phe-Gly) of the kinase domain that is stabilized by an unusual salt bridge between the activation loop and αD helix. Differences to Abelson kinase (ABL) are observed in the DDR1 P-loop, where a β-hairpin replaces the cage-like structure of ABL. P-loop residues in DDR1 that confer drug resistance in ABL are therefore accommodated outside the ATP pocket. Whereas imatinib and ponatinib bind potently to both the DDR and ABL kinases, the hydrophobic interactions of the ABL P-loop appear poorly satisfied by DDR1-IN-1 suggesting a structural basis for its DDR1 selectivity. Such inhibitors may have applications in clinical indications of DDR1 and DDR2 overexpression or mutation, including lung cancer. PMID:24768818

  15. Quantitative Microinjection of Morpholino Antisense Oligonucleotides into Mouse Oocytes to Examine Gene Function in Meiosis-I.

    PubMed

    Nakagawa, Shoma; FitzHarris, Greg

    2016-01-01

    Specific protein depletion is a powerful approach for assessing individual gene function in cellular processes, and has been extensively employed in recent years in mammalian oocyte meiosis-I. Conditional knockout mice and RNA interference (RNAi) methods such as siRNA or dsRNA microinjection are among several approaches to have been applied in this system over the past decade. RNAi by microinjection of Morpholino antisense Oligonucleotides (MO), in particular, has proven highly popular and tractable in many studies, since MOs have high specificity of interaction, low cell toxicity, and are more stable than other microinjected RNAi molecules. Here, we describe a method of MO microinjection into the mouse germinal vesicle-stage (GV) oocyte followed by a simple immunofluorescence approach for examination of gene function in meiosis-I. PMID:27557584

  16. A new therapeutic approach using a schizophyllan-based drug delivery system for inflammatory bowel disease.

    PubMed

    Takedatsu, Hidetoshi; Mitsuyama, Keiichi; Mochizuki, Shinichi; Kobayashi, Teppei; Sakurai, Kazuo; Takeda, Hiroshi; Fujiyama, Yoshihide; Koyama, Yoshikazu; Nishihira, Jun; Sata, Michio

    2012-06-01

    Antisense technologies for the targeted inhibition of gene expression could provide an effective strategy for the suppression of inflammation. However, the effective use of antisense oligonucleotides (ODN) has been limited because of several problems. Therefore, a delivery system for antisense ODNs that enhances antisense stability, while maintaining the specificity of antisense for its target RNA or DNA is needed. We have developed a delivery system for antisense ODN using schizophyllan (SPG), a polysaccharide that belongs to the β-(1-3) glucan family. This system has several advantages enabling the effective suppression of targeted RNA or DNA: the SPG complex is stable in vivo and does not dissolve in the presence of deoxyribonuclease, and the SPG complex is effectively taken up into macrophages by phagocytosis through Dectin-1. Macrophage-migration inhibitory factor (MIF), which is mainly produced by macrophages has been shown to have a pathogenetic role in inflammatory bowel disease (IBD). We developed a technique to create an SPG complex that highly conformed to the antisense MIF. The administration of antisense MIF/SPG complex effectively suppressed MIF production and significantly ameliorated intestinal inflammation. Our result demonstrated a possible new therapeutic approach, i.e., the administration of antisense MIF/SPG complex, for the treatment of IBD. PMID:22334022

  17. A New Therapeutic Approach Using a Schizophyllan-based Drug Delivery System for Inflammatory Bowel Disease

    PubMed Central

    Takedatsu, Hidetoshi; Mitsuyama, Keiichi; Mochizuki, Shinichi; Kobayashi, Teppei; Sakurai, Kazuo; Takeda, Hiroshi; Fujiyama, Yoshihide; Koyama, Yoshikazu; Nishihira, Jun; Sata, Michio

    2012-01-01

    Antisense technologies for the targeted inhibition of gene expression could provide an effective strategy for the suppression of inflammation. However, the effective use of antisense oligonucleotides (ODN) has been limited because of several problems. Therefore, a delivery system for antisense ODNs that enhances antisense stability, while maintaining the specificity of antisense for its target RNA or DNA is needed. We have developed a delivery system for antisense ODN using schizophyllan (SPG), a polysaccharide that belongs to the β-(1-3) glucan family. This system has several advantages enabling the effective suppression of targeted RNA or DNA: the SPG complex is stable in vivo and does not dissolve in the presence of deoxyribonuclease, and the SPG complex is effectively taken up into macrophages by phagocytosis through Dectin-1. Macrophage-migration inhibitory factor (MIF), which is mainly produced by macrophages has been shown to have a pathogenetic role in inflammatory bowel disease (IBD). We developed a technique to create an SPG complex that highly conformed to the antisense MIF. The administration of antisense MIF/SPG complex effectively suppressed MIF production and significantly ameliorated intestinal inflammation. Our result demonstrated a possible new therapeutic approach, i.e., the administration of antisense MIF/SPG complex, for the treatment of IBD. PMID:22334022

  18. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides.

    PubMed

    Lennox, Kim A; Behlke, Mark A

    2016-01-29

    Thousands of long non-coding RNAs (lncRNAs) have been identified in mammalian cells. Some have important functions and their dysregulation can contribute to a variety of disease states. However, most lncRNAs have not been functionally characterized. Complicating their study, lncRNAs have widely varying subcellular distributions: some reside predominantly in the nucleus, the cytoplasm or in both compartments. One method to query function is to suppress expression and examine the resulting phenotype. Methods to suppress expression of mRNAs include antisense oligonucleotides (ASOs) and RNA interference (RNAi). Antisense and RNAi-based gene-knockdown methods vary in efficacy between different cellular compartments. It is not known if this affects their ability to suppress lncRNAs. To address whether localization of the lncRNA influences susceptibility to degradation by either ASOs or RNAi, nuclear lncRNAs (MALAT1 and NEAT1), cytoplasmic lncRNAs (DANCR and OIP5-AS1) and dual-localized lncRNAs (TUG1, CasC7 and HOTAIR) were compared for knockdown efficiency. We found that nuclear lncRNAs were more effectively suppressed using ASOs, cytoplasmic lncRNAs were more effectively suppressed using RNAi and dual-localized lncRNAs were suppressed using both methods. A mixed-modality approach combining ASOs and RNAi reagents improved knockdown efficacy, particularly for those lncRNAs that localize to both nuclear and cytoplasmic compartments. PMID:26578588

  19. Combination Antisense Treatment for Destructive Exon Skipping of Myostatin and Open Reading Frame Rescue of Dystrophin in Neonatal mdx Mice.

    PubMed

    Lu-Nguyen, Ngoc B; Jarmin, Susan A; Saleh, Amer F; Popplewell, Linda; Gait, Michael J; Dickson, George

    2015-08-01

    The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD. PMID:25959011

  20. Combination antisense treatment for destructive exon skipping of myostatin and open reading frame rescue of dystrophin in neonatal mdx mice

    PubMed Central

    Lu-Nguyen, Ngoc B.; Jarmin, Susan A.; Saleh, Amer F.; Popplewell, Linda; Gait, Michael J.; Dickson, George

    2015-01-01

    The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD. PMID:25959011

  1. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile.

    PubMed

    Hegarty, John P; Krzeminski, Jacek; Sharma, Arun K; Guzman-Villanueva, Diana; Weissig, Volkmar; Stewart, David B

    2016-01-01

    Despite being a conceptually appealing alternative to conventional antibiotics, a major challenge toward the successful implementation of antisense treatments for bacterial infections is the development of efficient oligonucleotide delivery systems. Cationic vesicles (bolasomes) composed of dequalinium chloride ("DQAsomes") have been used to deliver plasmid DNA across the cardiolipin-rich inner membrane of mitochondria. As cardiolipin is also a component of many bacterial membranes, we investigated the application of cationic bolasomes to bacteria as an oligonucleotide delivery system. Antisense sequences designed in silico to target the expression of essential genes of the bacterial pathogen, Clostridium difficile, were synthesized as 2'-O-methyl phosphorothioate gapmer antisense oligonucleotides (ASO). These antisense gapmers were quantitatively assessed for their ability to block mRNA translation using luciferase reporter and C. difficile protein expression plasmid constructs in a coupled transcription-translation system. Cationic bolaamphiphile compounds (dequalinium derivatives) of varying alkyl chain length were synthesized and bolasomes were prepared via probe sonication of an aqueous suspension. Bolasomes were characterized by particle size distribution, zeta potential, and binding capacities for anionic oligonucleotide. Bolasomes and antisense gapmers were combined to form antisense nanocomplexes. Anaerobic C. difficile log phase cultures were treated with serial doses of gapmer nanocomplexes or equivalent amounts of empty bolasomes for 24 hours. Antisense gapmers for four gene targets achieved nanomolar minimum inhibitory concentrations for C. difficile, with the lowest values observed for oligonucleotides targeting polymerase genes rpoB and dnaE. No inhibition of bacterial growth was observed from treatments at matched dosages of scrambled gapmer nanocomplexes or plain, oligonucleotide-free bolasomes compared to untreated control cultures. We describe

  2. Bolaamphiphile-based nanocomplex delivery of phosphorothioate gapmer antisense oligonucleotides as a treatment for Clostridium difficile

    PubMed Central

    Hegarty, John P; Krzeminski, Jacek; Sharma, Arun K; Guzman-Villanueva, Diana; Weissig, Volkmar; Stewart, David B

    2016-01-01

    Despite being a conceptually appealing alternative to conventional antibiotics, a major challenge toward the successful implementation of antisense treatments for bacterial infections is the development of efficient oligonucleotide delivery systems. Cationic vesicles (bolasomes) composed of dequalinium chloride (“DQAsomes”) have been used to deliver plasmid DNA across the cardiolipin-rich inner membrane of mitochondria. As cardiolipin is also a component of many bacterial membranes, we investigated the application of cationic bolasomes to bacteria as an oligonucleotide delivery system. Antisense sequences designed in silico to target the expression of essential genes of the bacterial pathogen, Clostridium difficile, were synthesized as 2′-O-methyl phosphorothioate gapmer antisense oligonucleotides (ASO). These antisense gapmers were quantitatively assessed for their ability to block mRNA translation using luciferase reporter and C. difficile protein expression plasmid constructs in a coupled transcription–translation system. Cationic bolaamphiphile compounds (dequalinium derivatives) of varying alkyl chain length were synthesized and bolasomes were prepared via probe sonication of an aqueous suspension. Bolasomes were characterized by particle size distribution, zeta potential, and binding capacities for anionic oligonucleotide. Bolasomes and antisense gapmers were combined to form antisense nanocomplexes. Anaerobic C. difficile log phase cultures were treated with serial doses of gapmer nanocomplexes or equivalent amounts of empty bolasomes for 24 hours. Antisense gapmers for four gene targets achieved nanomolar minimum inhibitory concentrations for C. difficile, with the lowest values observed for oligonucleotides targeting polymerase genes rpoB and dnaE. No inhibition of bacterial growth was observed from treatments at matched dosages of scrambled gapmer nanocomplexes or plain, oligonucleotide-free bolasomes compared to untreated control cultures. We

  3. Natural Antisense Transcripts and Long Non-Coding RNA in Neurospora crassa

    PubMed Central

    Arthanari, Yamini; Heintzen, Christian; Griffiths-Jones, Sam; Crosthwaite, Susan K.

    2014-01-01

    The prevalence of long non-coding RNAs (lncRNA) and natural antisense transcripts (NATs) has been reported in a variety of organisms. While a consensus has yet to be reached on their global importance, an increasing number of examples have been shown to be functional, regulating gene expression at the transcriptional and post-transcriptional level. Here, we use RNA sequencing data from the ABI SOLiD platform to identify lncRNA and NATs obtained from samples of the filamentous fungus Neurospora crassa grown under different light and temperature conditions. We identify 939 novel lncRNAs, of which 477 are antisense to annotated genes. Across the whole dataset, the extent of overlap between sense and antisense transcripts is large: 371 sense/antisense transcripts are complementary over 500 nts or more and 236 overlap by more than 1000 nts. Most prevalent are 3′ end overlaps between convergently transcribed sense/antisense pairs, but examples of divergently transcribed pairs and nested transcripts are also present. We confirm the expression of a subset of sense/antisense transcript pairs by qPCR. We examine the size, types of overlap and expression levels under the different environmental stimuli of light and temperature, and identify 11 lncRNAs that are up-regulated in response to light. We also find differences in transcript length and the position of introns between protein-coding transcripts that have antisense expression and transcripts with no antisense expression. These results demonstrate the ability of N. crassa lncRNAs and NATs to be regulated by different environmental stimuli and provide the scope for further investigation into the function of NATs. PMID:24621812

  4. An egr-1 (zif268) Antisense Oligodeoxynucleotide Infused Into the Amygdala Disrupts Fear Conditioning

    PubMed Central

    Malkani, Seema; Wallace, Karin J.; Donley, Melanie P.; Rosen, Jeffrey B.

    2004-01-01

    Studies of gene expression following fear conditioning have demonstrated that the inducible transcription factor, egr-1, is increased in the lateral nucleus of the amygdala shortly following fear conditioning. These studies suggest that egr-1 and its protein product Egr-1 in the amygdala are important for learning and memory of fear. To directly test this hypothesis, an egr-1 antisense oligodeoxynucleotide (antisense-ODN) was injected bilaterally into the amygdala prior to contextual fear conditioning. The antisense-ODN reduced Egr-1 protein in the amygdala and interfered with fear conditioning. A 250-pmole dose produced an 11% decrease in Egr-1 protein and reduced long-term memory of fear as measured by freezing in a retention test 24 h after conditioning, but left shock-induced freezing intact. A larger 500-pmole dose produced a 25% reduction in Egr-1 protein and significantly decreased both freezing immediately following conditioning and freezing in the retention test. A nonsense-ODN had no effect on postshock or retention test freezing. In addition, 500 pmole of antisense-ODN infused prior to the retention test in previously trained rats did not reduce freezing, indicating that antisense-ODN did not suppress conditioned fear behavior. Finally, rats infused with 500 pmole of antisense-ODN displayed unconditioned fear to a predator odor, demonstrating that unconditioned freezing was unaffected by the antisense-ODN. The data indicate that the egr-1 antisense-ODN interferes with learning and memory processes of fear without affecting freezing behavior and suggests that the inducible transcription factor Egr-1 within the amygdala plays important functions in long-term learning and memory of fear. PMID:15466317

  5. Antisense-induced messenger depletion corrects a COL6A2 dominant mutation in Ullrich myopathy.

    PubMed

    Gualandi, Francesca; Manzati, Elisa; Sabatelli, Patrizia; Passarelli, Chiara; Bovolenta, Matteo; Pellegrini, Camilla; Perrone, Daniela; Squarzoni, Stefano; Pegoraro, Elena; Bonaldo, Paolo; Ferlini, Alessandra

    2012-12-01

    Collagen VI gene mutations cause Ullrich and Bethlem muscular dystrophies. Pathogenic mutations frequently have a dominant negative effect, with defects in collagen VI chain secretion and assembly. It is agreed that, conversely, collagen VI haploinsufficiency has no pathological consequences. Thus, RNA-targeting approaches aimed at preferentially inactivating the mutated COL6 messenger may represent a promising therapeutic strategy. By in vitro studies we obtained the preferential depletion of the mutated COL6A2 messenger, by targeting a common single-nucleotide polymorphism (SNP), cistronic with a dominant COL6A2 mutation. We used a 2'-O-methyl phosphorothioate (2'OMePS) antisense oligonucleotide covering the SNP within exon 3, which is out of frame. Exon 3 skipping has the effect of depleting the mutated transcript via RNA nonsense-mediated decay, recovering the correct collagen VI secretion and restoring the ability to form an interconnected microfilament network into the extracellular matrix. This novel RNA modulation approach to correcting dominant mutations may represent a therapeutic strategy potentially applicable to a great variety of mutations and diseases. PMID:22992134

  6. Advanced In vivo Use of CRISPR/Cas9 and Anti-sense DNA Inhibition for Gene Manipulation in the Brain

    PubMed Central

    Walters, Brandon J.; Azam, Amber B.; Gillon, Colleen J.; Josselyn, Sheena A.; Zovkic, Iva B.

    2016-01-01

    Gene editing tools are essential for uncovering how genes mediate normal brain–behavior relationships and contribute to neurodegenerative and neuropsychiatric disorders. Recent progress in gene editing technology now allows neuroscientists unprecedented access to edit the genome efficiently. Although many important tools have been developed, here we focus on approaches that allow for rapid gene editing in the adult nervous system, particularly CRISPR/Cas9 and anti-sense nucleotide-based techniques. CRISPR/Cas9 is a flexible gene editing tool, allowing the genome to be manipulated in diverse ways. For instance, CRISPR/Cas9 has been successfully used to knockout genes, knock-in mutations, overexpress or inhibit gene activity, and provide scaffolding for recruiting specific epigenetic regulators to individual genes and gene regions. Moreover, the CRISPR/Cas9 system may be modified to target multiple genes at one time, affording simultaneous inhibition and overexpression of distinct genetic targets. Although many of the more advanced applications of CRISPR/Cas9 have not been applied to the nervous system, the toolbox is widely accessible, such that it is poised to help advance neuroscience. Anti-sense nucleotide-based technologies can be used to rapidly knockdown genes in the brain. The main advantage of anti-sense based tools is their simplicity, allowing for rapid gene delivery with minimal technical expertise. Here, we describe the main applications and functions of each of these systems with an emphasis on their many potential applications in neuroscience laboratories. PMID:26793235

  7. Galactose-PEG dual conjugation of beta-(1-->3)-D-glucan schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake.

    PubMed

    Karinaga, Ryouji; Anada, Takahisa; Minari, Jusaku; Mizu, Masami; Koumoto, Kazuya; Fukuda, Junji; Nakazawa, Kohji; Hasegawa, Teruaki; Numata, Munenori; Shinkai, Seiji; Sakurai, Kazuo

    2006-03-01

    Antisense oligonucleotides (AS ODNs) are applied to silence a particular gene, and this approach is one of the potential gene therapies. However, naked oligonucleotides are easy to be degraded or absorbed in biological condition. Therefore, we need a carrier to deliver AS ODNs. This paper presents galactose moieties that were conjugated to the side chain of SPG to enhance cellular ingestion through endocytosis mediated by asialoglycoprotein receptor specifically located on parenchymal liver cells. We introduced galactose with two types of chemical bonds; amide and amine, and the amine connection showed lower ingestion and more toxicity than the amide one. Since PEG was known to induce endocytosis escape, we combined PEG and galactose aiming to provide both cellular up-take and subsequent endocytosis escape. We designed lactose or galactose moieties to attach to the end of the PEG chain that connects to the SPG side chain. When the PEG had the molecular weight of 5000-6000, the antisense effect reached the maximum. We believe that this new type of galactose and PEG dual conjugation broaden the horizon in antisense delivery. PMID:16174528

  8. Advanced In vivo Use of CRISPR/Cas9 and Anti-sense DNA Inhibition for Gene Manipulation in the Brain.

    PubMed

    Walters, Brandon J; Azam, Amber B; Gillon, Colleen J; Josselyn, Sheena A; Zovkic, Iva B

    2015-01-01

    Gene editing tools are essential for uncovering how genes mediate normal brain-behavior relationships and contribute to neurodegenerative and neuropsychiatric disorders. Recent progress in gene editing technology now allows neuroscientists unprecedented access to edit the genome efficiently. Although many important tools have been developed, here we focus on approaches that allow for rapid gene editing in the adult nervous system, particularly CRISPR/Cas9 and anti-sense nucleotide-based techniques. CRISPR/Cas9 is a flexible gene editing tool, allowing the genome to be manipulated in diverse ways. For instance, CRISPR/Cas9 has been successfully used to knockout genes, knock-in mutations, overexpress or inhibit gene activity, and provide scaffolding for recruiting specific epigenetic regulators to individual genes and gene regions. Moreover, the CRISPR/Cas9 system may be modified to target multiple genes at one time, affording simultaneous inhibition and overexpression of distinct genetic targets. Although many of the more advanced applications of CRISPR/Cas9 have not been applied to the nervous system, the toolbox is widely accessible, such that it is poised to help advance neuroscience. Anti-sense nucleotide-based technologies can be used to rapidly knockdown genes in the brain. The main advantage of anti-sense based tools is their simplicity, allowing for rapid gene delivery with minimal technical expertise. Here, we describe the main applications and functions of each of these systems with an emphasis on their many potential applications in neuroscience laboratories. PMID:26793235

  9. [Exon skipping therapy for Duchenne muscular dystrophy by using antisense Morpholino].

    PubMed

    Takeda, Shin'ichi

    2009-11-01

    Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin protein at the sarcolemma. Exon skipping by antisense oligonucleotides is a novel method to restore the reading frame of the mutated DMD gene, and rescue dystrophin production. We recently reported that systemic delivery of Morpholino antisense oligonucleotides targeting exon 6 and 8 of the canine DMD gene, efficiently recovered functional dystrophin proteins at the sarcolamma of dystrophic dogs, and improved performance of affected dogs without serious side effects (Yokota et al., Ann Neurol. 65 (6): 667-676, 2009). To optimize therapeutic antisense Morpholinos for more frequent mutations of the DMD gene, we designed antisense Morpholinos targeting exon 51 of the mouse DMD gene, and injected them separately or in combination into the muscles of mdx52 mice, in which exon 52 has been deleted by a gene targeting technique (Araki et al., 1997). We also tried systemic delivery of antisense Morpholino to skip exon 51 in mdx52 mice. It is important to verify the effectiveness and side effects of antisense Morpholino in experimental animal models such as dystrophic dogs or mdx52 mice, before clinical trials in DMD patients. PMID:20030230

  10. Programmed fluctuations in sense/antisense transcript ratios drive sexual differentiation in S. pombe.

    PubMed

    Bitton, Danny A; Grallert, Agnes; Scutt, Paul J; Yates, Tim; Li, Yaoyong; Bradford, James R; Hey, Yvonne; Pepper, Stuart D; Hagan, Iain M; Miller, Crispin J

    2011-01-01

    Strand-specific RNA sequencing of S. pombe revealed a highly structured programme of ncRNA expression at over 600 loci. Waves of antisense transcription accompanied sexual differentiation. A substantial proportion of ncRNA arose from mechanisms previously considered to be largely artefactual, including improper 3' termination and bidirectional transcription. Constitutive induction of the entire spk1+, spo4+, dis1+ and spo6+ antisense transcripts from an integrated, ectopic, locus disrupted their respective meiotic functions. This ability of antisense transcripts to disrupt gene function when expressed in trans suggests that cis production at native loci during sexual differentiation may also control gene function. Consistently, insertion of a marker gene adjacent to the dis1+ antisense start site mimicked ectopic antisense expression in reducing the levels of this microtubule regulator and abolishing the microtubule-dependent 'horsetail' stage of meiosis. Antisense production had no impact at any of these loci when the RNA interference (RNAi) machinery was removed. Thus, far from being simply 'genome chatter', this extensive ncRNA landscape constitutes a fundamental component in the controls that drive the complex programme of sexual differentiation in S. pombe. PMID:22186733

  11. Programmed fluctuations in sense/antisense transcript ratios drive sexual differentiation in S. pombe

    PubMed Central

    Bitton, Danny A; Grallert, Agnes; Scutt, Paul J; Yates, Tim; Li, Yaoyong; Bradford, James R; Hey, Yvonne; Pepper, Stuart D; Hagan, Iain M; Miller, Crispin J

    2011-01-01

    Strand-specific RNA sequencing of S. pombe revealed a highly structured programme of ncRNA expression at over 600 loci. Waves of antisense transcription accompanied sexual differentiation. A substantial proportion of ncRNA arose from mechanisms previously considered to be largely artefactual, including improper 3′ termination and bidirectional transcription. Constitutive induction of the entire spk1+, spo4+, dis1+ and spo6+ antisense transcripts from an integrated, ectopic, locus disrupted their respective meiotic functions. This ability of antisense transcripts to disrupt gene function when expressed in trans suggests that cis production at native loci during sexual differentiation may also control gene function. Consistently, insertion of a marker gene adjacent to the dis1+ antisense start site mimicked ectopic antisense expression in reducing the levels of this microtubule regulator and abolishing the microtubule-dependent ‘horsetail' stage of meiosis. Antisense production had no impact at any of these loci when the RNA interference (RNAi) machinery was removed. Thus, far from being simply ‘genome chatter', this extensive ncRNA landscape constitutes a fundamental component in the controls that drive the complex programme of sexual differentiation in S. pombe. PMID:22186733

  12. A novel antisense long noncoding RNA regulates the expression of MDC1 in bladder cancer

    PubMed Central

    Hua, Qiuhan; Chu, Haiyan; Tong, Na; Yuan, Lin; Qin, Chao; Yin, Changjun; Zhang, Zhengdong; Wang, Meilin

    2015-01-01

    Antisense long noncoding RNAs (lncRNAs) play important roles in regulating the expression of coding genes in post-transcriptional level. However, detailed expression profile of lncRNAs and functions of antisense lncRNAs in bladder cancer remains unclear. To investigate regulation of lncRNAs in bladder cancer and demonstrate their functions, we performed lncRNAs microarray analysis in 3 paired bladder cancer tissues. Further molecular assays were conducted to determine the potential role of identified antisense lncRNA MDC1-AS. As a result, a series of lncRNAs were differentially expressed in bladder cancer tissues in microarray screen. In a larger size of samples validation, we found that the expression levels of MDC1-AS and MDC1 was down-regulated in bladder cancer. After over-expression of MDC1-AS, increased levels of MDC1 were observed in bladder cancer cells. We also found a remarkably inhibitory role of antisense lncRNA MDC1-AS on malignant cell behaviors in bladder cancer cells EJ and T24. Subsequently, knockdown of MDC1 revealed that suppressing role of MDC1-AS was attributed to up-regulation of MDC1. In summary, we have identified a novel antisense lncRNA MDC1-AS, which may participate in bladder cancer through up-regulation of its antisense tumor-suppressing gene MDC1. Further studies should be conducted to demonstrate detailed mechanism of our findings. PMID:25514464

  13. Upstream Anti-sense Promoters are Hubs of Transcription Factor Binding and Active Histone Modifications

    PubMed Central

    Scruggs, Benjamin S.; Gilchrist, Daniel A.; Nechaev, Sergei; Muse, Ginger W.; Burkholder, Adam; Fargo, David C.; Adelman, Karen

    2015-01-01

    SUMMARY Anti-sense transcription originating upstream of mammalian protein-coding genes is a well-documented phenomenon, but remarkably little is known about the regulation or function of anti-sense promoters and the non-coding RNAs they generate. Here we define at nucleotide resolution the divergent transcription start sites (TSSs) near mouse mRNA genes. We find that coupled sense and anti-sense TSSs precisely define the boundaries of a nucleosome-depleted region (NDR) that is highly enriched in transcription factor (TF) motifs. Notably, as the distance between sense and anti-sense TSSs increases, so does the size of the NDR, the level of signal-dependent TF binding and gene activation. We further discover a group of anti-sense TSSs in macrophages with an enhancer-like chromatin signature. Interestingly, this signature identifies divergent promoters that are activated during immune challenge. We propose that anti-sense promoters serve as platforms for TF binding and establishment of active chromatin to further regulate or enhance sense-strand mRNA expression. PMID:26028540

  14. Annexin A2 facilitates endocytic trafficking of antisense oligonucleotides

    PubMed Central

    Wang, Shiyu; Sun, Hong; Tanowitz, Michael; Liang, Xue-hai; Crooke, Stanley T.

    2016-01-01

    Chemically modified antisense oligonucleotides (ASOs) designed to mediate site-specific cleavage of RNA by RNase H1 are used as research tools and as therapeutics. ASOs modified with phosphorothioate (PS) linkages enter cells via endocytotic pathways. The mechanisms by which PS-ASOs are released from membrane-enclosed endocytotic organelles to reach target RNAs remain largely unknown. We recently found that annexin A2 (ANXA2) co-localizes with PS-ASOs in late endosomes (LEs) and enhances ASO activity. Here, we show that co-localization of ANXA2 with PS-ASO is not dependent on their direct interactions or mediated by ANXA2 partner protein S100A10. Instead, ANXA2 accompanies the transport of PS-ASOs to LEs, as ANXA2/PS-ASO co-localization was observed inside LEs. Although ANXA2 appears not to affect levels of PS-ASO internalization, ANXA2 reduction caused significant accumulation of ASOs in early endosomes (EEs) and reduced localization in LEs and decreased PS-ASO activity. Importantly, the kinetics of PS-ASO activity upon free uptake show that target mRNA reduction occurs at least 4 hrs after PS-ASOs exit from EEs and is coincident with release from LEs. Taken together, our results indicate that ANXA2 facilitates PS-ASO trafficking from early to late endosomes where it may also contribute to PS-ASO release. PMID:27378781

  15. Chimeric Antisense Oligonucleotide Conjugated to α-Tocopherol

    PubMed Central

    Nishina, Tomoko; Numata, Junna; Nishina, Kazutaka; Yoshida-Tanaka, Kie; Nitta, Keiko; Piao, Wenying; Iwata, Rintaro; Ito, Shingo; Kuwahara, Hiroya; Wada, Takeshi; Mizusawa, Hidehiro; Yokota, Takanori

    2015-01-01

    We developed an efficient system for delivering short interfering RNA (siRNA) to the liver by using α-tocopherol conjugation. The α-tocopherol–conjugated siRNA was effective and safe for RNA interference–mediated gene silencing in vivo. In contrast, when the 13-mer LNA (locked nucleic acid)-DNA gapmer antisense oligonucleotide (ASO) was directly conjugated with α-tocopherol it showed markedly reduced silencing activity in mouse liver. Here, therefore, we tried to extend the 5′-end of the ASO sequence by using 5′-α-tocopherol–conjugated 4- to 7-mers of unlocked nucleic acid (UNA) as a “second wing.” Intravenous injection of mice with this α-tocopherol–conjugated chimeric ASO achieved more potent silencing than ASO alone in the liver, suggesting increased delivery of the ASO to the liver. Within the cells, the UNA wing was cleaved or degraded and α-tocopherol was released from the 13-mer gapmer ASO, resulting in activation of the gapmer. The α-tocopherol–conjugated chimeric ASO showed high efficacy, with hepatic tropism, and was effective and safe for gene silencing in vivo. We have thus identified a new, effective LNA-DNA gapmer structure in which drug delivery system (DDS) molecules are bound to ASO with UNA sequences. PMID:25584900

  16. Natural antisense transcripts regulate the neuronal stress response and excitability

    PubMed Central

    Zheng, Xingguo; Valakh, Vera; DiAntonio, Aaron; Ben-Shahar, Yehuda

    2014-01-01

    Neurons regulate ionic fluxes across their plasma membrane to maintain their excitable properties under varying environmental conditions. However, the mechanisms that regulate ion channels abundance remain poorly understood. Here we show that pickpocket 29 (ppk29), a gene that encodes a Drosophila degenerin/epithelial sodium channel (DEG/ENaC), regulates neuronal excitability via a protein-independent mechanism. We demonstrate that the mRNA 3′UTR of ppk29 affects neuronal firing rates and associated heat-induced seizures by acting as a natural antisense transcript (NAT) that regulates the neuronal mRNA levels of seizure (sei), the Drosophila homolog of the human Ether-à-go-go Related Gene (hERG) potassium channel. We find that the regulatory impact of ppk29 mRNA on sei is independent of the sodium channel it encodes. Thus, our studies reveal a novel mRNA dependent mechanism for the regulation of neuronal excitability that is independent of protein-coding capacity. DOI: http://dx.doi.org/10.7554/eLife.01849.001 PMID:24642409

  17. Oligodeoxynucleotide studies in primates: antisense and immune stimulatory indications.

    PubMed

    Farman, Cindy A; Kornbrust, Doug J

    2003-01-01

    Antisense oligodeoxynucleotide compounds (AS ODN) are being developed as therapeutics for various disease indications. Their safety and pharmacokinetics are most commonly evaluated in rodents and nonhuman primates. Traditional AS ODN are short, single strands of DNA, and they target specific mRNA sequences. Plasma clearance of AS ODN is rapid, broad tissue distribution occurs, and elimination is by nuclease metabolism. Structural modifications to AS ODN have been made to enhance their efficacy and improve their safety. A number of class effects are observed with AS ODN that are unrelated to the specific targeted mRNA sequence. Acute effects include activation of the alternative complement pathway and inhibition of the intrinsic coagulation pathway. In monkeys, rodents, and dogs given repeated doses of AS ODN, accumulation of AS ODN and/or metabolites occurs in the form of basophilic granules in various tissues, including the kidney, lymph nodes and liver. A new potential therapeutic application of ODN is that of immune stimulation. Immunostimulatory ODN (IS ODN) are being investigated for use in treating cancer, infectious disease, and allergy. For the development of both AS and IS ODN, primates will continue to be important for safety assessment. PMID:12597439

  18. Intravesical Liposome and Antisense Treatment for Detrusor Overactivity and Interstitial Cystitis/Painful Bladder Syndrome

    PubMed Central

    Kashyap, Mahendra P.; Kawamorita, Naoki; Yoshizawa, Tsuyoshi; Chancellor, Michael

    2014-01-01

    Purpose. The following review focuses on the recent advancements in intravesical drug delivery, which brings added benefit to the therapy of detrusor overactivity and interstitial cystitis/painful bladder syndrome (IC/PBS). Results. Intravesical route is a preferred route of administration for restricting the action of extremely potent drugs like DMSO for patients of interstitial cystitis/painful bladder syndrome (IC/PBS) and botulinum toxin for detrusor overactivity. Patients who are either refractory to oral treatment or need to mitigate the adverse effects encountered with conventional routes of administration also chose this route. Its usefulness in some cases can be limited by vehicle (carrier) toxicity or short duration of action. Efforts have been underway to overcome these limitations by developing liposome platform for intravesical delivery of biotechnological products including antisense oligonucleotides. Conclusions. Adoption of forward-thinking approaches can achieve advancements in drug delivery systems targeted to future improvement in pharmacotherapy of bladder diseases. Latest developments in the field of nanotechnology can bring this mode of therapy from second line of treatment for refractory cases to the forefront of disease management. PMID:24527221

  19. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum

    PubMed Central

    2011-01-01

    Background It has been shown that nearly a quarter of the initial predicted gene models in the Plasmodium falciparum genome contain errors. Although there have been efforts to obtain complete cDNA sequences to correct the errors, the coverage of cDNA sequences on the predicted genes is still incomplete, and many gene models for those expressed in sexual or mosquito stages have not been validated. Antisense transcripts have widely been reported in P. falciparum; however, the extent and pattern of antisense transcripts in different developmental stages remain largely unknown. Results We have sequenced seven bidirectional libraries from ring, early and late trophozoite, schizont, gametocyte II, gametocyte V, and ookinete, and four strand-specific libraries from late trophozoite, schizont, gametocyte II, and gametocyte V of the 3D7 parasites. Alignment of the cDNA sequences to the 3D7 reference genome revealed stage-specific antisense transcripts and novel intron-exon splicing junctions. Sequencing of strand-specific cDNA libraries suggested that more genes are expressed in one direction in gametocyte than in schizont. Alternatively spliced genes, antisense transcripts, and stage-specific expressed genes were also characterized. Conclusions It is necessary to continue to sequence cDNA from different developmental stages, particularly those of non-erythrocytic stages. The presence of antisense transcripts in some gametocyte and ookinete genes suggests that these antisense RNA may play an important role in gene expression regulation and parasite development. Future gene expression studies should make use of directional cDNA libraries. Antisense transcripts may partly explain the observed discrepancy between levels of mRNA and protein expression. PMID:22129310

  20. PLGA-PEG-PLGA microspheres as a delivery vehicle for antisense oligonucleotides to CTGF: Implications on post-surgical peritoneal adhesion prevention

    NASA Astrophysics Data System (ADS)

    Azeke, John Imuetinyan-Jesu, Jr.

    , while both cytokines are over-expressed within the first day following injury, CTGF protein levels could not be correlated with observed adhesion development. In addition, we synthesized linear triblock copolymers of polyethylene glycol (PEG) and poly(D,L-lactide-co-glycolide) (PLGA), two of the most widely studied biodegradable polymers in use today. Bulk gels and microparticles of the copolymers were then evaluated for gelling behavior, temperature stability, and drug loading and release kinetics in order assess their suitability as potential carriers of antisense therapeutics. A novel approach to affecting the antisense oligonucleotide release kinetics by varying the relative concentrations of co-encapsulated cationic lipid transfection agents was also presented.

  1. The Drosophila micropia retrotransposon encodes a testis-specific antisense RNA complementary to reverse transcriptase.

    PubMed Central

    Lankenau, S; Corces, V G; Lankenau, D H

    1994-01-01

    The micropia transposable element of Drosophila hydei is a long terminal repeat-containing retrotransposon present in both the autosomes and the Y chromosome. micropia expression gives rise to a complex set of sense and antisense RNAs transcribed primarily during spermatogenesis. The most abundant sense RNAs constitute an assortment of heterogeneous high-molecular-weight transcripts expressed as constituents of the Y-chromosomal lampbrush loops of primary spermatocytes. In addition, micropia encodes a full-length RNA that extends between the two long terminal repeats of the element. The major 1.0-kb antisense RNA characterized is complementary to the reverse transcriptase and RNase H coding regions of micropia. It is expressed from a testis-specific promoter during the primary spermatocyte stages and is detectable until spermatid elongation stages. Sequence comparison of this promoter with the 5' region of other testis-specific genes allows the conception of a conserved sequence that is responsible for this pattern of expression. A 284-bp fragment containing this sequence is able to drive testis-specific expression of the Escherichia coli lacZ gene in Drosophila melanogaster. This sequence is conserved in the micropia elements present in other Drosophila species that also encode an antisense RNA. The evolutionary conservation of micropia antisense RNA expression and the sequences responsible for its testis-specific transcription suggests a role for this antisense RNA in the control of germ line expression of the full-length transcript or transposon-encoded proteins. Images PMID:7509447

  2. Antisense precision polymer micelles require less poly(ethylenimine) for efficient gene knockdown.

    PubMed

    Fakhoury, Johans J; Edwardson, Thomas G; Conway, Justin W; Trinh, Tuan; Khan, Farhad; Barłóg, Maciej; Bazzi, Hassan S; Sleiman, Hanadi F

    2015-12-28

    Therapeutic nucleic acids are powerful molecules for shutting down protein expression. However, their cellular uptake is poor and requires transport vectors, such as cationic polymers. Of these, poly(ethylenimine) (PEI) has been shown to be an efficient vehicle for nucleic acid transport into cells. However, cytotoxicity has been a major hurdle in the development of PEI-DNA complexes as clinically viable therapeutics. We have synthesized antisense-polymer conjugates, where the polymeric block is completely monodisperse and sequence-controlled. Depending on the polymer sequence, these can self-assemble to produce micelles of very low polydispersity. The introduction of linear poly(ethylenimine) to these micelles leads to aggregation into size-defined PEI-mediated superstructures. Subsequently, both cellular uptake and gene silencing are greatly enhanced over extended periods compared to antisense alone, while at the same time cellular cytotoxicity remains very low. In contrast, gene silencing is not enhanced with antisense polymer conjugates that are not able to self-assemble into micelles. Thus, using antisense precision micelles, we are able to achieve significant transfection and knockdown with minimal cytotoxicity at much lower concentrations of linear PEI then previously reported. Consequently, a conceptual solution to the problem of antisense or siRNA delivery is to self-assemble these molecules into 'gene-like' micelles with high local charge and increased stability, thus reducing the amount of transfection agent needed for effective gene silencing. PMID:26597764

  3. Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice

    PubMed Central

    2012-01-01

    Background Cis-natural antisense transcripts (cis-NATs) are RNAs transcribed from the antisense strand of a gene locus, and are complementary to the RNA transcribed from the sense strand. Common techniques including microarray approach and analysis of transcriptome databases are the major ways to globally identify cis-NATs in various eukaryotic organisms. Genome-wide in silico analysis has identified a large number of cis-NATs that may generate endogenous short interfering RNAs (nat-siRNAs), which participate in important biogenesis mechanisms for transcriptional and post-transcriptional regulation in rice. However, the transcriptomes are yet to be deeply sequenced to comprehensively investigate cis-NATs. Results We applied high-throughput strand-specific complementary DNA sequencing technology (ssRNA-seq) to deeply sequence mRNA for assessing sense and antisense transcripts that were derived under salt, drought and cold stresses, and normal conditions, in the model plant rice (Oryza sativa). Combined with RAP-DB genome annotation (the Rice Annotation Project Database build-5 data set), 76,013 transcripts corresponding to 45,844 unique gene loci were assembled, in which 4873 gene loci were newly identified. Of 3819 putative rice cis-NATs, 2292 were detected as expressed and giving rise to small RNAs from their overlapping regions through integrated analysis of ssRNA-seq data and small RNA data. Among them, 503 cis-NATs seemed to be associated with specific conditions. The deep sequence data from isolated epidermal cells of rice seedlings further showed that 54.0% of cis-NATs were expressed simultaneously in a population of homogenous cells. Nearly 9.7% of rice transcripts were involved in one-to-one or many-to-many cis-NATs formation. Furthermore, only 17.4-34.7% of 223 many-to-many cis-NAT groups were all expressed and generated nat-siRNAs, indicating that only some cis-NAT groups may be involved in complex regulatory networks. Conclusions Our study profiles an

  4. Antisense overlapping open reading frames in genes from bacteria to humans.

    PubMed Central

    Merino, E; Balbás, P; Puente, J L; Bolívar, F

    1994-01-01

    Long Open Reading Frames (ORFs) in antisense DNA strands have been reported in the literature as being rare events. However, an extensive analysis of the GenBank database revealed that a substantial number of genes from several species contain an in-phase ORF in the antisense strand, that overlaps entirely the coding sequence of the sense strand, or even extends beyond. The findings described in this paper show that this is a frequent, non-random phenomenon, which is primarily dependent on codon usage, and to a lesser extent on gene size and GC content. Examination of the sequence database for several prokaryotic and eukaryotic organisms, demonstrates that coding sequences with in-phase, 100% overlapping antisense ORFs are present in every genome studied so far. PMID:8208617

  5. A Simple Three-Step Method for Design and Affinity Testing of New Antisense Peptides: An Example of Erythropoietin

    PubMed Central

    Štambuk, Nikola; Manojlović, Zoran; Turčić, Petra; Martinić, Roko; Konjevoda, Paško; Weitner, Tin; Wardega, Piotr; Gabričević, Mario

    2014-01-01

    Antisense peptide technology is a valuable tool for deriving new biologically active molecules and performing peptide–receptor modulation. It is based on the fact that peptides specified by the complementary (antisense) nucleotide sequences often bind to each other with a higher specificity and efficacy. We tested the validity of this concept on the example of human erythropoietin, a well-characterized and pharmacologically relevant hematopoietic growth factor. The purpose of the work was to present and test simple and efficient three-step procedure for the design of an antisense peptide targeting receptor-binding site of human erythropoietin. Firstly, we selected the carboxyl-terminal receptor binding region of the molecule (epitope) as a template for the antisense peptide modeling; Secondly, we designed an antisense peptide using mRNA transcription of the epitope sequence in the 3'→5' direction and computational screening of potential paratope structures with BLAST; Thirdly, we evaluated sense–antisense (epitope–paratope) peptide binding and affinity by means of fluorescence spectroscopy and microscale thermophoresis. Both methods showed similar Kd values of 850 and 816 µM, respectively. The advantages of the methods were: fast screening with a small quantity of the sample needed, and measurements done within the range of physicochemical parameters resembling physiological conditions. Antisense peptides targeting specific erythropoietin region(s) could be used for the development of new immunochemical methods. Selected antisense peptides with optimal affinity are potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines. PMID:24865486

  6. A simple three-step method for design and affinity testing of new antisense peptides: an example of erythropoietin.

    PubMed

    Štambuk, Nikola; Manojlović, Zoran; Turčić, Petra; Martinić, Roko; Konjevoda, Paško; Weitner, Tin; Wardega, Piotr; Gabričević, Mario

    2014-01-01

    Antisense peptide technology is a valuable tool for deriving new biologically active molecules and performing peptide-receptor modulation. It is based on the fact that peptides specified by the complementary (antisense) nucleotide sequences often bind to each other with a higher specificity and efficacy. We tested the validity of this concept on the example of human erythropoietin, a well-characterized and pharmacologically relevant hematopoietic growth factor. The purpose of the work was to present and test simple and efficient three-step procedure for the design of an antisense peptide targeting receptor-binding site of human erythropoietin. Firstly, we selected the carboxyl-terminal receptor binding region of the molecule (epitope) as a template for the antisense peptide modeling; Secondly, we designed an antisense peptide using mRNA transcription of the epitope sequence in the 3'→5' direction and computational screening of potential paratope structures with BLAST; Thirdly, we evaluated sense-antisense (epitope-paratope) peptide binding and affinity by means of fluorescence spectroscopy and microscale thermophoresis. Both methods showed similar Kd values of 850 and 816 µM, respectively. The advantages of the methods were: fast screening with a small quantity of the sample needed, and measurements done within the range of physicochemical parameters resembling physiological conditions. Antisense peptides targeting specific erythropoietin region(s) could be used for the development of new immunochemical methods. Selected antisense peptides with optimal affinity are potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines. PMID:24865486

  7. The role of antisense long noncoding RNA in small RNA-triggered gene activation

    PubMed Central

    Zhang, Xizhe; Li, Haitang; Rossi, John J.

