Science.gov

Sample records for multi-trait genetic analysis

  1. Genetic analysis of calving traits by the multi-trait individual animal model.

    PubMed

    Weller, J I; Ezra, E

    2016-01-01

    Five alternative models were applied for analysis of dystocia and stillbirth in first and second parities. Models 1 and 2 were included only to estimate the parameters required for model 4, and models 3 and 5 are included only as comparisons to the model 4 estimates. Variance components were estimated by multi-trait REML, including cows with valid calving records for both parities. For the effects of sire of calf on first and second parities, variance components were estimated including only calvings with the same sire of calf for both parities. All heritabilities for the cow effect were quite low, but higher for dystocia than for stillbirth and higher in first parity. The sire-of-calf heritabilities were higher than the cow effect heritabilities, except for stillbirth in parity 2. Unlike the effect of cow correlations, all sire of calf correlations were >0.6, and the correlations for the same trait in parities 1 and 2 were >0.9. Thus, a multi-trait analysis should yield a significant gain in accuracy with respect to the sire of calf effects for bulls not mated to virgin heifers. A multi-trait individual animal model algorithm was developed for joint analysis of dystocia and stillbirth in first and second parities. Relationships matrices were included both for the effects of cow and sire of calf. In addition, random herd-year-season and fixed sex of calf effects were included in the model. Records were preadjusted for calving month and age. A total of 899,223 Israeli Holstein cows with first calvings since 1985 were included in the complete analysis. Approximate reliabilities were computed for both sire of cow and sire of calf effects. Correlations between these reliabilities and reliabilities obtained by direct inversion of the coefficient matrix for a sire of cow-sire of calf model were all close to 0.99. Phenotypic trends for cows born from 1983 through 2007 were economically unfavorable for dystocia and favorable for stillbirth in both parities. Genetic trends

  2. Multi-trait BLUP model indicates sorghum hybrids with genetic potential for agronomic and nutritional traits.

    PubMed

    Almeida Filho, J E; Tardin, F D; Guimarães, J F R; Resende, M D V; Silva, F F; Simeone, M L; Menezes, C B; Queiroz, V A V

    2016-01-01

    The breeding of sorghum, Sorghum bicolor (L.) Moench, aimed at improving its nutritional quality, is of great interest, since it can be used as a highly nutritive alternative food source and can possibly be cultivated in regions with low rainfall. The objective of the present study was to evaluate the potential and genetic diversity of grain-sorghum hybrids for traits of agronomic and nutritional interest. To this end, the traits grain yield and flowering, and concentrations of protein, potassium, calcium, magnesium, sulfur, iron, manganese, and zinc in the grain were evaluated in 25 grain-sorghum hybrids, comprising 18 experimental hybrids of Embrapa Milho e Sorgo and seven commercial hybrids. The genetic potential was analyzed by a multi-trait best linear unbiased prediction (BLUP) model, and cluster analysis was accomplished by squared Mahalanobis distance using the predicted genotypic values. Hybrids 0306037 and 0306034 stood out in the agronomic evaluation. The hybrids with agronomic prominence, however, did not stand out for the traits related to the nutritional quality of the grain. Three clusters were formed from the dendrogram obtained with the unweighted pair group method with arithmetic mean method. From the results of the genotypic BLUP and the analysis of the dendrogram, hybrids 0577337, 0441347, 0307651, and 0306037 were identified as having the potential to establish a population that can aggregate alleles for all the evaluated traits of interest. PMID:26985915

  3. Short communication: Multi-trait estimation of genetic parameters for milk protein composition in the Danish Holstein.

    PubMed

    Gebreyesus, G; Lund, M S; Janss, L; Poulsen, N A; Larsen, L B; Bovenhuis, H; Buitenhuis, A J

    2016-04-01

    Genetic parameters were estimated for the major milk proteins using bivariate and multi-trait models based on genomic relationships between animals. The analyses included, apart from total protein percentage, αS1-casein (CN), αS2-CN, β-CN, κ-CN, α-lactalbumin, and β-lactoglobulin, as well as the posttranslational sub-forms of glycosylated κ-CN and αS1-CN-8P (phosphorylated). Standard errors of the estimates were used to compare the models. In total, 650 Danish Holstein cows across 4 parities and days in milk ranging from 9 to 481d were selected from 21 herds. The multi-trait model generally resulted in lower standard errors of heritability estimates, suggesting that genetic parameters can be estimated with high accuracy using multi-trait analyses with genomic relationships for scarcely recorded traits. The heritability estimates from the multi-trait model ranged from low (0.05 for β-CN) to high (0.78 for κ-CN). Genetic correlations between the milk proteins and the total milk protein percentage were generally low, suggesting the possibility to alter protein composition through selective breeding with little effect on total milk protein percentage. PMID:26805988

  4. A stochastic dynamic simulation model including multi-trait genetics to estimate genetic, technical and financial consequences of dairy farm reproduction and selection strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop a daily stochastic dynamic dairy simulation model which included multi-trait genetics, and to evaluate the effects of various reproduction and selection strategies on the genetic, technical and financial performance of a dairy herd. The 12 correlated geneti...

  5. Multi-trait QTL analysis for agronomic and quality characters of Agaricus bisporus (button mushrooms).

    PubMed

    Gao, Wei; Baars, Johan J P; Maliepaard, Chris; Visser, Richard G F; Zhang, Jinxia; Sonnenberg, Anton S M

    2016-12-01

    The demand for button mushrooms of high quality is increasing. Superior button mushroom varieties require the combination of multiple traits to maximize productivity and quality. Very often these traits are correlated and should, therefore, be evaluated together rather than as single traits. In order to unravel the genetic architecture of multiple traits of Agaricus bisporus and the genetic correlations among traits, we have investigated a total of six agronomic and quality traits through multi-trait QTL analyses in a mixed-model. Traits were evaluated in three heterokaryon sets. Significant phenotypic correlations were observed among traits. For instance, earliness (ER) correlated to firmness (FM), cap color, and compost colonization, and FM correlated to scales (SC). QTLs of different traits located on the same chromosomes genetically explains the phenotypic correlations. QTL detected on chromosome 10 mainly affects three traits, i.e., ER, FM and SC. It explained 31.4 % phenotypic variation of SC on mushroom cap (heterokaryon Set 1), 14.9 % that of the FM (heterokaryon Set 3), and 14.2 % that of ER (heterokaryon Set 3). High value alleles from the wild parental line showed beneficial effects for several traits, suggesting that the wild germplasm is a valuable donor in terms of those traits. Due to the limitations of recombination pattern, we only made a start at understanding the genetic base for several agronomic and quality traits in button mushrooms. PMID:27620731

  6. A Multi-Trait, Meta-analysis for Detecting Pleiotropic Polymorphisms for Stature, Fatness and Reproduction in Beef Cattle

    PubMed Central

    Bolormaa, Sunduimijid; Pryce, Jennie E.; Reverter, Antonio; Zhang, Yuandan; Barendse, William; Kemper, Kathryn; Tier, Bruce; Savin, Keith; Hayes, Ben J.; Goddard, Michael E.

    2014-01-01

    Polymorphisms that affect complex traits or quantitative trait loci (QTL) often affect multiple traits. We describe two novel methods (1) for finding single nucleotide polymorphisms (SNPs) significantly associated with one or more traits using a multi-trait, meta-analysis, and (2) for distinguishing between a single pleiotropic QTL and multiple linked QTL. The meta-analysis uses the effect of each SNP on each of n traits, estimated in single trait genome wide association studies (GWAS). These effects are expressed as a vector of signed t-values (t) and the error covariance matrix of these t values is approximated by the correlation matrix of t-values among the traits calculated across the SNP (V). Consequently, t'V−1t is approximately distributed as a chi-squared with n degrees of freedom. An attractive feature of the meta-analysis is that it uses estimated effects of SNPs from single trait GWAS, so it can be applied to published data where individual records are not available. We demonstrate that the multi-trait method can be used to increase the power (numbers of SNPs validated in an independent population) of GWAS in a beef cattle data set including 10,191 animals genotyped for 729,068 SNPs with 32 traits recorded, including growth and reproduction traits. We can distinguish between a single pleiotropic QTL and multiple linked QTL because multiple SNPs tagging the same QTL show the same pattern of effects across traits. We confirm this finding by demonstrating that when one SNP is included in the statistical model the other SNPs have a non-significant effect. In the beef cattle data set, cluster analysis yielded four groups of QTL with similar patterns of effects across traits within a group. A linear index was used to validate SNPs having effects on multiple traits and to identify additional SNPs belonging to these four groups. PMID:24675618

  7. Mapping Quantitative Trait Loci Underlying Function-Valued Traits Using Functional Principal Component Analysis and Multi-Trait Mapping

    PubMed Central

    Kwak, Il-Youp; Moore, Candace R.; Spalding, Edgar P.; Broman, Karl W.

    2015-01-01

    We previously proposed a simple regression-based method to map quantitative trait loci underlying function-valued phenotypes. In order to better handle the case of noisy phenotype measurements and accommodate the correlation structure among time points, we propose an alternative approach that maintains much of the simplicity and speed of the regression-based method. We overcome noisy measurements by replacing the observed data with a smooth approximation. We then apply functional principal component analysis, replacing the smoothed phenotype data with a small number of principal components. Quantitative trait locus mapping is applied to these dimension-reduced data, either with a multi-trait method or by considering the traits individually and then taking the average or maximum LOD score across traits. We apply these approaches to root gravitropism data on Arabidopsis recombinant inbred lines and further investigate their performance in computer simulations. Our methods have been implemented in the R package, funqtl. PMID:26530421

  8. Bayesian Multi-Trait Analysis Reveals a Useful Tool to Increase Oil Concentration and to Decrease Toxicity in Jatropha curcas L.

    PubMed Central

    Silva Junqueira, Vinícius; de Azevedo Peixoto, Leonardo; Galvêas Laviola, Bruno; Lopes Bhering, Leonardo; Mendonça, Simone; Agostini Costa, Tania da Silveira; Antoniassi, Rosemar

    2016-01-01

    The biggest challenge for jatropha breeding is to identify superior genotypes that present high seed yield and seed oil content with reduced toxicity levels. Therefore, the objective of this study was to estimate genetic parameters for three important traits (weight of 100 seed, oil seed content, and phorbol ester concentration), and to select superior genotypes to be used as progenitors in jatropha breeding. Additionally, the genotypic values and the genetic parameters estimated under the Bayesian multi-trait approach were used to evaluate different selection indices scenarios of 179 half-sib families. Three different scenarios and economic weights were considered. It was possible to simultaneously reduce toxicity and increase seed oil content and weight of 100 seed by using index selection based on genotypic value estimated by the Bayesian multi-trait approach. Indeed, we identified two families that present these characteristics by evaluating genetic diversity using the Ward clustering method, which suggested nine homogenous clusters. Future researches must integrate the Bayesian multi-trait methods with realized relationship matrix, aiming to build accurate selection indices models. PMID:27281340

  9. The influence of animals from embryo transfer on the genetic evaluation of growth in Simmental beef cattle by using multi-trait models

    PubMed Central

    Mota, Rodrigo Reis; Lopes, Paulo Sávio; Marques, Luiz Fernando Aarão; da Silva, Luciano Pinheiro; de Resende, Marcos Deon Vilela; de Almeida Torres, Robledo

    2013-01-01

    The weight records from Simmental beef cattle were used in a genetic evaluation of growth with or without the inclusion of animals obtained by embryo transfer. A multi-trait model in which embryo transfer individuals were excluded (MTM1) contained 29,510 records from 10,659 animals, while another model without exclusion of these animals (MTM2) contained 62,895 weight records from 23,160 animals. The weight records were adjusted for ages of 100, 205, 365, 450, 550 and 730 days. The (co)variance components and genetic parameters were estimated by the restricted maximum likelihood method. The (co)variance components were similar in both models, except for maternal permanent environment variance. Direct heritabilities (h2d) in MTM1 were 0.04, 0.11, 0.20, 0.27, 0.31 and 0.42, while in MTM2 they were 0.11, 0.11, 0.17, 0.21, 0.22 and 0.26 for 100, 205, 365, 450, 550 and 730 days of age, respectively. Estimates of h2d in MTM1 were higher than in MTM2 for the weight at 365 days of age. Genetic correlations between weights in both models ranged from moderate to high, suggesting that these traits may be determined mainly by the same genes. Animals from embryo transfer may be included in the genetic evaluation of Simmental beef cattle in Brazil; this inclusion may provide potential gains in accuracy and genetic gains by reducing the interval between generations. PMID:23569407

  10. Efficient set tests for the genetic analysis of correlated traits.

    PubMed

    Casale, Francesco Paolo; Rakitsch, Barbara; Lippert, Christoph; Stegle, Oliver

    2015-08-01

    Set tests are a powerful approach for genome-wide association testing between groups of genetic variants and quantitative traits. We describe mtSet (http://github.com/PMBio/limix), a mixed-model approach that enables joint analysis across multiple correlated traits while accounting for population structure and relatedness. mtSet effectively combines the benefits of set tests with multi-trait modeling and is computationally efficient, enabling genetic analysis of large cohorts (up to 500,000 individuals) and multiple traits. PMID:26076425

  11. Global genetic analysis.

    PubMed

    Elahi, Elahe; Kumm, Jochen; Ronaghi, Mostafa

    2004-01-31

    The introduction of molecular markers in genetic analysis has revolutionized medicine. These molecular markers are genetic variations associated with a predisposition to common diseases and individual variations in drug responses. Identification and genotyping a vast number of genetic polymorphisms in large populations are increasingly important for disease gene identification, pharmacogenetics and population-based studies. Among variations being analyzed, single nucleotide polymorphisms seem to be most useful in large-scale genetic analysis. This review discusses approaches for genetic analysis, use of different markers, and emerging technologies for large-scale genetic analysis where millions of genotyping need to be performed. PMID:14761299

  12. Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle.

    PubMed

    Crispim, Aline Camporez; Kelly, Matthew John; Guimarães, Simone Eliza Facioni; Fonseca e Silva, Fabyano; Fortes, Marina Rufino Salinas; Wenceslau, Raphael Rocha; Moore, Stephen

    2015-01-01

    Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate

  13. Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle

    PubMed Central

    Crispim, Aline Camporez; Kelly, Matthew John; Guimarães, Simone Eliza Facioni; e Silva, Fabyano Fonseca; Fortes, Marina Rufino Salinas; Wenceslau, Raphael Rocha; Moore, Stephen

    2015-01-01

    Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate

  14. Multi-trait mimicry of ants by a parasitoid wasp

    PubMed Central

    Malcicka, Miriama; Bezemer, T. Martijn; Visser, Bertanne; Bloemberg, Mark; Snart, Charles J. P.; Hardy, Ian C. W.; Harvey, Jeffrey A.

    2015-01-01

    Many animals avoid attack from predators through toxicity or the emission of repellent chemicals. Defensive mimicry has evolved in many species to deceive shared predators, for instance through colouration and other morphological adaptations, but mimicry hardly ever seems to involve multi-trait similarities. Here we report on a wingless parasitoid wasp that exhibits a full spectrum of traits mimicing ants and affording protection against ground-dwelling predators (wolf spiders). In body size, morphology and movement Gelis agilis (Ichneumonidae) is highly similar to the black garden ant (Lasius niger) that shares the same habitat. When threatened, G. agilis also emits a volatile chemical that is similar to an ant-produced chemical that repels spiders. In bioassays with L. niger, G. agilis, G. areator, Cotesia glomerata and Drosophila melanogaster, ants and G. agilis were virtually immune to spider attack, in contrast the other species were not. Volatile characterisation with gas chromatography-mass spectrometry identified G. agilis emissions as 6-methyl-5-hepten-2-one, a known insect defence semiochemical that acts as an alarm pheromone in ants. We argue that multi-trait mimicry, as observed in G. agilis, might be much more common among animals than currently realized. PMID:25622726

  15. Multi-trait mimicry of ants by a parasitoid wasp.

    PubMed

    Malcicka, Miriama; Bezemer, T Martijn; Visser, Bertanne; Bloemberg, Mark; Snart, Charles J P; Hardy, Ian C W; Harvey, Jeffrey A

    2015-01-01

    Many animals avoid attack from predators through toxicity or the emission of repellent chemicals. Defensive mimicry has evolved in many species to deceive shared predators, for instance through colouration and other morphological adaptations, but mimicry hardly ever seems to involve multi-trait similarities. Here we report on a wingless parasitoid wasp that exhibits a full spectrum of traits mimicing ants and affording protection against ground-dwelling predators (wolf spiders). In body size, morphology and movement Gelis agilis (Ichneumonidae) is highly similar to the black garden ant (Lasius niger) that shares the same habitat. When threatened, G. agilis also emits a volatile chemical that is similar to an ant-produced chemical that repels spiders. In bioassays with L. niger, G. agilis, G. areator, Cotesia glomerata and Drosophila melanogaster, ants and G. agilis were virtually immune to spider attack, in contrast the other species were not. Volatile characterisation with gas chromatography-mass spectrometry identified G. agilis emissions as 6-methyl-5-hepten-2-one, a known insect defence semiochemical that acts as an alarm pheromone in ants. We argue that multi-trait mimicry, as observed in G. agilis, might be much more common among animals than currently realized. PMID:25622726

  16. Genetic parameter estimation for pre- and post-weaning traits in Brahman cattle in Brazil.

    PubMed

    Vargas, Giovana; Buzanskas, Marcos Eli; Guidolin, Diego Gomes Freire; Grossi, Daniela do Amaral; Bonifácio, Alexandre da Silva; Lôbo, Raysildo Barbosa; da Fonseca, Ricardo; Oliveira, João Ademir de; Munari, Danísio Prado

    2014-10-01

    Beef cattle producers in Brazil use body weight traits as breeding program selection criteria due to their great economic importance. The objectives of this study were to evaluate different animal models, estimate genetic parameters, and define the most fitting model for Brahman cattle body weight standardized at 120 (BW120), 210 (BW210), 365 (BW365), 450 (BW450), and 550 (BW550) days of age. To estimate genetic parameters, single-, two-, and multi-trait analyses were performed using the animal model. The likelihood ratio test was verified between all models. For BW120 and BW210, additive direct genetic, maternal genetic, maternal permanent environment, and residual effects were considered, while for BW365 and BW450, additive direct genetic, maternal genetic, and residual effects were considered. Finally, for BW550, additive direct genetic and residual effects were considered. Estimates of direct heritability for BW120 were similar in all analyses; however, for the other traits, multi-trait analysis resulted in higher estimates. The maternal heritability and proportion of maternal permanent environmental variance to total variance were minimal in multi-trait analyses. Genetic, environmental, and phenotypic correlations were of high magnitude between all traits. Multi-trait analyses would aid in the parameter estimation for body weight at older ages because they are usually affected by a lower number of animals with phenotypic information due to culling and mortality. PMID:25037588

  17. QTL clustering as a mechanism for rapid multi-trait evolution.

    PubMed

    Yoshizawa, Masato; O'Quin, Kelly E; Jeffery, William R

    2013-07-01

    Cave-dwelling animals exhibit remarkable convergence in multiple cave-related traits, yet the genetic mechanisms responsible for the evolution and integration of many such traits remain unclear. Astyanax mexicanus is a model cave-dwelling fish with sighted surface-dwelling (surface fish) and blind cave-dwelling (cavefish) forms. Using a genetic cross between these morphs, we discovered significant correlations among several cave-related traits, including reduced eyes, increased superficial neuromast receptors located within the eye orbit (EO SN) and a vibration-attraction behavior (VAB) that facilitates foraging in darkness. Furthermore, we discovered that the quantitative trait loci (QTL) underlying these traits are clustered within the Astyanax genome. Following an ablation experiment that demonstrated that the EO SN contribute to VAB, we concluded that the adaptive evolution of VAB and EO SN has likely contributed to eye loss in cavefish. In this addendum, we further discuss the possible role of multi-trait QTL clustering in facilitating rapid adaptation. PMID:23956812

  18. Regression-based multi-trait QTL mapping using a structural equation model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative trait locus mapping often results in data on a number of traits that have well established causal relationships. Many multi-trait quantitative trait locus mapping methods that account for the correlation among the multiple traits have been developed to improve the statistical power and ...

  19. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis.

    PubMed

    Loh, Po-Ru; Bhatia, Gaurav; Gusev, Alexander; Finucane, Hilary K; Bulik-Sullivan, Brendan K; Pollack, Samuela J; de Candia, Teresa R; Lee, Sang Hong; Wray, Naomi R; Kendler, Kenneth S; O'Donovan, Michael C; Neale, Benjamin M; Patterson, Nick; Price, Alkes L

    2015-12-01

    Heritability analyses of genome-wide association study (GWAS) cohorts have yielded important insights into complex disease architecture, and increasing sample sizes hold the promise of further discoveries. Here we analyze the genetic architectures of schizophrenia in 49,806 samples from the PGC and nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an overwhelmingly polygenic disease architecture in which ≥71% of 1-Mb genomic regions harbor ≥1 variant influencing schizophrenia risk. We also observe significant enrichment of heritability in GC-rich regions and in higher-frequency SNPs for both schizophrenia and GERA diseases. In bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) for several pairs of GERA diseases; genetic correlations were on average 1.3 tunes stronger than the correlations of overall disease liabilities. To accomplish these analyses, we developed a fast algorithm for multicomponent, multi-trait variance-components analysis that overcomes prior computational barriers that made such analyses intractable at this scale. PMID:26523775

  20. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance components analysis

    PubMed Central

    Bhatia, Gaurav; Gusev, Alexander; Finucane, Hilary K; Bulik-Sullivan, Brendan K; Pollack, Samuela J; de Candia, Teresa R; Lee, Sang Hong; Wray, Naomi R; Kendler, Kenneth S; O’Donovan, Michael C; Neale, Benjamin M; Patterson, Nick

    2015-01-01

    Heritability analyses of GWAS cohorts have yielded important insights into complex disease architecture, and increasing sample sizes hold the promise of further discoveries. Here, we analyze the genetic architecture of schizophrenia in 49,806 samples from the PGC, and nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an overwhelmingly polygenic disease architecture in which ≥71% of 1Mb genomic regions harbor ≥1 variant influencing schizophrenia risk. We also observe significant enrichment of heritability in GC-rich regions and in higher-frequency SNPs for both schizophrenia and GERA diseases. In bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) among several pairs of GERA diseases; genetic correlations were on average 1.3x stronger than correlations of overall disease liabilities. To accomplish these analyses, we developed a fast algorithm for multi-component, multi-trait variance components analysis that overcomes prior computational barriers that made such analyses intractable at this scale. PMID:26523775

  1. Genetic analysis in translational medicine

    PubMed Central

    Patrinos, George P.; Innocenti, Federico; Cox, Nancy; Fortina, Paolo

    2013-01-01

    The 2010 GOLDEN HELIX Symposium ‘Genetic Analysis in Translational Medicine' was held in Athens, Greece, Athens, Greece, 1-4 December 2010. The scientific program covered all aspects of this discipline, including genome-wide association studies, genomics of cancer and human disorders, molecular cytogenetics, advances in genomic technology, next-generation sequencing applications, pharmacogenomics and bioinformatics. In addition, various topics on genetics and society and genetic analysis in clinical practice were discussed. Here, we provide an overview of the plenary lectures and the topics discussed in the symposium. PMID:21438074

  2. Genetic Analysis in Neurology

    PubMed Central

    Pittman, Alan; Hardy, John

    2014-01-01

    In recent years, neurogenetics research had made some remarkable advances owing to the advent of genotyping arrays and next-generation sequencing. These improvements to the technology have allowed us to determine the whole-genome structure and its variation and to examine its effect on phenotype in an unprecedented manner. The identification of rare disease-causing mutations has led to the identification of new biochemical pathways and has facilitated a greater understanding of the etiology of many neurological diseases. Furthermore, genome-wide association studies have provided information on how common genetic variability impacts on the risk for the development of various complex neurological diseases. Herein, we review how these technological advances have changed the approaches being used to study the genetic basis of neurological disease and how the research findings will be translated into clinical utility. PMID:23571731

  3. Genetic Analysis of Xenopus tropicalis

    PubMed Central

    Geach, Timothy J.; Stemple, Derek L.; Zimmerman, Lyle B.

    2014-01-01

    The pipid frog Xenopus tropicalis has emerged as a powerful new model system for combining genetic and genomic analysis of tetrapod development with robust embryological, molecular and biochemical assays. Its early development closely resembles that of its well-understood relative X. laevis, from which techniques and reagents can be readily transferred. In contrast to the tetraploid X. laevis, X. tropicalis has a compact diploid genome with strong synteny to those of amniotes. Recently, advances in high-throughput sequencing together with solution-hybridization whole-exome enrichment technology offer powerful strategies for cloning novel mutations as well as reverse genetic identification of sequence lesions in specific genes of interest. Further advantages include the wide range of functional and molecular assays available, the large number of embryos/meioses produced, and the ease of haploid genetics and gynogenesis. The addition of these genetic tools to X. tropicalis provides a uniquely flexible platform for analysis of gene function in vertebrate development. PMID:22956083

  4. Toward Automated Multi-Trait Scoring of Essays: Investigating Links among Holistic, Analytic, and Text Feature Scores

    ERIC Educational Resources Information Center

    Lee, Yong-Won; Gentile, Claudia; Kantor, Robert

    2010-01-01

    The main purpose of the study was to investigate the distinctness and reliability of analytic (or multi-trait) rating dimensions and their relationships to holistic scores and "e-rater"[R] essay feature variables in the context of the TOEFL[R] computer-based test (TOEFL CBT) writing assessment. Data analyzed in the study were holistic and…

  5. Genetic analysis of bleeding disorders.

    PubMed

    Edison, E; Konkle, B A; Goodeve, A C

    2016-07-01

    Molecular genetic analysis of inherited bleeding disorders has been practised for over 30 years. Technological changes have enabled advances, from analyses using extragenic linked markers to next-generation DNA sequencing and microarray analysis. Two approaches for genetic analysis are described, each suiting their environment. The Christian Medical Centre in Vellore, India, uses conformation-sensitive gel electrophoresis mutation screening of multiplexed PCR products to identify candidate mutations, followed by Sanger sequencing confirmation of variants identified. Specific analyses for F8 intron 1 and 22 inversions are also undertaken. The MyLifeOurFuture US project between the American Thrombosis and Hemostasis Network, the National Hemophilia Foundation, Bloodworks Northwest and Biogen uses molecular inversion probes (MIP) to capture target exons, splice sites plus 5' and 3' sequences and to detect F8 intron 1 and 22 inversions. This allows screening for all F8 and F9 variants in one sequencing run of multiple samples (196 or 392). Sequence variants identified are subsequently confirmed by a diagnostic laboratory. After having identified variants in genes of interest through these processes, a systematic procedure determining their likely pathogenicity should be applied. Several scientific societies have prepared guidelines. Systematic analysis of the available evidence facilitates reproducible scoring of likely pathogenicity. Documentation of frequency in population databases of variant prevalence and in locus-specific mutation databases can provide initial information on likely pathogenicity. Whereas null mutations are often pathogenic, missense and splice site variants often require in silico analyses to predict likely pathogenicity and using an accepted suite of tools can help standardize their documentation. PMID:27405681

  6. Integrated analysis of genetic data with R

    PubMed Central

    2006-01-01

    Genetic data are now widely available. There is, however, an apparent lack of concerted effort to produce software systems for statistical analysis of genetic data compared with other fields of statistics. It is often a tremendous task for end-users to tailor them for particular data, especially when genetic data are analysed in conjunction with a large number of covariates. Here, R http://www.r-project.org, a free, flexible and platform-independent environment for statistical modelling and graphics is explored as an integrated system for genetic data analysis. An overview of some packages currently available for analysis of genetic data is given. This is followed by examples of package development and practical applications. With clear advantages in data management, graphics, statistical analysis, programming, internet capability and use of available codes, it is a feasible, although challenging, task to develop it into an integrated platform for genetic analysis; this will require the joint efforts of many researchers. PMID:16460651

  7. Genetic analysis of safflower domestication

    PubMed Central

    2014-01-01

    Background Safflower (Carthamus tinctorius L.) is an oilseed crop in the Compositae (a.k.a. Asteraceae) that is valued for its oils rich in unsaturated fatty acids. Here, we present an analysis of the genetic architecture of safflower domestication and compare our findings to those from sunflower (Helianthus annuus L.), an independently domesticated oilseed crop within the same family. We mapped quantitative trait loci (QTL) underlying 24 domestication-related traits in progeny from a cross between safflower and its wild progenitor, Carthamus palaestinus Eig. Also, we compared QTL positions in safflower against those that have been previously identified in cultivated x wild sunflower crosses to identify instances of colocalization. Results We mapped 61 QTL, the vast majority of which (59) exhibited minor or moderate phenotypic effects. The two large-effect QTL corresponded to one each for flower color and leaf spininess. A total of 14 safflower QTL colocalized with previously reported sunflower QTL for the same traits. Of these, QTL for three traits (days to flower, achene length, and number of selfed seed) had cultivar alleles that conferred effects in the same direction in both species. Conclusions As has been observed in sunflower, and unlike many other crops, our results suggest that the genetics of safflower domestication is quite complex. Moreover, our comparative mapping results indicate that safflower and sunflower exhibit numerous instances of QTL colocalization, suggesting that parallel trait transitions during domestication may have been driven, at least in part, by parallel genotypic evolution at some of the same underlying genes. PMID:24502326

  8. Genetic analysis in Bartter syndrome from India.

    PubMed

    Sharma, Pradeep Kumar; Saikia, Bhaskar; Sharma, Rachna; Ankur, Kumar; Khilnani, Praveen; Aggarwal, Vinay Kumar; Cheong, Hae

    2014-10-01

    Bartter syndrome is a group of inherited, salt-losing tubulopathies presenting as hypokalemic metabolic alkalosis with normotensive hyperreninemia and hyperaldosteronism. Around 150 cases have been reported in literature till now. Mutations leading to salt losing tubulopathies are not routinely tested in Indian population. The authors have done the genetic analysis for the first time in the Bartter syndrome on two cases from India. First case was antenatal Bartter syndrome presenting with massive polyuria and hyperkalemia. Mutational analysis revealed compound heterozygous mutations in KCNJ1(ROMK) gene [p(Leu220Phe), p(Thr191Pro)]. Second case had a phenotypic presentation of classical Bartter syndrome however, genetic analysis revealed only heterozygous novel mutation in SLC12A gene p(Ala232Thr). Bartter syndrome is a clinical diagnosis and genetic analysis is recommended for prognostication and genetic counseling. PMID:24696311

  9. Analysis: OB/GYN-Genetics.

    PubMed

    Fries, Melissa

    2016-01-01

    Ovarian salvage from a patient with brain death is not available and will not preserve viable ova for future reproduction. Previous interest in assisted reproductive technology is only the first step in this process, which requires careful assessment of maternal risks and potential for recurrent genetic disease. PMID:27045306

  10. TOPICAL REVIEW: Integrated genetic analysis microsystems

    NASA Astrophysics Data System (ADS)

    Lagally, Eric T.; Mathies, Richard A.

    2004-12-01

    With the completion of the Human Genome Project and the ongoing DNA sequencing of the genomes of other animals, bacteria, plants and others, a wealth of new information about the genetic composition of organisms has become available. However, as the demand for sequence information grows, so does the workload required both to generate this sequence and to use it for targeted genetic analysis. Microfabricated genetic analysis systems are well poised to assist in the collection and use of these data through increased analysis speed, lower analysis cost and higher parallelism leading to increased assay throughput. In addition, such integrated microsystems may point the way to targeted genetic experiments on single cells and in other areas that are otherwise very difficult. Concomitant with these advantages, such systems, when fully integrated, should be capable of forming portable systems for high-speed in situ analyses, enabling a new standard in disciplines such as clinical chemistry, forensics, biowarfare detection and epidemiology. This review will discuss the various technologies available for genetic analysis on the microscale, and efforts to integrate them to form fully functional robust analysis devices.

  11. Path analysis in genetic epidemiology: a critique.

    PubMed Central

    Karlin, S; Cameron, E C; Chakraborty, R

    1983-01-01

    Path analysis, a form of general linear structural equation models, is used in studies of human genetics data to discern genetic, environmental, and cultural factors contributing to familial resemblance. It postulates a set of linear and additive parametric relationships between phenotypes and genetic and cultural variables and then essentially uses the assumption of multivariate normality to estimate and perform tests of hypothesis on parameters. Such an approach has been advocated for the analysis of genetic epidemiological data by D. C. Rao, N. Morton, C. R. Cloninger, L. J. Eaves, and W. E. Nance, among others. This paper reviews and evaluates the formulations, assumptions, methodological procedures, interpretations, and applications of path analysis. To give perspective, we begin with a discussion of path analysis as it occurs in the form of general linear causal models in several disciplines of the social sciences. Several specific path analysis models applied to lipoprotein concentrations, IQ, and twin data are then reviewed to keep the presentation self-contained. The bulk of the critical discussion that follows is directed toward the following four facets of path analysis: (1) coherence of model specification and applicability to data; (2) plausibility of modeling assumptions; (3) interpretability and utility of the model; and (4) validity of statistical and computational procedures. In the concluding section, a brief discussion of the problem of appropriate model selection is presented, followed by a number of suggestions of essentially model-free alternative methods of use in the treatment of complex structured data such as occurs in genetic epidemiology. PMID:6349335

  12. Analysis of Genetically Complex Epilepsies

    PubMed Central

    Ottman, Ruth

    2006-01-01

    During the last decade, great progress has been made in the discovery of genes that influence risk for epilepsy. However, these gene discoveries have been in epilepsies with Mendelian modes of inheritance, which comprise only a tiny fraction of all epilepsy. Most people with epilepsy have no affected relatives, suggesting that the great majority of all epilepsies are genetically complex: multiple genes contribute to their etiology, none of which has a major effect on disease risk. Gene discovery in the genetically complex epilepsies is a formidable task. It is unclear which epilepsy phenotypes are most advantageous to study, and chromosomal localization and mutation detection are much more difficult than in Mendelian epilepsies. Association studies are very promising for the identification of complex epilepsy genes, but we are still in the earliest stages of their application in the epilepsies. Future studies should employ very large sample sizes to ensure adequate statistical power, clinical phenotyping methods of the highest quality, designs and analytic techniques that control for population stratification, and state-of-the-art molecular methods. Collaborative studies are essential to achieve these goals. PMID:16359464

  13. Monte Carlo methods in genetic analysis

    SciTech Connect

    Lin, Shili

    1996-12-31

    Many genetic analyses require computation of probabilities and likelihoods of pedigree data. With more and more genetic marker data deriving from new DNA technologies becoming available to researchers, exact computations are often formidable with standard statistical methods and computational algorithms. The desire to utilize as much available data as possible, coupled with complexities of realistic genetic models, push traditional approaches to their limits. These methods encounter severe methodological and computational challenges, even with the aid of advanced computing technology. Monte Carlo methods are therefore increasingly being explored as practical techniques for estimating these probabilities and likelihoods. This paper reviews the basic elements of the Markov chain Monte Carlo method and the method of sequential imputation, with an emphasis upon their applicability to genetic analysis. Three areas of applications are presented to demonstrate the versatility of Markov chain Monte Carlo for different types of genetic problems. A multilocus linkage analysis example is also presented to illustrate the sequential imputation method. Finally, important statistical issues of Markov chain Monte Carlo and sequential imputation, some of which are unique to genetic data, are discussed, and current solutions are outlined. 72 refs.

  14. Testing the convergent and discriminant validity of the Decisional Balance Scale of the Transtheoretical Model using the Multi-Trait Multi-Method approach.

    PubMed

    Guo, Boliang; Aveyard, Paul; Fielding, Antony; Sutton, Stephen

    2008-06-01

    The authors extended research on the construct validity of the Decisional Balance Scale for smoking in adolescence by testing its convergent and discriminant validity. Hierarchical confirmatory factor analysis multi-trait multi-method approach (HCFA MTMM) was used with data from 2,334 UK adolescents, both smokers and non-smokers. They completed computerized and paper versions of the questionnaire on 3 occasions over 2 years. The results indicated a 3-factor solution; Social Pros, Coping Pros, and Cons fit the data best. The HCFA MTMM model fit the data well, with correlated methods and correlated trait factors. Subsequent testing confirmed discriminant validity between the factors and convergent validity of both methods of administering the questionnaire. There was, however, clear evidence of a method effect, which may have arisen due to different response formats or may be a function of the method of presentation. Taken with other data, there is strong evidence for construct validity of Decisional Balance for smoking in adolescence, but evidence of predictive validity is required. PMID:18540726

  15. Molecular Genetic Analysis of Chlamydia Species.

    PubMed

    Sixt, Barbara S; Valdivia, Raphael H

    2016-09-01

    Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics. PMID:27607551

  16. Data transformation for rank reduction in multi-trait MACE model for international bull comparison

    PubMed Central

    Tarres, Joaquim; Liu, Zengting; Ducrocq, Vincent; Reinhardt, Friedrich; Reents, Reinhard

    2008-01-01

    Since many countries use multiple lactation random regression test day models in national evaluations for milk production traits, a random regression multiple across-country evaluation (MACE) model permitting a variable number of correlated traits per country should be used in international dairy evaluations. In order to reduce the number of within country traits for international comparison, three different MACE models were implemented based on German daughter yield deviation data and compared to the random regression MACE. The multiple lactation MACE model analysed daughter yield deviations on a lactation basis reducing the rank from nine random regression coefficients to three lactations. The lactation breeding values were very accurate for old bulls, but not for the youngest bulls with daughters with short lactations. The other two models applied principal component analysis as the dimension reduction technique: one based on eigenvalues of a genetic correlation matrix and the other on eigenvalues of a combined lactation matrix. The first one showed that German data can be transformed from nine traits to five eigenfunctions without losing much accuracy in any of the estimated random regression coefficients. The second one allowed performing rank reductions to three eigenfunctions without having the problem of young bulls with daughters with short lactations. PMID:18400151

  17. Data transformation for rank reduction in multi-trait MACE model for international bull comparison.

    PubMed

    Tarres, Joaquim; Liu, Zengting; Ducrocq, Vincent; Reinhardt, Friedrich; Reents, Reinhard

    2008-01-01

    Since many countries use multiple lactation random regression test day models in national evaluations for milk production traits, a random regression multiple across-country evaluation (MACE) model permitting a variable number of correlated traits per country should be used in international dairy evaluations. In order to reduce the number of within country traits for international comparison, three different MACE models were implemented based on German daughter yield deviation data and compared to the random regression MACE. The multiple lactation MACE model analysed daughter yield deviations on a lactation basis reducing the rank from nine random regression coefficients to three lactations. The lactation breeding values were very accurate for old bulls, but not for the youngest bulls with daughters with short lactations. The other two models applied principal component analysis as the dimension reduction technique: one based on eigenvalues of a genetic correlation matrix and the other on eigenvalues of a combined lactation matrix. The first one showed that German data can be transformed from nine traits to five eigenfunctions without losing much accuracy in any of the estimated random regression coefficients. The second one allowed performing rank reductions to three eigenfunctions without having the problem of young bulls with daughters with short lactations. PMID:18400151

  18. An integrated system for genetic analysis

    PubMed Central

    Fiddy, Simon; Cattermole, David; Xie, Dong; Duan, Xiao Yuan; Mott, Richard

    2006-01-01

    Background Large-scale genetic mapping projects require data management systems that can handle complex phenotypes and detect and correct high-throughput genotyping errors, yet are easy to use. Description We have developed an Integrated Genotyping System (IGS) to meet this need. IGS securely stores, edits and analyses genotype and phenotype data. It stores information about DNA samples, plates, primers, markers and genotypes generated by a genotyping laboratory. Data are structured so that statistical genetic analysis of both case-control and pedigree data is straightforward. Conclusion IGS can model complex phenotypes and contain genotypes from whole genome association studies. The database makes it possible to integrate genetic analysis with data curation. The IGS web site contains further information. PMID:16623936

  19. Genome Wide Single Locus Single Trait, Multi-Locus and Multi-Trait Association Mapping for Some Important Agronomic Traits in Common Wheat (T. aestivum L.)

    PubMed Central

    Jaiswal, Vandana; Gahlaut, Vijay; Meher, Prabina Kumar; Mir, Reyazul Rouf; Jaiswal, Jai Prakash; Rao, Atmakuri Ramakrishna; Balyan, Harindra Singh; Gupta, Pushpendra Kumar

    2016-01-01

    Genome wide association study (GWAS) was conducted for 14 agronomic traits in wheat following widely used single locus single trait (SLST) approach, and two recent approaches viz. multi locus mixed model (MLMM), and multi-trait mixed model (MTMM). Association panel consisted of 230 diverse Indian bread wheat cultivars (released during 1910–2006 for commercial cultivation in different agro-climatic regions in India). Three years phenotypic data for 14 traits and genotyping data for 250 SSR markers (distributed across all the 21 wheat chromosomes) was utilized for GWAS. Using SLST, as many as 213 MTAs (p ≤ 0.05, 129 SSRs) were identified for 14 traits, however, only 10 MTAs (~9%; 10 out of 123 MTAs) qualified FDR criteria; these MTAs did not show any linkage drag. Interestingly, these genomic regions were coincident with the genomic regions that were already known to harbor QTLs for same or related agronomic traits. Using MLMM and MTMM, many more QTLs and markers were identified; 22 MTAs (19 QTLs, 21 markers) using MLMM, and 58 MTAs (29 QTLs, 40 markers) using MTMM were identified. In addition, 63 epistatic QTLs were also identified for 13 of the 14 traits, flag leaf length (FLL) being the only exception. Clearly, the power of association mapping improved due to MLMM and MTMM analyses. The epistatic interactions detected during the present study also provided better insight into genetic architecture of the 14 traits that were examined during the present study. Following eight wheat genotypes carried desirable alleles of QTLs for one or more traits, WH542, NI345, NI170, Sharbati Sonora, A90, HW1085, HYB11, and DWR39 (Pragati). These genotypes and the markers associated with important QTLs for major traits can be used in wheat improvement programs either using marker-assisted recurrent selection (MARS) or pseudo-backcrossing method. PMID:27441835

  20. Genome Wide Single Locus Single Trait, Multi-Locus and Multi-Trait Association Mapping for Some Important Agronomic Traits in Common Wheat (T. aestivum L.).

    PubMed

    Jaiswal, Vandana; Gahlaut, Vijay; Meher, Prabina Kumar; Mir, Reyazul Rouf; Jaiswal, Jai Prakash; Rao, Atmakuri Ramakrishna; Balyan, Harindra Singh; Gupta, Pushpendra Kumar

    2016-01-01

    Genome wide association study (GWAS) was conducted for 14 agronomic traits in wheat following widely used single locus single trait (SLST) approach, and two recent approaches viz. multi locus mixed model (MLMM), and multi-trait mixed model (MTMM). Association panel consisted of 230 diverse Indian bread wheat cultivars (released during 1910-2006 for commercial cultivation in different agro-climatic regions in India). Three years phenotypic data for 14 traits and genotyping data for 250 SSR markers (distributed across all the 21 wheat chromosomes) was utilized for GWAS. Using SLST, as many as 213 MTAs (p ≤ 0.05, 129 SSRs) were identified for 14 traits, however, only 10 MTAs (~9%; 10 out of 123 MTAs) qualified FDR criteria; these MTAs did not show any linkage drag. Interestingly, these genomic regions were coincident with the genomic regions that were already known to harbor QTLs for same or related agronomic traits. Using MLMM and MTMM, many more QTLs and markers were identified; 22 MTAs (19 QTLs, 21 markers) using MLMM, and 58 MTAs (29 QTLs, 40 markers) using MTMM were identified. In addition, 63 epistatic QTLs were also identified for 13 of the 14 traits, flag leaf length (FLL) being the only exception. Clearly, the power of association mapping improved due to MLMM and MTMM analyses. The epistatic interactions detected during the present study also provided better insight into genetic architecture of the 14 traits that were examined during the present study. Following eight wheat genotypes carried desirable alleles of QTLs for one or more traits, WH542, NI345, NI170, Sharbati Sonora, A90, HW1085, HYB11, and DWR39 (Pragati). These genotypes and the markers associated with important QTLs for major traits can be used in wheat improvement programs either using marker-assisted recurrent selection (MARS) or pseudo-backcrossing method. PMID:27441835

  1. Meta-analysis in cancer genetics.

    PubMed

    Pabalan, Noel A

    2010-01-01

    Genetic association studies report potentially conflicting findings which meta-analysis seeks to quantify and objectively summarize. Attributing cancer to a single gene variant requires large sample sizes, which may strain resources in a primary study. Properly used, meta-analysis is a powerful tool for resolving discrepancies in genetic association studies given the exponential increase in sample sizes when data are combined. The several steps involved in this methodology require careful attention to critical issues in meta-analysis, heterogeneity and publication bias, evaluation of which can be graphical or statistical. Overall summary effects of a meta-analysis may or may not reflect similar associations when the component studies are sub grouped. Overall associations and that of the subgroups are evaluated for tenability using sensitivity analysis. The low association between a polymorphism and cancer is offset by detectable changes in cancer incidence in the general population making them an important issue from a public health point of view. Asian meta-analytic publications in cancer genetics come from six countries with an output that number from one to two. The exception is China, whose publication output has increased exponentially since 2008. PMID:20593927

  2. Genetic analysis for early diagnosis of otorhinolaryngeal diseases

    PubMed Central

    Propping, Peter

    2010-01-01

    Familiarity with the concepts and methods of human genetics is important in order to be able to perform genetic analysis. The grade of predictability of a genetic disease is partly given by formal genetics but also depends on the importance of the mutated gene for the phenotype. Possibilities for genetic analysis range from differential diagnosis to predictive diagnosis to prenatal diagnosis. After initial consultation in which the physician fully explains the procedure to the patient, it is mandatory that the patient give his full consent. This article summarises and evaluates current knowledge about genetic analysis of important otorhinolaryngeal diseases, including hereditary hearing disabilities, olfactory malfunction, hereditary tumorous diseases, hereditary syndromes and dysplasias. In addition, this article discusses genetic diseases that affect voice and speech, highlights the relevance of human genetic consultation and discusses the importance of embedding genetic analysis in medicine in general. PMID:22073089

  3. Using a Multi-Trait Approach to Manipulate Plant Functional Diversity in a Biodiversity-Ecosystem Function Experiment

    PubMed Central

    Schittko, Conrad; Hawa, Mahmoud; Wurst, Susanne

    2014-01-01

    A frequent pattern emerging from biodiversity-ecosystem function studies is that functional group richness enhances ecosystem functions such as primary productivity. However, the manipulation of functional group richness goes along with major disadvantages like the transformation of functional trait data into categories or the exclusion of functional differences between organisms in the same group. In a mesocosm study we manipulated plant functional diversity based on the multi-trait Functional Diversity (FD)-approach of Petchey and Gaston by using database data of seven functional traits and information on the origin of the species in terms of being native or exotic. Along a gradient ranging from low to high FD we planted 40 randomly selected eight-species mixtures under controlled conditions. We found a significant positive linear correlation of FD with aboveground productivity and a negative correlation with invasibility of the plant communities. Based on community-weighted mean calculations for each functional trait, we figured out that the traits N-fixation and species origin, i.e. being native or exotic, played the most important role for community productivity. Our results suggest that the identification of the impact of functional trait diversity and the relative contributions of relevant traits is essential for a mechanistic understanding of the role of biodiversity for ecosystem functions such as aboveground biomass production and resistance against invasion. PMID:24897501

  4. Meta-analysis in psychiatric genetics.

    PubMed

    Levinson, Douglas F

    2005-04-01

    The article reviews literature on methods for meta-analysis of genetic linkage and association studies, and summarizes and comments on specific meta-analysis findings for psychiatric disorders. The Genome Scan Meta-Analysis and Multiple Scan Probability methods assess the evidence for linkage across studies. Multiple Scan Probability analysis suggested linkage of two chromosomal regions (13q and 22q) to schizophrenia and bipolar disorder, whereas Genome Scan Meta-Analysis on a larger sample identified at least 10 schizophrenia linkage regions, but none for bipolar disorder. Meta-analyses of pooled ORs support association of schizophrenia to the Ser311Cys polymorphism in DRD2 and the T102C polymorphism in HTR2A, and of attention deficit hyperactivity disorder to the 48-bp repeat in DRD4. The 5-HTTLPR polymorphism in the serotonin transporter gene (SLC6A4) may contribute to the risk of bipolar disorder, suicidal behavior, and neuroticism, but association to the lifetime risk of major depression has not been shown. Meta-analyses support linkage of schizophrenia to regions where replicable associations to candidate genes have been identified through positional cloning methods. There are additional supported regions where susceptibility genes are likely to be identified. Linkage meta-analysis has had less clear success for bipolar disorder based on a smaller dataset. Meta-analysis can guide the prioritization of regions for study, but proof of association requires biological confirmation of hypotheses about gene actions. Elucidation of causal mechanisms will require more comprehensive study of sequence variation in candidate genes, better statistical and meta-analytic methods to take all variation into account, and biological strategies for testing etiologic hypotheses. PMID:15802092

  5. Genetic analysis of haemophilia A in Bulgaria

    PubMed Central

    Petkova, Rumena; Chakarov, Stoian; Kremensky, Ivo

    2004-01-01

    Background Haemophilias are the most common hereditary severe disorders of blood clotting. In families afflicted with heamophilia, genetic analysis provides opportunities to prevent recurrence of the disease. This study establishes a diagnostical strategy for carriership determination and prenatal diagnostics of haemophilia A in Bulgarian haemophilic population. Methods A diagnostical strategy consisting of screening for most common mutations in the factor VIII gene and analysis of a panel of eight linked to the factor VIII gene locus polymorphisms was established. Results Polymorphic analysis for carrier status determination of haemophilia A was successful in 30 families out of 32 (94%). Carrier status was determined in 25 of a total of 28 women at risk (89%). Fourteen prenatal diagnoses in women at high risk of having a haemophilia A – affected child were performed, resulting in 6 healthy boys and 5 girls. Conclusion The compound approach proves to be a highly informative and cost-effective strategy for prevention of recurrence of haemophilia A in Bulgaria. DNA analysis facilitates carriership determination and subsequent prenatal diagnosis in the majority of Bulgarian families affected by haemophilia A. PMID:15035673

  6. Genetic analysis of glutamatergic function in Drosophila

    SciTech Connect

    Chase, B.A.; Kankel, D.R.

    1987-01-01

    Neurotransmitters are essential for communication between neurons and hence are vital in the overall integrative functioning of the nervous system. Previous work on acetylcholine metabolism in the fruit fly, Drosophila melanogaster, has also raised the possibility that transmitter metabolism may play a prominent role in either the achievement or maintenance of the normal structure of the central nervous system in this species. Unfortunately, acetylcholine is rather poorly characterized as a neurotransmitter in Drosophila; consequently, we have begun an analysis of the role of glutamate (probably the best characterized transmitter in this organism) in the formation and/or maintenance of nervous system structure. We present here the results of a series of preliminary analyses. To suggest where glutamatergic function may be localized, an examination of the spatial distribution of high affinity (/sup 3/H)-glutamate binding sites are presented. We present the results of an analysis of the spatial and temporal distribution of enzymatic activities thought to be important in the regulation of transmitter-glutamate pools (i.e., glutamate oxaloacetic transaminase, glutaminase, and glutamate dehydrogenase). To begin to examine whether mutations in any of these functions are capable of affecting glutamatergic activity, we present the results of an initial genetic analysis of one enzymatic function, glutamate oxaloacetic transaminase (GOT), chosen because of its differential distribution within the adult central nervous system and musculature.

  7. Estimates of genetic correlations among growth traits including competition effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to estimate genetic parameters of direct and competition effects for traits measured at the end of a growth test utilizing multi-trait analyses. A total of 9,720 boars were tested with 15 boars per pen from about 71 to 161 d of age and weight from 31 to 120 kg. Traits analyzed wi...

  8. GENETIC ANALYSIS OF ABSCISIC ACID BIOSYNTHESIS

    SciTech Connect

    MCCARTY D R

    2012-01-10

    The carotenoid cleavage dioxygenases (CCD) catalyze synthesis of a variety of apo-carotenoid secondary metabolites in plants, animals and bacteria. In plants, the reaction catalyzed by the 11, 12, 9-cis-epoxy carotenoid dioxygenase (NCED) is the first committed and key regulated step in synthesis of the plant hormone, abscisic acid (ABA). ABA is a key regulator of plant stress responses and has critical functions in normal root and seed development. The molecular mechanisms responsible for developmental control of ABA synthesis in plant tissues are poorly understood. Five of the nine CCD genes present in the Arabidopsis genome encode NCED's involved in control of ABA synthesis in the plant. This project is focused on functional analysis of these five AtNCED genes as a key to understanding developmental regulation of ABA synthesis and dissecting the role of ABA in plant development. For this purpose, the project developed a comprehensive set of gene knockouts in the AtNCED genes that facilitate genetic dissection of ABA synthesis. These mutants were used in combination with key molecular tools to address the following specific objectives: (1) the role of ABA synthesis in root development; (2) developmental control of ABA synthesis in seeds; (3) analysis of ATNCED over-expressers; (4) preliminary crystallography of the maize VP14 protein.

  9. Methods for genetic linkage analysis using trisomies

    SciTech Connect

    Feingold, E.; Lamb, N.E.; Sherman, S.L.

    1995-02-01

    Certain genetic disorders are rare in the general population, but more common in individuals with specific trisomies. Examples of this include leukemia and duodenal atresia in trisomy 21. This paper presents a linkage analysis method for using trisomic individuals to map genes for such traits. It is based on a very general gene-specific dosage model that posits that the trait is caused by specific effects of different alleles at one or a few loci and that duplicate copies of {open_quotes}susceptibility{close_quotes} alleles inherited from the nondisjoining parent give increased likelihood of having the trait. Our mapping method is similar to identity-by-descent-based mapping methods using affected relative pairs and also to methods for mapping recessive traits using inbred individuals by looking for markers with greater than expected homozygosity by descent. In the trisomy case, one would take trisomic individuals and look for markers with greater than expected homozygosity in the chromosomes inherited from the nondisjoining parent. We present statistical methods for performing such a linkage analysis, including a test for linkage to a marker, a method for estimating the distance from the marker to the trait gene, a confidence interval for that distance, and methods for computing power and sample sizes. We also resolve some practical issues involved in implementing the methods, including how to use partially informative markers and how to test candidate genes. 20 refs., 5 figs., 1 tab.

  10. Genetic analysis of plant height in wheat.

    PubMed

    Halloran, G M

    1974-01-01

    Genetic studies of plant height were made of 8 wheats and the 28 crosses between them using the diallel method of analysis. The inheritance of plant height in a glasshouse-grown F1 diallel set in which vernalization and photoperiodic responses had been removed, indicated close to complete dominance in its expression. A similar F1 set of crosses in the field environment indicated non-allelic interaction in its expression, attributable mainly to the cultivar Chile 1B generally in its crosses with the other 7 wheats. Its removal gave close to complete average dominance in the inheritance of plant height.In the F2 generation in the field its inheritance was again subject to non-allelic interaction, attributed mainly to Chile 1B which, on removal, gave a situation of average partial dominance in height expression.Standardized deviations of Yr and (Wr + Vr) for plant height for the diallels indicated a resonably close association of tallness with dominance and shortness with recessiveness.Frequency distributions of plant height in the F1 and F2 of two crosses from the diallel confirmed certain findings of the diallel analysis.At least two groups of dominant genes were found to influence plant height expression in the crosses of the diallel ; this number must be regarded as a minimal estimate of the number of genes influencing plant height in wheat. PMID:24419549

  11. Longitudinal Genetic Analysis of Anxiety Sensitivity

    ERIC Educational Resources Information Center

    Zavos, Helena M. S.; Gregory, Alice M.; Eley, Thalia C.

    2012-01-01

    Anxiety sensitivity is associated with both anxiety and depression and has been shown to be heritable. Little, however, is known about the role of genetic influence on continuity and change of symptoms over time. The authors' aim was to examine the stability of anxiety sensitivity during adolescence. By using a genetically sensitive design, the…

  12. Methods for genetic linkage analysis using trisomies

    SciTech Connect

    Feingold, E.; Lamb, N.E.; Sherman, S.L.

    1994-09-01

    Certain genetic disorders (e.g. congenital cataracts, duodenal atresia) are rare in the general population, but more common in people with Down`s syndrome. We present a method for using individuals with trisomy 21 to map genes for such traits. Our methods are analogous to methods for mapping autosomal dominant traits using affected relative pairs by looking for markers with greater than expected identity-by-descent. In the trisomy case, one would take trisomic individuals and look for markers with greater than expected reduction to homozygosity in the chromosomes inherited form the non-disjoining parent. We present statistical methods for performing such a linkage analysis, including a test for linkage to a marker, a method for estimating the distance from the marker to the gene, a confidence interval for that distance, and methods for computing power and sample sizes. The methods are described in the context of gene-dosage model for the etiology of the disorder, but can be extended to other models. We also resolve some practical issues involved in implementing the methods, including how to use partially informative markers, how to test candidate genes, and how to handle the effect of reduced recombination associated with maternal meiosis I non-disjunction.

  13. Genetic analysis of embryo dormancy. Final report

    SciTech Connect

    Galau, G.

    1998-09-01

    Primary dormancy is the inability of mature seed to immediately germinate until specific environmental stimuli are perceived that predict that future conditions will support plant growth and seed set. The analysis of abscisic acid deficient and insensitive mutants, in particular in Arabidopsis, suggests that embryo abscisic acid may be directly involved in the development of primary dormancy. Other studies implicate the continued accumulation of LEA proteins as inhibiting germination in dormant embryos. The results of these physiological, molecular and genetic approaches are complex and equivocal. There is a real need for approaches that test the separate nature of vivipary inhibition and primary dormancy and deliberately seed to decouple and dissect them. These approaches should be of help in understanding both late embryo development and primary dormancy. The approach taken here is to directly isolate mutants of Arabidopsis that appear to be deficient only in primary dormancy, that is fresh seed that germinate rapidly without the normally-required cold-stratification. The authors have isolated at least 8 independent, rapidly germinating RGM mutants of Arabidopsis. All others aspects of plant growth and development appear normal in these lines, suggesting that the rgm mutants are defective only in the establishment or maintenance of primary dormancy. At least one of these may be tagged with T-DNA. In addition, about 50 RGM isolates have been recovered from EMS-treated seed.

  14. Genetic analysis of Vibrio parahaemolyticus intestinal colonization.

    PubMed

    Hubbard, Troy P; Chao, Michael C; Abel, Sören; Blondel, Carlos J; Abel Zur Wiesch, Pia; Zhou, Xiaohui; Davis, Brigid M; Waldor, Matthew K

    2016-05-31

    Vibrio parahaemolyticus is the most common cause of seafood-borne gastroenteritis worldwide and a blight on global aquaculture. This organism requires a horizontally acquired type III secretion system (T3SS2) to infect the small intestine, but knowledge of additional factors that underlie V. parahaemolyticus pathogenicity is limited. We used transposon-insertion sequencing to screen for genes that contribute to viability of V. parahaemolyticus in vitro and in the mammalian intestine. Our analysis enumerated and controlled for the host infection bottleneck, enabling robust assessment of genetic contributions to in vivo fitness. We identified genes that contribute to V. parahaemolyticus colonization of the intestine independent of known virulence mechanisms in addition to uncharacterized components of T3SS2. Our study revealed that toxR, an ancestral locus in Vibrio species, is required for V. parahaemolyticus fitness in vivo and for induction of T3SS2 gene expression. The regulatory mechanism by which V. parahaemolyticus ToxR activates expression of T3SS2 resembles Vibrio cholerae ToxR regulation of distinct virulence elements acquired via lateral gene transfer. Thus, disparate horizontally acquired virulence systems have been placed under the control of this ancestral transcription factor across independently evolved human pathogens. PMID:27185914

  15. Genetic algorithms and supernovae type Ia analysis

    SciTech Connect

    Bogdanos, Charalampos; Nesseris, Savvas E-mail: nesseris@nbi.dk

    2009-05-15

    We introduce genetic algorithms as a means to analyze supernovae type Ia data and extract model-independent constraints on the evolution of the Dark Energy equation of state w(z) {identical_to} P{sub DE}/{rho}{sub DE}. Specifically, we will give a brief introduction to the genetic algorithms along with some simple examples to illustrate their advantages and finally we will apply them to the supernovae type Ia data. We find that genetic algorithms can lead to results in line with already established parametric and non-parametric reconstruction methods and could be used as a complementary way of treating SNIa data. As a non-parametric method, genetic algorithms provide a model-independent way to analyze data and can minimize bias due to premature choice of a dark energy model.

  16. Molecular genetic analysis of Down syndrome.

    PubMed

    Patterson, David

    2009-07-01

    Down syndrome (DS) is caused by trisomy of all or part of human chromosome 21 (HSA21) and is the most common genetic cause of significant intellectual disability. In addition to intellectual disability, many other health problems, such as congenital heart disease, Alzheimer's disease, leukemia, hypotonia, motor disorders, and various physical anomalies occur at an elevated frequency in people with DS. On the other hand, people with DS seem to be at a decreased risk of certain cancers and perhaps of atherosclerosis. There is wide variability in the phenotypes associated with DS. Although ultimately the phenotypes of DS must be due to trisomy of HSA21, the genetic mechanisms by which the phenotypes arise are not understood. The recent recognition that there are many genetically active elements that do not encode proteins makes the situation more complex. Additional complexity may exist due to possible epigenetic changes that may act differently in DS. Numerous mouse models with features reminiscent of those seen in individuals with DS have been produced and studied in some depth, and these have added considerable insight into possible genetic mechanisms behind some of the phenotypes. These mouse models allow experimental approaches, including attempts at therapy, that are not possible in humans. Progress in understanding the genetic mechanisms by which trisomy of HSA21 leads to DS is the subject of this review. PMID:19526251

  17. High volume molecular genetic identification of single nucleotide polymorphisms using Genetic Bit Analysis Application to human genetic diagnosis

    SciTech Connect

    Boyce-Jacino, M.T.; Reynolds, J.; Nikiforov, T.

    1994-09-01

    The most common type of genetic disease-associated mutation is the single nucleotide polymorphism (SNP). Because most genetic diseases can be caused by multiple SNPs in the same gene, effective routine diagnosis of complex genetic diseases is dependent on a simple and reliable method of interrogating SNP sites. Molecular Tool`s solid phase assay capable of direct genotyping (single base sequencing) of SNP sites, Genetic Bit Analysis (GBA), involves hybridization-capture of a single-stranded PCR product to a sequence-specific, microtiter plate-bound oligonucleotide primer. The captured PCR product then acts as template for single-base extension of the capture primer across the polymorphic site, enabling direct determination of the base composition of the polymorphism through a simple colormetric assay. Genotyping in a high volume, semi-automated, processing system with a current capacity of 100 SNP interrogations per technician per day enables the screening of candidate mutations rapidly and cost-effectively, critically important to comprehensive genetic diagnosis. Using this gel-free technology, we have developed prototype diagnostic tests for CFTR and ApoE polymorphisms which enable direct sequencing of the polymorphic base at each site of interest. Routine clinical diagnosis of genetically complex diseases such as cystic fibrosis is dependent on this combination of robust biochemistry and simple format. Additionally, the ability to transfer the format and biochemistry to any disease gene of interest enables the broad application of this technology to clinical diagnostics, especially for genetically complex diseases.

  18. Genetic Analysis of Human Preimplantation Embryos.

    PubMed

    Garcia-Herrero, S; Cervero, A; Mateu, E; Mir, P; Póo, M E; Rodrigo, L; Vera, M; Rubio, C

    2016-01-01

    Preimplantation development comprises the initial stages of mammalian development, before the embryo implants into the mother's uterus. In normal conditions, after fertilization the embryo grows until reaching blastocyst stage. The blastocyst grows as the cells divide and the cavity expands, until it arrives at the uterus, where it "hatches" from the zona pellucida to implant into the uterine wall. Nevertheless, embryo quality and viability can be affected by chromosomal abnormalities, most of which occur during gametogenesis and early embryo development; human embryos produced in vitro are especially vulnerable. Therefore, the selection of chromosomally normal embryos for transfer in assisted reproduction can improve outcomes in poor-prognosis patients. Additionally, in couples with an inherited disorder, early diagnosis could prevent pregnancy with an affected child and would, thereby, avoid the therapeutic interruption of pregnancy. These concerns have prompted advancements in the use of preimplantation genetic diagnosis (PGD). Genetic testing is applied in two different scenarios: in couples with an inherited genetic disorder or carriers of a structural chromosomal abnormality, it is termed PGD; in infertile couples with increased risk of generating embryos with de novo chromosome abnormalities, it is termed preimplantation genetic screening, or PGS. PMID:27475859

  19. Genetic analysis of clinical findings at health examinations of young Swedish warmblood riding horses

    PubMed Central

    2013-01-01

    Background Soundness is important for welfare and utility of the riding horse. Musculoskeletal disorders are the most common causes of interruption in training and of culling. Despite great importance, heritability of a majority of health traits in horses has previously not been estimated. The objective was to perform genetic analyses of medical and orthopaedic health traits in young riding horses, including estimates of heritability and genetic correlations between health traits, and to reveal possibilities for genetic evaluation of stallions for progeny health. Results The heritability of health traits was estimated using records from 8,238 Swedish warmblood riding horses examined as 4–5 year olds at the Riding Horse Quality Test in 1983–2005. The analyses were performed using multi-trait linear mixed animal models. The heritabilities of palpatory orthopaedic health (PALP), including effusion, swelling, heat, soreness and stiffness/atrophy, and hoof examination results (HOOF), of hoof shape and hoof wall quality, were 0.12 and 0.10, respectively. The genetic variation in these traits resulted in distinct health differences between progeny groups of stallions. The highest heritability among clinical signs of PALP was found for synovial effusions at 0.14. For systemic locations, joint related findings had the highest heritability; 0.13. The heritabilities of medical health and locomotion examination results were low, 0.02 and 0.04, respectively. A genetic improvement of health status has occurred over time but accounts only partly for the decrease in clinical findings of health during the studied period. Conclusions The genetic variation found in PALP and HOOF implies distinct differences between progeny groups. Thus, there are possibilities for improvement of these traits in the population through selection. The weak and non-significant correlation between PALP and HOOF suggests that both traits need to be selected for in practical breeding to improve both

  20. The genetic architecture of petal number in Cardamine hirsuta.

    PubMed

    Pieper, Bjorn; Monniaux, Marie; Hay, Angela

    2016-01-01

    Invariant petal number is a characteristic of most flowers and is generally robust to genetic and environmental variation. We took advantage of the natural variation found in Cardamine hirsuta petal number to investigate the genetic basis of this trait in a case where robustness was lost during evolution. We used quantitative trait locus (QTL) analysis to characterize the genetic architecture of petal number. Αverage petal number showed transgressive variation from zero to four petals in five C. hirsuta mapping populations, and this variation was highly heritable. We detected 15 QTL at which allelic variation affected petal number. The effects of these QTL were relatively small in comparison with alleles induced by mutagenesis, suggesting that natural selection may act to maintain petal number within its variable range below four. Petal number showed a temporal trend during plant ageing, as did sepal trichome number, and multi-trait QTL analysis revealed that these age-dependent traits share a common genetic basis. Our results demonstrate that petal number is determined by many genes of small effect, some of which are age-dependent, and suggests a mechanism of trait evolution via the release of cryptic variation. PMID:26268614

  1. Composing and Performing in the Key Stage 3 Classroom: A Study using Multi-Trait, Multi-Method Analysis

    ERIC Educational Resources Information Center

    Fowler, Andrew

    2014-01-01

    "Music is both a creative and a performing art" (Hallam, 2006, p. 70). Many musicians and music educators maintain that composing and performing, although related, are essentially different aspects of musical activity. In the professional musical sphere, composition and performance are almost invariably separated; academic studies have…

  2. A Multi-Trait, Multi-Method Analysis of the Bayesian Screening Instrument and Test Battery for LD Adolescents.

    ERIC Educational Resources Information Center

    Alley, Gordon R.; And Others

    The reliability and validity of the Modified Component Disability Checklist were examined with five secondary learning disabled (LD) teachers, 21 low achieving students, and 21 LD students in grades 7, 8, and 9. During Phase I, teachers matched the component disability to the target behavior; and in Phase II teachers were told to judge each target…

  3. Multi-trait analysis of post-harvest storage in rocket salad (Diplotaxis tenuifolia) links sensorial, volatile and nutritional data.

    PubMed

    Spadafora, Natasha D; Amaro, Ana L; Pereira, Maria J; Müller, Carsten T; Pintado, Manuela; Rogers, Hilary J

    2016-11-15

    Rocket salad (Diplotaxis tenuifolia; wild rocket) is an important component of ready to eat salads providing a distinct peppery flavour and containing nutritionally relevant compounds. Quality deteriorates during post-harvest, in relation to time and storage temperature amongst other factors. Volatile organic compounds (VOCs) are easily measurable from rocket leaves and may provide useful quality indicators for e.g. changes in isothiocyanates derived from nutritionally important glucosinolates. VOC profiles discriminated storage temperatures (0, 5 and 10°C) and times (over 14days). More specifically, concentrations of aldehydes and isothiocyanates decreased with time paralleling a fall in vitamin C and a reduction in sensorial quality at the two higher temperatures. Sulphur containing compounds rise at later time-points and at higher temperatures coincident with an increase in microbial titre, mirroring a further drop in sensorial quality thus indicating their contribution to off-odours. PMID:27283614

  4. Polyglot Programming in Applications Used for Genetic Data Analysis

    PubMed Central

    Nowak, Robert M.

    2014-01-01

    Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development. PMID:25197633

  5. Polyglot programming in applications used for genetic data analysis.

    PubMed

    Nowak, Robert M

    2014-01-01

    Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development. PMID:25197633

  6. Statistical Analysis in Genetic Studies of Mental Illnesses

    PubMed Central

    Zhang, Heping

    2011-01-01

    Identifying the risk factors for mental illnesses is of significant public health importance. Diagnosis, stigma associated with mental illnesses, comorbidity, and complex etiologies, among others, make it very challenging to study mental disorders. Genetic studies of mental illnesses date back at least a century ago, beginning with descriptive studies based on Mendelian laws of inheritance. A variety of study designs including twin studies, family studies, linkage analysis, and more recently, genomewide association studies have been employed to study the genetics of mental illnesses, or complex diseases in general. In this paper, I will present the challenges and methods from a statistical perspective and focus on genetic association studies. PMID:21909187

  7. Rare genetic variant analysis on blood pressure in related samples

    PubMed Central

    2014-01-01

    The genetic variants associated with blood pressure identified so far explain only a small proportion of the total heritability of this trait. With recent advances in sequencing technology and statistical methodology, it becomes feasible to study the association between blood pressure and rare genetic variants. Using real baseline phenotype data and imputed dosage data from Genetic Analysis Workshop 18, we performed a candidate gene association analysis. We focused on 8 genes shown to be associated with either systolic or diastolic blood pressure to identify the association with both common and rare genetic variants, and then did a genome-wide rare-variant analysis on blood pressure. We performed association analysis for rare coding and splicing variants within each gene region and all rare variants in each sliding window, using either burden tests or sequence kernel association tests accounting for familial correlation. With a sample size of only 747, we failed to find any novel associated genetic loci. Consequently, we performed analyses on simulated data, with knowledge of the underlying simulating model, to evaluate the type I error rate and power for the methods used in real data analysis. PMID:25519320

  8. Molecular Genetic Analysis of Phototropism in Arabidopsis

    PubMed Central

    Sakai, Tatsuya; Haga, Ken

    2012-01-01

    Plant life is strongly dependent on the environment, and plants regulate their growth and development in response to many different environmental stimuli. One of the regulatory mechanisms involved in these responses is phototropism, which allows plants to change their growth direction in response to the location of the light source. Since the study of phototropism by Darwin, many physiological studies of this phenomenon have been published. Recently, molecular genetic analyses of Arabidopsis have begun to shed light on the molecular mechanisms underlying this response system, including phototropin blue light photoreceptors, phototropin signaling components, auxin transporters, auxin action mechanisms and others. This review highlights some of the recent progress that has been made in further elucidating the phototropic response, with particular emphasis on mutant phenotypes. PMID:22864452

  9. Promoting Utilization of Saccharum spp. Genetic Resources through Genetic Diversity Analysis and Core Collection Construction

    PubMed Central

    Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C.; Kuhn, David N.; Glaz, Barry; Gilbert, Robert A.; Comstock, Jack C.; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

  10. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.

    PubMed

    Nayak, Spurthi N; Song, Jian; Villa, Andrea; Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C; Kuhn, David N; Glaz, Barry; Gilbert, Robert A; Comstock, Jack C; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

  11. SYNAPTONEMAL COMPLEX ANALYSIS IN GENETIC TOXICOLOGY

    EPA Science Inventory

    Synaptonemal complex analysis provides a unique means of visualizing the behavior of meiotic chromosomes. he technique has been applied to the study of normal karyotypes and mutant stocks of mice. ecent work demonstrating the usefulness of SC analysis for the detection of chromos...

  12. Analysis of Variance Components for Genetic Markers with Unphased Genotypes

    PubMed Central

    Wang, Tao

    2016-01-01

    An ANOVA type general multi-allele (GMA) model was proposed in Wang (2014) on analysis of variance components for quantitative trait loci or genetic markers with phased or unphased genotypes. In this study, by applying the GMA model, we further examine estimation of the genetic variance components for genetic markers with unphased genotypes based on a random sample from a study population. In one locus and two loci cases, we first derive the least square estimates (LSE) of model parameters in fitting the GMA model. Then we construct estimators of the genetic variance components for one marker locus in a Hardy-Weinberg disequilibrium population and two marker loci in an equilibrium population. Meanwhile, we explore the difference between the classical general linear model (GLM) and GMA based approaches in association analysis of genetic markers with quantitative traits. We show that the GMA model can retain the same partition on the genetic variance components as the traditional Fisher's ANOVA model, while the GLM cannot. We clarify that the standard F-statistics based on the partial reductions in sums of squares from GLM for testing the fixed allelic effects could be inadequate for testing the existence of the variance component when allelic interactions are present. We point out that the GMA model can reduce the confounding between the allelic effects and allelic interactions at least for independent alleles. As a result, the GMA model could be more beneficial than GLM for detecting allelic interactions. PMID:27468297

  13. Quantitative genetic analysis of injury liability in infants and toddlers

    SciTech Connect

    Phillips, K.; Matheny, A.P. Jr.

    1995-02-27

    A threshold model of latent liability was applied to infant and toddler twin data on total count of injuries sustained during the interval from birth to 36 months of age. A quantitative genetic analysis of estimated twin correlations in injury liability indicated strong genetic dominance effects, but no additive genetic variance was detected. Because interpretations involving overdominance have little research support, the results may be due to low order epistasis or other interaction effects. Boys had more injuries than girls, but this effect was found only for groups whose parents were prompted and questioned in detail about their children`s injuries. Activity and impulsivity are two behavioral predictors of childhood injury, and the results are discussed in relation to animal research on infant and adult activity levels, and impulsivity in adult humans. Genetic epidemiological approaches to childhood injury should aid in targeting higher risk children for preventive intervention. 30 refs., 4 figs., 3 tabs.

  14. Comparing G: multivariate analysis of genetic variation in multiple populations.

    PubMed

    Aguirre, J D; Hine, E; McGuigan, K; Blows, M W

    2014-01-01

    The additive genetic variance-covariance matrix (G) summarizes the multivariate genetic relationships among a set of traits. The geometry of G describes the distribution of multivariate genetic variance, and generates genetic constraints that bias the direction of evolution. Determining if and how the multivariate genetic variance evolves has been limited by a number of analytical challenges in comparing G-matrices. Current methods for the comparison of G typically share several drawbacks: metrics that lack a direct relationship to evolutionary theory, the inability to be applied in conjunction with complex experimental designs, difficulties with determining statistical confidence in inferred differences and an inherently pair-wise focus. Here, we present a cohesive and general analytical framework for the comparative analysis of G that addresses these issues, and that incorporates and extends current methods with a strong geometrical basis. We describe the application of random skewers, common subspace analysis, the 4th-order genetic covariance tensor and the decomposition of the multivariate breeders equation, all within a Bayesian framework. We illustrate these methods using data from an artificial selection experiment on eight traits in Drosophila serrata, where a multi-generational pedigree was available to estimate G in each of six populations. One method, the tensor, elegantly captures all of the variation in genetic variance among populations, and allows the identification of the trait combinations that differ most in genetic variance. The tensor approach is likely to be the most generally applicable method to the comparison of G-matrices from any sampling or experimental design. PMID:23486079

  15. A roadmap for the genetic analysis of renal aging.

    PubMed

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-10-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736

  16. A roadmap for the genetic analysis of renal aging

    PubMed Central

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-01-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736

  17. Genetic diversity analysis of common beans based on molecular markers.

    PubMed

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation. PMID:22215964

  18. Genetic diversity analysis of common beans based on molecular markers

    PubMed Central

    Gill-Langarica, Homar R.; Muruaga-Martínez, José S.; Vargas-Vázquez, M.L. Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-01-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation. PMID:22215964

  19. Genetics

    MedlinePlus

    Homozygous; Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  20. Genetics

    MedlinePlus

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  1. A genetic analysis of Adh1 regulation

    SciTech Connect

    Freeling, M.

    1992-01-01

    The overall goal of our research proposal is to understand the meaning of the various cis-acting sites responsible for AdH1 expression in the entire maize plant. Progress is reported in the following areas: Studies on the TATA box and analysis of revertants of the Adh1-3F1124 allele; screening for more different mutants that affect Adh1 expression differentially; studies on cis-acting sequences required for root-specific Adh1 expression; refinement of the use of the particle gun; and functional analysis of a non- glycolytic anaerobic protein.

  2. Analysis of genetic diversity of Lactarius hatsudake in south China.

    PubMed

    He, Li; Liang, Guo; Guoying, Zhou; Jun-ang, Liu

    2011-08-01

    Lactarius hatsudake is a type of ectomycorrhizal fungus that significantly influences the growth of pine trees. It is widely prevalent in Asian countries and has a high economic value. Artificial cultivation of this fungus has not been achieved as yet; therefore, excessive manual harvesting may cause serious damages to the site of its production. In this study, we analyzed 41 samples of L. hatsudake from south China using internal transcribed spacer (ITS) sequences. By comparing the differences among ITS sequences to identify the haplotype diversity within each population, the relationships among local populations, the relationship between the level of genetic differentiation and geographical separation, and the contributions of local and regional geographical separations to the overall ITS haplotype variation were analyzed. Genetic analysis indicates that ITS sequences obtained from these 41 L. hatsudake samples could be identified as 18 haplotypes, of which 13 haplotypes were contained in only a single sample, whereas the remaining sequence types all were contained in two or more samples. The most common sequence type, haplotype 6, was found in 16 samples and was distributed across nearly every region. The Mantel test demonstrated that there is no significant linear relationship between geographical distance and the F(ST) value of genetic difference. Results of this research illustrates that there exists a certain degree of genetic intermixing among natural populations of L. hatsudake. From the group genetic analysis, it appears that there exists genetic differentiation of lower frequencies in natural populations of L. hatsudake; however, the linear relationship between the degree of genetic differentiation and geographical distance is not distinctly apparent. PMID:21815833

  3. Genetic diversity of popcorn genotypes using molecular analysis.

    PubMed

    Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M

    2015-01-01

    In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients. PMID:26345916

  4. Molecular analysis of genetic diseases: an overview for clinicians.

    PubMed

    Javed, A A; Huang, Y; Bombard, A T

    1995-01-01

    The identification of fetal genetic disease has, for the most part, relied on examination of an end product, such as analysis of factor VIII levels obtained from cord blood in fetuses at risk for hemophilia. Advances in molecular genetics have shifted our focus in prenatal diagnosis away from protein product analysis toward etiology, making new discoveries gleaned from the Human Genome Project relevant to clinicians. This review discusses the basic principles involved in gene-based diagnosis, highlighting the complexities of current approaches to molecular diagnosis of fetal genetic disease. Given an understanding of both the theory and practice of genetic analysis, the review covers the fundamental principles of molecular biology (structure, function, packaging, and regulation) and discusses recombinant DNA techniques presently used for the analysis of mutations. Clinical examples are presented to introduce the techniques most commonly employed in service laboratories: direct detection assays, where the specific mutation is recognized, and indirect detection assays, useful for the deduction of an inheritance pattern where the actual mutation or its gene is not known but may be closely linked to known DNA polymorphisms. PMID:7858372

  5. Multivariate Genetic Analysis of Learning and Early Reading Development

    ERIC Educational Resources Information Center

    Byrne, Brian; Wadsworth, Sally; Boehme, Kristi; Talk, Andrew C.; Coventry, William L.; Olson, Richard K.; Samuelsson, Stefan; Corley, Robin

    2013-01-01

    The genetic factor structure of a range of learning measures was explored in twin children, recruited in preschool and followed to Grade 2 ("N"?=?2,084). Measures of orthographic learning and word reading were included in the analyses to determine how these patterned with the learning processes. An exploratory factor analysis of the…

  6. Understanding genetics: Analysis of secondary students' conceptual status

    NASA Astrophysics Data System (ADS)

    Tsui, Chi-Yan; Treagust, David F.

    2007-02-01

    This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a case-based design with multiple data collection methods. Over 4-8 weeks, the students learned genetics in classroom lessons that included BioLogica activities, which feature multiple representations. Results of the online tests and interview tasks revealed that most students improved their understanding of genetics as evidenced in the development of genetics reasoning. However, using Thorley's (1990) status analysis categories, a cross-case analysis of the gene conceptions of 9 of the 26 students interviewed indicated that only 4 students' postinstructional conceptions were intelligible-plausible-fruitful. Students' conceptual change was consistent with classroom teaching and learning. Findings suggested that multiple representations supported conceptual understanding of genetics but not in all students. It was also shown that status can be a viable hallmark enabling researchers to identify students' conceptual change that would otherwise be less accessible. Thorley's method for analyzing conceptual status is discussed.

  7. Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis

    PubMed Central

    Chan, Agnes P.; Williams, Amber L.; Rice, Danny W.; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M. J.; Khouri, Hoda M.; Beckstrom-Sternberg, Stephen M.; Allan, Gerard J.; Keim, Paul; Ravel, Jacques; Rabinowicz, Pablo D.

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade. PMID:21750729

  8. A genetic analysis of Adhl regulation

    SciTech Connect

    Freeling, M.

    1992-01-01

    Several separate but related studies are reported on the mechanism of alcohol dehydrogenase (Adh-1) are reported. A study of a deletion mutation in the TATA box region which resulted in an increase from 6--60% of wildtype Adh-1 expression in the revertant has led to a focus on trans-acting protein factors that bind the TATA box. Analysis of another revertant has led to study of cis-acting sequences in Adh-1 expression. Screening efforts aimed at defining different mutants affecting Adh-1 expression are reported.

  9. The future of genetic analysis of neurological disorders.

    PubMed

    Hardy, J; Singleton, A

    2000-04-01

    Molecular genetic analysis has allowed the elucidation of the etiology of many single-gene, neurodegenerative syndromes. However, as yet, it has had little direct impact on our understanding of the etiology in cases with more complex modes of inheritance. With the completion of the sequence of the human genome, it should be possible to start to attack these more complex problems. In this article, we review the genetic methods that may be used to dissect the etiologies of these diseases and outline what types of clinical samples will be needed for this quest. PMID:10783291

  10. Methods for the survey and genetic analysis of populations

    DOEpatents

    Ashby, Matthew

    2003-09-02

    The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.

  11. MTG2: an efficient algorithm for multivariate linear mixed model analysis based on genomic information

    PubMed Central

    Lee, S. H.; van der Werf, J. H. J.

    2016-01-01

    Summary: We have developed an algorithm for genetic analysis of complex traits using genome-wide SNPs in a linear mixed model framework. Compared to current standard REML software based on the mixed model equation, our method is substantially faster. The advantage is largest when there is only a single genetic covariance structure. The method is particularly useful for multivariate analysis, including multi-trait models and random regression models for studying reaction norms. We applied our proposed method to publicly available mice and human data and discuss the advantages and limitations. Availability and implementation: MTG2 is available in https://sites.google.com/site/honglee0707/mtg2. Contact: hong.lee@une.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26755623

  12. The role of genome and gene regulatory network canalization in the evolution of multi-trait polymorphisms and sympatric speciation

    PubMed Central

    2009-01-01

    Background Sexual reproduction has classically been considered as a barrier to the buildup of discrete phenotypic differentiation. This notion has been confirmed by models of sympatric speciation in which a fixed genetic architecture and a linear genotype phenotype mapping were assumed. In this paper we study the influence of a flexible genetic architecture and non-linear genotype phenotype map on differentiation under sexual reproduction. We use an individual based model in which organisms have a genome containing genes and transcription factor binding sites. Mutations involve single genes or binding sites or stretches of genome. The genome codes for a regulatory network that determines the gene expression pattern and hence the phenotype of the organism, resulting in a non-linear genotype phenotype map. The organisms compete in a multi-niche environment, imposing selection for phenotypic differentiation. Results We find as a generic outcome the evolution of discrete clusters of organisms adapted to different niches, despite random mating. Organisms from different clusters are distinct on the genotypic, the network and the phenotypic level. However, the genome and network differences are constrained to a subset of the genome locations, a process we call genotypic canalization. We demonstrate how this canalization leads to an increased robustness to recombination and increasing hybrid fitness. Finally, in case of assortative mating, we explain how this canalization increases the effectiveness of assortativeness. Conclusion We conclude that in case of a flexible genetic architecture and a non-linear genotype phenotype mapping, sexual reproduction does not constrain phenotypic differentiation, but instead constrains the genotypic differences underlying it. We hypothesize that, as genotypic canalization enables differentiation despite random mating and increases the effectiveness of assortative mating, sympatric speciation is more likely than is commonly suggested

  13. Genetic diversity analysis in Piper species (Piperaceae) using RAPD markers.

    PubMed

    Sen, Sandeep; Skaria, Reby; Abdul Muneer, P M

    2010-09-01

    The genetic diversity of eight species of Piper (Piperaceae) viz., P. nigrum, P. longum, P. betle, P. chaba, P. argyrophyllum, P. trichostachyon, P. galeatum, and P. hymenophyllum from Kerala state, India were analyzed by Random amplified polymorphic DNA (RAPD). Out of 22 10-mer RAPD primers screened, 11 were selected for comparative analysis of different species of Piper. High genetic variations were found among different Piper species studied. Among the total of 149 RAPD fragments amplified, 12 bands (8.05%) were found monomorphic in eight species. The remaining 137 fragments were found polymorphic (91.95%). Species-specific bands were found in all eight species studied. The average gene diversity or heterozygosity (H) was 0.33 across all the species, genetic distances ranged from 0.21 to 0.69. The results of this study will facilitate germplasm identification, management, and conservation. PMID:20383613

  14. Molecular population genetic analysis of emerged bacterial pathogens: selected insights.

    PubMed Central

    Musser, J. M.

    1996-01-01

    Research in bacterial population genetics has increased in the last 10 years. Population genetic theory and tools and related strategies have been used to investigate bacterial pathogens that have contributed to recent episodes of temporal variation in disease frequency and severity. A common theme demonstrated by these analyses is that distinct bacterial clones are responsible for disease outbreaks and increases in infection frequency. Many of these clones are characterized by unique combinations of virulence genes or alleles of virulence genes. Because substantial interclonal variance exists in relative virulence, molecular population genetic studies have led to the concept that the unit of bacterial pathogenicity is the clone or cell line. Continued new insights into host parasite interactions at the molecular level will be achieved by combining clonal analysis of bacterial pathogens with large-scale comparative sequencing of virulence genes. PMID:8903193

  15. [Screening of peafowl microsatellite primers and analysis of genetic diversity].

    PubMed

    Bao, Wen-Bin; Chen, Guo-Hong; Shu, Jing-Ting; Xu, Qi; Li, Hui-Fang

    2006-10-01

    The applicability of chicken microsatellite primers to peafowl population was analyzed in the present paper, and the results showed 14 of 29 pairs of microsatellite primers from chicken could amplify peafowl DNA and produce specific allele patterns. A mean of 1.71 alleles was found for each locus. Seven pairs were highly polymorphic, and MCW0080 and MCW0098 were ideal markers for peafowl. Genetic diversity analysis within and between the green peafowl and the blue peafowl populations demonstrated that the expected heterozygosity of two peafowl populations were 0.2482 and 0.2744, respectively. The inbreeding index (FST), Reynolds' genetic distance and gene flow between the two populations were 0.078, 0.0603 and 3.896 respectively. These results indicate that the heterozygosity and the genetic diversity of these two peafowl populations were very low, and suggest a tendency towards intermixing. PMID:17035182

  16. Frequency Analysis Techniques for Identification of Viral Genetic Data

    PubMed Central

    Trifonov, Vladimir; Rabadan, Raul

    2010-01-01

    Environmental metagenomic samples and samples obtained as an attempt to identify a pathogen associated with the emergence of a novel infectious disease are important sources of novel microorganisms. The low costs and high throughput of sequencing technologies are expected to allow for the genetic material in those samples to be sequenced and the genomes of the novel microorganisms to be identified by alignment to those in a database of known genomes. Yet, for various biological and technical reasons, such alignment might not always be possible. We investigate a frequency analysis technique which on one hand allows for the identification of genetic material without relying on alignment and on the other hand makes possible the discovery of nonoverlapping contigs from the same organism. The technique is based on obtaining signatures of the genetic data and defining a distance/similarity measure between signatures. More precisely, the signatures of the genetic data are the frequencies of k-mers occurring in them, with k being a natural number. We considered an entropy-based distance between signatures, similar to the Kullback-Leibler distance in information theory, and investigated its ability to categorize negative-sense single-stranded RNA (ssRNA) viral genetic data. Our conclusion is that in this viral context, the technique provides a viable way of discovering genetic relationships without relying on alignment. We envision that our approach will be applicable to other microbial genetic contexts, e.g., other types of viruses, and will be an important tool in the discovery of novel microorganisms. PMID:20824103

  17. Molecular genetic analysis of plant gravitropism

    NASA Technical Reports Server (NTRS)

    Lomax, T. L.

    1997-01-01

    The analysis of mutants is a powerful approach for elucidating the components of complex biological processes. A growing number of mutants have been isolated which affect plant gravitropism and the classes of mutants found thus far provide important information about the gravity response mechanism. The wide variety of mutants isolated, especially in Arabidopsis, indicates that gravitropism is a complex, multi-step process. The existence of mutants altered in either root gravitropism alone, shoot gravitropism alone, or both indicates that the root and shoot gravitropic mechanisms have both separate and common steps. Reduced starch mutants have confirmed the role of amyloplasts in sensing the gravity signal. The hormone auxin is thought to act as the transducing signal between the sites of gravity perception (the starch parenchyma cells surrounding the vascular tissue in shoots and the columella cells of root caps) and asymmetric growth (the epidermal cells of the elongation zone(s) of each organ). To date, all mutants that are resistant to high concentrations of auxin have also been found to exhibit a reduced gravitropic response, thus supporting the role of auxin. Not all gravitropic mutants are auxin-resistant, however, indicating that there are additional steps which do not involve auxin. Studies with mutants of tomato which exhibit either reduced or reversed gravitropic responses further support the role of auxin redistribution in gravitropism and suggest that both red light and cytokinin interact with gravitropism through controlling lateral auxin transport. Plant responses to gravity thus likely involve changes in both auxin transport and sensitivity.

  18. Genetic analysis of two Taiwanese bluetongue viruses.

    PubMed

    Lee, Fan; Ting, Lu-Jen; Lee, Ming-Shiuh; Chang, Wei-Ming; Wang, Fun-In

    2011-03-24

    BTV2/KM/2003 and BTV12/PT/2003 are the first identified bluetongue viruses in Taiwan. The prototype virus BTV2/KM/2003 was previously characterized in various respects as low virulent. In the present study, nucleotide sequences of the ten genome segments and their coding regions of the Taiwan strains were determined and analyzed. The two strains had >96.8% nucleotide and >97.9% deduced amino acid identities to each other, except for the VP2 genes. Their genome sequences, except for NS1 and VP2 genes, clustered overall in the Asian lineage, and were closely related to strains from China, India, Indonesia, and Japan. The phylogenetic trees and nucleotide identities of six BTV genes were suggestive of the geographical origin of the bluetongue virus strains analyzed, with a few exceptions. To examine which genes better distinguished strains from different origins (topography), the distribution of and the levels of differences in nucleotide identities were analyzed, revealing that VP3, NS2, and NS3 genes were more suitable for topotyping of BTVs. Analysis of ratios of non-synonymous/synonymous substitutions (dN/dS values) between putative ancestry and their descendant strains suggested that most BTV genes evolved under a negative selection, whereas the VP7 gene evolved under positive selection, and its non-synonymous substitutions accumulated more rapidly in strains from the Mediterranean region. PMID:20855174

  19. Genetic analysis of abdominal aortic aneurysms (AAA)

    SciTech Connect

    St. Jean, P.L.; Hart, B.K.; Zhang, X.C.

    1994-09-01

    The association between AAA and gender, smoking (SM), hypertension (HTN) and inguinal herniation (IH) was examined in 141 AAA probands and 139 of their 1st degree relatives with aortic exam (36 affected, 103 unaffected). There was no significant difference between age at diagnosis of affecteds and age at exam of unaffecteds. Of 181 males, 142 had AAA; of 99 females, 35 had AAA. Using log-linear modeling AAA was significantly associated at the 5% level with gender, SM and HTN but not IH. The association of AAA with SM and HTN held when males and females were analyzed separately. HTN was -1.5 times more common in both affected males and females, while SM was 1.5 and 2 times more common in affected males and females, respectively. Tests of association and linkage analyses were performed with relevant candidate genes: 3 COL3A1 polymorphisms (C/T, ALA/THR, AvaII), 2 ELN polymorphisms (SER/GLY, (CA)n), FBN1(TAAA)n, 2 APOB polymorphisms (Xbal,Ins/Del), CLB4B (CA)n, PI and markers D1S243 (CA)n, HPR (CA)n and MFD23(CA)n. The loci were genotyped in > 100 AAA probands and > 95 normal controls. No statistically significant evidence of association at the 5% level was obtained for any of the loci using chi-square test of association. 28 families with 2 or more affecteds were analyzed using the affected pedigree member method (APM) and lod-score analyses. There was no evidence for linkage with any loci using APM. Lod-score analysis under an autosomal recessive model resulted in excluding linkage (lod score < -2) of all loci to AAA at {theta}=0.0. Under an autosomal dominant model, linkage was excluded at {theta}=0.0 to ELN, APOB, CLG4B, D1S243, HPR and MFD23. The various genes previously proposed in AAA pathogenesis are neither associated nor casually related in our study population.

  20. Random amplified polymorphic DNA analysis of genetically modified organisms.

    PubMed

    Yoke-Kqueen, Cheah; Radu, Son

    2006-12-15

    Randomly amplified polymorphic DNA (RAPD) was used to analyzed 78 samples comprises of certified reference materials (soya and maize powder), raw seeds (soybean and maize), processed food and animal feed. Combination assay of two arbitrary primers in the RAPD analysis enable to distinguish genetically modified organism (GMO) reference materials from the samples tested. Dendrogram analysis revealed 13 clusters at 45% similarity from the RAPD. RAPD analysis showed that the maize and soybean samples were clustered differently besides the GMO and non-GMO products. PMID:16860900

  1. Genetic analysis in the Collaborative Cross breeding population

    SciTech Connect

    Philip, Vivek; Sokoloff, Greta; Ackert-Bicknell, Cheryl; Striz, Martin; Branstetter, Lisa R; Beckmann, Melissa; Spence, Jason S; Jackson, Barbara L; Galloway, Leslie D; Barker, Gene; Wymore, Ann M; Hunsicker, Patricia R; Durtschi, David W; Shaw, Ginger S; Shinpock, Sarah G; Manly, Kenneth F; Miller, Darla R; Donahue, Kevin; Culiat, Cymbeline T; Churchill, Gary A; Lariviere, William R; Palmer, Abraham; O'Hara, Bruce; Voy, Brynn H; Chesler, Elissa J

    2011-01-01

    Genetic reference populations in model organisms are critical resources for systems genetic analysis of disease related phenotypes. The breeding history of these inbred panels may influence detectable allelic and phenotypic diversity. The existing panel of common inbred strains reflects historical selection biases, and existing recombinant inbred panels have low allelic diversity. All such populations may be subject to consequences of inbreeding depression. The Collaborative Cross (CC) is a mouse reference population with high allelic diversity that is being constructed using a randomized breeding design that systematically outcrosses eight founder strains, followed by inbreeding to obtain new recombinant inbred strains. Five of the eight founders are common laboratory strains, and three are wild-derived. Since its inception, the partially inbred CC has been characterized for physiological, morphological, and behavioral traits. The construction of this population provided a unique opportunity to observe phenotypic variation as new allelic combinations arose through intercrossing and inbreeding to create new stable genetic combinations. Processes including inbreeding depression and its impact on allelic and phenotypic diversity were assessed. Phenotypic variation in the CC breeding population exceeds that of existing mouse genetic reference populations due to both high founder genetic diversity and novel epistatic combinations. However, some focal evidence of allele purging was detected including a suggestive QTL for litter size in a location of changing allele frequency. Despite these inescapable pressures, high diversity and precision for genetic mapping remain. These results demonstrate the potential of the CC population once completed and highlight implications for development of related populations. Supplementary material consists of Supplementary Table 1 Phenotypic means, variances, ranges and heritabilities for all traits and generations, Supplementary Table

  2. Genetic Analysis of Rough Sheath1 Developmental Mutants of Maize

    PubMed Central

    Becraft, P. W.; Freeling, M.

    1994-01-01

    Maize Rough sheath1 (Rs1) mutants are dominant and cause a proliferation of sheath-like tissue at the base of the blade and throughout the ligular region. They also cause ligule displacement, a chaotic pattern of vasculature and abnormal cellular structure of vascular bundles. The affected region of Rs1-O leaves displays genetic and morphological attributes of both sheath and auricle, suggesting an overlap of these genetic programs. The rs1 locus maps approximately 26 map units distal to opaque2 (o2) on chromosome 7S, defining a new distal-most locus on the genetic map. Three mutant alleles, Rs1-O, Rs1-1025 and Rs1-Z, all display similar phenotypes. The mutations are completely dominant and the Rs1-O phenotype is not affected by dosage of the chromosome arm carrying the rs1(+) allele, indicating that these alleles are neomorphic. Analysis of genetic mosaics showed that the Rs1-O phenotype is non-cell-autonomous, suggesting that intercellular signals convey the phenotype. Rs1 mutant phenotypes are affected by modifiers present in particular genetic backgrounds. An enhancer of Rs1-O was identified; segregation data imply a single recessive gene, ers1. Rs1 mutants were also found to enhance the expression of unlinked rs2 and Rs4 mutants, suggesting that these mutations affect similar developmental processes. We discuss the phenotypic and genetic similarities between Rs1 and Knotted1 (Kn1) mutants that led to the identification of rs1 as a kn1-like homeobox gene (unpublished data). PMID:8138166

  3. Molecular genetic analysis of six Dutch families with atrial fibrillation

    PubMed Central

    Entius, M.M.; Groenewegen, A.; Pronk, A.; van der Smagt, J.J; Loh, P.; Hauer, R.N.; Derksen, R.; van Gelder, I.C.; Lok, D.J.A.; Doevendans, P.A.

    2005-01-01

    Background Atrial fibrillation (AF), the most common cardiac arrhythmia, is characterised by rapid and irregular contraction of the atrium. The risk of AF increases with age and AF increases the risk of various heart disorders, stroke and mortality. AF can occur in a sporadic or familial form. The underlying mechanism leading to AF is not well known but genetic analysis can increase our insight into the molecular pathways in AF. Detailed information on the molecular mechanisms of a disorder increase options for diagnosis and treatment. Recently, a gain-of-function mutation in exon of the KCNQ1 gene located on chromosome 11 was identified in a large Chinese AF family. KCNQ1 associates with KCNE1 or KCNE2 (both located on chromosome 21) to form cardiac potassium channels. Subsequent analysis of Chinese families showed a KCNE2 mutation in two families. Other genetic studies show linkage to chromosome 6 and 10, indicating genetic heterogeneity. A number of studies have shown that altered expression of the atrial connexin40 protein is a risk factor for AF. Connexin genes encode gap-junction proteins that are important in cardiac conduction and for normal wave propagation. Objectives/methods In this study we analysed the role of KCNQ1, KCNE1 coding region and Cx40 promoter region in six Dutch AF families by sequence analysis. Conclusion No mutations were found in these genes. The absence of mutations indicates genetic heterogeneity in familial AF; however, further research is needed. Candidate genes are being sequenced, linkage analysis in a large family will be performed and additional AF families will be collected. ImagesFigure 1 PMID:25696507

  4. Describing the genetic architecture of epilepsy through heritability analysis.

    PubMed

    Speed, Doug; O'Brien, Terence J; Palotie, Aarno; Shkura, Kirill; Marson, Anthony G; Balding, David J; Johnson, Michael R

    2014-10-01

    Epilepsy is a disease with substantial missing heritability; despite its high genetic component, genetic association studies have had limited success detecting common variants which influence susceptibility. In this paper, we reassess the role of common variants on epilepsy using extensions of heritability analysis. Our data set consists of 1258 UK patients with epilepsy, of which 958 have focal epilepsy, and 5129 population control subjects, with genotypes recorded for over 4 million common single nucleotide polymorphisms. Firstly, we show that on the liability scale, common variants collectively explain at least 26% (standard deviation 5%) of phenotypic variation for all epilepsy and 27% (standard deviation 5%) for focal epilepsy. Secondly we provide a new method for estimating the number of causal variants for complex traits; when applied to epilepsy, our most optimistic estimate suggests that at least 400 variants influence disease susceptibility, with potentially many thousands. Thirdly, we use bivariate analysis to assess how similar the genetic architecture of focal epilepsy is to that of non-focal epilepsy; we demonstrate both significant differences (P = 0.004) and significant similarities (P = 0.01) between the two subtypes, indicating that although the clinical definition of focal epilepsy does identify a genetically distinct epilepsy subtype, there is also scope to improve the classification of epilepsy by incorporating genotypic information. Lastly, we investigate the potential value in using genetic data to diagnose epilepsy following a single epileptic seizure; we find that a prediction model explaining 10% of phenotypic variation could have clinical utility for deciding which single-seizure individuals are likely to benefit from immediate anti-epileptic drug therapy. PMID:25063994

  5. [Genetic analysis of Streptomyces erythreus heteroclones. II. Determination of the distances between genetic loci on the map].

    PubMed

    Pencheva, R; Todorov, T

    1989-01-01

    As a result of recombination experiments between auxotrophic mutants of S. erythreus BTCC2 haploid recombinants and heteroclones were isolated. A genetic map of S. erythreus, including 15 auxotrophic loci was constructed by genetic analysis of the segregants of the heteroclones obtained. The genetic distances between 7 key loci on the map were determined and the entire length of the map of about 105 standard recombination units was calculated. PMID:2624163

  6. Genetic analysis of first lactation production traits in Kankrej cattle

    PubMed Central

    Ankuya, K. J.; Pareek, N. K.; Patel, M. P.; Rathod, B. S.; Prajapati, K. B.; Patel, J. B.