    2014-01-01

    Long noncoding RNAs (lncRNAs) are known to regulate neighboring protein-coding genes by directing chromatin remodeling complexes, imprinting, and X-chromosome inactivation. In this study, we explore the function of lncRNAs in small RNA-triggered transcriptional gene activation (TGA), a process in which microRNAs (miRNAs) or small interfering RNAs (siRNAs) associated with Argonaute (Ago) proteins induce chromatin remodeling and gene activation at promoters with sequence complementarity. We designed a model system with different lncRNA and chromatin environments to elucidate the molecular mechanisms required for mammalian TGA. Using RNA-fluorescence in situ hybridization (FISH) and rapid amplification of cDNA ends (RACE)-PCR, we demonstrated that small RNA-triggered TGA occurs at sites where antisense lncRNAs are transcribed through the reporter gene and promoter. Small RNA-induced TGA coincided with the enrichment of Ago2 at the promoter region, but Ago2-mediated cleavage of antisense lncRNAs was not observed. Moreover, we examined the allele-specific effects of lncRNAs through a Cre-induced inversion of a poly(A) sequence that was designed to block the transcription of antisense lncRNAs through the reporter gene region in an inducible and reversible manner. Termination of nascent antisense lncRNAs abrogated gene activation triggered by small RNAs, and only allele-specific cis-acting antisense lncRNAs, but not trans-acting lncRNAs, were capable of rescuing TGA. Hence, this model revealed that antisense lncRNAs can mediate TGA in cis and not in trans, serving as a molecular scaffold for a small RNA–Ago2 complex and chromatin remodeling. PMID:25344398

  8. The Role of Transcription Factors at Antisense-Expressing Gene Pairs in Yeast

    PubMed Central

    Mostovoy, Yulia; Thiemicke, Alexander; Hsu, Tiffany Y.; Brem, Rachel B.

    2016-01-01

    Genes encoded close to one another on the chromosome are often coexpressed, by a mechanism and regulatory logic that remain poorly understood. We surveyed the yeast genome for tandem gene pairs oriented tail-to-head at which expression antisense to the upstream gene was conserved across species. The intergenic region at most such tandem pairs is a bidirectional promoter, shared by the downstream gene mRNA and the upstream antisense transcript. Genomic analyses of these intergenic loci revealed distinctive patterns of transcription factor regulation. Mutation of a given transcription factor verified its role as a regulator in trans of tandem gene pair loci, including the proximally initiating upstream antisense transcript and downstream mRNA and the distally initiating upstream mRNA. To investigate cis-regulatory activity at such a locus, we focused on the stress-induced NAD(P)H dehydratase YKL151C and its downstream neighbor, the metabolic enzyme GPM1. Previous work has implicated the region between these genes in regulation of GPM1 expression; our mutation experiments established its function in rich medium as a repressor in cis of the distally initiating YKL151C sense RNA, and an activator of the proximally initiating YKL151C antisense RNA. Wild-type expression of all three transcripts required the transcription factor Gcr2. Thus, at this locus, the intergenic region serves as a focal point of regulatory input, driving antisense expression and mediating the coordinated regulation of YKL151C and GPM1. Together, our findings implicate transcription factors in the joint control of neighboring genes specialized to opposing conditions and the antisense transcripts expressed between them. PMID:27190003

  9. Prediction of Multi-Target Networks of Neuroprotective Compounds with Entropy Indices and Synthesis, Assay, and Theoretical Study of New Asymmetric 1,2-Rasagiline Carbamates

    PubMed Central

    Romero Durán, Francisco J.; Alonso, Nerea; Caamaño, Olga; García-Mera, Xerardo; Yañez, Matilde; Prado-Prado, Francisco J.; González-Díaz, Humberto

    2014-01-01

    In a multi-target complex network, the links (Lij) represent the interactions between the drug (di) and the target (tj), characterized by different experimental measures (Ki, Km, IC50, etc.) obtained in pharmacological assays under diverse boundary conditions (cj). In this work, we handle Shannon entropy measures for developing a model encompassing a multi-target network of neuroprotective/neurotoxic compounds reported in the CHEMBL database. The model predicts correctly >8300 experimental outcomes with Accuracy, Specificity, and Sensitivity above 80%–90% on training and external validation series. Indeed, the model can calculate different outcomes for >30 experimental measures in >400 different experimental protocolsin relation with >150 molecular and cellular targets on 11 different organisms (including human). Hereafter, we reported by the first time the synthesis, characterization, and experimental assays of a new series of chiral 1,2-rasagiline carbamate derivatives not reported in previous works. The experimental tests included: (1) assay in absence of neurotoxic agents; (2) in the presence of glutamate; and (3) in the presence of H2O2. Lastly, we used the new Assessing Links with Moving Averages (ALMA)-entropy model to predict possible outcomes for the new compounds in a high number of pharmacological tests not carried out experimentally. PMID:25255029

  10. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration

    PubMed Central

    Lagier-Tourenne, Clotilde; Baughn, Michael; Rigo, Frank; Sun, Shuying; Liu, Patrick; Li, Hai-Ri; Jiang, Jie; Watt, Andrew T.; Chun, Seung; Katz, Melanie; Qiu, Jinsong; Sun, Ying; Ling, Shuo-Chien; Zhu, Qiang; Polymenidou, Magdalini; Drenner, Kevin; Artates, Jonathan W.; McAlonis-Downes, Melissa; Markmiller, Sebastian; Hutt, Kasey R.; Pizzo, Donald P.; Cady, Janet; Harms, Matthew B.; Baloh, Robert H.; Vandenberg, Scott R.; Yeo, Gene W.; Fu, Xiang-Dong; Bennett, C. Frank; Cleveland, Don W.; Ravits, John

    2013-01-01

    Expanded hexanucleotide repeats in the chromosome 9 open reading frame 72 (C9orf72) gene are the most common genetic cause of ALS and frontotemporal degeneration (FTD). Here, we identify nuclear RNA foci containing the hexanucleotide expansion (GGGGCC) in patient cells, including white blood cells, fibroblasts, glia, and multiple neuronal cell types (spinal motor, cortical, hippocampal, and cerebellar neurons). RNA foci are not present in sporadic ALS, familial ALS/FTD caused by other mutations (SOD1, TDP-43, or tau), Parkinson disease, or nonneurological controls. Antisense oligonucleotides (ASOs) are identified that reduce GGGGCC-containing nuclear foci without altering overall C9orf72 RNA levels. By contrast, siRNAs fail to reduce nuclear RNA foci despite marked reduction in overall C9orf72 RNAs. Sustained ASO-mediated lowering of C9orf72 RNAs throughout the CNS of mice is demonstrated to be well tolerated, producing no behavioral or pathological features characteristic of ALS/FTD and only limited RNA expression alterations. Genome-wide RNA profiling identifies an RNA signature in fibroblasts from patients with C9orf72 expansion. ASOs targeting sense strand repeat-containing RNAs do not correct this signature, a failure that may be explained, at least in part, by discovery of abundant RNA foci with C9orf72 repeats transcribed in the antisense (GGCCCC) direction, which are not affected by sense strand-targeting ASOs. Taken together, these findings support a therapeutic approach by ASO administration to reduce hexanucleotide repeat-containing RNAs and raise the potential importance of targeting expanded RNAs transcribed in both directions. PMID:24170860

  11. Anxiolytic effect and memory improvement in rats by antisense oligodeoxynucleotide to 5-hydroxytryptamine-2A precursor protein.

    PubMed

    Cohen, Hagit

    2005-01-01

    Serotonergic (5-hydroxytryptamine; 5-HT) mechanisms have been implicated in a number of physiological and pathophysiological processes including mood, anxiety, and cognitive functioning. Among the many 5-HT receptor subtypes, the 5-HT2A receptors (5-HT2A-R) seem to be of particular importance in mediating these effects, and they are prime targets for a variety of psychoactive substances-from hallucinogenic drugs, through atypical antipsychotics, to anxiolytics and antidepressants. Various selective 5-HT2A-R ligands induce different behavioral responses. To determine whether receptor downregulation is an essential part of anxiolytic action, levels of 5-HT2A receptors were manipulated in rats using a nonpharmacological approach-by the administration of an antisense oligodeoxynucleotide (ASODN) to 5-HT2A-R. Each ASODN was injected icv between two and five times at 24-hr intervals. Control rats received injections of either a scrambled oligodeoxynucleotide (ScrODN) or the vehicle only. On Day 6, anxiety-related behavior was assessed in the elevated plus maze paradigm and performance of memory tasks in the Morris water maze. Gene transcripts were measured by quantitative reverse transcription polymerase chain reaction (PCR). The results show that compared to vehicle and ScrODN control animals, icv 5-HT2A-R-ASODN administrations for 4 consecutive days (but not less) significantly decreased anxietylike behavior and improved memory retention performance. The reduction in anxiety-related behavior in 5-HT2A-R-ASODN rats was accompanied by a decrease in 5-HT2A-R-mRNA expression in the frontal cortex and in the hippocampus. Receptor downregulation has been proposed as one of the central mechanisms for anxiolytic drug actions. Antisense-mediated downmanipulation of receptors in this study, especially of 5-HT2A, supports this theory. PMID:16149040

  12. Immobilized magnetic beads based multi-target affinity selection coupled with high performance liquid chromatography-mass spectrometry for screening anti-diabetic compounds from a Chinese medicine "Tang-Zhi-Qing".

    PubMed

    Tao, Yi; Chen, Zhui; Zhang, Yufeng; Wang, Yi; Cheng, Yiyu

    2013-05-01

    We developed an approach for screening bioactive compounds from botanical drug using multiple target-immobilized magnetic beads coupled with high performance liquid chromatography-mass spectrometry. This novel approach was called magnetic beads based multi-target affinity selection-mass spectrometry (MT-ASMS). It can enrich and identify different types of ligands from mixture extracts. Multiple targets (maltase, invertase, lipase) were immobilized on the magnetic beads by covalent linkage using 1-(3-dimethyl-aminopropyl)-3-ethyl-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as reaction reagents, respectively. The properties of enzyme conjugated magnetic beads were characterized using transmission electron microscopy, X-ray diffractometer and vibration sample magnetometer. Several factors including pH, ion strength, incubation time and temperature were optimized using three known ligands (caffeic acid, ferulic acid, and hesperidin). The established MT-ASMS approach was applied to screening for ligands from a Chinese medicine "Tang-Zhi-Qing", which was used to treat type II diabetes in China. Seven bound compounds were identified via liquid chromatography-mass spectrometry (LC/MS). Five active compounds including 2,3,4,6-tetra-O-galloyl-D-glucose, 1,2,3,4-tetra-O-galloyl-D-glucose, 1,2,3,4,6-penta-O-galloyl-d-glucose, quercetin-3-O-β-D-glucuronide and quercetin-3-O-β-D-glucoside were identified and their activities were validated by conventional inhibitory assay. Our findings suggested that the proposed approach is efficient in screening compounds with multiple activities from extracts of botanical drugs. PMID:23501439

  13. The zebrafish progranulin gene family and antisense transcripts

    PubMed Central

    Cadieux, Benoît; Chitramuthu, Babykumari P; Baranowski, David; Bennett, Hugh PJ

    2005-01-01

    Background Progranulin is an epithelial tissue growth factor (also known as proepithelin, acrogranin and PC-cell-derived growth factor) that has been implicated in development, wound healing and in the progression of many cancers. The single mammalian progranulin gene encodes a glycoprotein precursor consisting of seven and one half tandemly repeated non-identical copies of the cystine-rich granulin motif. A genome-wide duplication event hypothesized to have occurred at the base of the teleost radiation predicts that mammalian progranulin may be represented by two co-orthologues in zebrafish. Results The cDNAs encoding two zebrafish granulin precursors, progranulins-A and -B, were characterized and found to contain 10 and 9 copies of the granulin motif respectively. The cDNAs and genes encoding the two forms of granulin, progranulins-1 and -2, were also cloned and sequenced. Both latter peptides were found to be encoded by precursors with a simplified architecture consisting of one and one half copies of the granulin motif. A cDNA encoding a chimeric progranulin which likely arises through the mechanism of trans-splicing between grn1 and grn2 was also characterized. A non-coding RNA gene with antisense complementarity to both grn1 and grn2 was identified which may have functional implications with respect to gene dosage, as well as in restricting the formation of the chimeric form of progranulin. Chromosomal localization of the four progranulin (grn) genes reveals syntenic conservation for grna only, suggesting that it is the true orthologue of mammalian grn. RT-PCR and whole-mount in situ hybridization analysis of zebrafish grns during development reveals that combined expression of grna and grnb, but not grn1 and grn2, recapitulate many of the expression patterns observed for the murine counterpart. This includes maternal deposition, widespread central nervous system distribution and specific localization within the epithelial compartments of various organs

  14. Suppression of conditioned fear by administration of CCKB receptor antisense oligodeoxynucleotide into the lateral ventricle.

    PubMed

    Tsutsumi, T; Akiyoshi, J; Hikichi, T; Kiyota, A; Kohno, Y; Katsuragi, S; Yamamoto, Y; Isogawa, K; Nagayama, H

    2001-11-01

    We investigated the role of CCK in the development of anxiety by determining whether CCKB receptor antisense suppressed intracellular Ca(2+) concentration in vitro or suppressed conditioned fear stress in vivo. First, for the in vitro studies, we used rat pituitary tumor GH3 cells since these cells have CCKB receptors. GH3 cells were stimulated by 10 microM CCK-4; intracellular Ca(2+) concentration was measured. The CCKB receptor antisense at 1 or 10 microM reduced the subsequent response to 10 microM CCK-4 in a time-dependent manner. Second, for the in vivo studies, the CCKB receptor antisense, sense, random sense, or saline was infused at a constant rate for 6 days into rat lateral ventricles via mini-osmotic pumps. Individual rats were then subjected to 30 min of inescapable electric footshock in a chamber with a grid floor. Twenty-four hours later, the rat was again placed in the chamber and observed for 5 min without shocks. This study showed that CCKB receptor antisense significantly suppressed intracellular Ca(2+) concentration in GH3 cells and significantly reduced freezing behavior in rats, indicating that the CCKB receptor plays an important role in anxiety. PMID:11778143

  15. A competitive enzyme hybridization assay for plasma determination of phosphodiester and phosphorothioate antisense oligonucleotides.

    PubMed Central

    Deverre, J R; Boutet, V; Boquet, D; Ezan, E; Grassi, J; Grognet, J M

    1997-01-01

    An enzyme competitive hybridization assay was developed and validated for determination of mouse plasma concentrations of a 15mer antisense phosphodiester oligodeoxyribonucleotide and of two phosphorothioate analogs. Assays were performed in 96-well microtiter plates. The phosphodiester sense sequence was covalently bound to the microwells. The 5'-biotinylated antisense sequence was used as tracer. The principle of the assay involves competitive hybridization of tracer and antisense nucleotide to the solid phase-immobilized sense oligonucleotide. Solid phase- bound tracer oligonucleotide was assayed after reaction with a streptavidin-acetylcholinesterase conjugate, using the colorimetric method of Ellman. As in competitive enzyme immunoassays, coloration was inversely related to the amount of analyte initially present in the sample. The limit of quantification was 900 pM for phosphodiester antisense oligonucleotide using a 100 microl volume of plasma without extraction. Cross-reactivity was negligible after a four base deletion in either the 3'or 5'position. The assay was simple and sensitive, suitable for in vitro screening of oligonucleotide hybridization potency in biological fluids and for measuring the plasma pharmacokinetics of phosphorothioate and phosphodiester sequences. PMID:9278477

  16. Potent Antibacterial Antisense Peptide–Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa

    PubMed Central

    Ghosal, Anubrata

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections in hospital settings, especially with immune compromised patients, and the increasing prevalence of multidrug resistant strains urges search for new drugs with novel mechanisms of action. In this study we introduce antisense peptide–peptide nucleic acid (PNA) conjugates as antibacterial agents against P. aeruginosa. We have designed and optimized antisense peptide–PNA conjugates targeting the translation initiation region of the ftsZ gene (an essential bacterial gene involved in cell division) or the acpP gene (an essential bacterial gene involved in fatty acid synthesis) of P. aeruginosa (PA01) and characterized these compounds according to their antimicrobial activity and mode of action. Four antisense PNA oligomers conjugated to the H-(R-Ahx-R)4-Ahx-βala or the H-(R-Ahx)6-βala peptide exhibited complete growth inhibition of P. aeruginosa strains PA01, PA14, and LESB58 at 1–2 μM concentrations without any indication of bacterial membrane disruption (even at 20 μM), and resulted in specific reduction of the targeted mRNA levels. One of the four compounds showed clear bactericidal activity while the other significantly reduced bacterial survival. These results open the possibility of development of antisense antibacterials for treatment of Pseudomonas infections. PMID:23030590

  17. Intragenic pausing and anti-sense transcription within the murine c-myc locus.

    PubMed Central

    Nepveu, A; Marcu, K B

    1986-01-01

    We present a detailed analysis of strand-specific transcription in different regions of the murine c-myc locus. In normal and transformed cell lines, RNA polymerase II directed transcription occurs in the sense and anti-sense direction. Three noncontiguous regions show a high level of transcription in the anti-sense orientation: upstream of the first exon, within the first intron and in the 3' part of the gene (intron 2 and exon 3). In a cell line carrying a c-myc amplification (54c12), anti-sense transcription is not uniformly increased throughout the locus and is differentially affected by inhibition of protein synthesis. These results suggest that anti-sense transcription in various parts of the locus is independently regulated. In the sense orientation, transcriptional activity is higher in the first exon than in the rest of the gene indicating that transcription pauses near the 3' end of the first exon. The extent of this intragenic pausing varies among different cell lines and is most severe in cells with a c-myc amplification. Transcription initiation and pausing are both negatively regulated by labile proteins. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3024965

  18. Schizophyllan-folate conjugate as a new non-cytotoxic and cancer-targeted antisense carrier.

    PubMed

    Hasegawa, Teruaki; Fujisawa, Tomohisa; Haraguchi, Shuichi; Numata, Munenori; Karinaga, Ryouji; Kimura, Taro; Okumura, Shiro; Sakurai, Kazuo; Shinkai, Seiji

    2005-01-17

    Schizophyllan having folate-appendages was synthesized from native schizophyllan through NaIO(4)-oxidation and the subsequent reductive amination in aqueous ammonia followed by amido-coupling with folic acid. The resulting folate-appended schizophyllan can form stable complex with poly(dA), show specific affinity toward folate binding protein, and mediate effective antisense activity in cancer cells. PMID:15603948

  19. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum

    PubMed Central

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-01-01

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression. PMID:25691743

  20. An HIV-Encoded Antisense Long Noncoding RNA Epigenetically Regulates Viral Transcription

    PubMed Central

    Saayman, Sheena; Ackley, Amanda; Turner, Anne-Marie W; Famiglietti, Marylinda; Bosque, Alberto; Clemson, Matthew; Planelles, Vicente; Morris, Kevin V

    2014-01-01

    The abundance of long noncoding RNAs (lncRNAs) and their wide range of functional roles in human cells are fast becoming realized. Importantly, lncRNAs have been identified as epigenetic modulators and consequently play a pivotal role in the regulation of gene expression. A human immunodeficiency virus-encoded antisense RNA transcript has recently been reported and we sought to characterize this RNA and determine its potential role in viral transcription regulation. The intrinsic properties of this human immunodeficiency virus-expressed lncRNA were characterized and the data presented here suggest that it functions as an epigenetic brake to modulate viral transcription. Suppression of this long antisense transcript with small single-stranded antisense RNAs resulted in the activation of viral gene expression. This lncRNA was found to localize to the 5′ long-term repeats (LTR) and to usurp components of endogenous cellular pathways that are involved in lncRNA directed epigenetic gene silencing. Collectively, we find that this viral expressed antisense lncRNA is involved in modulating human immunodeficiency virus gene expression and that this regulatory effect is due to an alteration in the epigenetic landscape at the viral promoter. PMID:24576854

  1. Protein-coding cis-natural antisense transcripts have high and broad expression in Arabidopsis.

    PubMed

    Zhan, Shuhua; Lukens, Lewis

    2013-04-01

    Pairs of genes within eukaryotic genomes are often located on opposite DNA strands such that transcription generates cis-natural sense antisense transcripts (cis-NATs). This orientation of genes has been associated with the biogenesis of splice variants and natural antisense small RNAs. Here, in an analysis of currently available data, we report that within Arabidopsis (Arabidopsis thaliana), protein-coding cis-NATs are also characterized by high abundance, high coexpression, and broad expression. Our results suggest that a permissive chromatin environment may have led to the proximity of these genes. Compared with other genes, cis-NAT-encoding genes have enriched low-nucleosome-density regions, high levels of histone H3 lysine-9 acetylation, and low levels of H3 lysine-27 trimethylation. Promoters associated with broadly expressed genes are preferentially found in the 5' regulatory sequences of cis-NAT-encoding genes. Our results further suggest that natural antisense small RNA production from cis-NATs is limited. Small RNAs sequenced from natural antisense small RNA biogenesis mutants including dcl1, dcl2, dcl3, and rdr6 map to cis-NATs as frequently as small RNAs sequenced from wild-type plants. Future work will investigate if the positive transcriptional regulation of overlapping protein-coding genes contributes to the prevalence of these genes within other eukaryotic genomes. PMID:23457227

  2. Antisense precision polymer micelles require less poly(ethylenimine) for efficient gene knockdown

    NASA Astrophysics Data System (ADS)

    Fakhoury, Johans J.; Edwardson, Thomas G.; Conway, Justin W.; Trinh, Tuan; Khan, Farhad; Barłóg, Maciej; Bazzi, Hassan S.; Sleiman, Hanadi F.

    2015-12-01

    Therapeutic nucleic acids are powerful molecules for shutting down protein expression. However, their cellular uptake is poor and requires transport vectors, such as cationic polymers. Of these, poly(ethylenimine) (PEI) has been shown to be an efficient vehicle for nucleic acid transport into cells. However, cytotoxicity has been a major hurdle in the development of PEI-DNA complexes as clinically viable therapeutics. We have synthesized antisense-polymer conjugates, where the polymeric block is completely monodisperse and sequence-controlled. Depending on the polymer sequence, these can self-assemble to produce micelles of very low polydispersity. The introduction of linear poly(ethylenimine) to these micelles leads to aggregation into size-defined PEI-mediated superstructures. Subsequently, both cellular uptake and gene silencing are greatly enhanced over extended periods compared to antisense alone, while at the same time cellular cytotoxicity remains very low. In contrast, gene silencing is not enhanced with antisense polymer conjugates that are not able to self-assemble into micelles. Thus, using antisense precision micelles, we are able to achieve significant transfection and knockdown with minimal cytotoxicity at much lower concentrations of linear PEI then previously reported. Consequently, a conceptual solution to the problem of antisense or siRNA delivery is to self-assemble these molecules into `gene-like' micelles with high local charge and increased stability, thus reducing the amount of transfection agent needed for effective gene silencing.Therapeutic nucleic acids are powerful molecules for shutting down protein expression. However, their cellular uptake is poor and requires transport vectors, such as cationic polymers. Of these, poly(ethylenimine) (PEI) has been shown to be an efficient vehicle for nucleic acid transport into cells. However, cytotoxicity has been a major hurdle in the development of PEI-DNA complexes as clinically viable

  3. Novel Ex Vivo Culture Method for the Study of Dupuytren's Disease: Effects of TGFβ Type 1 Receptor Modulation by Antisense Oligonucleotides

    PubMed Central

    Karkampouna, Sofia; Kruithof, Boudewijn PT; Kloen, Peter; Obdeijn, Miryam C; van der Laan, Annelies MA; Tanke, Hans J; Kemaladewi, Dwi U; Hoogaars, Willem MH; ‘t Hoen, Peter AC; Aartsma-Rus, Annemieke; Clark, Ian M; ten Dijke, Peter; Goumans, Marie-José; Kruithof-de Julio, Marianna

    2014-01-01

    Dupuytren's disease (DD) is a benign fibroproliferative disease of the hand. It is characterized by the excessive production of extracellular matrix (ECM) proteins, which form a strong fibrous tissue between the handpalm and fingers, permanently disrupting the fine movement ability. The major contractile element in DD is the myofibroblast (MFB). This cell has both fibroblast and smooth muscle cell-type characteristics and causes pathological collagen deposition. MFBs generate contractile forces that are transmitted to the surrounding collagen matrix. Μajor profibrotic factors are members of the transforming growth factor-β (TGFβ) pathway which directly regulate the expression levels of several fibrous proteins such as collagen type 1, type 3, and α-smooth muscle actin. Molecular modulation of this signaling pathway could serve as a therapeutic approach. We, therefore, have developed an ex vivo “clinical trial” system to study the properties of intact, patient-derived resection specimens. In these culture conditions, Dupuytren's tissue retains its three-dimensional (3D) structure and viability. As a novel antifibrotic therapeutic approach, we targeted TGFβ type 1 receptor (also termed activin receptor-like kinase 5) expression in cultured Dupuytren's specimens by antisense oligonucleotide-mediated exon skipping. Antisense oligonucleotides targeting activin receptor-like kinase 5 showed specific reduction of ECM and potential for clinical application. PMID:24448195

  4. Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): implications for nutritional transcriptomics and multi-target therapy.

    PubMed

    Noori-Daloii, Mohammad R; Momeny, Majid; Yousefi, Mehdi; Shirazi, Forough Golsaz; Yaseri, Mehdi; Motamed, Nasrin; Kazemialiakbar, Nazanin; Hashemi, Saeed

    2011-12-01

    The aim of the present study is to evaluate the effects of quercetin, a dietary flavonoid, on human prostate adenocarcinoma PC-3 cells. Lactate dehydrogenase (LDH) release, microculture tetrazolium test (MTT assay) and real-time PCR array were employed to evaluate the effects of quercetin on cell cytotoxicity, cell proliferation and expression of various genes in PC-3 cell line. Quercetin inhibited cell proliferation and modulated the expression of genes involved in DNA repair, matrix degradation and tumor invasion, angiogenesis, apoptosis, cell cycle, metabolism and glycolysis. No cytotoxicity of quercetin on PC-3 cells was observed. Taken together, as shown by the issues of the current study, the manifold inhibitory effects of quercetin on PC-3 cells may introduce quercetin as an efficacious anticancer agent in order to be used in the future nutritional transcriptomic investigations and multi-target therapy to overcome the therapeutic impediments against prostate cancer. PMID:20596804

  5. Synthesis of Thiazolo[5,4-f]quinazolin-9(8H)-ones as Multi-Target Directed Ligands of Ser/Thr Kinases.

    PubMed

    Hédou, Damien; Godeau, Julien; Loaëc, Nadège; Meijer, Laurent; Fruit, Corinne; Besson, Thierry

    2016-01-01

    A library of thirty novel thiazolo[5,4-f]quinazolin-9(8H)-one derivatives belonging to four series designated as 12, 13, 14 and 15 was efficiently prepared, helped by microwave-assisted technology when required. The efficient multistep synthesis of methyl 6-amino-2-cyano- benzo[d]thiazole-7-carboxylate (1) has been reinvestigated and performed on a multigram scale. The inhibitory potency of the final products against five kinases involved in Alzheimer's disease was evaluated. This study demonstrates that some molecules of the 12 and 13 series described in this paper are particularly promising for the development of new multi-target inhibitors of kinases. PMID:27144552

  6. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells.

    PubMed Central

    Duncan, R L; Kizer, N; Barry, E L; Friedman, P A; Hruska, K A

    1996-01-01

    By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS. PMID:8700850

  7. Antisense treatment directed against mutated Ki-ras in human colorectal adenocarcinoma

    PubMed Central

    Andreyev, H; Ross, P; Cunningham, D; Clarke, P

    2001-01-01

    BACKGROUND—Kirsten ras (Ki-ras) mutations are common in gastrointestinal cancer and one codon 12 mutation, glycine to valine, is particularly aggressive in colorectal cancer.
AIMS—To investigate if this valine point mutation could be targeted with antisense oligonucleotides and to determine the efficacy of any antisense/mRNA interaction.
METHODS—Twenty nine antisense oligonucleotides were screened against target and control Ki-ras RNA in a cell free system and against target and control cell lines in culture.
RESULTS—The activity and specificity of the oligonucleotides varied. Results for the individual oligonucleotides were consistent in a cell free model and in cell culture using two different uptake promoters. Only one oligonucleotide was specific in its cleavage of target Ki-ras mRNA in the cell free system and appeared specific in cell culture, although changes in Ki-ras mRNA and protein expression following a single treatment could not be detected. Experiments in the cell free system showed that the point mutation is relatively inaccessible to oligonucleotides. Other sites on the Ki-ras RNA molecule, away from the point mutation, can be targeted more effectively.
CONCLUSIONS—Successful targeting of the clinically relevant Ki-ras point mutation with antisense oligonucleotides is difficult because of RNA structure at the mutated site and is inefficient compared with other sites on the Ki-ras mRNA.


Keywords: Ki-ras mutation; antisense treatment; colorectal carcinoma PMID:11156646

  8. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Kizer, N.; Barry, E. L.; Friedman, P. A.; Hruska, K. A.

    1996-01-01

    By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.

  9. "Dilute-and-inject" multi-target screening assay for highly polar doping agents using hydrophilic interaction liquid chromatography high resolution/high accuracy mass spectrometry for sports drug testing.

    PubMed

    Görgens, Christian; Guddat, Sven; Orlovius, Anne-Katrin; Sigmund, Gerd; Thomas, Andreas; Thevis, Mario; Schänzer, Wilhelm

    2015-07-01

    In the field of LC-MS, reversed phase liquid chromatography is the predominant method of choice for the separation of prohibited substances from various classes in sports drug testing. However, highly polar and charged compounds still represent a challenging task in liquid chromatography due to their difficult chromatographic behavior using reversed phase materials. A very promising approach for the separation of hydrophilic compounds is hydrophilic interaction liquid chromatography (HILIC). Despite its great potential and versatile advantages for the separation of highly polar compounds, HILIC is up to now not very common in doping analysis, although most manufacturers offer a variety of HILIC columns in their portfolio. In this study, a novel multi-target approach based on HILIC high resolution/high accuracy mass spectrometry is presented to screen for various polar stimulants, stimulant sulfo-conjugates, glycerol, AICAR, ethyl glucuronide, morphine-3-glucuronide, and myo-inositol trispyrophosphate after direct injection of diluted urine specimens. The usage of an effective online sample cleanup and a zwitterionic HILIC analytical column in combination with a new generation Hybrid Quadrupol-Orbitrap® mass spectrometer enabled the detection of highly polar analytes without any time-consuming hydrolysis or further purification steps, far below the required detection limits. The methodology was fully validated for qualitative and quantitative (AICAR, glycerol) purposes considering the parameters specificity; robustness (rRT < 2.0%); linearity (R > 0.99); intra- and inter-day precision at low, medium, and high concentration levels (CV < 20%); limit of detection (stimulants and stimulant sulfo-conjugates < 10 ng/mL; norfenefrine; octopamine < 30 ng/mL; AICAR < 10 ng/mL; glycerol 100 μg/mL; ETG < 100 ng/mL); accuracy (AICAR 103.8-105.5%, glycerol 85.1-98.3% at three concentration levels) and ion suppression/enhancement effects. PMID

  10. Construction of polyketide overproducing Escherichia coli strains via synthetic antisense RNAs based on in silico fluxome analysis and comparative transcriptome analysis.

    PubMed

    Meng, Hai-Lin; Xiong, Zhi-Qiang; Song, Shu-Jie; Wang, Jianfeng; Wang, Yong

    2016-03-01

    Rapid assessment and optimization of the incompatible metabolic modules remain a challenge. Here, we developed a systematic approach to characterize the module interactions and improve the problematic modules during the 6-deoxyerythronolide B (6dEB) biosynthesis in E. coli. Tremendous differences in the overall trends of flux changes of various metabolic modules were firstly uncovered based on in silico fluxome analysis and comparative transcriptome analysis. Potential targets for improving 6dEB biosynthesis were identified through analyzing these discrepancies. All 25 predicted targets at modules of PP pathway and nucleotide metabolism were firstly tested for improving the 6dEB production in E. coli via synthetic antisense RNAs. Down-regulation of 18 targets genes leads to more than 20% increase in 6dEB yield. Combinatorial repression of targets with greater than 60% increase in 6dEB titer, e.g., anti-guaB/anti-zwf led to a 296.2% increase in 6dEB production (210.4 mg/L in flask) compared to the control (53.1 mg/L). This is the highest yield yet reported for polyketide heterologous biosynthesis in E. coli. This study demonstrates a strategy to enhance the yield of heterologous products in the chassis cell and indicates the effectiveness of antisense RNA for use in metabolic engineering. PMID:26709503

  11. Peptide conjugation of 2'-O-methyl phosphorothioate antisense oligonucleotides enhances cardiac uptake and exon skipping in mdx mice.

    PubMed

    Jirka, Silvana M G; Heemskerk, Hans; Tanganyika-de Winter, Christa L; Muilwijk, Daan; Pang, Kar Him; de Visser, Peter C; Janson, Anneke; Karnaoukh, Tatyana G; Vermue, Rick; 't Hoen, Peter A C; van Deutekom, Judith C T; Aguilera, Begoña; Aartsma-Rus, Annemieke

    2014-02-01

    Antisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy that is currently being tested in various clinical trials. This approach is based on restoring the open reading frame of dystrophin transcripts resulting in shorter but partially functional dystrophin proteins as found in patients with Becker muscular dystrophy. After systemic administration, a large proportion of AONs ends up in the liver and kidneys. Therefore, enhancing AON uptake by skeletal and cardiac muscle would improve the AONs' therapeutic effect. For phosphorodiamidate morpholino oligomer, AONs use nonspecific positively charged cell penetrating peptides to enhance efficacy. However, this is challenging for negatively charged 2'-O-methyl phosphorothioate oligomer. Therefore, we screened a 7-mer phage display peptide library to identify muscle and heart homing peptides in vivo in the mdx mouse model and found a promising candidate peptide capable of binding muscle cells in vitro and in vivo. Upon systemic administration in dystrophic mdx mice, conjugation of a 2'-O-methyl phosphorothioate AON to this peptide indeed improved uptake in skeletal and cardiac muscle, and resulted in higher exon skipping levels with a significant difference in heart and diaphragm. Based on these results, peptide conjugation represents an interesting strategy to enhance the therapeutic effect of exon skipping with 2'-O-methyl phosphorothioate AONs for Duchenne muscular dystrophy. PMID:24320790

  12. Proteomic profiling of antisense-induced exon skipping reveals reversal of pathobiochemical abnormalities in dystrophic mdx diaphragm

    PubMed Central

    Doran, Philip; Wilton, Steve D.; Fletcher, Sue; Ohlendieck, Kay

    2009-01-01

    The disintegration of the dystrophin-glycoprotein complex represents the initial pathobiochemical insult in Duchenne muscular dystrophy. However, secondary changes in signalling, energy metabolism and ion homeostasis are probably the main factors that eventually cause progressive muscle wasting. Thus, for the proper evaluation of novel therapeutic approaches, it is essential to analyse the reversal of both primary and secondary abnormalities in treated muscles. Antisense oligomer-mediated exon skipping promises functional restoration of the primary deficiency in dystrophin. In this study, an established phosphorodiamidate morpholino oligomer coupled to a cell-penetrating peptide was employed for the specific removal of exon 23 in the mutated mouse dystrophin gene transcript. Using DIGE analysis, we could show the reversal of secondary pathobiochemical abnormalities in the dystrophic diaphragm following exon-23 skipping. In analogy to the restoration of dystrophin, β-dystroglycan and neuronal nitric oxide synthase, the muscular dystrophy-associated differential expression of calsequestrin, adenylate kinase, aldolase, mitochondrial creatine kinase and cvHsp was reversed in treated muscle fibres. Hence, the re-establishment of Dp427 coded by the transcript missing exon 23 has counter-acted dystrophic alterations in Ca2+-handling, nucleotide metabolism, bioenergetic pathways and cellular stress response. This clearly establishes the exon-skipping approach as a realistic treatment strategy for diminishing diverse downstream alterations in dystrophinopathy. PMID:19132684

  13. A new antisense tRNA construct for the genetic treatment of human immunodeficiency virus type 1 infection.

    PubMed Central

    Biasolo, M A; Radaelli, A; Del Pup, L; Franchin, E; De Giuli-Morghen, C; Palu, G

    1996-01-01

    Different strategies proposed in the literature to attempt gene therapy of AIDS are based mainly on the intracellular production of RNA and protein therapeutics. This report describes the construction and the anti-human immunodeficiency virus type 1 (HIV-1) activity of a new type of antisense tRNA directed against a nucleotide region in the first coding exon of HIV-1 tat (nucleotides 5924 to 5943; Los Alamos data bank) which is conserved among many HIV-1 clones. The anti-tat antisense sequence was inserted into a tRNA(Pro) backbone by replacement of the anticodon loop, without altering the tRNA canonic tetraloop structure. The antisense tRNA was able to interact effectively with its target in vitro. Jurkat cells that constitutively expressed the anti-tat tRNA following retroviral vector transduction exhibited significant resistance to HIV-1 de novo infection. Resistance seemed to correlate with the level of antisense expression. This is the first time that such a tRNA antisense strategy has been shown to be effective as a genetic treatment of HIV-1 infection in tissue culture. The construct design proposed in this report has some intrinsic advantages: the transcript is driven by a polymerase III promoter, the short length of the RNA minimizes effects of intramolecular base pairing that may impair target recognition, and the antisense RNA has the stability and intracellular fate of a native tRNA molecule. PMID:8642637

  14. Chromatin remodelling and antisense-mediated up-regulation of the developmental switch gene eud-1 control predatory feeding plasticity

    PubMed Central

    Serobyan, Vahan; Xiao, Hua; Namdeo, Suryesh; Rödelsperger, Christian; Sieriebriennikov, Bogdan; Witte, Hanh; Röseler, Waltraud; Sommer, Ralf J.

    2016-01-01

    Phenotypic plasticity has been suggested to act through developmental switches, but little is known about associated molecular mechanisms. In the nematode Pristionchus pacificus, the sulfatase eud-1 was identified as part of a developmental switch controlling mouth-form plasticity governing a predatory versus bacteriovorous mouth-form decision. Here we show that mutations in the conserved histone-acetyltransferase Ppa-lsy-12 and the methyl-binding-protein Ppa-mbd-2 mimic the eud-1 phenotype, resulting in the absence of one mouth-form. Mutations in both genes cause histone modification defects and reduced eud-1 expression. Surprisingly, Ppa-lsy-12 mutants also result in the down-regulation of an antisense-eud-1 RNA. eud-1 and antisense-eud-1 are co-expressed and further experiments suggest that antisense-eud-1 acts through eud-1 itself. Indeed, overexpression of the antisense-eud-1 RNA increases the eud-1-sensitive mouth-form and extends eud-1 expression. In contrast, this effect is absent in eud-1 mutants indicating that antisense-eud-1 positively regulates eud-1. Thus, chromatin remodelling and antisense-mediated up-regulation of eud-1 control feeding plasticity in Pristionchus. PMID:27487725

  15. Chromatin remodelling and antisense-mediated up-regulation of the developmental switch gene eud-1 control predatory feeding plasticity.

    PubMed

    Serobyan, Vahan; Xiao, Hua; Namdeo, Suryesh; Rödelsperger, Christian; Sieriebriennikov, Bogdan; Witte, Hanh; Röseler, Waltraud; Sommer, Ralf J

    2016-01-01

    Phenotypic plasticity has been suggested to act through developmental switches, but little is known about associated molecular mechanisms. In the nematode Pristionchus pacificus, the sulfatase eud-1 was identified as part of a developmental switch controlling mouth-form plasticity governing a predatory versus bacteriovorous mouth-form decision. Here we show that mutations in the conserved histone-acetyltransferase Ppa-lsy-12 and the methyl-binding-protein Ppa-mbd-2 mimic the eud-1 phenotype, resulting in the absence of one mouth-form. Mutations in both genes cause histone modification defects and reduced eud-1 expression. Surprisingly, Ppa-lsy-12 mutants also result in the down-regulation of an antisense-eud-1 RNA. eud-1 and antisense-eud-1 are co-expressed and further experiments suggest that antisense-eud-1 acts through eud-1 itself. Indeed, overexpression of the antisense-eud-1 RNA increases the eud-1-sensitive mouth-form and extends eud-1 expression. In contrast, this effect is absent in eud-1 mutants indicating that antisense-eud-1 positively regulates eud-1. Thus, chromatin remodelling and antisense-mediated up-regulation of eud-1 control feeding plasticity in Pristionchus. PMID:27487725

  16. NOX2 Antisense Attenuates Hypoxia-Induced Oxidative Stress and Apoptosis in Cardiomyocyte

    PubMed Central

    Yu, Bo; Meng, Fanbo; Yang, Yushuang; Liu, Dongna; Shi, Kaiyao

    2016-01-01

    Heart ischemia is a hypoxia related disease. NOX2 and HIF-1α proteins were increased in cardiomyocytes after acute myocardial infarction. However, the relationship of the hypoxia-induced HIF-1α. NOX2-derived oxidative stress and apoptosis in cardiomyocyte remains unclear. In the current study, we use NOX2 antisense strategy to investigate the role of NOX2 in hypoxia-induced oxidative stress and apoptosis in rat cardiomyocytes. Here, we show that transduction of ADV-NOX2-AS induces potent silencing of NOX2 in cardiomyocytes, and resulting in attenuation of hypoxia-induced oxidative stress and apoptosis. This study indicates the potential of antisense-based therapies and validates NOX2 as a potent therapeutic candidate for heart ischemia. PMID:27499697

  17. Comparative hybrid arrest by tandem antisense oligodeoxyribonucleotides or oligodeoxyribonucleoside methylphosphonates in a cell-free system.