    2016-01-01

    Aim: The aim was to estimate genetic factors affecting the first lactation milk production traits in Kankrej cattle of North Gujarat. Materials and Methods: The 475 first lactation records of Kankrej cows that were maintained at the Livestock Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Gujarat, over a period of 35 years from 1980 to 2014 were studied. The least squares maximum likelihood program was used to estimate genetic parameters of first lactation traits. Heritability was estimated through paternal half-sib analysis in adjusted data. Results: The heritability estimate for production traits was 0.40±0.17, 0.45±0.17, 0.35±0.18, and 0.20±0.14 for standard 300 days milk yield (F300Y), total lactation milk yield (FLY), wet average (FWA), and lactation length (FLL), respectively, in the first parity. All the genetic and phenotypic correlations among different production efficiency traits were high and positive. Genetic correlations between F300Y and FLY, FLL, and FWA were 0.80±0.20, 0.59±0.16, and 0.81±0.32, where as the phenotypic correlations were 0.969, 0.688, and 0.868, respectively. Genetic correlations of FLY with FLL and FWA were 0.60±0.13 and 0.79±0.20, whereas the phenotypic correlations were 0.777 and 0.817, respectively. Genetic and phenotypic correlation between FLL and FWA was 0.63±0.28 and 0.31, respectively. Conclusion: The heritability estimate of all first parity lactation traits waslow to medium (0.20-0.45) indicated the scope for further improvement in this trait through selection as well as managemental practice. Higher genetic and phenotypic correlation between thefirst lactation milk production traits gives theidea that genetic gain due to selection for one trait also givesmorecorrelated response of selection for other traits which is economically advantageous. PMID:27397993

  7. Forward and reverse genetic analysis of microtubule motors in Chlamydomonas.

    PubMed

    Pazour, G J; Witman, G B

    2000-12-01

    The ability to integrate biochemical, cell biological, and genetic approaches makes Chlamydomonas reinhardtii the premier model organism for studies of the eukaryotic flagellum and its associated molecular motors. Hundreds of motility mutations have been identified in Chlamydomonas, including many that affect dyneins and kinesins. These mutations have yielded much information on the structure and function of the motors as well as the roles of individual subunits within the motors. The development of insertional mutagenesis has opened the door to powerful new approaches for genetic analysis in Chlamydomonas. Insertional mutants are created by transforming cells with DNA-containing selectable markers. The DNA is randomly integrated throughout the genome and usually deletes part of the chromosome at the site of insertion, thereby creating mutations that are marked by the integrated DNA. These mutations can be used for forward genetic approaches where one characterizes a mutant phenotype and then clones the relevant gene using the integrated DNA as a tag. The insertional mutants also may be used in a reverse genetic approach in which mutants lacking a gene of interest are identified by DNA hybridization. We describe methods to generate and characterize insertional mutants, using mutations that affect the outer dynein arm as examples. PMID:11133235

  8. Markov Logic Networks in the Analysis of Genetic Data

    PubMed Central

    Sakhanenko, Nikita A.

    2010-01-01

    Abstract Complex, non-additive genetic interactions are common and can be critical in determining phenotypes. Genome-wide association studies (GWAS) and similar statistical studies of linkage data, however, assume additive models of gene interactions in looking for genotype-phenotype associations. These statistical methods view the compound effects of multiple genes on a phenotype as a sum of influences of each gene and often miss a substantial part of the heritable effect. Such methods do not use any biological knowledge about underlying mechanisms. Modeling approaches from the artificial intelligence (AI) field that incorporate deterministic knowledge into models to perform statistical analysis can be applied to include prior knowledge in genetic analysis. We chose to use the most general such approach, Markov Logic Networks (MLNs), for combining deterministic knowledge with statistical analysis. Using simple, logistic regression-type MLNs we can replicate the results of traditional statistical methods, but we also show that we are able to go beyond finding independent markers linked to a phenotype by using joint inference without an independence assumption. The method is applied to genetic data on yeast sporulation, a complex phenotype with gene interactions. In addition to detecting all of the previously identified loci associated with sporulation, our method identifies four loci with smaller effects. Since their effect on sporulation is small, these four loci were not detected with methods that do not account for dependence between markers due to gene interactions. We show how gene interactions can be detected using more complex models, which can be used as a general framework for incorporating systems biology with genetics. PMID:20958249

  9. Genetic analysis of hispanic individuals with cystic fibrosis

    SciTech Connect

    Grebe, T.A.; Doane, W.W.; Norman, R.A.; Rhodes, S.N. ); Seltzer, W.K. ); DeMarchi, J.; Silva, D.K.; Gozal, D.; Bowman, C.M.; Accurso, F.J.; Jain, K.D. )

    1994-03-01

    The authors have performed molecular genetic analysis of Hispanic individuals with cystic fibrosis (CF) in the southwestern United States. Of 129 CF chromosomes analyzed, oly 46% (59/129) carry [Delta]F508. The G542X mutation was found on 5% (7/129) of CF chromosomes. The 3849+10kbC[yields]T mutation, detected primarily in Ashkenazi Jews, was present on 2% (3/129). R1162X and R334W, mutations identified in Spain and Italy, each occurred on 1.6% (2/129) of CF chromosomes. W1282X and R553X were each detected once. G551D and N1303K were not found. Overall, screening for 22 or more mutations resulted in detection of only 58% of CF transmembrane conductance regulator gene mutations among Hispanic individuals. Analysis of KM19/XV2c haplotypes revealed an unusual distribution. Although the majority of [Delta]508 mutations are on chromosomes of B haplotypes, the other CF mutations are on A and C haplotypes at higher-than-expected frequencies. These genetic analysis demonstrate significant differences between Hispanic individuals with CF and those of the general North American population. Assessment of carrier/affected risk in Hispanic CF individuals cannot, therefore, be based on the mutation frequencies found through studies of the general population but must be adjusted to better reflect the genetic makeup of this ethnic group. Further studies are necessary to identify the causative mutation(s) in this population and to better delineate genotype/phenotype correlations. These will enable counselors to provide more accurate genetic counseling. 22 refs., 2 tabs.

  10. Transdominant genetic analysis of a growth control pathway

    PubMed Central

    Caponigro, Giordano; Abedi, Majid R.; Hurlburt, Anthony P.; Maxfield, Andrew; Judd, Weston; Kamb, Alexander

    1998-01-01

    Genetic selections that use proteinaceous transdominant inhibitors encoded by DNA libraries to cause mutant phenocopies may facilitate genetic analysis in traditionally nongenetic organisms. We performed a selection for random short peptides and larger protein fragments (collectively termed “perturbagens”) that inhibit the yeast pheromone response pathway. Peptide and protein fragment perturbagens that permit cell division in the presence of pheromone were recovered. Two perturbagens were derived from proteins required for pheromone response, and an additional two were derived from proteins that may negatively influence the pheromone response pathway. Furthermore, three known components of the pathway were identified as probable perturbagen targets based on physical interaction assays. Thus, by selection for transdominant inhibitors of pheromone response, multiple pathway components were identified either directly as gene fragments or indirectly as the likely targets of specific perturbagens. These results, combined with the results of previous work [Holzmayer, T. A., Pestov, D. G. & Roninson, I. B. (1992) Nucl. Acids. Res. 20, 711–717; Whiteway, M., Dignard, D. & Thomas, D. Y. (1992) Proc. Natl. Acad. Sci. USA 89, 9410–9414; and Gudkov, A. V., Kazarov, A. R., Thimmapaya, R., Axenovich, S. A., Mazo, I. A. & Roninson, I. B. (1994) Proc. Natl. Acad. Sci. USA 91, 3744–3748], suggest that transdominant genetic analysis of the type described here will be broadly applicable. PMID:9636180

  11. Genetic diversity and recombination analysis of sweepoviruses from Brazil

    PubMed Central

    2012-01-01

    Background Monopartite begomoviruses (genus Begomovirus, family Geminiviridae) that infect sweet potato (Ipomoea batatas) around the world are known as sweepoviruses. Because sweet potato plants are vegetatively propagated, the accumulation of viruses can become a major constraint for root production. Mixed infections of sweepovirus species and strains can lead to recombination, which may contribute to the generation of new recombinant sweepoviruses. Results This study reports the full genome sequence of 34 sweepoviruses sampled from a sweet potato germplasm bank and commercial fields in Brazil. These sequences were compared with others from public nucleotide sequence databases to provide a comprehensive overview of the genetic diversity and patterns of genetic exchange in sweepoviruses isolated from Brazil, as well as to review the classification and nomenclature of sweepoviruses in accordance with the current guidelines proposed by the Geminiviridae Study Group of the International Committee on Taxonomy of Viruses (ICTV). Co-infections and extensive recombination events were identified in Brazilian sweepoviruses. Analysis of the recombination breakpoints detected within the sweepovirus dataset revealed that most recombination events occurred in the intergenic region (IR) and in the middle of the C1 open reading frame (ORF). Conclusions The genetic diversity of sweepoviruses was considerably greater than previously described in Brazil. Moreover, recombination analysis revealed that a genomic exchange is responsible for the emergence of sweepovirus species and strains and provided valuable new information for understanding the diversity and evolution of sweepoviruses. PMID:23082767

  12. Quantitative genetic analysis of the metabolic syndrome in Hispanic children.

    PubMed

    Butte, Nancy F; Comuzzie, Anthony G; Cole, Shelley A; Mehta, Nitesh R; Cai, Guowen; Tejero, Maria; Bastarrachea, Raul; Smith, E O'Brian

    2005-12-01

    Childhood obesity is associated with a constellation of metabolic derangements including glucose intolerance, hypertension, and dyslipidemia, referred to as metabolic syndrome. The purpose of this study was to investigate genetic and environmental factors contributing to the metabolic syndrome in Hispanic children. Metabolic syndrome, defined as having three or more metabolic risk components, was determined in 1030 Hispanic children, ages 4-19 y, from 319 families enrolled in the VIVA LA FAMILIA study. Anthropometry, body composition by dual energy x-ray absorptiometry, clinical signs, and serum biochemistries were measured using standard techniques. Risk factor analysis and quantitative genetic analysis were performed. Of the overweight children, 20%, or 28% if abnormal liver function is included in the definition, presented with the metabolic syndrome. Odds ratios for the metabolic syndrome were significantly increased by body mass index z-score and fasting serum insulin; independent effects of sex, age, puberty, and body composition were not seen. Heritabilities +/- SE for waist circumference, triglycerides (TG), HDL, systolic blood pressure (SBP), glucose, and alanine aminotransferase (ALT) were highly significant. Pleiotropy (a common set of genes affecting two traits) detected between SBP and waist circumference, SBP and glucose, HDL and waist circumference, ALT and waist circumference, and TG and ALT may underlie the clustering of the components of the metabolic syndrome. Significant heritabilities and pleiotropy seen for the components of the metabolic syndrome indicate a strong genetic contribution to the metabolic syndrome in overweight Hispanic children. PMID:16306201

  13. Analysis of genetic traits for drought tolerance in maize.

    PubMed

    Muhammad, R W; Qayyum, A; Hamza, A; Ahmad, M Q; Naseer, N S; Liaqat, S; Ahmad, B; Malik, W; Noor, E

    2015-01-01

    Fifty-four genotypes of maize were crossed and evaluated in the field during the crop season in February 2012 under both normal and water stress conditions. To identify the major parameters responsible for variation among genotypes, single linkage cluster analysis and principle component analysis (PCA) were carried out. Thirteen characters were studied. The PCA showed that the first six components, with eigen values >1, contributed 82.30% of the variability among the genotypes under normal field irrigation conditions while other PCs (7-13) had eigen values less than 1. Under drought conditions, the first four PCs, with eigen values >1, contributed 64.79% of the variability among genotypes while the other PCs (5-13) had eigen values less than 1. In the absence of water stress, heritability ranged from 68% (sucrose content) to 99% (plant height) and genetic advance ranged between 158.43% for stomatal frequency and 0.87 for biological yield. Under drought conditions, the coefficient of variability (CV) was 1.43-7.79, whereas estimates of heritability ranged between 68% and 99% for sucrose content and leaf area, respectively. The values of genetic advance ranged between 153.41 for stomatal frequency and 0.47 for nitrogen content. CV was 1.52-7.38 under drought conditions. The results indicated that the plant characters studied were under the control of additive genetic effects and suggested that selection should lead to fast genetic improvements. Clusters with superior agronomic types were identified and could be exploited for the transfer of desirable genes to improve the yield potential of the maize crop. PMID:26535668

  14. The geography of genetics: an analysis of referral patterns to a cancer genetics service

    PubMed Central

    Iredale, Rachel; Higgs, Gary

    2008-01-01

    This study uses a geographical information system (GIS) and statistical analysis to look for patterns in referrals to a British cancer genetics service. In this case, familial cancers are taken to be those that can develop when an individual inherits DNA mutations that cause an increased risk of cancer. Between 1998 and 2006 the Cancer Genetics Service for Wales received nearly 11,000 referrals for patients resident in Wales and it is the service database recording those referrals which is the subject of this secondary analysis. Using postcodes to match referred patients to areas, deprivation scores were assigned. Referral rates per 10,000 head of population across the 8-year study period by unitary authority are presented, as is information on referrals from primary and secondary care sources by year. Each patient referred has their family history of cancer recorded and is assigned to a risk category; high, medium or average. There are correlations between number of GPs (General Practitioners) in a practice, number of patients referred from a practice, and deprivation as measured by the overall Welsh Index of Multiple Deprivation 2005, such that the two former factors increase as deprivation decreases. Over time there were changes in referral sources, with referrals from primary care overtaking those from secondary care in percentage and absolute terms. There were also changes in the types of cancer referred, risk categories seen and to which centre referrals were made. Referral patterns reveal an inverse relationship between deprivation and health service availability and use. PMID:18923938

  15. Genetic Geostatistical Framework for Spatial Analysis of Fine-Scale Genetic Heterogeneity in Modern Populations: Results from the KORA Study.

    PubMed

    Diaz-Lacava, A N; Walier, M; Holler, D; Steffens, M; Gieger, C; Furlanello, C; Lamina, C; Wichmann, H E; Becker, T

    2015-01-01

    Aiming to investigate fine-scale patterns of genetic heterogeneity in modern humans from a geographic perspective, a genetic geostatistical approach framed within a geographic information system is presented. A sample collected for prospective studies in a small area of southern Germany was analyzed. None indication of genetic heterogeneity was detected in previous analysis. Socio-demographic and genotypic data of German citizens were analyzed (212 SNPs; n = 728). Genetic heterogeneity was evaluated with observed heterozygosity (H O ). Best-fitting spatial autoregressive models were identified, using socio-demographic variables as covariates. Spatial analysis included surface interpolation and geostatistics of observed and predicted patterns. Prediction accuracy was quantified. Spatial autocorrelation was detected for both socio-demographic and genetic variables. Augsburg City and eastern suburban areas showed higher H O values. The selected model gave best predictions in suburban areas. Fine-scale patterns of genetic heterogeneity were observed. In accordance to literature, more urbanized areas showed higher levels of admixture. This approach showed efficacy for detecting and analyzing subtle patterns of genetic heterogeneity within small areas. It is scalable in number of loci, even up to whole-genome analysis. It may be suggested that this approach may be applicable to investigate the underlying genetic history that is, at least partially, embedded in geographic data. PMID:26258132

  16. Genetic Geostatistical Framework for Spatial Analysis of Fine-Scale Genetic Heterogeneity in Modern Populations: Results from the KORA Study

    PubMed Central

    Diaz-Lacava, A. N.; Walier, M.; Holler, D.; Steffens, M.; Gieger, C.; Furlanello, C.; Lamina, C.; Wichmann, H. E.; Becker, T.

    2015-01-01

    Aiming to investigate fine-scale patterns of genetic heterogeneity in modern humans from a geographic perspective, a genetic geostatistical approach framed within a geographic information system is presented. A sample collected for prospective studies in a small area of southern Germany was analyzed. None indication of genetic heterogeneity was detected in previous analysis. Socio-demographic and genotypic data of German citizens were analyzed (212 SNPs; n = 728). Genetic heterogeneity was evaluated with observed heterozygosity (HO). Best-fitting spatial autoregressive models were identified, using socio-demographic variables as covariates. Spatial analysis included surface interpolation and geostatistics of observed and predicted patterns. Prediction accuracy was quantified. Spatial autocorrelation was detected for both socio-demographic and genetic variables. Augsburg City and eastern suburban areas showed higher HO values. The selected model gave best predictions in suburban areas. Fine-scale patterns of genetic heterogeneity were observed. In accordance to literature, more urbanized areas showed higher levels of admixture. This approach showed efficacy for detecting and analyzing subtle patterns of genetic heterogeneity within small areas. It is scalable in number of loci, even up to whole-genome analysis. It may be suggested that this approach may be applicable to investigate the underlying genetic history that is, at least partially, embedded in geographic data. PMID:26258132

  17. Genetic Analysis of Oncorhynchus Nerka : Life History and Genetic Analysis of Redfish Lake Oncorhynchus Nerka, 1993-1994 Completion Report.

    SciTech Connect

    Brannon, E.L.; Thorgaard, G.H.; Cummings, S.A.

    1994-10-01

    The study has shown through life history examination and DNA analysis that three forms of O. nerka are present in Redfish Lake. The three forms are closely related, but may be sufficiently different to be considered three separate stocks. Fishhook Creek kokanee are temporally isolated from the beach spawners, and may represent the gene pool most similar to the historic sockeye population that once spawned there. Fishhook Creek offers the best spawning area available in the lake system, and should be considered for use in reestablishing an anadromous Fishhook Creek sockeye swain. The resident beach spawning strain of O. nerka is likewise the most similar genetic form of the companion anadromous beach spawning O. nerka, and needs to be considered the most appropriate genetic source to help minimize reduced fitness of the sockeye from inbreeding.

  18. Genetic Analysis of Craniofacial Traits in the Medaka

    PubMed Central

    Kimura, Tetsuaki; Shimada, Atsuko; Sakai, Noriyoshi; Mitani, Hiroshi; Naruse, Kiyoshi; Takeda, Hiroyuki; Inoko, Hidetoshi; Tamiya, Gen; Shinya, Minori

    2007-01-01

    Family and twin studies suggest that a substantial genetic component underlies individual differences in craniofacial morphology. In the current study, we quantified 444 craniofacial traits in 100 individuals from two inbred medaka (Oryzias latipes) strains, HNI and Hd-rR. Relative distances between defined landmarks were measured in digital images of the medaka head region. A total of 379 traits differed significantly between the two strains, indicating that many craniofacial traits are controlled by genetic factors. Of these, 89 traits were analyzed via interval mapping of 184 F2 progeny from an intercross between HNI and Hd-rR. We identified quantitative trait loci for 66 craniofacial traits. The highest logarithm of the odds score was 6.2 for linkage group (LG) 9 and 11. Trait L33, which corresponds to the ratio of head length to head height at eye level, mapped to LG9; trait V15, which corresponds to the ratio of snout length to head width measured behind the eyes, mapped to LG11. Our initial results confirm the potential of the medaka as a model system for the genetic analysis of complex traits such as craniofacial morphology. PMID:18073435

  19. A generalized genetic random field method for the genetic association analysis of sequencing data.

    PubMed

    Li, Ming; He, Zihuai; Zhang, Min; Zhan, Xiaowei; Wei, Changshuai; Elston, Robert C; Lu, Qing

    2014-04-01

    With the advance of high-throughput sequencing technologies, it has become feasible to investigate the influence of the entire spectrum of sequencing variations on complex human diseases. Although association studies utilizing the new sequencing technologies hold great promise to unravel novel genetic variants, especially rare genetic variants that contribute to human diseases, the statistical analysis of high-dimensional sequencing data remains a challenge. Advanced analytical methods are in great need to facilitate high-dimensional sequencing data analyses. In this article, we propose a generalized genetic random field (GGRF) method for association analyses of sequencing data. Like other similarity-based methods (e.g., SIMreg and SKAT), the new method has the advantages of avoiding the need to specify thresholds for rare variants and allowing for testing multiple variants acting in different directions and magnitude of effects. The method is built on the generalized estimating equation framework and thus accommodates a variety of disease phenotypes (e.g., quantitative and binary phenotypes). Moreover, it has a nice asymptotic property, and can be applied to small-scale sequencing data without need for small-sample adjustment. Through simulations, we demonstrate that the proposed GGRF attains an improved or comparable power over a commonly used method, SKAT, under various disease scenarios, especially when rare variants play a significant role in disease etiology. We further illustrate GGRF with an application to a real dataset from the Dallas Heart Study. By using GGRF, we were able to detect the association of two candidate genes, ANGPTL3 and ANGPTL4, with serum triglyceride. PMID:24482034

  20. Genetic aspect of Alzheimer disease: Results of complex segregation analysis

    SciTech Connect

    Sadonvick, A.D.; Lee, I.M.L.; Bailey-Wilson, J.E.

    1994-09-01

    The study was designed to evaluate the possibility that a single major locus will explain the segregation of Alzheimer disease (AD). The data were from the population-based AD Genetic Database and consisted of 402 consecutive, unrelated probands, diagnosed to have either `probable` or `autopsy confirmed` AD and their 2,245 first-degree relatives. In this analysis, a relative was considered affected with AD only when there were sufficient medical/autopsy data to support diagnosis of AD being the most likely cause of the dementia. Transmission probability models allowing for a genotype-dependent and logistically distributed age-of-onset were used. The program REGTL in the S.A.G.E. computer program package was used for a complex segregation analysis. The models included correction for single ascertainment. Regressive familial effects were not estimated. The data were analyzed to test for single major locus (SML), random transmission and no transmission (environmental) hypotheses. The results of the complex segregation analysis showed that (1) the SML was the best fit, and (2) the non-genetic models could be rejected.

  1. Population genetic analysis of Enterocytozoon bieneusi in humans.

    PubMed

    Li, Wei; Cama, Vitaliano; Feng, Yaoyu; Gilman, Robert H; Bern, Caryn; Zhang, Xichen; Xiao, Lihua

    2012-01-01

    Genotyping based on sequence analysis of the ribosomal internal transcribed spacer has revealed significant genetic diversity in Enterocytozoonbieneusi. Thus far, the population genetics of E. bieneusi and its significance in the epidemiology of microsporidiosis have not been examined. In this study, a multilocus sequence typing of E. bieneusi in AIDS patients in Lima, Peru was conducted, using 72 specimens previously genotyped as A, D, IV, EbpC, WL11, Peru7, Peru8, Peru10 and Peru11 at the internal transcribed spacer locus. Altogether, 39 multilocus genotypes were identified among the 72 specimens. The observation of strong intragenic linkage disequilibria and limited genetic recombination among markers were indicative of an overall clonal population structure of E. bieneusi. Measures of pair-wise intergenic linkage disequilibria and a standardised index of association (IAS) based on allelic profile data further supported this conclusion. Both sequence-based and allelic profile-based phylogenetic analyses showed the presence of two genetically isolated groups in the study population, one (group 1) containing isolates of the anthroponotic internal transcribed spacer genotype A, and the other (group 2) containing isolates of multiple internal transcribed spacer genotypes (mainly genotypes D and IV) with zoonotic potential. The measurement of linkage disequilibria and recombination indicated group 2 had a clonal population structure, whereas group 1 had an epidemic population structure. The formation of the two sub-populations was confirmed by STRUCTURE and Wright's fixation index (FST) analyses. The data highlight the power of MLST in understanding the epidemiology of E. bieneusi. PMID:22534008

  2. Dielectrophoretic Capture and Genetic Analysis of Single Neuroblastoma Tumor Cells

    PubMed Central

    Carpenter, Erica L.; Rader, JulieAnn; Ruden, Jacob; Rappaport, Eric F.; Hunter, Kristen N.; Hallberg, Paul L.; Krytska, Kate; O’Dwyer, Peter J.; Mosse, Yael P.

    2014-01-01

    Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here, we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells (WBCs). Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control WBCs. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples of patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here, we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients. PMID:25133137

  3. Analysis of genetic diversity in earthworms using DNA markers.

    PubMed

    Sharma, Anshul; Sonah, Humira; Deshmukh, Rupesh K; Gupta, Navneet K; Singh, Nagendra K; Sharma, Tilak R

    2011-01-01

    Earthworms are one of the most important and beneficial macrofauna, and are used extensively in organic farming. Earthworms mediate soil biological regulation systems, and produce biogenic structures. They help to maintain soil structure, water infiltration, and regulate the availability of nutrients assimilated by plants. The objectives of this study were to perform morphological and molecular characterizations of 24 earthworm individuals collected from geographically diverse locations to assess the level of genetic variation. For molecular analysis, the effectiveness of RAPD, ISSR, and Universal rice primers (URPs) markers was investigated to identify polymorphism among 24 isolates of earthworms. A total of 62 molecular markers were used for amplification of genomic DNA of earthworms. Of these, 10 RAPD, 10 ISSR, and 10 URPs markers were used for characterization, which showed 95.7%, 96.7% and 98.3% polymorphism, respectively. The dendrogram, generated from the DNA markers by the unweighted pair group method using arithmetic averages, grouped all the isolates into two main clusters. All Eisenia fetida isolates were clustered in group A, whereas group B included three isolates belonging to Eudrilus eugeniae. Molecular markers allowed a rapid assessment of genetic variation among these closely related isolates of earthworms. These results suggest that molecular markers are a good choice for diversity analysis of earthworm individuals. PMID:21186943

  4. Simultaneous Bayesian analysis of contingency tables in genetic association studies.

    PubMed

    Dickhaus, Thorsten

    2015-08-01

    Genetic association studies lead to simultaneous categorical data analysis. The sample for every genetic locus consists of a contingency table containing the numbers of observed genotype-phenotype combinations. Under case-control design, the row counts of every table are identical and fixed, while column counts are random. The aim of the statistical analysis is to test independence of the phenotype and the genotype at every locus. We present an objective Bayesian methodology for these association tests, which relies on the conjugacy of Dirichlet and multinomial distributions. Being based on the likelihood principle, the Bayesian tests avoid looping over all tables with given marginals. Making use of data generated by The Wellcome Trust Case Control Consortium (WTCCC), we illustrate that the ordering of the Bayes factors shows a good agreement with that of frequentist p-values. Furthermore, we deal with specifying prior probabilities for the validity of the null hypotheses, by taking linkage disequilibrium structure into account and exploiting the concept of effective numbers of tests. Application of a Bayesian decision theoretic multiple test procedure to the WTCCC data illustrates the proposed methodology. Finally, we discuss two methods for reconciling frequentist and Bayesian approaches to the multiple association test problem. PMID:26215535

  5. Genetic analysis and attribution of microbial forensics evidence.

    PubMed

    Budowle, Bruce; Johnson, Martin D; Fraser, Claire M; Leighton, Terrance J; Murch, Randall S; Chakraborty, Ranajit

    2005-01-01

    Because of the availability of pathogenic microorganisms and the relatively low cost of preparing and disseminating bioweapons, there is a continuing threat of biocrime and bioterrorism. Thus, enhanced capabilities are needed that enable the full and robust forensic exploitation and interpretation of microbial evidence from acts of bioterrorism or biocrimes. To respond to the need, greater resources and efforts are being applied to the burgeoning field of microbial forensics. Microbial forensics focuses on the characterization, analysis and interpretation of evidence for attributional purposes from a bioterrorism act, biocrime, hoax or inadvertent agent release. To enhance attribution capabilities, a major component of microbial forensics is the analysis of nucleic acids to associate or eliminate putative samples. The degree that attribution can be addressed depends on the context of the case, the available knowledge of the genetics, phylogeny, and ecology of the target microorganism, and technologies applied. The types of genetic markers and features that can impact statistical inferences of microbial forensic evidence include: single nucleotide polymorphisms, repetitive sequences, insertions and deletions, mobile elements, pathogenicity islands, virulence and resistance genes, house keeping genes, structural genes, whole genome sequences, asexual and sexual reproduction, horizontal gene transfer, conjugation, transduction, lysogeny, gene conversion, recombination, gene duplication, rearrangements, and mutational hotspots. Nucleic acid based typing technologies include: PCR, real-time PCR, MLST, MLVA, whole genome sequencing, and microarrays. PMID:16417203

  6. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.

    PubMed

    Tamura, Koichiro; Stecher, Glen; Peterson, Daniel; Filipski, Alan; Kumar, Sudhir

    2013-12-01

    We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www.megasoftware.net free of charge. PMID:24132122

  7. Genetic analysis of superovulatory response of Holstein cows in Canada.

    PubMed

    Jaton, C; Koeck, A; Sargolzaei, M; Malchiodi, F; Price, C A; Schenkel, F S; Miglior, F

    2016-05-01

    Superovulation of dairy cattle is frequently used in Canada. The cost of this protocol is high, and so is the variability of the outcome. Knowing the superovulatory potential of a donor cow could influence the breeder's decision to superovulate it or not. The main objective of this study was to perform a genetic analysis for superovulatory response of Holstein cows in Canada using data recorded by Holstein Canada, and to investigate if these data could be used for genetic evaluation. Data contained the total number of embryos and the number of viable embryos from every successful flushing performed across Canada. After editing, 137,446 records of superovulation performed between 1992 and 2014 were analyzed. A univariate repeatability animal model analysis was performed for both total number of embryos and number of viable embryos. Because both data and residuals did not follow a normal distribution, records were subject to either logarithmic or Anscombe transformation. Using logarithmic transformation, heritability estimates (SE) of 0.15 (0.01) and 0.14 (0.01) were found for total number of embryos and number of viable embryos, respectively. Using Anscombe transformation, heritability estimates (SE) of 0.17 (0.01) and 0.14 (0.01) were found for total number of embryos and number of viable embryos, respectively. The genetic correlation between the 2 traits was estimated at 0.97 using logarithmic transformation and 0.95 using Anscombe transformation. Breeding values were estimated for 54,463 cows, and 3,513 sires. Only estimated breeding values of sires having a reliability higher than 40% were considered for estimated breeding values correlations with other routinely evaluated traits. The results showed that selection for a higher response to superovulation would lead to a slight decrease in milk production, but an improvement for functional traits, including all reproduction traits. In all cases, the estimated correlations are either low or modest. We conclude that

  8. Genetic analysis of fructan-hyperproducing strains of Streptococcus mutans.

    PubMed Central

    Kiska, D L; Macrina, F L

    1994-01-01

    Fructan polymer, synthesized from sucrose by the extracellular fructosyltransferase of Streptococcus mutans, is thought to contribute to the progression of dental caries. It may serve as an extracellular storage polysaccharide facilitating survival and acid production. It may also have a role in adherence or accumulation of bacterial cells on the tooth surface. A number of clinical isolates of S. mutans which produce large, mucoid colonies on sucrose-containing agar as a result of increased production of fructan have been discovered. By using eight independent isolates, we sought to determine if such fructan-hyperproducing strains represented a genetically homogeneous group of organisms. Restriction fragment patterns of total cellular DNA were examined by using pulsed-field and conventional gel electrophoresis. Four genetic types which appeared to correlate with the serotype of the organism and the geographic site of isolation were evident. Southern blot analysis of several genetic loci for extracellular enzymes revealed some minor differences between the strains, but the basic genomic organizations of these loci were similar. To evaluate whether the excess fructan produced by these strains enhanced the virulence of these organisms in the oral cavity, it was of interest to create mutants deficient in fructosidase (FruA), the extracellular enzyme which degrades this polymer. The fruA gene was inactivated by allelic exchange in two fructan-hyperproducing strains as well as in S. mutans GS5, a strain which does not hyperproduce fructan. All of the fruA mutant strains were devoid of fructan hydrolase activity when levan was used as a substrate. However, the fructan-hyperproducing strains retained the ability to hydrolyze inulin, suggesting the presence of a second fructosidase with specificity for inulin in these strains. Images PMID:7911782

  9. Multivariate analysis of noise in genetic regulatory networks.

    PubMed

    Tomioka, Ryota; Kimura, Hidenori; J Kobayashi, Tetsuya; Aihara, Kazuyuki

    2004-08-21

    Stochasticity is an intrinsic property of genetic regulatory networks due to the low copy numbers of the major molecular species, such as, DNA, mRNA, and regulatory proteins. Therefore, investigation of the mechanisms that reduce the stochastic noise is essential in understanding the reproducible behaviors of real organisms and is also a key to design synthetic genetic regulatory networks that can reliably work. We use an analytical and systematic method, the linear noise approximation of the chemical master equation along with the decoupling of a stoichiometric matrix. In the analysis of fluctuations of multiple molecular species, the covariance is an important measure of noise. However, usually the representation of a covariance matrix in the natural coordinate system, i.e. the copy numbers of the molecular species, is intractably complicated because reactions change copy numbers of more than one molecular species simultaneously. Decoupling of a stoichiometric matrix, which is a transformation of variables, significantly simplifies the representation of a covariance matrix and elucidates the mechanisms behind the observed fluctuations in the copy numbers. We apply our method to three types of fundamental genetic regulatory networks, that is, a single-gene autoregulatory network, a two-gene autoregulatory network, and a mutually repressive network. We have found that there are multiple noise components differently originating. Each noise component produces fluctuation in the characteristic direction. The resulting fluctuations in the copy numbers of the molecular species are the sum of these fluctuations. In the examples, the limitation of the negative feedback in noise reduction and the trade-off of fluctuations in multiple molecular species are clearly explained. The analytical representations show the full parameter dependence. Additionally, the validity of our method is tested by stochastic simulations. PMID:15246787

  10. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Capsicum represents one of several well characterized Solanaceous genera. A wealth of classical and molecular genetics research is available for the genus. Information gleaned from its cultivated relatives, tomato and potato, provide further insight for basic and applied studies. Early ...

  11. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining genetic variation in wild populations of Arctic organisms is fundamental to the long-term persistence of high latitude biodiversity. Variability is important because it provides options for species to respond to changing environmental conditions and novel challenges such as emerging path...

  12. Genetic analysis of arsenic accumulation in maize using QTL mapping

    PubMed Central

    Fu, Zhongjun; Li, Weihua; Xing, Xiaolong; Xu, Mengmeng; Liu, Xiaoyang; Li, Haochuan; Xue, Yadong; Liu, Zonghua; Tang, Jihua

    2016-01-01

    Arsenic (As) is a toxic heavy metal that can accumulate in crops and poses a threat to human health. The genetic mechanism of As accumulation is unclear. Herein, we used quantitative trait locus (QTL) mapping to unravel the genetic basis of As accumulation in a maize recombinant inbred line population derived from the Chinese crossbred variety Yuyu22. The kernels had the lowest As content among the different maize tissues, followed by the axes, stems, bracts and leaves. Fourteen QTLs were identified at each location. Some of these QTLs were identified in different environments and were also detected by joint analysis. Compared with the B73 RefGen v2 reference genome, the distributions and effects of some QTLs were closely linked to those of QTLs detected in a previous study; the QTLs were likely in strong linkage disequilibrium. Our findings could be used to help maintain maize production to satisfy the demand for edible corn and to decrease the As content in As-contaminated soil through the selection and breeding of As pollution-safe cultivars. PMID:26880701

  13. Genetic analysis of biosurfactant production in Ustilago maydis.

    PubMed

    Hewald, Sandra; Josephs, Katharina; Bölker, Michael

    2005-06-01

    The dimorphic basidiomycete Ustilago maydis produces large amounts of surface-active compounds under conditions of nitrogen starvation. These biosurfactants consist of derivatives of two classes of amphipathic glycolipids. Ustilagic acids are cellobiose lipids in which the disaccharide is O-glycosidically linked to 15,16-dihydroxyhexadecanoic acid. Ustilipids are mannosylerythritol lipids derived from acylated beta-d-mannopyranosyl-d-erythritol. Whereas the chemical structure of these biosurfactants has been determined, the genetic basis for their biosynthesis and regulation is largely unknown. Here we report the first identification of two genes, emt1 and cyp1, that are essential for the production of fungal extracellular glycolipids. emt1 is required for mannosylerythritol lipid production and codes for a protein with similarity to prokaryotic glycosyltransferases involved in the biosynthesis of macrolide antibiotics. We suggest that Emt1 catalyzes the synthesis of mannosyl-d-erythritol by transfer of GDP-mannose. Deletion of the gene cyp1 resulted in complete loss of ustilagic acid production. Cyp1 encodes a cytochrome P450 monooxygenase which is highly related to a family of plant fatty acid hydroxylases. Therefore we assume that Cyp1 is directly involved in the biosynthesis of the unusual 15,16-dihydroxyhexadecanoic acid. We could show that mannosylerythritol lipid production is responsible for hemolytic activity on blood agar, whereas ustilagic acid secretion is required for long-range pheromone recognition. The mutants described here allow for the first time a genetic analysis of glycolipid production in fungi. PMID:15932999

  14. Genetic Analysis of Biosurfactant Production in Ustilago maydis

    PubMed Central

    Hewald, Sandra; Josephs, Katharina; Bölker, Michael

    2005-01-01

    The dimorphic basidiomycete Ustilago maydis produces large amounts of surface-active compounds under conditions of nitrogen starvation. These biosurfactants consist of derivatives of two classes of amphipathic glycolipids. Ustilagic acids are cellobiose lipids in which the disaccharide is O-glycosidically linked to 15,16-dihydroxyhexadecanoic acid. Ustilipids are mannosylerythritol lipids derived from acylated β-d-mannopyranosyl-d-erythritol. Whereas the chemical structure of these biosurfactants has been determined, the genetic basis for their biosynthesis and regulation is largely unknown. Here we report the first identification of two genes, emt1 and cyp1, that are essential for the production of fungal extracellular glycolipids. emt1 is required for mannosylerythritol lipid production and codes for a protein with similarity to prokaryotic glycosyltransferases involved in the biosynthesis of macrolide antibiotics. We suggest that Emt1 catalyzes the synthesis of mannosyl-d-erythritol by transfer of GDP-mannose. Deletion of the gene cyp1 resulted in complete loss of ustilagic acid production. Cyp1 encodes a cytochrome P450 monooxygenase which is highly related to a family of plant fatty acid hydroxylases. Therefore we assume that Cyp1 is directly involved in the biosynthesis of the unusual 15,16-dihydroxyhexadecanoic acid. We could show that mannosylerythritol lipid production is responsible for hemolytic activity on blood agar, whereas ustilagic acid secretion is required for long-range pheromone recognition. The mutants described here allow for the first time a genetic analysis of glycolipid production in fungi. PMID:15932999

  15. Genetic analysis by DNA fingerprinting in tsetse fly genomes.

    PubMed

    Blanchetot, A; Gooding, R H

    1993-12-01

    Genomic DNA from tsetse flies (Diptera: Glossinidae: Glossina Wiedemann) was analyzed by hybridization using the whole M13 phage as a probe to reveal DNA fingerprinting (DNAfp) profiles. Intrapopulation variability, measured by comparison of DNAfp profiles of tsetse flies from a large colony of G. brevipalpis, showed a high degree of polymorphism similar to that found in other animal species. Different lines of G. m. morsitans, G. m. centralis, G. m. submorsitans, G. p. palpalis and G. p. gambiensis established from small colonies displayed less genetic variability than the G. brevipalpis population. The analysis of pedigree relationships within an inbred line of G. m. centralis conformed to a Mendelian inheritance pattern. In the pedigree presented no mutations were observed, one fragment was linked to the X chromosome, and three fragment sets were linked, but most fragments showed independent segregation. M13 revealed no characteristic DNAfp profile differences between the subgenus Glossina and the subgenus Nemorhina, but a conserved distribution pattern was found in the laboratory colonies within each subspecies. M13 also revealed line specific DNA fragments that may be useful as genetic markers to expand the present linkage map of G. m. morsitans. PMID:8220390

  16. Genetic analysis of arsenic accumulation in maize using QTL mapping.

    PubMed

    Fu, Zhongjun; Li, Weihua; Xing, Xiaolong; Xu, Mengmeng; Liu, Xiaoyang; Li, Haochuan; Xue, Yadong; Liu, Zonghua; Tang, Jihua

    2016-01-01

    Arsenic (As) is a toxic heavy metal that can accumulate in crops and poses a threat to human health. The genetic mechanism of As accumulation is unclear. Herein, we used quantitative trait locus (QTL) mapping to unravel the genetic basis of As accumulation in a maize recombinant inbred line population derived from the Chinese crossbred variety Yuyu22. The kernels had the lowest As content among the different maize tissues, followed by the axes, stems, bracts and leaves. Fourteen QTLs were identified at each location. Some of these QTLs were identified in different environments and were also detected by joint analysis. Compared with the B73 RefGen v2 reference genome, the distributions and effects of some QTLs were closely linked to those of QTLs detected in a previous study; the QTLs were likely in strong linkage disequilibrium. Our findings could be used to help maintain maize production to satisfy the demand for edible corn and to decrease the As content in As-contaminated soil through the selection and breeding of As pollution-safe cultivars. PMID:26880701

  17. Genetic analysis of interspecific incompatibility in Brassica rapa.

    PubMed

    Udagawa, H; Ishimaru, Y; Li, F; Sato, Y; Kitashiba, H; Nishio, T

    2010-08-01

    In interspecific pollination of Brassica rapa stigmas with Brassica oleracea pollen grains, pollen tubes cannot penetrate stigma tissues. This trait, called interspecific incompatibility, is similar to self-incompatibility in pollen tube behaviors of rejected pollen grains. Since some B. rapa lines have no interspecific incompatibility, genetic analysis of interspecific incompatibility was performed using two F(2) populations. Analysis with an F(2) population between an interspecific-incompatible line and a self-compatible cultivar 'Yellow sarson' having non-functional alleles of S-locus genes and MLPK, the stigmas of which are compatible with B. oleracea pollen grains, revealed no involvement of the S locus and MLPK in the difference of their interspecific incompatibility phenotypes. In QTL analysis of the strength of interspecific incompatibility, three peaks of LOD scores were found, but their LOD scores were as high as the threshold value, and the variance explained by each QTL was small. QTL analysis using another F(2) population derived from selected parents having the highest and lowest levels of interspecific incompatibility revealed five QTLs with high LOD scores, which did not correspond to those found in the former population. The QTL having the highest LOD score was found in linkage group A02. The effect of this QTL on interspecific incompatibility was confirmed by analyzing backcrossed progeny. Based on synteny of this QTL region with Arabidopsis thaliana chromosome 5, a possible candidate gene, which might be involved in interspecific incompatibility, is discussed. PMID:20414635

  18. Genetic analysis of biological pathway data through genomic randomization

    PubMed Central

    Yaspan, Brian L.; Bush, William S.; Torstenson, Eric S.; Ma, Deqiong; Pericak-Vance, Margaret A.; Ritchie, Marylyn D.; Sutcliffe, James S.; Haines, Jonathan L.

    2011-01-01

    Genome Wide Association Studies (GWAS) are a standard approach for large-scale common variation characterization and for identification of single loci predisposing to disease. However, due to issues of moderate sample sizes and particularly multiple testing correction, many variants of smaller effect size are not detected within a single allele analysis framework. Thus, small main effects and potential epistatic effects are not consistently observed in GWAS using standard analytical approaches that consider only single SNP alleles. Here we propose unique methodology that aggregates variants of interest (for example, genes in a biological pathway) using GWAS results. Multiple testing and type I error concerns are minimized using empirical genomic randomization to estimate significance. Randomization corrects for common pathway-based analysis biases such as SNP coverage and density, linkage disequilibrium, gene size and pathway size. PARIS (Pathway Analysis by Randomization Incorporating Structure) applies this randomization and in doing so directly accounts for linkage disequilibrium effects. PARIS is independent of association analysis method and is thus applicable to GWAS datasets of all study designs. Using the KEGG database as an example, we apply PARIS to the publicly available Autism Genetic Resource Exchange (AGRE) GWA dataset, revealing pathways with a significant enrichment of positive association results. PMID:21279722

  19. Genetic analysis of genome-wide transcriptional regulation through eQTL mapping in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression Quantitative Trait Loci (eQTL) mapping is a powerful tool for identifying the genetic basis of gene expression variation. Coincident genetic locations of eQTL and phenotypic QTL provide the basis for further investigation of the molecular mechanisms involved. Genetic analysis of expr...

  20. A Comprehensive Analysis of High School Genetics Standards: Are States Keeping Pace with Modern Genetics?

    PubMed Central

    Dougherty, M.J.; Pleasants, C.; Solow, L.; Wong, A.; Zhang, H.

    2011-01-01

    Science education in the United States will increasingly be driven by testing and accountability requirements, such as those mandated by the No Child Left Behind Act, which rely heavily on learning outcomes, or “standards,” that are currently developed on a state-by-state basis. Those standards, in turn, drive curriculum and instruction. Given the importance of standards to teaching and learning, we investigated the quality of life sciences/biology standards with respect to genetics for all 50 states and the District of Columbia, using core concepts developed by the American Society of Human Genetics as normative benchmarks. Our results indicate that the states’ genetics standards, in general, are poor, with more than 85% of the states receiving overall scores of Inadequate. In particular, the standards in virtually every state have failed to keep pace with changes in the discipline as it has become genomic in scope, omitting concepts related to genetic complexity, the importance of environment to phenotypic variation, differential gene expression, and the differences between inherited and somatic genetic disease. Clearer, more comprehensive genetics standards are likely to benefit genetics instruction and learning, help prepare future genetics researchers, and contribute to the genetic literacy of the U.S. citizenry. PMID:21885828

  1. Genetic Analysis of Mice Skin Exposed by Hyper-Gravity

    NASA Astrophysics Data System (ADS)

    Takahashi, Rika; Terada, Masahiro; Seki, Masaya; Higashibata, Akira; Majima, Hideyuki J.; Ohira, Yoshinobu; Mukai, Chiaki; Ishioka, Noriaki

    2013-02-01

    In the space environment, physiological alterations, such as low bone density, muscle weakness and decreased immunity, are caused by microgravity and cosmic radiation. On the other hand, it is known that the leg muscles are hypertrophy by 2G-gravity. An understanding of the effects on human body from microgravity to hyper-gravity is very important. Recently, the Japan Aerospace Exploration Agency (JAXA) has started a project to detect the changes on gene expression and mineral metabolism caused by microgravity by analyzing the hair of astronauts who stay in the international Space Station (ISS) for a long time. From these results of human hair’s research, the genetic effects of human hair roots by microgravity will become clear. However, it is unclear how the gene expression of hair roots was effected by hypergravity. Therefore, in this experiment, we analyzed the effect on mice skin contained hair roots by comparing microgravity or hypergravity exposed mice. The purpose of this experiment is to evaluate the genetic effects on mice skin by microgravity or 2G-gravity. The samples were taken from mice exposed to space flight (FL) or hypergravity environment (2G) for 3-months, respectively. The extracted and amplified RNA from these mice skin was used to DNA microarray analysis. in this experiment, we analyzed the effect of gravity by using mice skin contained hair roots, which exposed space (FL) and hyper-gravity (2G) for 3 months and each control. By DNA microarray analysis, we found the common 98 genes changed in both FL and 2G. Among these 98 genes, the functions and pathways were identified by Gene Ontology (GO) analysis and Ingenuity Pathways Analysis (IPA) software. Next, we focused the one of the identified pathways and compared the effects on each molecules in this pathways by the different environments, such as FL and 2G. As the results, we could detect some interesting molecules, which might be depended on the gravity levels. In addition, to investigate

  2. Traffic Lines: New Tools for Genetic Analysis in Arabidopsis thaliana

    PubMed Central

    Wu, Gang; Rossidivito, Gabrielle; Hu, Tieqiang; Berlyand, Yosef; Poethig, R. Scott

    2015-01-01

    Genetic analysis requires the ability to identify the genotypes of individuals in a segregating population. This task is straightforward if each genotype has a distinctive phenotype, but is difficult if these genotypes are phenotypically similar or identical. We show that Arabidopsis seeds homozygous or heterozygous for a mutation of interest can be identified in a segregating family by placing the mutation in trans to a chromosome carrying a pair of seed-expressed green and red fluorescent transgenes (a “traffic line”) that flank the mutation. Nonfluorescent seeds in the self-pollinated progeny of such a heterozygous plant are usually homozygous for the mutation, whereas seeds with intermediate green and red fluorescence are typically heterozygous for the mutation. This makes it possible to identify seedlings homozygous for mutations that lack an obvious seedling phenotype, and also facilitates the analysis of lethal or sterile mutations, which must be propagated in heterozygous condition. Traffic lines can also be used to identify progeny that have undergone recombination within a defined region of the genome, facilitating genetic mapping and the production of near-isogenic lines. We produced 488 transgenic lines containing single genome-mapped insertions of NAP:dsRED and NAP:eGFP in Columbia (330 lines) and Landsberg erecta (158 lines) and generated sets of traffic lines that span most regions of the Arabidopsis genome. We demonstrated the utility of these lines for identifying seeds of a specific genotype and for generating near-isogenic lines using mutations of WUSCHEL and SHOOTMERISTEMLESS. This new resource significantly decreases the effort and cost of genotyping segregating families and increases the efficiency of experiments that rely on the ability to detect recombination in a defined chromosomal segment. PMID:25711279

  3. The Genetic Analysis of an Acinetobacter johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer

    PubMed Central

    Montaña, Sabrina; Schramm, Sareda T. J.; Traglia, German Matías; Chiem, Kevin; Parmeciano Di Noto, Gisela; Almuzara, Marisa; Barberis, Claudia; Vay, Carlos; Quiroga, Cecilia; Tolmasky, Marcelo E.; Iriarte, Andrés; Ramírez, María Soledad

    2016-01-01

    Acinetobacter johnsonii rarely causes human infections. While most A. johnsonii isolates are susceptible to virtually all antibiotics, strains harboring a variety of β-lactamases have recently been described. An A. johnsonii Aj2199 clinical strain recovered from a hospital in Buenos Aires produces PER-2 and OXA-58. We decided to delve into its genome by obtaining the whole genome sequence of the Aj2199 strain. Genome comparison studies on Aj2199 revealed 240 unique genes and a close relation to strain WJ10621, isolated from the urine of a patient in China. Genomic analysis showed evidence of horizontal genetic transfer (HGT) events. Forty-five insertion sequences and two intact prophages were found in addition to several resistance determinants such as blaPER-2, blaOXA-58, blaTEM-1, strA, strB, ereA, sul1, aacC2 and a new variant of blaOXA-211, called blaOXA-498. In particular, blaPER-2 and blaTEM-1 are present within the typical contexts previously described in the Enterobacteriaceae family. These results suggest that A. johnsonii actively acquires exogenous DNA from other bacterial species and concomitantly becomes a reservoir of resistance genes. PMID:27548264

  4. The Genetic Analysis of an Acinetobacter johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer.

    PubMed

    Montaña, Sabrina; Schramm, Sareda T J; Traglia, German Matías; Chiem, Kevin; Parmeciano Di Noto, Gisela; Almuzara, Marisa; Barberis, Claudia; Vay, Carlos; Quiroga, Cecilia; Tolmasky, Marcelo E; Iriarte, Andrés; Ramírez, María Soledad

    2016-01-01

    Acinetobacter johnsonii rarely causes human infections. While most A. johnsonii isolates are susceptible to virtually all antibiotics, strains harboring a variety of β-lactamases have recently been described. An A. johnsonii Aj2199 clinical strain recovered from a hospital in Buenos Aires produces PER-2 and OXA-58. We decided to delve into its genome by obtaining the whole genome sequence of the Aj2199 strain. Genome comparison studies on Aj2199 revealed 240 unique genes and a close relation to strain WJ10621, isolated from the urine of a patient in China. Genomic analysis showed evidence of horizontal genetic transfer (HGT) events. Forty-five insertion sequences and two intact prophages were found in addition to several resistance determinants such as blaPER-2, blaOXA-58, blaTEM-1, strA, strB, ereA, sul1, aacC2 and a new variant of blaOXA-211, called blaOXA-498. In particular, blaPER-2 and blaTEM-1 are present within the typical contexts previously described in the Enterobacteriaceae family. These results suggest that A. johnsonii actively acquires exogenous DNA from other bacterial species and concomitantly becomes a reservoir of resistance genes. PMID:27548264

  5. Genetic analysis of Indian tasar silkmoth (Antheraea mylitta) populations.

    PubMed

    Chakraborty, Saikat; Muthulakshmi, M; Vardhini, Deena; Jayaprakash, P; Nagaraju, J; Arunkumar, K P

    2015-01-01

    Indian tasar silkmoth, Antheraea mylitta is an economically important wild silkmoth species distributed across India. A number of morphologically and ethologically well-defined ecotypes are known for this species that differ in their primary food plant specificity. Most of these ecotypes do not interbreed in nature, but are able to produce offspring under captive conditions. Microsatellite markers were developed for A. mylitta, and out of these, ten well-behaved microsatellite loci were used to analyze the population structure of different ecoraces. A total of 154 individual moths belonging to eight different ecoraces, were screened at each locus. Hierarchical analysis of population structure using Analysis of MOlecular VAriance (AMOVA) revealed significant structuring (FST = 0.154) and considerable inbreeding (FIS = 0.505). A significant isolation by distance was also observed. The number of possible population clusters was investigated using distance method, Bayesian algorithm and self organization maps (SOM). The first two methods revealed two distinct clusters, whereas the SOM showed the different ecoraces not to be clearly differentiated. These results suggest that although there is a large degree of phenotypic variation among the different ecoraces of A. mylitta, genetically they are not very different, and the phenotypic differences may largely be a result of their respective ecology. PMID:26510465

  6. Genetic analysis of Indian tasar silkmoth (Antheraea mylitta) populations

    PubMed Central

    Chakraborty, Saikat; Muthulakshmi, M; Vardhini, Deena; Jayaprakash, P; Nagaraju, J; Arunkumar, K. P.

    2015-01-01

    Indian tasar silkmoth, Antheraea mylitta is an economically important wild silkmoth species distributed across India. A number of morphologically and ethologically well-defined ecotypes are known for this species that differ in their primary food plant specificity. Most of these ecotypes do not interbreed in nature, but are able to produce offspring under captive conditions. Microsatellite markers were developed for A. mylitta, and out of these, ten well-behaved microsatellite loci were used to analyze the population structure of different ecoraces. A total of 154 individual moths belonging to eight different ecoraces, were screened at each locus. Hierarchical analysis of population structure using Analysis of MOlecular VAriance (AMOVA) revealed significant structuring (FST = 0.154) and considerable inbreeding (FIS = 0.505). A significant isolation by distance was also observed. The number of possible population clusters was investigated using distance method, Bayesian algorithm and self organization maps (SOM). The first two methods revealed two distinct clusters, whereas the SOM showed the different ecoraces not to be clearly differentiated. These results suggest that although there is a large degree of phenotypic variation among the different ecoraces of A. mylitta, genetically they are not very different, and the phenotypic differences may largely be a result of their respective ecology. PMID:26510465

  7. Analysis of the Genetic Basis of Disease in the Context of Worldwide Human Relationships and Migration

    PubMed Central

    Corona, Erik; Chen, Rong; Sikora, Martin; Morgan, Alexander A.; Patel, Chirag J.; Ramesh, Aditya; Bustamante, Carlos D.; Butte, Atul J.

    2013-01-01

    Genetic diversity across different human populations can enhance understanding of the genetic basis of disease. We calculated the genetic risk of 102 diseases in 1,043 unrelated individuals across 51 populations of the Human Genome Diversity Panel. We found that genetic risk for type 2 diabetes and pancreatic cancer decreased as humans migrated toward East Asia. In addition, biliary liver cirrhosis, alopecia areata, bladder cancer, inflammatory bowel disease, membranous nephropathy, systemic lupus erythematosus, systemic sclerosis, ulcerative colitis, and vitiligo have undergone genetic risk differentiation. This analysis represents a large-scale attempt to characterize genetic risk differentiation in the context of migration. We anticipate that our findings will enable detailed analysis pertaining to the driving forces behind genetic risk differentiation. PMID:23717210

  8. Multivariate genetic analysis of academic skills of the Queensland core skills test and IQ highlight the importance of genetic g.

    PubMed

    Wainwright, Mark A; Wright, Margaret J; Luciano, Michelle; Geffen, Gina M; Martin, Nicholas G

    2005-12-01

    This study examined the genetic and environmental relationships among 5 academic achievement skills of a standardized test of academic achievement, the Queensland Core Skills Test (QCST; Queensland Studies Authority, 2003a). QCST participants included 182 monozygotic pairs and 208 dizygotic pairs (mean 17 years +/- 0.4 standard deviation). IQ data were included in the analysis to correct for ascertainment bias. A genetic general factor explained virtually all genetic variance in the component academic skills scores, and accounted for 32% to 73% of their phenotypic variances. It also explained 56% and 42% of variation in Verbal IQ and Performance IQ respectively, suggesting that this factor is genetic g. Modest specific genetic effects were evident for achievement in mathematical problem solving and written expression. A single common factor adequately explained common environmental effects, which were also modest, and possibly due to assortative mating. The results suggest that general academic ability, derived from genetic influences and to a lesser extent common environmental influences, is the primary source of variation in component skills of the QCST. PMID:16354502

  9. Stability analysis of genetic regulatory networks with multiple time delays.

    PubMed

    Wu, Fang-Xiang

    2007-01-01

    A genetic regulatory network is a dynamic system to describe interactions among genes (mRNA) and its products (proteins). From the statistic thermodynamics and biochemical reaction principle, a genetic regulatory network can be described by a group of nonlinear differential equations with time delays. Stability is one of interesting properties for genetic regulatory network. Previous studies have investigated stability of genetic regulatory networks with a single time delay. In this paper, we investigate properties of genetic regulatory networks with multiple time delays in the notion of delay-independent stability. We present necessary and sufficient condition for the local delay-independent stability of genetic regulatory network with multiple time delays which are independent or commensurate. PMID:18002223

  10. Analysis of the optimality of the standard genetic code.

    PubMed

    Kumar, Balaji; Saini, Supreet

    2016-07-19

    Many theories have been proposed attempting to explain the origin of the genetic code. While strong reasons remain to believe that the genetic code evolved as a frozen accident, at least for the first few amino acids, other theories remain viable. In this work, we test the optimality of the standard genetic code against approximately 17 million genetic codes, and locate 29 which outperform the standard genetic code at the following three criteria: (a) robustness to point mutation; (b) robustness to frameshift mutation; and (c) ability to encode additional information in the coding region. We use a genetic algorithm to generate and score codes from different parts of the associated landscape, which are, as a result, presumably more representative of the entire landscape. Our results show that while the genetic code is sub-optimal for robustness to frameshift mutation and the ability to encode additional information in the coding region, it is very strongly selected for robustness to point mutation. This coupled with the observation that the different performance indicator scores for a particular genetic code are negatively correlated makes the standard genetic code nearly optimal for the three criteria tested in this work. PMID:27327359

  11. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains.

    PubMed

    Bennett, Brian J; Davis, Richard C; Civelek, Mete; Orozco, Luz; Wu, Judy; Qi, Hannah; Pan, Calvin; Packard, René R Sevag; Eskin, Eleazar; Yan, Mujing; Kirchgessner, Todd; Wang, Zeneng; Li, Xinmin; Gregory, Jill C; Hazen, Stanley L; Gargalovic, Peter S; Lusis, Aldons J

    2015-12-01

    Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression

  12. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains

    PubMed Central

    Bennett, Brian J.; Davis, Richard C.; Civelek, Mete; Orozco, Luz; Wu, Judy; Qi, Hannah; Pan, Calvin; Packard, René R. Sevag; Eskin, Eleazar; Yan, Mujing; Kirchgessner, Todd; Wang, Zeneng; Li, Xinmin; Gregory, Jill C.; Hazen, Stanley L.; Gargalovic, Peter S.; Lusis, Aldons J.

    2015-01-01

    Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression

  13. Joint analysis of multiple phenotypes: summary of results and discussions from the Genetic Analysis Workshop 19.

    PubMed

    Schillert, Arne; Konigorski, Stefan

    2016-01-01

    For Genetic Analysis Workshop 19, 2 extensive data sets were provided, including whole genome and whole exome sequence data, gene expression data, and longitudinal blood pressure outcomes, together with nongenetic covariates. These data sets gave researchers the chance to investigate different aspects of more complex relationships within the data, and the contributions in our working group focused on statistical methods for the joint analysis of multiple phenotypes, which is part of the research field of data integration. The analysis of data from different sources poses challenges to researchers but provides the opportunity to model the real-life situation more realistically.Our 4 contributions all used the provided real data to identify genetic predictors for blood pressure. In the contributions, novel multivariate rare variant tests, copula models, structural equation models and a sparse matrix representation variable selection approach were applied. Each of these statistical models can be used to investigate specific hypothesized relationships, which are described together with their biological assumptions.The results showed that all methods are ready for application on a genome-wide scale and can be used or extended to include multiple omics data sets. The results provide potentially interesting genetic targets for future investigation and replication. Furthermore, all contributions demonstrated that the analysis of complex data sets could benefit from modeling correlated phenotypes jointly as well as by adding further bioinformatics information. PMID:26866608

  14. Integrative genetic analysis of transcription modules: towards filling the gap between genetic lociand inherited traits

    SciTech Connect

    Li, Hongqiang; Chen, Hao; Bao, Lei; Manly, Kenneth; Chesler, Elissa J; Lu, Lu; Wang, Jintao; Zhou, Mi; Williams, Robert; Cui, Yan

    2005-01-01

    Genetic loci that regulate inherited traits are routinely identified using quantitative trait locus (QTL) mapping methods. However, the genotype-phenotype associations do not provide information on the gene expression program through which the genetic loci regulate the traits. Transcription modules are 'selfconsistent regulatory units' and are closely related to the modular components of gene regulatory network [Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y. and Barkai, N. (2002) Revealing modular organization in the yeast transcriptional network. Nat. Genet., 31, 370-377; Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D. and Friedman, N. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet., 34, 166-176]. We used genome-wide genotype and gene expression data of a genetic reference population that consists of mice of 32 recombinant inbred strains to identify the transcription modules and the genetic loci regulating them. Twenty-nine transcription modules defined by genetic variations were identified. Statistically significant associations between the transcription modules and 18 classical physiological and behavioral traits were found. Genome-wide interval mapping showed that major QTLs regulating the transcription modules are often co-localized with the QTLs regulating the associated classical traits. The association and the possible co-regulation of the classical trait and transcription module indicate that the transcription module may be involved in the gene pathways connecting the QTL and the classical trait. Our results show that a transcription module may associate with multiple seemingly unrelated classical traits and a classical trait may associate with different modules. Literature mining results provided strong independent evidences for the relations among genes of the transcription modules, genes in the regions of the QTLs regulating the

  15. Analysis of Molecular Genetics Content in Spanish Secondary School Textbooks

    ERIC Educational Resources Information Center

    Martinez-Gracia, M. V.; Gil-Quilez, M. J.; Osada, J.

    2006-01-01

    The treatment of molecular biology in thirty-four Spanish high school biology textbooks has been analysed using a check-list made up of twenty-three items. The study showed a tendency to confuse the genetic code with genetic information. The treatment of DNA transcription, regulation of gene expression and translation were presented as masses of…

  16. Analysis of Errors Made by Students Solving Genetics Problems.

    ERIC Educational Resources Information Center

    Costello, Sandra Judith

    The purpose of this study was to analyze the errors made by students solving genetics problems. A sample of 10 non-science undergraduate students was obtained from a private college in Northern New Jersey. The results support prior research in the area of genetics education and show that a weak understanding of the relationship of meiosis to…

  17. Bayesian robust analysis for genetic architecture of quantitative traits

    PubMed Central

    Yang, Runqing; Wang, Xin; Li, Jian; Deng, Hongwen

    2009-01-01

    Motivation: In most quantitative trait locus (QTL) mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may affect the accuracy of QTL detection and lead to detection of spurious QTLs. To improve the robustness of QTL mapping methods, we replaced the normal distribution for residuals in multiple interacting QTL models with the normal/independent distributions that are a class of symmetric and long-tailed distributions and are able to accommodate residual outliers. Subsequently, we developed a Bayesian robust analysis strategy for dissecting genetic architecture of quantitative traits and for mapping genome-wide interacting QTLs in line crosses. Results: Through computer simulations, we showed that our strategy had a similar power for QTL detection compared with traditional methods assuming normal-distributed traits, but had a substantially increased power for non-normal phenotypes. When this strategy was applied to a group of traits associated with physical/chemical characteristics and quality in rice, more main and epistatic QTLs were detected than traditional Bayesian model analyses under the normal assumption. Contact: runqingyang@sjtu.edu.cn; dengh@umkc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18974168

  18. Genetic analysis of evolutionary relationships among deer (subfamily Cervinae).

    PubMed

    Emerson, B C; Tate, M L

    1993-01-01

    The evolutionary relationships among 10 taxa of deer from the four genera of the subfamily Cervinae (Cervus, Elaphurus, Axis, and Dama) were examined by a comparison of their electrophoretic types for 22 proteins. We analyzed the data using both phenetic and cladistic methods and found that the genera of the Cervinae were not monophyletic. The genus Cervus was split into two distinct groups with red deer, wapiti (C. elaphus ssp.), and sika (C. nippon) in one clade and sambar (C. unicolor) and rusa (C. timorensis) in another. There was a close genetic relationship between the genus Elaphurus and the red deer, wapiti, sika group, whereas sambar and rusa were more similar to members of the genera Dama and Axis than to the other members of their own genus. These findings contrast with the taxonomy of the species that is based largely on studies of comparative morphology. Our samples (n = 5) showed fixed allelic differences between wapiti and red, wapiti and sika, and red and sika samples at 3, 6, and 7 loci, respectively. Analysis of these protein loci in a wider range of C. elaphus and C. nippon subspecies could resolve debate over the evolutionary relationships of these taxa. PMID:8340615

  19. Genetic analysis of tolerance to infections using random regressions: a simulation study.

    PubMed

    Kause, Antti

    2011-08-01

    Tolerance to infections is the ability of a host to limit the impact of a given pathogen burden on host performance. This simulation study demonstrated the merit of using random regressions to estimate unbiased genetic variances for tolerance slope and its genetic correlations with other traits, which could not be obtained using the previously implemented statistical methods. Genetic variance in tolerance was estimated as genetic variance in regression slopes of host performance along an increasing pathogen burden level. Random regressions combined with covariance functions allowed genetic variance for host performance to be estimated at any point along the pathogen burden trajectory, providing a novel means to analyse infection-induced changes in genetic variation of host performance. Yet, the results implied that decreasing family size as well as a non-zero environmental or genetic correlation between initial host performance before infection and pathogen burden led to biased estimates for tolerance genetic variance. In both cases, genetic correlation between tolerance slope and host performance in a pathogen-free environment became artificially negative, implying a genetic trade-off when it did not exist. Moreover, recording a normally distributed pathogen burden as a threshold trait is not a realistic way of obtaining unbiased estimates for tolerance genetic variance. The results show that random regressions are suitable for the genetic analysis of tolerance, given suitable data structure collected either under field or experimental conditions. PMID:21767462

  20. Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients.

    PubMed

    Sadovnick, A Dessa; Traboulsee, Anthony L; Bernales, Cecily Q; Ross, Jay P; Forwell, Amanda L; Yee, Irene M; Guillot-Noel, Lena; Fontaine, Bertrand; Cournu-Rebeix, Isabelle; Alcina, Antonio; Fedetz, Maria; Izquierdo, Guillermo; Matesanz, Fuencisla; Hilven, Kelly; Dubois, Bénédicte; Goris, An; Astobiza, Ianire; Alloza, Iraide; Antigüedad, Alfredo; Vandenbroeck, Koen; Akkad, Denis A; Aktas, Orhan; Blaschke, Paul; Buttmann, Mathias; Chan, Andrew; Epplen, Joerg T; Gerdes, Lisa-Ann; Kroner, Antje; Kubisch, Christian; Kümpfel, Tania; Lohse, Peter; Rieckmann, Peter; Zettl, Uwe K; Zipp, Frauke; Bertram, Lars; Lill, Christina M; Fernandez, Oscar; Urbaneja, Patricia; Leyva, Laura; Alvarez-Cermeño, Jose Carlos; Arroyo, Rafael; Garagorri, Aroa M; García-Martínez, Angel; Villar, Luisa M; Urcelay, Elena; Malhotra, Sunny; Montalban, Xavier; Comabella, Manuel; Berger, Thomas; Fazekas, Franz; Reindl, Markus; Schmied, Mascha C; Zimprich, Alexander; Vilariño-Güell, Carles

    2016-01-01

    Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here, we describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D) in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in 2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 controls from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association with disease (P = 0.117), despite an overall higher prevalence in patients (OR = 1.32; 95% CI = 0.93-1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients, segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility. PMID:27194806

  1. Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients

    PubMed Central

    Sadovnick, A. Dessa; Traboulsee, Anthony L.; Bernales, Cecily Q.; Ross, Jay P.; Forwell, Amanda L.; Yee, Irene M.; Guillot-Noel, Lena; Fontaine, Bertrand; Cournu-Rebeix, Isabelle; Alcina, Antonio; Fedetz, Maria; Izquierdo, Guillermo; Matesanz, Fuencisla; Hilven, Kelly; Dubois, Bénédicte; Goris, An; Astobiza, Ianire; Alloza, Iraide; Antigüedad, Alfredo; Vandenbroeck, Koen; Akkad, Denis A.; Aktas, Orhan; Blaschke, Paul; Buttmann, Mathias; Chan, Andrew; Epplen, Joerg T.; Gerdes, Lisa-Ann; Kroner, Antje; Kubisch, Christian; Kümpfel, Tania; Lohse, Peter; Rieckmann, Peter; Zettl, Uwe K.; Zipp, Frauke; Bertram, Lars; Lill, Christina M; Fernandez, Oscar; Urbaneja, Patricia; Leyva, Laura; Alvarez-Cermeño, Jose Carlos; Arroyo, Rafael; Garagorri, Aroa M.; García-Martínez, Angel; Villar, Luisa M.; Urcelay, Elena; Malhotra, Sunny; Montalban, Xavier; Comabella, Manuel; Berger, Thomas; Fazekas, Franz; Reindl, Markus; Schmied, Mascha C.; Zimprich, Alexander; Vilariño-Güell, Carles

    2016-01-01

    Multiple sclerosis (MS) is a prevalent neurological disease of complex etiology. Here, we describe the characterization of a multi-incident MS family that nominated a rare missense variant (p.G420D) in plasminogen (PLG) as a putative genetic risk factor for MS. Genotyping of PLG p.G420D (rs139071351) in 2160 MS patients, and 886 controls from Canada, identified 10 additional probands, two sporadic patients and one control with the variant. Segregation in families harboring the rs139071351 variant, identified p.G420D in 26 out of 30 family members diagnosed with MS, 14 unaffected parents, and 12 out of 30 family members not diagnosed with disease. Despite considerably reduced penetrance, linkage analysis supports cosegregation of PLG p.G420D and disease. Genotyping of PLG p.G420D in 14446 patients, and 8797 controls from Canada, France, Spain, Germany, Belgium, and Austria failed to identify significant association with disease (P = 0.117), despite an overall higher prevalence in patients (OR = 1.32; 95% CI = 0.93–1.87). To assess whether additional rare variants have an effect on MS risk, we sequenced PLG in 293 probands, and genotyped all rare variants in cases and controls. This analysis identified nine rare missense variants, and although three of them were exclusively observed in MS patients, segregation does not support pathogenicity. PLG is a plausible biological candidate for MS owing to its involvement in immune system response, blood-brain barrier permeability, and myelin degradation. Moreover, components of its activation cascade have been shown to present increased activity or expression in MS patients compared to controls; further studies are needed to clarify whether PLG is involved in MS susceptibility. PMID:27194806

  2. Genetic and evolutionary analysis of the Drosophila larval neuromuscular junction

    NASA Astrophysics Data System (ADS)

    Campbell, Megan

    Although evolution of brains and behaviors is of fundamental biological importance, we lack comprehensive understanding of the general principles governing these processes or the specific mechanisms and molecules through which the evolutionary changes are effected. Because synapses are the basic structural and functional units of nervous systems, one way to address these problems is to dissect the genetic and molecular pathways responsible for morphological evolution of a defined synapse. I have undertaken such an analysis by examining morphology of the larval neuromuscular junction (NMJ) in wild caught D. melanogaster as well as in over 20 other species of Drosophila. Whereas variation in NMJ morphology within a species is limited, I discovered a surprisingly extensive variation among different species. Compared with evolution of other morphological traits, NMJ morphology appears to be evolving very rapidly. Moreover, my data indicate that natural selection rather than genetic drift is primarily responsible for evolution of NMJ morphology. To dissect underlying molecular mechanisms that may govern NMJ growth and evolutionary divergence, I focused on a naturally occurring variant in D. melanogaster that causes NMJ overgrowth. I discovered that the variant mapped to Mob2, a gene encoding a kinase adapter protein originally described in yeast as a member of the Mitotic Exit Network (MEN). I have subsequently examined mutations in the Drosophila orthologs of all the core components of the yeast MEN and found that all of them function as part of a common pathway that acts presynaptically to negatively regulate NMJ growth. As in the regulation of yeast cytokinesis, these components of the MEN appear to act ultimately by regulating actin dynamics during the process of bouton growth and division. These studies have thus led to the discovery of an entirely new role for the MEN---regulation of synaptic growth---that is separate from its function in cell division. This work

  3. Automating data manipulation for genetic analysis using a data base management system.

    PubMed

    Farrer, L A; Haines, J L; Yount, E A

    1985-01-01

    Inefficient coding and manipulation of pedigree data have often hindered the progress of genetic studies. In this paper we present the methodology for interfacing a data base management system (DBMS) called MEGADATS with a linkage analysis program called LIPED. Two families that segregate a dominant trait and one test marker were used in a simulated exercise to demonstrate how a DBMS can be used to automate tedious clerical steps and improve the efficiency of a genetic analysis. The merits of this approach to data management are discussed. We conclude that a standardized format for genetic analysis programs would greatly facilitate data analysis. PMID:3840122

  4. Blinders, phenotype, and fashionable genetic analysis: a critical examination of the current state of epilepsy genetic studies.

    PubMed

    Greenberg, David A; Subaran, Ryan

    2011-01-01

    Although it is accepted that idiopathic generalized epilepsy (IGE) is strongly, if not exclusively, influenced by genetic factors, there is little consensus on what those genetic influences may be, except for one point of agreement: epilepsy is a "channelopathy." This point of agreement has continued despite the failure of studies investigating channel genes to demonstrate the primacy of their influence on IGE expression. The belief is sufficiently entrenched that the more important issues involving phenotype definition, data collection, methods of analysis, and the interpretation of results have become subordinate to it. The goal of this article is to spark discussion of where the study of epilepsy genetics has been and where it is going, suggesting we may never get there if we continue on the current road. We use the long history of psychiatric genetic studies as a mirror and starting point to illustrate that only when we expand our outlook on how to study the genetics of the epilepsies, consider other mechanisms that could lead to epilepsy susceptibility, and, especially, focus on the critical problem of phenotype definition, will the major influences on common epilepsy begin to be understood. PMID:21219301

  5. Genetic analysis of Iranian autosomal dominant polycystic kidney disease: new insight to haplotype analysis.

    PubMed

    Entezam, M; Khatami, M R; Saddadi, F; Ayati, M; Roozbeh, J; Saghafi, H; Keramatipour, M

    2016-01-01

    Autosomal Dominant Polycystic Kidney Disease (ADPKD) caused by mutations in two PKD1 and PKD2 genes. Due to the complexity of the PKD1 gene, its direct mutation screening is an expensive and time-consuming procedure. Pedigree-based haplotype analysis is a useful indirect approach to identify the responsible gene in families with multiple affected individuals, before direct mutation analysis. Here, we applied this approach to investigate 15 appropriate unrelated ADPKD families, selected from 25 families, who referred for genetic counseling. Four polymorphic microsatellite markers were selected around each PKD1 and PKD2 loci. In addition, by investigating the genomic regions, two novel flanking tetranucleotide STR markers were identified. Haplotype analysis and calculating Lod score confirmed linkage to PKD1 in 9 families (60%) and to PKD2 in 2 families (13%). Linkage to both loci was excluded in one family (6.6%). In 2 families (13%) the Lod scores were inconclusive. Causative mutation was identified successfully by direct analysis in two families with confirmed linkage, one to PKD1 and another to PKD2 locus. The study showed that determining the causative locus prior to direct mutation analysis is an efficient strategy to reduce the resources required for genetic analysis of ADPKD families. This is more prominent in PKD2-linked families. Selection of suitable markers, and appropriate PCR multiplexing strategy, using fluorescent labeled primers and 3 primer system, will also add value to this approach. PMID:26950445

  6. Genetic analysis of erythromycin production in Streptomyces erythreus.

    PubMed Central

    Weber, J M; Wierman, C K; Hutchinson, C R

    1985-01-01

    Streptomyces erythreus produces the 14-membered macrolide antibiotic erythromycin A. The properties of erythromycin A nonproducing mutants and their genetic linkage to chromosomal markers were used to establish the rudiments of genetic organization of antibiotic production. Thirty-three Ery- mutants, produced by mutagenesis of S. erythreus NRRL 2338 and affecting the formation of the macrolactone and deoxysugar intermediates of erythromycin A biosynthesis, were classified into four phenotypically different groups based on their cosynthesis behavior, the type of biosynthetic intermediate accumulated, and their ability to biotransform known biochemical intermediates of erythromycin A. Demonstration of the occurrence of natural genetic recombination during conjugal mating in S. erythreus enabled comparison of the genetic linkage relationships of three different ery mutations with seven other markers on a simple chromosome map. This established a chromosomal location for the ery mutations, which appear to be located in at least two positions within one interval of the map. PMID:4044528

  7. SNP and haplotype mapping for genetic analysis in the rat.

    PubMed

    Saar, Kathrin; Beck, Alfred; Bihoreau, Marie-Thérèse; Birney, Ewan; Brocklebank, Denise; Chen, Yuan; Cuppen, Edwin; Demonchy, Stephanie; Dopazo, Joaquin; Flicek, Paul; Foglio, Mario; Fujiyama, Asao; Gut, Ivo G; Gauguier, Dominique; Guigo, Roderic; Guryev, Victor; Heinig, Matthias; Hummel, Oliver; Jahn, Niels; Klages, Sven; Kren, Vladimir; Kube, Michael; Kuhl, Heiner; Kuramoto, Takashi; Kuroki, Yoko; Lechner, Doris; Lee, Young-Ae; Lopez-Bigas, Nuria; Lathrop, G Mark; Mashimo, Tomoji; Medina, Ignacio; Mott, Richard; Patone, Giannino; Perrier-Cornet, Jeanne-Antide; Platzer, Matthias; Pravenec, Michal; Reinhardt, Richard; Sakaki, Yoshiyuki; Schilhabel, Markus; Schulz, Herbert; Serikawa, Tadao; Shikhagaie, Medya; Tatsumoto, Shouji; Taudien, Stefan; Toyoda, Atsushi; Voigt, Birger; Zelenika, Diana; Zimdahl, Heike; Hubner, Norbert

    2008-05-01

    The laboratory rat is one of the most extensively studied model organisms. Inbred laboratory rat strains originated from limited Rattus norvegicus founder populations, and the inherited genetic variation provides an excellent resource for the correlation of genotype to phenotype. Here, we report a survey of genetic variation based on almost 3 million newly identified SNPs. We obtained accurate and complete genotypes for a subset of 20,238 SNPs across 167 distinct inbred rat strains, two rat recombinant inbred panels and an F2 intercross. Using 81% of these SNPs, we constructed high-density genetic maps, creating a large dataset of fully characterized SNPs for disease gene mapping. Our data characterize the population structure and illustrate the degree of linkage disequilibrium. We provide a detailed SNP map and demonstrate its utility for mapping of quantitative trait loci. This community resource is openly available and augments the genetic tools for this workhorse of physiological studies. PMID:18443594

  8. Internal quantum efficiency analysis of solar cell by genetic algorithm

    SciTech Connect

    Xiong, Kanglin; Yang, Hui; Lu, Shulong; Zhou, Taofei; Wang, Rongxin; Qiu, Kai; Dong, Jianrong; Jiang, Desheng

    2010-11-15

    To investigate factors limiting the performance of a GaAs solar cell, genetic algorithm is employed to fit the experimentally measured internal quantum efficiency (IQE) in the full spectra range. The device parameters such as diffusion lengths and surface recombination velocities are extracted. Electron beam induced current (EBIC) is performed in the base region of the cell with obtained diffusion length agreeing with the fit result. The advantage of genetic algorithm is illustrated. (author)

  9. Genetic heterogeneity in rhabdomyosarcoma revealed by SNP array analysis.

    PubMed

    Walther, Charles; Mayrhofer, Markus; Nilsson, Jenny; Hofvander, Jakob; Jonson, Tord; Mandahl, Nils; Øra, Ingrid; Gisselsson, David; Mertens, Fredrik

    2016-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and adolescents. Alveolar (ARMS) and embryonal (ERMS) histologies predominate, but rare cases are classified as spindle cell/sclerosing (SRMS). For treatment stratification, RMS is further subclassified as fusion-positive (FP-RMS) or fusion-negative (FN-RMS), depending on whether a gene fusion involving PAX3 or PAX7 is present or not. We investigated 19 cases of pediatric RMS using high resolution single-nucleotide polymorphism (SNP) array. FP-ARMS displayed, on average, more structural rearrangements than ERMS; the single FN-ARMS had a genomic profile similar to ERMS. Apart from previously known amplification (e.g., MYCN, CDK4, and MIR17HG) and deletion (e.g., NF1, CDKN2A, and CDKN2B) targets, amplification of ERBB2 and homozygous loss of ASCC3 or ODZ3 were seen. Combining SNP array with cytogenetic data revealed that most cases were polyploid, with at least one case having started as a near-haploid tumor. Further bioinformatic analysis of the SNP array data disclosed genetic heterogeneity, in the form of subclonal chromosomal imbalances, in five tumors. The outcome was worse for patients with FP-ARMS than ERMS or FN-ARMS (6/8 vs. 1/9 dead of disease), and the only children with ERMS showing intratumor diversity or with MYOD1 mutation-positive SRMS also died of disease. High resolution SNP array can be useful in evaluating genomic imbalances in pediatric RMS. PMID:26482321

  10. Genetic Analysis of Recombinant Inbred Lines For Sorghum Bicolor x Perennial S. Propinquum.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From an annual S. bicolor x perennial S. propinquum F2 population used in early-generation genetic analysis, we have produced and describe here a recombinant inbred line (RIL) population of 161 F5 genotypes that segregates for rhizomatousness and many other traits. The genetic map of the recombinant...

  11. Development of a Fluidigm SNP panel for genetic analysis in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although microsatellite markers have been widely used in aquaculture species for genetic analysis such as parentage assignment and genetic mapping, SNPs (single nucleotide polymorphism) are the marker of choice as they are highly abundant and are amenable for high throughput genotyping. Recently we ...

  12. A Behaviour-Genetic Analysis of Orthographic Learning, Spelling and Decoding

    ERIC Educational Resources Information Center

    Byrne, Brian; Coventry, William L.; Olson, Richard K.; Hulslander, Jacqueline; Wadsworth, Sally; DeFries, John C.; Corley, Robin; Willcutt, Erik G.; Samuelsson, Stefan

    2008-01-01

    As part of a longitudinal twin study of literacy and language, we conducted a behaviour-genetic analysis of orthographic learning, spelling and decoding in Grade 2 children (225 identical and 214 fraternal twin pairs) in the United States and Australia. Each variable showed significant genetic and unique environment influences. Multivariate…

  13. Genetic Analysis of Genome-Wide Transcriptional Regulation through eQTL Mapping in Soy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variation in gene transcript accumulation levels can be measured to map underlying expression Quantitative Trait Loci (eQTL). Coincident genetic locations of eQTL and phenotypic QTL provide the basis for further investigation of the molecular mechanisms involved. Genetic analysis of expression trait...

  14. [Genetic relationships among Far Eastern species of the family Araliacea inferred by RAPD analysis].

    PubMed

    Zhuravlev, Iu N; Artiukova, E V; Kozyrenko, M M; Reunova, G D

    2003-01-01

    A molecular genetic study of Far Eastern species of the family Araliaceae by means of RAPD analysis was conducted. Using 21 primers we assessed variability at 595 loci. Based on matrices of genetic distances D, dendrograms of genetic relationships among eleven species of six genera of this family were constructed. Our results suggest that Acanthopanax sessiliflorus and Eleutherococcus senticosus belong to different genera, Aralia cordata and A. continentalis are different species, and A. elata and A. mandshurica probably cannot be regarded as distinct species. Genetic similarity of Far Eastern A. cordata and American A. hispida is shown. PMID:12624934

  15. Genetic and environmental influences on antisocial behavior: a meta-analysis of twin and adoption studies.

    PubMed

    Rhee, Soo Hyun; Waldman, Irwin D

    2002-05-01

    A meta-analysis of 51 twin and adoption studies was conducted to estimate the magnitude of genetic and environmental influences on antisocial behavior. The best fitting model included moderate proportions of variance due to additive genetic influences (.32), nonadditive genetic influences (.09), shared environmental influences (.16), and nonshared environmental influences (.43). The magnitude of familial influences (i.e., both genetic and shared environmental influences) was lower in parent-offspring adoption studies than in both twin studies and sibling adoption studies. Operationalization, assessment method, zygosity determination method, and age were significant moderators of the magnitude of genetic and environmental influences on antisocial behavior, but there were no significant differences in the magnitude of genetic and environmental influences for males and females. PMID:12002699

  16. Informed consent, participation in, and withdrawal from a population based cohort study involving genetic analysis

    PubMed Central

    Matsui, K; Kita, Y; Ueshima, H

    2005-01-01

    Design: Descriptive analyses. Setting and participants: The study evaluated two non-genetic subcohorts comprising 3166 people attending for a health checkup during 2002, and two genetic subcohorts comprising 2195 people who underwent a checkup during 2003. Main outcome measurements: Analysis endpoints were differences in participation rates between the non-genetic and genetic subcohorts, differences between providing non-extensive and extensive preliminary information, and changes in participation status between baseline and at 6 months. Results: Participation rates in the genetic subcohorts were 4·7–9·3% lower than those in the non-genetic subcohorts. The odds ratios (OR) of participation in genetic research were between 0·60 and 0·77, and the OR for withdrawal from the research was over 7·70; providing preliminary extensive information about genetic research reduced the withdrawal risks (OR 0·15 for all dependent variables) but worsened participation rates (OR 0·63–0·74). Conclusions: The general population responded sceptically towards genetic research. It is crucial that genetic researchers utilise an informative and educational consent process worthy of public trust. PMID:15994356

  17. Genetic and environmental influences on impulsivity: A meta-analysis of twin, family and adoption studies

    PubMed Central

    Bezdjian, Serena; Baker, Laura A.; Tuvblad, Catherine

    2011-01-01

    A meta-analysis of twin, family and adoption studies was conducted to estimate the magnitude of genetic and environmental influences on impulsivity. The best fitting model for 41 key studies (58 independent samples from 14 month old infants to adults; N = 27,147) included equal proportions of variance due to genetic (0.50) and non-shared environmental (0.50) influences, with genetic effects being both additive (0.38) and non-additive (0.12). Shared environmental effects were unimportant in explaining individual differences in impulsivity. Age, sex, and study design (twin vs. adoption) were all significant moderators of the magnitude of genetic and environmental influences on impulsivity. The relative contribution of genetic effects (broad sense heritability) and unique environmental effects were also found to be important throughout development from childhood to adulthood. Total genetic effects were found to be important for all ages, but appeared to be strongest in children. Analyses also demonstrated that genetic effects appeared to be stronger in males than in females. Method of assessment (laboratory tasks vs. questionnaires), however, was not a significant moderator of the genetic and environmental influences on impulsivity. These results provide a structured synthesis of existing behavior genetic studies on impulsivity by providing a clearer understanding of the relative genetic and environmental contributions in impulsive traits through various stages of development. PMID:21889436

  18. The genetic analysis of tolerance to infections: a review

    PubMed Central

    Kause, Antti; Ødegård, Jørgen

    2012-01-01

    Tolerance to infections is defined as the ability of a host to limit the impact of a given pathogen burden on host performance. Uncoupling resistance and tolerance is a challenge, and there is a need to be able to separate them using specific trait recording or statistical methods. We present three statistical methods that can be used to investigate genetics of tolerance-related traits. Firstly, using random regressions, tolerance can be analyzed as a reaction norm slope in which host performance (y-axis) is regressed against an increasing pathogen burden (x-axis). Genetic variance in tolerance slopes is the genetic variance for tolerance. Variation in tolerance can induce genotype re-ranking and changes in genetic and phenotypic variation in host performance along the pathogen burden trajectory, contributing to environment-dependent genetic responses to selection. Such genotype-by-environment interactions can be quantified by combining random regressions and covariance functions. To apply random regressions, pathogen burden of individuals needs to be recorded. Secondly, when pathogen burden is not recorded, the cure model for time-until-death data allows separating two traits, susceptibility and endurance. Susceptibility is whether or not an individual was susceptible to an infection, whereas endurance denotes how long time it took until the infection killed a susceptible animal (influenced by tolerance). Thirdly, the normal mixture model can be used to classify continuously distributed host performance, such as growth rate, into different sub-classes (e.g., non-infected and infected), which allows estimation of host performance reduction specific to infected individuals. Moreover, genetics of host performance can be analyzed separately in healthy and affected animals, even in the absence of pathogen burden and survival data. These methods provide novel tools to increase our understanding on the impact of parasites, pathogens, and production diseases on host

  19. [Genetic analysis of biochemical differences of Yersinia pestis strains].

    PubMed

    Eroshenko, G A; Odinokov, G N; Kukleva, L M; Kutyrev, V V

    2012-01-01

    Literature data and results of our experimental studies on genetic base of biochemical differentiation of Yersinia pestis strains of various subspecies and biovars are summarized in the review. Data on variability of genes coding biochemical features (sugar and alcohol fermentation, nitrate reduction), the differential development of which are the base of existing phenotypic schemes of Y. pestis strains classification, are presented. Variability of these genes was shown to have possible use for the development of genetic classification of Y. pestis strains of various subspecies and biovars. PMID:22830282

  20. Genetic Analysis of Intracapillary Glomerular Lipoprotein Deposits in Aging Mice

    PubMed Central

    Noordmans, Gerda A.; Huang, Yuan; Savage, Holly; van Dijk, Marcory C. R. F.; Schaart, Gert; van den Bergh Weerman, Marius A.; Heeringa, Peter; Hillebrands, Jan-Luuk; Korstanje, Ron; van Goor, Harry

    2014-01-01

    Background Renal aging is characterized by functional and structural changes like decreased glomerular filtration rate, and glomerular, tubular and interstitial damage. To gain insight in pathways involved in renal aging, we studied aged mouse strains and used genetic analysis to identify genes associated with aging phenotypes. Methods Upon morphological screening in kidneys from 20-month-old mice from 26 inbred strains we noted intracapillary PAS-positive deposits. The severity of these deposits was quantified by scoring of a total of 50 glomeruli per section (grade 0–4). Electron microscopy and immunohistochemical staining for apoE, apoB, apoA-IV and perilipin-2 was performed to further characterize the lesions. To identify loci associated with these PAS-positive intracapillary glomerular deposits, we performed haplotype association mapping. Results Six out of 26 mouse strains showed glomerular PAS-positive deposits. The severity of these deposits varied: NOD(0.97), NZW(0.41), NON(0.30), B10(0.21), C3 H(0.9) and C57BR(0.7). The intracapillary deposits were strongly positive for apoE and weakly positive for apoB and apoA-IV. Haplotype association mapping showed a strong association with a 30-Kb haplotype block on Chr 1 within the Esrrg gene. We investigated 1 Mb on each site of this region, which includes the genes Spata17, Gpatch2, Esrrg, Ush2a and Kctd3. Conclusions By analyzing 26 aged mouse strains we found that some strains developed an intracapillary PAS and apoE-positive lesion and identified a small haplotype block on Chr 1 within the Esrrg gene to be associated with these lipoprotein deposits. The region spanning this haplotype block contains the genes Spata17, Gpatch2, Esrrg, Ush2a and Kctd3, which are all highly expressed in the kidney. Esrrg might be involved in the evolvement of these glomerular deposits by influencing lipid metabolism and possibly immune reponses. PMID:25353171

  1. Actor-network theory: a tool to support ethical analysis of commercial genetic testing.

    PubMed

    Williams-Jones, Bryn; Graham, Janice E

    2003-12-01

    Social, ethical and policy analysis of the issues arising from gene patenting and commercial genetic testing is enhanced by the application of science and technology studies, and Actor-Network Theory (ANT) in particular. We suggest the potential for transferring ANT's flexible nature to an applied heuristic methodology for gathering empirical information and for analysing the complex networks involved in the development of genetic technologies. Three concepts are explored in this paper--actor-networks, translation, and drift--and applied to the case of Myriad Genetics and their commercial BRACAnalysis genetic susceptibility test for hereditary breast cancer. Treating this test as an active participant in socio-technical networks clarifies the extent to which it interacts with, shapes and is shaped by people, other technologies, and institutions. Such an understanding enables more sophisticated and nuanced technology assessment, academic analysis, as well as public debate about the social, ethical and policy implications of the commercialization of new genetic technologies. PMID:15115034

  2. Genetic and biochemical analysis of solvent formation in Clostridium acetobutylicum

    SciTech Connect

    Bennett, G.N.; Rudolph, F.B.

    1998-05-01

    The anaerobic organism Clostridium acetobutylicum has been used for commercial production of important organic solvents due to its ability to convert a wide variety of crude substrates to acids and alcohols. Current knowledge concerning the molecular genetics, cell regulation and metabolic engineering of this organism is still rather limited. The objectives are to improve the knowledge of the molecular genetics and enzymology of Clostridia in order to make genetic alterations which will more effectively channel cell metabolism toward production of desired products. Two factors that limit butanol production in continuous cultures are: (1) The degeneration of the culture, with an increase in the proportion of cells which are incapable of solvent production. Currently isolated degenerate strains are being evaluated to analyze the molecular mechanism of degeneration to determine if it is due to a genetic loss of solvent related genes, loss of a regulatory element, or an increase in general mutagenesis. Recent studies show two general types of degenerates, one which seems to have lost essential solvent pathway genes and another which has not completely lost all solvent production capability and retains the DNA bearing solvent pathway genes. (2) The production of hydrogen which uses up reducing equivalents in the cell. If the reducing power were more fully directed to the reduction reactions involved in butanol production, the process would be more efficient. The authors have studied oxidation reduction systems related to this process. These studies focus on ferredoxin and rubredoxin and their oxidoreductases.

  3. Genetic analysis of phytosterol content in sunflower seeds.

    PubMed

    Merah, Othmane; Langlade, Nicolas; Alignan, Marion; Roche, Jane; Pouilly, Nicolas; Lippi, Yannick; Vear, Felicity; Cerny, Muriel; Bouniols, Andrée; Mouloungui, Zephirin; Vincourt, Patrick

    2012-12-01

    Interest in phytosterol contents due to their potential benefits for human health has been largely documented in several crop species. Studies were focused mainly on total sterol content and their concentration or distribution in seed. This study aimed at providing new insight into the genetic control of total and individual sterol contents in sunflower seed through QTL analyses in a RIL population characterized over 2 years showing contrasted rainfall during seed filling. Results indicated that 13 regions on 9 linkage groups were involved in different phytosterol traits. Most of the QTL mapped were stable across years in spite of contrasted growing conditions. Some of them explained up to 30 % of phenotypic variation. Two QTL, located on LG10, near b1, and on LG14, were found to co-localize with QTL for oil content, indicating that likely, a part of the genetic variation for sterol content is only the result of genetic variation for oil content. However, three other QTL, stable over the 2 years, were found on LG1, LG4 and LG7 each associated with a particular class of sterols, suggesting that some enzymes known to be involved in the sterol metabolic pathway may determine the specificity of sterol profiles in sunflower seeds. These results suggest that it may be possible to introduce these traits as criteria in breeding programmes for quality in sunflower. The molecular markers linked to genetic factors controlling phytosterol contents could help selection during breeding programs. PMID:22824968

  4. A genetic analysis of the Italian Salernitano horse.

    PubMed

    Criscione, A; Moltisanti, V; Chies, L; Marletta, D; Bordonaro, S

    2015-10-01

    Salernitano (SAL) is an ancient Italian horse breed developed over the course of the ages together with Napoletano and, during the 20th century, by crossing with Thoroughbred horse lines. Excellent in hurdle jumping, this breed is currently facing a concrete risk of extinction due to the lack of appropriate management strategies. This research is the first SAL genetic characterization that aims to set up the basic knowledge for a conservation plan. A representative sample of 61 SALs was analyzed by means of a set of 16 microsatellites markers (short tandem repeats (STRs)). The sequence of hypervariable D-loop mtDNA region was also performed on a subset of 24 mares in order to study the maternal diversity and obtain a complete picture of the internal genetic variation. All the molecular data were analyzed together with those obtained from three Sicilian horse breeds investigated in a previous research (Siciliano, Sanfratellano and Sicilian Oriental Purebred). STRs markers revealed a moderate level of genetic diversity in SAL (alleles/locus 5.1, He 0.67) and confirmed the hunch of genetic erosion. Autosomal variability highlighted a very light deficit of homozygotes (FIS=-0.067). Experimental D-loop sequences were compared by multiple alignments with those retrieved from biological databases and revealed two unreported haplotypes. The phylogenetic network, which was built on mtDNA sequences, included various cosmopolitan and European horses and showed SAL haplotypes distributed among different mtDNA lineages. PMID:26144256

  5. Porcine bocaviruses: genetic analysis and prevalence in Chinese swine population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among members of the Bocavirus genus, that contain three open reading frames (ORFs), of the Parvovirinae subfamily, porcine bocaviruses (PoBoVs) exhibit the most genetic diversity. Based on the ORF2-encoded VP1 classification, the six reported porcine bocaviruses were grouped into four species: PoBo...

  6. Understanding Genetics: Analysis of Secondary Students' Conceptual Status

    ERIC Educational Resources Information Center

    Tsui, Chi-Yan; Treagust, David F.

    2007-01-01

    This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a…

  7. Genetic analysis of behavior traits in swine production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimates of genetic parameters related to pig behavior under stressful situations are required before selection programs can be designed to produce more docile pigs. Pig behavior was evaluated in a pedigreed Landrace-Duroc-Yorkshire composite population. Piglets were evaluated for their response to...

  8. SSR Marker Analysis of Genetic Relationships within Hydrangea paniculata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity studies using 26 simple-sequence repeat (SSR) markers were conducted with 36 taxa of Hydrangea paniculata Sieb. The SSR loci were highly variable among the taxa, producing a mean of 5.8 alleles per locus. Three cultivars (Boskoop, Compact Grandiflora and Webb) were either identic...

  9. SSR Marker Analysis of Genetic Relationships within Hydrangea Macrophylla

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity studies using 39 SSR markers were carried out with 114 taxa of H. macrophylla. The SSR loci were highly variable among the taxa, producing a mean of 8.26 alleles per locus. Overall allelic richness was relatively high at 5.12 alleles per locus. Subspecies serrata contained nearly t...

  10. Identification of genetic markers to distinguish the virulent and avirulent subspecies of Pantoea stewartii by comparative proteomics and genetic analysis.

    PubMed

    Wu, Qiong; Jiang, Zide; Liao, Jinliang; Chen, Zhinan; Li, Huaping; Mei, Mantong; Zhang, Lian-Hui

    2007-02-01

    Pantoea stewartii subsp. stewartii (Pnss), the causal agent of Stewart's bacterial wilt and leaf blight of maize and sweet corn, is one of the quarantine pathogens in many countries and regions. In contrast, P. stewartii subsp. indologenes (Pnsi), the closely related subspecies of Pnss, is avirulent on these plants. In this study, the protein expression profiles of these two subspecies were compared using two-dimensional gel electrophoresis analysis. Twenty-one unique protein spots consistently detected in Pnss but not in Pnsi were analyzed by mass spectrometry. Some of these Pnss-specific proteins are known to be essential for virulence and survival in host, such as FoxR and HrcJ, which are the key components of iron uptake and Type III secretion systems, respectively. For further genetic analysis, six Pnss-specific proteins were characterized by peptide sequencing. Southern and Northern blot analyses revealed that the differences in protein expression profiles of the two subspecies were either due to the discrepancy at genome level or because of the variations in transcriptional expression. The results provide novel genetic markers to distinguish the two closely related subspecies and may also serve as useful clues for investigation of the genetic basis accounting for their sharp difference in virulence. PMID:17086414

  11. Genetic analysis of 12 unrelated CADASIL families: Demonstration of genetic homogeneity: Physical mapping of the gene

    SciTech Connect

    Tournier-Lasserve, E.; Nibbio, A.; Vahedi, K.

    1994-09-01

    CADASIL is the acronym (Cerebral Autosomal Dominant Arteriopathy with Subcortical Ischemic Strokes and Leukoencephalopathy) designating a recently identified mendelian cerebral arteriopathy characterized by the recurrence of ischemic sensory and motor deficits leading to a progressive subcortical dementia. Magnetic resonance imaging of the brain shows extensive areas of increased signal in the hemispheric white matter. We recently mapped the CADASIL locus in 2 large families on chromosome 19 in a 14 cM interval bracketed by D19S221 and D19S215{sup *}. Forty additional families have been collected. Twelve of them including more than 200 members have already been genotyped with a set of 10 highly polymorphic markers located between D19S221 and D19S215. All families are significantly linked to chromosome 19 demonstrating genetic homogeneity. Combined lod scores for several of these markers are above 30. The size of the mapping interval has been reduced to 2 cM. Genetic testing for presymptomatic individuals is now possible with respect to all ethical rules in this severe condition. Lastly, physical mapping of the affected gene has been started and data will be presented at the meeting.