    PubMed Central

    Maher, L J; Dolnick, B J

    1988-01-01

    Antisense oligonucleotides containing either anionic diester or neutral methylphosphonate internucleoside linkages were prepared by automated synthesis, and were compared for their ability to arrest translation of human dihydrofolate reductase (DHFR) mRNA in a nuclease treated rabbit reticulocyte lysate. In the case of oligodeoxyribonucleotides, tandem targeting of three 14-mers resulted in synergistic and complete selective inhibition of DHFR synthesis at a total oligomer concentration of 25 microM. Hybrid arrest by three or six tandem oligodeoxyribonucleoside methylphosphonates was dramatically less effective. This difference does not result from preferential recognition of hybrids involving oligodeoxyribonucleotides by endogenous RNaseH activity. A ribonuclease protection assay demonstrated that antisense oligodeoxyribonucleoside methylphosphonates bind selectively to target RNA sequences, but with 275 fold lower affinity than the corresponding oligodeoxyribonucleotides. This low binding affinity results in poor arrest of translation, and may be related to the stereochemistry of the methylphosphonate linkage. Images PMID:2836793

  18. An Xist-activating antisense RNA required for X-chromosome inactivation

    PubMed Central

    Sarkar, Mrinal K.; Gayen, Srimonta; Kumar, Surinder; Maclary, Emily; Buttigieg, Emily; Hinten, Michael; Kumari, Archana; Harris, Clair; Sado, Takashi; Kalantry, Sundeep

    2015-01-01

    The transcriptional imbalance due to the difference in the number of X chromosomes between male and female mammals is remedied through X-chromosome inactivation, the epigenetic transcriptional silencing of one of the two X chromosomes in females. The X-linked Xist long non-coding RNA functions as an X inactivation master regulator; Xist is selectively upregulated from the prospective inactive X chromosome and is required in cis for X inactivation. Here we discover an Xist antisense long non-coding RNA, XistAR (Xist Activating RNA), which is encoded within exon 1 of the mouse Xist gene and is transcribed only from the inactive X chromosome. Selective truncation of XistAR, while sparing the overlapping Xist RNA, leads to a deficiency in Xist RNA expression in cis during the initiation of X inactivation. Thus, the Xist gene carries within its coding sequence an antisense RNA that drives Xist expression. PMID:26477563

  19. Histidylated oligolysines increase the transmembrane passage and the biological activity of antisense oligonucleotides

    PubMed Central

    Pichon, Chantal; Roufaï, Mahajoub Bello; Monsigny, Michel; Midoux, Patrick

    2000-01-01

    We have designed histidylated oligolysines which increase the uptake, the cytosolic delivery and the nuclear accumulation of antisense oligonucleotides (ODN). Flow cytometry analysis showed a 10-fold enhancement of the ODN uptake in the presence of histidylated oligolysines. The intracellular localizations of fluorescein-labeled ODN and of rhodamine-labeled histidylated oligolysines were investigated by confocal microscopy. Histidylated oligolysines favor the cytosolic delivery of ODN from endosomes and increase their nuclear accumulation. In contrast, in their absence fluorescent ODN were not observed inside the nucleus but were distributed overwhelmingly within the vesicles in the cytosol. In addition, histidylated oligolysines yielded a more than 20-fold enhancement of the biological activity of antisense ODN towards the inhibition of transient as well as constitutive gene expression. Prevention of endosome lumen acidification using bafilomycin A1 abolished the effect of histidylated oligolysines, suggesting that protonation of the histidyl residues was involved in the transmembrane passage of ODN. PMID:10606649

  20. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligos

    PubMed Central

    Sztainberg, Yehezkel; Chen, Hong-mei; Swann, John W.; Hao, Shuang; Tang, Bin; Wu, Zhenyu; Tang, Jianrong; Wan, Ying-Wooi; Liu, Zhandong; Rigo, Frank; Zoghbi, Huda Y.

    2015-01-01

    Copy number variations have been frequently associated with developmental delay, intellectual disability, and autism spectrum disorders1. MECP2 duplication syndrome is one of the most common genomic rearrangements in males2 and is characterized by autism, intellectual disability, motor dysfunction, anxiety, epilepsy, recurrent respiratory tract infections, and early death3–5. The broad range of deficits caused by methyl-CpG-binding protein 2 (MeCP2) overexpression poses a daunting challenge to traditional biochemical pathway-based therapeutic approaches. Accordingly, we sought strategies that directly target MeCP2 and are amenable to translation into clinical therapy. The first question, however, was whether the neurological dysfunction is reversible after symptoms set in. Reversal of phenotypes in adult symptomatic mice has been demonstrated in some models of monogenic loss-of-function neurological disorders6–8, including loss of MeCP2 in Rett syndrome9, indicating that, at least in some cases, the neuroanatomy may remain sufficiently intact so that correction of the molecular dysfunction underlying these disorders can restore healthy physiology. Given the absence of neurodegeneration in MECP2 duplication syndrome, we hypothesized that restoration of normal MeCP2 levels in MECP2 duplication adult mice would rescue their phenotype. Therefore, we first generated and characterized a conditional Mecp2-overexpressing mouse model and showed that correction of MeCP2 levels largely reversed the behavioral, molecular, and electrophysiological deficits. Next, we sought a translational strategy to reduce MeCP2 and turned to antisense oligonucleotides (ASOs). ASOs are small modified nucleic acids that can selectively hybridize with mRNA transcribed from a target gene and silence it10,11, and have been successfully used to correct deficits in different mouse models12–18. We found that ASO treatment induced a broad phenotypic rescue in adult symptomatic transgenic MECP2

  1. Mining SAGE data allows large-scale, sensitive screening of antisense transcript expression.

    PubMed

    Quéré, Ronan; Manchon, Laurent; Lejeune, Mireille; Clément, Oliver; Pierrat, Fabien; Bonafoux, Béatrice; Commes, Thérèse; Piquemal, David; Marti, Jacques

    2004-01-01

    As a growing number of complementary transcripts, susceptible to exert various regulatory functions, are being found in eukaryotes, high throughput analytical methods are needed to investigate their expression in multiple biological samples. Serial Analysis of Gene Expression (SAGE), based on the enumeration of directionally reliable short cDNA sequences (tags), is capable of revealing antisense transcripts. We initially detected them by observing tags that mapped on to the reverse complement of known mRNAs. The presence of such tags in individual SAGE libraries suggested that SAGE datasets contain latent information on antisense transcripts. We raised a collection of virtual tags for mining these data. Tag pairs were assembled by searching for complementarities between 24-nt long sequences centered on the potential SAGE-anchoring sites of well-annotated human expressed sequences. An analysis of their presence in a large collection of published SAGE libraries revealed transcripts expressed at high levels from both strands of two adjacent, oppositely oriented, transcription units. In other cases, the respective transcripts of such cis-oriented genes displayed a mutually exclusive expression pattern or were co-expressed in a small number of libraries. Other tag pairs revealed overlapping transcripts of trans-encoded unique genes. Finally, we isolated a group of tags shared by multiple transcripts. Most of them mapped on to retroelements, essentially represented in humans by Alu sequences inserted in opposite orientations in the 3'UTR of otherwise different mRNAs. Registering these tags in separate files makes possible computational searches focused on unique sense-antisense pairs. The method developed in the present work shows that SAGE datasets constitute a major resource of rapidly investigating with high sensitivity the expression of antisense transcripts, so that a single tag may be detected in one library when screening a large number of biological samples. PMID

  2. Transferrin Receptor-Targeted Lipid Nanoparticles for Delivery of an Antisense Oligodeoxyribonucleotide against Bcl-2

    PubMed Central

    Yang, Xiaojuan; Koh, Chee Guan; Liu, Shujun; Pan, Xiaogang; Santhanam, Ramasamy; Yu, Bo; Peng, Yong; Pang, Jiuxia; Golan, Sharon; Talmon, Yeshayahu; Jin, Yan; Muthusamy, Natarajan; Byrd, John C.; Chan, Kenneth K.; Lee, L. James; Marcucci, Guido; Lee, Robert J.

    2013-01-01

    Antisense oligonucleotide G3139-mediated down-regulation of Bcl-2 is a potential strategy for overcoming chemoresistance in leukemia. However, the limited efficacy shown in recent clinical trials calls attention to the need for further development of novel and more efficient delivery systems. In order to address this issue, transferrin receptor (TfR)-targeted, protamine-containing lipid nanoparticles (Tf-LNs) were synthesized as delivery vehicles for G3139. The LNs were produced by an ethanol dilution method and lipid-conjugated Tf ligand was then incorporated by a post-insertion method. The resulting Tf-LNs had a mean particle diameter of ~ 90 nm and G3139 loading efficiency of 90.4%. Antisense delivery efficiency of Tf-LNs was evaluated in K562, MV4-11 and Raji leukemia cell lines. The results showed that Tf-LNs were more effective than non-targeted LNs and free G3139 (p <0.05) in decreasing Bcl-2 expression (by up to 62% at the mRNA level in K562 cells) and in inducing caspase-dependent apoptosis. In addition, Bcl-2 down-regulation and apoptosis induced by Tf-LN G3139 were shown to be blocked by excess free Tf and thus were TfR-dependent. Cell lines with higher TfR expression also showed greater Bcl-2 down-regulation. Furthermore, upregulation of TfR expression in leukemia cells by iron chelator deferoxamine resulted in a further increase in antisense effect (up to 79% Bcl-2 reduction in K562 at the mRNA level) and in caspase-dependent apoptosis (by ~ 3-fold) by Tf-LN. Tf-LN mediated delivery combined with TfR up-regulation by deferoxamine appears to be a potentially promising strategy for enhancing the delivery efficiency and therapeutic efficacy of antisense oligonucleotides. PMID:19183107

  3. Optimal antisense target reducing INS intron 1 retention is adjacent to a parallel G quadruplex

    PubMed Central

    Kralovicova, Jana; Lages, Ana; Patel, Alpa; Dhir, Ashish; Buratti, Emanuele; Searle, Mark; Vorechovsky, Igor

    2014-01-01

    Splice-switching oligonucleotides (SSOs) have been widely used to inhibit exon usage but antisense strategies that promote removal of entire introns to increase splicing-mediated gene expression have not been developed. Here we show reduction of INS intron 1 retention by SSOs that bind transcripts derived from a human haplotype expressing low levels of proinsulin. This haplotype is tagged by a polypyrimidine tract variant rs689 that decreases the efficiency of intron 1 splicing and increases the relative abundance of mRNAs with extended 5' untranslated region (5' UTR), which curtails translation. Co-expression of haplotype-specific reporter constructs with SSOs bound to splicing regulatory motifs and decoy splice sites in primary transcripts revealed a motif that significantly reduced intron 1-containing mRNAs. Using an antisense microwalk at a single nucleotide resolution, the optimal target was mapped to a splicing silencer containing two pseudoacceptor sites sandwiched between predicted RNA guanine (G) quadruplex structures. Circular dichroism spectroscopy and nuclear magnetic resonance of synthetic G-rich oligoribonucleotide tracts derived from this region showed formation of a stable parallel 2-quartet G-quadruplex on the 3' side of the antisense retention target and an equilibrium between quadruplexes and stable hairpin-loop structures bound by optimal SSOs. This region interacts with heterogeneous nuclear ribonucleoproteins F and H that may interfere with conformational transitions involving the antisense target. The SSO-assisted promotion of weak intron removal from the 5' UTR through competing noncanonical and canonical RNA structures may facilitate development of novel strategies to enhance gene expression. PMID:24944197

  4. Ultrasound-targeted antisense oligonucleotide attenuates ischemia/reperfusion-induced myocardial tumor necrosis factor-alpha.

    PubMed

    Erikson, John M; Freeman, Gregory L; Chandrasekar, Bysani

    2003-01-01

    Ultrasound contrast agents are now emerging as effective vehicles for delivering therapeutic agents to target tissues. In the present study, we used ultrasound-targeted, contrast-bound antisense oligonucleotides to inhibit the expression of tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine with negative inotropic effects. We compared the efficacy of left ventricular vs. intravenous administration and determined the optimal time for delivery. WKY rats were treated with perfluorocarbon-exposed sonicated dextrose albumin (PESDA) microspheres incubated with 100 microg of antisense oligonucleotide directed against TNF-alpha. Contrast was infused into either the superior vena cava or the left ventricular cavity along with simultaneous application of ultrasound. Twenty-four hours later, the animals underwent 15 min of ischemia and 2 h reperfusion. Control animals underwent sham operation only, ischemia/reperfusion only, or received PESDA only. A second group received treatment just prior to, or immediately after the onset of ischemia. At the end of the experimental period, hearts were removed and analyzed for TNF-alpha by northern and western blotting. While no TNF-alpha expression was detected in sham-operated animals, robust expression of TNF-alpha mRNA and protein was seen in controls treated with ultrasound and PESDA alone. In contrast, intravenous or left ventricular administration of antisense oligonucleotides significantly inhibited ischemia/reperfusion-induced TNF-alpha expression. Direct delivery into the left ventricular cavity was more effective than intravenous administration, and delivery just prior to ischemia was most effective in attenuating TNF-alpha expression. Furthermore, attenuation of TNF-alpha expression also significantly inhibited other post-ischemic inflammatory mediators including IL-1beta and intercellular adhesion molecule-1 (ICAM-1). Thus, ultrasound-targeted antisense oligonucleotides can effectively attenuate post

  5. Effect of hypoxia inducible factor-1 antisense oligonucleotide on liver cancer

    PubMed Central

    Li, Hongzhang; Chen, Jiaoe; Zen, Wanli; Xu, Xuehua; Xu, Yanjun; Chen, Qiang; Yang, Tiangan

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most frequent primary malignancies of the liver and is resistant to anticancer drugs. Hypoxia is a master cause of tumor resistance to chemotherapy. Hypoxia-inducible factor-one alpha (HIF-1α) plays a key role in the adaptive responses to hypoxic environments. HIF-1α is constitutively up-regulated in several tumor types might thus be implicated in tumor therapy resistance. We hypothesized that disruption of HIF-1α pathway could reverse the hypoxia-induced resistance to chemotherapy. In this report, we prepared DOTAP (a liposome formulation of a mono-cationic lipid N-[1-(2,3-Dioleoyloxy)]- N,N,N-trimethylammonium propane methylsulfate in sterile water) cationic liposomes containing an antisense oligonucleotide (AsODN) against HIF-1α. Gene transfer of antisense HIF-1α was effective in suppressing tumor growth, angiogenesis, and cell proliferation, and inducing cell apoptosis. Our results suggested that antisense HIF-1α therapy could be a therapeutic strategy for treating HCC. PMID:26550178

  6. Expression of TGMV antisense RNA in transgenic tobacco inhibits replication of BCTV but not ACMV geminiviruses.

    PubMed

    Bejarano, E R; Lichtenstein, C P

    1994-01-01

    Transgenic tobacco plants expressing an antisense RNA targeted against tomato golden mosaic virus (TGMV) show reduced/no symptoms and viral DNA accumulation upon TGMV infection [5]. The targeted region includes the AL1 gene, encoding an essential viral replication protein. This DNA sequence is conserved in various other geminiviruses, suggesting they too might show inhibition of replication in these plants. We infected leaf material with African cassava mosaic virus (ACMV) and beet curly top virus (BTCV) and saw a 4-fold reduction of BCTV, but not ACMV, DNA accumulation, compared to controls. The equivalent regions of BCTV and ACMV show similar overall homology to the TGMV target (63% and 64% respectively), but within this, BCTV displays a 280 nucleotide region of high homology (82%). In contrast, for ACMV, the homology is more dispersed. This indicates that a critical stretch of good complementarity is needed to block expression of the target mRNA, that is effective even within along antisense transcript. These studies indicate the potential for developing a multifunctional antisense cassette. PMID:8111023

  7. Antisense phosphorothioate oligonucleotides: selective killing of the intracellular parasite Leishmania amazonensis.

    PubMed Central

    Ramazeilles, C; Mishra, R K; Moreau, S; Pascolo, E; Toulmé, J J

    1994-01-01

    We targeted the mini-exon sequence, present at the 5' end of every mRNA of the protozoan parasite Leishmania amazonensis, by phosphorothioate oligonucleotides. A complementary 16-mer (16PS) was able to kill amastigotes--the intracellular stage of the parasite--in murine macrophages in culture. After 24 hr of incubation with 10 microM 16PS, about 30% infected macrophages were cured. The oligomer 16PS acted through antisense hybridization in a sequence-dependent way; no effect on parasites was observed with noncomplementary phosphorothioate oligonucleotides. The antisense oligonucleotide 16PS was a selective killer of the protozoans without any detrimental effect to the host macrophage. Using 16PS linked to a palmitate chain, which enabled it to complex with low density lipoproteins, improved the leishmanicidal efficiency on intracellular amastigotes, probably due to increased endocytosis. Phosphorothioate oligonucleotides complementary to the intron part of the mini-exon pre-RNA were also effective, suggesting that antisense oligomers could prevent trans-splicing in these parasites. Images PMID:8058724

  8. Poly(propylacrylic acid) enhances cationic lipid mediated delivery of antisense oligonucleotides

    PubMed Central

    Lee, Li Kim; Williams, Charity L.; Devore, David; Roth, Charles M.

    2008-01-01

    The use of antisense oligodeoxynucleotides (ODNs) to inhibit the expression of specific mRNA targets represents a powerful technology for control of gene expression. Cationic lipids and polymers are frequently used to improve the delivery of ODNs to cells, but the resulting complexes often aggregate, bind to serum components, and are trafficked poorly within cells. We show that the addition of a synthetic, pH-sensitive, membrane-disrupting polyanion, poly(propylacrylic acid) (PPAA), improves the in vitro efficiency of the cationic lipid, DOTAP, with regard to oligonucleotide delivery and antisense activity. In characterization studies, ODN complexation with DOTAP/ODN was maintained even when substantial amounts of PPAA were added. The formulation also exhibited partial protection of phosphodiester oligonucleotides against enzymatic digestion. In Chinese hamster ovary (CHO) cells, incorporation of PPAA in DOTAP/ODN complexes improved two- to threefold the cellular uptake of fluorescently tagged oligonucleotides. DOTAP/ODN complexes containing PPAA also maintained high levels of uptake into cells upon exposure to serum. Addition of PPAA to DOTAP/ODN complexes enhanced the antisense activity (using GFP as the target) over a range of PPAA concentrations in both serum-free, and to a lesser extent, serum-containing media. Thus, PPAA is a useful adjunct that improves the lipid-mediated delivery of oligonucleotides. PMID:16677032

  9. A GmAOX2b antisense gene compromises vegetative growth and seed production in soybean.

    PubMed

    Chai, Tsun-Thai; Simmonds, Daina; Day, David A; Colmer, Timothy D; Finnegan, Patrick M

    2012-07-01

    The alternative oxidase mediates the cyanide-resistant respiratory pathway in plant mitochondria. In non-thermogenic plants, the role of alternative oxidase in plant growth and development is not well understood. Soybean (Glycine max) lines carrying a GmAOX2b antisense gene had compromised vegetative growth and reproductive performance under typical glasshouse growth conditions. The reduction in vegetative growth was demonstrated by reduction in shoot height, the number of leaves per plant and the green leaf area. Antisense plants also had decreased pod formation and seed to pod ratios, which together led to a reduction in the number and total mass of seed produced. The negative effects of the antisense gene on pod set, seed set, ovule availability and total seed mass were primarily confined to the branches, rather than the main stem. The preferential effect of alternative oxidase suppression in the branches is discussed in relation to the reproductive potential of soybean under stress. Taken together, these results demonstrate that alternative oxidase provides the benefit of sustaining plant vegetative growth and reproductive capacity in soybean. PMID:22307678

  10. β-1,3-Glucan/antisense oligonucleotide complex stabilized with phosphorothioation and its gene suppression.

    PubMed

    Mochizuki, Shinichi; Sakurai, Kazuo; Sakaurai, Kazuo

    2010-12-01

    Most of antisense oligonucleotides (ASOs) subjected to current clinical evaluation belong to phosphorothioate (PS) analogues. Although PS has great advantage in DNase resistance, it can induce nonspecific side-effects. Thus it is important to investigate the influence of ASOs with different PS contents. In this paper, we prepared the complex consisting of schizophyllan (SPG) and ASOs attached a dA₄₀ tail with different PS contents to the 3' end of the ODN, which is introduced to stabilize the complex with SPG. With increase of PS content in the dA₄₀, its complexation ability with SPG was improved and the complex showed high thermal stability. The thermal stability of the fully phosphorothioated ASOs was obtained by only replacing 20% of the oxygen of the phosphodiester moiety. The ability of gene suppression between PS and phosphodiester for antisense sequences was almost the same, indicating that the antisense sequences need not to be PS backbone. These data may provide new insight for the interaction between β-1,3-glucan and DNA and help to deliver therapeutic ODNs. PMID:20673953

  11. Nucleocytoplasmic shuttling: a novel in vivo property of antisense phosphorothioate oligodeoxynucleotides

    PubMed Central

    Lorenz, Peter; Misteli, Tom; Baker, Brenda F.; Bennett, C. Frank; Spector, David L.

    2000-01-01

    Phosphorothioate oligodeoxynucleotides (P=S ODNs) are frequently used as antisense agents to specifically interfere with the expression of cellular target genes. However, the cell biological properties of P=S ODNs are poorly understood. Here we show that P=S ODNs were able to continuously shuttle between the nucleus and the cytoplasm and that shuttling P=S ODNs retained their ability to act as antisense agents. The shuttling process shares characteristics with active transport since it was inhibited by chilling and ATP depletion in vivo. Transport was carrier-mediated as it was saturable, and nuclear pore complex-mediated as it was sensitive to treatment with wheatgerm agglutinin. Oligonucleotides without a P=S backbone chemistry were only weakly restricted in their migration by chilling, ATP depletion and wheatgerm agglutinin and thus moved by diffusion. P=S ODN shuttling was only moderately affected by disruption of the Ran/RCC1 system. We propose that P=S ODNs shuttle through their binding to yet unidentified cellular molecules that undergo nucleocytoplasmic transport via a pathway that is not as strongly dependent on the Ran/RCC1 system as nuclear export signal-mediated protein export, U-snRNA, tRNA and mRNA export. The shuttling property of P=S ODNs must be taken into account when considering the mode and site of action of these antisense agents. PMID:10606658

  12. Inhibition of the synthesis of a cytochrome-c-oxidase subunit isoform by antisense RNA.

    PubMed

    Sandonà, D; Bisson, R

    1994-02-01

    To investigate the role of subunit VIIe, an oxygen-regulated subunit isoform of Dictyostelium discoideum cytochrome-c oxidase, the full-length cDNA was inserted into an expression vector under the control of an actin promoter in the sense and antisense orientation. The DNA constructs were used for stable transformation of the slime mold amoebae. In most of the 28 antisense clones tested, the concentration of cytochrome-c oxidase was lowered compared to the wild type, while no significant changes were found in the sense mutants. Antisense RNA was abundantly expressed, leading to a drastic reduction of the steady-state level of the endogenous subunit VIIe mRNA, which was decreased up to 20-30% the level observed in parent cells. In these transformants, the amount of the target polypeptide and cytochrome c oxidase was 40-50% and 60-70% of control, respectively. A similar decrease was found in the level of the remaining nuclear and mitochondrial subunits. Unexpectedly, these changes affected neither basal nor uncoupled cell respiration suggesting an increase of the enzyme specific activity. Hypoxia completely relieved the cytochrome-c-oxidase deficit. These results indicate that subunit VII is needed for an efficient assembly of the protein complex and provide evidence for its involvement in the modulation of the enzyme activity. PMID:8112318

  13. A computational analysis of antisense off-targets in prokaryotic organisms.

    PubMed

    Worley-Morse, Thomas O; Gunsch, Claudia K

    2015-02-01

    The adoption of antisense gene silencing as a novel disinfectant for prokaryotic organisms is hindered by poor silencing efficiencies. Few studies have considered the effects of off-targets on silencing efficiencies, especially in prokaryotic organisms. In this computational study, a novel algorithm was developed that determined and sorted the number of off-targets as a function of alignment length in Escherichia coli K-12 MG1655 and Mycobacterium tuberculosis H37Rv. The mean number of off-targets per a single location was calculated to be 14.1 ± 13.3 and 36.1 ± 58.5 for the genomes of E. coli K-12 MG1655 and M. tuberculosis H37Rv, respectively. Furthermore, when the entire transcriptome was analyzed, it was found that there was no general gene location that could be targeted to minimize or maximize the number of off-targets. In an effort to determine the effects of off-targets on silencing efficiencies, previously published studies were used. Analyses with acpP, ino1, and marORAB revealed a statistically significant relationship between the number of short alignment length off-targets hybrids and the efficacy of the antisense gene silencing, suggesting that the minimization of off-targets may be beneficial for antisense gene silencing in prokaryotic organisms. PMID:25486012

  14. Antisense oligonucleotide therapy for the treatment of C9ORF72 ALS/FTD diseases.

    PubMed

    Riboldi, Giulietta; Zanetta, Chiara; Ranieri, Michela; Nizzardo, Monica; Simone, Chiara; Magri, Francesca; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania

    2014-12-01

    Motor neuron disorders, and particularly amyotrophic lateral sclerosis (ALS), are fatal diseases that are due to the loss of motor neurons in the brain and spinal cord, with progressive paralysis and premature death. It has been recently shown that the most frequent genetic cause of ALS, frontotemporal dementia (FTD), and other neurological diseases is the expansion of a hexanucleotide repeat (GGGGCC) in the non-coding region of the C9ORF72 gene. The pathogenic mechanisms that produce cell death in the presence of this expansion are still unclear. One of the most likely hypotheses seems to be the gain-of-function that is achieved through the production of toxic RNA (able to sequester RNA-binding protein) and/or toxic proteins. In recent works, different authors have reported that antisense oligonucleotides complementary to the C9ORF72 RNA transcript sequence were able to significantly reduce RNA foci generated by the expanded RNA, in affected cells. Here, we summarize the recent findings that support the idea that the buildup of "toxic" RNA containing the GGGGCC repeat contributes to the death of motor neurons in ALS and also suggest that the use of antisense oligonucleotides targeting this transcript is a promising strategy for treating ALS/frontotemporal lobe dementia (FTLD) patients with the C9ORF72 repeat expansion. These data are particularly important, given the state of the art antisense technology, and they allow researchers to believe that a clinical application of these discoveries will be possible soon. PMID:24809691

  15. Modulation of lipoprotein metabolism by antisense technology: preclinical drug discovery methodology.

    PubMed

    Crooke, Rosanne M; Graham, Mark J

    2013-01-01

    Antisense oligonucleotides (ASOs) are a new class of specific therapeutic agents that alter the intermediary metabolism of mRNA, resulting in the suppression of disease-associated gene products. ASOs exert their pharmacological effects after hybridizing, via Watson-Crick base pairing, to a specific target RNA. If appropriately designed, this event results in the recruitment of RNase H, the degradation of targeted mRNA or pre-mRNA, and subsequent inhibition of the synthesis of a specific protein. A key advantage of the technology is the ability to selectively inhibit targets that cannot be modulated by traditional therapeutics such as structural proteins, transcription factors, and, of topical interest, lipoproteins. In this chapter, we will first provide an overview of antisense technology, then more specifically describe the status of lipoprotein-related genes that have been studied using the antisense platform, and finally, outline the general methodology required to design and evaluate the in vitro and in vivo efficacy of those drugs. PMID:23912993

  16. Reduction of EGF receptor levels in human tumor cells transfected with an antisense RNA expression vector

    SciTech Connect

    Yamada, Hirotomo; Koizumi, Shinji; Kimura, Masami ); Shimizu, Nobuyoshi )

    1989-09-01

    An expression vector was constructed from part of pSV2neo with the 3{prime}-ClaI fragment of the epidermal growth factor (EGF) receptor cDNA inserted in an inverted orientation downstream from the human metallothionein (MT) IIa promoter. The human squamous carcinoma cell line NA, which overproduces EGF receptor, was transfected with this vector and selected for resistance to the neomycin derivative G418. One of the stable transfectants had a 90% reduction cell-surface EGF receptor in response to ZnSO{sub 4}. The nascent EGF receptor peptide was also decreased with concurrent induction of MT mRNA. These data suggest that the antisense transcript regulated by the MT promoter inhibits the expression of the endogenous EGF receptor genes. Although no transcripts from the antisense gene were detected, the results indicate that transfection with the antisense vector provides a technique by which to modulate the number of EGF receptors on the cell surface of squamous cell carcinomas.

  17. Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5

    PubMed Central

    Bahal, Raman; McNeer, Nicole Ali; Ly, Danith H.; Saltzman, W. Mark; Glazer, Peter M.

    2013-01-01

    The development of a new class of peptide nucleic acids (PNAs), i.e., gamma PNAs (γPNAs), creates the need for a general and effective method for its delivery into cells for regulating gene expression in mammalian cells. Here we report the antisense activity of a recently developed hydrophilic and biocompatible diethylene glycol (miniPEG)-based gamma peptide nucleic acid called MPγPNAs via its delivery by poly(lactide-co-glycolide) (PLGA)-based nanoparticle system. We show that MPγPNA oligomers designed to bind to the selective region of Chemokine Receptor 5 (CCR5) transcript, induce potent and sequence-specific antisense effects as compared with regular PNA oligomers. In addition, PLGA nanoparticle delivery of MPγPNAs is not toxic to the cells. The findings reported in this study provide a combination of γPNA technology and PLGA-based nanoparticle delivery method for regulating gene expression in live cells via the antisense mechanism. PMID:23954968

  18. The use of nano-sized acicular material, sliding friction, and antisense DNA oligonucleotides to silence bacterial genes

    PubMed Central

    2014-01-01

    Viable bacterial cells impaled with a single particle of a nano-sized acicular material formed when a mixture containing the cells and the material was exposed to a sliding friction field between polystyrene and agar gel; hereafter, we refer to these impaled cells as penetrons. We have used nano-sized acicular material to establish a novel method for bacterial transformation. Here, we generated penetrons that carried antisense DNA adsorbed on nano-sized acicular material (α-sepiolite) by providing sliding friction onto the surface of agar gel; we then investigated whether penetron formation was applicable to gene silencing techniques. Antisense DNA was artificially synthesized as 15 or 90mer DNA oligonucleotides based on the sequences around the translation start codon of target mRNAs. Mixtures of bacterial cells with antisense DNA adsorbed on α-sepiolite were stimulated by sliding friction on the surface of agar gel for 60 s. Upon formation of Escherichia coli penetrons, β-lactamase and β-galactosidase expression was evaluated by counting the numbers of colonies formed on LB agar containing ampicillin and by measuring β-galactosidase activity respectively. The numbers of ampicillin resistant colonies and the β-galactosidase activity derived from penetrons bearing antisense DNA (90mer) was repressed to 15% and 25%, respectively, of that of control penetrons which lacked antisense DNA. Biphenyl metabolite, ring cleavage yellow compound produced by Pseudomonas pseudoalcaligenes penetron treated with antisense oligonucleotide DNA targeted to bphD increased higher than that lacking antisense DNA. This result indicated that expression of bphD in P. pseudoalcaligenes penetrons was repressed by antisense DNA that targeted bphD mRNA. Sporulation rates of Bacillus subtilis penetrons treated with antisense DNA (15mer) targeted to spo0A decreased to 24.4% relative to penetrons lacking antisense DNA. This novel method of gene silencing has substantial promise for

  19. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Peng, Xianzhi; Jin, Jiabin; Wang, Chunwei; Ou, Weihui; Tang, Caiming

    2015-03-01

    A sensitive and reliable method was developed for multi-target determination of 13 most widely used organic ultraviolet (UV) absorbents (including UV filters and UV stabilizers) in aquatic organism tissues. The organic UV absorbents were extracted using ultrasonic-assisted extraction, purified via gel permeation chromatography coupled with silica gel column chromatography, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry. Recoveries of the UV absorbents from organism tissues mostly ranged from 70% to 120% from fish filet with satisfactory reproducibility. Method quantification limits were 0.003-1.0ngg(-1) dry weight (dw) except for 2-ethylhexyl 4-methoxycinnamate. This method has been applied to analysis of the UV absorbents in wild and farmed aquatic organisms collected from the Pearl River Estuary, South China. 2-Hydroxy-4-methoxybenzophenone and UV-P were frequently detected in both wild and farmed marine organisms at low ngg(-1)dw. 3-(4-Methylbenzylidene)camphor and most of the benzotriazole UV stabilizers were also frequently detected in maricultured fish. Octocrylene and 2-ethylhexyl 4-methoxycinnamate were not detected in any sample. This work lays basis for in-depth study about bioaccumulation and biomagnification of the UV absorbents in marine environment. PMID:25637008

  20. Network pharmacology-based prediction of the multi-target capabilities of the compounds in Taohong Siwu decoction, and their application in osteoarthritis

    PubMed Central

    ZHENG, CHUN-SONG; XU, XIAO-JIE; YE, HONG-ZHI; WU, GUANG-WEN; LI, XI-HAI; XU, HUI-FENG; LIU, XIAN-XIANG

    2013-01-01

    Taohong Siwu decoction (THSWD), a formulation prescribed in traditional Chinese medicine (TCM), has been widely used in the treatment of osteoarthritis (OA). TCM has the potential to prevent diseases, such as OA, in an integrative and holistic manner. However, the system-level characterization of the drug-target interactions of THSWD has not been elucidated. In the present study, we constructed a novel modeling system, by integrating chemical space, virtual screening and network pharmacology, to investigate the molecular mechanism of action of THSWD. The chemical distribution of the ligand database and the potential compound prediction demonstrated that THSWD, as a natural combinatorial chemical library, comprises abundant drug-like and lead-like compounds that may act as potential inhibitors for a number of important target proteins associated with OA. Moreover, the results of the ‘compound-target network’ analysis demonstrated that 19 compounds within THSWD were correlated with more than one target, whilst the maximum degree of correlation for the compounds was seven. Furthermore, the ‘target-disease network’ indicated that THSWD may potentially be effective against 69 diseases. These results may aid in the understanding of the use of THSWD as a multi-target therapy in OA. Moreover, they may be useful in establishing other pharmacological effects that may be brought about by THSWD. The in silico method used in this study has the potential to advance the understanding of the molecular mechanisms of TCM. PMID:23935733

  1. Design, synthesis and biological evaluation of novel donepezil-coumarin hybrids as multi-target agents for the treatment of Alzheimer's disease.

    PubMed

    Xie, Sai-Sai; Lan, Jin-Shuai; Wang, Xiaobing; Wang, Zhi-Min; Jiang, Neng; Li, Fan; Wu, Jia-Jia; Wang, Jin; Kong, Ling-Yi

    2016-04-01

    Combining N-benzylpiperidine moiety of donepezil and coumarin into in a single molecule, novel hybrids with ChE and MAO-B inhibitory activity were designed and synthesized. The biological screening results indicated that most of compounds displayed potent inhibitory activity for AChE and BuChE, and clearly selective inhibition to MAO-B. Of these compounds, 5m was the most potent inhibitor for eeAChE and eqBuChE (0.87μM and 0.93μM, respectively), and it was also a good and balanced inhibitor to hChEs and hMAO-B (1.37μM for hAChE; 1.98μM for hBuChE; 2.62μM for hMAO-B). Molecular modeling and kinetic studies revealed that 5m was a mixed-type inhibitor, which bond simultaneously to CAS, PAS and mid-gorge site of AChE, and it was also a competitive inhibitor, which occupied the active site of MAO-B. In addition, 5m showed good ability to cross the BBB and had no toxicity on SH-SY5Y neuroblastoma cells. Collectively, all these results suggested that 5m might be a promising multi-target lead candidate worthy of further pursuit. PMID:26917219

  2. Multi-targeted antifolates aimed at avoiding drug resistance form covalent closed inhibitory complexes with human and Escherichia coli thymidylate synthases.

    PubMed

    Sayre, P H; Finer-Moore, J S; Fritz, T A; Biermann, D; Gates, S B; MacKellar, W C; Patel, V F; Stroud, R M

    2001-11-01

    Crystal structures of four pyrrolo(2,3-d)pyrimidine-based antifolate compounds, developed as inhibitors of thymidylate synthase (TS) in a strategy to circumvent drug-resistance, have been determined in complexes with their in vivo target, human thymidylate synthase, and with the structurally best-characterized Escherichia coli enzyme, to resolutions of 2.2-3.0 A. The 2.9 A crystal structure of a complex of human TS with one of the inhibitors, the multi-targeted antifolate LY231514, demonstrates that this compound induces a "closed" enzyme conformation and leads to formation of a covalent bond between enzyme and substrate. This structure is one of the first liganded human TS structures, and its solution was aided by mutation to facilitate crystallization. Structures of three other pyrrolo(2,3-d)pyrimidine-based antifolates in complex with Escherichia coli TS confirm the orientation of this class of inhibitors in the active site. Specific interactions between the polyglutamyl moiety and a positively charged groove on the enzyme surface explain the marked increase in affinity of the pyrrolo(2,3-d)pyrimidine inhibitors once they are polyglutamylated, as mediated in vivo by the cellular enzyme folyl polyglutamate synthetase. PMID:11697906

  3. Self-assembled phenylalanine-α,β-dehydrophenylalanine nanotubes for sustained intravitreal delivery of a multi-targeted tyrosine kinase inhibitor.

    PubMed

    Panda, Jiban J; Yandrapu, Sarath; Kadam, Rajendra S; Chauhan, Virander S; Kompella, Uday B

    2013-12-28

    Current standard of care for sustained back of the eye drug delivery is surgical placement or injection of large, slow release implants using a relatively large 22 gauge needle. We designed novel dipeptide (phenylalanine-α,β-dehydrophenylalanine; Phe-∆Phe) based nanotubes with a diameter of ~15-30 nm and a length of ~1500 nm that could be injected with a 33 gauge needle for sustained intravitreal delivery of pazopanib, a multi-targeted tyrosine kinase inhibitor. The drug could be loaded during nanotube assembly or post-loaded after nanotube formation, with the former being more efficient at 25% w/w pazopanib loading and ~55% loading efficiency. Plain and peptide loaded nanotube were non-cytotoxic to retinal pigment epithelial cells even at a concentration of 200 μg/ml. Following intravitreal injection of fluorescently labeled nanotubes using a 33 gauge needle in a rat model, the nanotube persistence and drug delivery were monitored using noninvasive fluorophotometry, electron microscopy and mass spectrometry analysis. Nanotubes persisted in the vitreous humor during the 15 days study and pazopanib levels in the vitreous humor, retina, and choroid-RPE at the end of the study were 4.5, 5, and 2.5-folds higher, respectively, compared to the plain drug. Thus, Phe-∆Phe nanotubes allow intravitreal injections with a small gauge needle and sustain drug delivery. PMID:24075925

  4. Design and synthesis of 2-oxindole based multi-targeted inhibitors of PDK1/Akt signaling pathway for the treatment of glioblastoma multiforme.

    PubMed

    Sestito, Simona; Nesi, Giulia; Daniele, Simona; Martelli, Alma; Digiacomo, Maria; Borghini, Alice; Pietra, Daniele; Calderone, Vincenzo; Lapucci, Annalina; Falasca, Marco; Parrella, Paola; Notarangelo, Angelantonio; Breschi, Maria C; Macchia, Marco; Martini, Claudia; Rapposelli, Simona

    2015-11-13

    Aggressive behavior and diffuse infiltrative growth are the main features of Glioblastoma multiforme (GBM), together with the high degree of resistance and recurrence. Evidence indicate that GBM-derived stem cells (GSCs), endowed with unlimited proliferative potential, play a critical role in tumor development and maintenance. Among the many signaling pathways involved in maintaining GSC stemness, tumorigenic potential, and anti-apoptotic properties, the PDK1/Akt pathway is a challenging target to develop new potential agents able to affect GBM resistance to chemotherapy. In an effort to find new PDK1/Akt inhibitors, we rationally designed and synthesized a small family of 2-oxindole derivatives. Among them, compound 3 inhibited PDK1 kinase and downstream effectors such as CHK1, GS3Kα and GS3Kβ, which contribute to GCS survival. Compound 3 appeared to be a good tool for studying the role of the PDK1/Akt pathway in GCS self-renewal and tumorigenicity, and might represent the starting point for the development of more potent and focused multi-target therapies for GBM. PMID:26498573

  5. Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides.

    PubMed

    Hinrich, Anthony J; Jodelka, Francine M; Chang, Jennifer L; Brutman, Daniella; Bruno, Angela M; Briggs, Clark A; James, Bryan D; Stutzmann, Grace E; Bennett, David A; Miller, Steven A; Rigo, Frank; Marr, Robert A; Hastings, Michelle L

    2016-01-01

    Apolipoprotein E receptor 2 (ApoER2) is an apolipoprotein E receptor involved in long-term potentiation, learning, and memory. Given its role in cognition and its association with the Alzheimer's disease (AD) risk gene, apoE, ApoER2 has been proposed to be involved in AD, though a role for the receptor in the disease is not clear. ApoER2 signaling requires amino acids encoded by alternatively spliced exon 19. Here, we report that the balance of ApoER2 exon 19 splicing is deregulated in postmortem brain tissue from AD patients and in a transgenic mouse model of AD To test the role of deregulated ApoER2 splicing in AD, we designed an antisense oligonucleotide (ASO) that increases exon 19 splicing. Treatment of AD mice with a single dose of ASO corrected ApoER2 splicing for up to 6 months and improved synaptic function and learning and memory. These results reveal an association between ApoER2 isoform expression and AD, and provide preclinical evidence for the utility of ASOs as a therapeutic approach to mitigate Alzheimer's disease symptoms by improving ApoER2 exon 19 splicing. PMID:26902204

  6. Downregulation of Plk1 Expression By Receptor-Mediated Uptake of Antisense Oligonucleotide-Loaded Nanoparticles1

    PubMed Central

    Spänkuch, Birgit; Steinhauser, Isabel; Wartlick, Heidrun; Kurunci-Csacsko, Elisabeth; Strebhardt, Klaus I; Langer, Klaus

    2008-01-01

    Human serum albumin (HSA) nanoparticles represent a promising tool for targeted drug delivery to tumor cells. The coupling of the antibody trastuzumab to nanoparticles uses the capability of human epidermal growth factor receptor 2 (HER2)-positive cells to incorporate agents linked to HER2. In our present study, we developed targeted nanoparticles loaded with antisense oligonucleotides (ASOs) against polo-like kinase 1 (Plk1). We evaluated the receptor-mediated uptake into HER2-positive and -negative breast cancer and murine cell lines. We performed quantitative real-time PCR and Western blot analyses to monitor the impact on Plk1 expression in HER2-positive breast cancer cells. Antibody-conjugated nanoparticles showed a specific targeting to HER2-overexpressing cells with cellular uptake by receptor-mediated endocytosis and a release into HER2-positive BT-474 cells. We observed a significant reduction of Plk1 mRNA and protein expression and increased activation of Caspase 3/7. Thus, this is the first report about ASO-loaded HSA nanoparticles, where an impact on gene expression could be observed. The data provide the basis for the further development of carrier systems for Plk1-specific ASOs to reduce off-target effects evoked by systemically administered ASOs and to achieve a better penetration into primary and metastatic target cells. Treatment of tumors using trastuzumab-conjugated ASO-loaded HSA nanoparticles could be a promising approach to reach this goal. PMID:18320067

  7. Water-absorbent polymer as a carrier for a discrete deposit of antisense oligodeoxynucleotides in the central nervous system.