  12. Genetic diversity based on SSR analysis of the cultured snakehead fish, Channa argus, (Channidae) in China.

    PubMed

    Zhu, S-R; Li, J-L; Xie, N; Zhu, L-M; Wang, Q; Yue, G-H

    2014-01-01

    The snakehead fish Channa argus is an important food fish in China. We identified six microsatellite loci for C. argus. These six microsatellite loci and four other microsatellite markers were used to analyze genetic diversity in four cultured populations of C. argus (SD, JX, HN, and ZJ) and determine their relationships. A total of 154 alleles were detected at the 10 microsatellite loci. The average expected and observed heterozygosities varied from 0.70-0.84 and 0.69-0.83, respectively, and polymorphism information content ranged between 0.66 and 0.82 in the four populations, indicating high genetic diversity. Population JX deviated from mutation-drift equilibrium and may have experienced a recent bottleneck. Analysis of pairwise genetic differentiation revealed FST values that ranged from 0.028 to 0.100, which indicates a moderate level of genetic differentiation. The largest distances were observed between populations HN and SD, whereas the smallest distances were obtained between populations HN and JX. Genetic clustering analysis demonstrated that the ZJ and HN populations probably share the same origin. This information about the genetic diversity within each of the four populations, and their genetic relationships will be useful for future genetic improvement of C. argus through selective breeding. PMID:24615092

  13. Genetic polymorphism of IgG in mink. II. A genetic analysis of allotypes.

    PubMed

    Belyaev, D K; Fomicheva, I I; Taranin, A V; Baranov, O K

    1986-01-01

    Population distribution and inheritance pattern were analyzed in mink IgG allotypes: L1 (L chains), H2, H3, H4, H6, H7, and H8 (the constant region of the H chains, i.e. C gamma-allotypes) and conformational allotype 5 with unknown chain localization. Contrary to expectation, neither allelism, nor close linkage were demonstrated for these allotypes. The major feature of the inheritance of H2, H3, and H4 C gamma-allotypes, as well as allotype 5, was significant excess of negative (without these allotypes) progeny in the F1 generation from monohybrid cross. The explanation offered for this departure of the C gamma-allotypes from normal Mendelian genetics suggests widespread latencies of their expression in mink. PMID:3274048

  14. Array-CGH Analysis Suggests Genetic Heterogeneity in Rhombencephalosynapsis

    PubMed Central

    Démurger, F.; Pasquier, L.; Dubourg, C.; Dupé, V.; Gicquel, I.; Evain, C.; Ratié, L.; Jaillard, S.; Beri, M.; Leheup, B.; Lespinasse, J.; Martin-Coignard, D.; Mercier, S.; Quelin, C.; Loget, P.; Marcorelles, P.; Laquerrière, A.; Bendavid, C.; Odent, S.; David, V.

    2013-01-01

    Rhombencephalosynapsis is an uncommon, but increasingly recognized, cerebellar malformation defined as vermian agenesis with fusion of the hemispheres. The embryologic and genetic mechanisms involved are still unknown, and to date, no animal models are available. In the present study, we used Agilent oligonucleotide arrays in a large series of 57 affected patients to detect candidate genes. Four different unbalanced rearrangements were detected: a 16p11.2 deletion, a 14q12q21.2 deletion, an unbalanced translocation t(2p;10q), and a 16p13.11 microdeletion containing 2 candidate genes. These genes were further investigated by sequencing and in situ hybridization. This first microarray screening of a rhombencephalosynapsis series suggests that there may be heterogeneous genetic causes. PMID:24167461

  15. Genetic analysis of familial spontaneous pneumothorax in an Indian family.

    PubMed

    Ray, Anindita; Paul, Suman; Chattopadhyay, Esita; Kundu, Susmita; Roy, Bidyut

    2015-06-01

    Familial spontaneous pneumothorax is one of the phenotypes of Birt-Hogg-Dubé syndrome (BHDS), an autosomal dominant condition associated with folliculin (FLCN). We investigated clinical and genetic data of an Indian family having two patients suffering from spontaneous pneumothorax in the absence of skin lesions or renal tumors. HRCT scan of patient's lung revealed paracardiac cysts, and DNA sequencing of all 14 exons of FLCN from patients showed the presence of heterozygous "C allele" deletion in the poly-cytosine (poly-C) tract of exon 11 leading to truncated folliculin. This mutation was also observed in four asymptomatic members of the family. Our results confirmed the presence of deletion mutation in poly-C tract of FLCN in members of BHDS family. This is the first report of genetic insight in a BHDS family from India but in-depth studies with a larger sample set are necessary to understand mechanism of familial pneumothorax. PMID:25827758

  16. Genetic analysis of fruit shape traits at different maturation stages in sponge gourd*

    PubMed Central

    Zhang, Sheng; Hu, Jin; Zhang, Cai-fang; Guan, Ya-jing; Zhang, Ying

    2007-01-01

    The fruit shape is important quantitative trait closely related to the fruit quality. However, the genetic model of fruit shapes has not been proposed. Therefore, in the present study, analysis of genetic effects for fruit shape traits (fruit length and fruit perimeter) in sponge gourd was conducted by employing a developmental genetic model including fruit direct effects and maternal effects. Analysis approaches of unconditional and conditional variances were applied to evaluate the genetic behavior of fruit shape traits at economical and physiological maturation times. The results of variance analysis indicated that fruit length and fruit perimeter were simultaneously affected by fruit direct genetic effects and maternal effects. Fruit direct genetic effects were relatively more important for fruit shape traits at whole developmental period. The gene expression was most active at the economical maturation stage (1~12 d after flowering) for two shape traits, and the activation of gene was mostly due to direct dominance effects at physiological maturation stage (13~60 d after flowering). The coefficients due to different genetic effects, as well as the phenotypic correlation coefficients, varied significantly between fruit shape traits themselves at various maturation stages. The results showed that it was relatively easy to improve fruit shape traits for industrial purpose by carefully selecting the parents at economical maturation stage instead of that at physiological maturation stage. PMID:17542062

  17. Software for analysis and manipulation of genetic linkage data.

    PubMed

    Weaver, R; Helms, C; Mishra, S K; Donis-Keller, H

    1992-06-01

    We present eight computer programs written in the C programming language that are designed to analyze genotypic data and to support existing software used to construct genetic linkage maps. Although each program has a unique purpose, they all share the common goals of affording a greater understanding of genetic linkage data and of automating tasks to make computers more effective tools for map building. The PIC/HET and FAMINFO programs automate calculation of relevant quantities such as heterozygosity, PIC, allele frequencies, and informativeness of markers and pedigrees. PREINPUT simplifies data submissions to the Centre d'Etude du Polymorphisme Humain (CEPH) data base by creating a file with genotype assignments that CEPH's INPUT program would otherwise require to be input manually. INHERIT is a program written specifically for mapping the X chromosome: by assigning a dummy allele to males, in the nonpseudoautosomal region, it eliminates falsely perceived noninheritances in the data set. The remaining four programs complement the previously published genetic linkage mapping software CRI-MAP and LINKAGE. TWOTABLE produces a more readable format for the output of CRI-MAP two-point calculations; UNMERGE is the converse to CRI-MAP's merge option; and GENLINK and LINKGEN automatically convert between the genotypic data file formats required by these packages. All eight applications read input from the same types of data files that are used by CRI-MAP and LINKAGE. Their use has simplified the management of data, has increased knowledge of the content of information in pedigrees, and has reduced the amount of time needed to construct genetic linkage maps of chromosomes. PMID:1598906

  18. Genetic Analysis of the Maltose A Region in Escherichia coli

    PubMed Central

    Hatfield, Dolph; Hofnung, Maurice; Schwartz, Maxime

    1969-01-01

    The genetic map of the maltose A locus of Escherichia coli contains at least three closely linked genes, malT, malP, and malQ. The order of these genes is established by deletion mapping. MalP and malQ, the presumed structural genes for maltodextrin phosphorylase and amylomaltase, belong to the same operon. MalT may be a regulator gene involved in the positive control of this operon. PMID:4891257

  19. Functional and genetic analysis of choroid plexus development in zebrafish

    PubMed Central

    Henson, Hannah E.; Parupalli, Chaithanyarani; Ju, Bensheng; Taylor, Michael R.

    2014-01-01

    The choroid plexus, an epithelial-based structure localized in the brain ventricle, is the major component of the blood-cerebrospinal fluid barrier. The choroid plexus produces the cerebrospinal fluid and regulates the components of the cerebrospinal fluid. Abnormal choroid plexus function is associated with neurodegenerative diseases, tumor formation in the choroid plexus epithelium, and hydrocephaly. In this study, we used zebrafish (Danio rerio) as a model system to understand the genetic components of choroid plexus development. We generated an enhancer trap line, Et(cp:EGFP)sj2, that expresses enhanced green fluorescent protein (EGFP) in the choroid plexus epithelium. Using immunohistochemistry and fluorescent tracers, we demonstrated that the zebrafish choroid plexus possesses brain barrier properties such as tight junctions and transporter activity. Thus, we have established zebrafish as a functionally relevant model to study choroid plexus development. Using an unbiased approach, we performed a forward genetic dissection of the choroid plexus to identify genes essential for its formation and function. Using Et(cp:EGFP)sj2, we isolated 10 recessive mutant lines with choroid plexus abnormalities, which were grouped into five classes based on GFP intensity, epithelial localization, and overall choroid plexus morphology. We also mapped the mutation for two mutant lines to chromosomes 4 and 21, respectively. The mutants generated in this study can be used to elucidate specific genes and signaling pathways essential for choroid plexus development, function, and/or maintenance and will provide important insights into how these genetic mutations contribute to disease. PMID:25426018

  20. Quantitative Genetic Analysis of Sleep in Drosophila melanogaster

    PubMed Central

    Harbison, Susan T.; Sehgal, Amita

    2008-01-01

    Although intensively studied, the biological purpose of sleep is not known. To identify candidate genes affecting sleep, we assayed 136 isogenic P-element insertion lines of Drosophila melanogaster. Since sleep has been negatively correlated with energy reserves across taxa, we measured energy stores (whole-body protein, glycogen, and triglycerides) in these lines as well. Twenty-one insertions with known effects on physiology, development, and behavior affect 24-hr sleep time. Thirty-two candidate insertions significantly impact energy stores. Mutational genetic correlations among sleep parameters revealed that the genetic basis of the transition between sleep and waking states in males and females may be different. Furthermore, sleep bout number can be decoupled from waking activity in males, but not in females. Significant genetic correlations are present between sleep phenotypes and glycogen stores in males, while sleep phenotypes are correlated with triglycerides in females. Differences observed in male and female sleep behavior in flies may therefore be related to sex-specific differences in metabolic needs. Sleep thus emerges as a complex trait that exhibits extensive pleiotropy and sex specificity. The large mutational target that we observed implicates genes functioning in a variety of biological processes, suggesting that sleep may serve a number of different functions rather than a single purpose. PMID:18430954

  1. Genetic Analysis of the Henry Mountains Bison Herd.

    PubMed

    Ranglack, Dustin H; Dobson, Lauren K; du Toit, Johan T; Derr, James

    2015-01-01

    Wild American plains bison (Bison bison) populations virtually disappeared in the late 1800s, with some remnant animals retained in what would become Yellowstone National Park and on private ranches. Some of these private bison were intentionally crossbred with cattle for commercial purposes. This forced hybridization resulted in both mitochondrial and nuclear introgression of cattle genes into some of the extant bison genome. As the private populations grew, excess animals, along with their history of cattle genetics, provided founders for newly established public bison populations. Of the US public bison herds, only those in Yellowstone and Wind Cave National Parks (YNP and WCNP) appear to be free of detectable levels of cattle introgression. However, a small free-ranging population (~350 animals) exists on public land, along with domestic cattle, in the Henry Mountains (HM) of southern Utah. This isolated bison herd originated from a founder group translocated from YNP in the 1940s. Using genetic samples from 129 individuals, we examined the genetic status of the HM population and found no evidence of mitochondrial or nuclear introgression of cattle genes. This new information confirms it is highly unlikely for free-living bison to crossbreed with cattle, and this disease-free HM bison herd is valuable for the long-term conservation of the species. This bison herd is a subpopulation of the YNP/WCNP/HM metapopulation, within which it can contribute significantly to national efforts to restore the American plains bison to more of its native range. PMID:26673758

  2. Genetic Analysis of the Henry Mountains Bison Herd

    PubMed Central

    du Toit, Johan T.; Derr, James

    2015-01-01

    Wild American plains bison (Bison bison) populations virtually disappeared in the late 1800s, with some remnant animals retained in what would become Yellowstone National Park and on private ranches. Some of these private bison were intentionally crossbred with cattle for commercial purposes. This forced hybridization resulted in both mitochondrial and nuclear introgression of cattle genes into some of the extant bison genome. As the private populations grew, excess animals, along with their history of cattle genetics, provided founders for newly established public bison populations. Of the US public bison herds, only those in Yellowstone and Wind Cave National Parks (YNP and WCNP) appear to be free of detectable levels of cattle introgression. However, a small free-ranging population (~350 animals) exists on public land, along with domestic cattle, in the Henry Mountains (HM) of southern Utah. This isolated bison herd originated from a founder group translocated from YNP in the 1940s. Using genetic samples from 129 individuals, we examined the genetic status of the HM population and found no evidence of mitochondrial or nuclear introgression of cattle genes. This new information confirms it is highly unlikely for free-living bison to crossbreed with cattle, and this disease-free HM bison herd is valuable for the long-term conservation of the species. This bison herd is a subpopulation of the YNP/WCNP/HM metapopulation, within which it can contribute significantly to national efforts to restore the American plains bison to more of its native range. PMID:26673758

  3. Genetic analysis of female gametophyte development and function.

    PubMed Central

    Drews, G N; Lee, D; Christensen, C A

    1998-01-01

    The female gametophyte is an absolutely essential structure for angiosperm reproduction. It produces the egg cell and central cell (which give rise to the embryo and endosperm, respectively) and mediates several reproductive processes including pollen tube guidance, fertilization, the induction of seed development, and perhaps also maternal control of embryo development. Although much has been learned about these processes at the cytological level, specific molecules mediating and controlling megagametogenesis and female gametophyte function have not been identified. A genetic approach to the identification of such molecules has been initiated in Arabidopsis and maize. Although genetic analyses are still in their infancy, mutations affecting female gametophyte function and specific steps of megagametogenesis have already been identified. Large-scale genetic screens aimed at identifying mutants affecting every step of megagametogenesis and female gametophyte function are in progress; the characterization of genes identified in these screens should go a long way toward defining the molecules that are required for female gametophyte development and function. PMID:9477569

  4. Analysis of genetic diversity of Persea bombycina "Som" using RAPD-based molecular markers.

    PubMed

    Bhau, Brijmohan Singh; Medhi, Kalyani; Das, Ambrish P; Saikia, Siddhartha P; Neog, Kartik; Choudhury, S N

    2009-08-01

    The utility of RAPD markers in assessing genetic diversity and phenetic relationships in Persea bombycina, a major tree species for golden silk (muga) production, was investigated using 48 genotypes from northeast India. Thirteen RAPD primer combinations generated 93 bands. On average, seven RAPD fragments were amplified per reaction. In a UPGMA phenetic dendrogram based on Jaccard's coefficient, the P. bombycina accessions showed a high level of genetic variation, as indicated by genetic similarity. The grouping in the phenogram was highly consistent, as indicated by high values of cophenetic correlation and high bootstrap values at the key nodes. The accessions were scattered on a plot derived from principal correspondence analysis. The study concluded that the high level of genetic diversity in the P. bombycina accessions may be attributed to the species' outcrossing nature. This study may be useful in identifying diverse genetic stocks of P. bombycina, which may then be conserved on a priority basis. PMID:19424786

  5. Analysis of the genetic diversity of Candida isolates obtained from diabetic patients and kidney transplant recipients

    PubMed Central

    Benedetti, Volmir Pitt; Savi, Daiani Cristina; Aluizio, Rodrigo; Adamoski, Douglas; Kava-Cordeiro, Vanessa; Galli-Terasawa, Lygia V; Glienke, Chirlei

    2016-01-01

    Yeasts of the genus Candida have high genetic variability and are the most common opportunistic pathogenic fungi in humans. In this study, we evaluated the genetic diversity among 120 isolates of Candida spp. obtained from diabetic patients, kidney transplant recipients and patients without any immune deficiencies from Paraná state, Brazil. The analysis was performed using the ITS1-5.8S-ITS2 region and a partial sequence of 28S rDNA. In the phylogenetic analysis, we observed a consistent separation of the species C. albicans, C. dubliniensis, C. glabrata, C. tropicalis, C. parapsilosis, C. metapsilosis and C. orthopsilosis, however with low intraspecific variability. In the analysis of the C. albicans species, two clades were formed. Clade A included the largest number of isolates (91.2%) and the majority of isolates from GenBank (71.4%). The phylogenetic analysis showed low intraspecific genetic diversity, and the genetic polymorphisms between C. albicans isolates were similar to genetic divergence found in other studies performed with isolates from Brazil. This low genetic diversity of isolates can be explained by the geographic proximity of the patients evaluated. It was observed that yeast colonisation was highest in renal transplant recipients and diabetic patients and that C. albicans was the species most frequently isolated. PMID:27276363

  6. Analysis of the genetic diversity of Candida isolates obtained from diabetic patients and kidney transplant recipients.

    PubMed

    Benedetti, Volmir Pitt; Savi, Daiani Cristina; Aluizio, Rodrigo; Adamoski, Douglas; Kava-Cordeiro, Vanessa; Galli-Terasawa, Lygia V; Glienke, Chirlei

    2016-06-01

    Yeasts of the genus Candida have high genetic variability and are the most common opportunistic pathogenic fungi in humans. In this study, we evaluated the genetic diversity among 120 isolates of Candida spp. obtained from diabetic patients, kidney transplant recipients and patients without any immune deficiencies from Paraná state, Brazil. The analysis was performed using the ITS1-5.8S-ITS2 region and a partial sequence of 28S rDNA. In the phylogenetic analysis, we observed a consistent separation of the species C. albicans, C. dubliniensis, C. glabrata, C. tropicalis, C. parapsilosis, C. metapsilosis and C. orthopsilosis, however with low intraspecific variability. In the analysis of the C. albicans species, two clades were formed. Clade A included the largest number of isolates (91.2%) and the majority of isolates from GenBank (71.4%). The phylogenetic analysis showed low intraspecific genetic diversity, and the genetic polymorphisms between C. albicans isolates were similar to genetic divergence found in other studies performed with isolates from Brazil. This low genetic diversity of isolates can be explained by the geographic proximity of the patients evaluated. It was observed that yeast colonisation was highest in renal transplant recipients and diabetic patients and that C. albicans was the species most frequently isolated. PMID:27276363

  7. Population genetic analysis and trichothecene profiling of Fusarium graminearum from wheat in Uruguay.

    PubMed

    Pan, D; Mionetto, A; Calero, N; Reynoso, M M; Torres, A; Bettucci, L

    2016-01-01

    Fusarium graminearum sensu stricto (F. graminearum s.s.) is the major causal agent of Fusarium head blight of wheat worldwide, and contaminates grains with trichothecene mycotoxins that cause serious threats to food safety and animal health. An important aspect of managing this pathogen and reducing mycotoxin contamination of wheat is knowledge regarding its population genetics. Therefore, isolates of F. graminearum s.s. from the major wheat-growing region of Uruguay were analyzed by amplified fragment length polymorphism assays, PCR genotyping, and chemical analysis of trichothecene production. Of the 102 isolates identified as having the 15-ADON genotype via PCR genotyping, all were DON producers, but only 41 strains were also 15-ADON producers, as determined by chemical analysis. The populations were genotypically diverse but genetically similar, with significant genetic exchange occurring between them. Analysis of molecular variance indicated that most of the genetic variability resulted from differences between isolates within populations. Multilocus linkage disequilibrium analysis suggested that the isolates had a panmictic population genetic structure and that there is significant recombination occurs in F. graminearum s.s. In conclusion, tour findings provide the first detailed description of the genetic structure and trichothecene production of populations of F. graminearum s.s. from Uruguay, and expands our understanding of the agroecology of F. graminearum and of the correlation between genotypes and trichothecene chemotypes. PMID:26985955

  8. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis).

    PubMed

    Funk, W Chris; Lovich, Robert E; Hohenlohe, Paul A; Hofman, Courtney A; Morrison, Scott A; Sillett, T Scott; Ghalambor, Cameron K; Maldonado, Jesus E; Rick, Torben C; Day, Mitch D; Polato, Nicholas R; Fitzpatrick, Sarah W; Coonan, Timothy J; Crooks, Kevin R; Dillon, Adam; Garcelon, David K; King, Julie L; Boser, Christina L; Gould, Nicholas; Andelt, William F

    2016-05-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1-89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6-6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential. PMID:26992010

  9. Genetic analysis of Escherichia coli RadA: functional motifs and genetic interactions.

    PubMed

    Cooper, Deani L; Boyle, Daniel C; Lovett, Susan T

    2015-03-01

    The RadA/Sms protein is a RecA-related protein found universally in eubacteria and plants, implicated in processing of recombination intermediates. Here we show that the putative Zn finger, Walker A motif, KNRXG motif and Lon protease homology domain of the Escherichia coli RadA protein are required for DNA damage survival. RadA is unlikely to possess protease activity as the putative active site serine is not required. Mutants in RadA have strong synergistic phenotypes with those in the branch migration protein RecG. Sensitivity of radA recG mutants to azidothymidine (AZT) can be rescued by blocking recombination with recA or recF mutations or by overexpression of RuvAB, suggesting that lethal recombination intermediates accumulate in the absence of RadA and RecG. Synthetic genetic interactions for survival to AZT or ciprofloxacin exposure were observed between RadA and known or putative helicases including DinG, Lhr, PriA, Rep, RuvAB, UvrD, YejH and YoaA. These represent the first affected phenotypes reported for Lhr, YejH and YoaA. The specificity of these effects sheds new light on the role of these proteins in DNA damage avoidance and repair and implicates a role in replication gap processing for DinG and YoaA and a role in double-strand break repair for YejH. PMID:25484163

  10. Analysis of Genetic and Non-Genetic Factors Influencing Timing and Time Perception.

    PubMed

    Bartholomew, Alex J; Meck, Warren H; Cirulli, Elizabeth T

    2015-01-01

    Performance on different psychophysical tasks measuring the sense of time indicates a large amount of individual variation in the accuracy and precision of timing in the hundredths of milliseconds-to-minutes range. Quantifying factors with an influence on timing is essential to isolating a biological (genetic) contribution to the perception and estimation of time. In the largest timing study to date, 647 participants completed a duration-discrimination task in the sub-second range and a time-production task in the supra-second range. We confirm the stability of a participant's time sense across multiple sessions and substantiate a modest sex difference on time production. Moreover, we demonstrate a strong correlation between performance on a standardized cognitive battery and performance in both duration-discrimination and time-production tasks; we further show that performance is uncorrelated with age after controlling for general intelligence. Additionally, we find an effect of ethnicity on time sense, with African Americans and possibly Hispanics in our cohort differing in accuracy and precision from other ethnic groups. Finally, a preliminary genome-wide association and exome chip study was performed on 148 of the participants, ruling out the possibility for a single common variant or groups of low-frequency coding variants within a single gene to explain more than ~18% of the variation in the sense of time. PMID:26641268

  11. Genetic analysis of Escherichia coli RadA: functional motifs and genetic interactions

    PubMed Central

    Cooper, Deani L; Boyle, Daniel C; Lovett, Susan T

    2015-01-01

    The RadA/Sms protein is a RecA-related protein found universally in eubacteria and plants, implicated in processing of recombination intermediates. Here we show that the putative Zn finger, Walker A motif, KNRXG motif and Lon protease homology domain of the Escherichia coli RadA protein are required for DNA damage survival. RadA is unlikely to possess protease activity as the putative active site serine is not required. Mutants in RadA have strong synergistic phenotypes with those in the branch migration protein RecG. Sensitivity of radA recG mutants to azidothymidine (AZT) can be rescued by blocking recombination with recA or recF mutations or by overexpression of RuvAB, suggesting that lethal recombination intermediates accumulate in the absence of RadA and RecG. Synthetic genetic interactions for survival to AZT or ciprofloxacin exposure were observed between RadA and known or putative helicases including DinG, Lhr, PriA, Rep, RuvAB, UvrD, YejH and YoaA. These represent the first affected phenotypes reported for Lhr, YejH and YoaA. The specificity of these effects sheds new light on the role of these proteins in DNA damage avoidance and repair and implicates a role in replication gap processing for DinG and YoaA and a role in double-strand break repair for YejH. PMID:25484163

  12. Analysis of Dengue Virus Genetic Diversity during Human and Mosquito Infection Reveals Genetic Constraints

    PubMed Central

    Sessions, October M.; Wilm, Andreas; Kamaraj, Uma Sangumathi; Choy, Milly M.; Chow, Angelia; Chong, Yuwen; Ong, Xin Mei; Nagarajan, Niranjan; Cook, Alex R.; Ooi, Eng Eong

    2015-01-01

    Dengue viruses (DENV) cause debilitating and potentially life-threatening acute disease throughout the tropical world. While drug development efforts are underway, there are concerns that resistant strains will emerge rapidly. Indeed, antiviral drugs that target even conserved regions in other RNA viruses lose efficacy over time as the virus mutates. Here, we sought to determine if there are regions in the DENV genome that are not only evolutionarily conserved but genetically constrained in their ability to mutate and could hence serve as better antiviral targets. High-throughput sequencing of DENV-1 genome directly from twelve, paired dengue patients’ sera and then passaging these sera into the two primary mosquito vectors showed consistent and distinct sequence changes during infection. In particular, two residues in the NS5 protein coding sequence appear to be specifically acquired during infection in Ae. aegypti but not Ae. albopictus. Importantly, we identified a region within the NS3 protein coding sequence that is refractory to mutation during human and mosquito infection. Collectively, these findings provide fresh insights into antiviral targets and could serve as an approach to defining evolutionarily constrained regions for therapeutic targeting in other RNA viruses. PMID:26327586

  13. Analysis of Genetic and Non-Genetic Factors Influencing Timing and Time Perception

    PubMed Central

    Bartholomew, Alex J.; Meck, Warren H.; Cirulli, Elizabeth T.

    2015-01-01

    Performance on different psychophysical tasks measuring the sense of time indicates a large amount of individual variation in the accuracy and precision of timing in the hundredths of milliseconds-to-minutes range. Quantifying factors with an influence on timing is essential to isolating a biological (genetic) contribution to the perception and estimation of time. In the largest timing study to date, 647 participants completed a duration-discrimination task in the sub-second range and a time-production task in the supra-second range. We confirm the stability of a participant’s time sense across multiple sessions and substantiate a modest sex difference on time production. Moreover, we demonstrate a strong correlation between performance on a standardized cognitive battery and performance in both duration-discrimination and time-production tasks; we further show that performance is uncorrelated with age after controlling for general intelligence. Additionally, we find an effect of ethnicity on time sense, with African Americans and possibly Hispanics in our cohort differing in accuracy and precision from other ethnic groups. Finally, a preliminary genome-wide association and exome chip study was performed on 148 of the participants, ruling out the possibility for a single common variant or groups of low-frequency coding variants within a single gene to explain more than ~18% of the variation in the sense of time. PMID:26641268

  14. The multi-niche crowding genetic algorithm: Analysis and applications

    SciTech Connect

    Cedeno, W.

    1995-09-01

    The ability of organisms to evolve and adapt to the environment has provided mother nature with a rich and diverse set of species. Only organisms well adapted to their environment can survive from one generation to the next, transferring on the traits, that made them successful, to their offspring. Competition for resources and the ever changing environment drives some species to extinction and at the same time others evolve to maintain the delicate balance in nature. In this disertation we present the multi-niche crowding genetic algorithm, a computational metaphor to the survival of species in ecological niches in the face of competition. The multi-niche crowding genetic algorithm maintains stable subpopulations of solutions in multiple niches in multimodal landscapes. The algorithm introduces the concept of crowding selection to promote mating among members with qirnilar traits while allowing many members of the population to participate in mating. The algorithm uses worst among most similar replacement policy to promote competition among members with similar traits while allowing competition among members of different niches as well. We present empirical and theoretical results for the success of the multiniche crowding genetic algorithm for multimodal function optimization. The properties of the algorithm using different parameters are examined. We test the performance of the algorithm on problems of DNA Mapping, Aquifer Management, and the File Design Problem. Applications that combine the use of heuristics and special operators to solve problems in the areas of combinatorial optimization, grouping, and multi-objective optimization. We conclude by presenting the advantages and disadvantages of the algorithm and describing avenues for future investigation to answer other questions raised by this study.

  15. Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.).

    PubMed

    Li, Pirui; Zhang, Fei; Chen, Sumei; Jiang, Jiafu; Wang, Haibin; Su, Jiangshuo; Fang, Weimin; Guan, Zhiyong; Chen, Fadi

    2016-06-01

    Characterizing the genetic diversity present in a working set of plant germplasm can contribute to its effective management and genetic improvement. The cut flower chrysanthemum (Chrysanthemum morifolium Ramat.) is an economically important ornamental species. With the repeated germplasm exchange and intensive breeding activities, it remains a major task in genetic research. The purpose of the present study was to characterize the genetic diversity and the population structure of a worldwide collection of 159 varieties, and to apply an association mapping approach to identify DNA-based markers linked to five plant architecture traits and six inflorescence traits. The genotyping demonstrated that there was no lack of genetic diversity in the collection and that pair-wise kinship values were relatively low. The clustering based on a Bayesian model of population structure did not reflect known variation in either provenance or inflorescence type. A principal coordinate analysis was, however, able to discriminate most of the varieties according to both of these criteria. About 1 in 100 marker pairs exhibited a degree of linkage disequilibrium. The association analysis identified a number of markers putatively linked to one or more of the traits. Some of these associations were robust over two seasons. The findings provide an in-depth understanding of genetic diversity and population structure present in cut flower chrysanthemum varieties, and an insight into the genetic control of plant architecture and inflorescence-related traits. PMID:26780102

  16. Integrative Bayesian analysis of neuroimaging-genetic data with application to cocaine dependence.

    PubMed

    Azadeh, Shabnam; Hobbs, Brian P; Ma, Liangsuo; Nielsen, David A; Moeller, F Gerard; Baladandayuthapani, Veerabhadran

    2016-01-15

    Neuroimaging and genetic studies provide distinct and complementary information about the structural and biological aspects of a disease. Integrating the two sources of data facilitates the investigation of the links between genetic variability and brain mechanisms among different individuals for various medical disorders. This article presents a general statistical framework for integrative Bayesian analysis of neuroimaging-genetic (iBANG) data, which is motivated by a neuroimaging-genetic study in cocaine dependence. Statistical inference necessitated the integration of spatially dependent voxel-level measurements with various patient-level genetic and demographic characteristics under an appropriate probability model to account for the multiple inherent sources of variation. Our framework uses Bayesian model averaging to integrate genetic information into the analysis of voxel-wise neuroimaging data, accounting for spatial correlations in the voxels. Using multiplicity controls based on the false discovery rate, we delineate voxels associated with genetic and demographic features that may impact diffusion as measured by fractional anisotropy (FA) obtained from DTI images. We demonstrate the benefits of accounting for model uncertainties in both model fit and prediction. Our results suggest that cocaine consumption is associated with FA reduction in most white matter regions of interest in the brain. Additionally, gene polymorphisms associated with GABAergic, serotonergic and dopaminergic neurotransmitters and receptors were associated with FA. PMID:26484829

  17. Analysis of Genetic Toggle Switch Systems Encoded on Plasmids

    NASA Astrophysics Data System (ADS)

    Loinger, Adiel; Biham, Ofer

    2009-08-01

    Genetic switch systems with mutual repression of two transcription factors, encoded on plasmids, are studied using stochastic methods. The plasmid copy number is found to strongly affect the behavior of these systems. More specifically, the average time between spontaneous switching events quickly increases with the number of plasmids. It was shown before that for a single copy encoded on the chromosome, the exclusive switch is more stable than the general switch. Here we show that when the switch is encoded on a sufficiently large number of plasmids, the situation is reversed and the general switch is more stable than the exclusive switch. These predictions can be tested experimentally using methods of synthetic biology.

  18. Genetic Analysis of Gravity Signal Transduction in Arabidopsis thaliana Seedlings

    NASA Astrophysics Data System (ADS)

    Boonsirichai, K.; Harrison, B.; Stanga, J.; Young, L.-S.; Neal, C.; Sabat, G.; Murthy, N.; Harms, A.; Sedbrook, J.; Masson, P.

    The primary roots of Arabidopsis thaliana seedlings respond to gravity stimulation by developing a tip curvature that results from differential cellular elongation on opposite flanks of the elongation zone. This curvature appears modulated by a lateral gradient of auxin that originates in the gravity-perceiving cells (statocytes) of the root cap through an apparent lateral repositioning of a component the auxin efflux carrier complex within these cells (Friml et al, 2002, Nature 415: 806-809). Unfortunately, little is known about the molecular mechanisms that govern early phases of gravity perception and signal transduction within the root-cap statocytes. We have used a molecular genetic approach to uncover some of these mechanisms. Mutations in the Arabidopsis ARG1 and ARL2 genes, which encode J-domain proteins, resulted in specific alterations in root and hypocotyl gravitropism, without pleiotropic phenotypes. Interestingly, ARG1 and ARL2 appear to function in the same genetic pathway. A combination of molecular genetic, biochemical and cell-biological approaches were used to demonstrate that ARG1 functions in early phases of gravity signal transduction within the root and hypocotyl statocytes, and is needed for efficient lateral auxin transport within the cap. The ARG1 protein is associated with components of the secretory and/or endosomal pathways, suggesting its role in the recycling of components of the auxin efflux carrier complex between plasma membrane and endosome (Boonsirichai et al, 2003, Plant Cell 15:2612-2625). Genetic modifiers of arg1-2 were isolated and shown to enhance the gravitropic defect of arg1-2, while resulting in little or no gravitropic defects in a wild type ARG1 background. A slight tendency for arg1-2;mar1-1 and arg1-2;mar2-1 double-mutant organs to display an opposite gravitropic response compared to wild type suggests that all three genes contribute to the interpretation of the gravity-vector information by seedling organs. The

  19. Functional Analysis of the Human Genome:. Study of Genetic Disease

    NASA Astrophysics Data System (ADS)

    Tsui, Lap-Chee

    2003-04-01

    I will divide my remarks into 3 parts. First, I will give a brief summary of the Human Genome Project. Second, I will describe our work on human chromosome 7 to illustrate how we could contribute to the Project and disease research. Third, I would like to bring across the argument that study of genetic disease is an integral component of the Human Genome Project. In particular, I will use cystic fibrosis as an example to elaborate why I consider disease study is a part of functional genomics.

  20. Genetic Analysis of Digestive Physiology Using Fluorescent Phospholipid Reporters

    NASA Astrophysics Data System (ADS)

    Farber, Steven A.; Pack, Michael; Ho, Shiu-Ying; Johnson, Iain D.; Wagner, Daniel S.; Dosch, Roland; Mullins, Mary C.; Hendrickson, H. Stewart; Hendrickson, Elizabeth K.; Halpern, Marnie E.

    2001-05-01

    Zebrafish are a valuable model for mammalian lipid metabolism; larvae process lipids similarly through the intestine and hepatobiliary system and respond to drugs that block cholesterol synthesis in humans. After ingestion of fluorescently quenched phospholipids, endogenous lipase activity and rapid transport of cleavage products results in intense gall bladder fluorescence. Genetic screening identifies zebrafish mutants, such as fat free, that show normal digestive organ morphology but severely reduced phospholipid and cholesterol processing. Thus, fluorescent lipids provide a sensitive readout of lipid metabolism and are a powerful tool for identifying genes that mediate vertebrate digestive physiology.

  1. Genetic Analysis of Sporadic and Familial Interstitial Pneumonia

    PubMed Central

    Schwartz, David A.

    2008-01-01

    Although much progress has been made in understanding the biology and clinical course of interstitial pneumonia, the etiology of this disease remains elusive. Epidemiologic studies have consistently identified cigarette smoke as an important exposure; however, most smokers do not develop interstitial pneumonia and many individuals with interstitial pneumonia do not smoke cigarettes. Moreover, interstitial pneumonias have been reported to cluster in families. Thus, a more thorough understanding of the genetic etiology of interstitial pneumonia may prove critically important in defining the biology and clinical course of this complex human disease. PMID:18403331

  2. Genetic variants associated with gestational diabetes mellitus: a meta-analysis and subgroup analysis

    PubMed Central

    Wu, Ling; Cui, Long; Tam, Wing Hung; Ma, Ronald C. W.; Wang, Chi Chiu

    2016-01-01

    Previous studies have demonstrated that gestational diabetes mellitus (GDM) and Type 2 diabetes mellitus (T2D) share common genetic polymorphisms. We conducted meta-analysis and subgroup analysis of all available variants and determined the effects of confounding and experimental components on the genetic association of GDM. Any case-controlled or cohort studies with genotype distribution compared GDM cases with controls were included. In total, 28 articles including 8,204 cases and 15,221 controls for 6 polymorphisms were studied. rs10830963(MTNR1B), rs7903146(TCF7L2), and rs1801278(IRS1) were significantly associated with the increased GDM risk. The association of rs4402960(IGF2BP2) and rs1800629(TNF-α) was significant only when the studies with control allele frequency deviation and publication bias were excluded. Further subgroup analysis showed the risk alleles of rs7903146(TCF7L2) and rs1801282(PPARG) were significantly associated with the GDM risk only in Asian, but not in Caucasian population. The OGTT test using 100 g, but not 75 g; and genotype detection by other assays, but not Taqman method, were also significantly associated with increased GDM risk in rs1801278(IRS1) and rs7903146(TCF7L2). Overall GDM was associated with rs10830963(MTNR1B), rs7903146(TCF7L2), and rs1801278(IRS1), but only rs7903146(TCF7L2) and rs1801282(PPARG) were significant in Asian populations. While rs1801278(IRS1) and rs7903146(TCF7L2) were significantly affected by OGTT protocol and genotyping methods. PMID:27468700

  3. Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana.

    PubMed Central

    Quesada, V; Ponce, M R; Micol, J L

    2000-01-01

    Stress caused by the increased salinity of irrigated fields impairs plant growth and is one of the major constraints that limits crop productivity in many important agricultural areas. As a contribution to solving such agronomic problems, we have carried out a large-scale screening for Arabidopsis thaliana mutants induced on different genetic backgrounds by EMS treatment, fast neutron bombardment, or T-DNA insertions. From the 675,500 seeds we screened, 17 mutant lines were isolated, all but one of which yielded 25-70% germination levels on 250 mm NaCl medium, a condition in which their ancestor ecotypes are unable to germinate. Monogenic recessive inheritance of NaCl-tolerant germination was displayed with incomplete penetrance by all the selected mutants, which fell into five complementation groups. These were named SALOBRENO (SAN) and mapped relative to polymorphic microsatellites, the map positions of three of them suggesting that they are novel genes. Strains carrying mutations in the SAN1-SAN4 genes display similar responses to both ionic effects and osmotic pressure, their germination being NaCl and mannitol tolerant but KCl and Na(2)SO(4) sensitive. In addition, NaCl-, KCl-, and mannitol-tolerant as well as abscisic-acid-insensitive germination was displayed by sañ5, whose genetic and molecular characterization indicates that it carries an extremely hypomorphic or null allele of the ABI4 gene, its deduced protein product lacking the APETALA2 DNA binding domain. PMID:10629000

  4. Genetic analysis of 7 medieval skeletons from Aragonese Pyrenees

    PubMed Central

    Núńez, Carolina; Sosa, Cecilia; Baeta, Miriam; Geppert, Maria; Turnbough, Meredith; Phillips, Nicole; Casalod, Yolanda; Bolea, Miguel; Roby, Rhonda; Budowle, Bruce; Martínez-Jarreta, Begońa

    2011-01-01

    Aim To perform a genetic characterization of 7 skeletons from medieval age found in a burial site in the Aragonese Pyrenees. Methods Allele frequencies of autosomal short tandem repeats (STR) loci were determined by 3 different STR systems. Mitochondrial DNA (mtDNA) and Y-chromosome haplogroups were determined by sequencing of the hypervariable segment 1 of mtDNA and typing of phylogenetic Y chromosome single nucleotide polymorphisms (Y-SNP) markers, respectively. Possible familial relationships were also investigated. Results Complete or partial STR profiles were obtained in 3 of the 7 samples. Mitochondrial DNA haplogroup was determined in 6 samples, with 5 of them corresponding to the haplogroup H and 1 to the haplogroup U5a. Y-chromosome haplogroup was determined in 2 samples, corresponding to the haplogroup R. In one of them, the sub-branch R1b1b2 was determined. mtDNA sequences indicated that some of the individuals could be maternally related, while STR profiles indicated no direct family relationships. Conclusions Despite the antiquity of the samples and great difficulty that genetic analyses entail, the combined use of autosomal STR markers, Y-chromosome informative SNPs, and mtDNA sequences allowed us to genotype a group of skeletons from the medieval age. PMID:21674829

  5. Genetic, molecular, and morphological analysis of compound leaf development.

    PubMed

    Goliber, T; Kessler, S; Chen, J J; Bharathan, G; Sinha, N

    1999-01-01

    Leaves, the plant organs responsible for capturing and converting most of the 170 billion metric tons of carbon fixed globally each year, can be broadly grouped into two morphological categories: simple and compound. Although simple-leaved species such as corn and Arabidopsis have traditionally been favored model systems for studying leaf development, recent years have seen an increase in genetic and molecular studies of compound leaf development. Two compound-leaved species in particular have emerged as model systems: tomato and pea. A variety of mutations which alter leaf morphology in these species have been described, and analyses of these mutations have allowed the construction of testable models of leaf development. Also, the knotted-like homeobox (KNOX) genes, which were originally discovered as regulators of meristem function, now appear to have a role in compound leaf development. In addition to the recent genetic and molecular analyses of tomato and pea, insight into the nature of compound leaf development may be gained through the study of (a) heteroblasty and heterophylly, phenomena in which a range of leaf forms can be produced by a single shoot, and (b) the evolutionary origins of compound leaves. PMID:9891889

  6. A genetic analysis of microtubule assembly and function in yeast

    SciTech Connect

    Solomon, F.; Guenette, S.; Kirkpatrick, D.; Praitis, V.; Weinstein, B.; Archer, J.

    1993-12-31

    The major goal of our laboratory`s research is to understand how cells organize their cytoskeletons to produce motility: specific patterns of shape change, intracellular motility and locomotion. We focus primarily on microtubules. We appreciate that results from several laboratories including our own, suggest that microtubule function is expressed in part through interactions with other elements of the cytoskeleton and other cellular compartments, such as the plasma membrane. However, focusing on microtubules represents a justifiable reduction, since a wide variety of drug interference and localization experiments support the notion that intact microtubules are essential for each of these motile phenomena. The primary problem facing this field is understanding how microtubule structure and function is regulated in vivo. Although there are a variety of excellent experimental systems which permit detailed analyses of behavior in vitro, the extrapolation of these results to the situation in the cytoplasm is problematic. These efforts have been boosted significantly in the last several years by two advances: first, traditionally excellent genetic organisms, such as the yeasts, have been enlisted in the study of motility; second, molecular biology has enabled {open_quotes}pseudo-genetic{close_quotes} approaches in animal cells which display the most interesting of motile phenomena. Our laboratory is involved in both of these efforts. In the present report, we will summarize our present approaches using yeast.

  7. Genetic analysis of incurvata mutants reveals three independent genetic operations at work in Arabidopsis leaf morphogenesis.

    PubMed Central

    Serrano-Cartagena, J; Candela, H; Robles, P; Ponce, M R; Pérez-Pérez, J M; Piqueras, P; Micol, J L

    2000-01-01

    In an attempt to identify genes involved in the control of leaf morphogenesis, we have studied 13 Arabidopsis thaliana mutants with curled, involute leaves, a phenotype herein referred to as Incurvata (Icu), which were isolated by G. Röbbelen and belong to the Arabidopsis Information Service Form Mutants collection. The Icu phenotype was inherited as a single recessive trait in 10 mutants, with semidominance in 2 mutants and with complete dominance in the remaining 1. Complementation analyses indicated that the studied mutations correspond to five genes, representative alleles of which were mapped relative to polymorphic microsatellites. Although most double-mutant combinations displayed additivity of the Icu phenotypes, those of icu1 icu2 and icu3 icu4 double mutants were interpreted as synergistic, which suggests that the five genes studied represent three independent genetic operations that are at work for the leaf to acquire its final form at full expansion. We have shown that icu1 mutations are alleles of the Polycomb group gene CURLY LEAF (CLF) and that the leaf phenotype of the icu2 mutant is suppressed in an agamous background, as is known for clf mutants. In addition, we have tested by means of multiplex RT-PCR the transcription of several floral genes in Icu leaves. Ectopic expression of AGAMOUS and APETALA3 was observed in clf and icu2, but not in icu3, icu4, and icu5 mutants. Taken together, these results suggest that CLF and ICU2 play related roles, the latter being a candidate to belong to the Polycomb group of regulatory genes. We propose that, as flowers evolved, a new major class of genes, including CLF and ICU2, may have been recruited to prevent the expression of floral homeotic genes in the leaves. PMID:11063708

  8. Genetic variability analysis of Zymomonas mobilis strains from the UFPEDA microorganisms collection.

    PubMed

    Silva, L C N; Araújo, J M; Azevedo, J L; Padilha, R J S A; Yara, R

    2015-01-01

    Zymomonas mobilis is a Gram-negative bacterium that has drawn attention in the bioethanol industry. Besides bioethanol, this bacterium also produces other biotechnological products such as levans, which show antitumor activity. Molecular studies involving Z. mobilis have advanced to the point that allows us to characterize interspecies genetic diversity and understand their metabolism, and these data are essential for better utilization of this species. In this study, the genetic diversity of 24 strains from the Microorganisms Collection of Departamento de Antibióticos (UFPEDA) from Universidade Federal de Pernambuco were characterized. The methods used were amplified ribosomal DNA restriction analysis and diversity analysis of the internally transcribed 16S-23S rDNA spacer region (ISR). These analyses revealed low genetic variability of the 16S rDNA gene. These data confirm that these isolates are, or are closely related to, Z. mobilis. Moreover, the analysis of the ISR confirmed the genetic variability of strains deposited in the UFPEDA collection of microorganisms and grouped these strains into ten ribotypes, which can be used in the future for breeding programs and for the preservation of biodiversity. Furthermore, this study characterized the genetic variability between the UFPEDA 205/ ZAP, UFPEDA 98/AG11, and ZAG strains, which were obtained by spheroplast fusion among them. The data also indicate that there is genetic variability among the UFPEDA 202/CP4 and UFPEDA 633/ ZM4 strains, demonstrating that these important Z. mobilis strains are distinct, as suggested in previous studies. PMID:25730020

  9. Poppr: an R package for genetic analysis of populations with mixed (clonal/sexual) reproduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poppr is an R package for analysis of population genetic data. It extends the adegenet package and provides several novel tools, particularly with regard to analysis of data from admixed, clonal, and/or sexual populations. Currently, poppr can be used for dominant/codominant and haploid/diploid gene...

  10. Analysis of genetic data on Jewish populations. I. Historical background, demographic features, and genetic markers.

    PubMed Central

    Bonné-Tamir, B; Karlin, S; Kenett, R

    1979-01-01

    Part I describes the data sets on which the analysis of Part II is based. This covers the nature of the populations sampled, the extent to which the samples are representative, and a brief review of historical and demographic facts on the populations involved. PMID:380329

  11. Genetic association analysis and meta-analysis of imputed SNPs in longitudinal studies

    PubMed Central

    Subirana, Isaac; González, Juan R

    2014-01-01

    In this paper we propose a new method to analyze time-to-event data in longitudinal genetic studies. This method address the fundamental problem of incorporating uncertainty when analyzing survival data and imputed single nucleotide polymorphisms (SNPs) from genomewide association studies (GWAS). Our method incorporates uncertainty in the likelihood function, the opposite of existing methods that incorporate the uncertainty in the design matrix. Through simulation studies and real data analyses, we show that our proposed method is unbiased and provides powerful results. We also show how combining results from different GWAS (meta-analysis) may lead to wrong results when effects are not estimated using our approach. The model is implemented in an R package that is designed to analyze uncertainty not only arising from imputed SNPs, but also from copy number variants (CNVs). PMID:23595425

  12. Cytological image analysis with a genetic fuzzy finite state machine.

    PubMed

    Estévez, J; Alayón, S; Moreno, L; Sigut, J; Aguilar, R

    2005-12-01

    The objective of this research is to design a pattern recognition system based on a Fuzzy Finite State Machine (FFSM). We try to find an optimal FFSM with Genetic Algorithms (GA). In order to validate this system, the classifier has been applied to a real problem: distinction between normal and abnormal cells in cytological breast fine needle aspirate images and cytological peritoneal fluid images. The characteristic used in the discrimination between normal and abnormal cells is a texture measurement of the chromatin distribution in cellular nuclei. Furthermore, the effectiveness of this method as a pattern classifier is compared with other existing supervised and unsupervised methods and evaluated with Receiver Operating Curves (ROC) methodology. PMID:16520142

  13. Genetic analysis of the freshwater crayfish Cherax tenuimanus.

    PubMed

    Imgrund, J; Groth, D; Wetherall, J

    1997-08-01

    The marron (Cherax tenuimanus) is one of the few species of freshwater crayfish native to Australia that is suitable for aquaculture and occurs only in the southwest of Western Australia. This study describes polymorphic microsatellite markers which differentiate marron populations from several geographically distinct regions (including rivers and streams, dams, and commercial marron farms) throughout Western Australia. Twenty microsatellite loci, primarily of the (CA)n. (GT)n type, were isolated and sequenced from a marron cosmid library. Three of these loci were characterised further. Two loci exhibited extensive polymorphism and one was monomorphic. The polymorphic loci exhibited Mendelian codominant inheritance in the family group comprising two individual parents and approximately 100 offspring bred for this study. These loci permitted differentiation between the five geographically distinct populations studied and thus provide a basis for genetic characterisation of marron stock in Western Australia. PMID:9378141

  14. Tools for the genetic analysis of germ cells.

    PubMed

    Hammond, Shirley S; Matin, Angabin

    2009-09-01

    Germ cells are essential for the propagation of individual species. Studies on germ cell development in mice highlight important biological paradigms. Beginning with their first appearance around embryonic day 7 (E7), germ cells undergo specific cellular changes at different stages of their embryonic and adult development. Germ cells migrate through the hind-regions of the embryo to eventually home into the developing gonads. Further differentiation and development of germ cells differ in males and females. The processes involved in germ cell development and their eventual differentiation into sperm and oocytes have been under extensive investigation in recent years. Studies on germ cells have shed light on the cellular and molecular processes involved in their specification, migration, proliferation, death, and differentiation. These studies have also revealed much about maintenance of stem cell populations and fertility. Here we review the genetic tools that are at present available to study germ cells in the mouse. PMID:19548313

  15. A spatial and genetic analysis of Cowbird host selection

    USGS Publications Warehouse

    Hahn, D.C.; Sedgwick, J.A.; Painter, I.S.; Casna, N.J.

    1999-01-01

    Our study of brood parasitism patterns in forest communities revealed the egg-laying frequency and host selection patterns of female cowbirds. By integrating molecular genetics and spatial data, we have the first published estimate on cowbird laying rates in field studies. The 29 females in the study laid only 1-5 eggs each, much lower than previous estimates from captive cowbirds and extrapolations from ovarian development in capture/recapture studies that had suggested that as many as 40 eggs could be laid per individual cowbird. Cowbird females also were shown for the first time to lay significantly more eggs within the home range areas they established rather than outside the home range. No patterns were uncovered for individual females preferentially parasitizing particular host species

  16. Genetic analysis of photoreceptor action pathways in Arabidopsis thaliana

    SciTech Connect

    Not Available

    1991-01-01

    The specific strategies and long-term goals of this proposal remain intact relative to the original proposal. We continue to isolate and characterize photomorphogenic mutants of Arabidopsis thaliana. The molecular and biochemical characterization of one of these mutants, det1, has led to one publication of original data and to one Society for Experimental Biology Symposium paper (see below). The phenotype of a second mutant, det2, has also been studied during this funding period. In addition, we have continued work on a general strategy to isolate mutations in trans-acting regulatory factors that mediate light-regulated gene expression, and have identified several potentially interesting regulatory mutants. In the third funding period, we will concentrate on the genetical, biochemical, and molecular characterization of these new mutants. Construction of double mutants between the new mutants and the previously characterized morphological mutants should allow us to construct a pathway for light-regulated seedling development in Arabidopsis.