    PubMed

    Bannai, M; Ichikawa, M; Nishimura, F; Nishihara, M; Takahashi, M

    1998-09-01

    One of the problems of introducing antisense oligodeoxynucleotides (ODN) into the central nervous system (CNS) is their rapid disappearance from the target site due to their dispersion and diffusion, which results in poor uptake and/or retention in cells (M. Morris, A.B. Lucion, Antisense oligonucleotides in the study of neuroendocrine systems, J. Neuroendocrinol. 7 (1995) 493-500; S. Ogawa, H.E. Brown, H.J. Okano, D.W. Pfaff, Cellular uptake of intracerebrally administrated oligodeoxynucleotides in mouse brain, Regul. Pept. 59 (1995) 143-149) [2,5]. Recently, we adapted a new method using water-absorbent polymer (WAP; internally cross-linked starch-grafted-polyacrylates) as a carrier for antisense ODN. The polymer forms a hydro-gel after absorbing water which is chemically and biologically inert. In these studies, the polymer (powder-form) is fully swollen by physiological saline containing antisense ODN (0.2 micromol/ml) to make 80-fold volume gel. Hydro-gel (1 microliter) is injected into the target site, and water solutes are assumed to be diffused stoichiometrically into CNS from the surface of the gel. Histological studies indicate that 24 h after the injection, antisense ODN (5'biotinylated-S-oligos of 15 mer) are distributed to within 800 micrometer from the edge of the area where the gel is located and then gradually disappear from this area within days, but still remain within 300-micrometer distance 7 days later. Antisense ODN are effectively incorporated by all the cell types examined, i.e., neurons, astrocytes and microglias, and suppress the synthesis of the target protein. This method can be adapted to slow delivery of antisense ODN and other water soluble substances into the CNS. PMID:9767125

  8. Effective Antisense Gene Regulation via Noncationic, Polyethylene Glycol Brushes.

    PubMed

    Lu, Xueguang; Jia, Fei; Tan, Xuyu; Wang, Dali; Cao, Xueyan; Zheng, Jiamin; Zhang, Ke

    2016-07-27

    Negatively charged nucleic acids are often complexed with polycationic transfection agents before delivery. Herein, we demonstrate that a noncationic, biocompatible polymer, polyethylene glycol, can be used as a transfection vector by forming a brush polymer-DNA conjugate. The brush architecture provides embedded DNA strands with enhanced nuclease stability and improved cell uptake. Because of the biologically benign nature of the polymer component, no cytotoxicity was observed. This approach has the potential to address several long-lasting challenges in oligonucleotide therapeutics. PMID:27420413

  9. Multi-Targeted Antiangiogenic Tyrosine Kinase Inhibitors in Advanced Non-Small Cell Lung Cancer: Meta-Analyses of 20 Randomized Controlled Trials and Subgroup Analyses

    PubMed Central

    Zhang, Yaxiong; Kang, Shiyang; Fang, Wenfeng; Qin, Tao; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2014-01-01

    Background Multi-targeted antiangiogenic tyrosine kinase inhibitors (MATKIs) have been studied in many randomized controlled trials (RCTs) for treatment of advanced non-small cell lung cancer (NSCLC). We seek to summarize the most up-to-date evidences and perform a timely meta-analysis. Methods Electronic databases were searched for eligible studies. We defined the experimental arm as MATKI-containing group and the control arm as MATKI-free group. The extracted data on objective response rates (ORR), disease control rates (DCR), progression-free survival (PFS) and overall survival (OS) were pooled. Subgroup and sensitivity analyses were conducted. Results Twenty phase II/III RCTs that involved a total of 10834 participants were included. Overall, MATKI-containing group was associated with significant superior ORR (OR 1.29, 95% CI 1.08 to 1.55, P = 0.006) and prolonged PFS (HR 0.83, 0.78 to 0.90, P = 0.005) compared to the MATKI-free group. However, no significant improvements in DCR (OR 1.08, 1.00 to 1.17, P = 0.054) or OS (HR 0.97, 0.93 to 1.01, P = 0.106) were observed. Subgroup analyses showed that the benefits were predominantly presented in pooled results of studies enrolling previously-treated patients, studies not limiting to enroll non-squamous NSCLC, and studies using MATKIs in combination with the control regimens as experimental therapies. Conclusions This up-to-date meta-analysis showed that MATKIs did increase ORR and prolong PFS, with no significant improvement in DCR and OS. The advantages of MATKIs were most prominent in patients who received a MATKI in combination with standard treatments and in patients who had previously experienced chemotherapy. We suggest further discussion as to the inclusion criteria of future studies on MATKIs regarding histology. PMID:25329056

  10. Anti-myeloma activity of a multi targeted kinase inhibitor, AT9283, via potent Aurora Kinase and STAT3 inhibition either alone or in combination with lenalidomide

    PubMed Central

    Santo, Loredana; Hideshima, Teru; Cirstea, Diana; Bandi, Madhavi; Nelson, Erik A.; Gorgun, Gullu; Rodig, Scott; Vallet, Sonia; Pozzi, Samantha; Patel, Kishan; Unitt, Christine; Squires, Matt; Hu, Yiguo; Chauhan, Dharminder; Mahindra, Anuj; Munshi, Nikhil C.; Anderson, Kenneth C.; Raje, Noopur

    2014-01-01

    Purpose Aurora Kinases, whose expression is linked to genetic instability and cellular proliferation, are under investigation as novel therapeutic targets in multiple myeloma (MM). Here, we investigated the preclinical activity of a small molecule–multi-targeted kinase inhibitor, AT9283, with potent activity against Aurora kinase A (AURKA), Aurora kinase B (AURKB) and Janus Kinase 2/3. Experimental design We evaluated the in vitro anti myeloma activity of AT9283 alone and in combination with lenalidomide and the in vivo efficacy by using a Xenograft mouse model of human MM. Results Our data demonstrated AT9283 induced cell growth inhibition and apoptosis in MM. Studying the apoptosis mechanism of AT9283 in MM, we observed features consistent with both AURKA and AURKB inhibition, e.g increase of cells with polyploid DNA content, decrease in phospho-Histone H3, and decrease of phospho-Aurora A. Importantly, AT9283 also inhibited STAT3 tyrosine phosphorylation in MM cells. Genetic depletion of STAT3, AURKA or AURKB showed growth inhibition of MM cells, suggesting a role of AT9283-induced inhibition of these molecules in the underlying mechanism of MM cell death. In vivo studies demonstrated decreased MM cell growth and prolonged survival in AT9283-treated mice compared to controls. Importantly, combination studies of AT9283 with lenalidomide showed significant synergistic cytotoxicity in MM cells, even in the presence of bone marrow stromal cells (BMSCs). Enhanced cytotoxicity was associated with increased inhibition of pSTAT3 and pERK. Conclusions Demonstration of in vitro and in vivo anti-MM activity of AT9283 provides the rationale for the clinical evaluation of AT9283 as monotherapy and in combination in patients with MM. PMID:21430070

  11. A Network Pharmacology Study of Chinese Medicine QiShenYiQi to Reveal Its Underlying Multi-Compound, Multi-Target, Multi-Pathway Mode of Action

    PubMed Central

    Li, Xiang; Wu, Leihong; Liu, Wei; Jin, Yecheng; Chen, Qian; Wang, Linli; Fan, Xiaohui; Li, Zheng; Cheng, Yiyu

    2014-01-01

    Chinese medicine is a complex system guided by traditional Chinese medicine (TCM) theories, which has proven to be especially effective in treating chronic and complex diseases. However, the underlying modes of action (MOA) are not always systematically investigated. Herein, a systematic study was designed to elucidate the multi-compound, multi-target and multi-pathway MOA of a Chinese medicine, QiShenYiQi (QSYQ), on myocardial infarction. QSYQ is composed of Astragalus membranaceus (Huangqi), Salvia miltiorrhiza (Danshen), Panax notoginseng (Sanqi), and Dalbergia odorifera (Jiangxiang). Male Sprague Dawley rat model of myocardial infarction were administered QSYQ intragastrically for 7 days while the control group was not treated. The differentially expressed genes (DEGs) were identified from myocardial infarction rat model treated with QSYQ, followed by constructing a cardiovascular disease (CVD)-related multilevel compound-target-pathway network connecting main compounds to those DEGs supported by literature evidences and the pathways that are functionally enriched in ArrayTrack. 55 potential targets of QSYQ were identified, of which 14 were confirmed in CVD-related literatures with experimental supporting evidences. Furthermore, three sesquiterpene components of QSYQ, Trans-nerolidol, (3S,6S,7R)-3,7,11-trimethyl-3,6-epoxy-1,10-dodecadien-7-ol and (3S,6R,7R)-3,7,11-trimethyl-3,6-epoxy-1,10-dodecadien-7-ol from Dalbergia odorifera T. Chen, were validated experimentally in this study. Their anti-inflammatory effects and potential targets including extracellular signal-regulated kinase-1/2, peroxisome proliferator-activated receptor-gamma and heme oxygenase-1 were identified. Finally, through a three-level compound-target-pathway network with experimental analysis, our study depicts a complex MOA of QSYQ on myocardial infarction. PMID:24817581

  12. [Multi-Target Recognition of Internal and External Defects of Potato by Semi-Transmission Hyperspectral Imaging and Manifold Learning Algorithm].

    PubMed

    Huang, Tao; Li, Xiao-yu; Jin, Rui; Ku, Jing; Xu, Sen-miao; Xu, Meng-ling; Wu, Zhen-zhong; Kong, De-guo

    2015-04-01

    The present paper put forward a non-destructive detection method which combines semi-transmission hyperspectral imaging technology with manifold learning dimension reduction algorithm and least squares support vector machine (LSSVM) to recognize internal and external defects in potatoes simultaneously. Three hundred fifteen potatoes were bought in farmers market as research object, and semi-transmission hyperspectral image acquisition system was constructed to acquire the hyperspectral images of normal external defects (bud and green rind) and internal defect (hollow heart) potatoes. In order to conform to the actual production, defect part is randomly put right, side and back to the acquisition probe when the hyperspectral images of external defects potatoes are acquired. The average spectrums (390-1,040 nm) were extracted from the region of interests for spectral preprocessing. Then three kinds of manifold learning algorithm were respectively utilized to reduce the dimension of spectrum data, including supervised locally linear embedding (SLLE), locally linear embedding (LLE) and isometric mapping (ISOMAP), the low-dimensional data gotten by manifold learning algorithms is used as model input, Error Correcting Output Code (ECOC) and LSSVM were combined to develop the multi-target classification model. By comparing and analyzing results of the three models, we concluded that SLLE is the optimal manifold learning dimension reduction algorithm, and the SLLE-LSSVM model is determined to get the best recognition rate for recognizing internal and external defects potatoes. For test set data, the single recognition rate of normal, bud, green rind and hollow heart potato reached 96.83%, 86.96%, 86.96% and 95% respectively, and he hybrid recognition rate was 93.02%. The results indicate that combining the semi-transmission hyperspectral imaging technology with SLLE-LSSVM is a feasible qualitative analytical method which can simultaneously recognize the internal and

  13. Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02).

    PubMed

    Iwamoto, Fabio M; Lamborn, Kathleen R; Robins, H Ian; Mehta, Minesh P; Chang, Susan M; Butowski, Nicholas A; Deangelis, Lisa M; Abrey, Lauren E; Zhang, Wei-Ting; Prados, Michael D; Fine, Howard A

    2010-08-01

    The objective of this phase II single-arm study was to evaluate the efficacy and safety of pazopanib, a multi-targeted tyrosine kinase inhibitor, against vascular endothelial growth factor receptor (VEGFR)-1, -2, and -3, platelet-derived growth factor receptor-alpha and -beta, and c-Kit, in recurrent glioblastoma. Patients with < or =2 relapses and no prior anti-VEGF/VEGFR therapy were treated with pazopanib 800 mg daily on 4-week cycles without planned interruptions. Brain magnetic resonance imaging and clinical reassessment were made every 8 weeks. The primary endpoint was efficacy as measured by 6-month progression-free survival (PFS6). Thirty-five GBM patients with a median age of 53 years and median Karnofsky performance scale of 90 were accrued. Grade 3/4 toxicities included leukopenia (n = 1), lymphopenia (n = 2), thrombocytopenia (n = 1), ALT elevation (n = 3), AST elevation (n = 1), CNS hemorrhage (n = 1), fatigue (n = 1), and thrombotic/embolic events (n = 3); 8 patients required dose reduction. Two patients had a partial radiographic response by standard bidimensional measurements, whereas 9 patients (6 at the 8-week point and 3 only within the first month of treatment) had decreased contrast enhancement, vasogenic edema, and mass effect but <50% reduction in tumor. The median PFS was 12 weeks (95% confidence interval [CI]: 8-14 weeks) and only 1 patient had a PFS time > or =6 months (PFS6 = 3%). Thirty patients (86%) had died and median survival was 35 weeks (95% CI: 24-47 weeks). Pazopanib was reasonably well tolerated with a spectrum of toxicities similar to other anti-VEGF/VEGFR agents. Single-agent pazopanib did not prolong PFS in this patient population but showed in situ biological activity as demonstrated by radiographic responses. ClinicalTrials.gov identifier: NCT00459381. PMID:20200024

  14. Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02)

    PubMed Central

    Iwamoto, Fabio M.; Lamborn, Kathleen R.; Robins, H. Ian; Mehta, Minesh P.; Chang, Susan M.; Butowski, Nicholas A.; DeAngelis, Lisa M.; Abrey, Lauren E.; Zhang, Wei-Ting; Prados, Michael D.; Fine, Howard A.

    2010-01-01

    The objective of this phase II single-arm study was to evaluate the efficacy and safety of pazopanib, a multi-targeted tyrosine kinase inhibitor, against vascular endothelial growth factor receptor (VEGFR)-1, -2, and -3, platelet-derived growth factor receptor-α and -β, and c-Kit, in recurrent glioblastoma. Patients with ≤2 relapses and no prior anti-VEGF/VEGFR therapy were treated with pazopanib 800 mg daily on 4-week cycles without planned interruptions. Brain magnetic resonance imaging and clinical reassessment were made every 8 weeks. The primary endpoint was efficacy as measured by 6-month progression-free survival (PFS6). Thirty-five GBM patients with a median age of 53 years and median Karnofsky performance scale of 90 were accrued. Grade 3/4 toxicities included leukopenia (n = 1), lymphopenia (n = 2), thrombocytopenia (n = 1), ALT elevation (n = 3), AST elevation (n = 1), CNS hemorrhage (n = 1), fatigue (n = 1), and thrombotic/embolic events (n = 3); 8 patients required dose reduction. Two patients had a partial radiographic response by standard bidimensional measurements, whereas 9 patients (6 at the 8-week point and 3 only within the first month of treatment) had decreased contrast enhancement, vasogenic edema, and mass effect but <50% reduction in tumor. The median PFS was 12 weeks (95% confidence interval [CI]: 8–14 weeks) and only 1 patient had a PFS time ≥6 months (PFS6 = 3%). Thirty patients (86%) had died and median survival was 35 weeks (95% CI: 24–47 weeks). Pazopanib was reasonably well tolerated with a spectrum of toxicities similar to other anti-VEGF/VEGFR agents. Single-agent pazopanib did not prolong PFS in this patient population but showed in situ biological activity as demonstrated by radiographic responses. ClinicalTrials.gov identifier: NCT00459381. PMID:20200024

  15. Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes

    PubMed Central

    Parent, Jean-Sébastien; Jauvion, Vincent; Bouché, Nicolas; Béclin, Christophe; Hachet, Mélanie; Zytnicki, Matthias; Vaucheret, Hervé

    2015-01-01

    Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3′ maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS. PMID:26209135

  16. Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes.

    PubMed

    Parent, Jean-Sébastien; Jauvion, Vincent; Bouché, Nicolas; Béclin, Christophe; Hachet, Mélanie; Zytnicki, Matthias; Vaucheret, Hervé

    2015-09-30

    Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3' maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS. PMID:26209135

  17. Sense and Antisense DMPK RNA Foci Accumulate in DM1 Tissues during Development

    PubMed Central

    Michel, Lise; Huguet-Lachon, Aline; Gourdon, Geneviève

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is caused by an unstable expanded CTG repeat located within the DMPK gene 3’UTR. The nature, severity and age at onset of DM1 symptoms are very variable in patients. Different forms of the disease are described, among which the congenital form (CDM) is the most severe. Molecular mechanisms of DM1 are well characterized for the adult form and involve accumulation of mutant DMPK RNA forming foci in the nucleus. These RNA foci sequester proteins from the MBNL family and deregulate CELF proteins. These proteins are involved in many cellular mechanisms such as alternative splicing, transcriptional, translational and post-translational regulation miRNA regulation as well as mRNA polyadenylation and localization. All these mechanisms can be impaired in DM1 because of the deregulation of CELF and MBNL functions. The mechanisms involved in CDM are not clearly described. In order to get insight into the mechanisms underlying CDM, we investigated if expanded RNA nuclear foci, one of the molecular hallmarks of DM1, could be detected in human DM1 fetal tissues, as well as in embryonic and neonatal tissues from transgenic mice carrying the human DMPK gene with an expanded CTG repeat. We observed very abundant RNA foci formed by sense DMPK RNA and, to a lesser extent, antisense DMPK RNA foci. Sense DMPK RNA foci clearly co-localized with MBNL1 and MBNL2 proteins. In addition, we studied DMPK sense and antisense expression during development in the transgenic mice. We found that DMPK sense and antisense transcripts are expressed from embryonic and fetal stages in heart, muscle and brain and are regulated during development. These results suggest that mechanisms underlying DM1 and CDM involved common players including toxic expanded RNA forming numerous nuclear foci at early stages during development. PMID:26339785

  18. Revealing natural antisense transcripts from Plasmodium vivax isolates: evidence of genome regulation in complicated malaria.

    PubMed

    Boopathi, P A; Subudhi, Amit Kumar; Garg, Shilpi; Middha, Sheetal; Acharya, Jyoti; Pakalapati, Deepak; Saxena, Vishal; Aiyaz, Mohammed; Chand, Bipin; Mugasimangalam, Raja C; Kochar, Sanjay K; Sirohi, Parmendra; Kochar, Dhanpat K; Das, Ashis

    2013-12-01

    Plasmodium vivax is the most geographically widespread human malaria parasite causing approximately 130-435 million infections annually. It is an economic burden in many parts of the world and poses a public health challenge along with the other Plasmodium sp. The biology of this parasite is less studied and poorly understood, in spite of these facts. Emerging evidence of severe complications due to infections by this parasite provides an impetus to focus research on the same. Investigating the parasite directly from infected patients is the best way to study its biology and pathogenic mechanisms. Gene expression studies of this parasite directly obtained from the patients has provided evidence of gene regulation resulting in varying amount of transcript levels in the different blood stages. The mechanisms regulating gene expression in malaria parasites are not well understood. Discovery of Natural Antisense Transcripts (NATs) in Plasmodium falciparum has suggested that these might play an important role in regulating gene expression. We report here the genome-wide occurrence of NATs in P. vivax parasites from patients with differing clinical symptoms. A total of 1348 NATs against annotated gene loci have been detected using a custom designed microarray with strand specific probes. Majority of NATs identified from this study shows positive correlation with the expression pattern of the sense (S) transcript. Our data also shows condition specific expression patterns of varying S and antisense (AS) transcript levels. Genes with AS transcripts enrich to various biological processes. To our knowledge this is the first report on the presence of NATs from P. vivax obtained from infected patients with different disease complications. The data suggests differential regulation of gene expression in diverse clinical conditions, as shown by differing sense/antisense ratios and would lead to future detailed investigations of gene regulation. PMID:24121022

  19. A preliminary trial using multi-target polymerase chain reaction (multiplex PCR) and restriction fragment length polymorphism (PCR-RFLP) on the same feedstuffs to detect tissues of animal origin.

    PubMed

    Colombo, F; Marchisio, E; Trezzi, I E; Peri, V; Pinotti, L; Baldi, A; Soncini, G

    2004-08-01

    A preliminary study using multi-target polymerase chain reaction (multiplex PCR) and restriction fragment length polymorphism (PCR-RFLP) was done on the same feedstuffs to detect animal tissues. The results of the two methods differ somewhat: PCR-RFLP did not detect any signal in any sample, but multiplex PCR detected a signal in one sample. These findings could be a basis for further investigations. PMID:15509020

  20. Exon-Skipping Antisense Oligonucleotides to Correct Missplicing in Neurogenetic Diseases

    PubMed Central

    Siva, Kavitha; Covello, Giuseppina

    2014-01-01

    Alternative splicing is an important regulator of the transcriptome. However, mutations may cause alteration of splicing patterns, which in turn leads to disease. During the past 10 years, exon skipping has been looked upon as a powerful tool for correction of missplicing in disease and progress has been made towards clinical trials. In this review, we discuss the use of antisense oligonucleotides to correct splicing defects through exon skipping, with a special focus on diseases affecting the nervous system, and the latest stage achieved in its progress. PMID:24506781

  1. Schizophyllans carrying oligosaccharide appendages as potential candidates for cell-targeted antisense carrier.

    PubMed

    Hasegawa, Teruaki; Fujisawa, Tomohisa; Numata, Munenori; Matsumoto, Takahiro; Umeda, Mariko; Karinaga, Ryouji; Mizu, Masami; Koumoto, Kazuya; Kimura, Taro; Okumura, Shiro; Sakurai, Kazuo; Shinkai, Seiji

    2004-11-01

    Schizophyllans carrying beta-lactoside and alpha-mannoside appendages were prepared from native schizophyllan through NaIO4 oxidation followed by reductive amination using aminoethyl-beta-lactoside and alpha-mannoside, respectively. The resulting schizophyllans form stable macromolecular complexes with polynucleotides, such as poly(C) and poly(dA). Specific affinity between these macromolecular complexes and saccharide-binding proteins was demonstrated by surface plasmon resonance and agarose gel staining assays. beta-lactoside-appended schizophyllan enhanced an antisense activity in hepatocytes which express lactoside-binding proteins on their cell surfaces. PMID:15505713

  2. Development of Cotton leaf curl virus resistant transgenic cotton using antisense ßC1 gene

    PubMed Central

    Sohrab, Sayed Sartaj; Kamal, Mohammad A.; Ilah, Abdul; Husen, Azamal; Bhattacharya, P.S.; Rana, D.

    2014-01-01

    Cotton leaf curl virus (CLCuV) is a serious pathogen causing leaf curl disease and affecting the cotton production in major growing areas. The transgenic cotton (Gossypium hirsutum cv. Coker 310) plants were developed by using βC1 gene in antisense orientation gene driven by Cauliflower mosaic virus-35S promoter and nos (nopaline synthase) terminator and mediated by Agrobacterium tumefaciens transformation and somatic embryogenesis system. Molecular confirmation of the transformants was carried out by polymerase chain reaction (PCR) and Southern blot hybridization. The developed transgenic and inoculated plants remained symptomless till their growth period. In conclusion, the plants were observed as resistant to CLCuV. PMID:27081361

  3. Development of Cotton leaf curl virus resistant transgenic cotton using antisense ßC1 gene.

    PubMed

    Sohrab, Sayed Sartaj; Kamal, Mohammad A; Ilah, Abdul; Husen, Azamal; Bhattacharya, P S; Rana, D

    2016-05-01

    Cotton leaf curl virus (CLCuV) is a serious pathogen causing leaf curl disease and affecting the cotton production in major growing areas. The transgenic cotton (Gossypium hirsutum cv. Coker 310) plants were developed by using βC1 gene in antisense orientation gene driven by Cauliflower mosaic virus-35S promoter and nos (nopaline synthase) terminator and mediated by Agrobacterium tumefaciens transformation and somatic embryogenesis system. Molecular confirmation of the transformants was carried out by polymerase chain reaction (PCR) and Southern blot hybridization. The developed transgenic and inoculated plants remained symptomless till their growth period. In conclusion, the plants were observed as resistant to CLCuV. PMID:27081361

  4. A novel transforming growth factor beta2 antisense transcript in mammalian lung.

    PubMed Central

    Coker, R K; Laurent, G J; Dabbagh, K; Dawson, J; McAnulty, R J

    1998-01-01

    Transforming growth factor (TGF) beta2 gene expression was examined in murine, rat and human lung by in situ hybridization with riboprobes. Hybridization signal was observed in a variety of cells with the sense probe, and Northern-blot analysis with this probe demonstrated the presence of a novel 3.5 kb transcript. This first report suggesting the existance of a natural TGFbeta2 antisense transcript raises the possibility that such a transcript may play a role in regulating TGFbeta2 production. PMID:9601055

  5. Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5.

    PubMed

    Hawkins, Peter G; Morris, Kevin V

    2010-11-01

    Long non-coding RNAs (lncRNAs) have been shown to epigenetically regulate certain genes in human cells. Here we report evidence for the involvement of an antisense lncRNA in the transcriptional regulation of the pluripotency-associated factor Oct4. When an lncRNA antisense to Oct4-pseudogene 5 was suppressed, transcription of Oct4 and Oct4 pseudogenes 4 and 5 was observed to increase. This increase correlated with a loss of silent state epigenetic marks and the histone methyltransferase Ezh2 at the Oct4 promoter. We observed this lncRNA to interact with nucleolin and PURA, a 35 kD single-stranded DNA and RNA binding protein, and found that these proteins may act to negatively regulate this antisense transcript. PMID:21151833

  6. [Effect of antisense oligonucleotides on myo-intimal hyperplasia in a model of abdominal aortic injury in the rat].

    PubMed

    Chemla, E; Julia, P; Nierat, J; Eudes, D; Bruneval, P; Carpentier, A; Fabiani, J N

    1995-03-01

    Restenosis at a rate > 30% at 6 months is the major complication of both coronary and peripheral arterial angioplasty. Restenosis is mainly due to proliferation of smooth muscle cells, extracellular matrix and collagen which form a neointima. The proto-oncogene c-myb is a gene with an immediate response which has been implicated in the proliferation and alteration of the phenotype of smooth muscle cells. The antisenses are molecules of single-helix DNA the sequence of which is inverse to that of messenger RNA of the target proto-oncogene. They therefore have the possibility of forming a double helix with the messenger RNA and of preventing its translation. The antisenses of c-myb have already been successfully tested in in vitro and in vivo models of neointimal proliferation. The aim of this study was to demonstrate the efficacy of c-myb antisenses on the proliferation of smooth muscle cells in a model of abdominal aortic injury in the rat. Thirty-five male Wistar rats with an average weight of 350 grams were operated. Smooth muscle cell proliferation was obtained by desendothelialisation of the abdominal aorta from the level of the left renal vein to the aortic bifurcation. Using a randomised, double-blind protocol, 17 rats were given 500 microliters of pluronic gel (control group), 9 a sense oligonucleotide of c-myb in 500 microliters of pluronic gel (sense group) and 9 a c-myb antisense oligonucleide in 500 microliters of pluronic gel (antisense group). Two rats were given fluorescinlabelled antisenses; one was sacrificed 4 hours and the other 24 hours later.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7487292

  7. CRISPR MultiTargeter: A Web Tool to Find Common and Unique CRISPR Single Guide RNA Targets in a Set of Similar Sequences

    PubMed Central

    Prykhozhij, Sergey V.; Rajan, Vinothkumar; Gaston, Daniel; Berman, Jason N.

    2015-01-01

    Genome engineering has been revolutionized by the discovery of clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR-associated system genes (Cas) in bacteria. The type IIB Streptococcus pyogenes CRISPR/Cas9 system functions in many species and additional types of CRISPR/Cas systems are under development. In the type II system, expression of CRISPR single guide RNA (sgRNA) targeting a defined sequence and Cas9 generates a sequence-specific nuclease inducing small deletions or insertions. Moreover, knock-in of large DNA inserts has been shown at the sites targeted by sgRNAs and Cas9. Several tools are available for designing sgRNAs that target unique locations in the genome. However, the ability to find sgRNA targets common to several similar sequences or, by contrast, unique to each of these sequences, would also be advantageous. To provide such a tool for several types of CRISPR/Cas system and many species, we developed the CRISPR MultiTargeter software. Similar DNA sequences in question are duplicated genes and sets of exons of different transcripts of a gene. Thus, we implemented a basic sgRNA target search of input sequences for single-sgRNA and two-sgRNA/Cas9 nickase targeting, as well as common and unique sgRNA target searches in 1) a set of input sequences; 2) a set of similar genes or transcripts; or 3) transcripts a single gene. We demonstrate potential uses of the program by identifying unique isoform-specific sgRNA sites in 71% of zebrafish alternative transcripts and common sgRNA target sites in approximately 40% of zebrafish duplicated gene pairs. The design of unique targets in alternative exons is helpful because it will facilitate functional genomic studies of transcript isoforms. Similarly, its application to duplicated genes may simplify multi-gene mutational targeting experiments. Overall, this program provides a unique interface that will enhance use of CRISPR/Cas technology. PMID:25742428

  8. Antisense expression of peach mildew resistance locus O (PpMlo1) gene confers cross-species resistance to powdery mildew in Fragaria x ananassa.

    PubMed

    Jiwan, Derick; Roalson, Eric H; Main, Dorrie; Dhingra, Amit

    2013-12-01

    Powdery mildew (PM) is one of the major plant pathogens. The conventional method of PM control includes frequent use of sulfur-based fungicides adding to production costs and potential harm to the environment. PM remains a major scourge for Rosaceae crops where breeding approaches mainly resort to gene-for-gene resistance. We have tested an alternate source of PM resistance in Rosaceae. Mildew resistance locus O (MLO) has been well studied in barley due to its role in imparting broad spectrum resistance to PM. We identified PpMlo1 (Prunus persica Mlo) in peach and characterized it further to test if a similar mechanism of resistance is conserved in Rosaceae. Due to its recalcitrance in tissue culture, reverse genetic studies involving PpMloI were not feasible in peach. Therefore, Fragaria x ananassa LF9 line, a taxonomic surrogate, was used for functional analysis of PpMlo1. Agrobacterium-mediated transformation yielded transgenic strawberry plants expressing PpMlo1 in sense and antisense orientation. Antisense expression of PpMlo1 in transgenic strawberry plants conferred resistance to Fragaria-specific powdery mildew, Podosphaera macularis. Phylogenetic analysis of 208 putative Mlo gene copies from 35 plant species suggests a large number of duplications of this gene family prior to the divergence of monocots and eudicots, early in eudicot diversification. Our results indicate that the Mlo-based resistance mechanism is functional in Rosaceae, and that Fragaria can be used as a host to test mechanistic function of genes derived from related tree species. To the best of our knowledge, this work is one of the first attempts at testing the potential of using a Mlo-based resistance strategy to combat powdery mildew in Rosaceae. PMID:23728780

  9. Evidence for a major role of antisense RNAs in cyanobacterial gene regulation

    PubMed Central

    Georg, Jens; Voß, Björn; Scholz, Ingeborg; Mitschke, Jan; Wilde, Annegret; Hess, Wolfgang R

    2009-01-01

    Information on the numbers and functions of naturally occurring antisense RNAs (asRNAs) in eubacteria has thus far remained incomplete. Here, we screened the model cyanobacterium Synechocystis sp. PCC 6803 for asRNAs using four different methods. In the final data set, the number of known noncoding RNAs rose from 6 earlier identified to 60 and of asRNAs from 1 to 73 (28 were verified using at least three methods). Among these, there are many asRNAs to housekeeping, regulatory or metabolic genes, as well as to genes encoding electron transport proteins. Transferring cultures to high light, carbon-limited conditions or darkness influenced the expression levels of several asRNAs, suggesting their functional relevance. Examples include the asRNA to rpl1, which accumulates in a light-dependent manner and may be required for processing the L11 r-operon and the SyR7 noncoding RNA, which is antisense to the murF 5′ UTR, possibly modulating murein biosynthesis. Extrapolated to the whole genome, ∼10% of all genes in Synechocystis are influenced by asRNAs. Thus, chromosomally encoded asRNAs may have an important function in eubacterial regulatory networks. PMID:19756044

  10. Antisense RNA regulation and application in the development of novel antibiotics to combat multidrug resistant bacteria.

    PubMed

    Ji, Yinduo; Lei, Ting

    2013-01-01

    Despite the availability of antibiotics and vaccines, infectious diseases remain one of most dangerous threats to humans and animals. The overuse and misuse of antibacterial agents have led to the emergence of multidrug resistant bacterial pathogens. Bacterial cells are often resilient enough to survive in even the most extreme environments. To do so, the organisms have evolved different mechanisms, including a variety of two-component signal transduction systems, which allow the bacteria to sense the surrounding environment and regulate gene expression in order to adapt and respond to environmental stimuli. In addition, some bacteria evolve resistance to antibacterial agents while many bacterial cells are able to acquire resistance genes from other bacterial species to enable them to survive in the presence of toxic antimicrobial agents. The crisis of antimicrobial resistance is an unremitting menace to human health and a burden on public health. The rapid increase in antimicrobial resistant organisms and limited options for development of new classes of antibiotics heighten the urgent need to develop novel potent antibacterial therapeutics in order to combat multidrug resistant infections. In this review, we introduce the regulatory mechanisms of antisense RNA and significant applications of regulated antisense RNA interference technology in early drug discovery. This includes the identification and evaluation of drug targets in vitro and in vivo, the determination of mode of action for antibiotics and new antibacterial agents, as well as the development of peptide-nucleic acid conjugates as novel antibacterials. PMID:23738437

  11. RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes.

    PubMed

    Le Rhun, Anaïs; Beer, Yan Yan; Reimegård, Johan; Chylinski, Krzysztof; Charpentier, Emmanuelle

    2016-02-01

    Streptococcus pyogenes is a human pathogen responsible for a wide spectrum of diseases ranging from mild to life-threatening infections. During the infectious process, the temporal and spatial expression of pathogenicity factors is tightly controlled by a complex network of protein and RNA regulators acting in response to various environmental signals. Here, we focus on the class of small RNA regulators (sRNAs) and present the first complete analysis of sRNA sequencing data in S. pyogenes. In the SF370 clinical isolate (M1 serotype), we identified 197 and 428 putative regulatory RNAs by visual inspection and bioinformatics screening of the sequencing data, respectively. Only 35 from the 197 candidates identified by visual screening were assigned a predicted function (T-boxes, ribosomal protein leaders, characterized riboswitches or sRNAs), indicating how little is known about sRNA regulation in S. pyogenes. By comparing our list of predicted sRNAs with previous S. pyogenes sRNA screens using bioinformatics or microarrays, 92 novel sRNAs were revealed, including antisense RNAs that are for the first time shown to be expressed in this pathogen. We experimentally validated the expression of 30 novel sRNAs and antisense RNAs. We show that the expression profile of 9 sRNAs including 2 predicted regulatory elements is affected by the endoribonucleases RNase III and/or RNase Y, highlighting the critical role of these enzymes in sRNA regulation. PMID:26580233

  12. Non-coding RNA and Antisense RNA. Nature's Trash or Treasure?

    PubMed Central

    Knowling, Stuart; Morris, Kevin V.

    2011-01-01

    Although control of cellular function has classically been considered the responsibility of proteins, research over the last decade has elucidated many roles for RNA in regulation of not only the proteins that control cellular functions but also for the cellular functions themselves. In parallel to this advancement in knowledge about the regulatory roles of RNA there has been an explosion of knowledge about the role that epigenetics plays in controlling not only long-term cellular fate but also the short-term regulatory control of genes. Of particular interest is the crossover between these two worlds, a world where RNA can act out its part and subsequently elicit chromatin modifications that alter cellular function. Two main categories of RNA are examined here, non-coding RNA and antisense RNA both of which perform vital functions in controlling numerous genes, proteins and RNA itself. As the activities of non-coding and antisense RNA in both normal and aberrant cellular function are elucidated, so does the number of possible targets for pharmacopeic intervention. PMID:21843589

  13. Small regulatory RNAs in lambdoid bacteriophages and phage-derived plasmids: Not only antisense.

    PubMed

    Nejman-Faleńczyk, Bożena; Bloch, Sylwia; Licznerska, Katarzyna; Felczykowska, Agnieszka; Dydecka, Aleksandra; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2015-03-01

    Until recently, only two small regulatory RNAs encoded by lambdoid bacteriophages were known. These transcripts are derived from paQ and pO promoters. The former one is supposed to act as an antisense RNA for expression of the Q gene, encoding a transcription antitermination protein. The latter transcript, called oop RNA, was initially proposed to have a double role, in establishing expression of the cI gene and in providing a primer for DNA replication. Although the initially proposed mechanisms by which oop RNA could influence the choice between two alternative developmental pathways of the phage and the initiation of phage DNA replication were found not true, the pO promoter has been demonstrated to be important for both regulation of phage development and control of DNA replication. Namely, the pO-derived transcript is an antisense RNA for expression of the cII gene, and pO is a part of a dual promoter system responsible for regulation of initiation of DNA synthesis from the oriλ region. Very recent studies identified a battery of small RNAs encoded by lambdoid bacteriophages existing as prophages in chromosomes of enterohemorrhagic Escherichia coli strains. Some of them have very interesting functions, like anti-small RNAs. PMID:25111672

  14. Improved biological activity of antisense oligonucleotides conjugated to a fusogenic peptide.

    PubMed Central

    Bongartz, J P; Aubertin, A M; Milhaud, P G; Lebleu, B

    1994-01-01

    Recently several groups reported a dramatic improvement of reporter gene transfection efficiency using a fusogenic peptide, derived from the Influenza hemagglutinin envelop protein. This peptide changes conformation at acidic pH and destabilizes the endosomal membranes thus resulting in an increased cytoplasmic gene delivery. We describe the use of a similar fusogenic peptide in order to improve the antiviral potency of antisense oligodeoxynucleotides (anti TAT) and oligophosphorothioates (S-dC28) on de novo HIV infected CEM-SS lymphocytes in serum-free medium. We observed as 5 to 10 fold improvement of the anti HIV activities of the phosphodiester antisense oligonucleotides after chemical coupling to the peptide in a one to one ratio by a disulfide or thioether bond. No toxicities were observed at the effective doses (0.1-1 microM). No sequence specificity was obtained and the fusogenic peptide possessed some antiviral activities on its own (IC50: 6 microM). A S-dC28-peptide disulfide linked conjugate and a streptavidin-peptide-biotinylated S-dC28 adduct showed similar activities as the free S-dC28 oligonucleotide (IC50: 0.1-1 nM). As expected, all the compounds were less potent in the presence of serum but the relative contribution of peptide coupling was maintained. Images PMID:7984418

  15. Natural antisense RNA promotes 3′ end processing and maturation of MALAT1 lncRNA

    PubMed Central

    Zong, Xinying; Nakagawa, Shinichi; Freier, Susan M.; Fei, Jingyi; Ha, Taekjip; Prasanth, Supriya G.; Prasanth, Kannanganattu V.

    2016-01-01

    The RNase P-mediated endonucleolytic cleavage plays a crucial role in the 3′ end processing and cellular accumulation of MALAT1, a nuclear-retained long noncoding RNA that promotes malignancy. The regulation of this cleavage event is largely undetermined. Here we characterize a broadly expressed natural antisense transcript at the MALAT1 locus, designated as TALAM1, that positively regulates MALAT1 levels by promoting the 3′ end cleavage and maturation of MALAT1 RNA. TALAM1 RNA preferentially localizes at the site of transcription, and also interacts with MALAT1 RNA. Depletion of TALAM1 leads to defects in the 3′ end cleavage reaction and compromises cellular accumulation of MALAT1. Conversely, overexpression of TALAM1 facilitates the cleavage reaction in trans. Interestingly, TALAM1 is also positively regulated by MALAT1 at the level of both transcription and RNA stability. Together, our data demonstrate a novel feed-forward positive regulatory loop that is established to maintain the high cellular levels of MALAT1, and also unravel the existence of sense-antisense mediated regulatory mechanism for cellular lncRNAs that display RNase P-mediated 3′ end processing. PMID:26826711

  16. Gene silencing of HIV chemokine receptors using ribozymes and single-stranded antisense RNA.

    PubMed

    Qureshi, Amer; Zheng, Richard; Parlett, Terry; Shi, Xiaoju; Balaraman, Priyadhashini; Cheloufi, Sihem; Murphy, Brendan; Guntermann, Christine; Eagles, Peter

    2006-03-01

    The chemokine receptors CXCR4 and CCR5 are required for HIV-1 to enter cells, and the progression of HIV-1 infection to AIDS involves a switch in the co-receptor usage of the virus from CCR5 to CXCR4. These receptors therefore make attractive candidates for therapeutic intervention, and we have investigated the silencing of their genes by using ribozymes and single-stranded antisense RNAs. In the present study, we demonstrate using ribozymes that a depletion of CXCR4 and CCR5 mRNAs can be achieved simultaneously in human PBMCs (peripheral blood mononuclear cells), cells commonly used by the virus for infection and replication. Ribozyme activity leads to an inhibition of the cell-surface expression of both CCR5 and CXCR4, resulting in a significant inhibition of HIV-1 replication when PBMCs are challenged with the virus. In addition, we show that small single-stranded antisense RNAs can also be used to silence CCR5 and CXCR4 genes when delivered to PBMCs. This silencing is caused by selective degradation of receptor mRNAs. PMID:16293105

  17. Gene silencing of HIV chemokine receptors using ribozymes and single-stranded antisense RNA

    PubMed Central

    Qureshi, Amer; Zheng, Richard; Parlett, Terry; Shi, Xiaoju; Balaraman, Priyadhashini; Cheloufi, Sihem; Murphy, Brendan; Guntermann, Christine; Eagles, Peter

    2005-01-01

    The chemokine receptors CXCR4 and CCR5 are required for HIV-1 to enter cells, and the progression of HIV-1 infection to AIDS involves a switch in the co-receptor usage of the virus from CCR5 to CXCR4. These receptors therefore make attractive candidates for therapeutic intervention, and we have investigated the silencing of their genes by using ribozymes and single-stranded antisense RNAs. In the present study, we demonstrate using ribozymes that a depletion of CXCR4 and CCR5 mRNAs can be achieved simultaneously in human PBMCs (peripheral blood mononuclear cells), cells commonly used by the virus for infection and replication. Ribozyme activity leads to an inhibition of the cell-surface expression of both CCR5 and CXCR4, resulting in a significant inhibition of HIV-1 replication when PBMCs are challenged with the virus. In addition, we show that small single-stranded antisense RNAs can also be used to silence CCR5 and CXCR4 genes when delivered to PBMCs. This silencing is caused by selective degradation of receptor mRNAs. PMID:16293105

  18. RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes

    PubMed Central

    Le Rhun, Anaïs; Beer, Yan Yan; Reimegård, Johan; Chylinski, Krzysztof; Charpentier, Emmanuelle

    2016-01-01

    ABSTRACT Streptococcus pyogenes is a human pathogen responsible for a wide spectrum of diseases ranging from mild to life-threatening infections. During the infectious process, the temporal and spatial expression of pathogenicity factors is tightly controlled by a complex network of protein and RNA regulators acting in response to various environmental signals. Here, we focus on the class of small RNA regulators (sRNAs) and present the first complete analysis of sRNA sequencing data in S. pyogenes. In the SF370 clinical isolate (M1 serotype), we identified 197 and 428 putative regulatory RNAs by visual inspection and bioinformatics screening of the sequencing data, respectively. Only 35 from the 197 candidates identified by visual screening were assigned a predicted function (T-boxes, ribosomal protein leaders, characterized riboswitches or sRNAs), indicating how little is known about sRNA regulation in S. pyogenes. By comparing our list of predicted sRNAs with previous S. pyogenes sRNA screens using bioinformatics or microarrays, 92 novel sRNAs were revealed, including antisense RNAs that are for the first time shown to be expressed in this pathogen. We experimentally validated the expression of 30 novel sRNAs and antisense RNAs. We show that the expression profile of 9 sRNAs including 2 predicted regulatory elements is affected by the endoribonucleases RNase III and/or RNase Y, highlighting the critical role of these enzymes in sRNA regulation. PMID:26580233

  19. Targeting gene expression in the preimplantation mouse embryo using morpholino antisense oligonucleotides.

    PubMed

    Siddall, Laura S; Barcroft, Lisa C; Watson, Andrew J

    2002-12-01

    Morpholino antisense oligonucleotides act by blocking translation of their target gene products and are effective tools for down-regulating gene expression. The current study was conducted to define treatment conditions for the use of morpholino oligonucleotides (MOs) in mammalian preimplantation embryos, and to employ MOs to target genes and study gene function in the early embryo. For the first time, ethoxylated polyethylenimine (EPEI), Lipofectin or Lysolecithin delivery agents were employed in combination with a fluorescent control MO and an alpha-catenin specific MO, to down-regulate gene expression during murine preimplantation development. Experiments applied to both two- and eight-cell stage murine preimplantation embryos contrasted the efficacy of MO concentrations of 1, 2, 5, 10, and 20 microM and treatment delivery times of 3, 6, 24, and 48 hr. Continuous treatment of two-cell embryos with Lipofectin and 20 microM alpha-catenin MO for 48 hr resulted in a significant (P < 0.05) reduction in development to the blastocyst stage and was accompanied by a marked reduction in alpha-catenin protein. These results indicate that morpholino antisense oligonucleotides are effective tools for down-regulating gene expression during mammalian preimplantation development. PMID:12412042

  20. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames.

    PubMed

    Liang, Xue-Hai; Shen, Wen; Sun, Hong; Migawa, Michael T; Vickers, Timothy A; Crooke, Stanley T

    2016-08-01

    Increasing the levels of therapeutic proteins in vivo remains challenging. Antisense oligonucleotides (ASOs) are often used to downregulate gene expression or to modify RNA splicing, but antisense technology has not previously been used to directly increase the production of selected proteins. Here we used a class of modified ASOs that bind to mRNA sequences in upstream open reading frames (uORFs) to specifically increase the amounts of protein translated from a downstream primary ORF (pORF). Using ASO treatment, we increased the amount of proteins expressed from four genes by 30-150% in a dose-dependent manner in both human and mouse cells. Notably, systemic treatment of mice with ASO resulted in an ∼80% protein increase of LRPPRC. The ASO-mediated increase in protein expression was sequence-specific, occurred at the level of translation and was dependent on helicase activity. We also found that the type of RNA modification and the position of modified nucleotides in ASOs affected translation of a pORF. ASOs are a useful class of therapeutic agents with broad utility. PMID:27398791

  1. Antisense inhibition of coagulation factor XI prolongs APTT without increased bleeding risk in cynomolgus monkeys.

    PubMed

    Younis, Husam S; Crosby, Jeff; Huh, Jung-Im; Lee, Hong Soo; Rime, Soyub; Monia, Brett; Henry, Scott P

    2012-03-01

    A strategy to produce sufficient anticoagulant properties with reduced risk of bleeding may be possible through inhibition of factor XI (FXI), a component of the intrinsic coagulation cascade. The objective of this work was to determine the safety profile of ISIS 416858, a 2'-methoxyethoxy (2'-MOE) antisense oligonucleotide inhibitor of FXI, with focus on assessment of bleeding risk. Cynomolgus monkeys administered ISIS 416858 (4, 8, 12, and 40 mg/kg/wk, subcutaneous) for up to 13 weeks produced a dose-dependent reduction in FXI (mRNA in liver and plasma activity) and a concomitant increase in activated partial thromboplastin time (APTT). ISIS 416858 (20 or 40 mg/kg/wk) reduced plasma FXI activity by 80% at 4 weeks of treatment that resulted in a 33% increase in APTT by 13 weeks with no effects on PT, platelets, or increased bleeding following partial tail amputation or gum and skin laceration. The dose-dependent presence of basophilic granules in multiple tissues in ISIS 416858-treated animals was an expected histologic change for a 2'-MOE antisense oligonucleotide, and no toxicity was attributed to hepatic FXI reduction. Basophilic granules reflect cellular drug uptake and subsequent visualization on hematoxylin staining. These results suggest that ISIS 416858 has an acceptable preclinical safety profile and is a promising clinical candidate to treat thrombotic disease. PMID:22246038

  2. Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts

    PubMed Central

    Lorenz, C.; Gesell, T.; Zimmermann, B.; Schoeberl, U.; Bilusic, I.; Rajkowitsch, L.; Waldsich, C.; von Haeseler, A.; Schroeder, R.

    2010-01-01

    An unexpectedly high number of regulatory RNAs have been recently discovered that fine-tune the function of genes at all levels of expression. We employed Genomic SELEX, a method to identify protein-binding RNAs encoded in the genome, to search for further regulatory RNAs in Escherichia coli. We used the global regulator protein Hfq as bait, because it can interact with a large number of RNAs, promoting their interaction. The enriched SELEX pool was subjected to deep sequencing, and 8865 sequences were mapped to the E. coli genome. These short sequences represent genomic Hfq-aptamers and are part of potential regulatory elements within RNA molecules. The motif 5′-AAYAAYAA-3′ was enriched in the selected RNAs and confers low-nanomolar affinity to Hfq. The motif was confirmed to bind Hfq by DMS footprinting. The Hfq aptamers are 4-fold more frequent on the antisense strand of protein coding genes than on the sense strand. They were enriched opposite to translation start sites or opposite to intervening sequences between ORFs in operons. These results expand the repertoire of Hfq targets and also suggest that Hfq might regulate the expression of a large number of genes via interaction with cis-antisense RNAs. PMID:20348540

  3. Simultaneous characterization of sense and antisense genomic processes by the double-stranded hidden Markov model.

    PubMed

    Glas, Julia; Dümcke, Sebastian; Zacher, Benedikt; Poron, Don; Gagneur, Julien; Tresch, Achim

    2016-03-18

    Hidden Markov models (HMMs) have been extensively used to dissect the genome into functionally distinct regions using data such as RNA expression or DNA binding measurements. It is a challenge to disentangle processes occurring on complementary strands of the same genomic region. We present the double-stranded HMM (dsHMM), a model for the strand-specific analysis of genomic processes. We applied dsHMM to yeast using strand specific transcription data, nucleosome data, and protein binding data for a set of 11 factors associated with the regulation of transcription.The resulting annotation recovers the mRNA transcription cycle (initiation, elongation, termination) while correctly predicting strand-specificity and directionality of the transcription process. We find that pre-initiation complex formation is an essentially undirected process, giving rise to a large number of bidirectional promoters and to pervasive antisense transcription. Notably, 12% of all transcriptionally active positions showed simultaneous activity on both strands. Furthermore, dsHMM reveals that antisense transcription is specifically suppressed by Nrd1, a yeast termination factor. PMID:26578558

  4. Delivery of antisense oligodeoxyribonucleotide lipopolyplex nanoparticles assembled by microfluidic hydrodynamic focusing

    PubMed Central

    Koh, Chee Guan; Zhang, Xulang; Liu, Shujun; Golan, Sharon; Yu, Bo; Yang, Xiaojuan; Guan, Jingjiao; Jin, Yan; Talmon, Yeshayahu; Muthusamy, Natarajan; Chan, Kenneth K; Byrd, John C.; Lee, Robert J.; Marcucci, Guido; Lee, L. James

    2015-01-01

    A multi-inlet microfluidic hydrodynamic focusing (MF) system to prepare lipopolyplex (LP) containing Bcl-2 antisense deoxyoligonucleotide (ODN) was developed and evaluated. The lipopolyplex nanoparticles consist of ODN:protamine:lipids (1:0.3:12.5 wt/wt ratio) and the lipids included DC-Chol:egg PC:PEG–DSPE (40:58:2 mol/mol%). Using K562 human erythroleukemia cells, which contain an abundance of Bcl-2 and overexpression of transferrin receptors (TfR), and G3139 (oblimerson sodium or Genasense™) as a model cell line and drug, respectively, the Bcl-2 down-regulation at the mRNA and protein levels as well as cellular uptake and apoptosis was compared between the conventional bulk mixing (BM) method and the MF method. The lipopolyplex size and surface charge were characterized by dynamic light scattering (DLS) and zeta potential (ζ) measurement, respectively, while the ODN encapsulation efficiency was determined by gel electrophoresis. Cryogenic transmission electron microscopy (Cryo-TEM) was used to determine the morphology of LPs. Our results demonstrated that MF produced LP nanoparticles had similar structures but smaller size and size distribution compared to BM LP nanoparticles. MF LP nanoparticles had higher level of Bcl-2 antisense uptake and showed more efficient down-regulation of Bcl-2 protein level than BM LP nanoparticles. PMID:19716852

  5. Transcription of rat mitochondrial NADH-dehydrogenase subunits. Presence of antisense and precursor RNA species.

    PubMed

    Tullo, A; Tanzariello, F; D'Erchia, A M; Nardelli, M; Papeo, P A; Sbisà, E; Saccone, C

    1994-10-31

    We have characterized the transcriptional pattern of the rat mitochondrial ND6-containing region in vivo. We have identified a stable polyadenylated RNA species complementary for the full length of the ND6 mRNA. The analysis of the ND5 region has revealed the presence of an antisense RNA only at its 3' end. The presence of these stable antisense species complementary to structural genes is intriguing and suggests a possible regulatory function. The quantitative analyses have demonstrated that the H transcripts, both codogenic and non-codogenic, are more stable than the L transcripts. We have defined the 5' end of the ND6 mRNA at the level of the ATG downstream of the tRNA(Glu). The mapping of the ND1 5' end has demonstrated that GTG is the first codon of the mRNA. Our findings suggest that the post-transcriptional mechanisms involved in the expression of the mt genome are much more numerous and complex than those already described in the literature. PMID:7957896

  6. On Measuring miRNAs after Transient Transfection of Mimics or Antisense Inhibitors

    PubMed Central

    Thomson, Daniel W.; Bracken, Cameron P.; Szubert, Jan M.; Goodall, Gregory J.

    2013-01-01

    The ability to alter microRNA (miRNA) abundance is crucial for studying miRNA function. To achieve this there is widespread use of both exogenous double-stranded miRNA mimics for transient over-expression, and single stranded antisense RNAs (antimiRs) for miRNA inhibition. The success of these manipulations is often assessed using qPCR, but this does not accurately report the level of functional miRNA. Here, we draw attention to this discrepancy, which is overlooked in many published reports. We measured the functionality of exogenous miRNA by comparing the total level of transfected miRNA in whole cell extracts to the level of miRNA bound to Argonaute following transfection and show that the supraphysiological levels of transfected miRNA frequently seen using qPCR do not represent the functional levels, because the majority of transfected RNA that is detected is vesicular and not accessible for loading into Argonaute as functionally active miRNAs. In the case of microRNA inhibition by transient transfection with antisense inhibitors, there is also the potential for discrepancy, because following cell lysis the abundant inhibitor levels from cellular vesicles can directly interfere with the PCR reaction used to measure miRNA level. PMID:23358900

  7. Irradiation of Human Prostate Cancer Cells Increases Uptake of Antisense Oligodeoxynucleotide

    SciTech Connect

    Anai, Satoshi; Brown, Bob D.; Nakamura, Kogenta; Goodison, Steve; Hirao, Yoshihiko; Rosser, Charles J. . E-mail: charles.rosser@urology.ufl.edu

    2007-07-15

    Purpose: To investigate whether irradiation before antisense Bcl-2 oligodeoxynucleotide (ODN) administration enhances tissue uptake, and whether periodic dosing enhances cellular uptake of fluorescently labeled ODN relative to constant dosing. Methods and Materials: PC-3-Bcl-2 cells (prostate cancer cell line engineered to overexpress Bcl-2) were subjected to increasing doses of irradiation (0-10 Gy) with or without increasing concentrations of fluorescently labeled antisense Bcl-2 ODN (G4243). The fluorescent signal intensity was quantified as the total grain area with commercial software. In addition, PC-3-Bcl-2 subcutaneous xenograft tumors were treated with or without irradiation in combination with various dosing schemas of G4243. The uptake of fluorescent G4243 in tumors was quantitated. Results: The uptake of G4243 was increased in prostate cancer cells exposed to low doses of irradiation both in vitro and in vivo. Irradiation before G4243 treatment resulted in increased fluorescent signal intensity in xenograft tumors compared with those irradiated after G4243 treatment. A single weekly dose of G4243 produced higher G4243 uptake in xenograft tumors than daily dosing, even when the total dose administered per week was held constant. Conclusions: These findings suggest that ionizing radiation increases the uptake of therapeutic ODN in target tissues and, thus, has potential to increase the efficacy of ODN in clinical applications.

  8. Cellular Antisense Activity of PNA-Oligo(bicycloguanidinium) Conjugates Forming Self-Assembled Nanoaggregates.

    PubMed

    Valero, Julián; Shiraishi, Takehiko; de Mendoza, Javier; Nielsen, Peter E

    2015-07-27

    A series of peptide nucleic acid-oligo(bicycloguanidinium) (PNA-BGn ) conjugates were synthesized and characterized in terms of cellular antisense activity by using the pLuc750HeLa cell splice correction assay. PNA-BG4 conjugates exhibited low micromolar antisense activity, and their cellular activity required the presence of a hydrophobic silyl terminal protecting group on the oligo(BG) ligand and a minimum of four guanidinium units. Surprisingly, a nonlinear dose-response with an activity threshold around 3-4 μM, indicative of large cooperativity, was observed. Supported by light scattering and electron microscopy analyses, we propose that the activity, and thus cellular delivery, of these lipo-PNA-BG4 conjugates is dependent on self-assembled nanoaggregates. Finally, cellular activity was enhanced by the presence of serum. Therefore we conclude that the lipo-BG-PNA conjugates exhibit an unexpected mechanism for cell delivery and are of interest for further in vivo studies. PMID:26010253

  9. Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants.

    PubMed

    Zeh, M; Casazza, A P; Kreft, O; Roessner, U; Bieberich, K; Willmitzer, L; Hoefgen, R; Hesse, H

    2001-11-01

    Methionine (Met) and threonine (Thr) are members of the aspartate family of amino acids. In plants, their biosynthetic pathways diverge at the level of O-phosphohomo-serine (Ser). The enzymes cystathionine gamma-synthase and Thr synthase (TS) compete for the common substrate O-phosphohomo-Ser with the notable feature that plant TS is activated through S-adenosyl-Met, a metabolite derived from Met. To investigate the regulation of this branch point, we engineered TS antisense potato (Solanum tuberosum cv Désirée) plants using the constitutive cauliflower mosaic virus 35S promoter. In leaf tissues, these transgenics exhibit a reduction of TS activity down to 6% of wild-type levels. Thr levels are reduced to 45% wild-type controls, whereas Met levels increase up to 239-fold depending on the transgenic line and environmental conditions. Increased levels of homo-Ser and homo-cysteine indicate increased carbon allocation into the aspartate pathway. In contrast to findings in Arabidopsis, increased Met content has no detectable effect on mRNA or protein levels or on the enzymatic activity of cystathionine gamma-synthase in potato. Tubers of TS antisense potato plants contain a Met level increased by a factor of 30 and no reduction in Thr. These plants offer a major biotechnological advance toward the development of crop plants with improved nutritional quality. PMID:11706163

  10. Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis

    PubMed Central

    Donaldson, Michael E; Saville, Barry J

    2013-01-01

    Ustilago maydis infection of Zea mays leads to the production of thick-walled diploid teliospores that are the dispersal agent for this pathogen. Transcriptome analyses of this model biotrophic basidiomycete fungus identified natural antisense transcripts (NATs) complementary to 247 open reading frames. The U. maydis NAT cDNAs were fully sequenced and annotated. Strand-specific RT-PCR screens confirmed expression and identified NATs preferentially expressed in the teliospore. Targeted screens revealed four U. maydis NATs that are conserved in a related fungus. Expression of NATs in haploid cells, where they are not naturally occurring, resulted in increased steady-state levels of some complementary mRNAs. The expression of one NAT, as-um02151, in haploid cells resulted in a twofold increase in complementary mRNA levels, the formation of sense–antisense double-stranded RNAs, and unchanged Um02151 protein levels. This led to a model for NAT function in the maintenance and expression of stored teliospore mRNAs. In testing this model by deletion of the regulatory region, it was determined that alteration in NAT expression resulted in decreased pathogenesis in both cob and seedling infections. This annotation and functional analysis supports multiple roles for U. maydis NATs in controlling gene expression and influencing pathogenesis. PMID:23650872

  11. Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity.

    PubMed

    Xu, Huibin; Wei, Yidong; Zhu, Yongsheng; Lian, Ling; Xie, Hongguang; Cai, Qiuhua; Chen, Qiushi; Lin, Zhongping; Wang, Zonghua; Xie, Huaan; Zhang, Jianfu

    2015-05-01

    Lipid peroxidation plays a major role in seed longevity and viability. In rice grains, lipid peroxidation is catalyzed by the enzyme lipoxygenase 3 (LOX3). Previous reports showed that grain from the rice variety DawDam in which the LOX3 gene was deleted had less stale flavour after grain storage than normal rice. The molecular mechanism by which LOX3 expression is regulated during endosperm development remains unclear. In this study, we expressed a LOX3 antisense construct in transgenic rice (Oryza sativa L.) plants to down-regulate LOX3 expression in rice endosperm. The transgenic plants exhibited a marked decrease in LOX mRNA levels, normal phenotypes and a normal life cycle. We showed that LOX3 activity and its ability to produce 9-hydroperoxyoctadecadienoic acid (9-HPOD) from linoleic acid were significantly lower in transgenic seeds than in wild-type seeds by measuring the ultraviolet absorption of 9-HPOD at 234 nm and by high-performance liquid chromatography. The suppression of LOX3 expression in rice endosperm increased grain storability. The germination rate of TS-91 (antisense LOX3 transgenic line) was much higher than the WT (29% higher after artificial ageing for 21 days, and 40% higher after natural ageing for 12 months). To our knowledge, this is the first report to demonstrate that decreased LOX3 expression can preserve rice grain quality during storage with no impact on grain yield, suggesting potential applications in agricultural production. PMID:25545811

  12. High transfection efficiency of quantum dot-antisense oligonucleotide nanoparticles in cancer cells through dual-receptor synergistic targeting.

    PubMed

    Zhang, Ming-Zhen; Li, Cheng; Fang, Bi-Yun; Yao, Ming-Hao; Ren, Qiong-Qiong; Zhang, Lin; Zhao, Yuan-Di

    2014-06-27

    Incorporating ligands with nanoparticle-based carriers for specific delivery of therapeutic nucleic acids (such as antisense oligonucleotides and siRNA) to tumor sites is a promising approach in anti-cancer strategies. However, nanoparticle-based carriers remain insufficient in terms of the selectivity and transfection efficiency. In this paper, we designed a dual receptor-targeted QDs gene carrier QD-(AS-ODN+GE11+c(RGDfK)) which could increase the cellular uptake efficiency and further enhance the transfection efficiency. Here, the targeting ligands used were peptides GE11 and c(RGDfK) which could recognize epidermal growth factor receptors (EGFR) and integrin ανβ3 receptors, respectively. Quantitative flow cytometry and ICP/MS showed that the synergistic effect between EGFR and integrin ανβ3 increased the cellular uptake of QDs carriers. The effects of inhibition agents showed the endocytosis pathway of QD-(AS-ODN+GE11+c(RGDfK)) probe was mainly clathrin-mediated. Western blot confirmed that QD-(AS-ODN+GE11+c(RGDfK)) could further enhance gene silencing efficiency compared to QD-(AS-ODN+GE11) and QD-(AS-ODN+c(RGDfK)), suggesting this dual receptor-targeted gene carrier achieved desired transfection efficiency. In this gene delivery system, QDs could not only be used as a gene vehicle but also as fluorescence probe, allowing for localization and tracking during the delivery process. This transport model is very well referenced for non-viral gene carriers to enhance the targeting ability and transfection efficiency. PMID:24896735

  13. Antisense oligonucleotides and all-trans retinoic acid have a synergistic anti-tumor effect on oral squamous cell carcinoma

    PubMed Central

    Xu, Qin; Zhang, Zhiyuan; Zhang, Ping; Chen, Wantao

    2008-01-01

    Background Antisense oligonucleotides against hTR (As-ODN-hTR) have shown promising results as treatment strategies for various human malignancies. All-trans retinoic acid (ATRA) is a signalling molecule with important roles in differentiation and apoptosis. Biological responses to ATRA are currently used therapeutically in various human cancers. The aim of this study was to evaluate the anti-tumor effects of As-ODN-hTR combined with ATRA in vivo. Methods In situ human oral squamous cell carcinoma (OSCC) models were established by subcutaneous injection of Tca8113 cells. Mice were treated with sense oligonucleotides against hTR(S-ODN-hTR) alone, As-ODN-hTR alone, ATRA alone, As-ODN-hTR plus ATRA, or S-ODN-hTR plus ATRA. Tumor size and weight were assessed in the mice. Telomerase activity was detected by a TRAP assay, apoptotic cells were evaluated with a Tunel assay, the expression of apoptosis-related proteins (Bcl-2 and Bax) was evaluated by immunohistochemistry and ultrastructural morphological changes in the tumor specimen were examined. Results Both As-ODN-hTR and ATRA can significantly inhibit tumor growth in this OSCC xenograft solid-tumor model, and the combination of the two agents had a synergistic anti-tumorogenic effect. We also demonstrated that this anti-tumor effect correlated with inhibition of telomerase activity. Furthermore, significant increases in the number of apoptotic cells, typical apoptotic morphology and a downregulation of the anti-apoptotic protein, bcl-2 were observed in the treated tissues. Conclusion The combination of As-ODN-hTR and ATRA has a synergistic anti-tumor effect. This anti-tumor effect can be mainly attributed to apoptosis induced by a decrease in telomerase activity. Bcl-2 plays an important role in this process. Therefore, combining As-ODN-hTR and ATRA may be an approach for the treatment of human oral squamous cell carcinoma. PMID:18522733

  14. Antisense Inhibition of Expression of Cysteine Proteinases Affects Entamoeba histolytica-Induced Formation of Liver Abscess in Hamsters

    PubMed Central

    Ankri, Serge; Stolarsky, Tamara; Bracha, Rivka; Padilla-Vaca, Felipe; Mirelman, David

    1999-01-01

    Trophozoites of virulent Entamoeba histolytica transfected with the antisense gene encoding cysteine proteinase 5 (CP5) have only 10% of the CP activity but retain their cytopathic activity on mammalian monolayers. In the present study we found that the transfected trophozoites with low levels of CP activity were incapable of inducing the formation of liver lesions in hamsters. PMID:9864246

  15. Targeting protein kinase C-alpha (PKC-alpha) in cancer with the phosphorothioate antisense oligonucleotide aprinocarsen.

    PubMed

    Lahn, Michael; Sundell, Karen; Moore, Stephanie

    2003-12-01

    Antisense oligonucleotides (ASOs) offer a novel pharmacological platform to develop highly specific drugs. As shown by the clinical development of aprinocarsen, an ASO directed against protein kinase C-alpha (PKC-alpha), this platform has made a remarkable advance from the bench to the bedside. This review summarizes the rationale of the early development of aprinocarsen and current clinical experience. PMID:14751841

  16. Reduction of methylviologen-mediated oxidative stress tolerance in antisense transgenic tobacco seedlings through restricted expression of StAPX *

    PubMed Central

    Sun, Wei-Hong; Wang, Yong; He, Hua-Gang; Li, Xue; Song, Wan; Du, Bin; Meng, Qing-Wei

    2013-01-01

    Ascorbate peroxidases are directly involved in reactive oxygen species (ROS) scavenging by reducing hydrogen peroxide to water. The tomato thylakoid-bound ascorbate peroxidase gene (StAPX) was introduced into tobacco. RNA gel blot analysis confirmed that StAPX in tomato leaves was induced by methylviologen-mediated oxidative stress. The sense transgenic seedlings exhibited higher tAPX activity than that of the wild type (WT) plants under oxidative stress conditions, while the antisense seedlings exhibited lower tAPX activity. Lower APX activities of antisense transgenic seedlings caused higher malondialdehyde contents and relative electrical conductivity. The sense transgenic seedlings with higher tAPX activity maintained higher chlorophyll content and showed the importance of tAPX in maintaining the optimal chloroplast development under methylviologen stress conditions, whereas the antisense lines maintained lower chlorophyll content than WT seedlings. Results indicated that the over-expression of StAPX enhanced tolerance to methylviologen-mediated oxidative stress in sense transgenic tobacco early seedlings, whereas the suppression of StAPX in antisense transgenic seedlings showed high sensitivity to oxidative stress. PMID:23825143

  17. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural antisense transcripts (NATs) are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded) or a different locus (trans-encoded). They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation....

  18. Additive effect of mPer1 and mPer2 antisense oligonucleotides on light-induced phase shift.

    PubMed

    Wakamatsu, H; Takahashi, S; Moriya, T; Inouye, S T; Okamura, H; Akiyama, M; Shibata, S

    2001-01-22

    It is well known that light induces both mPer1 and mPer2 mRNA in the suprachiasmatic nucleus. We have reported that mPer1 antisense oligonucleotides (ODNs) inhibited the light-induced phase delays of mouse locomotor rhythm. In this study, we asked whether both or either mPer1 or mPer2 expression is necessary to induce the phase shift. We examined the effects of inhibition of mRNA expression on light-induced phase delays of mouse circadian behavior rhythm. Light-induced phase delays were moderately attenuated by microinjection of mPer1 or mPer2 antisense ODN, but not by mPer3 antisense or mPer1, mPer2 scrambled ODNs, whereas following simultaneous injection of both mPer1 and mPer2 antisense ODNs they disappeared. The present results suggest that acute induction of mPer1 and mPer2 gene play an additive effect on photic entrainment. PMID:11201072

  19. Partial rescue of a lethal phenotype of fragile bones in transgenic mice with a chimeric antisense gene directed against a mutated collagen gene.

    PubMed Central

    Khillan, J S; Li, S W; Prockop, D J

    1994-01-01

    Previously, transgenic mice were prepared that developed a lethal phenotype of fragile bones because they expressed an internally deleted mini-gene for the pro alpha 1(I) chain of human type I procollagen. The shortened pro alpha 1(I) chains synthesized from the human transgene bound to and produced degradation of normal pro alpha 1(I) chains synthesized from the normal mouse alleles. Here we assembled an antisense gene that was similar to the internally deleted COL1A1 minigene but the 3' half of the gene was inverted so as to code for an antisense RNA. Transgenic mice expressing the antisense gene had a normal phenotype, apparently because the antisense gene contained human sequences instead of mouse sequences. Two lines of mice expressing the antisense gene were bred to two lines of transgenic mice expressing the mini-gene. In mice that inherited both genes, the incidence of the lethal fragile bone phenotype was reduced from 92% to 27%. The effects of the antisense gene were directly demonstrated by an increase in the ratio of normal mouse pro alpha 1(I) chains to human mini-pro alpha 1(I) chains in tissues from mice that inherited both genes and had a normal phenotype. The results raise the possibility that chimeric gene constructs that contain intron sequences and in which only the second half of a gene is inverted may be particularly effective as antisense genes. Images PMID:8022775

  20. [Connection of magnetic antisense probe with SK-Br-3 oncocyte mRNA nucleotide detected by high resolution atomic force microscope].

    PubMed

    Tan, Shude; Ouyang, Yu; Li, Xinyou; Wen, Ming; Li, Shaolin

    2011-06-01

    The present paper is aimed to detect superparamagnetic iron oxide labeled c-erbB2 oncogene antisense oligonucleotide probe (magnetic antisense probe) connected with SK-Br-3 oncocyte mRNA nucleotide by high resolution atomic force microscope (AFM). We transfected SK-Br-3 oncocyte with magnetic antisense probe, then observed the cells by AFM with high resolution and detected protein expression and magnetic resonance imagine (MRI). The high resolution AFM clearly showed the connection of the oligonucleotide remote end of magnetic antisense probe with the mRNA nucleotide of oncocyte. The expression of e-erbB2 protein in SK-Br3 cells were highly inhibited by using magnetic antisense probe. We then obtained the lowest signal to noise ratio (SNR) of SK-Br-3 oncocyte transfected with magnetic antisense probe by MRI (P<0.05). These experiments demonstrated that the high resolution AFM could be used to show the binding of magnetic antisense probe and SK-Br-3 mRNA of tumor cell nuclear. PMID:21774198

  1. Suppression of autocrine and paracrine functions of basic fibroblast growth factor by stable expression of perlecan antisense cDNA.

    PubMed Central

    Aviezer, D; Iozzo, R V; Noonan, D M; Yayon, A

    1997-01-01

    Heparan sulfate proteoglycans (HSPG) play a critical role in the formation of distinct fibroblast growth factor (FGF)-HS complexes, augmenting high-affinity binding and receptor activation. Perlecan, a secreted HSPG abundant in proliferating cells, is capable of inducing FGF-receptor interactions in vitro and angiogenesis in vivo. Stable and specific reduction of perlecan levels in mouse NIH 3T3 fibroblasts and human metastatic melanoma cells has been achieved by expression of antisense cDNA corresponding to the N-terminal and HS attachment domains of perlecan. Long-term perlecan downregulation is evidenced by reduced levels of perlecan mRNA and core protein as indicated by Northern blot analysis, immunoblots, and immunohistochemistry, using DNA probes and antibodies specific to mouse or human perlecan. The response of antisense perlecan-expressing cells to increasing concentrations of basic FGF (bFGF) is dramatically reduced in comparison to that in wild-type or vector-transfected cells, as measured by thymidine incorporation and rate of proliferation. Furthermore, receptor binding and affinity labeling of antisense perlecan-transfected cells with 125I-bFGF is markedly inhibited, indicating that eliminating perlecan expression results in reduced high-affinity bFGF binding. Both the binding and mitogenic response of antisense-perlecan-expressing clones to bFGF can be rescued by exogenous heparin or perlecan. These results support the notion that perlecan is a major accessory receptor for bFGF in mouse fibroblasts and human melanomas and point to the possible use of perlecan antisense constructs as specific modulators of bFGF-mediated responses. PMID:9121441

  2. Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA

    PubMed Central

    Fattal, Elias; Barratt, Gillian

    2009-01-01

    Antisense oligonucleotides and small interfering RNA have enormous potential for the treatment of a number of diseases, including cancer. However, several impediments to their widespread use as drugs still have to be overcome: in particular their lack of stability in physiological fluids and their poor penetration into cells. Association with or encapsulation within nano-and microsized drug delivery systems could help to solve these problems. In this review, we describe the progress that has been made using delivery systems composed of natural or synthetic polymers in the form of complexes, nanoparticles or microparticles. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=200 PMID:19366348

  3. R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus.

    PubMed

    Sun, Qianwen; Csorba, Tibor; Skourti-Stathaki, Konstantina; Proudfoot, Nicholas J; Dean, Caroline

    2013-05-01

    Roles for long noncoding RNAs (lncRNAs) in gene expression are emerging, but regulation of the lncRNA itself is poorly understood. We have identified a homeodomain protein, AtNDX, that regulates COOLAIR, a set of antisense transcripts originating from the 3' end of Arabidopsis FLOWERING LOCUS C (FLC). AtNDX associates with single-stranded DNA rather than double-stranded DNA non-sequence-specifically in vitro, and localizes to a heterochromatic region in the COOLAIR promoter in vivo. Single-stranded DNA was detected in vivo as part of an RNA-DNA hybrid, or R-loop, that covers the COOLAIR promoter. R-loop stabilization mediated by AtNDX inhibits COOLAIR transcription, which in turn modifies FLC expression. Differential stabilization of R-loops could be a general mechanism influencing gene expression in many organisms. PMID:23641115

  4. Antisense treatment of caliciviridae: an emerging disease agent of animals and humans.

    PubMed

    Smith, Alvin W; Matson, David O; Stein, David A; Skilling, Douglas E; Kroeker, Andrew D; Berke, Tamas; Iversen, Patrick L

    2002-04-01

    The Earth's oceans are the primary reservoir for an emerging family of RNA viruses, the Caliciviridae, which can cause a spectrum of diseases in marine animals, wildlife, farm animals, pets and humans. Certain members of this family have unusually broad host ranges, and some are zoonotic (transmissible from animals to humans). The RNA virus replicative processes lack effective genetic repair mechanisms, and, therefore, virtually every calicivirus replicate is a mutant. Hence, traditional therapeutics dependent on specific nucleic acid sequences or protein epitopes lack the required diversity of sequence or conformational specificity that would be required to reliably detect, prevent or treat infections from these mutant clusters (quasi-species) of RNA viruses, including the Caliciviridae. Antisense technology using phosphorodiamidate morpholino oligomers shows promise in overcoming these current diagnostic and therapeutic problems inherent with newly emerging viral diseases. PMID:12044040

  5. A cytoplasmic pathway for gapmer antisense oligonucleotide-mediated gene silencing in mammalian cells

    PubMed Central

    Castanotto, Daniela; Lin, Min; Kowolik, Claudia; Wang, LiAnn; Ren, Xiao-Qin; Soifer, Harris S.; Koch, Troels; Hansen, Bo Rode; Oerum, Henrik; Armstrong, Brian; Wang, Zhigang; Bauer, Paul; Rossi, John; Stein, C.A.

    2015-01-01

    Antisense oligonucleotides (ASOs) are known to trigger mRNA degradation in the nucleus via an RNase H-dependent mechanism. We have now identified a putative cytoplasmic mechanism through which ASO gapmers silence their targets when transfected or delivered gymnotically (i.e. in the absence of any transfection reagent). We have shown that the ASO gapmers can interact with the Ago-2 PAZ domain and can localize into GW-182 mRNA-degradation bodies (GW-bodies). The degradation products of the targeted mRNA, however, are not generated by Ago-2-directed cleavage. The apparent identification of a cytoplasmic pathway complements the previously known nuclear activity of ASOs and concurrently suggests that nuclear localization is not an absolute requirement for gene silencing. PMID:26433227

  6. Lipid-Albumin Nanoparticles (LAN) for Therapeutic Delivery of Antisense Oligonucleotide against HIF-1α.

    PubMed

    Li, Hong; Quan, Jishan; Zhang, Mengzi; Yung, Bryant C; Cheng, Xinwei; Liu, Yang; Lee, Young B; Ahn, Chang-Ho; Kim, Deog Joong; Lee, Robert J

    2016-07-01

    Lipid-albumin nanoparticles (LAN) were synthesized for delivery of RX-0047, an antisense oligonucleotide (ASO) against the hypoxia inducible factor-1 alpha (HIF-1α) to solid tumor. These lipid nanoparticles (LNs) incorporated a human serum albumin-pentaethylenehexamine (HSA-PEHA) conjugate, which is cationic and can form electrostatic complexes with negatively charged oligonucleotides. The delivery efficiency of LAN-RX-0047 was investigated in KB cells and a KB murine xenograft model. When KB cells were treated with LAN-RX-0047, significant HIF-1α downregulation and enhanced cellular uptake were observed compared to LN-RX-0047. LN-RX-0047 and LAN-RX-0047 showed similar cytotoxicity against KB cells with IC50 values of 19.3 ± 3.8 and 20.1 ± 4.2 μM, respectively. LAN-RX-0047 was shown to be taken up by the cells via the macropinocytosis and caveolae-mediated endocytosis pathways while LN-RX-0047 was taken up by cells via caveolae-mediated endocytosis. In the KB xenograft tumor model, LAN-RX-0047 exhibited tumor suppressive activity and significantly reduced intratumoral HIF-1α expression compared to LN-RX-0047. Furthermore, LAN-RX-0047 greatly increased survival time of mice bearing KB-1 xenograft tumors at doses of either 3 mg/kg or 16 mg/kg. These results indicated that LAN-RX-0047 is a highly effective vehicle for therapeutic delivery of antisense agents to tumor. PMID:27253378

  7. CD133 antisense suppresses cancer cell growth and increases sensitivity to cisplatin in vitro

    PubMed Central

    BLANCAS-MOSQUEDA, MARISOL; ZAPATA-BENAVIDES, PABLO; ZAMORA-ÁVILA, DIANA; SAAVEDRA-ALONSO, SANTIAGO; MANILLA-MUÑOZ, EDGAR; FRANCO-MOLINA, MOISÉS; DE LA PEÑA, CARMEN MONDRAGÓN; RODRÍGUEZ-PADILLA, CRISTINA

    2012-01-01

    The increased incidence of cancer in recent years is associated with a high rate of mortality. Numerous types of cancer have a low percentage of CD133+ cells, which have similar features to stem cells. The CD133 molecule is involved in apoptosis and cell proliferation. The aim of this study was to determine the biological effect of CD133 suppression and its role in the chemosensitization of cancer cell lines. RT-PCR and immunocytochemical analyses indicated that CD133 was expressed in the cancer cell lines B16F10, MCF7 and INER51. Downregulation of CD133 by transfection with an antisense sequence (As-CD133) resulted in a decrease in cancer cell viability of up to 52, 47 and 22% in B16F10, MCF-7 and INER51 cancer cell lines, respectively. This decreased viability appeared to be due to the induction of apoptosis. In addition, treatment with As-CD133 in combination with cisplatin had a synergic effect in all of the cancer cell lines analyzed, and in particular, significantly decreased the viability of B16F10 cancer cells compared with each treatment separately (3.1% viability for the combined treatment compared with 48% for 0.4 μg As-CD133 and 25% for 5 ng/μl cisplatin; P<0.05). The results indicate that the downregulation of CD133 by antisense is a potential therapeutic target for cancer and has a synergistic effect when administered with minimal doses of the chemotherapeutic drug cisplatin, suggesting that this combination strategy may be applied in cancer treatment. PMID:23226746

  8. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake.

    PubMed

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D; Otero, Carolina

    2016-12-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes. PMID:26847692

  9. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake

    NASA Astrophysics Data System (ADS)

    Márquez-Miranda, Valeria; Peñaloza, Juan Pablo; Araya-Durán, Ingrid; Reyes, Rodrigo; Vidaurre, Soledad; Romero, Valentina; Fuentes, Juan; Céric, Francisco; Velásquez, Luis; González-Nilo, Fernando D.; Otero, Carolina

    2016-02-01

    Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.

  10. Clinical development of an antisense therapy for the treatment of transthyretin-associated polyneuropathy.

    PubMed

    Ackermann, Elizabeth J; Guo, Shuling; Booten, Sheri; Alvarado, Luis; Benson, Merrill; Hughes, Steve; Monia, Brett P

    2012-06-01

    Transthyretin (TTR)-associated amyloidosis is a late-onset autosomal-dominant genetic disease. Over 100 amyloidogenic mutations have been identified in TTR which destabilize the TTR tetramer thereby inducing the formation of amyloid fibrils in tissues such as the heart and peripheral nerves. This disease mainly affects peripheral nerves, causing familial amyloid polyneuropathy (FAP) or heart, causing familial amyloid cardiomyopathy (FAC). Circulating TTR is predominantly produced by liver, and the only widely available clinical treatment for FAP is orthotopic liver transplantation (OLT), whereas no treatment currently exists for FAC. Using second-generation antisense technology, we identified an antisense oligonucleotide (ASO) targeting TTR, ISIS-TTR(Rx), for the treatment of TTR-associated amyloidosis. When tested in a human TTR transgenic mouse model (hTTR Ile84Ser), ISIS-TTR(Rx) showed a dose-dependent reduction of human TTR (up to >80%) at both the mRNA and protein levels. In cynomolgus monkeys, ISIS-TTR(Rx) treatment produced a time-dependent reduction in plasma TTR levels. After 12 weeks of treatment in monkey, liver TTR mRNA and plasma TTR protein levels were reduced by ~80%. As expected, treatment with ISIS-TTR(Rx) also produced a significant decrease in plasma RBP4 levels that correlated with reductions in TTR levels. ISIS-TTR(Rx) treatment was well tolerated in both rodents and monkeys and produced a PK/PD profile consistent with prior experiences using this chemistry platform. ISIS-TTR(Rx) is currently under evaluation in a Phase 1 clinical trial in normal healthy volunteers, and interim results of this trial will be presented. PMID:22494066

  11. Downregulation of yidC in Escherichia coli by Antisense RNA Expression Results in Sensitization to Antibacterial Essential Oils Eugenol and Carvacrol

    PubMed Central

    Patil, Supriya Deepak; Sharma, Rajnikant; Srivastava, Santosh; Navani, Naveen Kumar; Pathania, Ranjana

    2013-01-01

    Background The rising drug resistance in pathogenic bacteria and inefficiency of current antibiotics to meet clinical requirements has augmented the need to establish new and innovative approaches for antibacterial drug discovery involving identification of novel antibacterial targets and inhibitors. Being obligatory for bacterial growth, essential gene products are considered vital as drug targets. The bacterial protein YidC is highly conserved among pathogens and is essential for membrane protein insertion due to which it holds immense potential as a promising target for antibacterial therapy. Methods/Principal Findings The aim of this study was to explore the feasibility and efficacy of expressed antisense-mediated gene silencing for specific downregulation of yidC in Escherichia coli. We induced RNA silencing of yidC which resulted in impaired growth of the host cells. This was followed by a search for antibacterial compounds sensitizing the YidC depleted cells as they may act as inhibitors of the essential protein or its products. The present findings affirm that reduction of YidC synthesis results in bacterial growth retardation, which warrants the use of this enzyme as a viable target in search of novel antibacterial agents. Moreover, yidC antisense expression in E. coli resulted in sensitization to antibacterial essential oils eugenol and carvacrol. Fractional Inhibitory Concentration Indices (FICIs) point towards high level of synergy between yidC silencing and eugenol/carvacrol treatment. Finally, as there are no known YidC inhibitors, the RNA silencing approach applied in this study put forward rapid means to screen novel potential YidC inhibitors. Conclusions/Significance The present results suggest that YidC is a promising candidate target for screening antibacterial agents. High level of synergy reported here between yidC silencing and eugenol/carvacrol treatment is indicative of a potential antibacterial therapy. This is the first report indicating

  12. Repression of Acetolactate Synthase Activity through Antisense Inhibition (Molecular and Biochemical Analysis of Transgenic Potato (Solanum tuberosum L. cv Desiree) Plants).

    PubMed Central

    Hofgen, R.; Laber, B.; Schuttke, I.; Klonus, A. K.; Streber, W.; Pohlenz, H. D.

    1995-01-01

    Acetolactate synthase (ALS), the first enzyme in the biosynthetic pathway of leucine, valine, and isoleucine, is the biochemical target of different herbicides. To investigate the effects of repression of ALS activity through antisense gene expression we cloned an ALS gene from potato (Solanum tuberosum L. cv Desiree), constructed a chimeric antisense gene under control of the cauliflower mosaic virus 35S promoter, and created transgenic potato plants through Agrobacterium tumefaciens-mediated gene transfer. Two regenerants revealed severe growth retardation and strong phenotypical effects resembling those caused by ALS-inhibiting herbicides. Antisense gene expression decreased the steady-state level of ALS mRNA in these plants and induced a corresponding decrease in ALS activity of up to 85%. This reduction was sufficient to generate plants almost inviable without amino acid supplementation. In both ALS antisense and herbicide-treated plants, we could exclude accumulation of 2-oxobutyrate and/or 2-aminobutyrate as the reason for the observed deleterious effects, but we detected elevated levels of free amino acids and imbalances in their relative proportions. Thus, antisense inhibition of ALS generated an in vivo model of herbicide action. Furthermore, expression of antisense RNA to the enzyme of interest provides a general method for validation of potential herbicide targets. PMID:12228373

  13. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.

  14. Down-regulation of protein kinase Ceta by antisense oligonucleotides sensitises A549 lung cancer cells to vincristine and paclitaxel.