  17. 'The genetic analysis of functional connectomics in Drosophila'

    PubMed Central

    Meinertzhagen, Ian A.; Lee, Chi-Hon

    2014-01-01

    Fly and vertebrate nervous systems share many organization characteristics, such as layers, columns and glomeruli, and utilize similar synaptic components, such ion channels and receptors. Both also exhibit similar network features. Recent technological advances, especially in electron microscopy, now allow us to determine synaptic circuits and identify pathways cell-by-cell, as part of the fly’s connectome. Genetic tools provide the means to identify synaptic components, as well as to record and manipulate neuronal activity, adding function to the connectome. This review discusses technical advances in these emerging areas of functional connectomics, offering prognoses in each and identifying the challenges in bridging structural connectomics to molecular biology and synaptic physiology, thereby determining fundamental computation mechanisms that underlie behaviour. PMID:23084874

  18. Historical analysis of Newfoundland dog fur colour genetics

    PubMed Central

    Bondeson, J.

    2015-01-01

    This article makes use of digitized historic newspapers to analyze Newfoundland dog fur colour genetics, and fur colour variations over time. The results indicate that contrary to the accepted view, the ‘Solid’ gene was introduced into the British population of Newfoundland dogs in the 1840s. Prior to that time, the dogs were white and black (Landseer) or white and brown, and thus spotted/spotted homozygotes. Due to ‘Solid’ being dominant over ‘spotted’, and selective breeding, today the majority of Newfoundland dogs are solid black. Whereas small white marks on the chest and/or paw appears to be a random event, the historical data supports the existence of an ‘Irish spotted’ fur colour pattern, with white head blaze, breast, paws and tail tip, in spotted/spotted homozygotes. PMID:26623371

  19. Functional and Genetic Analysis of Spectraplakins in Drosophila.

    PubMed

    Hahn, Ines; Ronshaugen, Matthew; Sánchez-Soriano, Natalia; Prokop, Andreas

    2016-01-01

    The cytoskeleton is a dynamic network of filamentous protein polymers required for virtually all cellular processes. It consists of three major classes, filamentous actin (F-actin), intermediate filaments, and microtubules, all displaying characteristic structural properties, functions, cellular distributions, and sets of interacting regulatory proteins. One unique class of proteins, the spectraplakins, bind, regulate, and integrate the functions of all three classes of cytoskeleton proteins. Spectraplakins are giant, evolutionary conserved multidomain proteins (spanning up to 9000 aa) that are true members of the plakin, spectrin, and Gas2-like protein families. They have OMIM-listed disease links to epidermolysis bullosa and hereditary sensory and autonomic neuropathy. Their role in disease is likely underrepresented since studies in model animal systems have revealed critical roles in polarity, morphogenesis, differentiation and maintenance, migration, signaling, and intracellular trafficking in a variety of tissues. This enormous diversity of spectraplakin function is consistent with the numerous isoforms produced from single genomic loci that combine different sets of functional domains in distinct cellular contexts. To study the broad range of functions and complexity of these proteins, Drosophila is a powerful model. Thus, the fly spectraplakin Short stop (Shot) acts as an actin-microtubule linker and plays important roles in many developmental processes, which provide experimentally amenable and relevant contexts in which to study spectraplakin functions. For these studies, a versatile range of relevant experimental resources that facilitate genetics and transgenic approaches, highly refined genomics tools, and an impressive set of spectraplakin-specific genetic and molecular tools are readily available. Here, we use the example of Shot to illustrate how the various tools and strategies available for Drosophila can be employed to decipher and dissect

  20. A theoretical analysis of population genetics of plants on restored habitats

    SciTech Connect

    Bogoliubov, A.G.; Loehle, C.

    1997-07-01

    Seed and propagules used for habitat restoration are not likely to be closely adapted to local site conditions. Rapid changes of genotypes frequencies on local microsites and/or microevolution would allow plants to become better adapted to a site. These same factors would help to maintain genetic diversity and ensure the survival of small endangered populations. The authors used population genetics models to examine the selection of genotypes during establishment on restored sites. Vegetative spread was shown to affect selection and significantly reduce genetic diversity. To study general microevolution, the authors linked a model of resource usage with a genetics model and analyzed competition between genotypes. A complex suite of feasible ecogenetic states was shown to result. The state actually resulting would depend strongly on initial conditions. This analysis indicated that genetic structure can vary locally and can produce overall genetic variability that is not simply the result of microsite adaptations. For restoration activities, the implication is that small differences in seed source could lead to large differences in local genetic structure after selection.

  1. A theoretical analysis of population genetics of plants on restored habitats

    SciTech Connect

    Bogoliubov, A.G.; Loehle, C.

    1995-02-01

    Seed and propagules used for habitat restoration are not likely to be closely adapted to local site conditions. Rapid changes of genotypes frequencies on local microsites and/or microevolution would allow plants to become better adapted to a site. These same factors would help to maintain genetic diversity and ensure the survival of small endangered populations. We used population genetics models to examine the selection of genotypes during establishment on restored sites. Vegetative spread was shown to affect selection and significantly reduce genetic diversity. To study general microevolution, we linked a model of resource usage with a genetics model and analyzed competition between genotypes. A complex suite of feasible ecogenetic states was shown to result. The state actually resulting would depend strongly on initial conditions. This analysis indicated that genetic structure can vary locally and can produce overall genetic variability that is not simply the result of microsite adaptations. For restoration activities, the implication is that small differences in seed source could lead to large differences in local genetic structure after selection.

  2. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    PubMed Central

    Küpper Cardoso Perseguini, Juliana Morini; Chioratto, Alisson Fernando; Zucchi, Maria Imaculada; Colombo, Carlos Augusto; Carbonell, Sérgio Augusto Moraes; Costa Mondego, Jorge Mauricio; Gazaffi, Rodrigo; Franco Garcia, Antonio Augusto; de Campos, Tatiana; de Souza, Anete Pereira; Rubiano, Luciana Benchimol

    2011-01-01

    A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats – SSRs and amplified fragment length polymorphisms – AFLPs) for assessing the genetic diversity of carioca beans. The amount of information provided by Roger’s modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively) than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm. PMID:21637550

  3. Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite markers

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Wang, Weiji; Li, Weiya; Zhang, Quanqi; Kong, Jie

    2014-08-01

    Seven microsatellite markers were used to evaluate the genetic diversity and differentiation of seven stocks of Litopenaeus vannamei, which were introduced from Central and South America to China. All seven microsatellite loci were polymorphic, with polymorphism information content ( PIC) values ranging from 0.593 to 0.952. Totally 92 alleles were identified, and the number of alleles ( Na) and effective alleles ( Ne) varied between 4 and 21 and 2.7 and 14.6, respectively. Observed heterozygosity ( H o) values were lower than the expected heterozygosity ( H e) values (0.526-0.754), which indicated that the seven stocks possessed a rich genetic diversity. Thirty-seven tests were detected for reasonable significant deviation from Hardy-Weinberg equilibrium. F is values were positive at five loci, suggesting that there was a relatively high degree of inbreeding within stocks. Pairwise F st values ranged from 0.0225 to 0.151, and most of the stock pairs were moderately differentiated. Genetic distance and cluster analysis using UPGMA revealed a close genetic relationship of L. vannamei between Pop2 and Pop3. AMOVA indicated that the genetic variation among stocks (11.3%) was much lower than that within stocks (88.7%). Although the seven stocks had a certain degree of genetic differentiation and a rich genetic diversity, there is an increasing risk of decreased performance due to inbreeding in subsequent generations.

  4. Analysis of the genetic diversity of super sweet corn inbred lines using SSR and SSAP markers.

    PubMed

    Ko, W R; Sa, K J; Roy, N S; Choi, H-J; Lee, J K

    2016-01-01

    In this study, we compared the efficiency of simple sequence repeat (SSR) and sequence specific amplified polymorphism (SSAP) markers for analyzing genetic diversity, genetic relationships, and population structure of 87 super sweet corn inbred lines from different origins. SSR markers showed higher average gene diversity and Shannon's information index than SSAP markers. To assess genetic relationships and characterize inbred lines using SSR and SSAP markers, genetic similarity (GS) matrices were constructed. The dendrogram using SSR marker data showed a complex pattern with nine clusters and a GS of 53.0%. For SSAP markers, three clusters were observed with a GS of 50.8%. Results of combined marker data showed six clusters with 53.5% GS. To analyze the genetic population structure of SSR and SSAP marker data, the 87 inbred lines were divided into groups I, II, and admixed based on the membership probability threshold of 0.8. Using combined marker data, the population structure was K = 3 and was divided into groups I, II, III, and admixed. This study represents a comparative analysis of SSR and SSAP marker data for the study of genetic diversity and genetic relationships in super sweet corn inbred lines. Our results would be useful for maize-breeding programs in Korea. PMID:26909914

  5. Genetic analysis of albuminuria in collaborative cross and multiple mouse intercross populations.

    PubMed

    Thaisz, Jill; Tsaih, Shirng-Wern; Feng, Minjie; Philip, Vivek M; Zhang, Yunyu; Yanas, Liane; Sheehan, Susan; Xu, Lingfei; Miller, Darla R; Paigen, Beverly; Chesler, Elissa J; Churchill, Gary A; Dipetrillo, Keith

    2012-10-01

    Albuminuria is an important marker of nephropathy that increases the risk of progressive renal and chronic cardiovascular diseases. The genetic basis of kidney disease is well-established in humans and rodent models, but the causal genes remain to be identified. We applied several genetic strategies to map and refine genetic loci affecting albuminuria in mice and translated the findings to human kidney disease. First, we measured albuminuria in mice from 33 inbred strains, used the data for haplotype association mapping (HAM), and detected 10 genomic regions associated with albuminuria. Second, we performed eight F(2) intercrosses between genetically diverse strains to identify six loci underlying albuminuria, each of which was concordant to kidney disease loci in humans. Third, we used the Oak Ridge National Laboratory incipient Collaborative Cross subpopulation to detect an additional novel quantitative trait loci (QTL) underlying albuminuria. We also performed a ninth intercross, between genetically similar strains, that substantially narrowed an albuminuria QTL on Chromosome 17 to a region containing four known genes. Finally, we measured renal gene expression in inbred mice to detect pathways highly correlated with albuminuria. Expression analysis also identified Glcci1, a gene known to affect podocyte structure and function in zebrafish, as a strong candidate gene for the albuminuria QTL on Chromosome 6. Overall, these findings greatly enhance our understanding of the genetic basis of albuminuria in mice and may guide future studies into the genetic basis of kidney disease in humans. PMID:22859403

  6. Molecular genetic analysis of activation-tagged transcription factors thought to be involved in photomorphogenesis

    SciTech Connect

    Neff, Michael M.

    2011-06-23

    This is a final report for Department of Energy Grant No. DE-FG02-08ER15927 entitled “Molecular Genetic Analysis of Activation-Tagged Transcription Factors Thought to be Involved in Photomorphogenesis”. Based on our preliminary photobiological and genetic analysis of the sob1-D mutant, we hypothesized that OBP3 is a transcription factor involved in both phytochrome and cryptochrome-mediated signal transduction. In addition, we hypothesized that OBP3 is involved in auxin signaling and root development. Based on our preliminary photobiological and genetic analysis of the sob2-D mutant, we also hypothesized that a related gene, LEP, is involved in hormone signaling and seedling development.

  7. Comparative analysis of patterns of localization of mobile genetic elements in selection-genetic experiments on Drosophila melanogaster

    SciTech Connect

    Vasil`eva, L.A.; Ratner, V.A. |; Zabanov, S.A.

    1995-07-01

    A comparative selection-genetic analysis of three heterogeneous lines of Drosophila melanogaster with an interrupted longitudinal wing vein was performed. In the control line, riC, and two selection lines, riSP and riSN, overall patterns of localization of six families mobile genetic elements (MGE) (MDG1, MDG2, MDG3, MDG4, copia, and 297) were compared. In all, the lines contained 220 sites (copies) in 153 segments of the Bridges` map. According to response to selection, six classes of sites were identified: strong positive (P), weak positive (p), neutral (0), weak negative (n), strong negative (N), and abnormal (A). More than 50% of the sites (P + N + p + n) were shown to respond to selection; the contrasting classes (P and N and p and n) counterbalanced each other. These sites are assumed to mark actual parts of the genome, where polygenes are located. In other words, more than 50% of the total number of the genome sites act as polygenes controlling this quantitative character and respond to selection. Pleiotropy of polygenes in such a system must be very high. 22.2% of sites are neutral (class 0); apparently, they do not mark polygenes. The remaining 21.8% of sites (class A) show an anomalous response to selection. They are assumed to mark the polygenes of another genetic system, which participated in the maintenance of homeostasis in the original line riC. On the basis of this evidence, the concept of oligogenes and polygenes is developed. Oligogenes and polygenes are genes that occupy respectively limiting and nonlimiting positions in systems of expression. Adaptive properties of oligogenes are evaluated first and evolve rapidly. Adaptive properties of polygenes are evaluated only with regard to their total set and are limited by oligogenes. Variation of polygenic systems is generated by polygenic combination and spontaneous transpositions and excisions of MGE. 26 refs., 5 tabs.

  8. Genetic analysis of a Sicilian population using 15 short tandem repeats.

    PubMed

    Calò, C M; Garofano, L; Mameli, A; Pizzamiglio, M; Vona, G

    2003-04-01

    The genetic structure of the population of Alia (Sicily, Italy) was analyzed using 15 short tandem repeats: TPOX, D2S1338, D3S1358, FIBRA, D5S818, CSF1PO, D7S820, D8S1179, TH01, VWA, D13S317, D16S539, D18S51, D19S433, and D21S11. Two of these markers, D2S1338 and D19S433, have never before been used in research on population genetics and only recently have they been put to use in forensic medicine. Results of the analysis underline the genetic isolation of the Alia population and show it to be a recent bottleneck as a consequence of a cholera epidemic in 1837. While comparing the Alia population with other populations from Sicily, a genetic heterogeneity within Sicily was uncovered, thus confirming previous results obtained from the analysis of classical markers. This heterogeneity underlines the existence of genetic boundaries within the island. Comparisons with other Italian, Mediterranean, and European populations highlight the differentiation of the Sicilian population, reflecting the presence of a genetic boundary that separates Sicily from northern and central Italy and from the western Mediterranean basin. PMID:12943156

  9. Genetic analysis of gravity signal transduction in roots

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Strohm, Allison; Baldwin, Katherine

    To grow downward into the soil, roots use gravity as a guide. Specialized cells, named stato-cytes, enable this directional growth response by perceiving gravity. Located in the columella region of the cap, these cells sense a reorientation of the root within the gravity field through the sedimentation of, and/or tension/pressure exerted by, dense amyloplasts. This process trig-gers a gravity signal transduction pathway that leads to a fast alkalinization of the cytoplasm and a change in the distribution of the plasma membrane-associated auxin-efflux carrier PIN3. The latter protein is uniformly distributed within the plasma membrane on all sides of the cell in vertically oriented roots. However, it quickly accumulates at the bottom side upon gravis-timulation. This process correlates with a preferential transport of auxin to the bottom side of the root cap, resulting in a lateral gradient across the tip. This gradient is then transported to the elongation zone where it promotes differential cellular elongation, resulting in downward curvature. We isolated mutations that affect gravity signal transduction at a step that pre-cedes cytoplasmic alkalinization and/or PIN3 relocalization and lateral auxin transport across the cap. arg1 and arl2 mutations identify a common genetic pathway that is needed for all three gravity-induced processes in the cap statocytes, indicating these genes function early in the pathway. On the other hand, adk1 affects gravity-induced PIN3 relocalization and lateral auxin transport, but it does not interfere with cytoplasmic alkalinization. ARG1 and ARL2 encode J-domain proteins that are associated with membranes of the vesicular trafficking path-way whereas ADK1 encodes adenosine kinase, an enzyme that converts adenosine derived from nucleic acid metabolism and the AdoMet cycle into AMP, thereby alleviating feedback inhibi-tion of this important methyl-donor cycle. Because mutations in ARG1 (and ARL2) do not completely eliminate

  10. Optimization of Volumetric Computed Tomography for Skeletal Analysis of Model Genetic Organisms

    PubMed Central

    Vasquez, Sergio X.; Hansen, Mark S.; Bahadur, Ali N.; Hockin, Matthew F.; Kindlmann, Gordon L.; Nevell, Lisa; Wu, Isabel Q.; Grunwald, David J.; Weinstein, David M.; Jones, Greg M.; Johnson, Christopher R.; Vandeberg, John L.; Capecchi, Mario R.; Keller, Charles

    2011-01-01

    Forward and reverse genetics now allow researchers to understand embryonic and postnatal gene function in a broad range of species. Although some genetic mutations cause obvious morphological change, other mutations can be more subtle and, without adequate observation and quantification, might be overlooked. For the increasing number of genetic model organisms examined by the growing field of phenomics, standardized but sensitive methods for quantitative analysis need to be incorporated into routine practice to effectively acquire and analyze ever-increasing quantities of phenotypic data. In this study, we present platform-independent parameters for the use of microscopic x-ray computed tomography (microCT) for phenotyping species-specific skeletal morphology of a variety of different genetic model organisms. We show that microCT is suitable for phenotypic characterization for prenatal and postnatal specimens across multiple species. PMID:18286615

  11. Factor analysis models for structuring covariance matrices of additive genetic effects: a Bayesian implementation

    PubMed Central

    de los Campos, Gustavo; Gianola, Daniel

    2007-01-01

    Multivariate linear models are increasingly important in quantitative genetics. In high dimensional specifications, factor analysis (FA) may provide an avenue for structuring (co)variance matrices, thus reducing the number of parameters needed for describing (co)dispersion. We describe how FA can be used to model genetic effects in the context of a multivariate linear mixed model. An orthogonal common factor structure is used to model genetic effects under Gaussian assumption, so that the marginal likelihood is multivariate normal with a structured genetic (co)variance matrix. Under standard prior assumptions, all fully conditional distributions have closed form, and samples from the joint posterior distribution can be obtained via Gibbs sampling. The model and the algorithm developed for its Bayesian implementation were used to describe five repeated records of milk yield in dairy cattle, and a one common FA model was compared with a standard multiple trait model. The Bayesian Information Criterion favored the FA model. PMID:17897592

  12. Combined sequence-based and genetic mapping analysis of complex traits in outbred rats

    PubMed Central

    Baud, Amelie; Hermsen, Roel; Guryev, Victor; Stridh, Pernilla; Graham, Delyth; McBride, Martin W.; Foroud, Tatiana; Calderari, Sophie; Diez, Margarita; Ockinger, Johan; Beyeen, Amennai D.; Gillett, Alan; Abdelmagid, Nada; Guerreiro-Cacais, Andre Ortlieb; Jagodic, Maja; Tuncel, Jonatan; Norin, Ulrika; Beattie, Elisabeth; Huynh, Ngan; Miller, William H.; Koller, Daniel L.; Alam, Imranul; Falak, Samreen; Osborne-Pellegrin, Mary; Martinez-Membrives, Esther; Canete, Toni; Blazquez, Gloria; Vicens-Costa, Elia; Mont-Cardona, Carme; Diaz-Moran, Sira; Tobena, Adolf; Hummel, Oliver; Zelenika, Diana; Saar, Kathrin; Patone, Giannino; Bauerfeind, Anja; Bihoreau, Marie-Therese; Heinig, Matthias; Lee, Young-Ae; Rintisch, Carola; Schulz, Herbert; Wheeler, David A.; Worley, Kim C.; Muzny, Donna M.; Gibbs, Richard A.; Lathrop, Mark; Lansu, Nico; Toonen, Pim; Ruzius, Frans Paul; de Bruijn, Ewart; Hauser, Heidi; Adams, David J.; Keane, Thomas; Atanur, Santosh S.; Aitman, Tim J.; Flicek, Paul; Malinauskas, Tomas; Jones, E. Yvonne; Ekman, Diana; Lopez-Aumatell, Regina; Dominiczak, Anna F; Johannesson, Martina; Holmdahl, Rikard; Olsson, Tomas; Gauguier, Dominique; Hubner, Norbert; Fernandez-Teruel, Alberto; Cuppen, Edwin; Mott, Richard; Flint, Jonathan

    2013-01-01

    Genetic mapping on fully sequenced individuals is transforming our understanding of the relationship between molecular variation and variation in complex traits. Here we report a combined sequence and genetic mapping analysis in outbred rats that maps 355 quantitative trait loci for 122 phenotypes. We identify 35 causal genes involved in 31 phenotypes, implicating novel genes in models of anxiety, heart disease and multiple sclerosis. The relation between sequence and genetic variation is unexpectedly complex: at approximately 40% of quantitative trait loci a single sequence variant cannot account for the phenotypic effect. Using comparable sequence and mapping data from mice, we show the extent and spatial pattern of variation in inbred rats differ significantly from those of inbred mice, and that the genetic variants in orthologous genes rarely contribute to the same phenotype in both species. PMID:23708188

  13. Combined sequence-based and genetic mapping analysis of complex traits in outbred rats.

    PubMed

    Baud, Amelie; Hermsen, Roel; Guryev, Victor; Stridh, Pernilla; Graham, Delyth; McBride, Martin W; Foroud, Tatiana; Calderari, Sophie; Diez, Margarita; Ockinger, Johan; Beyeen, Amennai D; Gillett, Alan; Abdelmagid, Nada; Guerreiro-Cacais, Andre Ortlieb; Jagodic, Maja; Tuncel, Jonatan; Norin, Ulrika; Beattie, Elisabeth; Huynh, Ngan; Miller, William H; Koller, Daniel L; Alam, Imranul; Falak, Samreen; Osborne-Pellegrin, Mary; Martinez-Membrives, Esther; Canete, Toni; Blazquez, Gloria; Vicens-Costa, Elia; Mont-Cardona, Carme; Diaz-Moran, Sira; Tobena, Adolf; Hummel, Oliver; Zelenika, Diana; Saar, Kathrin; Patone, Giannino; Bauerfeind, Anja; Bihoreau, Marie-Therese; Heinig, Matthias; Lee, Young-Ae; Rintisch, Carola; Schulz, Herbert; Wheeler, David A; Worley, Kim C; Muzny, Donna M; Gibbs, Richard A; Lathrop, Mark; Lansu, Nico; Toonen, Pim; Ruzius, Frans Paul; de Bruijn, Ewart; Hauser, Heidi; Adams, David J; Keane, Thomas; Atanur, Santosh S; Aitman, Tim J; Flicek, Paul; Malinauskas, Tomas; Jones, E Yvonne; Ekman, Diana; Lopez-Aumatell, Regina; Dominiczak, Anna F; Johannesson, Martina; Holmdahl, Rikard; Olsson, Tomas; Gauguier, Dominique; Hubner, Norbert; Fernandez-Teruel, Alberto; Cuppen, Edwin; Mott, Richard; Flint, Jonathan

    2013-07-01

    Genetic mapping on fully sequenced individuals is transforming understanding of the relationship between molecular variation and variation in complex traits. Here we report a combined sequence and genetic mapping analysis in outbred rats that maps 355 quantitative trait loci for 122 phenotypes. We identify 35 causal genes involved in 31 phenotypes, implicating new genes in models of anxiety, heart disease and multiple sclerosis. The relationship between sequence and genetic variation is unexpectedly complex: at approximately 40% of quantitative trait loci, a single sequence variant cannot account for the phenotypic effect. Using comparable sequence and mapping data from mice, we show that the extent and spatial pattern of variation in inbred rats differ substantially from those of inbred mice and that the genetic variants in orthologous genes rarely contribute to the same phenotype in both species. PMID:23708188

  14. Mutation analysis and molecular genetics of epidermolysis bullosa.

    PubMed

    Pulkkinen, L; Uitto, J

    1999-02-01

    Cutaneous basement membrane zone (BMZ) consists of a number of attachment structures that are critical for stable association of the epidermis to the underlying dermis. These include hemidesmosomes, anchoring filaments and anchoring fibrils which form an interconnecting network extending from the intracellular milieu of basal keratinocytes across the dermal-epidermal basement membrane to the underlying dermis. Aberrations in this network structure, e.g. due to genetic lesions in the corresponding genes, can result in fragility of the skin at the level of the cutaneous BMZ. The prototype of such diseases is epidermolysis bullosa (EB), a heterogeneous group of genodermatoses characterized by fragility and blistering of the skin, often associated with extracutaneous manifestations, and inherited either in an autosomal dominant or autosomal recessive manner. Based on constellations of the phenotypic manifestations, severity of the disease, and the level of tissue separation within the cutaneous BMZ, EB has been divided into clinically distinct subcategories, including the simplex, hemidesmosomal, junctional and dystrophic variants. Elucidation of BMZ gene/protein systems and development of mutation detection strategies have allowed identification of mutations in 10 different BMZ genes which can explain the clinical heterogeneity of EB. These include mutations in the type VII collagen gene (COL7A1) in the dystrophic (severely scarring) forms of EB; mutations in the laminin 5 genes (LAMA3, LAMB3 and LAMC2) in a lethal (Herlitz) variant of junctional EB; aberrations in the type XVII collagen gene (COL17A1) in non-lethal forms of junctional EB; mutations in the alpha6 and beta4 integrin genes in a distinct hemidesmosomal variant of EB with congenital pyloric atresia; and mutations in the plectin gene (PLEC1) in a form of EB associated with late-onset muscular dystrophy. Identification of mutations in these gene/protein systems attests to their critical importance in the

  15. Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises

    PubMed Central

    Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be

  16. Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.

    PubMed

    Latch, Emily K; Boarman, William I; Walde, Andrew; Fleischer, Robert C

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be

  17. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae)

    DOE PAGESBeta

    Zhang, Dong; Kong, Wenqian; Robertson, Jon; Goff, Valorie H; Epps, Ethan; Kerr, Alexandra; Mills, Gabriel; Cromwell, Jay; Lugin, Yelena; Phillips, Christine; et al

    2015-12-01

    Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures ofmore » selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved ‘hotspots’ in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.« less

  18. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae)

    SciTech Connect

    Zhang, Dong; Kong, Wenqian; Robertson, Jon; Goff, Valorie H; Epps, Ethan; Kerr, Alexandra; Mills, Gabriel; Cromwell, Jay; Lugin, Yelena; Phillips, Christine; Paterson, Andrew H

    2015-12-01

    Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures of selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved ‘hotspots’ in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.

  19. Genetic analysis of phase change in Bordetella pertussis.

    PubMed Central

    Weiss, A A; Falkow, S

    1984-01-01

    Avirulent-phase derivatives of Bordetella pertussis (those which have simultaneously lost the ability to synthesize several virulence-associated factors) and the genetic mechanism of the phase change were studied. Increased tolerance to erythromycin was shown to be an avirulent-phase marker. By the use of efficiency of plating on erythromycin, the proportion of avirulent-phase (Vir) variants in a virulent-phase (Vir+) population was determined to be between 10(-3) and 10(-6), depending on the strain. We showed that the phase shift is reversible and detected a complete Vir- to Vir+ to Vir- to cycle. In other experiments, hybridization studies with avirulent-phase mutants obtained by Tn5 mutagenesis suggested that a single region located at a unique site in the B. pertussis chromosome controls the phase change. One of the avirulent Tn5 mutants was used as a recipient in a conjugative cross with a virulent-phase donor. All recombinants which had reacquired the virulence-associated factors also lost Tn5, indicating the loss of Tn5 was required to restore the Vir+ phenotype. The Tn5 avirulent-phase mutants behave as if the insertion interrupted the function of a transacting gene product which is required for the expression of the other virulent-phase genes. A model of the molecular basis of the phase regulation is presented. Images PMID:6317569

  20. Genetic analysis of petrobactin transport in Bacillus anthracis.

    PubMed

    Carlson, Paul E; Dixon, Shandee D; Janes, Brian K; Carr, Katherine A; Nusca, Tyler D; Anderson, Erica C; Keene, Sarra E; Sherman, David H; Hanna, Philip C

    2010-02-01

    Iron acquisition mechanisms play an important role in the pathogenesis of many infectious microbes. In Bacillus anthracis, the siderophore petrobactin is required for both growth in iron-depleted conditions and for full virulence of the bacterium. Here we demonstrate the roles of two putative petrobactin binding proteins FatB and FpuA (encoded by GBAA5330 and GBAA4766 respectively) in B. anthracis iron acquisition and pathogenesis. Markerless deletion mutants were created using allelic exchange. The Delta fatB strain was capable of wild-type levels of growth in iron-depleted conditions, indicating that FatB does not play an essential role in petrobactin uptake. In contrast, Delta fpuA bacteria exhibited a significant decrease in growth under low-iron conditions when compared with wild-type bacteria. This mutant could not be rescued by the addition of exogenous purified petrobactin. Further examination of this strain demonstrated increased levels of petrobactin accumulation in the culture supernatants, suggesting no defect in siderophore synthesis or export but, instead, an inability of Delta fpuA to import this siderophore. Delta fpuA spores were also significantly attenuated in a murine model of inhalational anthrax. These results provide the first genetic evidence demonstrating the role of FpuA in petrobactin uptake. PMID:20487286

  1. Genetic analysis of water-deficit response traits in maize.

    PubMed

    Ahmad, M; Saleem, M; Ahsan, M; Ahmad, A

    2016-01-01

    A set of sixty inbred lines of maize (Zea mays L.) were screened in the greenhouse at the seedling stage under both normal and water-deficit conditions. Six water deficit-tolerant inbred lines were selected based on root to shoot ratios. These selected lines were crossed in a diallel pattern. The parental, F1, and reciprocal cross plants were planted in a field under both normal and water-deficit conditions. Normal irrigation was applied to the control set, while the water-deficit set received 50% of normal irrigation levels. Analyses of variance of various morpho-physiological parameters identified significant differences among the selected lines under both conditions, indicating the presence of significant genetic variability. Variance components for general combining ability (GCA), specific combining ability (SCA), and reciprocal effects for all the parameters were estimated to determine the relative importance of additive and non-additive or dominance type of gene action. Variance components for GCA were larger than for SCA indicating the preponderance of additive types of gene action for all the traits under study. Hybrids developed from inbred lines W-10 and W-64SP proved to have the best grain yield under normal and water-deficit conditions. Under water-deficit conditions, the best performing cross was B-34 x W-10. Hence, these inbred lines and the hybrids might be of value in future breeding programs. PMID:27051012

  2. Functional analysis of the Gonococcal Genetic Island of Neisseria gonorrhoeae.

    PubMed

    Pachulec, Emilia; Siewering, Katja; Bender, Tobias; Heller, Eva-Maria; Salgado-Pabon, Wilmara; Schmoller, Shelly K; Woodhams, Katelynn L; Dillard, Joseph P; van der Does, Chris

    2014-01-01

    Neisseria gonorrhoeae is an obligate human pathogen that is responsible for the sexually-transmitted disease gonorrhea. N. gonorrhoeae encodes a T4SS within the Gonococcal Genetic Island (GGI), which secretes ssDNA directly into the external milieu. Type IV secretion systems (T4SSs) play a role in horizontal gene transfer and delivery of effector molecules into target cells. We demonstrate that GGI-like T4SSs are present in other β-proteobacteria, as well as in α- and γ-proteobacteria. Sequence comparison of GGI-like T4SSs reveals that the GGI-like T4SSs form a highly conserved unit that can be found located both on chromosomes and on plasmids. To better understand the mechanism of DNA secretion by N. gonorrhoeae, we performed mutagenesis of all genes encoded within the GGI, and studied the effects of these mutations on DNA secretion. We show that genes required for DNA secretion are encoded within the yaa-atlA and parA-parB regions, while genes encoded in the yfeB-exp1 region could be deleted without any effect on DNA secretion. Genes essential for DNA secretion are encoded within at least four different operons. PMID:25340397

  3. Genetic analysis of extracellular proteins of Serratia marcescens.

    PubMed Central

    Hines, D A; Saurugger, P N; Ihler, G M; Benedik, M J

    1988-01-01

    Serratia marcescens, a gram-negative enteric bacterium, is capable of secreting a number of proteins extracellularly. The types of activity found in the growth media include proteases, chitinases, a nuclease, and a lipase. Genetic studies have been undertaken to investigate the mechanisms used for the extracellular secretion of these exoproteins by S. marcescens. Many independent mutations affecting the extracellular enzymes were isolated after chemical and transposon mutagenesis. Using indicator media, we have identified loci involved in the production or excretion of extracellular protease, nuclease, or chitinase by S. marcescens. None of the mutations represented general extracellular-excretion mutants; in no case was the production or excretion of multiple exoproteins affected. A variety of loci were identified, including regulatory mutations affecting nuclease and chitinase expression. A number of phenotypically different protease mutants arose. Some of them may represent different gene products required for the production and excretion of the major metalloprotease, a process more complex than that for the other S. marcescens exoproteins characterized to date. PMID:2842305

  4. Genetic analysis of consanguineous families presenting with congenital ocular defects.

    PubMed

    Ullah, Ehsan; Nadeem Saqib, Muhammad Arif; Sajid, Sundus; Shah, Neelam; Zubair, Muhammad; Khan, Muzammil Ahmad; Ahmed, Iftikhar; Ali, Ghazanfar; Dutta, Atanu Kumar; Danda, Sumita; Lao, Richard; Ling-Fung Tang, Paul; Kwok, Pui-Yan; Ansar, Muhammad; Slavotinek, Anne

    2016-05-01

    Anophthalmia and microphthalmia (A/M) are a group of rare developmental disorders that affect the size of the ocular globe. A/M may present as the sole clinical feature, but are also frequently found in a variety of syndromes. A/M is genetically heterogeneous and can be caused by chromosomal aberrations, copy number variations and single gene mutations. To date, A/M has been caused by mutations in at least 20 genes that show different modes of inheritance. In this study, we enrolled eight consanguineous families with A/M, including seven from Pakistan and one from India. Sanger and exome sequencing of DNA samples from these families identified three novel mutations including two mutations in the Aldehyde Dehydrogenase 1 Family Member A3 (ALDH1A3) gene, [c.1310_1311delAT; p.(Tyr437Trpfs*44) and c.964G > A; p.(Val322Met)] and a single missense mutation in Forkhead Box E3 (FOXE3) gene, [c.289A > G p.(Ile97Val)]. Additionally two previously reported mutations were identified in FOXE3 and in Visual System Homeobox 2 (VSX2). This is the first comprehensive study on families with A/M from the Indian subcontinent which provides further evidence for the involvement of known genes with novel and recurrent mutations. PMID:26995144

  5. A genetic analysis of 23 Chinese patients with hemophilia B

    PubMed Central

    Wang, Qing-Yun; Hu, Bei; Liu, Hui; Tang, Liang; Zeng, Wei; Wu, Ying-Ying; Cheng, Zhi-Peng; Hu, Yu

    2016-01-01

    Hemophilia B (HB) is an X-linked recessive bleeding disorder caused by mutations in the coagulation factor IX (FIX) gene. Genotyping patients with HB is essential for genetic counseling and provides useful information for patient management. In this study, the F9 gene from 23 patients with HB was analyzed by direct sequencing. Nineteen point mutations were identified, including a novel missense variant (c.520G > C, p.Val174Leu) in a patient with severe HB and a previously unreported homozygous missense mutation (c.571C > T, p.Arg191Cys) in a female patient with mild HB. Two large F9 gene deletions with defined breakpoints (g.10413_11363del, g.12163_23369del) were identified in two patients with severe HB using a primer walking strategy followed by sequencing. The flanking regions of the two breakpoints revealed recombination-associated elements (repetitive elements, non-B conformation forming motifs) with a 5-bp microhomology in the breakpoint junction of g.12163_23369del. These findings imply that non-homologous end joining and microhomology-mediated break-induced replication are the putative mechanisms for the deletions of the F9 gene. Because the g.12163_23369del deletion caused exons to be absent without a frameshift mutation occurring, a smaller FIX protein was observed in western blot analyses. PMID:27109384

  6. A genetic analysis of 23 Chinese patients with hemophilia B.

    PubMed

    Wang, Qing-Yun; Hu, Bei; Liu, Hui; Tang, Liang; Zeng, Wei; Wu, Ying-Ying; Cheng, Zhi-Peng; Hu, Yu

    2016-01-01

    Hemophilia B (HB) is an X-linked recessive bleeding disorder caused by mutations in the coagulation factor IX (FIX) gene. Genotyping patients with HB is essential for genetic counseling and provides useful information for patient management. In this study, the F9 gene from 23 patients with HB was analyzed by direct sequencing. Nineteen point mutations were identified, including a novel missense variant (c.520G > C, p.Val174Leu) in a patient with severe HB and a previously unreported homozygous missense mutation (c.571C > T, p.Arg191Cys) in a female patient with mild HB. Two large F9 gene deletions with defined breakpoints (g.10413_11363del, g.12163_23369del) were identified in two patients with severe HB using a primer walking strategy followed by sequencing. The flanking regions of the two breakpoints revealed recombination-associated elements (repetitive elements, non-B conformation forming motifs) with a 5-bp microhomology in the breakpoint junction of g.12163_23369del. These findings imply that non-homologous end joining and microhomology-mediated break-induced replication are the putative mechanisms for the deletions of the F9 gene. Because the g.12163_23369del deletion caused exons to be absent without a frameshift mutation occurring, a smaller FIX protein was observed in western blot analyses. PMID:27109384

  7. [Molecular, genetic and physiological analysis of photoinhibition and photosynthetic

    SciTech Connect

    Not Available

    1992-01-01

    A major goal of this project is to use a combined molecular genetic, biochemical and physiological approach to understand the relationship between photosynthetic performance and the structure of the multifunctional D1 reaction center protein of Photosystem II encoded by the chloroplast psbA gene. Relative to other chloroplast proteins, turover of D1 is rapid and highly light dependent and de novo synthesis of D1 is required for a plant's recovery from short term exposure to irradiances which induce photoinhibitory damage. These observations have led to models for a damage/repair cycle of PSII involving the targeted degradation and replacement of photodamaged D1. To investigate the effects of perturbing the D1 cycle on photosynthesis and autotrophic growth under high and low irradiance, we have examined the consequences of site-specific mutations of the psbA and 16S rRNA genes affecting synthesis, maturation and function/stability of the D1 protein introduced into the chloroplast genome of wildtype strain of the green alga Chlamydomonas reinhardtii using biolistic transformation.

  8. Genetic analysis of the claret locus of Drosophila melanogaster

    SciTech Connect

    Sequeira, W.; Nelson, C.R.; Szauter, P. )

    1989-11-01

    The claret (ca) locus of Drosophila melanogaster comprises two separately mutable domains, one responsible for eye color and one responsible for proper disjunction of chromosomes in meiosis and early cleavage divisions. Previously isolated alleles are of three types: (1) alleles of the claret (ca) type that affect eye color only, (2) alleles of the claret-nondisjunctional (ca{sup nd}) type that affect eye color and chromosome behavior, and (3) a meiotic mutation, non-claret disjunctional (ncd), that affects chromosome behavior only. In order to investigate the genetic structure of the claret locus, the authors have isolated 19 radiation-induced alleles of claret on the basis of the eye color phenotype. Two of these 19 new alleles are of the ca{sup nd} type, while 17 are of the ca type, demonstrating that the two domains do not often act as a single target for mutagenesis. This suggests that the two separately mutable functions are likely to be encoded by separate or overlapping genes rather than by a single gene. One of the new alleles of the ca{sup nd} type is a chromosome rearrangement with a breakpoint at the position of the claret locus. If this breakpoint is the cause of the mutant phenotype and there are no other mutations associated with the rearrangement, the two functions must be encoded by overlapping genes.

  9. Analysis of genetics and risk factors of Alzheimer's Disease.

    PubMed

    Panpalli Ates, M; Karaman, Y; Guntekin, S; Ergun, M A

    2016-06-14

    Alzheimer's Disease is the leading neurodegenerative cause of dementia. The pathogenesis is not clearly understood yet, is believed to be the complex interaction between genetic and environmental factors. Consequently vascular risk factors and Apolipoprotein E genotyping are increasingly gaining importance. This study aimed at assessing the relationships between Alzheimer's Disease and Apolipoprotein E phenotype and vascular risk factors. Patients diagnosed with "possible Alzheimer's Disease" in the Gazi University, Department of Neurology, were included in the study and age-matched volunteer patients who attended the polyclinic were included as a control group. In this study, the risk factors including low education level, smoking, hyperlipidemia, higher serum total cholesterol levels, and hyperhomocysteinemia were found to be statistically significantly more common in the Alzheimer's Disease group in comparison to the Control Group, while all Apolipoprotein E ε4/ε4 genotypes were found in the Alzheimer's Disease group. The presence of the Apolipoprotein E ε4 allele is believed to increase vascular risk factors as well as to affect Alzheimer's Disease directly. The biological indicators which are used in identifying the patients' genes will be probably used in the treatment plan of the patients in the future. PMID:27026590

  10. Genetic analysis, in silico prediction, and family segregation in long QT syndrome.

    PubMed

    Riuró, Helena; Campuzano, Oscar; Berne, Paola; Arbelo, Elena; Iglesias, Anna; Pérez-Serra, Alexandra; Coll-Vidal, Mònica; Partemi, Sara; Mademont-Soler, Irene; Picó, Ferran; Allegue, Catarina; Oliva, Antonio; Gerstenfeld, Edward; Sarquella-Brugada, Georgia; Castro-Urda, Víctor; Fernández-Lozano, Ignacio; Mont, Lluís; Brugada, Josep; Scornik, Fabiana S; Brugada, Ramon

    2015-01-01

    The heritable cardiovascular disorder long QT syndrome (LQTS), characterized by prolongation of the QT interval on electrocardiogram, carries a high risk of sudden cardiac death. We sought to add new data to the existing knowledge of genetic mutations contributing to LQTS to both expand our understanding of its genetic basis and assess the value of genetic testing in clinical decision-making. Direct sequencing of the five major contributing genes, KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2, was performed in a cohort of 115 non-related LQTS patients. Pathogenicity of the variants was analyzed using family segregation, allele frequency from public databases, conservation analysis, and Condel and Provean in silico predictors. Phenotype-genotype correlations were analyzed statistically. Sequencing identified 36 previously described and 18 novel mutations. In 51.3% of the index cases, mutations were found, mostly in KCNQ1, KCNH2, and SCN5A; 5.2% of cases had multiple mutations. Pathogenicity analysis revealed 39 mutations as likely pathogenic, 12 as VUS, and 3 as non-pathogenic. Clinical analysis revealed that 75.6% of patients with QTc≥500 ms were genetically confirmed. Our results support the use of genetic testing of KCNQ1, KCNH2, and SCN5A as part of the diagnosis of LQTS and to help identify relatives at risk of SCD. Further, the genetic tools appear more valuable as disease severity increases. However, the identification of genetic variations in the clinical investigation of single patients using bioinformatic tools can produce erroneous conclusions regarding pathogenicity. Therefore segregation studies are key to determining causality. PMID:24667783

  11. Molecular genetic analysis of patients with sporadic and X-linked infantile nystagmus

    PubMed Central

    Zhao, Hui; Huang, Xiu-Feng; Zheng, Zhi-Li; Deng, Wen-Li; Lei, Xin-Lan; Xing, Dong-Jun; Ye, Liang; Xu, Su-Zhong; Chen, Jie; Zhang, Fang; Yu, Xin-Ping; Jin, Zi-Bing

    2016-01-01

    Objectives Infantile nystagmus (IN) is a genetically heterogeneous condition characterised by involuntary rhythmic oscillations of the eyes accompanied by different degrees of vision impairment. Two genes have been identified as mainly causing IN: FRMD7 and GPR143. The aim of our study was to identify the genetic basis of both sporadic IN and X-linked IN. Design Prospective analysis. Patients Twenty Chinese patients, including 15 sporadic IN cases and 5 from X-linked IN families, were recruited and underwent molecular genetic analysis. We first performed PCR-based DNA sequencing of the entire coding region and the splice junctions of the FRMD7 and GPR143 genes in participants. Mutational analysis and co-segregation confirmation were then performed. Setting All clinical examinations and genetic experiments were performed in the Eye Hospital of Wenzhou Medical University. Results Two mutations in the FRMD7 gene, including one novel nonsense mutation (c.1090C>T, p.Q364X) and one reported missense mutation (c.781C>G, p.R261G), were identified in two of the five (40%) X-linked IN families. However, none of putative mutations were identified in FRMD7 or GPR143 in any of the sporadic cases. Conclusions The results suggest that mutations in FRMD7 appeared to be the major genetic cause of X-linked IN, but not of sporadic IN. Our findings provide further insights into FRMD7 mutations, which could be helpful for future genetic diagnosis and genetic counselling of Chinese patients with nystagmus. PMID:27036142

  12. Genetic analysis, in silico prediction, and family segregation in long QT syndrome

    PubMed Central

    Riuró, Helena; Campuzano, Oscar; Berne, Paola; Arbelo, Elena; Iglesias, Anna; Pérez-Serra, Alexandra; Coll-Vidal, Mònica; Partemi, Sara; Mademont-Soler, Irene; Picó, Ferran; Allegue, Catarina; Oliva, Antonio; Gerstenfeld, Edward; Sarquella-Brugada, Georgia; Castro-Urda, Víctor; Fernández-Lozano, Ignacio; Mont, Lluís; Brugada, Josep; Scornik, Fabiana S; Brugada, Ramon

    2015-01-01

    The heritable cardiovascular disorder long QT syndrome (LQTS), characterized by prolongation of the QT interval on electrocardiogram, carries a high risk of sudden cardiac death. We sought to add new data to the existing knowledge of genetic mutations contributing to LQTS to both expand our understanding of its genetic basis and assess the value of genetic testing in clinical decision-making. Direct sequencing of the five major contributing genes, KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2, was performed in a cohort of 115 non-related LQTS patients. Pathogenicity of the variants was analyzed using family segregation, allele frequency from public databases, conservation analysis, and Condel and Provean in silico predictors. Phenotype-genotype correlations were analyzed statistically. Sequencing identified 36 previously described and 18 novel mutations. In 51.3% of the index cases, mutations were found, mostly in KCNQ1, KCNH2, and SCN5A; 5.2% of cases had multiple mutations. Pathogenicity analysis revealed 39 mutations as likely pathogenic, 12 as VUS, and 3 as non-pathogenic. Clinical analysis revealed that 75.6% of patients with QTc≥500 ms were genetically confirmed. Our results support the use of genetic testing of KCNQ1, KCNH2, and SCN5A as part of the diagnosis of LQTS and to help identify relatives at risk of SCD. Further, the genetic tools appear more valuable as disease severity increases. However, the identification of genetic variations in the clinical investigation of single patients using bioinformatic tools can produce erroneous conclusions regarding pathogenicity. Therefore segregation studies are key to determining causality. PMID:24667783

  13. [Molecular-genetic analysis of wheat (T. aestivum L.) genome with introgression of Ae. cylindrica Host genetic elements].

    PubMed

    Galaev, A V; Sivolap, Iu M

    2005-01-01

    Wheat-aegilops hybrid plants Triticum aestivum L. (2n = 42) x Aegilops cylindrica Host (2n = 28) were investigated with using microsatellite markers. In two BC1F9 lines some genome modifications connected with losing DNA fragments of initial variety or appearing of Aegilops genome elements were detected. In some investigated hybrids new amplicons lacking in parental plants were found. Substitution of wheat chromosomes for aegilops chromosomes was not revealed. Analysis of microsatellite loci in BC2F5 plants showed stable introgression of aegilops genetic elements into wheat; elimination of some transferred aegilops DNA fragments in the course of backcrossing; decreasing size of introgressive elements after backcrossing. Introgressive lines were classified according to genome changes. PMID:16250247

  14. Genetic analysis of Eclosion hormone action during Drosophila larval ecdysis.

    PubMed

    Krüger, Eileen; Mena, Wilson; Lahr, Eleanor C; Johnson, Erik C; Ewer, John

    2015-12-15

    Insect growth is punctuated by molts, during which the animal produces a new exoskeleton. The molt culminates in ecdysis, an ordered sequence of behaviors that causes the old cuticle to be shed. This sequence is activated by Ecdysis triggering hormone (ETH), which acts on the CNS to activate neurons that produce neuropeptides implicated in ecdysis, including Eclosion hormone (EH), Crustacean cardioactive peptide (CCAP) and Bursicon. Despite more than 40 years of research on ecdysis, our understanding of the precise roles of these neurohormones remains rudimentary. Of particular interest is EH; although it is known to upregulate ETH release, other roles for EH have remained elusive. We isolated an Eh null mutant in Drosophila and used it to investigate the role of EH in larval ecdysis. We found that null mutant animals invariably died at around the time of ecdysis, revealing an essential role in its control. Further analyses showed that these animals failed to express the preparatory behavior of pre-ecdysis while directly expressing the motor program of ecdysis. Although ETH release could not be detected, the lack of pre-ecdysis could not be rescued by injections of ETH, suggesting that EH is required within the CNS for ETH to trigger the normal ecdysial sequence. Using a genetically encoded calcium probe, we showed that EH configured the response of the CNS to ETH. These findings show that EH plays an essential role in the Drosophila CNS in the control of ecdysis, in addition to its known role in the periphery of triggering ETH release. PMID:26395475

  15. Systems Genetic Analysis of Osteoblast-Lineage Cells

    PubMed Central

    Calabrese, Gina; Bennett, Brian J.; Orozco, Luz; Kang, Hyun M.; Eskin, Eleazar; Dombret, Carlos; De Backer, Olivier; Lusis, Aldons J.; Farber, Charles R.

    2012-01-01

    The osteoblast-lineage consists of cells at various stages of maturation that are essential for skeletal development, growth, and maintenance. Over the past decade, many of the signaling cascades that regulate this lineage have been elucidated; however, little is known of the networks that coordinate, modulate, and transmit these signals. Here, we identify a gene network specific to the osteoblast-lineage through the reconstruction of a bone co-expression network using microarray profiles collected on 96 Hybrid Mouse Diversity Panel (HMDP) inbred strains. Of the 21 modules that comprised the bone network, module 9 (M9) contained genes that were highly correlated with prototypical osteoblast maker genes and were more highly expressed in osteoblasts relative to other bone cells. In addition, the M9 contained many of the key genes that define the osteoblast-lineage, which together suggested that it was specific to this lineage. To use the M9 to identify novel osteoblast genes and highlight its biological relevance, we knocked-down the expression of its two most connected “hub” genes, Maged1 and Pard6g. Their perturbation altered both osteoblast proliferation and differentiation. Furthermore, we demonstrated the mice deficient in Maged1 had decreased bone mineral density (BMD). It was also discovered that a local expression quantitative trait locus (eQTL) regulating the Wnt signaling antagonist Sfrp1 was a key driver of the M9. We also show that the M9 is associated with BMD in the HMDP and is enriched for genes implicated in the regulation of human BMD through genome-wide association studies. In conclusion, we have identified a physiologically relevant gene network and used it to discover novel genes and regulatory mechanisms involved in the function of osteoblast-lineage cells. Our results highlight the power of harnessing natural genetic variation to generate co-expression networks that can be used to gain insight into the function of specific cell-types. PMID

  16. Genetic analysis of ectopic circadian clock induction in Drosophila.

    PubMed

    Kilman, Valerie L; Allada, Ravi

    2009-10-01

    Cell-autonomous feedback loops underlie the molecular oscillations that define circadian clocks. In Drosophila the transcription factor Clk activates multiple clock components of feedback loops many of which feed back and regulate Clk expression or activity. Previously the authors evoked similar molecular oscillations in putatively naïve neurons in Drosophila by ectopic expression of a single gene, Clk, suggesting a master regulator function. Using molecular oscillations of the core clock component PERIOD (PER), the authors observed dramatic and widespread molecular oscillations throughout the brain in flies expressing ectopic Clk. Consistent with the master regulator hypothesis, they found that Clk is uniquely capable of inducing ectopic clocks as ectopic induction of other clock components fails to induce circadian rhythms. Clk also induces oscillations even when expression is adult restricted, suggesting that ectopic clocks can even be induced in differentiated cells. However, if transgene expression is discontinued, PER expression disappears, indicating that Clk must be continually active to sustain ectopic clock function. In some cases Clk-mediated PER induction was observed without apparent synchronous cycling, perhaps due to desynchronization of rhythms between clocks or truly cell autonomous arrhythmic PER expression, indicating that additional factors may be necessary for coherent rhythms in cells ectopically expressing Clk. To determine minimal requirements for circadian clock induction by Clk, the authors determined the genetic requirements of ectopic clocks. No ectopic clocks are induced in mutants of Clk's heterodimeric partner cyc. In addition, noncycling PER is observed when ectopic Clk is induced in a cryb mutant background. While other factors may contribute, these results indicate that persistent Clock induction is uniquely capable of broadly inducing ectopic rhythms even in adults, consistent with a special role at the top of a clock gene

  17. Genetic and biochemical analysis of peptide transport in Escherichia coli

    SciTech Connect

    Andrews, J.C.