    PubMed

    Sonnemann, Jürgen; Gekeler, Volker; Ahlbrecht, Katrin; Brischwein, Klaus; Liu, Chao; Bader, Peter; Müller, Cornelia; Niethammer, Dietrich; Beck, James F

    2004-06-25

    Previous studies point to protein kinase C (PKC) isozyme eta as a resistance factor in cancer cells. Therefore, we investigated whether down-regulation of PKCeta with second generation antisense oligonucleotides (ODNs) would sensitise A549 human lung carcinoma cells to cytostatics. The effects were compared to the outcome of Bcl-xL down-regulation. Upon treatment with antisense ODNs, PKCeta and Bcl-xL were both significantly reduced on mRNA and protein level. Down-regulation of either PKCeta or Bcl-xL in combination with vincristine or paclitaxel resulted in a significant increase in caspase-3 activity compared to that in the control oligonucleotide treated cells. In addition, PKCeta down-regulation augmented vincristine-induced dissipation of mitochondrial transmembrane potential. In conclusion, these results confirm that PKCeta might represent a considerable resistance factor and an interesting target to improve anticancer chemotherapy. PMID:15159020

  15. Analysis of 14-3-3 Family Member Function in Xenopus Embryos by Microinjection of Antisense Morpholino Oligos

    NASA Astrophysics Data System (ADS)

    Lau, Jeffrey M. C.; Muslin, Anthony J.

    The 14-3-3 intracellular phosphoserine/threonine-binding proteins are adapter molecules that regulate signal transduction, cell cycle, nutrient sensing, apoptotic, and cytoskeletal pathways. There are seven 14-3-3 family members, encoded by separate genes, in vertebrate organisms. To evaluate the role of individual 14-3-3 proteins in vertebrate embryonic development, we utilized an antisense morpholino oligo microinjection technique in Xenopus laevis embryos. By use of this method, we showed that embryos lacking specific 14-3-3 proteins displayed unique phenotypic abnormalities. Specifically, embryos lacking 14-3-3 τ exhibited gastrulation and axial patterning defects, but embryos lacking 14-3-3 γ exhibited eye defects without other abnormalities, and embryos lacking 14-3-3 ζ appeared completely normal. These and other results demonstrate the power and specificity of the morpholino antisense oligo microinjection technique.

  16. In vitro correction of a novel splicing alteration in the BTK gene by using antisense morpholino oligonucleotides.

    PubMed

    Rattanachartnarong, Natthakorn; Tongkobpetch, Siraprapa; Chatchatee, Pantipa; Daengsuwan, Tassalapa; Ittiwut, Chupong; Suphapeetiporn, Kanya; Shotelersuk, Vorasuk

    2014-10-01

    A novel sequence variant, c.240+109C>A, in the Bruton's tyrosine kinase (BTK) gene was identified in a patient with X-linked agammaglobulinemia. This alteration resulted in an incorporation of 106 nucleotides of BTK intron 3 into its mRNA. Administration of the 25-mer antisense morpholino oligonucleotide analog in the patient's cultured peripheral blood mononuclear cells was able to restore correctly spliced BTK mRNA, a potential treatment for X-linked agammaglobulinemia. PMID:24658450

  17. Antisense bcl-2 treatment increases programmed cell death in non-small cell lung cancer cell lines.

    PubMed

    Koty, P P; Zhang, H; Levitt, M L

    1999-02-01

    Programmed cell death (PCD) is a genetically regulated pathway that is altered in many cancers. This process is, in part, regulated by the ratio of PCD inducers (Bax) or inhibitors (Bcl-2). An abnormally high ratio of Bcl-2 to Bax prevents PCD, thus contributing to resistance to chemotherapeutic agents, many of which are capable of inducing PCD. Non-small cell lung cancer (NSCLC) cells demonstrate resistance to these PCD-inducing agents. If Bcl-2 prevents NSCLC cells from entering the PCD pathway, then reducing the amount of endogenous Bcl-2 product may allow these cells to spontaneously enter the PCD pathway. Our purpose was to determine the effects of bcl-2 antisense treatment on the levels of programmed cell death in NSCLC cells. First, we determined whether bcl-2 and bax mRNA were expressed in three morphologically distinct NSCLC cell lines: NCI-H226 (squamous), NCI-H358 (adenocarcinoma), and NCI-H596 (adenosquamous). Cells were then exposed to synthetic antisense bcl-2 oligonucleotide treatment, after which programmed cell death was determined, as evidenced by DNA fragmentation. Bcl-2 protein expression was detected immunohistochemically. All three NSCLC cell lines expressed both bcl-2 and bax mRNA and had functional PCD pathways. Synthetic antisense bcl-2 oligonucleotide treatment resulted in decreased Bcl-2 levels, reduced cell proliferation, decreased cell viability, and increased levels of spontaneous PCD. This represents the first evidence that decreasing Bcl-2 in three morphologically distinct NSCLC cell lines allows the cells to spontaneously enter a PCD pathway. It also indicates the potential therapeutic use of antisense bcl-2 in the treatment of NSCLC. PMID:10217615

  18. Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons.

    PubMed Central

    Ishitani, R; Chuang, D M

    1996-01-01

    Cytosine arabinonucleoside (AraC) is a pyrimidine antimetabolite that kills proliferating cells by inhibiting DNA synthesis and, importantly, is also an inducer of apoptosis. We recently reported that age-induced apoptotic cell death of cultured cerebellar neurons is directly associated with an over-expression of a particulate 38-kDa protein, identified by us as glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12). We now show that the AraC-induced neuronal death of immature cerebellar granule cells in culture is effectively delayed by actinomycin-D, cycloheximide, or aurintricarboxylic acid (a DNase inhibitor). Furthermore, two GAPDH antisense, but not their corresponding sense, oligodeoxyribonucleotides markedly arrested AraC-induced apoptosis. This protection was more effective than that induced by the above-mentioned classical inhibitors of apoptosis. Prior to AraC-induced neuronal death, GAPDH mRNA levels increased by approximately 2.5-fold, and this mRNA accumulation was blocked by actinomycin-D and the GAPDH antisense (but not sense) oligonucleotide. Like actinomycin-D, a GAPDH antisense oligonucleotide also suppressed the AraC-induced over-expression of the 38-kDa particulate protein (i.e., GAPDH), while the corresponding sense oligonucleotide was totally ineffective. Thus, the present results show that GAPDH over-expression is involved in AraC-induced apoptosis of cultured cerebellar granule cells. Images Fig. 2 Fig. 3 Fig. 4 PMID:8790435

  19. Nanoparticle Delivery of Antisense Oligonucleotides and Their Application in the Exon Skipping Strategy for Duchenne Muscular Dystrophy

    PubMed Central

    Falzarano, Maria Sofia; Passarelli, Chiara

    2014-01-01

    Antisense therapy is a powerful tool for inducing post-transcriptional modifications and thereby regulating target genes associated with disease. There are several classes of antisense oligonucleotides (AONs) with therapeutic use, such as double-stranded RNAs (interfering RNAs, utilized for gene silencing, and single-stranded AONs with various chemistries, which are useful for antisense targeting of micro-RNAs and mRNAs. In particular, the use of AONs for exon skipping, by targeting pre-mRNA, is proving to be a highly promising therapy for some genetic disorders like Duchenne muscular dystrophy and spinal muscular atrophy. However, AONs are unable to cross the plasma membrane unaided, and several other obstacles still remain to be overcome, in particular their instability due to their nuclease sensitivity and their lack of tissue specificity. Various drug delivery systems have been explored to improve the bioavailability of nucleic acids, and nanoparticles (NPs) have been suggested as potential vectors for DNA/RNA. This review describes the recent progress in AON conjugation with natural and synthetic delivery systems, and provides an overview of the efficacy of NP-AON complexes as an exon-skipping treatment for Duchenne muscular dystrophy. PMID:24506782

  20. Hormone-Dependent Expression of a Steroidogenic Acute Regulatory Protein Natural Antisense Transcript in MA-10 Mouse Tumor Leydig Cells

    PubMed Central

    Castillo, Ana Fernanda; Fan, Jinjiang; Papadopoulos, Vassilios; Podestá, Ernesto J.

    2011-01-01

    Cholesterol transport is essential for many physiological processes, including steroidogenesis. In steroidogenic cells hormone-induced cholesterol transport is controlled by a protein complex that includes steroidogenic acute regulatory protein (StAR). Star is expressed as 3.5-, 2.8-, and 1.6-kb transcripts that differ only in their 3′-untranslated regions. Because these transcripts share the same promoter, mRNA stability may be involved in their differential regulation and expression. Recently, the identification of natural antisense transcripts (NATs) has added another level of regulation to eukaryotic gene expression. Here we identified a new NAT that is complementary to the spliced Star mRNA sequence. Using 5′ and 3′ RACE, strand-specific RT-PCR, and ribonuclease protection assays, we demonstrated that Star NAT is expressed in MA-10 Leydig cells and steroidogenic murine tissues. Furthermore, we established that human chorionic gonadotropin stimulates Star NAT expression via cAMP. Our results show that sense-antisense Star RNAs may be coordinately regulated since they are co-expressed in MA-10 cells. Overexpression of Star NAT had a differential effect on the expression of the different Star sense transcripts following cAMP stimulation. Meanwhile, the levels of StAR protein and progesterone production were downregulated in the presence of Star NAT. Our data identify antisense transcription as an additional mechanism involved in the regulation of steroid biosynthesis. PMID:21829656

  1. Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA

    PubMed Central

    Johnson, Barbara W.; Olson, Ken E.; Allen-Miura, Tanya; Rayms-Keller, Alfredo; Carlson, Jonathan O.; Coates, Craig J.; Jasinskiene, Nijole; James, Anthony A.; Beaty, Barry J.; Higgs, Stephen

    1999-01-01

    A rapid and reproducible method of inhibiting the expression of specific genes in mosquitoes should further our understanding of gene function and may lead to the identification of mosquito genes that determine vector competence or are involved in pathogen transmission. We hypothesized that the virus expression system based on the mosquito-borne Alphavirus, Sindbis (Togaviridae), may efficiently transcribe effector RNAs that inhibit expression of a targeted mosquito gene. To test this hypothesis, germ-line-transformed Aedes aegypti that express luciferase (LUC) from the mosquito Apyrase promoter were intrathoracically inoculated with a double subgenomic Sindbis (dsSIN) virus TE/3′2J/anti-luc (Anti-luc) that transcribes RNA complementary to the 5′ end of the LUC mRNA. LUC activity was monitored in mosquitoes infected with either Anti-luc or control dsSIN viruses expressing unrelated antisense RNAs. Mosquitoes infected with Anti-luc virus exhibited 90% reduction in LUC compared with uninfected and control dsSIN-infected mosquitoes at 5 and 9 days postinoculation. We demonstrate that a gene expressed from the mosquito genome can be inhibited by using an antisense strategy. The dsSIN antisense RNA expression system is an important tool for studying gene function in vivo. PMID:10557332

  2. Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA.

    PubMed

    Johnson, B W; Olson, K E; Allen-Miura, T; Rayms-Keller, A; Carlson, J O; Coates, C J; Jasinskiene, N; James, A A; Beaty, B J; Higgs, S

    1999-11-01

    A rapid and reproducible method of inhibiting the expression of specific genes in mosquitoes should further our understanding of gene function and may lead to the identification of mosquito genes that determine vector competence or are involved in pathogen transmission. We hypothesized that the virus expression system based on the mosquito-borne Alphavirus, Sindbis (Togaviridae), may efficiently transcribe effector RNAs that inhibit expression of a targeted mosquito gene. To test this hypothesis, germ-line-transformed Aedes aegypti that express luciferase (LUC) from the mosquito Apyrase promoter were intrathoracically inoculated with a double subgenomic Sindbis (dsSIN) virus TE/3'2J/anti-luc (Anti-luc) that transcribes RNA complementary to the 5' end of the LUC mRNA. LUC activity was monitored in mosquitoes infected with either Anti-luc or control dsSIN viruses expressing unrelated antisense RNAs. Mosquitoes infected with Anti-luc virus exhibited 90% reduction in LUC compared with uninfected and control dsSIN-infected mosquitoes at 5 and 9 days postinoculation. We demonstrate that a gene expressed from the mosquito genome can be inhibited by using an antisense strategy. The dsSIN antisense RNA expression system is an important tool for studying gene function in vivo. PMID:10557332

  3. Antisense downregulation of the barley limit dextrinase inhibitor modulates starch granule size distribution, starch composition and amylopectin structure.

    PubMed

    Stahl, Yvonne; Coates, Steve; Bryce, James H; Morris, Peter C

    2004-08-01

    The barley protein limit dextrinase inhibitor (LDI), structurally related to the alpha-amylase/trypsin inhibitor family, is an inhibitor of the starch debranching enzyme limit dextrinase (LD). In order to investigate the function of LDI, and the consequences for starch metabolism of reduced LDI activity, transgenic barley plants designed to downregulate LDI by antisense were generated. Homozygous antisense lines with reduced LDI protein level and activity were analysed and found to have enhanced free LD activity in both developing and germinating grains. In addition the antisense lines showed unpredicted pleiotropic effects on numerous enzyme activities, for example, alpha- and beta-amylases and starch synthases. Analysis of the starch showed much reduced numbers of the small B-type starch granules, as well as reduced amylose relative to amylopectin levels and reduced total starch. The chain length distribution of the amylopectin was modified with less of the longer chains (>25 units) and enhanced number of medium chains (10-15 units). These results suggest an important role for LDI and LD during starch synthesis as well as during starch breakdown. PMID:15272877

  4. Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm.

    PubMed

    Fujita, Naoko; Kubo, Akiko; Suh, Dong-Soon; Wong, Kit-Sum; Jane, Jay-Lin; Ozawa, Kenjiro; Takaiwa, Fumio; Inaba, Yumiko; Nakamura, Yasunori

    2003-06-01

    This is the first report on regulation of the isoamylase1 gene to modify the structure of amylopectin and properties of starch by using antisense technology in plants. The reduction of isoamylase1 protein by about 94% in rice endosperm changed amylopectin into a water-insoluble modified amylopectin and a water-soluble polyglucan (WSP). As compared with wild-type amylopectin, the modified amylopectin had more short chains with a degree of polymerization of 5-12, while their molecular sizes were similar. The WSP, which structurally resembled the phytoglycogen in isoamylase-deficient sugary-1 mutants, accounted for about 16% of the total alpha-polyglucans in antisense endosperm, and it was distributed throughout the whole endosperm unlike in sugary-1 mutant. The reduction of isoamylase activity markedly lowered the gelatinization temperature from 54 to 43 degrees C and the viscosity, and modified X-ray diffraction pattern and the granule morphology of the starch. The activity of pullulanase, the other type of starch debranching enzyme, in the antisense endosperm was similar to that in wild-type, whereas it is deficient in sugary-1 mutants. These results indicate that the isoamylase1 is essential for amylopectin biosynthesis in rice endosperm, and that alteration of the isoamylase activity is an effective means to modify the physicochemical properties and granular structure of starch. PMID:12826626

  5. Effects of variations in length of hammerhead ribozyme antisense arms upon the cleavage of longer RNA substrates.

    PubMed Central

    Sioud, M

    1997-01-01

    The efficacy of intracellular binding of hammerhead ribozyme to its cleavage site in target RNA is a major requirement for its use as a therapeutic agent. Such efficacy can be influenced by several factors, such as the length of the ribozyme antisense arms and mRNA secondary structures. Analysis of various IL-2 hammerhead ribozymes having different antisense arms but directed to the same site predicts that the hammerhead ribozyme target site is present within a double-stranded region that is flanked by single-stranded loops. Extension of the low cleaving hammerhead ribozyme antisense arms by nucleotides that base pair with the single-stranded regions facilitated the hammerhead ribozyme binding to longer RNA substrates (e.g. mRNA). In addition, a correlation between the in vitro and intracellular results was also found. Thus, the present study would facilitate the design of hammerhead ribozymes directed against higher order structured sites. Further, it emphasises the importance of detailed structural investigations of hammerhead ribozyme full-length target RNAs. PMID:9016562

  6. Construction of a directed hammerhead ribozyme library: towards the identification of optimal target sites for antisense-mediated gene inhibition.

    PubMed Central

    Pierce, M L; Ruffner, D E

    1998-01-01

    Antisense-mediated gene inhibition uses short complementary DNA or RNA oligonucleotides to block expression of any mRNA of interest. A key parameter in the success or failure of an antisense therapy is the identification of a suitable target site on the chosen mRNA. Ultimately, the accessibility of the target to the antisense agent determines target suitability. Since accessibility is a function of many complex factors, it is currently beyond our ability to predict. Consequently, identification of the most effective target(s) requires examination of every site. Towards this goal, we describe a method to construct directed ribozyme libraries against any chosen mRNA. The library contains nearly equal amounts of ribozymes targeting every site on the chosen transcript and the library only contains ribozymes capable of binding to that transcript. Expression of the ribozyme library in cultured cells should allow identification of optimal target sites under natural conditions, subject to the complexities of a fully functional cell. Optimal target sites identified in this manner should be the most effective sites for therapeutic intervention. PMID:9801305

  7. Knockdown of gene expression by antisense morpholino oligos in preimplantation mouse embryos cultured in vitro.

    PubMed

    Sato, Yuki; Sato, Shiori; Kikuchi, Takahiro; Nonaka, Asumi; Kumagai, Yuki; Sasaki, Akira; Kobayashi, Masayuki

    2016-09-15

    Knockdown of gene expression by antisense morpholino oligos (MOs) is a simple and effective method for analyzing the roles of genes in mammalian cells. Here, we demonstrate the efficient delivery of MOs by Endo-Porter (EP), a special transfection reagent for MOs, into preimplantation mouse embryos cultured in vitro. A fluorescein-labeled control MO was applied for monitoring the incorporation of MOs into developing 2-cell embryos in the presence of varying amounts of EP and bovine serum albumin. In optimized conditions, fluorescence was detected in 2-cell embryos within a 3-h incubation period. In order to analyze the validity of the optimized conditions, an antisense Oct4 MO was applied for knockdown of the synthesis of OCT4 protein in developing embryos from the 2-cell stage. In blastocysts, the antisense Oct4 MO induced a decrease in the amount in OCT4 protein to less than half. An almost complete absence of OCT4-positive cells and nearly complete disappearance of the inner cell mass in the outgrowths of blastocysts were also noted. These phenotypes corresponded with those of Oct4-deficient mouse embryos. Overall, we suggest that the delivery of MOs using EP is useful for the knockdown of gene expression in preimplantation mouse embryos cultured in vitro. PMID:27381842

  8. Inhibition of breast cancer growth in vivo by antiangiogenesis gene therapy with adenovirus-mediated antisense-VEGF

    PubMed Central

    Im, S-A; Kim, J-S; Gomez-Manzano, C; Fueyo, J; Liu, T-J; Cho, M-S; Seong, C-M; Lee, S N; Hong, Y-K; Yung, W K A

    2001-01-01

    Increased expression of VEGF in several types of tumours has been shown to correlate with poor prognosis. We used a replication-deficient adenoviral vector containing antisense VEGF cDNA (Ad5CMV-αVEGF) to down-regulate VEGF expression and increase the efficiency of delivery of the antisense sequence in the human breast cancer cell line MDA231-MB. Transfection of these cells with Ad5CMV-αVEGF in vitro reduced secreted levels of VEGF protein without affecting cell growth. Moreover, injection of the Ad5CMV-αVEGF vector into intramammary xenografts of these cells established in nude mice inhibited tumour growth and reduced the amount of VEGF protein and the density of microvessels in those tumours relative to tumours treated with the control vector Ad5(dl312). Our results showed that antisense VEGF 165 cDNA was efficiently delivered in vivo via an adenoviral vector and that this treatment significantly inhibited the growth of established experimental breast tumours. The Ad5CMV-αVEGF vector may be useful in targeting the tumour vasculature in the treatment of breast cancer. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11336478

  9. The Dynamics of Compound, Transcript, and Protein Effects After Treatment With 2OMePS Antisense Oligonucleotides in mdx Mice

    PubMed Central

    Verhaart, Ingrid E C; van Vliet-van den Dool, Laura; Sipkens, Jessica A; de Kimpe, Sjef J; Kolfschoten, Ingrid G M; van Deutekom, Judith C T; Liefaard, Lia; Ridings, Jim E; Hood, Steve R; Aartsma-Rus, Annemieke

    2014-01-01

    Antisense-mediated exon skipping is currently in clinical development for Duchenne muscular dystrophy (DMD) to amend the consequences of the underlying genetic defect and restore dystrophin expression. Due to turnover of compound, transcript, and protein, chronic treatment with effector molecules (antisense oligonucleotides) will be required. To investigate the dynamics and persistence of antisense 2′-O-methyl phosphorothioate oligonucleotides, exon skipping, and dystrophin expression after dosing was concluded, mdx mice were treated subcutaneously for 8 weeks with 100 mg/kg oligonucleotides twice weekly. Thereafter, mice were sacrificed at different time points after the final injection (36 hours–24 weeks). Oligonucleotide half-life was longer in heart (~65 days) compared with that in skeletal muscle, liver, and kidney (~35 days). Exon skipping half-lives varied between 33 and 53 days, whereas dystrophin protein showed a long half-life (>100 days). Oligonucleotide and exon-skipping levels peaked in the first week and declined thereafter. By contrast, dystrophin expression peaked after 3–8 weeks and then slowly declined, remaining detectable after 24 weeks. Concordance between levels of oligonucleotides, exon skipping, and proteins was observed, except in heart, wherein high oligonucleotide levels but low exon skipping and dystrophin expression were seen. Overall, these results enhance our understanding of the pharmacokinetics and pharmacodynamics of 2′-O-methyl phosphorothioate oligos used for the treatment of DMD. PMID:24549299

  10. Novel antisense therapeutics delivery systems: In vitro and in vivo studies of liposomes targeted with anti-CD20 antibody.

    PubMed

    Meissner, Justyna M; Toporkiewicz, Monika; Czogalla, Aleksander; Matusewicz, Lucyna; Kuliczkowski, Kazimierz; Sikorski, Aleksander F

    2015-12-28

    Antisense gene therapy using molecules such as antisense oligodeoxynucleotides, siRNA or miRNA is a very promising strategy for the treatment of neoplastic diseases. It can be combined with other treatment strategies to enhance therapeutic effect. In acute leukemias, overexpression of the antiapoptotic gene BCL2 is observed in more than 70% of cases. Therefore, reduction of the Bcl-2 protein level could, in itself, prevent the development of cancer or could possibly help sensitize cancer cells to apoptosis inducers. The main objective of our work is to develop therapeutic liposome formulations characterized by high transfection efficiency, stability in the presence of serum, as well as specificity and toxicity for target (leukemic) cells. Each of our liposomal formulations consists of a core composed of antisense oligonucleotides complexed by either cationic lipid, DOTAP, or a synthetic polycation, polyethyleneimine, encapsulated within liposomes modified with polyethylenoglycol. In addition, the liposomal shells are enriched with covalently-bound antibodies recognizing a well characterized bio-marker, CD20, exposed on the surface of leukemia cells. The resulting immunoliposomes selectively and effectively reduced the expression of BCL2 in target cells. Model animal experiments carried out on mice-engrafted tumors expressing the specific marker showed high efficiency of the liposome formulations against specific tumor development. In conclusion, we show that lipid formulations based on a polyplex or lipoplex backbone additionally equipped with antibodies are promising non-viral vectors for specific oligonucleotide transfer into human tumor cells. PMID:26585505

  11. Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA.

    PubMed

    Hemenway, C; Fang, R X; Kaniewski, W K; Chua, N H; Tumer, N E

    1988-05-01

    Transgenic tobacco plants engineered to express either the potato virus X (PVX) coat protein (CP+) or the antisense coat protein transcript (CP-antisense) were protected from infection by PVX, as indicated by reduced lesion numbers on inoculated leaves, delay or absence of systemic symptom development and reduction in virus accumulation in both inoculated and systemic leaves. The extent of protection observed in CP+ plants primarily depended upon the level of expression of the coat protein. Plants expressing antisense RNA were protected only at low inoculum concentrations. The extent of this protection was even lower than that observed in plants expressing low levels of CP. In contrast to previous reports for plants expressing tobacco mosaic virus or alfalfa mosaic virus CP, inoculation of plants expressing high levels of PVX CP with PVX RNA did not overcome the protection. Specifically, lesion numbers on inoculated leaves and PVX levels on inoculated and systemtic leaves of the CP+ plants were reduced to a similar extent in both virus and RNA inoculated plants. Although these results do not rule out that CP-mediated protection involves inhibition of uncoating of the challenge virus, they suggest that PVX CP (or its RNA) can moderate early events in RNA infection by a different mechanism. PMID:16453840

  12. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products.

    PubMed

    Yang, Yaping; Lin, Yuheng; Li, Lingyun; Linhardt, Robert J; Yan, Yajun

    2015-05-01

    Malonyl-CoA is the building block for fatty acid biosynthesis and also a precursor to various pharmaceutically and industrially valuable molecules, such as polyketides and biopolymers. However, intracellular malonyl-CoA is usually maintained at low levels, which poses great challenges to efficient microbial production of malonyl-CoA derived molecules. Inactivation of the malonyl-CoA consumption pathway to increase its intracellular availability is not applicable, since it is usually lethal to microorganisms. In this work, we employ synthetic antisense RNAs (asRNAs) to conditionally down-regulate fatty acid biosynthesis and achieve malonyl-CoA enrichment in Escherichia coli. The optimized asRNA constructs with a loop-stem structure exhibit high interference efficiency up to 80%, leading to a 4.5-fold increase in intracellular malonyl-CoA concentration when fabD gene expression is inhibited. Strikingly, this strategy allows the improved production of natural products 4-hydroxycoumarin, resveratrol, and naringenin by 2.53-, 1.70-, and 1.53-fold in E. coli, respectively. In addition, down-regulation of other fab genes including fabH, fabB, and fabF also leads to remarkable increases in 4-hydroxycoumarin production. This study demonstrates a novel strategy to enhance intracellular malonyl-CoA and indicates the effectiveness of asRNA as a powerful tool for use in metabolic engineering. PMID:25863265

  13. PlantNATsDB: a comprehensive database of plant natural antisense transcripts

    PubMed Central

    Chen, Dijun; Yuan, Chunhui; Zhang, Jian; Zhang, Zhao; Bai, Lin; Meng, Yijun; Chen, Ling-Ling; Chen, Ming

    2012-01-01

    Natural antisense transcripts (NATs), as one type of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and pathological processes. Although their important biological functions have been reported widely, a comprehensive database is lacking up to now. Consequently, we constructed a plant NAT database (PlantNATsDB) involving approximately 2 million NAT pairs in 69 plant species. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. PlantNATsDB provides various user-friendly web interfaces to facilitate the presentation of NATs and an integrated, graphical network browser to display the complex networks formed by different NATs. Moreover, a ‘Gene Set Analysis’ module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs. The PlantNATsDB is freely available at http://bis.zju.edu.cn/pnatdb/. PMID:22058132

  14. Synthesis, biophysical properties and biological activity of second generation antisense oligonucleotides containing chiral phosphorothioate linkages

    PubMed Central

    Wan, W. Brad; Migawa, Michael T.; Vasquez, Guillermo; Murray, Heather M.; Nichols, Josh G.; Gaus, Hans; Berdeja, Andres; Lee, Sam; Hart, Christopher E.; Lima, Walt F.; Swayze, Eric E.; Seth, Punit P.

    2014-01-01

    Bicyclic oxazaphospholidine monomers were used to prepare a series of phosphorothioate (PS)-modified gapmer antisense oligonucleotides (ASOs) with control of the chirality of each of the PS linkages within the 10-base gap. The stereoselectivity was determined to be 98% for each coupling. The objective of this work was to study how PS chirality influences biophysical and biological properties of the ASO including binding affinity (Tm), nuclease stability, activity in vitro and in vivo, RNase H activation and cleavage patterns (both human and E. coli) in a gapmer context. Compounds that had nine or more Sp-linkages in the gap were found to be poorly active in vitro, while compounds with uniform Rp-gaps exhibited activity very similar to that of the stereo-random parent ASOs. Conversely, when tested in vivo, the full Rp-gap compound was found to be quickly metabolized resulting in low activity. A total of 31 ASOs were prepared with control of the PS chirally of each linkage within the gap in an attempt to identify favorable Rp/Sp positions. We conclude that a mix of Rp and Sp is required to achieve a balance between good activity and nuclease stability. PMID:25398895

  15. Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness.

    PubMed

    Lentz, Jennifer J; Jodelka, Francine M; Hinrich, Anthony J; McCaffrey, Kate E; Farris, Hamilton E; Spalitta, Matthew J; Bazan, Nicolas G; Duelli, Dominik M; Rigo, Frank; Hastings, Michelle L

    2013-03-01

    Hearing impairment is the most common sensory disorder, with congenital hearing impairment present in approximately 1 in 1,000 newborns. Hereditary deafness is often mediated by the improper development or degeneration of cochlear hair cells. Until now, it was not known whether such congenital failures could be mitigated by therapeutic intervention. Here we show that hearing and vestibular function can be rescued in a mouse model of human hereditary deafness. An antisense oligonucleotide (ASO) was used to correct defective pre-mRNA splicing of transcripts from the USH1C gene with the c.216G>A mutation, which causes human Usher syndrome, the leading genetic cause of combined deafness and blindness. Treatment of neonatal mice with a single systemic dose of ASO partially corrects Ush1c c.216G>A splicing, increases protein expression, improves stereocilia organization in the cochlea, and rescues cochlear hair cells, vestibular function and low-frequency hearing in mice. These effects were sustained for several months, providing evidence that congenital deafness can be effectively overcome by treatment early in development to correct gene expression and demonstrating the therapeutic potential of ASOs in the treatment of deafness. PMID:23380860

  16. In Vivo Evaluation of Candidate Allele-specific Mutant Huntingtin Gene Silencing Antisense Oligonucleotides

    PubMed Central

    Southwell, Amber L; Skotte, Niels H; Kordasiewicz, Holly B; Østergaard, Michael E; Watt, Andrew T; Carroll, Jeffrey B; Doty, Crystal N; Villanueva, Erika B; Petoukhov, Eugenia; Vaid, Kuljeet; Xie, Yuanyun; Freier, Susan M; Swayze, Eric E; Seth, Punit P; Bennett, Clarence Frank; Hayden, Michael R

    2014-01-01

    Huntington disease (HD) is a dominant, genetic neurodegenerative disease characterized by progressive loss of voluntary motor control, psychiatric disturbance, and cognitive decline, for which there is currently no disease-modifying therapy. HD is caused by the expansion of a CAG tract in the huntingtin (HTT) gene. The mutant HTT protein (muHTT) acquires toxic functions, and there is significant evidence that muHTT lowering would be therapeutically efficacious. However, the wild-type HTT protein (wtHTT) serves vital functions, making allele-specific muHTT lowering strategies potentially safer than nonselective strategies. CAG tract expansion is associated with single nucleotide polymorphisms (SNPs) that can be targeted by gene silencing reagents such as antisense oligonucleotides (ASOs) to accomplish allele-specific muHTT lowering. Here we evaluate ASOs targeted to HD-associated SNPs in acute in vivo studies including screening, distribution, duration of action and dosing, using a humanized mouse model of HD, Hu97/18, that is heterozygous for the targeted SNPs. We have identified four well-tolerated lead ASOs that potently and selectively silence muHTT at a broad range of doses throughout the central nervous system for 16 weeks or more after a single intracerebroventricular (ICV) injection. With further validation, these ASOs could provide a therapeutic option for individuals afflicted with HD. PMID:25101598

  17. RNA synthetic biology inspired from bacteria: construction of transcription attenuators under antisense regulation

    NASA Astrophysics Data System (ADS)

    Dawid, Alexandre; Cayrol, Bastien; Isambert, Hervé

    2009-06-01

    Among all biopolymers, ribonucleic acids or RNA have unique functional versatility, which led to the early suggestion that RNA alone (or a closely related biopolymer) might have once sustained a primitive form of life based on a single type of biopolymer. This has been supported by the demonstration of processive RNA-based replication and the discovery of 'riboswitches' or RNA switches, which directly sense their metabolic environment. In this paper, we further explore the plausibility of this 'RNA world' scenario and show, through synthetic molecular design guided by advanced RNA simulations, that RNA can also perform elementary regulation tasks on its own. We demonstrate that RNA synthetic regulatory modules directly inspired from bacterial transcription attenuators can efficiently activate or repress the expression of other RNA by merely controlling their folding paths 'on the fly' during transcription through simple RNA-RNA antisense interaction. Factors, such as NTP concentration and RNA synthesis rate, affecting the efficiency of this kinetic regulation mechanism are also studied and discussed in the light of evolutionary constraints. Overall, this suggests that direct coupling among synthesis, folding and regulation of RNAs may have enabled the early emergence of autonomous RNA-based regulation networks in absence of both DNA and protein partners.

  18. Antibacterial activity and inhibition of protein synthesis in Escherichia coli by antisense DNA analogs.

    PubMed

    Rahman, M A; Summerton, J; Foster, E; Cunningham, K; Stirchak, E; Weller, D; Schaup, H W

    1991-01-01

    Protein synthesis, which takes place within ribosomes, is essential for the survival of any living organism. Ribosomes are composed of both proteins and RNA. Specific interaction between the 3' end CCUCC sequence of prokaryotic 16S rRNA and a partially complementary sequence preceding the initiating codon of mRNA is believed to be a prerequisite for initiation of protein synthesis. Here we report the use of short (three to six nucleotides) synthetic DNA analogs complementary to this sequence to block protein synthesis in vitro and in vivo in Escherichia coli. In the DNA analogs the normal phosphodiester bond in the antisense DNA was replaced by methylcarbamate internucleoside linkages to enhance transport across plasma membranes. Of the analogs tested, those with the sequence AGG and GGA inhibit protein synthesis and colony formation by E. coli strains lacking an outer cell wall. Polyethylene glycol 1000 (PEG 1000) was attached to the 5' end of some of the test methylcarbamate DNAs to enhance solubility. Analogs of AGG and GGAG with PEG 1000 attached inhibited colony formation in normal E. coli. These analogs may be useful food additives to control bacterial spoilage and biomedically as antibiotics. PMID:1821653

  19. Small antisense oligonucleotides against G-quadruplexes: specific mRNA translational switches

    PubMed Central

    Rouleau, Samuel G.; Beaudoin, Jean-Denis; Bisaillon, Martin; Perreault, Jean-Pierre

    2015-01-01

    G-quadruplexes (G4) are intricate RNA structures found throughout the transcriptome. Because they are associated with a variety of biological cellular mechanisms, these fascinating structural motifs are seen as potential therapeutic targets against many diseases. While screening of chemical compounds specific to G4 motifs has yielded interesting results, no single compound successfully discriminates between G4 motifs based on nucleotide sequences alone. This level of specificity is best attained using antisense oligonucleotides (ASO). Indeed, oligonucleotide-based strategies are already used to modulate DNA G4 folding in vitro. Here, we report that, in human cells, the use of short ASO to promote and inhibit RNA G4 folding affects the translation of specific mRNAs, including one from the 5′UTR of the H2AFY gene, a histone variant associated with cellular differentiation and cancer. These results suggest that the relatively high specificity of ASO-based strategies holds significant potential for applications aimed at modulating G4-motif folding. PMID:25510493

  20. In vivo tumor growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides

    PubMed Central

    Fluiter, Kees; ten Asbroek, Anneloor L. M. A.; de Wissel, Marit B.; Jakobs, Marja E.; Wissenbach, Margit; Olsson, Håkan; Olsen, Otto; Oerum, Henrik; Baas, Frank

    2003-01-01

    Locked nucleic acids (LNA) are novel high-affinity DNA analogs that can be used as genotype-specific drugs. The LNA oligonucleotides (LNA PO ODNs) are very stable in vitro and in vivo without the need for a phosphorothiolated backbone. In this study we tested the biological fate and the efficacy in tumor growth inhibition of antisense oligonucleotides directed against the gene of the large subunit of RNA polymerase II (POLR2A) that are completely synthesized as LNA containing diester backbones. These full LNA oligonucleotides strongly reduce POLR2A protein levels. Full LNA PO ODNs appeared to be very stable compounds when injected into the circulation of mice. Full LNA PO ODNs were continuously administered for 14 days to tumor-bearing nude mice. Tumor growth was inhibited sequence specifically at dosages from 1 mg/kg/day. LNA PO ODNs appeared to be non-toxic at dosages <5 mg/kg/day. Biodistribution studies showed the kidneys to have the highest uptake of LNA PO ODNs and urinary secretion as the major route of clearance. This report shows that LNA PO ODNs are potent genotype-specific drugs that can inhibit tumor growth in vivo. PMID:12560491

  1. Antitumor Effects of EGFR Antisense Guanidine-Based Peptide Nucleic Acids in Cancer Models

    PubMed Central

    Thomas, Sufi M.; Sahu, Bichismita; Rapireddy, Srinivas; Bahal, Raman; Wheeler, Sarah E.; Procopio, Eva M.; Kim, Joseph; Joyce, Sonali C.; Contrucci, Sarah; Wang, Yun; Chiosea, Simion I.; Lathrop, Kira L.; Watkins, Simon; Grandis, Jennifer R.; Armitage, Bruce A.; Ly, Danith H.

    2013-01-01

    Peptide nucleic acids have emerged over the past two decades as a promising class of nucleic acid mimics because of their strong binding affinity and sequence selectivity toward DNA and RNA, and resistance to enzymatic degradation by proteases and nucleases. While they have been shown to be effective in regulation of gene expression in vitro, and to a small extent in vivo, their full potential for molecular therapy has not yet been fully realized due to poor cellular uptake. Herein, we report the development of cell-permeable, guanidine-based peptide nucleic acids targeting the epidermal growth factor receptor (EGFR) in preclinical models as therapeutic modality for head and neck squamous cell carcinoma (HNSCC) and nonsmall cell lung cancer (NSCLC). A GPNA oligomer, 16 nucleotides in length, designed to bind to EGFR gene transcript elicited potent antisense effects in HNSCC and NSCLC cells in preclinical models. When administered intraperitoneally in mice, EGFRAS-GPNA was taken-up by several tissues including the xenograft tumor. Systemic administration of EGFRAS-GPNA induced antitumor effects in HNSCC xenografts, with similar efficacies as the FDA-approved EGFR inhibitors: cetuximab and erlotinib. In addition to targeting wild-type EGFR, EGFRAS-GPNA is effective against the constitutively active EGFR vIII mutant implicated in cetuximab resistance. Our data reveals that GPNA is just as effective as a molecular platform for treating cetuximab resistant cells, demonstrating its utility in the treatment of cancer. PMID:23113581

  2. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization.

    PubMed

    Csorba, Tibor; Questa, Julia I; Sun, Qianwen; Dean, Caroline

    2014-11-11

    Long noncoding RNAs (lncRNAs) have been proposed to play important roles in gene regulation. However, their importance in epigenetic silencing and how specificity is determined remain controversial. We have investigated the cold-induced epigenetic switching mechanism involved in the silencing of Arabidopsis thaliana Flowering Locus C (FLC), which occurs during vernalization. Antisense transcripts, collectively named COOLAIR, are induced by prolonged cold before the major accumulation of histone 3 lysine 27 trimethylation (H3K27me3), characteristic of Polycomb silencing. We have found that COOLAIR is physically associated with the FLC locus and accelerates transcriptional shutdown of FLC during cold exposure. Removal of COOLAIR disrupted the synchronized replacement of H3K36 methylation with H3K27me3 at the intragenic FLC nucleation site during the cold. Consistently, genetic analysis showed COOLAIR and Polycomb complexes work independently in the cold-dependent silencing of FLC. Our data reveal a role for lncRNA in the coordinated switching of chromatin states that occurs during epigenetic regulation. PMID:25349421

  3. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization

    PubMed Central

    Csorba, Tibor; Questa, Julia I.; Sun, Qianwen; Dean, Caroline

    2014-01-01

    Long noncoding RNAs (lncRNAs) have been proposed to play important roles in gene regulation. However, their importance in epigenetic silencing and how specificity is determined remain controversial. We have investigated the cold-induced epigenetic switching mechanism involved in the silencing of Arabidopsis thaliana FLOWERING LOCUS C (FLC), which occurs during vernalization. Antisense transcripts, collectively named COOLAIR, are induced by prolonged cold before the major accumulation of histone 3 lysine 27 trimethylation (H3K27me3), characteristic of Polycomb silencing. We have found that COOLAIR is physically associated with the FLC locus and accelerates transcriptional shutdown of FLC during cold exposure. Removal of COOLAIR disrupted the synchronized replacement of H3K36 methylation with H3K27me3 at the intragenic FLC nucleation site during the cold. Consistently, genetic analysis showed COOLAIR and Polycomb complexes work independently in the cold-dependent silencing of FLC. Our data reveal a role for lncRNA in the coordinated switching of chromatin states that occurs during epigenetic regulation. PMID:25349421

  4. Tuning growth cycles of Brassica crops via natural antisense transcripts of BrFLC.

    PubMed

    Li, Xiaorong; Zhang, Shaofeng; Bai, Jinjuan; He, Yuke

    2016-03-01

    Several oilseed and vegetable crops of Brassica are biennials that require a prolonged winter cold for flowering, a process called vernalization. FLOWERING LOCUS C (FLC) is a central repressor of flowering. Here, we report that the overexpression of natural antisense transcripts (NATs) of Brassica rapa FLC (BrFLC) greatly shortens plant growth cycles. In rapid-, medium- and slow-cycling crop types, there are four copies of the BrFLC genes, which show extensive variation in sequences and expression levels. In Bre, a biennial crop type that requires vernalization, five NATs derived from the BrFLC2 locus are rapidly induced under cold conditions, while all four BrFLC genes are gradually down-regulated. The transgenic Bre lines overexpressing a long NAT of BrFLC2 do not require vernalization, resulting in a gradient of shortened growth cycles. Among them, a subset of lines both flower and set seeds as early as Yellow sarson, an annual crop type in which all four BrFLC genes have non-sense mutations and are nonfunctional in flowering repression. Our results demonstrate that the growth cycles of biennial crops of Brassica can be altered by changing the expression levels of BrFLC2 NATs. Thus, BrFLC2 NATs and their transgenic lines are useful for the genetic manipulation of crop growth cycles. PMID:26250982

  5. Antisense inhibition of hyaluronan synthase-2 in human osteosarcoma cells inhibits hyaluronan retention and tumorigenicity

    SciTech Connect

    Nishida, Yoshihiro . E-mail: ynishida@med.nagoya-u.ac.jp; Knudson, Warren; Knudson, Cheryl B.; Ishiguro, Naoki

    2005-07-01

    Osteosarcoma is a common malignant bone tumor associated with childhood and adolescence. The results of numerous studies have suggested that hyaluronan plays an important role in regulating the aggressive behavior of various types of cancer cells. However, no studies have addressed hyaluronan with respect to osteosarcomas. In this investigation, the mRNA expression copy number of three mammalian hyaluronan synthases (HAS) was determined using competitive RT-PCR in the osteoblastic osteosarcoma cell line, MG-63. MG-63 are highly malignant osteosarcoma cells with an abundant hyaluronan-rich matrix. The results demonstrated that HAS-2 is the predominant HAS in MG-63. Accumulation of intracellular hyaluronan increased in association with the proliferative phase of these cells. The selective inhibition of HAS-2 mRNA in MG-63 cells by antisense phosphorothioate oligonucleotides resulted in reduced hyaluronan accumulation by these cells. As expected, the reduction in hyaluronan disrupted the assembly of cell-associated matrices. However, of most interest, coincident with the reduction in hyaluronan, there was a substantial decrease in cell proliferation, a decrease in cell motility and a decrease in cell invasiveness. These data suggest that hyaluronan synthesized by HAS-2 in MG-63 plays a crucial role in osteosarcoma cell proliferation, motility, and invasion.

  6. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides

    PubMed Central

    Kasuya, Takeshi; Hori, Shin-ichiro; Watanabe, Ayahisa; Nakajima, Mado; Gahara, Yoshinari; Rokushima, Masatomo; Yanagimoto, Toru; Kugimiya, Akira

    2016-01-01

    Gapmer antisense oligonucleotides cleave target RNA effectively in vivo, and is considered as promising therapeutics. Especially, gapmers modified with locked nucleic acid (LNA) shows potent knockdown activity; however, they also cause hepatotoxic side effects. For developing safe and effective gapmer drugs, a deeper understanding of the mechanisms of hepatotoxicity is required. Here, we investigated the cause of hepatotoxicity derived from LNA-modified gapmers. Chemical modification of gapmer’s gap region completely suppressed both knockdown activity and hepatotoxicity, indicating that the root cause of hepatotoxicity is related to intracellular gapmer activity. Gene silencing of hepatic ribonuclease H1 (RNaseH1), which catalyses gapmer-mediated RNA knockdown, strongly supressed hepatotoxic effects. Small interfering RNA (siRNA)-mediated knockdown of a target mRNA did not result in any hepatotoxic effects, while the gapmer targeting the same position on mRNA as does the siRNA showed acute toxicity. Microarray analysis revealed that several pre-mRNAs containing a sequence similar to the gapmer target were also knocked down. These results suggest that hepatotoxicity of LNA gapmer is caused by RNAseH1 activity, presumably because of off-target cleavage of RNAs inside nuclei. PMID:27461380

  7. Antisense oligonucleotides targeting the progesterone receptor inhibit hormone-independent breast cancer growth in mice

    PubMed Central

    Lamb, Caroline A; Helguero, Luisa A; Giulianelli, Sebastián; Soldati, Rocío; Vanzulli, Silvia I; Molinolo, Alfredo; Lanari, Claudia

    2005-01-01

    Introduction Previous data from our laboratory suggested that progesterone receptors (PRs) are involved in progestin-independent growth of mammary carcinomas. To investigate this possibility further, we studied the effects of PR antisense oligodeoxynucleotides (asPR) on in vivo tumor growth. Method BALB/c mice with subcutaneous 25 mm2 mammary carcinomas expressing estrogen receptor-α and PR were either injected intraperitoneally with 1 mg asPR every 24 or 12 hours for 5–10 days, or subcutaneously with RU 486 (6.5 mg/kg body weight) every 24 hours. Control mice received vehicle or scPR. Results Significant inhibition of tumor growth as well as a significant decrease in bromodeoxyuridine uptake was observed in asPR-treated mice, which correlated with histological signs of regression and increased apoptosis. Mice treated with RU 486 experienced almost complete tumor regression. No differences were detected between vehicle-treated and scPR-treated mice. Anti-progestin-treated and asPR-treated mice were in a continuous estrous/meta-estrous state. Decreased phosphorylated extracellular signal-regulated kinase (ERK)1 and ERK2 levels and estrogen receptor-α expression were observed as late events in RU 486-treated and asPR-treated mice with regressing tumors. Conclusion We demonstrate, for the first time, inhibition of tumor growth in vivo using asPR. Our results provide further evidence for a critical and hierarchical role of the PR pathway in mammary carcinomas. PMID:16457691

  8. Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system

    PubMed Central

    Lee, Young Je; Hoynes-O'Connor, Allison; Leong, Matthew C.; Moon, Tae Seok

    2016-01-01

    A central goal of synthetic biology is to implement diverse cellular functions by predictably controlling gene expression. Though research has focused more on protein regulators than RNA regulators, recent advances in our understanding of RNA folding and functions have motivated the use of RNA regulators. RNA regulators provide an advantage because they are easier to design and engineer than protein regulators, potentially have a lower burden on the cell and are highly orthogonal. Here, we combine the CRISPR system from Streptococcus pyogenes and synthetic antisense RNAs (asRNAs) in Escherichia coli strains to repress or derepress a target gene in a programmable manner. Specifically, we demonstrate for the first time that the gene target repressed by the CRISPR system can be derepressed by expressing an asRNA that sequesters a small guide RNA (sgRNA). Furthermore, we demonstrate that tunable levels of derepression can be achieved (up to 95%) by designing asRNAs that target different regions of a sgRNA and by altering the hybridization free energy of the sgRNA–asRNA complex. This new system, which we call the combined CRISPR and asRNA system, can be used to reversibly repress or derepress multiple target genes simultaneously, allowing for rational reprogramming of cellular functions. PMID:26837577

  9. Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy

    PubMed Central

    Gramlich, Michael; Pane, Luna Simona; Zhou, Qifeng; Chen, Zhifen; Murgia, Marta; Schötterl, Sonja; Goedel, Alexander; Metzger, Katja; Brade, Thomas; Parrotta, Elvira; Schaller, Martin; Gerull, Brenda; Thierfelder, Ludwig; Aartsma-Rus, Annemieke; Labeit, Siegfried; Atherton, John J; McGaughran, Julie; Harvey, Richard P; Sinnecker, Daniel; Mann, Matthias; Laugwitz, Karl-Ludwig; Gawaz, Meinrad Paul; Moretti, Alessandra

    2015-01-01

    Frameshift mutations in the TTN gene encoding titin are a major cause for inherited forms of dilated cardiomyopathy (DCM), a heart disease characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure. To date, there are no specific treatment options for DCM patients but heart transplantation. Here, we show the beneficial potential of reframing titin transcripts by antisense oligonucleotide (AON)-mediated exon skipping in human and murine models of DCM carrying a previously identified autosomal-dominant frameshift mutation in titin exon 326. Correction of TTN reading frame in patient-specific cardiomyocytes derived from induced pluripotent stem cells rescued defective myofibril assembly and stability and normalized the sarcomeric protein expression. AON treatment in Ttn knock-in mice improved sarcomere formation and contractile performance in homozygous embryos and prevented the development of the DCM phenotype in heterozygous animals. These results demonstrate that disruption of the titin reading frame due to a truncating DCM mutation can be restored by exon skipping in both patient cardiomyocytes in vitro and mouse heart in vivo, indicating RNA-based strategies as a potential treatment option for DCM. PMID:25759365

  10. A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification

    NASA Technical Reports Server (NTRS)

    Blee, Kristopher A.; Choi, Joon W.; O'Connell, Ann P.; Schuch, Wolfgang; Lewis, Norman G.; Bolwell, G. Paul

    2003-01-01

    A tobacco peroxidase isoenzyme (TP60) was down-regulated in tobacco using an antisense strategy, this affording transformants with lignin reductions of up to 40-50% of wild type (control) plants. Significantly, both guaiacyl and syringyl levels decreased in essentially a linear manner with the reductions in lignin amounts, as determined by both thioacidolysis and nitrobenzene oxidative analyses. These data provisionally suggest that a feedback mechanism is operative in lignifying cells, which prevents build-up of monolignols should oxidative capacity for their subsequent metabolism be reduced. Prior to this study, the only known rate-limiting processes in the monolignol/lignin pathways involved that of Phe supply and the relative activities of cinnamate-4-hydroxylase/p-coumarate-3-hydroxylase, respectively. These transformants thus provide an additional experimental means in which to further dissect and delineate the factors involved in monolignol targeting to precise regions in the cell wall, and of subsequent lignin assembly. Interestingly, the lignin down-regulated tobacco phenotypes displayed no readily observable differences in overall growth and development profiles, although the vascular apparatus was modified.

  11. Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy

    PubMed Central

    Wojtkowiak-Szlachcic, Agnieszka; Taylor, Katarzyna; Stepniak-Konieczna, Ewa; Sznajder, Lukasz J.; Mykowska, Agnieszka; Sroka, Joanna; Thornton, Charles A.; Sobczak, Krzysztof

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder caused by expansion of CTG triplet repeats in 3′-untranslated region of DMPK gene. The pathomechanism of DM1 is driven by accumulation of toxic transcripts containing expanded CUG repeats (CUGexp) in nuclear foci which sequester several factors regulating RNA metabolism, such as Muscleblind-like proteins (MBNLs). In this work, we utilized very short chemically modified antisense oligonucleotides composed exclusively of locked nucleic acids (all-LNAs) complementary to CUG repeats, as potential therapeutic agents against DM1. Our in vitro data demonstrated that very short, 8- or 10-unit all-LNAs effectively bound the CUG repeat RNA and prevented the formation of CUGexp/MBNL complexes. In proliferating DM1 cells as well as in skeletal muscles of DM1 mouse model the all-LNAs induced the reduction of the number and size of CUGexp foci and corrected MBNL-sensitive alternative splicing defects with high efficacy and specificity. The all-LNAs had low impact on the cellular level of CUGexp-containing transcripts and did not affect the expression of other transcripts with short CUG repeats. Our data strongly indicate that short all-LNAs complementary to CUG repeats are a promising therapeutic tool against DM1. PMID:25753670

  12. PRO-051, an antisense oligonucleotide for the potential treatment of Duchenne muscular dystrophy.

    PubMed

    Hammond, Suzan M; Wood, Matthew Ja

    2010-08-01

    PRO-051 (GSK-2402968), being developed by GlaxoSmithKline plc, under license from Leiden University Medical Center and Prosensa Therapeutics BV, is a 2'-O-methyl phosphorothioate antisense oligonucleotide for the potential treatment of Duchenne muscular dystrophy (DMD). The PRO-051 oligonucleotide sequence induces skipping of exon 51 of the dystrophin gene by binding to a sequence within the dystrophin pre-mRNA and masking the exon inclusion signals that are used for splicing. Removal of exon 51 from an exon 45 to 50, 47 to 50, 48 to 50, 49 to 50, 50, 52 or 52 to 63 deleted transcript allows restoration of the open reading frame and synthesis of an internally truncated, semi-functional dystrophin protein. By targeting exon 51, approximately 13% of patients with DMD could be treated, the largest proportion of patients that could benefit from targeting a single dystrophin exon. A proof-of-concept clinical trial of PRO-051 in patients with DMD demonstrated that a single intramuscular administration of PRO-051 induced exon skipping within muscle fibers adjacent to the injection site, while biopsies revealed dystrophin expression in treated but not control muscle fibers. At the time of publication, a phase I/IIa trial to evaluate subcutaneous delivery of PRO-051 had been completed, although full results were yet to be published. PMID:20677099

  13. Evaluation of 2'-Deoxy-2'-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy.

    PubMed

    Jirka, Silvana M G; Tanganyika-de Winter, Christa L; Boertje-van der Meulen, Joke W; van Putten, Maaike; Hiller, Monika; Vermue, Rick; de Visser, Peter C; Aartsma-Rus, Annemieke

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs) that induce skipping of specific exons during pre-mRNA splicing. Different chemical modifications have been developed to improve AON properties. The 2'-deoxy-2'-fluoro (2F) RNA modification is attractive for exon skipping due to its ability to recruit ILF2/3 proteins to the 2F/pre-mRNA duplex, which resulted in enhanced exon skipping in spinal muscular atrophy models. In this study, we examined the effect of two different 2'-substituted AONs (2'-F phosphorothioate (2FPS) and 2'-O-Me phosphorothioate (2OMePS)) on exon skipping in DMD cell and animal models. In human cell cultures, 2FPS AONs showed higher exon skipping levels than their isosequential 2OMePS counterparts. Interestingly, in the mdx mouse model, 2FPS was less efficient than 2OMePS and suggested safety issues as evidenced by increased spleen size and weight loss. Our results do not support a clinical application for 2FPS AON. PMID:26623937

  14. A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification.

    PubMed

    Blee, Kristopher A; Choi, Joon W; O'Connell, Ann P; Schuch, Wolfgang; Lewis, Norman G; Bolwell, G Paul

    2003-09-01

    A tobacco peroxidase isoenzyme (TP60) was down-regulated in tobacco using an antisense strategy, this affording transformants with lignin reductions of up to 40-50% of wild type (control) plants. Significantly, both guaiacyl and syringyl levels decreased in essentially a linear manner with the reductions in lignin amounts, as determined by both thioacidolysis and nitrobenzene oxidative analyses. These data provisionally suggest that a feedback mechanism is operative in lignifying cells, which prevents build-up of monolignols should oxidative capacity for their subsequent metabolism be reduced. Prior to this study, the only known rate-limiting processes in the monolignol/lignin pathways involved that of Phe supply and the relative activities of cinnamate-4-hydroxylase/p-coumarate-3-hydroxylase, respectively. These transformants thus provide an additional experimental means in which to further dissect and delineate the factors involved in monolignol targeting to precise regions in the cell wall, and of subsequent lignin assembly. Interestingly, the lignin down-regulated tobacco phenotypes displayed no readily observable differences in overall growth and development profiles, although the vascular apparatus was modified. PMID:12946415

  15. Genome-wide view of natural antisense transcripts in Arabidopsis thaliana

    PubMed Central

    Yuan, Chunhui; Wang, Jingjing; Harrison, Andrew P.; Meng, Xianwen; Chen, Dijun; Chen, Ming

    2015-01-01

    Natural antisense transcripts (NATs) are endogenous transcripts that can form double-stranded RNA structures. Many protein-coding genes (PCs) and non-protein-coding genes (NPCs) tend to form cis-NATs and trans-NATs, respectively. In this work, we identified 4,080 cis-NATs and 2,491 trans-NATs genome-widely in Arabidopsis. Of these, 5,385 NAT-siRNAs were detected from the small RNA sequencing data. NAT-siRNAs are typically 21nt, and are processed by Dicer-like 1 (DCL1)/DCL2 and RDR6 and function in epigenetically activated situations, or 24nt, suggesting these are processed by DCL3 and RDR2 and function in environment stress. NAT-siRNAs are significantly derived from PC/PC pairs of trans-NATs and NPC/NPC pairs of cis-NATs. Furthermore, NAT pair genes typically have similar pattern of epigenetic status. Cis-NATs tend to be marked by euchromatic modifications, whereas trans-NATs tend to be marked by heterochromatic modifications. PMID:25922535

  16. Genome-wide view of natural antisense transcripts in Arabidopsis thaliana.

    PubMed

    Yuan, Chunhui; Wang, Jingjing; Harrison, Andrew P; Meng, Xianwen; Chen, Dijun; Chen, Ming

    2015-06-01

    Natural antisense transcripts (NATs) are endogenous transcripts that can form double-stranded RNA structures. Many protein-coding genes (PCs) and non-protein-coding genes (NPCs) tend to form cis-NATs and trans-NATs, respectively. In this work, we identified 4,080 cis-NATs and 2,491 trans-NATs genome-widely in Arabidopsis. Of these, 5,385 NAT-siRNAs were detected from the small RNA sequencing data. NAT-siRNAs are typically 21nt, and are processed by Dicer-like 1 (DCL1)/DCL2 and RDR6 and function in epigenetically activated situations, or 24nt, suggesting these are processed by DCL3 and RDR2 and function in environment stress. NAT-siRNAs are significantly derived from PC/PC pairs of trans-NATs and NPC/NPC pairs of cis-NATs. Furthermore, NAT pair genes typically have similar pattern of epigenetic status. Cis-NATs tend to be marked by euchromatic modifications, whereas trans-NATs tend to be marked by heterochromatic modifications. PMID:25922535

  17. Antisense oligonucleotide–mediated MDM4 exon 6 skipping impairs tumor growth

    PubMed Central

    Dewaele, Michael; Tabaglio, Tommaso; Willekens, Karen; Bezzi, Marco; Teo, Shun Xie; Low, Diana H.P.; Koh, Cheryl M.; Rambow, Florian; Fiers, Mark; Rogiers, Aljosja; Radaelli, Enrico; Al-Haddawi, Muthafar; Tan, Soo Yong; Hermans, Els; Amant, Frederic; Yan, Hualong; Lakshmanan, Manikandan; Koumar, Ratnacaram Chandrahas; Lim, Soon Thye; Derheimer, Frederick A.; Campbell, Robert M.; Bonday, Zahid; Tergaonkar, Vinay; Shackleton, Mark; Blattner, Christine; Marine, Jean-Christophe; Guccione, Ernesto

    2015-01-01

    MDM4 is a promising target for cancer therapy, as it is undetectable in most normal adult tissues but often upregulated in cancer cells to dampen p53 tumor-suppressor function. The mechanisms that underlie MDM4 upregulation in cancer cells are largely unknown. Here, we have shown that this key oncogenic event mainly depends on a specific alternative splicing switch. We determined that while a nonsense-mediated, decay-targeted isoform of MDM4 (MDM4-S) is produced in normal adult tissues as a result of exon 6 skipping, enhanced exon 6 inclusion leads to expression of full-length MDM4 in a large number of human cancers. Although this alternative splicing event is likely regulated by multiple splicing factors, we identified the SRSF3 oncoprotein as a key enhancer of exon 6 inclusion. In multiple human melanoma cell lines and in melanoma patient–derived xenograft (PDX) mouse models, antisense oligonucleotide–mediated (ASO-mediated) skipping of exon 6 decreased MDM4 abundance, inhibited melanoma growth, and enhanced sensitivity to MAPK-targeting therapeutics. Additionally, ASO-based MDM4 targeting reduced diffuse large B cell lymphoma PDX growth. As full-length MDM4 is enhanced in multiple human tumors, our data indicate that this strategy is applicable to a wide range of tumor types. We conclude that enhanced MDM4 exon 6 inclusion is a common oncogenic event and has potential as a clinically compatible therapeutic target. PMID:26595814

  18. Changes in Oleic Acid Content of Transgenic Soybeans by Antisense RNA Mediated Posttranscriptional Gene Silencing

    PubMed Central

    Zhang, Ling; Yang, Xiang-dong; Zhang, Yuan-yu; Yang, Jing; Qi, Guang-xun; Guo, Dong-quan; Xing, Guo-jie; Yao, Yao; Xu, Wen-jing; Li, Hai-yun; Li, Qi-yun; Dong, Ying-shan

    2014-01-01

    The Delta-12 oleate desaturase gene (FAD2-1), which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of seed oil. In this study, we inhibited the expression of endogenous Delta-12 oleate desaturase GmFad2-1b gene by using antisense RNA in soybean Williams 82. By employing the soybean cotyledonary-node method, a part of the cDNA of soybean GmFad2-1b 801 bp was cloned for the construction of a pCAMBIA3300 vector under the soybean seed promoter BCSP. Leaf painting, LibertyLink strip, PCR, Southern blot, qRT-PCR, and fatty acid analysis were used to detect the insertion and expression of GmFad2-1b in the transgenic soybean lines. The results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 51.71%) and a reduction in palmitic acid (to <3%) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and the nontransgenic oil extracts. PMID:25197629

  19. A Covalently Stabilized lipid-polycation-DNA (sLPD) Vector for Antisense Oligonucleotide Delivery

    PubMed Central

    Yang, Xiaojuan; Peng, Yong; Yu, Bo; Yu, Jianhua; Zhou, Chenguang; Mao, Yicheng; Lee, L. James; Lee, Robert J.

    2013-01-01

    Antisense oligonucleotide G3139 is designed for Bcl-2 downregulation and is known to induce toll-like receptor activation. Novel stabilized lipid-polycation-DNA (sLPD) nanoparticles were constructed and evaluated for the delivery of G3139 to human carcinoma KB cells and for bioactivity in vivo. Polyethylenimine (PEI) was incorporated as a DNA condensing agent. The lipid composition used was DOTAP/DDAB/Chol/TPGS/linoleic acid/hexadecenal at molar ratios of 30/30/34/1/5/0.2. The nanoparticles were stabilized by the formation of a reversible covalent bond between the aldehyde group on the cis-11-hexadecenal and amines on the PEI. When sLPDs were used to transfect KB cells, 90.4% Bcl-2 downregulation was observed, compared to no significant down-regulation by free G3139 and 54.6% down regulation by non-stabilized LPD-G3139. The sLPDs were then evaluated for therapeutic efficacy in mice bearing KB subcutaneous tumors and were found to trigger a strong antitumor response, inhibiting tumor growth and prolonging survival with 72% increase in lifespan (ILS). Consistent with previous reports on other G3139 nanoparticles, the increased anti-tumor activities of sLPDs in vivo were found to be associated with increased cytokine induction rather than Bcl-2 down-regulation, suggesting an immunological mechanism. PMID:21366344

  20. Proteome changes in tomato lines transformed with phytoene synthase-1 in the sense and antisense orientations

    PubMed Central

    Bramley, Peter M.

    2012-01-01

    The commercial cultivation of genetically engineered (GE) crops in Europe has met with considerable consumer resistance, which has led to vigorous safety assessments including the measurement of substantial equivalence between the GE and parent lines. This necessitates the identification and quantification of significant changes to the metabolome and proteome in the GE crop. In this study, the quantitative proteomic analysis of tomato fruit from lines that have been transformed with the carotenogenic gene phytoene synthase-1 (Psy-1), in the sense and antisense orientations, in comparison with a non-transformed, parental line is described. Multidimensional protein identification technology (MudPIT), with tandem mass spectrometry, has been used to identify proteins, while quantification has been carried out with isobaric tags for relative and absolute quantification (iTRAQ). Fruit from the GE plants showed significant alterations to their proteomes compared with the parental line, especially those from the Psy-1 sense transformants. These results demonstrate that MudPIT and iTRAQ are suitable techniques for the verification of substantial equivalence of the proteome in GE crops. PMID:22987837

  1. Predictive dose-based estimation of systemic exposure multiples in mouse and monkey relative to human for antisense oligonucleotides with 2'-o-(2-methoxyethyl) modifications.

    PubMed

    Yu, Rosie Z; Grundy, John S; Henry, Scott P; Kim, Tae-Won; Norris, Daniel A; Burkey, Jennifer; Wang, Yanfeng; Vick, Andrew; Geary, Richard S

    2015-01-01

    Evaluation of species differences and systemic exposure multiples (or ratios) in toxicological animal species versus human is an ongoing exercise during the course of drug development. The systemic exposure ratios are best estimated by directly comparing area under the plasma concentration-time curves (AUCs), and sometimes by comparing the dose administered, with the dose being adjusted either by body surface area (BSA) or body weight (BW). In this study, the association between AUC ratio and the administered dose ratio from animals to human were studied using a retrospective data-driven approach. The dataset included nine antisense oligonucleotides (ASOs) with 2'-O-(2-methoxyethyl) modifications, evaluated in two animal species (mouse and monkey) following single and repeated parenteral administrations. We found that plasma AUCs were similar between ASOs within the same species, and are predictable to human exposure using a single animal species, either mouse or monkey. Between monkey and human, the plasma exposure ratio can be predicted directly based on BW-adjusted dose ratios, whereas between mouse and human, the exposure ratio would be nearly fivefold lower in mouse compared to human based on BW-adjusted dose values. Thus, multiplying a factor of 5 for the mouse BW-adjusted dose would likely provide a reasonable AUC exposure estimate in human at steady-state. PMID:25602582

  2. Predictive Dose-Based Estimation of Systemic Exposure Multiples in Mouse and Monkey Relative to Human for Antisense Oligonucleotides With 2′-O-(2-Methoxyethyl) Modifications

    PubMed Central

    Yu, Rosie Z; Grundy, John S; Henry, Scott P; Kim, Tae-Won; Norris, Daniel A; Burkey, Jennifer; Wang, Yanfeng; Vick, Andrew; Geary, Richard S

    2015-01-01

    Evaluation of species differences and systemic exposure multiples (or ratios) in toxicological animal species versus human is an ongoing exercise during the course of drug development. The systemic exposure ratios are best estimated by directly comparing area under the plasma concentration-time curves (AUCs), and sometimes by comparing the dose administered, with the dose being adjusted either by body surface area (BSA) or body weight (BW). In this study, the association between AUC ratio and the administered dose ratio from animals to human were studied using a retrospective data-driven approach. The dataset included nine antisense oligonucleotides (ASOs) with 2′-O-(2-methoxyethyl) modifications, evaluated in two animal species (mouse and monkey) following single and repeated parenteral administrations. We found that plasma AUCs were similar between ASOs within the same species, and are predictable to human exposure using a single animal species, either mouse or monkey. Between monkey and human, the plasma exposure ratio can be predicted directly based on BW-adjusted dose ratios, whereas between mouse and human, the exposure ratio would be nearly fivefold lower in mouse compared to human based on BW-adjusted dose values. Thus, multiplying a factor of 5 for the mouse BW-adjusted dose would likely provide a reasonable AUC exposure estimate in human at steady-state. PMID:25602582

  3. Reduction of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Content by Antisense RNA Reduces Photosynthesis in Transgenic Tobacco Plants 1

    PubMed Central

    Hudson, Graham S.; Evans, John R.; von Caemmerer, Susanne; Arvidsson, Yvonne B. C.; Andrews, T. John

    1992-01-01

    A complementary DNA for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was cloned from tobacco (Nicotiana tabacum) and fused in the antisense orientation to the cauliflower mosaic virus 35S promoter. This antisense gene was introduced into the tobacco genome, and the resulting transgenic plants were analyzed to assess the effect of the antisense RNA on Rubisco activity and photosynthesis. The mean content of extractable Rubisco activity from the leaves of 10 antisense plants was 18% of the mean level of activity of control plants. The soluble protein content of the leaves of anti-small subunit plants was reduced by the amount equivalent to the reduction in Rubisco. There was little change in phosphoribulokinase activity, electron transport, and chlorophyll content, indicating that the loss of Rubisco did not affect these other components of photosynthesis. However, there was a significant reduction in carbonic anhydrase activity. The rate of CO2 assimilation measured at 1000 micromoles quanta per square meter per second, 350 microbars CO2, and 25°C was reduced by 63% (mean value) in the antisense plants and was limited by Rubisco activity over a wide range of intercellular CO2 partial pressures (pi). In control leaves, Rubisco activity only limited the rate of CO2 assimilation below a pi of 400 microbars. Despite the decrease in photosynthesis, there was no reduction in stomatal conductance in the antisense plants, and the stomata still responded to changes in pi. The unchanged conductance and lower CO2 assimilation resulted in a higher pi, which was reflected in greater carbon isotope discrimination in the leaves of the antisense plants. These results suggest that stomatal function is independent of total leaf Rubisco activity. PMID:16668627

  4. New Multi-target Antagonists of α1A-, α1D-Adrenoceptors and 5-HT1A Receptors Reduce Human Hyperplastic Prostate Cell Growth and the Increase of Intraurethral Pressure.

    PubMed

    Nascimento-Viana, Jéssica B; Carvalho, Aline R; Nasciutti, Luiz Eurico; Alcántara-Hernández, Rocío; Chagas-Silva, Fernanda; Souza, Pedro A R; Romeiro, Luiz Antonio S; García-Sáinz, J Adolfo; Noël, François; Silva, Claudia Lucia Martins

    2016-01-01

    Benign prostatic hyperplasia (BPH) is characterized by stromal cell proliferation and contraction of the periurethral smooth muscle, causing lower urinary tract symptoms. Current BPH treatment, based on monotherapy with α1A-adrenoceptor antagonists, is helpful for many patients, but insufficient for others, and recent reports suggest that stimulation of α1D-adrenoceptors and 5-hydroxytryptamine (serotonin) (5-HT)1A receptors contributes to cell proliferation. In this study, we investigated the potential of three N-phenylpiperazine derivatives (LDT3, LDT5, and LDT8) as multi-target antagonists of BPH-associated receptors. The affinity and efficacy of LDTs were estimated in isometric contraction and competition-binding assays using tissues (prostate and aorta) and brain membrane samples enriched in specific on- or off-target receptors. LDTs' potency was estimated in intracellular Ca(2+) elevation assays using cells overexpressing human α1-adrenoceptor subtypes. The antiproliferative effect of LDTs on prostate cells from BPH patients was evaluated by viable cell counting and 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays. We also determined LDTs' effects on rat intraurethral and arterial pressure. LDT3 and LDT5 are potent antagonists of α1A-, α1D-adrenoceptors, and 5-HT1A receptors (Ki values in the nanomolar range), and fully inhibited phenylephrine- and 5-HT-induced proliferation of BPH cells. In vivo, LDT3 and LDT5 fully blocked the increase of intraurethral pressure (IUP) induced by phenylephrine at doses (ED50 of 0.15 and 0.09 μg.kg(-1), respectively) without effect on basal mean blood pressure. LDT3 and LDT5 are multi-target antagonists of key receptors in BPH, and are capable of triggering both prostate muscle relaxation and human hyperplastic prostate cell growth inhibition in vitro. Thus, LDT3 and LDT5 represent potential new lead compounds for BPH treatment. PMID:26493747

  5. Central and Peripheral Administration of Antisense Oligonucleotide Targeting Amyloid Precursor Protein Improves Learning and Memory and Reduces Neuroinflammatory Cytokines in Tg2576 (APPswe) Mice

    PubMed Central

    Farr, Susan A.; Erickson, Michelle A.; Niehoff, Michael L.; Banks, William A.; Morley, John E.

    2014-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease. The World Health Organization estimates that there are currently 18 million people worldwide living with AD and that number is expected to double by early 2025. Currently, there are no therapies to stop or reverse the symptoms of AD. We have developed an antisense oligonucleotide (OL-1) against the amyloid betaprotein precursor (AβPP) that can decrease AβPP expression and amyloid beta protein (Aβ) production. This antisense rapidly crosses the blood-brain barrier, reverses learning and memory impairments, reduces oxidative stress and restores brain-to-blood efflux of Aβ in SAMP8 mice. In the current study, we examined the effects of this AβPP antisense in the Tg2576 mouse model of AD. The Tg2576 overproduces human Aβ, develops age-related learning and memory deficits, and exhibits oxidative damage in the brain. First, we administered the AβPP antisense centrally into the lateral ventricle 3 times at 2 week intervals. Seventy-two hours after the third injection, we tested learning and memory in T-maze foot shock avoidance. In the second study, we injected the mice with AβPP antisense 3 times at two week intervals via the tail vein. Seventy-two hours later, we tested learning and memory T-maze foot shock avoidance, novel object recognition and elevated plus maze. At the end of behavioral testing, mice were sacrificed and brain tissue was collected for evaluation of AβPP, Aβ, and expression of cytokines and chemokines. AβPP antisense administered centrally improved acquisition and retention of T-maze foot shock avoidance. AβPP antisense administered via tail vein improved learning and memory in both T-maze foot shock avoidance and novel object-place recognition. In the elevated plus maze the mice which received OL-1 AβPP antisense spent less time in the open arms and had fewer entries into the open arms indicating reduced disinhibitation. Biochemical analyses reveal significant

  6. Extremely High Expression of Antisense RNA for Wilms' Tumor 1 in Active Osteoclasts: Suppression of Wilms' Tumor 1 Protein Expression during Osteoclastogenesis.

    PubMed

    Li, Yin-Ji; Kukita, Akiko; Kyumoto-Nakamura, Yukari; Kukita, Toshio

    2016-09-01

    Wilms' tumor 1 (WT1), a zinc-finger transcription regulator of the early growth response family, identified as the product of a tumor suppressor gene of Wilms' tumors, bears potential ability to induce macrophage differentiation in blood cell differentiation. Herein, we examined the involvement of WT1 in the regulation of osteoclastogenesis. We detected a high level of WT1 protein expression in osteoclast precursors; however, WT1 expression was markedly suppressed during osteoclastogenesis. We examined expression of WT1 transcripts in bone tissue by RNA in situ hybridization. We found a high level of antisense transcripts in osteoclasts actively resorbing bone in mandible of newborn rats. Expression of antisense WT1 RNA in mandible was also confirmed by Northern blot analysis and strand-specific RT-PCR. Overexpression of antisense WT1 RNA in RAW-D cells, an osteoclast precursor cell line, resulted in a marked enhancement of osteoclastogenesis, suggesting that antisense WT1 RNA functions to suppress expression of WT1 protein in osteoclastogenesis. High level expression of antisense WT1 RNA may contribute to commitment to osteoclastogenesis, and may allow osteoclasts to maintain or stabilize their differentiation state. PMID:27393793

  7. Disarmed anthrax toxin delivers antisense oligonucleotides and siRNA with high efficiency and low toxicity.

    PubMed

    Dyer, Paul D R; Shepherd, Thomas R; Gollings, Alexander S; Shorter, Susan A; Gorringe-Pattrick, Monique A M; Tang, Chun-Kit; Cattoz, Beatrice N; Baillie, Les; Griffiths, Peter C; Richardson, Simon C W

    2015-12-28

    Inefficient cytosolic delivery and vector toxicity contribute to the limited use of antisense oligonucleotides (ASOs) and siRNA as therapeutics. As anthrax toxin (Atx) accesses the cytosol, the purpose of this study was to evaluate the potential of disarmed Atx to deliver either ASOs or siRNA. We hypothesized that this delivery strategy would facilitate improved transfection efficiency while eliminating the toxicity seen for many vectors due to membrane destabilization. Atx complex formation with ASOs or siRNA was achieved via the in-frame fusion of either Saccharomyces cerevisiae GAL4 or Homo sapien sapien PKR (respectively) to a truncation of Atx lethal factor (LFn), which were used with Atx protective antigen (PA). Western immunoblotting confirmed the production of: LFN-GAL4, LFn-PKR and PA which were detected at ~45.9 kDa, ~37 kDa, and ~83 kDa respectively and small angle neutron scattering confirmed the ability of PA to form an annular structure with a radius of gyration of 7.0 ± 1.0 nm when placed in serum. In order to form a complex with LFn-GAL4, ASOs were engineered to contain a double-stranded region, and a cell free in vitro translation assay demonstrated that no loss of antisense activity above 30 pmol ASO was evident. The in vitro toxicity of both PA:LFn-GAL4:ASO and PA:LFn-PKR:siRNA complexes was low (IC50>100 μg/mL in HeLa and Vero cells) and subcellular fractionation in conjunction with microscopy confirmed the detection of LFn-GAL4 or LFn-PKR in the cytosol. Syntaxin5 (Synt5) was used as a model target gene to determine pharmacological activity. The PA:LFn-GAL4:ASO complexes had transfection efficiency approximately equivalent to Nucleofection® over a variety of ASO concentrations (24h post-transfection) and during a 72 h time course. In HeLa cells, at 200 pmol ASO (with PA:LFN-GAL4), 5.4 ± 2.0% Synt5 expression was evident relative to an untreated control after 24h. Using 200 pmol ASOs, Nucleofection® reduced Synt5 expression to 8.1 ± 2

  8. Sense-antisense gene-pairs in breast cancer and associated pathological pathways

    PubMed Central

    Grinchuk, Oleg V.; Motakis, Efthymios; Yenamandra, Surya Pavan; Ow, Ghim Siong; Jenjaroenpun, Piroon; Tang, Zhiqun; Yarmishyn, Aliaksandr A.; Ivshina, Anna V.; Kuznetsov, Vladimir A.

    2015-01-01

    More than 30% of human protein-coding genes form hereditary complex genome architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their RNAs from both strands of a given locus. Such architectures represent important novel components of genome complexity contributing to gene expression deregulation in cancer cells. Therefore, the architectures might be involved in cancer pathways and, in turn, be used for novel drug targets discovery. However, the global roles of SAGPs in cancer pathways has not been studied. Here we investigated SAGPs associated with breast cancer (BC)-related pathways using systems biology, prognostic survival and experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC patients allowed us to develop a novel patient prognostic grouping method selecting the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic signature reproducibly stratified BC patients into low- and high-risk prognostic subgroups. The 1381 SAGP-defined differentially expressed genes common across three studied cohorts were identified. The functional enrichment analysis of these genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, we demonstrated SAGPs as the synergistically functional genome architectures interconnected with cancer-related pathways and associated with BC patient clinical outcomes. Taken together, SAGPs represent an important component of genome complexity which can be used to identify novel aspects of coordinated pathological gene networks in cancers. PMID:26517092

  9. Selective Neuromuscular Denervation in Taiwanese Severe SMA Mouse Can Be Reversed by Morpholino Antisense Oligonucleotides

    PubMed Central

    Lin, Te-Lin; Chen, Tai-Heng; Hsu, Ya-Yun; Cheng, Yu-Hua; Juang, Bi-Tzen; Jong, Yuh-Jyh

    2016-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease caused by deficiency of the survival of motor neuron (SMN) protein, which leads to synaptic defects and spinal motor neuron death. Neuromuscular junction (NMJ) abnormalities have been found to be involved in SMA pathogenesis in the SMNΔ7 SMA mouse model. However, whether similar NMJ pathological findings present in another commonly used mouse model, the Taiwanese SMA mouse, has not been fully investigated. To examine the NMJs of the Taiwanese severe SMA mouse model (Smn-/-; SMN2tg/0), which is characterized by severe phenotype and death before postnatal day (P) 9, we investigated 25 axial and appendicular muscles from P1 to P9. We labelled the muscles with anti-neurofilament and anti-synaptophysin antibodies for nerve terminals and α-bungarotoxin for acetylcholine receptors (AChRs). We found that severe NMJ denervation (<50% fully innervated endplates) selectively occurred in the flexor digitorum brevis 2 and 3 (FDB-2/3) muscles from P5, and an increased percentage of fully denervated endplates correlated with SMA progression. Furthermore, synaptophysin signals were absent at the endplate compared to control littermate mice, suggesting that vesicle transport might only be affected at the end stage. Subsequently, we treated the Taiwanese severe SMA mice with morpholino (MO) antisense oligonucleotides (80 μg/g) via subcutaneous injection at P0. We found that MO significantly reversed the NMJ denervation in FDB-2/3 muscles and extended the survival of Taiwanese severe SMA mice. We conclude that early NMJ denervation in the FDB-2/3 muscles of Taiwanese severe SMA mice can be reversed by MO treatment. The FDB-2/3 muscles of Taiwanese severe SMA mice provide a very sensitive platform for assessing the effectiveness of drug treatments in SMA preclinical studies. PMID:27124114

  10. Survivin Antisense Oligonucleotides Effectively Radiosensitize Colorectal Cancer Cells in Both Tissue Culture and Murine Xenograft Models

    SciTech Connect

    Roedel, Franz; Capalbo, Gianni; Weiss, Christian; Roedel, Claus

    2008-05-01

    Purpose: Survivin shows a radiation resistance factor in colorectal cancer. In the present study, we determined whether survivin messenger RNA levels in patients with rectal cancer predict tumor response after neoadjuvant radiochemotherapy and whether inhibition of survivin by the use of antisense oligonucleotides (ASOs) enhances radiation responses. Methods and Materials: SW480 colorectal carcinoma cells were transfected with survivin ASO (LY2181308) and irradiated with doses ranging from 0-8 Gy. Survivin expression, cell-cycle distribution, {gamma}H2AX fluorescence, and induction of apoptosis were monitored by means of immunoblotting, flow cytometry, and caspase 3/7 activity. Clonogenic survival was determined by using a colony-forming assay. An SW480 xenograft model was used to investigate the effect of survivin attenuation and irradiation on tumor growth. Furthermore, survivin messenger RNA levels were studied in patient biopsy specimens by using Affymetrix microarray analysis. Results: In the translational study of 20 patients with rectal cancer, increased survivin levels were associated with significantly greater risk of local tumor recurrence (p = 0.009). Treatment of SW480 cells with survivin ASOs and irradiation resulted in an increased percentage of apoptotic cells, caspase 3/7 activity, fraction of cells in the G{sub 2}/M phase, and H2AX phosphorylation. Clonogenic survival decreased compared with control-treated cells. Furthermore, treatment of SW480 xenografts with survivin ASOs and irradiation resulted in a significant delay in tumor growth. Conclusion: Survivin appears to be a molecular biomarker in patients with rectal cancer. Furthermore, in vitro and in vivo data suggest a potential role of survivin as a molecular target to improve treatment response to radiotherapy in patients with rectal cancer.

  11. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2'-modifications and enhances antisense activity.

    PubMed

    Liang, Xue-Hai; Shen, Wen; Sun, Hong; Kinberger, Garth A; Prakash, Thazha P; Nichols, Joshua G; Crooke, Stanley T

    2016-05-01

    RNase H1-dependent antisense oligonucleotides (ASOs) are chemically modified to enhance pharmacological properties. Major modifications include phosphorothioate (PS) backbone and different 2'-modifications in 2-5 nucleotides at each end (wing) of an ASO. Chemical modifications can affect protein binding and understanding ASO-protein interactions is important for better drug design. Recently we identified many intracellular ASO-binding proteins and found that protein binding could affect ASO potency. Here, we analyzed the structure-activity-relationships of ASO-protein interactions and found 2'-modifications significantly affected protein binding, including La, P54nrb and NPM. PS-ASOs containing more hydrophobic 2'-modifications exhibit higher affinity for proteins in general, although certain proteins, e.g. Ku70/Ku80 and TCP1, are less affected by 2'-modifications. We found that Hsp90 protein binds PS-ASOs containing locked-nucleic-acid (LNA) or constrained-ethyl-bicyclic-nucleic-acid ((S)-cEt) modifications much more avidly than 2'-O-methoxyethyl (MOE). ASOs bind the mid-domain of Hsp90 protein. Hsp90 interacts with more hydrophobic 2' modifications, e.g. (S)-cEt or LNA, in the 5'-wing of the ASO. Reduction of Hsp90 protein decreased activity of PS-ASOs with 5'-LNA or 5'-cEt wings, but not with 5'-MOE wing. Together, our results indicate Hsp90 protein enhances the activity of PS/LNA or PS/(S)-cEt ASOs, and imply that altering protein binding of ASOs using different chemical modifications can improve therapeutic performance of PS-ASOs. PMID:26945041

  12. Manipulation of Strawberry Fruit Softening by Antisense Expression of a Pectate Lyase Gene1

    PubMed Central

    Jiménez-Bermúdez, Silvia; Redondo-Nevado, José; Muñoz-Blanco, Juan; Caballero, José L.; López-Aranda, José M.; Valpuesta, Victoriano; Pliego-Alfaro, Fernando; Quesada, Miguel A.; Mercado, José A.

    2002-01-01

    Strawberry (Fragaria × ananassa, Duch., cv Chandler) is a soft fruit with a short postharvest life, mainly due to a rapid lost of firm texture. To control the strawberry fruit softening, we obtained transgenic plants that incorporate an antisense sequence of a strawberry pectate lyase gene under the control of the 35S promoter. Forty-one independent transgenic lines (Apel lines) were obtained, propagated in the greenhouse for agronomical analysis, and compared with control plants, non-transformed plants, and transgenic lines transformed with the pGUSINT plasmid. Total yield was significantly reduced in 33 of the 41 Apel lines. At the stage of full ripen, no differences in color, size, shape, and weight were observed between Apel and control fruit. However, in most of the Apel lines, ripened fruits were significantly firmer than controls. Six Apel lines were selected for further analysis. In all these lines, the pectate lyase gene expression in ripened fruit was 30% lower than in control, being totally suppressed in three of them. Cell wall material isolated from ripened Apel fruit showed a lower degree of in vitro swelling and a lower amount of ionically bound pectins than control fruit. An analysis of firmness at three different stages of fruit development (green, white, and red) showed that the highest reduction of softening in Apel fruit occurred during the transition from the white to the red stage. The postharvest softening of Apel fruit was also diminished. Our results indicate that pectate lyase gene is an excellent candidate for biotechnological improvement of fruit softening in strawberry. PMID:11842178

  13. Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides.