    1986-01-01

    E. coli peptide transport mutants have been isolated based on their resistance to toxic tripeptides. These genetic defects were found to map in two distinct chromosomal locations. The transport systems which require expression of the trp-linked opp genes and the oppE gene(s) for activity were shown to have different substrate preferences. Growth of E. coli in medium containing leucine results in increased entry of exogenously supplied tripeptides into the bacterial cell. This leucine-mediated elevation of peptide transport required expression of the trp-linked opp operon and was accompanied by increased sensitivity to toxic tripeptides, by an enhanced capacity to utilize nutritional peptides, and by an increase in both the velocity and apparent steady-state level of L-(U-/sup 14/C)alanyl-L-alanyl-L-alanine accumulation for E. coli grown in leucine-containing medium relative to these parameters of peptide transport measured with bacteria grown in media lacking leucine. Direct measurement of opp operon expression by pulse-labeling experiments demonstrated that growth of E. coli in the presence of leucine resulted in increased synthesis of the oppA-encoded periplasmic binding protein. The transcriptional regulation of the trp-linked opp operon of E. coli was investigated using lambda placMu51-generated lac operon fusions. Synthesis of ..beta..-galactosidase by strains harboring oppA-lac, oppB-lac, and oppD-lac fusions occurred at a basal level when the fusion-containing strains were grown in minimal medium.

  18. Prenatal diagnosis of autosomal recessive polycystic kidney disease by molecular genetic analysis.

    PubMed

    Jang, Dong Gyu; Chae, Hyojin; Shin, Jong Chul; Park, In Yang; Kim, Myungshin; Kim, Yonggoo

    2011-11-01

    A 27-year-old primigravida was referred for evaluation of severe oligohydramnios at 22 weeks of gestation. For a more accurate diagnosis and detection of other fetal anomalies, complementary fetal magnetic resonance imaging (MRI) was performed. Findings of fetal MRI evaluation were consistent with autosomal recessive polycystic kidney disease (ARPKD). Parental mutation analysis in the PKHD1 gene was performed. By PKHD1 mutation analysis, we were able to identify a heterozygous missense mutation in exon 20 (K626R) in the father. Molecular genetic analysis can be helpful for an early and reliable prenatal diagnosis of ARPKD. Herein, we present a case of ARPKD that was diagnosed at 22 weeks of gestation by ultrasonographic examination and MRI and verified by PKHD1 mutation analysis and array-based genetic deletion analysis. PMID:21790888

  19. Analysis of Genetic Diversity and Development of SCAR Markers in a Mycogone perniciosa Population.

    PubMed

    Wang, Wei; Li, Xiao; Chen, Bingzhi; Wang, Shuang; Li, Chenghuan; Wen, Zhiqiang

    2016-07-01

    The fungus Mycogone perniciosa is a major pathogen of the common button mushroom Agaricus bisporus. Analysis of genetic diversity in M. Perniciosa may assist in developing methods for prophylaxis and treatment of M. Perniciosa infections. For this, it is necessary to classify M. Perniciosa into relevant class groups quickly and efficiently. Random amplified polymorphic DNA (RAPD), inter-simple sequence repeats (ISSR), and sequence-related amplified polymorphism (SRAP) markers were used to obtain genetic fingerprints and assess the genetic variation among 49 strains of M. perniciosa collected from different areas of Fujian Province in China. Analysis of DNA sequence polymorphism revealed two major distinct groups (Group I and Group II). Specific DNA fragments that were identified through RAPD, ISSR, and SRAP markers were sequenced and used for the designing of stable sequence-characterized amplified region (SCAR) markers. The resulting SCAR markers were then validated against the classified groups of M. perniciosa. PMID:26960290

  20. Genetic analysis of barrage line formation during mycelial incompatibility in Rosellinia necatrix.

    PubMed

    Ikeda, Kenichi; Inoue, Kanako; Nakamura, Hitoshi; Hamanaka, Taiki; Ohta, Tatsuro; Kitazawa, Hirotomo; Kida, Chiaki; Kanematsu, Satoko; Park, Pyoyun

    2011-01-01

    When mycelia of Rosellinia necatrix encounter mycelia of a different genetic strain, distinct barrage lines are formed between the two. These barrages have variable features such as pigmented pseudosclerotia structures, a clear zone, fuzzy hair-like mycelia, or tuft-like mycelia, suggesting that mycelial incompatibility triggers a number of cellular reactions. In this study, to evaluate cellular reactions we performed genetic analysis of mycelial incompatibility of R. nectarix, using 20 single ascospore isolates from single perithecia. Mycelial interaction zones were removed by spatula and cellular reactions studied on oatmeal agar media. The interaction zones were categorized into types such as sharp or wide lines, with or without melanin, and combinations of these. Although various reaction types were observed, we were able to identify a single genetic factor that appears to be responsible for the barrage line formation within oatmeal agar medium. DNA polymorphism analysis identified parental isolates and revealed that R. necatrix has a heterothallic life cycle. PMID:21215958

  1. A model-based approach for analysis of spatial structure in genetic data.

    PubMed

    Yang, Wen-Yun; Novembre, John; Eskin, Eleazar; Halperin, Eran

    2012-06-01

    Characterizing genetic diversity within and between populations has broad applications in studies of human disease and evolution. We propose a new approach, spatial ancestry analysis, for the modeling of genotypes in two- or three-dimensional space. In spatial ancestry analysis (SPA), we explicitly model the spatial distribution of each SNP by assigning an allele frequency as a continuous function in geographic space. We show that the explicit modeling of the allele frequency allows individuals to be localized on the map on the basis of their genetic information alone. We apply our SPA method to a European and a worldwide population genetic variation data set and identify SNPs showing large gradients in allele frequency, and we suggest these as candidate regions under selection. These regions include SNPs in the well-characterized LCT region, as well as at loci including FOXP2, OCA2 and LRP1B. PMID:22610118

  2. Temporal analysis of mtDNA variation reveals decreased genetic diversity in least terns

    USGS Publications Warehouse

    Draheim, Hope M.; Baird, Patricia; Haig, Susan M.

    2012-01-01

    The Least Tern (Sternula antillarum) has undergone large population declines over the last century as a result of direct and indirect anthropogenic factors. The genetic implications of these declines are unknown. We used historical museum specimens (pre-1960) and contemporary (2001–2005) samples to examine range-wide phylogeographic patterns and investigate potential loss in the species' genetic variation. We obtained sequences (522 bp) of the mitochondrial gene for NADH dehydrogenase subunit 6 (ND6) from 268 individuals from across the species' range. Phylogeographic analysis revealed no association with geography or traditional subspecies designations. However, we detected potential reductions in genetic diversity in contemporary samples from California and the Atlantic coast Least Tern from that in historical samples, suggesting that current genetic diversity in Least Tern populations is lower than in their pre-1960 counterparts. Our results offer unique insights into changes in the Least Tern's genetic diversity over the past century and highlight the importance and utility of museum specimens in studies of conservation genetics.

  3. Analysis of Genetic Variation and Potential Applications in Genome-Scale Metabolic Modeling

    PubMed Central

    Cardoso, João G. R.; Andersen, Mikael Rørdam; Herrgård, Markus J.; Sonnenschein, Nikolaus

    2015-01-01

    Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology, there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic variation during a long term production process may lead to significant economic losses and it is important to understand how to control this type of variation. With the emergence of next-generation sequencing technologies, genetic variation in microbial strains can now be determined on an unprecedented scale and resolution by re-sequencing thousands of strains systematically. In this article, we review challenges in the integration and analysis of large-scale re-sequencing data, present an extensive overview of bioinformatics methods for predicting the effects of genetic variants on protein function, and discuss approaches for interfacing existing bioinformatics approaches with genome-scale models of cellular processes in order to predict effects of sequence variation on cellular phenotypes. PMID:25763369

  4. Genetic analysis of low BMI phenotype in the Utah Population Database.

    PubMed

    Yates, William R; Johnson, Craig; McKee, Patrick; Cannon-Albright, Lisa A

    2013-01-01

    The low body mass index (BMI) phenotype of less than 18.5 has been linked to medical and psychological morbidity as well as increased mortality risk. Although genetic factors have been shown to influence BMI across the entire BMI, the contribution of genetic factors to the low BMI phenotype is unclear. We hypothesized genetic factors would contribute to risk of a low BMI phenotype. To test this hypothesis, we conducted a genealogy data analysis using height and weight measurements from driver's license data from the Utah Population Data Base. The Genealogical Index of Familiality (GIF) test and relative risk in relatives were used to examine evidence for excess relatedness among individuals with the low BMI phenotype. The overall GIF test for excess relatedness in the low BMI phenotype showed a significant excess over expected (GIF 4.47 for all cases versus 4.10 for controls, overall empirical p-value<0.001). The significant excess relatedness was still observed when close relationships were ignored, supporting a specific genetic contribution rather than only a family environmental effect. This study supports a specific genetic contribution in the risk for the low BMI phenotype. Better understanding of the genetic contribution to low BMI holds promise for weight regulation and potentially for novel strategies in the treatment of leanness and obesity. PMID:24348998

  5. Genetic diversity of wild soybean populations in Dongying, China, by simple sequence repeat analysis.

    PubMed

    Wang, Y H; Zhang, X J; Fan, S J

    2015-01-01

    Annual wild soybean (Glycine soja Sieb. et Zucc.), the ancestor of cultivated soybean (G. max), is believed to be a potential gene source for further improvement of soybean to cope with environmental stress. In this study, 10 simple sequence repeat (SSR) markers were used to evaluate the genetic diversity and population genetic structure in five wild soybean populations using 195 accessions collected from Dongying, China. Ten SSR markers yielded 90 bands, with an average of nine bands per marker. The percentage of polymorphic loci (P) was 97.78%, the distribution of expected heterozygosity (HE) was 0.1994-0.4460 with an average of 0.3262, and the distribution from Shannon's information index (I) was 0.3595-0.6506 with an average of 0.5386. The results showed that wild soybean had a high degree of genetic diversity at the species level. Nei's differentiation coefficient (FST) was 0.1533, and gene flow (Nm) was 1.3805, which indicated that genetic variation mainly existed within populations and that there was a certain level of gene exchange between populations. Some genetic differentiation occurred among populations, although this was not significant. Cluster analysis indicated that there was no significant correlation between the genetic structure of wild soybean populations and their geographic distribution, and the clustering results may be relatively consistent with the habitats of the accessions. In the present study, the genetic diversity of wild soybeans showed a broad genetic base and enables suggestions for the conservation of this plant to be made. PMID:26436402

  6. Efficient genotype compression and analysis of large genetic variation datasets

    PubMed Central

    Layer, Ryan M.; Kindlon, Neil; Karczewski, Konrad J.; Quinlan, Aaron R.

    2015-01-01

    Genotype Query Tools (GQT) is a new indexing strategy that expedites analyses of genome variation datasets in VCF format based on sample genotypes, phenotypes and relationships. GQT’s compressed genotype index minimizes decompression for analysis, and performance relative to existing methods improves with cohort size. We show substantial (up to 443 fold) performance gains over existing methods and demonstrate GQT’s utility for exploring massive datasets involving thousands to millions of genomes. PMID:26550772

  7. Analysis of genetic stability of in vitro propagated potato microtubers using DNA markers.

    PubMed

    Tiwari, Jagesh K; Chandel, Poonam; Gupta, Shruti; Gopal, Jai; Singh, B P; Bhardwaj, Vinay

    2013-10-01

    The genetic stability of in vitro propagated potato microtubers was assessed using random amplified polymorphic DNA (RAPD), inter simple sequence repeat (ISSR), simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers. Microtubers were developed through in vitro from potato microplants using standardized protocols. The microtubers were conserved for 1 year under three different culture media and consequently microplants were regenerated for the DNA analyses. During the study, a total of 38 (10 RAPD, 11 ISSR, 12 SSR and 5 AFLP) primers produced a total of 407 (58 RAPD, 56 ISSR, 96 SSR and 197 AFLP) clear, distinct and reproducible amplicons. Cluster analysis revealed 100 % genetic similarity among the mother plant and its derivatives within the clusters by SSR, ISSR and RAPD analyses, whereas AFLP analysis revealed from 85 to 100 % genetic similarity. Dendrogram analysis based on the Jaccard's coefficient classified the genotypes into five clusters (I-V), each cluster consisting of mother plant and its derivatives. Principal component analysis (PCA) also plotted mother plant and its genotypes of each cluster together. Based on our results, it is concluded that AFLP is the best method followed by SSR, ISSR and RAPD to detect genetic stability of in vitro conserved potato microtubers. The in vitro conservation medium (T2) is a safe method for conservation of potato microtubers to produce true-to-type plans. PMID:24431528

  8. Genetic and Environmental Components of Adolescent Adjustment and Parental Behavior: A Multivariate Analysis

    ERIC Educational Resources Information Center

    Loehlin, John C.; Neiderhiser, Jenae M.; Reiss, David

    2005-01-01

    Adolescent adjustment measures may be related to each other and to the social environment in various ways. Are these relationships similar in genetic and environmental sources of covariation, or different? A multivariate behaviorgenetic analysis was made of 6 adjustment and 3 treatment composites from the study Nonshared Environment in Adolescent…

  9. Multivariate genetic analysis of brain structure in an extended twin design.

    PubMed

    Posthuma, D; de Geus, E J; Neale, M C; Hulshoff Pol, H E; Baaré WEC; Kahn, R S; Boomsma, D

    2000-07-01

    The hunt for genes influencing behavior may be aided by the study of intermediate phenotypes for several reasons. First, intermediate phenotypes may be influenced by only a few genes, which facilitates their detection. Second, many intermediate phenotypes can be measured on a continuous quantitative scale and thus can be assessed in affected and unaffected individuals. Continuous measures increase the statistical power to detect genetic effects (Neale et al., 1994), and allow studies to be designed to collect data from informative subjects such as extreme concordant or discordant pairs. Intermediate phenotypes for discrete traits, such as psychiatric disorders, can be neurotransmitter levels, brain function, or structure. In this paper we conduct a multivariate analysis of data from 111 twin pairs and 34 additional siblings on cerebellar volume, intracranial space, and body height. The analysis is carried out on the raw data and specifies a model for the mean and the covariance structure. Results suggest that cerebellar volume and intracranial space vary with age and sex. Brain volumes tend to decrease slightly with age, and males generally have a larger brain volume than females. The remaining phenotypic variance of cerebellar volume is largely genetic (88%). These genetic factors partly overlap with the genetic factors that explain variance in intracranial space and body height. The applied method is presented as a general approach for the analysis of intermediate phenotypes in which the effects of correlated variables on the observed scores are modeled through multivariate analysis. PMID:11206086

  10. ANALYSIS OF THE SPECTRA OF GENETIC ACTIVITY PRODUCED BY KNOWN OR SUSPECTED HUMAN CARCINOGENS

    EPA Science Inventory

    For 24 agents classified by the International Agency for Research on Cancer as known or suspected human carcinogens, we previously catalogued the qualitative genetic bioassay data available in the literature. In the present analysis, dose information, where available, was added t...

  11. Web-Based Analysis for Student-Generated Complex Genetic Profiles

    ERIC Educational Resources Information Center

    Kass, David H.; LaRoe, Robert

    2007-01-01

    A simple, rapid method for generating complex genetic profiles using Alu-based markers was recently developed for students primarily at the undergraduate level to learn more about forensics and paternity analysis. On the basis of the Cold Spring Harbor Allele Server, which provides an excellent tool for analyzing a single Alu variant, we present a…

  12. A Cross-Sectional Behavioral Genetic Analysis of Task Persistence in the Transition to Middle Childhood

    ERIC Educational Resources Information Center

    Deater-Deckard, Kirby; Petrill, Stephen A.; Thompson, Lee A.; DeThorne, Laura S.

    2005-01-01

    Task persistence, measured by a composite score of independent teacher, tester and observer reports, was examined using behavioral genetic analysis. Participants included 92 monozygotic and 137 same-sex dizygotic twin pairs in Kindergarten or 1st grade (4.3 to 7.9 years old). Task persistence was widely distributed, higher among older children,…

  13. Calibration of Uncertainty Analysis of the SWAT Model Using Genetic Algorithms and Bayesian Model Averaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, the Genetic Algorithms (GA) and Bayesian model averaging (BMA) were combined to simultaneously conduct calibration and uncertainty analysis for the Soil and Water Assessment Tool (SWAT). In this hybrid method, several SWAT models with different structures are first selected; next GA i...

  14. Genetic diversity and association analysis of leafminer (Liriomyza langei) resistance in spinach (Spinacia oleracea)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafminer (Liriomyza spp.) is a major insect pest of many important agricultural crops, including spinach (Spinacia oleracea). Use of genetic resistance is an efficient, economic and environment-friendly method to control this pest. The objective of this research was to conduct association analysis ...

  15. Genetic linkage analysis of schizophrenia using chromosome 11q13-24 markers in Israeli pedigrees

    SciTech Connect

    Mulcrone, J.; Marchblanks, R.; Whatley, S.A.

    1995-04-24

    It is generally agreed that there is a genetic component in the etiology of schizophrenia which may be tested by the application of linkage analysis to multiply-affected families. One genetic region of interest is the long arm of chromosome 11 because of previously reported associations of genetic variation in this region with schizophrenia, and because of the fact that it contains the locus for the dopamine D2 receptor gene. In this study we have examined the segregation of schizophrenia with microsatellite dinucleotide repeat DNA markers along chromosome 11q in 5 Israeli families multiply-affected for schizophrenia. The hypothesis of linkage under genetic homogeneity of causation was tested under a number of genetic models. Linkage analysis provided no evidence for significant causal mutations within the region bounded by INT and D11S420 on chromosome 11q. It is still possible, however, that a gene of major effect exists in this region, either with low penetrance or with heterogeneity. 32 refs., 2 figs., 4 tabs.

  16. Teaching Genetics in Secondary Classrooms: a Linguistic Analysis of Teachers' Talk About Proteins

    NASA Astrophysics Data System (ADS)

    Thörne, Karin; Gericke, Niklas

    2014-02-01

    This study investigates Swedish biology teachers' inclusion of proteins when teaching genetics in grade nine (students 15-16 years old). For some years, there has been a call to give attention to proteins when teaching genetics as a means of linking the concepts `gene' and `trait'. Students are known to have problems with this relation because the concepts belong to different organizational levels. However, we know little about how the topic is taught and therefore this case study focuses on how teachers talk about proteins while teaching genetics and if they use proteins as a link between the micro and macro level. Four teachers were recorded during entire genetics teaching sequences, 45 lessons in total. The teachers' verbal communication was then analyzed using thematic pattern analysis, which is based in systemic functional linguistics. The linguistic analysis of teachers' talk in action revealed great variations in both the extent to which they used proteins in explanations of genetics and the ways they included proteins in linking genes and traits. Two of the teachers used protein as a link between gene and trait, while two did not. Three of the four teachers included instruction about protein synthesis. The common message from all teachers was that proteins are built, but none of the teachers talked about genes as exclusively encoding proteins. Our results suggest that students' common lack of understanding of proteins as an intermediate link between gene and trait could be explained by limitations in the way the subject is taught.

  17. Integrated analysis of genome-wide genetic and epigenetic association data for identification of disease mechanisms.

    PubMed

    Ke, Xiayi; Cortina-Borja, Mario; Silva, Bruno Cesar; Lowe, Robert; Rakyan, Vardhman; Balding, David

    2013-11-01

    Many human diseases are multifactorial, involving multiple genetic and environmental factors impacting on one or more biological pathways. Much of the environmental effect is believed to be mediated through epigenetic changes. Although many genome-wide genetic and epigenetic association studies have been conducted for different diseases and traits, it is still far from clear to what extent the genomic loci and biological pathways identified in the genetic and epigenetic studies are shared. There is also a lack of statistical tools to assess these important aspects of disease mechanisms. In the present study, we describe a protocol for the integrated analysis of genome-wide genetic and epigenetic data based on permutation of a sum statistic for the combined effects in a locus or pathway. The method was then applied to published type 1 diabetes (T1D) genome-wide- and epigenome-wide-association studies data to identify genomic loci and biological pathways that are associated with T1D genetically and epigenetically. Through combined analysis, novel loci and pathways were also identified, which could add to our understanding of disease mechanisms of T1D as well as complex diseases in general. PMID:24071862

  18. Genetic Diversity Analysis of South and East Asian Duck Populations Using Highly Polymorphic Microsatellite Markers

    PubMed Central

    Seo, Dongwon; Bhuiyan, Md. Shamsul Alam; Sultana, Hasina; Heo, Jung Min; Lee, Jun Heon

    2016-01-01

    Native duck populations have lower productivity, and have not been developed as much as commercials duck breeds. However, native ducks have more importance in terms of genetic diversity and potentially valuable economic traits. For this reason, population discriminable genetic markers are needed for conservation and development of native ducks. In this study, 24 highly polymorphic microsatellite (MS) markers were investigated using commercial ducks and native East and South Asian ducks. The average polymorphic information content (PIC) value for all MS markers was 0.584, indicating high discrimination power. All populations were discriminated using 14 highly polymorphic MS markers by genetic distance and phylogenetic analysis. The results indicated that there were close genetic relationships among populations. In the structure analysis, East Asian ducks shared more haplotypes with commercial ducks than South Asian ducks, and they had more independent haplotypes than others did. These results will provide useful information for genetic diversity studies in ducks and for the development of duck traceability systems in the market. PMID:26949947

  19. Genetic Diversity Analysis of South and East Asian Duck Populations Using Highly Polymorphic Microsatellite Markers.

    PubMed

    Seo, Dongwon; Bhuiyan, Md Shamsul Alam; Sultana, Hasina; Heo, Jung Min; Lee, Jun Heon

    2016-04-01

    Native duck populations have lower productivity, and have not been developed as much as commercials duck breeds. However, native ducks have more importance in terms of genetic diversity and potentially valuable economic traits. For this reason, population discriminable genetic markers are needed for conservation and development of native ducks. In this study, 24 highly polymorphic microsatellite (MS) markers were investigated using commercial ducks and native East and South Asian ducks. The average polymorphic information content (PIC) value for all MS markers was 0.584, indicating high discrimination power. All populations were discriminated using 14 highly polymorphic MS markers by genetic distance and phylogenetic analysis. The results indicated that there were close genetic relationships among populations. In the structure analysis, East Asian ducks shared more haplotypes with commercial ducks than South Asian ducks, and they had more independent haplotypes than others did. These results will provide useful information for genetic diversity studies in ducks and for the development of duck traceability systems in the market. PMID:26949947

  20. Genetic Diversity Analysis of Sugarcane Parents in Chinese Breeding Programmes Using gSSR Markers

    PubMed Central

    You, Qian; Xu, Liping; Zheng, Yifeng; Que, Youxiong

    2013-01-01

    Sugarcane is the most important sugar and bioenergy crop in the world. The selection and combination of parents for crossing rely on an understanding of their genetic structures and molecular diversity. In the present study, 115 sugarcane genotypes used for parental crossing were genotyped based on five genomic simple sequence repeat marker (gSSR) loci and 88 polymorphic alleles of loci (100%) as detected by capillary electrophoresis. The values of genetic diversity parameters across the populations indicate that the genetic variation intrapopulation (90.5%) was much larger than that of interpopulation (9.5%). Cluster analysis revealed that there were three groups termed as groups I, II, and III within the 115 genotypes. The genotypes released by each breeding programme showed closer genetic relationships, except the YC series released by Hainan sugarcane breeding station. Using principle component analysis (PCA), the first and second principal components accounted for a cumulative 76% of the total variances, in which 43% were for common parents and 33% were for new parents, respectively. The knowledge obtained in this study should be useful to future breeding programs for increasing genetic diversity of sugarcane varieties and cultivars to meet the demand of sugarcane cultivation for sugar and bioenergy use. PMID:23990759

  1. Genetic analysis of carcass traits in beef cattle using random regression models.

    PubMed

    Englishby, T M; Banos, G; Moore, K L; Coffey, M P; Evans, R D; Berry, D P

    2016-04-01

    Livestock mature at different rates depending, in part, on their genetic merit; therefore, the optimal age at slaughter for progeny of certain sires may differ. The objective of the present study was to examine sire-level genetic profiles for carcass weight, carcass conformation, and carcass fat in cattle of multiple beef and dairy breeds, including crossbreeds. Slaughter records from 126,214 heifers and 124,641 steers aged between 360 and 1,200 d and from 86,089 young bulls aged between 360 and 720 d were used in the analysis; animals were from 15,127 sires. Variance components for each trait across age at slaughter were generated using sire random regression models that included quadratic polynomials for fixed and random effects; heterogeneous residual variances were assumed across ages. Heritability estimates across genders ranged from 0.08 (±0.02) to 0.34 (±0.02) for carcass weight, from 0.24 (±0.02) to 0.42 (±0.01) for conformation, and from 0.16 (±0.03) to 0.40 (±0.02) for fat score. Genetic correlations within each trait across ages weakened as the interval between ages compared lengthened but were all >0.64, suggesting a similar genetic background for each trait across different ages. Eigenvalues and eigenfunctions of the additive genetic covariance matrix revealed genetic variability among animals in their growth profiles for carcass traits, although most of the genetic variability was associated with the height of the growth profile. At the same age, a positive genetic correlation (0.60 to 0.78; SE ranged from 0.01 to 0.04) existed between carcass weight and conformation, whereas negative genetic correlations existed between fatness and both conformation (-0.46 to 0.08; SE ranged from 0.02 to 0.09) and carcass weight (-0.48 to -0.16; SE ranged from 0.02 to 0.14) at the same age. The estimated genetic parameters in the present study indicate genetic variability in the growth trajectory in cattle, which can be exploited through breeding programs and

  2. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  3. [Genetic analysis of Turner syndrome: 89 cases in Tunisia].

    PubMed

    Kammoun, I; Chaabouni, M; Trabelsi, M; Ouertani, I; Kraoua, L; Chelly, I; M'rad, R; Ben Jemaa, L; Maâzoul, F; Chaabouni, H

    2008-11-01

    Turner's syndrome (TS) affects about 1/2500 female infants born alive. The syndrome results from total or partial absence of one of the two X chromosomes normally present in females. We report the results of a retrospective analysis of 89 cases of TS observed during a six-year period (2000-2005). The patients' age ranged from two days to 51 years at the time of this analysis. Most patients were adults (48%). The aim of this study is to ascertain the principal clinical features leading to a request for a karyotype, searching for a possible relationship between chromosomal anomalies and clinical expression of TS. Pediatric patients were referred for statural retardation or dysmorphic features, while reproduction anomalies were the main indication for karyotyping in patients aged over 20 years. Mosaicism was prevalent (47%), whereas the homogeneous karyotype 45,X was found in only 32% of the patients; structural anomalies were found in 21%. Regarding the advanced age of our patients, we established a relationship between chromosome anomalies and the clinical expression of TS, based on an analysis of stature and reproduction disorders. Short stature and primary amenorrhea were correlated with total deletion of one chromosome X or imbalanced gene dosage due to structural X anomalies. Whereas cases of infertility, recurrent miscarriages and secondary amenorrhea were associated with a mosaic karyotype pattern (45,X/46,XX or 45,X/46,XX/47,XXX ...), with a slight mosaicism in most cases. Thus, chromosome investigations should be performed in cases of reproduction failure even for women with normal stature. PMID:18541220

  4. Diagnosing the dead: the retrospective analysis of genetic diseases.

    PubMed

    Rushton, A R

    2013-01-01

    The suspected presence of hereditary disease in important historical and political figures has interested researchers for many decades. Whether Abraham Lincoln suffered from Marfan syndrome, if George III became 'mad' because he inherited variegate porphyria, and if the Romanov dynasty collapsed because the heir Alexei inherited haemophilia are important questions; physical illness can adversely affect the ability of leaders to function within the social and political realm of their day. This article will outline an approach to such a medical-historical analysis including assessment of hereditary predisposition, family history and the use of DNA technology to confirm or deny the clinical suspicions of the investigator. PMID:23516684

  5. Genetic analysis of a novel nidovirus from fathead minnows

    USGS Publications Warehouse

    Batts, William N.; Goodwin, Andrew E.; Winton, James R.

    2012-01-01

    A bacilliform virus was isolated from diseased fathead minnows (Pimephales promelas). Analysis of the complete genome coding for the polyprotein (pp1ab), spike (S), membrane (M) and nucleocapsid (N) proteins revealed that the virus was most like white bream virus (WBV), another bacilliform virus isolated from white bream (Blicca bjoerkna L.) and the type species of the genus Bafinivirus within the order Nidovirales. In addition to similar gene order and size, alignment of deduced amino acid sequences of the pp1ab, M, N and S proteins of the fathead minnow nidovirus (FHMNV) with those of WBV showed 46, 44, 39 and 15 % identities, respectively. Phylogenetic analysis using the conserved helicase domain of the replicase showed FHMNV was distinct from WBV, yet the closest relative identified to date. Thus, FHMNV appears to represent a second species in the genus Bafinivirus. A PCR assay was developed for the identification of future FHMNV-like isolates.

  6. Genetic analysis of mosaicism in 53 women with Turner syndrome.

    PubMed

    Hanson, L; Bryman, I; Barrenäs, M L; Janson, P O; Wahlström, J; Albertsson-Wikland, K; Hanson, C

    2001-01-01

    Mosaicism involving the sex chromosomes is a common finding in women with Turner syndrome (TS). It is especially important to detect Y-chromosomal material, since this is a risk factor for the development of gonadoblastoma. Recent studies have also indicated that the frequency of 45,X cells may be used to predict prognosis. As part of an ongoing multi-disciplinary study, we have examined the extent of Y-chromosomal material and sex chromosomal mosaicism and its tissue specificity in 53 women with TS. The results of lymphocyte karyotyping were compared with the use of interphase X/Y fluorescence in situ hybridisation (FISH) analysis of lymphocytes and buccal mucosal cells. As could be expected, an extended FISH analysis detected more Y-chromosomal material than karyotyping (in 15% vs. 11% of the women, respectively) and also detected more X-chromosomal mosaicism among the TS women (in 70% vs. 45 % of the women, respectively). In half of the women, tissue-specific differences between lymphocytes and buccal mucosal cells were found. Based on these results, we suggest the use of X/Y interphase FISH as a complement to karyotyping in order to obtain a more complete knowledge of the chromosome constitution of each individual with TS. PMID:11732852

  7. A genetic study and meta-analysis of the genetic predisposition of prostate cancer in a Chinese population

    PubMed Central

    Zhao, Shan-Chao; Ren, Guoping; Yu, Yongwei; Wu, Yudong; Wu, Ji; Xue, Yao; Zhou, Bo; Zhang, Yanling; Xu, Xingxing; Li, Jie; He, Weiyang; Benlloch, Sara; Ross-Adams, Helen; Chen, Li; Li, Jucong; Hong, Yingqia; Kote-Jarai, Zsofia; Cui, Xingang; Hou, Jianguo; Guo, Jianming; Xu, Lei; Yin, Changjun; Zhou, Yuanping; Neal, David E.; Oliver, Tim; Cao, Guangwen; Zhang, Zhengdong; Easton, Douglas F.; Chelala, Claude; Olama, Ali Amin Al; Eeles, Rosalind A.; Zhang, Hongwei; Lu, Yong-Jie

    2016-01-01

    Prostate cancer predisposition has been extensively investigated in European populations, but there have been few studies of other ethnic groups. To investigate prostate cancer susceptibility in the under-investigated Chinese population, we performed single-nucleotide polymorphism (SNP) array analysis on a cohort of Chinese cases and controls and then meta-analysis with data from the existing Chinese prostate cancer genome-wide association study (GWAS). Genotyping 211,155 SNPs in 495 cases and 640 controls of Chinese ancestry identified several new suggestive Chinese prostate cancer predisposition loci. However, none of them reached genome-wide significance level either by meta-analysis or replication study. The meta-analysis with the Chinese GWAS data revealed that four 8q24 loci are the main contributors to Chinese prostate cancer risk and the risk alleles from three of them exist at much higher frequencies in Chinese than European populations. We also found that several predisposition loci reported in Western populations have different effect on Chinese men. Therefore, this first extensive single-nucleotide polymorphism study of Chinese prostate cancer in comparison with European population indicates that four loci on 8q24 contribute to a great risk of prostate cancer in a considerable large proportion of Chinese men. Based on those four loci, the top 10% of the population have six- or two-fold prostate cancer risk compared with men of the bottom 10% or median risk respectively, which may facilitate the design of prostate cancer genetic risk screening and prevention in Chinese men. These findings also provide additional insights into the etiology and pathogenesis of prostate cancer. PMID:26881390

  8. Genetic analysis of seven Italian horse breeds based on mitochondrial DNA D-loop variation.

    PubMed

    Bigi, D; Perrotta, G; Zambonelli, P

    2014-08-01

    To understand the origin and genetic diversity of Italian horses, mitochondrial DNA D-loop sequences were generated for 163 horses from seven breeds. Sequence analysis of a 480-bp segment revealed a total of 84 haplotypes with 57 polymorphic sites, indicating multiple maternal origins and high genetic diversity. Comparison of the haplotypes with the equine mtDNA haplotype/haplogroup nomenclature showed a haplogroup distribution in the Italian breeds more similar to that found in the Middle East breeds than in the European breeds, probably due to the economic and cultural relationship with the Middle East in the past centuries. PMID:24702170

  9. Genetic analysis of type 1 diabetes using whole genome approaches.

    PubMed Central

    Todd, J A

    1995-01-01

    Whole genome linkage analysis of type 1 diabetes using affected sib pair families and semi-automated genotyping and data capture procedures has shown how type 1 diabetes is inherited. A major proportion of clustering of the disease in families can be accounted for by sharing of alleles at susceptibility loci in the major histocompatibility complex on chromosome 6 (IDDM1) and at a minimum of 11 other loci on nine chromosomes. Primary etiological components of IDDM1, the HLA-DQB1 and -DRB1 class II immune response genes, and of IDDM2, the minisatellite repeat sequence in the 5' regulatory region of the insulin gene on chromosome 11p15, have been identified. Identification of the other loci will involve linkage disequilibrium mapping and sequencing of candidate genes in regions of linkage. PMID:7567975

  10. Functional and genetic analysis of the colon cancer network

    PubMed Central

    2014-01-01

    Cancer is a complex disease that has proven to be difficult to understand on the single-gene level. For this reason a functional elucidation needs to take interactions among genes on a systems-level into account. In this study, we infer a colon cancer network from a large-scale gene expression data set by using the method BC3Net. We provide a structural and a functional analysis of this network and also connect its molecular interaction structure with the chromosomal locations of the genes enabling the definition of cis- and trans-interactions. Furthermore, we investigate the interaction of genes that can be found in close neighborhoods on the chromosomes to gain insight into regulatory mechanisms. To our knowledge this is the first study analyzing the genome-scale colon cancer network. PMID:25079297

  11. Functional and genetic analysis of the colon cancer network.

    PubMed

    Emmert-Streib, Frank; de Matos Simoes, Ricardo; Glazko, Galina; McDade, Simon; Haibe-Kains, Benjamin; Holzinger, Andreas; Dehmer, Matthias; Campbell, Frederick

    2014-01-01

    Cancer is a complex disease that has proven to be difficult to understand on the single-gene level. For this reason a functional elucidation needs to take interactions among genes on a systems-level into account. In this study, we infer a colon cancer network from a large-scale gene expression data set by using the method BC3Net. We provide a structural and a functional analysis of this network and also connect its molecular interaction structure with the chromosomal locations of the genes enabling the definition of cis- and trans-interactions. Furthermore, we investigate the interaction of genes that can be found in close neighborhoods on the chromosomes to gain insight into regulatory mechanisms. To our knowledge this is the first study analyzing the genome-scale colon cancer network. PMID:25079297

  12. Application of Scanning Probe Microscopy to Genetic Analysis

    NASA Astrophysics Data System (ADS)

    Sugiyama, Shigeru; Yoshino, Tomoyuki; Tsukamoto, Kazumi; Sasou, Megumi; Kuwazaki, Seigo; Takahashi, Hirokazu; Suetsugu, Yoshitaka; Narukawa, Junko; Yamamoto, Kimiko; Ohtani, Toshio

    2006-03-01

    We are developing an integrated technique involving of nanometer-size dissection of chromosome fragments by atomic force microscopy (AFM) and direct detection of the location of genome library clones by scanning near-field optical/atomic force microscopy (SNOM/AFM). The locations of nucleus organizer regions (NORs) on barley chromosomes and a bacterial artificial chromosome (BAC) clone were successfully detected by SNOM/AFM. Nanometer-scale dissection of silkworm pachytene chromosomes was also performed by AFM, and we succeeded in three successive dissection events of the chromosome region approximately 250 nm apart from each other. If this type of integrated method can be established in the near future, we will easily obtain the nucleotide sequences with positional information on chromosomes, which lead to a time- and cost-saving genome analysis technique.

  13. Genetic analysis of the role of amyloplasts in shoot gravisensing

    NASA Astrophysics Data System (ADS)

    Tasaka, M.; Morita, M.

    Plant can change the growth direction after sensing the gravity orientation This response calls gravitropism and the initial step is the gravisensing We have isolated many Arabidopsis mutants shoot gravitropism sgr with reduced or no gravitropic response in inflorescence stems The analysis of sgr1 and sgr7 revealed that endoderm cells in the inflorescence stems were gravisensing sites zig zigzag sgr4 and sgr3 showed no or reduced gravitropism in shoot respectively and their amyloplasts thought to be statoliths did not sedimented to the orientation of gravity in the endoderm cells ZIG encoded a SNARE AtVTI11 and SGR3 encoded other SNARE AtVAM3 These two SNAREs made a complex in the shoot endoderm cells suggesting that the vesicle transport from trans-Golgi network TGN to prevacuolar compartment PVC and or vacuole was involved in the amyloplasts localization and movement The analysis to visualize amyloplasts and vacuolar membrane in living endoderm cells supported that the vacuole function was important for the amyloplasts movement Recently we have isolated many suppressor mutants of zig One of them named zig suppressor zip 1 had a point mutation in the gene encoded other SNARE of AtVTI12 This protein is a homologous to ZIG AtVTI11 and these two proteins have partially redundant functions Although wild type At VTI 12 could not rescued zig mutated AtVTI12 protein ZIP1 could almost completely play the part of ZIG In zigzip1 amyloplasts in endoderm cells sedimented normally and the shoots showed normal gravitropic response The other

  14. Application of BP Neural Network Based on Genetic Algorithm in Quantitative Analysis of Mixed GAS

    NASA Astrophysics Data System (ADS)

    Chen, Hongyan; Liu, Wenzhen; Qu, Jian; Zhang, Bing; Li, Zhibin

    Aiming at the problem of mixed gas detection in neural network and analysis on the principle of gas detection. Combining BP algorithm of genetic algorithm with hybrid gas sensors, a kind of quantitative analysis system of mixed gas is designed. The local minimum of network learning is the main reason which affects the precision of gas analysis. On the basis of the network study to improve the learning algorithms, the analyses and tests for CO, CO2 and HC compounds were tested. The results showed that the above measures effectively improve and enhance the accuracy of the neural network for gas analysis.

  15. Undiagnosed genetic muscle disease in the north of England: an in depth phenotype analysis.

    PubMed

    Harris, Elizabeth; Laval, Steve; Hudson, Judith; Barresi, Rita; De Waele, Liesbeth; Straub, Volker; Lochmüller, Hanns; Bushby, Kate; Sarkozy, Anna

    2013-01-01

    Advances in the molecular characterisation of genetic muscle disease has been rapid, as demonstrated by a recent analysis of these conditions in the north of England by Norwood et al (2009), in which a genetic diagnosis was achieved for 75.7% of patients. However, there remain many patients with suspected genetic muscle disease in who a diagnosis is not obtained, often despite considerable diagnostic effort, and these patients are now being considered for the application of new technologies such as next generation sequencing. This study aimed to provide an in-depth phenotype analysis of undiagnosed patients referred to the Northern region muscle clinic with suspected genetic muscle disease, with the intention of gaining insight into these conditions, identifing cases with a shared phenotype who may be amenable to collective diagnostic testing or research, and evaluating the strengths and limitations of our current diagnostic strategy. We used two approaches: a review of clinical findings in patients with undiagnosed muscle disease, and a hierarchical cluster analysis to provide an unbiased interpretation of the phenotype data. These joint approaches identified a correlation of phenotypic features according to the age of disease onset and also delineated several interesting groups of patients, as well as highlighting areas of frequent diagnostic difficulty that could benefit from the use of new high-throughput diagnostic techniques. Correspondence to: anna.sarkozy@ncl.ac.uk. PMID:23788081

  16. Undiagnosed Genetic Muscle Disease in the North of England: an in Depth Phenotype Analysis

    PubMed Central

    Harris, Elizabeth; Laval, Steve; Hudson, Judith; Barresi, Rita; De Waele, Liesbeth; Straub, Volker; Lochmüller, Hanns; Bushby, Kate; Sarkozy, Anna

    2013-01-01

    Advances in the molecular characterisation of genetic muscle disease has been rapid, as demonstrated by a recent analysis of these conditions in the north of England by Norwood et al (2009), in which a genetic diagnosis was achieved for 75.7% of patients. However, there remain many patients with suspected genetic muscle disease in who a diagnosis is not obtained, often despite considerable diagnostic effort, and these patients are now being considered for the application of new technologies such as next generation sequencing. This study aimed to provide an in-depth phenotype analysis of undiagnosed patients referred to the Northern region muscle clinic with suspected genetic muscle disease, with the intention of gaining insight into these conditions, identifing cases with a shared phenotype who may be amenable to collective diagnostic testing or research, and evaluating the strengths and limitations of our current diagnostic strategy. We used two approaches: a review of clinical findings in patients with undiagnosed muscle disease, and a hierarchical cluster analysis to provide an unbiased interpretation of the phenotype data. These joint approaches identified a correlation of phenotypic features according to the age of disease onset and also delineated several interesting groups of patients, as well as highlighting areas of frequent diagnostic difficulty that could benefit from the use of new high-throughput diagnostic techniques. Correspondence to: anna.sarkozy@ncl.ac.uk PMID:23788081

  17. Microsatellite analysis of genetic diversity and population structure of Arabian horse populations.

    PubMed

    Khanshour, Anas; Conant, Eleanore; Juras, Rytis; Cothran, Ernest Gus

    2013-01-01

    The Arabian horse ignites imagination throughout the world. Populations of this breed exist in many countries, and recent genetic work has examined the diversity and ancestry of a few of these populations in isolation. Here, we explore 7 different populations of Arabians represented by 682 horses. Three of these are Middle Eastern populations from near the historical origin of the breed, including Syrian, Persian, and Saudi Arabian. The remaining Western populations are found in Europe (the Shagya Arabian and Polish Arabian) and in America (American Arabian). Analysis of genetic structure was carried out using 15 microsatellite loci. Genetic distances, analysis of molecular variance, factorial correspondence analysis, and a Bayesian method were applied. The results consistently show higher level of diversity within the Middle Eastern populations than the Western populations. The Western Arabian populations were the main source among population variation. Genetic differentiation was not strong among all Middle Eastern populations, but all American Arabians showed differentiation from Middle Eastern populations and were somewhat uniform among themselves. Here, we explore the diversities of many different populations of Arabian horses and find that populations not from the Middle East have noticeably lower levels of diversity, which may adversely affect the health of these populations. PMID:23450090

  18. Hippocampal transcriptome-guided genetic analysis of correlated episodic memory phenotypes in Alzheimer's disease

    PubMed Central

    Yan, Jingwen; Kim, Sungeun; Nho, Kwangsik; Chen, Rui; Risacher, Shannon L.; Moore, Jason H.; Saykin, Andrew J.; Shen, Li

    2015-01-01

    As the most common type of dementia, Alzheimer's disease (AD) is a neurodegenerative disorder initially manifested by impaired memory performances. While the diagnosis information indicates a dichotomous status of a patient, memory scores have the potential to capture the continuous nature of the disease progression and may provide more insights into the underlying mechanism. In this work, we performed a targeted genetic study of memory scores on an AD cohort to identify the associations between a set of genes highly expressed in the hippocampal region and seven cognitive scores related to episodic memory. Both main effects and interaction effects of the targeted genetic markers on these correlated memory scores were examined. In addition to well-known AD genetic markers APOE and TOMM40, our analysis identified a new risk gene NAV2 through the gene-level main effect analysis. NAV2 was found to be significantly and consistently associated with all seven episodic memory scores. Genetic interaction analysis also yielded a few promising hits warranting further investigation, especially for the RAVLT list B Score. PMID:25859259

  19. Microsatellite analysis reveals genetically distinct populations of red pine (Pinus resinosa, Pinaceae).

    PubMed

    Boys, Jacquelyn; Cherry, Marilyn; Dayanandan, Selvadurai

    2005-05-01

    Red pine (Pinus resinosa Ait.) is an ecologically and economically important forest tree species of northeastern North America and is considered one of the most genetically depauperate conifer species in the region. We have isolated and characterized 13 nuclear microsatellite loci by screening a partial genomic library with di-, tri-, and tetranucleotide repeat oligonucleotide probes. In an analysis of over 500 individuals representing 17 red pine populations from Manitoba through Newfoundland, five polymorphic microsatellite loci with an average of nine alleles per locus were identified. The mean expected and observed heterozygosity values were 0.508 and 0.185, respectively. Significant departures from Hardy-Weinberg equilibrium with excess homozygosity indicating high levels of inbreeding were evident in all populations studied. The population differentiation was high with 28-35% of genetic variation partitioned among populations. The genetic distance analysis showed that three northeastern (two Newfoundland and one New Brunswick) populations are genetically distinct from the remaining populations. The coalescence-based analysis suggests that "northeastern" and "main" populations likely became isolated during the most recent Pleistocene glacial period, and severe population bottlenecks may have led to the evolution of a highly selfing mating system in red pine. PMID:21652464

  20. Cross-Disorder Genetic Analysis of Tic Disorders, Obsessive-Compulsive, and Hoarding Symptoms.

    PubMed

    Zilhão, Nuno R; Smit, Dirk J; Boomsma, Dorret I; Cath, Danielle C

    2016-01-01

    Hoarding, obsessive-compulsive disorder (OCD), and Tourette's disorder (TD) are psychiatric disorders that share symptom overlap, which might partly be the result of shared genetic variation. Population-based twin studies have found significant genetic correlations between hoarding and OCD symptoms, with genetic correlations varying between 0.1 and 0.45. For tic disorders, studies examining these correlations are lacking. Other lines of research, including clinical samples and GWAS or CNV data to explore genetic relationships between tic disorders and OCD, have only found very modest if any shared genetic variation. Our aim was to extend current knowledge on the genetic structure underlying hoarding, OC symptoms (OCS), and lifetime tic symptoms and, in a trivariate analysis, assess the degree of common and unique genetic factors contributing to the etiology of these disorders. Data have been gathered from participants in the Netherlands Twin Register comprising a total of 5293 individuals from a sample of adult monozygotic (n = 2460) and dizygotic (n = 2833) twin pairs (mean age 33.61 years). The data on Hoarding, OCS, and tic symptoms were simultaneously analyzed in Mplus. A liability threshold model was fitted to the twin data, analyzing heritability of phenotypes and of their comorbidity. Following the criteria for a probable clinical diagnosis in all phenotypes, 6.8% of participants had a diagnosis of probable hoarding disorder (HD), 6.3% of OCS, and 12.8% of any probable lifetime tic disorder. Genetic factors explained 50.4, 70.1, and 61.1% of the phenotypic covariance between hoarding-OCS, hoarding-tics, and OCS-tics, respectively. Substantial genetic correlations were observed between hoarding and OCS (0.41), hoarding and tics (0.35), and between OCS and tics (0.37). These results support the contribution of genetic factors in the development of these disorders and their comorbidity. Furthermore, tics were mostly influenced by specific

  1. Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis

    PubMed Central

    Whitlock, Raj

    2014-01-01

    Understanding the effects of intraspecific genetic diversity on the structure and functioning of ecological communities is a fundamentally important part of evolutionary ecology and may also have conservation relevance in identifying the situations in which genetic diversity coincides with species-level diversity.Early studies within this field documented positive relationships between genetic diversity and ecological structure, but recent studies have challenged these findings. Conceptual synthesis has been hampered because studies have used different measures of intraspecific variation (phenotypically adaptive vs. neutral) and have considered different measures of ecological structure in different ecological and spatial contexts. The aim of this study is to strengthen conceptual understanding by providing an empirical synthesis quantifying the relationship between genetic diversity and ecological structure.Here, I present a meta-analysis of the relationship between genetic diversity within plant populations and the structure and functioning of associated ecological communities (including 423 effect sizes from 70 studies). I used Bayesian meta-analyses to examine (i) the strength and direction of this relationship, (ii) the extent to which phenotypically adaptive and neutral (molecular) measures of diversity differ in their association with ecological structure and (iii) variation in outcomes among different measures of ecological structure and in different ecological contexts.Effect sizes measuring the relationship between adaptive diversity (genotypic richness) and both community- and ecosystem-level ecological responses were small, but significantly positive. These associations were supported by genetic effects on species richness and productivity, respectively.There was no overall association between neutral genetic diversity and measures of ecological structure, but a positive correlation was observed under a limited set of demographic conditions. These

  2. Cross-Disorder Genetic Analysis of Tic Disorders, Obsessive–Compulsive, and Hoarding Symptoms

    PubMed Central

    Zilhão, Nuno R.; Smit, Dirk J.; Boomsma, Dorret I.; Cath, Danielle C.

    2016-01-01

    Hoarding, obsessive–compulsive disorder (OCD), and Tourette’s disorder (TD) are psychiatric disorders that share symptom overlap, which might partly be the result of shared genetic variation. Population-based twin studies have found significant genetic correlations between hoarding and OCD symptoms, with genetic correlations varying between 0.1 and 0.45. For tic disorders, studies examining these correlations are lacking. Other lines of research, including clinical samples and GWAS or CNV data to explore genetic relationships between tic disorders and OCD, have only found very modest if any shared genetic variation. Our aim was to extend current knowledge on the genetic structure underlying hoarding, OC symptoms (OCS), and lifetime tic symptoms and, in a trivariate analysis, assess the degree of common and unique genetic factors contributing to the etiology of these disorders. Data have been gathered from participants in the Netherlands Twin Register comprising a total of 5293 individuals from a sample of adult monozygotic (n = 2460) and dizygotic (n = 2833) twin pairs (mean age 33.61 years). The data on Hoarding, OCS, and tic symptoms were simultaneously analyzed in Mplus. A liability threshold model was fitted to the twin data, analyzing heritability of phenotypes and of their comorbidity. Following the criteria for a probable clinical diagnosis in all phenotypes, 6.8% of participants had a diagnosis of probable hoarding disorder (HD), 6.3% of OCS, and 12.8% of any probable lifetime tic disorder. Genetic factors explained 50.4, 70.1, and 61.1% of the phenotypic covariance between hoarding-OCS, hoarding-tics, and OCS-tics, respectively. Substantial genetic correlations were observed between hoarding and OCS (0.41), hoarding and tics (0.35), and between OCS and tics (0.37). These results support the contribution of genetic factors in the development of these disorders and their comorbidity. Furthermore, tics were mostly influenced by specific

  3. Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer.