    PubMed

    Ezzat, Kariem; Aoki, Yoshitsugu; Koo, Taeyoung; McClorey, Graham; Benner, Leif; Coenen-Stass, Anna; O'Donovan, Liz; Lehto, Taavi; Garcia-Guerra, Antonio; Nordin, Joel; Saleh, Amer F; Behlke, Mark; Morris, John; Goyenvalle, Aurelie; Dugovic, Branislav; Leumann, Christian; Gordon, Siamon; Gait, Michael J; El-Andaloussi, Samir; Wood, Matthew J A

    2015-07-01

    Antisense oligonucleotides (ASOs) have the potential to revolutionize medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake, however, a major challenge is the poor understanding of their uptake mechanisms, which would facilitate improved ASO designs with enhanced activity and reduced toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (PPMO), 2'Omethyl phosphorothioate (2'OMe), and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Duchenne muscular dystrophy (DMD). We show that PPMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. PPMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations, PPMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in vitro. In vivo, the activity of PPMO was significantly decreased in SCARA1 knockout mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2'OMe as shown by competitive inhibition and colocalization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that PPMO and tcDNA have higher binding profiles to the receptor compared to 2'OMe. These results demonstrate receptor-mediated uptake for a range of therapeutic ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles. PMID:26042553

  14. Affinity capture of (Arg sup 8 )vasopressin-receptor complex using immobilized antisense peptide

    SciTech Connect

    Feng Xian Lu; Aiyar, N.; Chaiken, I. )

    1991-05-01

    Solubilized noncovalent complexes of (Arg{sup 8})-vasopressin (AVP) with receptor proteins from rat liver membranes were isolated by selective binding to silica-immobilized antisense (AS) peptide. The affinity chromatographic support was prepared with a chemically synthesized AS peptide whose sequence is encoded by the AS DNA corresponding to the 20 amino-terminal residues of the AVP bovine neurophysin II biosynthetic precursor (pro-AVP/BNPII-(20-1)), region that includes the AVP sequence at residues 1-9. The AS peptide-AVP interaction mechanism hypothesized, contact by hydropathic complementarity at multiple sites along the peptide chains, led to the prediction that AVP bound to its receptor would still have enough free surface to interact with immobilized AS peptide. To test this prediction of a three-way interaction, ({sup 3}H)AVP-receptor was obtained as a solubilized, partially purified fraction from rat liver membrane. Covalently crosslinked ({sup 3}H)AVP complex also was bound to the AS peptide column; binding was blocked by competition with unlabeled AVP in the elution buffer. Since the AVP-linked 31- and 38-kDa proteins have the same apparent molecular mass on SDS/PAGE as found previously by photoaffinity labeling, the authors conclude that the AS peptide column has affinity-captured AVP-receptor complexes. The 15-kDa protein appears to be an active AVP-receptor fragment of one or both of the larger proteins. It is generally concluded that immobilized AS peptides may be useful to isolate peptide and protein receptor complexes in other systems as well.

  15. Elucidation of the Biotransformation Pathways of a Galnac3-conjugated Antisense Oligonucleotide in Rats and Monkeys.

    PubMed

    Shemesh, Colby S; Yu, Rosie Z; Gaus, Hans J; Greenlee, Sarah; Post, Noah; Schmidt, Karsten; Migawa, Michael T; Seth, Punit P; Zanardi, Thomas A; Prakash, Thazha P; Swayze, Eric E; Henry, Scott P; Wang, Yanfeng

    2016-01-01

    Triantennary N-acetyl galactosamine (GalNAc3) is a high-affinity ligand for hepatocyte-specific asialoglycoprotein receptors. Conjugation with GalNAc3 via a trishexylamino (THA)-C6 cluster significantly enhances antisense oligonucleotide (ASO) potency. Herein, the biotransformation, disposition, and elimination of the THA cluster of ION-681257, a GalNAc3-conjugated ASO currently in clinical development, are investigated in rats and monkey. Rats were administered a single subcutaneous dose of (3)H-radiolabeled ((3)H placed in THA) or nonradiolabeled ION-681257. Mass balance included radiometric profiling and metabolite fractionation with characterization by mass spectrometry. GalNAc3-conjugated ASOs were extensively distributed into liver. The THA-C6 triantenerrary GalNAc3 conjugate at the 5'-end of the ASO was rapidly metabolized and excreted with 25.67 ± 1.635% and 71.66 ± 4.17% of radioactivity recovered in urine and feces within 48 hours postdose. Unchanged drug, short-mer ASOs, and linker metabolites were detected in urine. Collectively, 14 novel linker associated metabolites were discovered including oxidation at each branching arm, initially by monooxidation at the β-position followed by dioxidation at the α-arm, and lastly, tri and tetra oxidations on the two remaining β-arms. Metabolites in bile and feces were identical to urine except for oxidized linear and cyclic linker metabolites. Enzymatic reaction phenotyping confirmed involvement of N-acetyl-β-glucosaminidase, deoxyribonuclease II, alkaline phosphatase, and alcohol + aldehyde dehydrogenases on the complex metabolism pathway for THA supplementing in vivo findings. Lastly, excreta from monkeys treated with ION-681257 revealed the identical series as observed in rat. In summary, our findings provide an improved understanding of GalNAc3-conjugated-ASO metabolism pathways which facilitate similar development programs. PMID:27164023

  16. Structure Activity Relationships of α-L-LNA Modified Phosphorothioate Gapmer Antisense Oligonucleotides in Animals.

    PubMed

    Seth, Punit P; Jazayeri, Ali; Yu, Jeff; Allerson, Charles R; Bhat, Balkrishen; Swayze, Eric E

    2012-01-01

    We report the structure activity relationships of short 14-mer phosphorothioate gapmer antisense oligonucleotides (ASOs) modified with α-L-locked nucleic acid (LNA) and related modifications targeting phosphatase and tensin homologue (PTEN) messenger RNA in mice. α-L-LNA represents the α-anomer of enantio-LNA and modified oligonucleotides show LNA like binding affinity for complementary RNA. In contrast to sequence matched LNA gapmer ASOs which showed elevations in plasma alanine aminotransferase (ALT) levels indicative of hepatotoxicity, gapmer ASOs modified with α-L-LNA and related analogs in the flanks showed potent downregulation of PTEN messenger RNA in liver tissue without producing elevations in plasma ALT levels. However, the α-L-LNA ASO showed a moderate dose-dependent increase in liver and spleen weights suggesting a higher propensity for immune stimulation. Interestingly, replacing α-L-LNA nucleotides in the 3'- and 5'-flanks with R-5'-Me-α-L-LNA but not R-6'-Me- or 3'-Me-α-L-LNA nucleotides, reversed the drug induced increase in organ weights. Examination of structural models of dinucleotide units suggested that the 5'-Me group increases steric bulk in close proximity to the phosphorothioate backbone or produces subtle changes in the backbone conformation which could interfere with recognition of the ASO by putative immune receptors. Our data suggests that introducing steric bulk at the 5'-position of the sugar-phosphate backbone could be a general strategy to mitigate the immunostimulatory profile of oligonucleotide drugs. In a clinical setting, proinflammatory effects manifest themselves as injection site reactions and flu-like symptoms. Thus, a mitigation of these effects could increase patient comfort and compliance when treated with ASOs.Molecular Therapy - Nucleic Acids (2012) 1, e47; doi:10.1038/mtna.2012.34; published online 18 September 2012. PMID:23344239

  17. Antisense inhibition of cyclin D1 expression is equivalent to flavopiridol for radiosensitization of zebrafish embryos

    SciTech Connect

    McAleer, Mary Frances; Duffy, Kevin T.; Davidson, William R.; Kari, Gabor; Dicker, Adam P.; Rodeck, Ulrich; Wickstrom, Eric . E-mail: eric@tesla.jci.tju.edu

    2006-10-01

    Purpose: Flavopiridol, a small molecule pan-cyclin inhibitor, has been shown to enhance Radiation response of tumor cells both in vitro and in vivo. The clinical utility of flavopiridol, however, is limited by toxicity, previously attributed to pleiotropic inhibitory effects on several targets affecting multiple signal transduction pathways. Here we used zebrafish embryos to investigate radiosensitizing effects of flavopiridol in normal tissues. Methods and Materials: Zebrafish embryos at the 1- to 4-cell stage were treated with 500 nM flavopiridol or injected with 0.5 pmol antisense hydroxylprolyl-phosphono nucleic acid oligomers to reduce cyclin D1 expression, then subjected to ionizing radiation (IR) or no radiation. Results: Flavopiridol-treated embryos demonstrated a twofold increase in mortality after exposure to 40 Gy by 96 hpf and developed distinct radiation-induced defects in midline development (designated as the 'curly up' phenotype) at higher rates when compared with embryos receiving IR only. Cyclin D1-deficient embryos had virtually identical IR sensitivity profiles when compared with embryos treated with flavopiridol. This was particularly evident for the IR-induced curly up phenotype, which was greatly exacerbated by both flavopriridol and cyclin D1 downregulation. Conclusions: Treatment of zebrafish embryos with flavopiridol enhanced radiation sensitivity of zebrafish embryos to a degree that was very similar to that associated with downregulation of cyclin D1 expression. These results are consistent with the hypothesis that inhibition of cyclin D1 is sufficient to account for the radiosensitizing action of flavopiridol in the zebrafish embryo vertebrate model.

  18. Sense-antisense gene-pairs in breast cancer and associated pathological pathways.

    PubMed

    Grinchuk, Oleg V; Motakis, Efthymios; Yenamandra, Surya Pavan; Ow, Ghim Siong; Jenjaroenpun, Piroon; Tang, Zhiqun; Yarmishyn, Aliaksandr A; Ivshina, Anna V; Kuznetsov, Vladimir A

    2015-12-01

    More than 30% of human protein-coding genes form hereditary complex genome architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their RNAs from both strands of a given locus. Such architectures represent important novel components of genome complexity contributing to gene expression deregulation in cancer cells. Therefore, the architectures might be involved in cancer pathways and, in turn, be used for novel drug targets discovery. However, the global roles of SAGPs in cancer pathways has not been studied. Here we investigated SAGPs associated with breast cancer (BC)-related pathways using systems biology, prognostic survival and experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC patients allowed us to develop a novel patient prognostic grouping method selecting the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic signature reproducibly stratified BC patients into low- and high-risk prognostic subgroups. The 1381 SAGP-defined differentially expressed genes common across three studied cohorts were identified. The functional enrichment analysis of these genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, we demonstrated SAGPs as the synergistically functional genome architectures interconnected with cancer-related pathways and associated with BC patient clinical outcomes. Taken together, SAGPs represent an important component of genome complexity which can be used to identify novel aspects of coordinated pathological gene networks in cancers. PMID:26517092

  19. Regulation of human heme oxygenase in endothelial cells by using sense and antisense retroviral constructs.

    PubMed

    Quan, S; Yang, L; Abraham, N G; Kappas, A

    2001-10-01

    Our objective was to determine whether overexpression and underexpression of human heme oxygenase (HHO)-1 could be controlled on a long-term basis by introduction of the HO-1 gene in sense (S) and antisense (AS) orientation with an appropriate vector into endothelial cells. Retroviral vector (LXSN) containing viral long terminal repeat promoter-driven human HO-1 S (LSN-HHO-1) and LXSN vectors containing HHO-1 promoter (HOP)-controlled HHO-1 S and AS (LSN-HOP-HHO-1 and LSN-HOP-HHO-1-AS) sequences were constructed and used to transfect rat lung microvessel endothelial cells (RLMV cells) and human dermal microvessel endothelial cells (HMEC-1 cells). RLMV cells transduced with HHO-1 S expressed human HO-1 mRNA and HO-1 protein associated with elevation in total HO activity compared with nontransduced cells. Vector-mediated expression of HHO-1 S or AS under control of HOP resulted in effective production of HO-1 or blocked induction of endogenous human HO-1 in HMEC-1 cells, respectively. Overexpression of HO-1 AS was associated with a long-term decrease (45%) of endogenous HO-1 protein and an increase (167%) in unmetabolized exogenous heme in HMEC-1 cells. Carbon monoxide (CO) production in HO-1 S- or AS-transduced HMEC-1 cells after heme treatment was increased (159%) or decreased (50%), respectively, compared with nontransduced cells. HO-2 protein levels did not change. These findings demonstrate that HHO-1 S and AS retroviral constructs are functional in enhancing and reducing HO activity, respectively, and thus can be used to regulate cellular heme levels, the activity of heme-dependent enzymes, and the rate of heme catabolism to CO and bilirubin. PMID:11593038

  20. Increased calreticulin stability in differentiated NG-108-15 cells correlates with resistance to apoptosis induced by antisense treatment.

    PubMed

    Johnson, R J; Liu, N; Shanmugaratnam, J; Fine, R E

    1998-01-01

    Since its first identification as a high-affinity calcium-binding protein over two decades ago [T.J. Ostwald and D.H. MacLennan, Isolation of a high-affinity calcium-binding protein from sarcoplasmic reticulum, J. Biol. Chem., 249 (1974) 974-979], calreticulin has become recognized as a multifunctional protein involved in a wide variety of cellular processes. We have previously shown that it has a protective function in Ca2+-mediated cell death [N. Liu, R.E. Fine, E. Simons and R.J. Johnson, Decreasing calreticulin expression lowers the Ca2+ response to bradykinin and increases sensitivity to ionomycin in NG-108-15 cells, J. Biol. Chem. , 269 (1994) 28635-28639]. We report here that in NG-108-15 neuroblastomaxglioma hybrid cells, calreticulin protein levels increase markedly when these cells are induced to differentiate by treating them with N,N-dibutyryl cAMP (db-cAMP). We demonstrate that the reason for this increase is mostly due to a large increase in the turnover time of calreticulin in differentiated cells. We also show that a calreticulin antisense oligonucleotide, CrtAS1, previously described by Liu and co-workers [N. Liu, R.E. Fine, E. Simons and R.J. Johnson, Decreasing calreticulin expression lowers the Ca2+ response to bradykinin and increases sensitivity to ionomycin in NG-108-15 cells, J. Biol. Chem., 269 (1994) 28635-28639] causes cell death in undifferentiated NG-108-15 cells when antisense treatment is extended for more than 24 h. This effect is not seen in NG-108-15 cells that have been induced to differentiate with db-cAMP until the cells have been treated with antisense for more than 4 days, due to the increased stability of Crt in these cells. Our results indicate that the mechanism by which these cells die is likely to be apoptosis. PMID:9473613

  1. Long noncoding RNA FGFR3-AS1 promotes osteosarcoma growth through regulating its natural antisense transcript FGFR3.

    PubMed

    Sun, Jiabing; Wang, Xuming; Fu, Chunjiang; Wang, Xiaoyu; Zou, Jilong; Hua, Hanbing; Bi, Zhenggang

    2016-05-01

    Long noncoding RNAs (lncRNAs), a new class of RNAs with no protein-coding potential, have been reported to have crucial roles in the regulation of a variety of tumors. However, the functions and molecular mechanisms of lncRNAs to osteosarcoma are still largely unknown. The purpose of this study is to examine the expression, functions and molecular mechanisms of a new lncRNA FGFR3 antisense transcript 1 (FGFR3-AS1) in osteosarcoma. The expression of FGFR3-AS1 was examined by real-time quantitative PCR. The regulation of FGFR3 by FGFR3-AS1 was examined by RNase protection assay, real-time quantitative PCR, western blotting, and luciferase reporter assay. The effects of FGFR3-AS1 on osteosarcoma cell proliferation and cell cycle were determined by Cell Counting Kit-8, Ethynyl deoxyuridine incorporation assay and flow cytometry. FGFR3-AS1 was upregulated in osteosarcoma. Increased FGFR3-AS1 expression correlates with large tumor size, advanced Enneking stage, metastasis and poor survival. Through antisense pairing with FGFR3 3'UTR, FGFR3-AS1 increases FGFR3 mRNA stability and upregulates FGFR3 expression. The expression of FGFR3-AS1 and FGFR3 is positively correlated in osteosarcoma tissues. Knockdown of FGFR3-AS1 inhibits the proliferation and cell cycle progression of osteosarcoma cells in vitro. Moreover, knockdown of FGFR3-AS1 inhibits xenograft tumor growth of osteosarcoma cells in vivo. These data demonstrate the mechanisms of how antisense noncoding RNA regulate the expression of sense genes, and show the pivotal functions of FGFR3-AS1 in osteosarcoma. PMID:27022737

  2. Antisense Suppression of the Small Chloroplast Protein CP12 in Tobacco Alters Carbon Partitioning and Severely Restricts Growth1[W

    PubMed Central

    Howard, Thomas P.; Fryer, Michael J.; Singh, Prashant; Metodiev, Metodi; Lytovchenko, Anna; Obata, Toshihiro; Fernie, Alisdair R.; Kruger, Nicholas J.; Quick, W. Paul; Lloyd, Julie C.; Raines, Christine A.

    2011-01-01

    The thioredoxin-regulated chloroplast protein CP12 forms a multienzyme complex with the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). PRK and GAPDH are inactivated when present in this complex, a process shown in vitro to be dependent upon oxidized CP12. The importance of CP12 in vivo in higher plants, however, has not been investigated. Here, antisense suppression of CP12 in tobacco (Nicotiana tabacum) was observed to impact on NAD-induced PRK and GAPDH complex formation but had little effect on enzyme activity. Additionally, only minor changes in photosynthetic carbon fixation were observed. Despite this, antisense plants displayed changes in growth rates and morphology, including dwarfism and reduced apical dominance. The hypothesis that CP12 is essential to separate oxidative pentose phosphate pathway activity from Calvin-Benson cycle activity, as proposed in cyanobacteria, was tested. No evidence was found to support this role in tobacco. Evidence was seen, however, for a restriction to malate valve capacity, with decreases in NADP-malate dehydrogenase activity (but not protein levels) and pyridine nucleotide content. Antisense repression of CP12 also led to significant changes in carbon partitioning, with increased carbon allocation to the cell wall and the organic acids malate and fumarate and decreased allocation to starch and soluble carbohydrates. Severe decreases were also seen in 2-oxoglutarate content, a key indicator of cellular carbon sufficiency. The data presented here indicate that in tobacco, CP12 has a role in redox-mediated regulation of carbon partitioning from the chloroplast and provides strong in vivo evidence that CP12 is required for normal growth and development in plants. PMID:21865489

  3. PEG-appended beta-(1-->3)-D-glucan schizophyllan to deliver antisense-oligonucleotides with avoiding lysosomal degradation.

    PubMed

    Karinaga, Ryouji; Koumoto, Kazuya; Mizu, Masami; Anada, Takahisa; Shinkai, Seiji; Sakurai, Kazuo

    2005-08-01

    Schizophyllan is a natural beta-(1-->3)-d-glucan existing as a triple helix in water and as a single chain in dimethylsulfoxide (DMSO). As we already reported, when a homo-polynucleotide [e.g., poly(dA) or poly(C)] is added to the schizophyllan/DMSO solution and subsequently DMSO is exchanged for water, the single chain of schizophyllan forms a complex with the polynucleotide. One of the potential applications for this novel complex is an antisense-oligonucleotide (AS ODN) carrier. The present paper describes a modification technique that enabled us to introduce PEG only to the side chain of schizophyllan. This technique consisted of periodate oxidation of the glucose side chain and subsequent reaction between methoxypolyethylene glycol amine and the formyl terminate, followed by reduction with NaBH4. Subsequently, we made a complex from PEG-appended schizophyllan and an AS ODN sequence, and carried out an in vitro antisense assay, administrating the AS ODN complex to depress A375 c-myb mRNA of A375 melanoma cell lines. The PEG-SPG/AS ODN complex showed more enhanced antisnese effect than naked AS ODN dose, i.e., the same level as that of RGD-appended SPG. Here, the RGD system has been shown one on the most effective AS ODN carrier (Science 261 (1993) 1004-1012). When we added nigericin to the assay system, the antisense effect was not affected in the PEG-SPG system, on the other hand, it was almost eliminated in the RGD system. Nigericin is well known to interrupt transport from endosome to lysosome. Therefore, the difference between the PEG and RGD complexes indicates that, in the PEG system, AS ODN was able to escape from lysosomal degradation. The present work has thus proposed a new strategy to delivery AS ODN using schizophyllan as a new carrier. PMID:15763266

  4. Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA.

    PubMed

    Huschka, Ryan; Barhoumi, Aoune; Liu, Qing; Roth, Jack A; Ji, Lin; Halas, Naomi J

    2012-09-25

    RNA interference (RNAi)--using antisense DNA or RNA oligonucleotides to silence activity of a specific pathogenic gene transcript and reduce expression of the encoded protein--is very useful in dissecting genetic function and holds significant promise as a molecular therapeutic. A major obstacle in achieving gene silencing with RNAi technology is the systemic delivery of therapeutic oligonucleotides. Here we demonstrate an engineered gold nanoshell (NS)-based therapeutic oligonucleotide delivery vehicle, designed to release its cargo on demand upon illumination with a near-infrared (NIR) laser. A poly-L-lysine peptide (PLL) epilayer covalently attached to the NS surface (NS-PLL) is used to capture intact, single-stranded antisense DNA oligonucleotides, or alternatively, double-stranded short-interfering RNA (siRNA) molecules. Controlled release of the captured therapeutic oligonucleotides in each case is accomplished by continuous wave NIR laser irradiation at 800 nm, near the resonance wavelength of the nanoshell. Fluorescently tagged oligonucleotides were used to monitor the time-dependent release process and light-triggered endosomal release. A green fluorescent protein (GFP)-expressing human lung cancer H1299 cell line was used to determine cellular uptake and gene silencing mediated by the NS-PLL carrying GFP gene-specific single-stranded DNA antisense oligonucleotide (AON-GFP), or a double-stranded siRNA (siRNA-GFP), in vitro. Light-triggered delivery resulted in ~47% and ~49% downregulation of the targeted GFP expression by AON-GFP and siRNA-GFP, respectively. Cytotoxicity induced by both the NS-PLL delivery vector and by laser irradiation is minimal, as demonstrated by a XTT cell proliferation assay. PMID:22862291

  5. SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells

    PubMed Central

    Zucchelli, Silvia; Fasolo, Francesca; Russo, Roberta; Cimatti, Laura; Patrucco, Laura; Takahashi, Hazuki; Jones, Michael H.; Santoro, Claudio; Sblattero, Daniele; Cotella, Diego; Persichetti, Francesca; Carninci, Piero; Gustincich, Stefano

    2015-01-01

    Despite recent efforts in discovering novel long non-coding RNAs (lncRNAs) and unveiling their functions in a wide range of biological processes their applications as biotechnological or therapeutic tools are still at their infancy. We have recently shown that AS Uchl1, a natural lncRNA antisense to the Parkinson's disease-associated gene Ubiquitin carboxyl-terminal esterase L1 (Uchl1), is able to increase UchL1 protein synthesis at post-transcriptional level. Its activity requires two RNA elements: an embedded inverted SINEB2 sequence to increase translation and the overlapping region to target its sense mRNA. This functional organization is shared with several mouse lncRNAs antisense to protein coding genes. The potential use of AS Uchl1-derived lncRNAs as enhancers of target mRNA translation remains unexplored. Here we define AS Uchl1 as the representative member of a new functional class of natural and synthetic antisense lncRNAs that activate translation. We named this class of RNAs SINEUPs for their requirement of the inverted SINEB2 sequence to UP-regulate translation in a gene-specific manner. The overlapping region is indicated as the Binding Doman (BD) while the embedded inverted SINEB2 element is the Effector Domain (ED). By swapping BD, synthetic SINEUPs are designed targeting mRNAs of interest. SINEUPs function in an array of cell lines and can be efficiently directed toward N-terminally tagged proteins. Their biological activity is retained in a miniaturized version within the range of small RNAs length. Its modular structure was exploited to successfully design synthetic SINEUPs targeting endogenous Parkinson's disease-associated DJ-1 and proved to be active in different neuronal cell lines. In summary, SINEUPs represent the first scalable tool to increase synthesis of proteins of interest. We propose SINEUPs as reagents for molecular biology experiments, in protein manufacturing as well as in therapy of haploinsufficiencies. PMID:26029048

  6. miR-Synth: a computational resource for the design of multi-site multi-target synthetic miRNAs

    PubMed Central

    Laganà, Alessandro; Acunzo, Mario; Romano, Giulia; Pulvirenti, Alfredo; Veneziano, Dario; Cascione, Luciano; Giugno, Rosalba; Gasparini, Pierluigi; Shasha, Dennis; Ferro, Alfredo; Croce, Carlo Maria

    2014-01-01

    RNAi is a powerful tool for the regulation of gene expression. It is widely and successfully employed in functional studies and is now emerging as a promising therapeutic approach. Several RNAi-based clinical trials suggest encouraging results in the treatment of a variety of diseases, including cancer. Here we present miR-Synth, a computational resource for the design of synthetic microRNAs able to target multiple genes in multiple sites. The proposed strategy constitutes a valid alternative to the use of siRNA, allowing the employment of a fewer number of molecules for the inhibition of multiple targets. This may represent a great advantage in designing therapies for diseases caused by crucial cellular pathways altered by multiple dysregulated genes. The system has been successfully validated on two of the most prominent genes associated to lung cancer, c-MET and Epidermal Growth Factor Receptor (EGFR). (See http://microrna.osumc.edu/mir-synth). PMID:24627222

  7. Maternal mRNA knockdown studies: antisense experiments using the host-transfer technique in X. laevis and X. tropicalis

    PubMed Central

    Olson, David J.; Hulstrand, Alissa M.; Houston, Douglas W.

    2014-01-01

    SUMMARY The ability to inhibit the activity of maternally stored gene products in Xenopus has led to numerous insights into early developmental mechanisms. Oocytes can be cultured and manipulated in vitro and then implanted into the body cavity of a host female to make them competent for fertilization. Here, we summarize the methods for obtaining, culturing and fertilizing Xenopus oocytes, with the goal of inhibiting maternal gene function through antisense oligonucleotide-mediated mRNA knockdown. We describe a simplified technique for implanting donor oocytes into host females using intraperitoneal injection. Also, we present optimized methods for performing the host-transfer procedure with X. tropicalis oocytes. PMID:22956088

  8. Transgenic male-sterile plant induced by an unedited atp9 gene is restored to fertility by inhibiting its expression with antisense RNA.

    PubMed Central

    Zabaleta, E; Mouras, A; Hernould, M; Suharsono; Araya, A

    1996-01-01

    We have previously shown that the expression of an unedited atp9 chimeric gene correlated with male-sterile phenotype in transgenic tobacco plant. To study the relationship between the expression of chimeric gene and the male-sterile trait, hemizygous and homozygous transgenic tobacco lines expressing the antisense atp9 RNA were constructed. The antisense producing plants were crossed with a homozygous male-sterile line, and the F1 progeny was analyzed. The offspring from crosses between homozygous lines produced only male-fertile plants, suggesting that the expression antisense atp9 RNA abolishes the effect of the unedited chimeric gene. In fact, the plants restored to male fertility showed a dramatic reduction of the unedited atp9 transcript levels, resulting in normal flower development and seed production. These results support our previous observation that the expression of unedited atp9 gene can induce male sterility. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8855343

  9. Co-introduction of an antisense gene for an endogenous seed storage protein can increase expression of a transgene in Arabidopsis thaliana seeds.

    PubMed

    Goossens, A; Van Montagu, M; Angenon, G

    1999-07-30

    We have investigated whether the expression in Arabidopsis thaliana seeds of a transgene (the Phaseolus vulgaris arcelin (arc)5-I gene) could be enhanced by the simultaneous introduction of an antisense gene for an endogenous seed storage protein (2S albumin). Seeds of plants transformed with both the arc5-I gene and a 2S albumin antisense gene contained reduced amounts of 2S albumins and increased arcelin-5 (Arc5) accumulation levels compared to lines harboring the arc5-I gene only. Arc5 production could be enhanced to more than 24% of the total seed protein content, suggesting that antisense technology could be of great utility to favor high expression of transgenes. PMID:10452550

  10. Design of multi-target compounds as AChE, BACE1, and amyloid-β(1-42) oligomerization inhibitors: in silico and in vitro studies.

    PubMed

    Hernández-Rodríguez, Maricarmen; Correa-Basurto, José; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Benítez-Cardoza, Claudia G; Mera-Jiménez, Elvia; Rosales-Hernández, Martha Cecilia

    2014-01-01

    Despite great efforts to develop new therapeutic strategies against Alzheimer's disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models. PMID:24762947

  11. Evidence for higher-order structure formation by the c-myb 18-mer phosphorothioate antisense (codons 2-7) oligodeoxynucleotide: potential relationship to antisense c-myb inhibition.

    PubMed

    Vilenchik, M; Benimetsky, L; Kolbanovsky, A; Miller, P; Stein, C A

    2001-04-01

    We have demonstrated the formation of higher-order structures (presumably tetraplexes) by an 18-mer phosphorothioate antisense c-myb oligodeoxyribonucleotide that has been shown to have activity in the treatment of leukemia xenograft models. Although not observable by conventionally employed techniques, such as PAGE and dimethyl sulfate (DMS) protection, the formation of such higher-order structures by this oligonucleotide was revealed by several techniques. These included capillary gel electrophoresis (CGE), which demonstrated the presence of molecules with greatly increased retention time compared with the monomer; magnetic circular dichroism spectroscopy, which demonstrated a band at 290 nm, a characteristic of antiparallel tetraplexes; and fluorescence energy transfer measurements. For the last, the 18-mer phosphorothioate oligonucleotide was synthesized with a 5'-fluorescein group. Similar to the molecular beacon model, its fluorescence was quenched when combined in solution with tetraplex-forming oligomers that contained a 3'-Dabcyl moiety. 7-Deazaguanosine inhibits the formation of tetraplexes by eliminated Hoogsteen base pair interactions. The wild-type and 7-deazaguanosine-substituted antisense c-myb oligomers differentially downregulated the expression of the c-myb proto-oncogene in K562 and HL60 cells, with the wild-type oligomer being the least active. The 18-mer c-myb molecule can, therefore, form highly complex structures, whose analysis in solution cannot be limited to examination of slab gel electrophoresis results alone. PMID:11334144

  12. 2'-O-[2-[2-(N,N-Dimethylamino)ethoxy]ethyl] Modified Antisense Oligonucleotides: Symbiosis of Charge Interaction Factors and Stereoelectronic Effects

    SciTech Connect

    Prhavc, M.; Prakash, T.P.; Minasov, G.; Egli, M.; Manoharan, M.

    2010-03-08

    Oligonucleotides with a novel, 2'-O-[2-[2-(N,N-dimethylamino)ethoxy]ethyl] (2'-O-DMAEOE) modification have been synthesized. This modification, a cationic analogue of the 2'-O-(2-methoxyethyl) (2'-O-MOE) modification, exhibits high binding affinity to target RNA (but not to DNA) and exceptional resistance to nuclease degradation. Analysis of the crystal structure of a self-complementary oligonucleotide containing a single 2'-O-DMAEOE modification explains the importance of charge factors and gauche effects on the observed antisense properties. 2'-O-DMAEOE modified oligonucleotides are ideal candidates for antisense drugs.

  13. Ginger components as new leads for the design and development of novel multi-targeted anti-Alzheimer’s drugs: a computational investigation

    PubMed Central

    Azam, Faizul; Amer, Abdualrahman M; Abulifa, Abdullah R; Elzwawi, Mustafa M

    2014-01-01

    Ginger (Zingiber officinale), despite being a common dietary adjunct that contributes to the taste and flavor of foods, is well known to contain a number of potentially bioactive phytochemicals having valuable medicinal properties. Although recent studies have emphasized their benefits in Alzheimer’s disease, limited information is available on the possible mechanism by which it renders anti-Alzheimer activity. Therefore, the present study seeks to employ molecular docking studies to investigate the binding interactions between active ginger components and various anti-Alzheimer drug targets. Lamarckian genetic algorithm methodology was employed for docking of 12 ligands with 13 different target proteins using AutoDock 4.2 program. Docking protocol was validated by re-docking of all native co-crystallized ligands into their original binding cavities exhibiting a strong correlation coefficient value (r2=0.931) between experimentally reported and docking predicted activities. This value suggests that the approach could be a promising computational tool to aid optimization of lead compounds obtained from ginger. Analysis of binding energy, predicted inhibition constant, and hydrophobic/hydrophilic interactions of ligands with target receptors revealed acetylcholinesterase as most promising, while c-Jun N-terminal kinase was recognized as the least favorable anti-Alzheimer’s drug target. Common structural requirements include hydrogen bond donor/acceptor area, hydrophobic domain, carbon spacer, and distal hydrophobic domain flanked by hydrogen bond donor/acceptor moieties. In addition, drug-likeness score and molecular properties responsible for a good pharmacokinetic profile were calculated by Osiris property explorer and Molinspiration online toolkit, respectively. None of the compounds violated Lipinski’s rule of five, making them potentially promising drug candidates for the treatment of Alzheimer’s disease. PMID:25364231

  14. Ginger components as new leads for the design and development of novel multi-targeted anti-Alzheimer's drugs: a computational investigation.

    PubMed

    Azam, Faizul; Amer, Abdualrahman M; Abulifa, Abdullah R; Elzwawi, Mustafa M

    2014-01-01

    Ginger (Zingiber officinale), despite being a common dietary adjunct that contributes to the taste and flavor of foods, is well known to contain a number of potentially bioactive phytochemicals having valuable medicinal properties. Although recent studies have emphasized their benefits in Alzheimer's disease, limited information is available on the possible mechanism by which it renders anti-Alzheimer activity. Therefore, the present study seeks to employ molecular docking studies to investigate the binding interactions between active ginger components and various anti-Alzheimer drug targets. Lamarckian genetic algorithm methodology was employed for docking of 12 ligands with 13 different target proteins using AutoDock 4.2 program. Docking protocol was validated by re-docking of all native co-crystallized ligands into their original binding cavities exhibiting a strong correlation coefficient value (r (2)=0.931) between experimentally reported and docking predicted activities. This value suggests that the approach could be a promising computational tool to aid optimization of lead compounds obtained from ginger. Analysis of binding energy, predicted inhibition constant, and hydrophobic/hydrophilic interactions of ligands with target receptors revealed acetylcholinesterase as most promising, while c-Jun N-terminal kinase was recognized as the least favorable anti-Alzheimer's drug target. Common structural requirements include hydrogen bond donor/acceptor area, hydrophobic domain, carbon spacer, and distal hydrophobic domain flanked by hydrogen bond donor/acceptor moieties. In addition, drug-likeness score and molecular properties responsible for a good pharmacokinetic profile were calculated by Osiris property explorer and Molinspiration online toolkit, respectively. None of the compounds violated Lipinski's rule of five, making them potentially promising drug candidates for the treatment of Alzheimer's disease. PMID:25364231

  15. An object-oriented modeling and simulation framework for bearings-only multi-target tracking using an unattended acoustic sensor network

    NASA Astrophysics Data System (ADS)

    Aslan, Murat Šamil

    2013-10-01

    detection blocks are modeled using a parametric approach by associating a receiver operating characteristics (ROC) curve to the whole process, which results in false alarms as well as missed detections. The proposed simulation environment can be used for ground-truth and synthetic data generation for road-constraint multiple target tracking in an unattended acoustic sensor network.

  16. m-Trifluoromethyl-diphenyl diselenide, a multi-target selenium compound, prevented mechanical allodynia and depressive-like behavior in a mouse comorbid pain and depression model.

    PubMed

    Brüning, César Augusto; Martini, Franciele; Soares, Suelen Mendonça; Sampaio, Tuane Bazanella; Gai, Bibiana Mozzaquatro; Duarte, Marta M M F; Nogueira, Cristina Wayne

    2015-12-01

    Chronic pain and depression are two complex states that often coexist in the clinical setting and traditional antidepressants and analgesics have shown limited clinical efficacy. There is an intricate communication between the immune system and the central nervous system and inflammation has been considered a common mediator of pain-depression comorbidity. This study evaluated the effect of m-trifluoromethyl diphenyl diselenide [(m-CF3-PhSe)2], an organoselenium compound that has been reported to have both antinociceptive and antidepressant-like actions, in the comorbidity of chronic pain and depression induced by partial sciatic nerve ligation (PSNL) in an inflammatory approach. Mice were submitted to PSNL during 4weeks and treated with (m-CF3-PhSe)2 acutely (0.1-10mg/kg, i.g.) or subchronically (0.1mg/kg, i.g., once a day during the 3rd and 4th weeks). Both treatments prevented PSNL-increased pain sensitivity and depressive-like behavior observed in Von-Frey hair (VFH) and forced swimming (FST) tests, respectively. These effects could be mainly associated with an anti-inflammatory action of (m-CF3-PhSe)2 which reduced the levels of pro-inflammatory cytokines, NF-κB and COX-2, and p38 MAPK activation that were increased by PSNL. (m-CF3-PhSe)2 also increased the BDNF levels and reduced glutamate release and 5-HT uptake altered by PSNL. Although acute and subchronic treatments with (m-CF3-PhSe)2 prevented these alterations induced by PSNL, the best results were found when (m-CF3-PhSe)2 was subchronically administered to mice. Considering the potential common mechanisms involved in the comorbidity of inflammation-induced depression and chronic pain, the results found in this study indicate that (m-CF3-PhSe)2 could become an interesting molecule to treat long-lasting pathological pain associated with depression. PMID:26025319

  17. Antisense oligodeoxynucleotide against human telomerase reverse transcriptase inhibits the proliferation of Eca-109 esophageal carcinoma cells

    PubMed Central

    FAN, XIANG-KUI; YAN, RUI-HUA; LI, BAO-JIANG; CHEN, XIANG-MING; WEI, LIN; WANG, ZHOU

    2014-01-01

    Previous studies have demonstrated that the growth of tumor cells may be inhibited by antisense oligonucleotides (ASODNs) targeted against human telomerase (hTR) or human telomerase reverse transcriptase (hTERT), resulting in antitumor activity in a wide variety of tumors. However, few studies have investigated the effect of hTERT gene-targeted ASODNs on telomerase activity and cell proliferation in human esophageal cancer. In the present study, an MTT assay was used to determine the growth inhibition rate of Eca-109 cells treated with a hTERT-targeted phosphorothioate-ASODN (PS-ASODN). An inverted microscope was used to observe the morphologic changes of the cells following treatment with 5 μM PS-ASODN for 10 days. Telomerase activity was detected using the silver staining semi-quantitative telomeric repeat amplification protocol (TRAP) assay. Following treatment with the PS-ASODN (1–5 μmol/l), the proliferation of the Eca-109 cells was inhibited. The differences in inhibition rate between the PS-ASODN and blank control groups were statistically significant (P<0.05) when the concentration of the PS-ASODN was ≥2 μmol/l, whereas no statistically significant difference was identified between the non-specific-ASODN and blank control groups. The inhibition rate increased gradually as the concentration of the PS-ASODN increased and with time, suggesting that the PS-ASODN inhibited the growth of Eca-109 cells in a concentration-dependent, time-dependent and sequence-specific manner. The growth rate of the cells incubated with the PS-ASODN was reduced compared with that of the control cells. Cells treated with the PS-ASODN became round, suspended and reduced in size. The PS-ASODN was also found to inhibit telomerase activity. The ability of the PS-ASODN to inhibit the telomerase activity and cell proliferation of the Eca-109 cell line suggests that ASODNs have the potential to be novel therapeutic agents for the treatment of esophageal cancer. PMID:25187833

  18. Unravelling the Secrets of Mycobacterial Cidality through the Lens of Antisense

    PubMed Central

    Datta, Santanu; Shandil, Radha Krishan; Kumar, Naveen; Robert, Nanduri; Sokhi, Upneet K.; Guptha, Supreeth; Narayanan, Shridhar; Anbarasu, Anand; Ramaiah, Sudha

    2016-01-01

    One of the major impediments in anti-tubercular drug discovery is the lack of a robust grammar that governs the in-vitro to the in-vivo translation of efficacy. Mycobacterium tuberculosis (Mtb) is capable of growing both extracellular as well as intracellular; encountering various hostile conditions like acidic milieu, free radicals, starvation, oxygen deprivation, and immune effector mechanisms. Unique survival strategies of Mtb have prompted researchers to develop in-vitro equivalents to simulate in-vivo physiologies and exploited to find efficacious inhibitors against various phenotypes. Conventionally, the inhibitors are screened on Mtb under the conditions that are unrelated to the in-vivo disease environments. The present study was aimed to (1). Investigate cidality of Mtb targets using a non-chemical inhibitor antisense-RNA (AS-RNA) under in-vivo simulated in-vitro conditions.(2). Confirm the cidality of the targets under in-vivo in experimental tuberculosis. (3). Correlate in-vitro vs. in-vivo cidality data to identify the in-vitro condition that best predicts in-vivo cidality potential of the targets. Using cidality as a metric for efficacy, and AS-RNA as a target-specific inhibitor, we delineated the cidality potential of five target genes under six different physiological conditions (replicating, hypoxia, low pH, nutrient starvation, nitrogen depletion, and nitric oxide).In-vitro cidality confirmed in experimental tuberculosis in BALB/c mice using the AS-RNA allowed us to identify cidal targets in the rank order of rpoB>aroK>ppk>rpoC>ilvB. RpoB was used as the cidality control. In-vitro and in-vivo studies feature aroK (encoding shikimate kinase) as an in-vivo mycobactericidal target suitable for anti-TB drug discovery. In-vitro to in-vivo cidality correlations suggested the low pH (R = 0.9856) in-vitro model as best predictor of in-vivo cidality; however, similar correlation studies in pathologically relevant (Kramnik) mice are warranted. In the acute

  19. Affinity capture of [Arg8]vasopressin-receptor complex using immobilized antisense peptide.

    PubMed Central

    Lu, F X; Aiyar, N; Chaiken, I

    1991-01-01

    Solubilized noncovalent complexes of [Arg8]-vasopressin (AVP) with receptor proteins from rat liver membranes were isolated by selective binding to silica-immobilized antisense (AS) peptide. The affinity chromatographic support was prepared with a chemically synthesized AS peptide whose sequence is encoded by the AS DNA corresponding to the 20 amino-terminal residues of the AVP bovine neurophysin II biosynthetic precursor [pro-AVP/BNPII-(20-1)], a region that includes the AVP sequence at residues 1-9. The AVP-related AS peptide previously was shown to bind selectively to AVP. The AS peptide-AVP interaction mechanism hypothesized, contact by hydropathic complementarily at multiple sites along the peptide chains, led to the prediction that AVP bound to its receptor would still have enough free surface to interact with immobilized AS peptide. To test this prediction of a three-way interaction, [3H]AVP-receptor was obtained as a solubilized, partially purified fraction from rat liver membrane. When this fraction was eluted through AS pro-AVP/BNPII-(20-1) silica, a complex containing [3H]AVP was bound and separated from the major, unretarded membrane protein fraction as well as from free AVP. Chemical crosslinking of [3H]AVP complex, SDS/PAGE of the products, and analysis of gel slices by scintillation counting led to detection of two major radiolabeled bands of 31 and 38 kDa. Covalent labeling was blocked when unlabeled AVP was added as a competitor before crosslinking. A third radiolabeled protein band of 15 kDa was found when the receptor complex was solubilized from rat liver membranes in the absence of the protease inhibitor phenylmethylsulfonyl fluoride. Covalently crosslinked [3H]AVP complex also was bound to the AS peptide column; binding was blocked by competition with unlabeled AVP in the elution buffer. Since the AVP-linked 31- and 38-kDa proteins have the same apparent molecular mass on SDS/PAGE as found previously by photo-affinity labeling, we conclude

  20. Sterilization of sterlet Acipenser ruthenus by using knockdown agent, antisense morpholino oligonucleotide, against dead end gene.

    PubMed

    Linhartová, Zuzana; Saito, Taiju; K