    PubMed

    Song, Qinxin; Wei, Guijiang; Zhou, Guohua

    2014-07-01

    A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis. PMID:24518318

  4. Genetic analysis reveals multiple parentage in captive reared eastern hellbender salamanders (Cryptobranchus alleganiensis).

    PubMed

    Unger, Shem D; Williams, Rod N

    2015-11-01

    Information on the parentage of captive reared clutches is vital for conservation head-starting programs. Molecular methods, such as genotyping individuals with hyper-variable markers, can elucidate the genealogical contribution of captive-reared, reintroduced individuals to native populations. In this study, we used 12 polymorphic microsatellite loci to infer parentage of a clutch of 18 eastern hellbenders collected from a single nest from Buffalo Creek, West Virginia, subsequently reared in captivity, and used for translocations in Indiana. Collectively, these markers successfully detected the presence of multiple parentage for this species of conservation concern presently used in captive management programs in zoos across many states. This study highlights the need for genetic analysis of captive reared clutches used in translocations to minimize the loss of genetic diversity and potential for genetic swamping at release sites. PMID:26301598

  5. Breakpoint analysis: Precise localization of genetic markers by means of nonstatistical computation using relatively few genotypes

    SciTech Connect

    Elsner, T.I.; Albertsen, H.; Gerken, S.C.; Cartwright, P.; White, R.

    1995-02-01

    Placing new markers on a previously existing genetic map by using conventional methods of multilocus linkage analysis requires that a large number of reference families be genotyped. This paper presents a methodology for placing new markers on existing genetic maps by genotyping only a few individuals in a selected subset of the reference panel. We show that by identifying meiotic breakpoint events within existing genetic maps and genotyping individuals who exhibit these events, along with one nonrecombinant sibling and their parents, we can determine precise locations for new markers even within subcentimorgan chromosomal regions. This method also improves detection of errors in genotyping and assists in the observation of chromosome behavior in specific regions. 31 refs., 9 figs.

  6. Genetics of murine craniofacial morphology: diallel analysis of the eight founders of the Collaborative Cross.

    PubMed

    Percival, Christopher J; Liberton, Denise K; Pardo-Manuel de Villena, Fernando; Spritz, Richard; Marcucio, Ralph; Hallgrímsson, Benedikt

    2016-01-01

    Using eight inbred founder strains of the mouse Collaborative Cross (CC) project and their reciprocal F1 hybrids, we quantified variation in craniofacial morphology across mouse strains, explored genetic contributions to craniofacial variation that distinguish the founder strains, and tested whether specific or summary measures of craniofacial shape display stronger additive genetic contributions. This study thus provides critical information about phenotypic diversity among CC founder strains and about the genetic contributions to this phenotypic diversity, which is relevant to understanding the basis of variation in standard laboratory strains and natural populations. Craniofacial shape was quantified as a series of size-adjusted linear dimensions (RDs) and by principal components (PC) analysis of morphological landmarks captured from computed tomography images from 62 of the 64 reciprocal crosses of the CC founder strains. We first identified aspects of skull morphology that vary between these phenotypically 'normal' founder strains and that are defining characteristics of these strains. We estimated the contributions of additive and various non-additive genetic factors to phenotypic variation using diallel analyses of a subset of these strongly differing RDs and the first eight PCs of skull shape variation. We find little difference in the genetic contributions to RD measures and PC scores, suggesting fundamental similarities in the magnitude of genetic contributions to both specific and summary measures of craniofacial phenotypes. Our results indicate that there are stronger additive genetic effects associated with defining phenotypic characteristics of specific founder strains, suggesting these distinguishing measures are good candidates for use in genotype-phenotype association studies of CC mice. Our results add significantly to understanding of genotype-phenotype associations in the skull, which serve as a foundation for modeling the origins of medically

  7. Genetic analysis of reproductive performance of Frieswal cattle at Military Farm, Ambala

    PubMed Central

    Kumar, Jagdeep; Singh, Y. P.; Kumar, Sushil; Singh, Rajbir; Kumar, Ravinder; Kumar, Pradeep

    2015-01-01

    Aim: This study was carried out to investigate the genetic analysis of reproductive performance of Frieswal cattle at Military Farm, Ambala. Materials and Methods: A total number of 3005 lactation records of 1147 Frieswal cows over a period of 15 years extending from 1993 to 2007 were used to study at Military Dairy Farm, Ambala. The study period was divided into 5 period of 3 years each. The average performances of reproduction traits, effect of genetic and non-genetic factors were analyzed, and estimation of genetic and phenotypic parameters of reproduction traits was undertaken. Results: The age at first calving (AFC) differed significantly across the periods of calving. The AFC was lowest during the third period (1999-2001) and longest in the first period (1993-95). The effect of season and period of calving, lactation order and regression of AFC on dry period, calving interval and service period was highly significant. The effect of sire was non-significant. The heritability estimates were low for almost all the traits under study. The service period had a high genetic correlation with dry period and calving interval. The dry period also found to have a low genetic correlation with calving interval in Frieswal cows. Service period had a high phenotypic correlation with dry period and very high with a calving interval. The phenotypic correlation between the dry period and calving interval was recognized high. Conclusions: Low heritability estimate for the reproduction traits indicates that there is a very little additive genetic variance in these traits, and individual selection will not be helpful for improving them. Improvement may be brought through better feeding and management of cows by reducing the environmental variability. PMID:27047194

  8. Genome-Wide Pathway Analysis Identifies Genetic Pathways Associated with Psoriasis.

    PubMed

    Aterido, Adrià; Julià, Antonio; Ferrándiz, Carlos; Puig, Lluís; Fonseca, Eduardo; Fernández-López, Emilia; Dauden, Esteban; Sánchez-Carazo, José Luís; López-Estebaranz, José Luís; Moreno-Ramírez, David; Vanaclocha, Francisco; Herrera, Enrique; de la Cueva, Pablo; Dand, Nick; Palau, Núria; Alonso, Arnald; López-Lasanta, María; Tortosa, Raül; García-Montero, Andrés; Codó, Laia; Gelpí, Josep Lluís; Bertranpetit, Jaume; Absher, Devin; Capon, Francesca; Myers, Richard M; Barker, Jonathan N; Marsal, Sara

    2016-03-01

    Psoriasis is a chronic inflammatory disease with a complex genetic architecture. To date, the psoriasis heritability is only partially explained. However, there is increasing evidence that the missing heritability in psoriasis could be explained by multiple genetic variants of low effect size from common genetic pathways. The objective of this study was to identify new genetic variation associated with psoriasis risk at the pathway level. We genotyped 598,258 single nucleotide polymorphisms in a discovery cohort of 2,281 case-control individuals from Spain. We performed a genome-wide pathway analysis using 1,053 reference biological pathways. A total of 14 genetic pathways (PFDR ≤ 2.55 × 10(-2)) were found to be significantly associated with psoriasis risk. Using an independent validation cohort of 7,353 individuals from the UK, a total of 6 genetic pathways were significantly replicated (PFDR ≤ 3.46 × 10(-2)). We found genetic pathways that had not been previously associated with psoriasis risk such as retinol metabolism (Pcombined = 1.84 × 10(-4)), the transport of inorganic ions and amino acids (Pcombined = 1.57 × 10(-7)), and post-translational protein modification (Pcombined = 1.57 × 10(-7)). In the latter pathway, MGAT5 showed a strong network centrality, and its association with psoriasis risk was further validated in an additional case-control cohort of 3,429 individuals (P < 0.05). These findings provide insights into the biological mechanisms associated with psoriasis susceptibility. PMID:26743605

  9. Genetic analysis of lipolytic activities in Thermus thermophilus HB27.

    PubMed

    Leis, Benedikt; Angelov, Angel; Li, Haijuan; Liebl, Wolfgang

    2014-12-10

    The extremely thermophilic bacterium Thermus thermophilus HB27 displays lipolytic activity for the hydrolysis of triglycerides. In this study we performed a mutational in vivo analysis of esterases and lipases that confer growth on tributyrin. We interrupted 10 ORFs suspected to encode lipolytic enzymes. Two chromosomal loci were identified that resulted in reduced hydrolysis capabilities against tributyrin and various para-nitrophenyl acyl esters. By implementation of a convenient new one-step method which abstains from the use of selectable markers, a mutant strain with multiple scar-less deletions was constructed by sequentially deleting ORFs TT_C1787, TT_C0340, TT_C0341 and TT_C0904. The quadruple deletion mutant of T. thermophilus exhibited significantly lower lipolytic activity (approximately 25% residual activity compared to wild type strain) over a broad range of fatty acyl esters and had lost the ability to grow on agar plates containing tributyrin as the sole carbon source. Furthermore, we were able to determine the impact of each gene disruption on the lipolytic activity profile in this model organism and show that the esterase activity in T. thermophilus HB27 is due to a concerted action of several hydrolases having different substrate preferences and activities. The esterase-less T. thermophilus multi-deletion mutant from this study can be used as a screening and expression host for esterase genes from thermophiles or metagenomes. PMID:25102235

  10. Genetic analysis of experimental allergic encephalomyelitis in mice

    SciTech Connect

    Baker, D.; Rosenwasser, O.A.; O`Neill, J.K.; Turk, J.L.

    1995-10-15

    Experimental allergic encephalomyelitis (EAE) is an autoimmune disease of the central nervous system that exhibits many pathologic similarities with multiple sclerosis. While products of the MHC are known to control the development of EAE, it is clear that non-MHC products also influence susceptibility. The chromosomal locations of these were investigated in selective crosses between MHC class II-compatible, EAE-susceptible Biozzi ABH, and low responder nonobese diabetic (NOD) mice. The disease was dominant and highly influenced by gender in the backcross one (BC{sub 1}) generation. Female mice were significantly more susceptible than male mice. Segregation of disease frequency of female animals in this cross suggested that EAE was controlled by a major locus. Although microsatellite-based exclusion mapping indicated that a number of regions on chromosomes 5, 6, 7, 8, 9, 10, 11, 12, 13, and 18 showed evidence of linkage (p<0.05) compared with expected random distributions of alleles, disease susceptibility was most strongly linked (p<0.05) to chromosome 7. However, by selectively analyzing animals that were either severely affected or almost normal, additional susceptibility loci were mapped on chromosomes 18 and 11 that were linked (p<0.001) to resistance and the development of severe disease, respectively. The data indicate a major locus on chromosome 7, affecting initiation and severity of EAE that is probably modified by several other unlinked loci. These localizations may provide candidate loci for the analysis of human autoimmune-demyelinating disease. 30 refs., 5 tabs.

  11. Toward pre-conceptual genetic analysis of human spermatozoa.

    PubMed

    Dozortsev, Dmitri; Serafim, Rui; Cardoso, J Jakson; Abdelmassih, Soraya; Nagy, Peter; Diamond, Michael P; Abdelmassih, Roger

    2003-01-01

    Nuclei of mature mammalian spermatozoa are extraordinarily resistant to chemical and thermal injury. Additionally, decondensation of spermatozoa DNA can be accompanied by little or no visual changes of the sperm head. This study tested whether human spermatozoa could be recovered following several cycles of primer extension preamplification (PEP) and used to achieve fertilization and subsequent development of human oocytes. An attempt was also made to amplify PEP buffer after spermatozoon removal. The results demonstrate that the sperm head can be successfully recovered following treatment with KOH or proteinase K followed by one to four cycles of PEP. It is also shown that following this treatment, the spermatozoa can be injected into the oocytes and will transform into a pronucleus if the oocyte is activated by sperm cytosolic fraction. In some cases, it was also possible to obtain polymerase chain reaction signals using a buffer after sperm cells were removed following several cycles of PEP. Although sperm participation in development was confirmed by fluorescence in-situ hybridization, light microscopy revealed some degree of damage to spermatozoal chromosomes. It is concluded that pre-conceptual analysis of sperm cells may be possible, but more research is necessary to determine the optimal conditions that would preserve sperm DNA integrity while allowing accurate diagnoses. PMID:14656400

  12. Genetic Analysis of thr Mutations in Salmonella typhimurium

    PubMed Central

    Stuttard, Colin

    1973-01-01

    Previous workers divided threonine-requiring (Thr−) strains of Salmonella into three phenotypes with mutations in four complementation groups. The mutations were deemed to define four genes in the order thrD-C-A-B at minute zero on the Salmonella linkage map. In the present study 12 of these mutants were reexamined together with eight new Thr− strains. The three phenotypes were: homoserine-requiring (Hom−); Thr−, feeders of Hom− strains; Thr−, nonfeeders. Exact correlation between these phenotypic groups and three complementation groups was confirmed by abortive transduction. No evidence was found for intergenic complementation between mutations in Hom− strains. It is proposed that thr mutations define three genes rather than four and that these be renamed thrA (Hom−), thrB (Thr− feeders), and thrC (Thr− nonfeeders) to correspond with the sequence of reactions in threonine biosynthesis. Double mutant trpRthr strains were used in reciprocal three-point transduction tests to establish the order of thr mutation sites. Although revisions were made in the classification or location of several mutations, there was an overall correlation of complementation group, phenotype, and map position. The present data provide a basis for further correlation of threonine genes and biosynthetic enzymes, and analysis of cross regulation in aspartate amino acid biosynthesis in Salmonella. PMID:4583208

  13. Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA

    PubMed Central

    Zhou, Xue-Rong; Callahan, Damien L.; Shrestha, Pushkar; Liu, Qing; Petrie, James R.; Singh, Surinder P.

    2014-01-01

    Metabolic engineering of omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA) in oilseeds has been one of the key targets in recent years. By expressing a transgenic pathway for enhancing the synthesis of the ω3 LC-PUFA docosahexaenoic acid (DHA) from endogenous α-linolenic acid (ALA), we obtained the production of fish oil-like proportions of DHA in Arabidopsis seed oil. Liquid chromatography-mass spectrometry (LC-MS) was used to characterize the triacylglycerol (TAG), diacylglycerol (DAG) and phospholipid (PL) lipid classes in the transgenic and wild type Arabidopsis seeds at both developing and mature stages. The analysis identified the appearance of several abundant DHA-containing phosphatidylcholine (PC), DAG and TAG molecular species in mature seeds. The relative abundances of PL, DAG, and TAG species showed a preferred combination of LC-PUFA with ALA in the transgenic seeds, where LC-PUFA were esterified in positions usually occupied by 20:1ω9. Trace amounts of di-DHA PC and tri-DHA TAG were identified and confirmed by high resolution MS/MS. Studying the lipidome in transgenic seeds provided insights into where DHA accumulated and combined with other fatty acids of neutral and phospholipids from the developing and mature seeds. PMID:25225497

  14. Genetic analysis of Karnal bunt (Neovossia indica) resistance in wheat.

    PubMed

    Kumar, M; Luthra, O P; Chawla, V; Yadav, N R; Kumar, R; Khar, A

    2003-03-01

    Embryos excised from seeds of six generations (P1, P2, F1, BC1, BC2 and F2) of a cross WH 283 WH 533 were cultured on modified MS medium already inoculated with secondary sporidia of Neovossia indica. Significant variations for callusing response (CR) (54 55-75 55%) were observed among generations but the presence or absence of N. indicia did not affect callusing response. A clear inhibition zone (IZ) was formed around each embryo showing callusing. The diameter of IZ varied significantly among generations and was maximum in the resistant genotype, WH 283 (3 60 cm). Fresh weight and dry weight of calli, initiated from embryo cultured and inoculated with N. indica, varied significantly among generations. Coefficient of infection as well as percentage of infection reflected the overdominance of susceptibility. Generation mean analysis showed that the three parameter model was adequate for diameter of IZ only. Six-parameter model showed that additive (in presence of N. indica), additive and additive dominance (in absence of N. indica) effects were also significant. Complementary type of epistasis for fresh weight of calli and dominance, and dominance dominance effects for dry weight of calli were observed in the presence of N. indica. Magnitude of additive effects was higher for diameter of IZ in three parameter model. Therefore, selection might assist in improving this trait and thus indirectly help in attaining the resistance towards N. indica. PMID:12711812

  15. Genetic structure of the Utah Mormons: isonymy analysis.

    PubMed

    Jorde, L B; Morgan, K

    1987-03-01

    Isonymy analysis is reported for a sample of 188,895 marriages extracted from the Utah Genealogical Database. Inbreeding rates estimated by isonymy are low, ranging from 0.005 for the earliest marriage cohort (1800-1809) to 0.0008 in the most recent cohort (1950-1959). The inbreeding values decrease considerably through time, but they are consistently higher than inbreeding values estimated from pedigrees. Several explanations are offered for this, including polyphyletism of surnames and the presence of Scandinavian patronyms in this population. Random isonymy between subdivisions is also compared with random kinship estimated from migration matrices. In terms of within-subdivision kinship, the two approaches yield similar results. However, the results are quite dissimilar for between-subdivision kinship. This reflects the recent and nonrandom settlement of Utah by different ethnic groups with different surname distributions. In later time periods, the correlations between the two types of kinship estimates increase, showing that migration patterns (which are strongly determined by geographic distance) exert an increasing influence on the distribution of surnames. Logistic regression is performed on a subset of marriages (n = 88,202), using isonymous vs. nonisonymous marriage as the dependent variable. The independent variables are year of marriage, geographic distance between husband's and wife's birthplaces, endogamous vs. exogamous marriage, and population sizes of husband's and wife's birthplaces. Year of marriage and geographic distance are shown to be significant independent predictors of isonymous marriage. PMID:3578499

  16. MutAIT: an online genetic toxicology data portal and analysis tools.

    PubMed

    Avancini, Daniele; Menzies, Georgina E; Morgan, Claire; Wills, John; Johnson, George E; White, Paul A; Lewis, Paul D

    2016-05-01

    Assessment of genetic toxicity and/or carcinogenic activity is an essential element of chemical screening programs employed to protect human health. Dose-response and gene mutation data are frequently analysed by industry, academia and governmental agencies for regulatory evaluations and decision making. Over the years, a number of efforts at different institutions have led to the creation and curation of databases to house genetic toxicology data, largely, with the aim of providing public access to facilitate research and regulatory assessments. This article provides a brief introduction to a new genetic toxicology portal called Mutation Analysis Informatics Tools (MutAIT) (www.mutait.org) that provides easy access to two of the largest genetic toxicology databases, the Mammalian Gene Mutation Database (MGMD) and TransgenicDB. TransgenicDB is a comprehensive collection of transgenic rodent mutation data initially compiled and collated by Health Canada. The updated MGMD contains approximately 50 000 individual mutation spectral records from the published literature. The portal not only gives access to an enormous quantity of genetic toxicology data, but also provides statistical tools for dose-response analysis and calculation of benchmark dose. Two important R packages for dose-response analysis are provided as web-distributed applications with user-friendly graphical interfaces. The 'drsmooth' package performs dose-response shape analysis and determines various points of departure (PoD) metrics and the 'PROAST' package provides algorithms for dose-response modelling. The MutAIT statistical tools, which are currently being enhanced, provide users with an efficient and comprehensive platform to conduct quantitative dose-response analyses and determine PoD values that can then be used to calculate human exposure limits or margins of exposure. PMID:26208916

  17. Cost-Effectiveness Analysis of Different Genetic Testing Strategies for Lynch Syndrome in Taiwan

    PubMed Central

    Chen, Ying-Erh; Kao, Sung-Shuo; Chung, Ren-Hua

    2016-01-01

    Patients with Lynch syndrome (LS) have a significantly increased risk of developing colorectal cancer (CRC) and other cancers. Genetic screening for LS among patients with newly diagnosed CRC aims to identify mutations in the disease-causing genes (i.e., the DNA mismatch repair genes) in the patients, to offer genetic testing for relatives of the patients with the mutations, and then to provide early prevention for the relatives with the mutations. Several genetic tests are available for LS, such as DNA sequencing for MMR genes and tumor testing using microsatellite instability and immunohistochemical analyses. Cost-effectiveness analyses of different genetic testing strategies for LS have been performed in several studies from different countries such as the US and Germany. However, a cost-effectiveness analysis for the testing has not yet been performed in Taiwan. In this study, we evaluated the cost-effectiveness of four genetic testing strategies for LS described in previous studies, while population-specific parameters, such as the mutation rates of the DNA mismatch repair genes and treatment costs for CRC in Taiwan, were used. The incremental cost-effectiveness ratios based on discounted life years gained due to genetic screening were calculated for the strategies relative to no screening and to the previous strategy. Using the World Health Organization standard, which was defined based on Taiwan’s Gross Domestic Product per capita, the strategy based on immunohistochemistry as a genetic test followed by BRAF mutation testing was considered to be highly cost-effective relative to no screening. Our probabilistic sensitivity analysis results also suggest that the strategy has a probability of 0.939 of being cost-effective relative to no screening based on the commonly used threshold of $50,000 to determine cost-effectiveness. To the best of our knowledge, this is the first cost-effectiveness analysis for evaluating different genetic testing strategies for LS

  18. Cost-Effectiveness Analysis of Different Genetic Testing Strategies for Lynch Syndrome in Taiwan.

    PubMed

    Chen, Ying-Erh; Kao, Sung-Shuo; Chung, Ren-Hua

    2016-01-01

    Patients with Lynch syndrome (LS) have a significantly increased risk of developing colorectal cancer (CRC) and other cancers. Genetic screening for LS among patients with newly diagnosed CRC aims to identify mutations in the disease-causing genes (i.e., the DNA mismatch repair genes) in the patients, to offer genetic testing for relatives of the patients with the mutations, and then to provide early prevention for the relatives with the mutations. Several genetic tests are available for LS, such as DNA sequencing for MMR genes and tumor testing using microsatellite instability and immunohistochemical analyses. Cost-effectiveness analyses of different genetic testing strategies for LS have been performed in several studies from different countries such as the US and Germany. However, a cost-effectiveness analysis for the testing has not yet been performed in Taiwan. In this study, we evaluated the cost-effectiveness of four genetic testing strategies for LS described in previous studies, while population-specific parameters, such as the mutation rates of the DNA mismatch repair genes and treatment costs for CRC in Taiwan, were used. The incremental cost-effectiveness ratios based on discounted life years gained due to genetic screening were calculated for the strategies relative to no screening and to the previous strategy. Using the World Health Organization standard, which was defined based on Taiwan's Gross Domestic Product per capita, the strategy based on immunohistochemistry as a genetic test followed by BRAF mutation testing was considered to be highly cost-effective relative to no screening. Our probabilistic sensitivity analysis results also suggest that the strategy has a probability of 0.939 of being cost-effective relative to no screening based on the commonly used threshold of $50,000 to determine cost-effectiveness. To the best of our knowledge, this is the first cost-effectiveness analysis for evaluating different genetic testing strategies for LS in

  19. Genetic structure of the Korean black scraper Thamnaconus modestus inferred from microsatellite marker analysis.

    PubMed

    An, Hye Suck; Lee, Jang Wook; Park, Jung Yeon; Jung, Hyung Taek

    2013-05-01

    The Korean black scraper, Thamnaconus modestus, is one of the most economically important maricultural fish species in Korea. However, the annual catch of this fish has been continuously declining over the past several decades. In this study, the genetic diversity and relationships among four wild populations and two hatchery stocks of Korean black scraper were assessed based on 16 microsatellite (MS) markers. A total of 319 different alleles were detected over all loci with an average of 19.94 alleles per locus. The hatchery stocks [mean number of alleles (N(A)) = 12, allelic richness (A(R)) = 12, expected heterozygosity (He) = 0.834] showed a slight reduction (P > 0.05) in genetic variability in comparison with wild populations (mean N(A) = 13.86, A(R) = 12.35, He = 0.844), suggesting a sufficient level of genetic variation in the hatchery populations. Similarly low levels of inbreeding and significant Hardy-Weinberg equilibrium deviations were detected in both wild and hatchery populations. The genetic subdivision among all six populations was low but significant (overall F(ST) = 0.008, P < 0.01). Pairwise F(ST), a phylogenetic tree, and multidimensional scaling analysis suggested the existence of three geographically structured populations based on different sea basin origins, although the isolation-by-distance model was rejected. This result was corroborated by an analysis of molecular variance. This genetic differentiation may result from the co-effects of various factors, such as historical dispersal, local environment and ocean currents. These three geographical groups can be considered as independent management units. Our results show that MS markers may be suitable not only for the genetic monitoring of hatchery stocks but also for revealing the population structure of Korean black scraper populations. These results will provide critical information for breeding programs, the management of cultured stocks and the conservation of this species. PMID

  20. [A genetic algorithm approach to qualitative analysis in inductively coupled plasma-atomic emission spectroscopy].

    PubMed

    Peng, Bin; Liu, Ke-ling; Li, Zhi-min; Wang, Yue-song; Huang, Tu-jiang

    2002-06-01

    Genetic algorithm (GA) is used in automatic qualitative analysis by a sequential inductively coupled plasma spectrometer (ICP-AES) and a computer program is developed in this paper. No any standard samples are needed, and spectroscopic interferences can be eliminated. All elements and their concentration ranges of an unknown sample can be reported. The replication rate Pr, crossover rate Pc, and mutation rate of the genetic algorithm were adjusted to be 0.6, 0.4 and 0 respectively. The analytical results of GA are in good agreement with the reference values. It indicates that, combined with the intensity information, the GA can be applied to spectroscopic qualitative analysis and expected to become an effective method in qualitative analysis in ICP-AES after further work. PMID:12938334

  1. Microsatellite analysis of demographic genetic structure in fragmented populations of the tropical tree Symphonia globulifera.

    PubMed

    Aldrich, P R; Hamrick, J L; Chavarriaga, P; Kochert, G

    1998-08-01

    We developed genetic markers for three microsatellite loci in the tropical tree Symphonia globulifera and used them to examine the demographic genetic consequences of forest fragmentation. High levels of genetic variation were revealed in samples of adults, saplings, and seedlings. The more-variable loci exhibited less stability in allelic composition across sites and stages. The number of alleles per hectare (ha) of forest was similar when continuous forest plots were compared to plots from fragmented forest for all three stages. This pattern also held for the number of unique multilocus adult and sapling genotypes, but the number of unique seedling genotypes per ha of fragmented forest greatly exceeded expectations based on continuous forest data, probably due to the concentration of seeds into remnant forest patches by foraging bats. Significant inbreeding and genetic differentiation were most often associated with the fragmented forest and the seedlings. Finally, principal component analysis reaffirmed that a bottleneck, acting in concert with pre-existing genetic structure in the adults, had led to enhanced and rapid divergence in the seedlings following deforestation, a result that is of central interest for landscape management. PMID:9711860

  2. GENETIC ANALYSIS OF STRUCTURAL BRAIN CONNECTIVITY USING DICCCOL MODELS OF DIFFUSION MRI IN 522 TWINS

    PubMed Central

    Zhu, Dajiang; Zhan, Liang; Faskowitz, Joshua; Daianu, Madelaine; Jahanshad, Neda; de Zubicaray, Greig I.; McMahon, Katie L.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.

    2015-01-01

    Genetic and environmental factors affect white matter connectivity in the normal brain, and they also influence diseases in which brain connectivity is altered. Little is known about genetic influences on brain connectivity, despite wide variations in the brain's neural pathways. Here we applied the “DICCCOL” framework to analyze structural connectivity, in 261 twin pairs (522 participants, mean age: 21.8 y ± 2.7SD). We encoded connectivity patterns by projecting the white matter (WM) bundles of all “DICCCOLs” as a tracemap (TM). Next we fitted an A/C/E structural equation model to estimate additive genetic (A), common environmental (C), and unique environmental/error (E) components of the observed variations in brain connectivity. We found 44 “heritable DICCCOLs” whose connectivity was genetically influenced (a2>1%); half of them showed significant heritability (a2>20%). Our analysis of genetic influences on WM structural connectivity suggests high heritability for some WM projection patterns, yielding new targets for genome-wide association studies. PMID:26413210

  3. Molecular genetic analysis of the yellow-breasted capuchin monkey: recommendations for ex situ conservation.

    PubMed

    Oliveira, C G; Gaiotto, F A; Costa, M A; Martinez, R A

    2011-01-01

    The yellow-breasted capuchin monkey, Cebus xanthosternos, is one of the most endangered species of the Brazilian Atlantic Forest. In situ conservation for this species is problematic due to habitat destruction; therefore, captive conservation has been considered as an alternative strategy. A Studbook for C. xanthosternos has been kept for more than 20 years; however, no genetic data has been collected. Our aim was to provide a preliminary assessment of the genetic variability of C. xanthosternos in captivity in Brazil and compare it with data from the wild. Microsatellite and mtDNA sequencing were carried out in 40 samples from five Brazilian institutions registered in the international Studbook and compared with 8 samples collected in a wild population from REBIO-Una/BA. DNA for analysis was extracted from hair, feces and blood. Our results showed that two of the five captive groups assessed had a genetic variability comparable to wild animals. However, the other three groups apparently require urgent management to improve its genetic variability. Considering that inbreeding effects are more pronounced in captivity due to lack of gene flow, our data indicate a need to increase population size by introducing newly rescued individuals into these captive groups. Our results are the first attempt to provide genetic information for captive C. xanthosternos in Brazil. PMID:21823097

  4. Genetic Analysis of Snake River Sockeye Salmon (Oncorhynchus Nerka), 2003 Technical Report.

    SciTech Connect

    Faler, Joyce; Powell, Madison

    2003-12-01

    A total of 1720 Oncorhynchus nerka tissue samples from 40 populations were characterized using mitochondrial DNA RFLPs (Restriction Fragment Length Polymorphisms). Analysis of anadromous sockeye populations indicated the historical presence of four major maternal lineages. Thirty-five composite mitochondrial haplotypes were observed from the 40 populations of O. nerka sampled throughout the Pacific Northwest. Six of these composite haplotypes ranged in frequency from 7-26% overall and were commonly observed in most populations. The six haplotypes together comprised 90% of the sampled O. nerka. An average of 4.6 composite haplotypes were observed per population. Genetic markers used were satisfactory in separating Redfish Lake anadromous sockeye, residual sockeye and outmigrants from the sympatric kokanee population that spawns in the Fishhook Creek tributary. Outmigrants appear to be primarily composed of progeny from resident residual sockeye, and captively-reared progeny of the captive broodstock program. Thus, residual sockeye may be considered a suitable source of genetic variation to maintain genetic diversity among captive broodstocks of anadromous sockeye. Fishhook Creek kokanee are genetically diverse and during spawning, are temporally and spatially isolated from the residual sockeye population. Eleven composite haplotypes were observed in the kokanee population. The unusually high number of haplotypes is most likely a consequence of periodic stocking of Redfish Lake with kokanee from other sources. Genetic data from Redfish Lake creel samples taken during 1996-1999 putatively indicate the incidental take of a listed resident sockeye.

  5. Comparative proteomic analysis of genetically modified maize grown under different agroecosystems conditions in Brazil

    PubMed Central

    2013-01-01

    Background Profiling technologies allow the simultaneous measurement and comparison of thousands of cell components without prior knowledge of their identity. In the present study, we used two-dimensional gel electrophoresis combined with mass spectrometry to evaluate protein expression of Brazilian genetically modified maize hybrid grown under different agroecosystems conditions. To this effect, leaf samples were subjected to comparative analysis using the near-isogenic non-GM hybrid as the comparator. Results In the first stage of the analysis, the main sources of variation in the dataset were identified by using Principal Components Analysis which correlated most of the variation to the different agroecosystems conditions. Comparative analysis within each field revealed a total of thirty two differentially expressed proteins between GM and non-GM samples that were identified and their molecular functions were mainly assigned to carbohydrate and energy metabolism, genetic information processing and stress response. Conclusions To the best of our knowledge this study represents the first evidence of protein identities with differentially expressed isoforms in Brazilian MON810 genetic background hybrid grown under field conditions. As global databases on outputs from “omics” analysis become available, these could provide a highly desirable benchmark for safety assessments. PMID:24304660

  6. Computer simulation is an undervalued tool for genetic analysis: a historical view and presentation of SHIMSHON--a Web-based genetic simulation package.

    PubMed

    Greenberg, David A

    2011-01-01

    Computer simulation methods are under-used tools in genetic analysis because simulation approaches have been portrayed as inferior to analytic methods. Even when simulation is used, its advantages are not fully exploited. Here, I present SHIMSHON, our package of genetic simulation programs that have been developed, tested, used for research, and used to generated data for Genetic Analysis Workshops (GAW). These simulation programs, now web-accessible, can be used by anyone to answer questions about designing and analyzing genetic disease studies for locus identification. This work has three foci: (1) the historical context of SHIMSHON's development, suggesting why simulation has not been more widely used so far. (2) Advantages of simulation: computer simulation helps us to understand how genetic analysis methods work. It has advantages for understanding disease inheritance and methods for gene searches. Furthermore, simulation methods can be used to answer fundamental questions that either cannot be answered by analytical approaches or cannot even be defined until the problems are identified and studied, using simulation. (3) I argue that, because simulation was not accepted, there was a failure to grasp the meaning of some simulation-based studies of linkage. This may have contributed to perceived weaknesses in linkage analysis; weaknesses that did not, in fact, exist. PMID:22189467

  7. Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy

    SciTech Connect

    Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; Fahrenbach, John P.; Nelakuditi, Viswateja; Pesce, Lorenzo L.; Pytel, Peter; McNally, Elizabeth M.

    2014-09-01

    Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused on 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.

  8. Targeted Analysis of Whole Genome Sequence Data to Diagnose Genetic Cardiomyopathy

    DOE PAGESBeta

    Golbus, Jessica R.; Puckelwartz, Megan J.; Dellefave-Castillo, Lisa; Fahrenbach, John P.; Nelakuditi, Viswateja; Pesce, Lorenzo L.; Pytel, Peter; McNally, Elizabeth M.

    2014-09-01

    Background—Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of more than 50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift towards comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. Methods and Results—Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused onmore » 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1-14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and/or segregation analysis. Three of three previously identified primary mutations were detected by this analysis. In six subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and/or had additional pathological correlation to provide evidence for causality. For two subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. We conclude that these pilot data demonstrate that ~30-40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.« less

  9. Lessons learned from Genetic Analysis Workshop 17: transitioning from genome-wide association studies to whole-genome statistical genetic analysis.

    PubMed

    Wilson, Alexander F; Ziegler, Andreas

    2011-01-01

    Genetic Analysis Workshop 17 (GAW17) focused on the transition from genome-wide association study designs and methods to the study designs and statistical genetic methods that will be required for the analysis of next-generation sequence data including both common and rare sequence variants. In the 166 contributions to GAW17, a wide variety of statistical methods were applied to simulated traits in population- and family-based samples, and results from these analyses were compared to the known generating model. In general, many of the statistical genetic methods used in the population-based sample identified causal sequence variants (SVs) when the estimated locus-specific heritability, as measured in the population-based sample, was greater than about 0.08. However, SVs with locus-specific heritabilities less than 0.03 were rarely identified consistently. In the family-based samples, many of the methods detected SVs that were rarer than those detected in the population-based sample, but the estimated locus-specific heritabilities for these rare SVs, as measured in the family-based samples, were substantially higher (>0.2) than their corresponding heritabilities in the population-based samples. Substantial inflation of the type I error rate was observed across a wide variety of statistical methods. Although many of the contributions found little inflation in type I error for Q4, a trait with no causal SVs, type I error rates for Q1 and Q2 were well above their nominal levels with the inflation for Q1 being higher than that for Q2. It seems likely that this inflation in type I error is due to correlations among SVs. PMID:22128050

  10. A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability.

    PubMed

    Easley, Christopher J; Karlinsey, James M; Bienvenue, Joan M; Legendre, Lindsay A; Roper, Michael G; Feldman, Sanford H; Hughes, Molly A; Hewlett, Erik L; Merkel, Tod J; Ferrance, Jerome P; Landers, James P

    2006-12-19

    We describe a microfluidic genetic analysis system that represents a previously undescribed integrated microfluidic device capable of accepting whole blood as a crude biological sample with the endpoint generation of a genetic profile. Upon loading the sample, the glass microfluidic genetic analysis system device carries out on-chip DNA purification and PCR-based amplification, followed by separation and detection in a manner that allows for microliter samples to be screened for infectious pathogens with sample-in-answer-out results in < 30 min. A single syringe pump delivers sample/reagents to the chip for nucleic acid purification from a biological sample. Elastomeric membrane valving isolates each distinct functional region of the device and, together with resistive flow, directs purified DNA and PCR reagents from the extraction domain into a 550-nl chamber for rapid target sequence PCR amplification. Repeated pressure-based injections of nanoliter aliquots of amplicon (along with the DNA sizing standard) allow electrophoretic separation and detection to provide DNA fragment size information. The presence of Bacillus anthracis (anthrax) in 750 nl of whole blood from living asymptomatic infected mice and of Bordetella pertussis in 1 microl of nasal aspirate from a patient suspected of having whooping cough are confirmed by the resultant genetic profile. PMID:17159153

  11. Genetic Variability in Populations of the Southern Chinch Bug, Blissus insularis, Assessed using AFLP Analysis

    PubMed Central

    Chandra, Ambika; Reinert, James A.; LaMantia, Jonathan; Pond, J. Blake; Huff, David R.

    2011-01-01

    Southern chinch bug, Blissus insularis Barber (Heteroptera: Blissidae), is the most destructive insect pest of St. Augustine grass, Stenotaphrum secundatum Waltz (Kuntze), in the southern United States. The present study is focused on assessing genetic variability in five populations of B. insularis collected from Texas and Florida where St. Augustine grass is widely grown. The amplified fragment length polymorphism technique was used to DNA fingerprint individuals from each population (a total of 46 individuals) using five primer combinations (EcoRI/MSeI). Analysis of molecular variance results show no evidence to support significant genetic variability among Texas and Florida populations of B. insularis. Nearly all genetic variation was found to reside within populations (95%), with only approximately 3% residing among populations between regions. Low GST values obtained from POPGENE and low FST values obtained from the analysis of molecular variance both support the conclusion for high levels of gene flow resulting from interbreeding and/or migratory events among the populations. A Mantel test of Euclidean squared distances showed no correlation between the genetic distance and geographic distance matrices of tested populations of B. insularis. The results of the present study suggests that gene flow is occurring among populations of B. insularis and, therefore, breeders need to be aware that this resistance will most likely not remain localized, and it has the potential to spread as a result of migratory events. PMID:22957773

  12. Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii

    PubMed Central

    Rommereim, Leah M.; Hortua Triana, Miryam A.; Falla, Alejandra; Sanders, Kiah L.; Guevara, Rebekah B.; Bzik, David J.; Fox, Barbara A.

    2013-01-01

    Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human

  13. Genetic manipulation in Δku80 strains for functional genomic analysis of Toxoplasma gondii.

    PubMed

    Rommereim, Leah M; Hortua Triana, Miryam A; Falla, Alejandra; Sanders, Kiah L; Guevara, Rebekah B; Bzik, David J; Fox, Barbara A

    2013-01-01

    Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein(1,2). The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale(1-4). Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human

  14. Analysis of genetic diversity and phylogenetic relationship of red deer subspecies in XinJiang, China.

    PubMed

    Jia, Bin; Li, Ren-Yan; Zhao, Zong-Sheng; Yan, Gen-Qiang; Xi, Ji-Feng; Blair, Hugh T; Li, Da-Quan; Zhang, Jian-Xin; Zhao, Xi-Tang

    2011-08-01

    Polymorphisms for seven microsatellite loci in three red deer subspecies (9 populations) found in XinJiang were detected by polymerase chain reaction (PCR), 12% nondenaturation polyacrylamide gel electrophoresis and the Sanguinetti silver staining method. Numbers of alleles, average effective numbers of alleles (E) and the average rate of homozygosity, allelic frequencies of seven microsatellite loci, polymorphism information content (PIC), mean heterozygosity (H) and genetic distances among the populations were calculated for each population. Dendrograms were constructed based on genetic distances by the neighbor-joining method (NJ), utilizing molecular evolutionary genetics analysis software PHYLIP (3.6). The phylogenetic tree was constructed based on allelic frequencies using maximum likelihood (ML); the bootstrap value was estimated by bootstrap test in the tree. Lastly, phylogenesis was analyzed. The results showed that four of the seven microsatellite loci were highly polymorphic, but BMS2508 and Celjp0023 showed no polymorphism and BM5004 was a neutral polymorphism. It is our conclusion that the four microsatellite loci are effective DNA markers for the analysis of genetic diversity and phylogenetic relationships among the three red deer subspecies. The mean PIC, H and E-values across the microsatellite loci were 0.5393, 0.5736 and 2.64, which showed that these microsatellite loci are effective DNA markers for the genetic analysis of red deer. C.e. songaricus populations from Regiment 104, 151 and Hami are clustered together. C.e. yarkandensis populations from Regiment 35, Xaya and Alaer are clustered together. These two clusters also cluster together. Lastly, C.e. sibiricus populations from Burqin, Regiment 188 and the first two clusters were clustered together. The phylogenetic relationship among different red deer populations is consistent with the known origin, history of breeding and geographic distributions of populations. PMID:21794008

  15. Germplasm for genetic improvement of lint yield in Upland cotton genetic analysis of lint yield with yield components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of genetic effects for lint yield and yield components in cotton (Gossypium hirsutum L.) germplasm is critical for its utilization in breeding programs. This study was designed to apply the conditional approach and an additive and dominant (AD) model to analyze genetic effects and gen...

  16. Can Genetics Predict Response to Complex Behavioral Interventions? Evidence from a Genetic Analysis of the Fast Track Randomized Control Trial

    PubMed Central

    Albert, Dustin; Belsky, Daniel W.; Crowley, D. Max; Latendresse, Shawn J.; Aliev, Fazil; Riley, Brien; Sun, Cuie; Dick, Danielle M.; Dodge, Kenneth R.

    2014-01-01

    Early interventions are a preferred method for addressing behavioral problems in high-risk children, but often have only modest effects. Identifying sources of variation in intervention effects can suggest means to improve efficiency. One potential source of such variation is the genome. We conducted a genetic analysis of the Fast Track Randomized Control Trial, a 10-year-long intervention to prevent high-risk kindergarteners from developing adult externalizing problems including substance abuse and antisocial behavior. We tested whether variants of the glucocorticoid receptor gene NR3C1 were associated with differences in response to the Fast Track intervention. We found that in European-American children, a variant of NR3C1 identified by the single-nucleotide polymorphism rs10482672 was associated with increased risk for externalizing psychopathology in control group children and decreased risk for externalizing psychopathology in intervention group children. Variation in NR3C1 measured in this study was not associated with differential intervention response in African-American children. We discuss implications for efforts to prevent externalizing problems in high-risk children and for public policy in the genomic era. PMID:26106668

  17. Can Genetics Predict Response to Complex Behavioral Interventions? Evidence from a Genetic Analysis of the Fast Track Randomized Control Trial.

    PubMed

    Albert, Dustin; Belsky, Daniel W; Crowley, D Max; Latendresse, Shawn J; Aliev, Fazil; Riley, Brien; Sun, Cuie; Dick, Danielle M; Dodge, Kenneth A

    2015-01-01

    Early interventions are a preferred method for addressing behavioral problems in high-risk children, but often have only modest effects. Identifying sources of variation in intervention effects can suggest means to improve efficiency. One potential source of such variation is the genome. We conducted a genetic analysis of the Fast Track randomized control trial, a 10-year-long intervention to prevent high-risk kindergarteners from developing adult externalizing problems including substance abuse and antisocial behavior. We tested whether variants of the glucocorticoid receptor gene NR3C1 were associated with differences in response to the Fast Track intervention. We found that in European-American children, a variant of NR3C1 identified by the single-nucleotide polymorphism rs10482672 was associated with increased risk for externalizing psychopathology in control group children and decreased risk for externalizing psychopathology in intervention group children. Variation in NR3C1 measured in this study was not associated with differential intervention response in African-American children. We discuss implications for efforts to prevent externalizing problems in high-risk children and for public policy in the genomic era. PMID:26106668

  18. Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley

    2009-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) to automate analysis and design process by leveraging existing tools to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic, and hypersonic aircraft. This is a promising technology, but faces many challenges in large-scale, real-world application. This report describes current approaches, recent results, and challenges for multidisciplinary design, analysis, and optimization as demonstrated by experience with the Ikhana fire pod design.!

  19. FVGWAS: Fast voxelwise genome wide association analysis of large-scale imaging genetic data.

    PubMed

    Huang, Meiyan; Nichols, Thomas; Huang, Chao; Yu, Yang; Lu, Zhaohua; Knickmeyer, Rebecca C; Feng, Qianjin; Zhu, Hongtu

    2015-09-01

    More and more large-scale imaging genetic studies are being widely conducted to collect a rich set of imaging, genetic, and clinical data to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. Several major big-data challenges arise from testing genome-wide (NC>12 million known variants) associations with signals at millions of locations (NV~10(6)) in the brain from thousands of subjects (n~10(3)). The aim of this paper is to develop a Fast Voxelwise Genome Wide Association analysiS (FVGWAS) framework to efficiently carry out whole-genome analyses of whole-brain data. FVGWAS consists of three components including a heteroscedastic linear model, a global sure independence screening (GSIS) procedure, and a detection procedure based on wild bootstrap methods. Specifically, for standard linear association, the computational complexity is O (nNVNC) for voxelwise genome wide association analysis (VGWAS) method compared with O ((NC+NV)n(2)) for FVGWAS. Simulation studies show that FVGWAS is an efficient method of searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. Finally, we have successfully applied FVGWAS to a large-scale imaging genetic data analysis of ADNI data with 708 subjects, 193,275voxels in RAVENS maps, and 501,584 SNPs, and the total processing time was 203,645s for a single CPU. Our FVGWAS may be a valuable statistical toolbox for large-scale imaging genetic analysis as the field is rapidly advancing with ultra-high-resolution imaging and whole-genome sequencing. PMID:26025292

  20. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies

    PubMed Central

    2014-01-01

    Summary Background The epilepsies are a clinically heterogeneous group of neurological disorders. Despite strong evidence for heritability, genome-wide association studies have had little success in identification of risk loci associated with epilepsy, probably because of relatively small sample sizes and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy). Methods We combined genome-wide association data from 12 cohorts of individuals with epilepsy and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different genotyping platforms across sites, investigators at each site conducted a linear mixed-model association analysis for each dataset. Combining summary statistics, we conducted fixed-effects meta-analyses of all epilepsy, focal epilepsy, and genetic generalised epilepsy. We set the genome-wide significance threshold at p<1·66 × 10−8. Findings We included 8696 cases and 26 157 controls in our analysis. Meta-analysis of the all-epilepsy cohort identified loci at 2q24.3 (p=8·71 × 10−10), implicating SCN1A, and at 4p15.1 (p=5·44 × 10−9), harbouring PCDH7, which encodes a protocadherin molecule not previously implicated in epilepsy. For the cohort of genetic generalised epilepsy, we noted a single signal at 2p16.1 (p=9·99 × 10−9), implicating VRK2 or FANCL. No single nucleotide polymorphism achieved genome-wide significance for focal epilepsy. Interpretation This meta-analysis describes a new locus not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the

  1. Genetic diversity of populations and clones of Rhopilema esculentum in China based on AFLP analysis

    NASA Astrophysics Data System (ADS)

    Qiao, Hongjin; Liu, Xiangquan; Zhang, Xijia; Jiang, Haibin; Wang, Jiying; Zhang, Limin

    2013-03-01

    Amplified fragment length polymorphisms (AFLP) markers were developed to assess the genetic variation of populations and clones of Rhopilema esculentum Kishinouye (Scyphozoa, Rhizostomatidae). One hundred and seventy-nine loci from 56 individuals of two hatchery populations and two wild populations were genotyped with five primer combinations. The polymorphic ratio, Shannon's diversity index and average heterozygosity were 70.3%, 0.346 and 0.228 for the white hatchery population, 74.3%, 0.313, and 0.201 for the red hatchery population, 79.3%, 0.349, and 0.224 for the Jiangsu wild population, and 74.9%, 0.328 and 0.210 for the Penglai wild population, respectively. Thus, all populations had a relatively high level of genetic diversity. A specific band was identified that could separate the white from the red hatchery population. There was 84.85% genetic differentiation within populations. Individual cluster analysis using unweighted pair-group method with arithmetic mean (UPGMA) suggested that hatchery populations and wild populations could be divided. For the hatchery populations, the white and red populations clustered separately; however, for the wild populations, Penglai and Jiangsu populations clustered together. The genetic diversity at the clone level was also determined. Our data suggest that there are relatively high genetic diversities within populations but low genetic differentiation between populations, which may be related to the long-term use of germplasm resources from Jiangsu Province for artificial seeding and releasing. These findings will benefit the artificial seeding and conservation of the germplasm resources.

  2. Genetic Characterization and Comparative Genome Analysis of Brucella melitensis Isolates from India

    PubMed Central

    Azam, Sarwar; Rao, Sashi Bhushan; Jakka, Padmaja; NarasimhaRao, Veera; Bhargavi, Bindu; Gupta, Vivek Kumar

    2016-01-01

    Brucellosis is the most frequent zoonotic disease worldwide, with over 500,000 new human infections every year. Brucella melitensis, the most virulent species in humans, primarily affects goats and the zoonotic transmission occurs by ingestion of unpasteurized milk products or through direct contact with fetal tissues. Brucellosis is endemic in India but no information is available on population structure and genetic diversity of Brucella spp. in India. We performed multilocus sequence typing of four B. melitensis strains isolated from naturally infected goats from India. For more detailed genetic characterization, we carried out whole genome sequencing and comparative genome analysis of one of the B. melitensis isolates, Bm IND1. Genome analysis identified 141 unique SNPs, 78 VNTRs, 51 Indels, and 2 putative prophage integrations in the Bm IND1 genome. Our data may help to develop improved epidemiological typing tools and efficient preventive strategies to control brucellosis. PMID:27525259

  3. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality

    PubMed Central

    Kamvar, Zhian N.; Brooks, Jonah C.; Grünwald, Niklaus J.

    2015-01-01

    To gain a detailed understanding of how plant microbes evolve and adapt to hosts, pesticides, and other factors, knowledge of the population dynamics and evolutionary history of populations is crucial. Plant pathogen populations are often clonal or partially clonal which requires different analytical tools. With the advent of high throughput sequencing technologies, obtaining genome-wide population genetic data has become easier than ever before. We previously contributed the R package poppr specifically addressing issues with analysis of clonal populations. In this paper we provide several significant extensions to poppr with a focus on large, genome-wide SNP data. Specifically, we provide several new functionalities including the new function mlg.filter to define clone boundaries allowing for inspection and definition of what is a clonal lineage, minimum spanning networks with reticulation, a sliding-window analysis of the index of association, modular bootstrapping of any genetic distance, and analyses across any level of hierarchies. PMID:26113860

  4. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality.

    PubMed

    Kamvar, Zhian N; Brooks, Jonah C; Grünwald, Niklaus J

    2015-01-01

    To gain a detailed understanding of how plant microbes evolve and adapt to hosts, pesticides, and other factors, knowledge of the population dynamics and evolutionary history of populations is crucial. Plant pathogen populations are often clonal or partially clonal which requires different analytical tools. With the advent of high throughput sequencing technologies, obtaining genome-wide population genetic data has become easier than ever before. We previously contributed the R package poppr specifically addressing issues with analysis of clonal populations. In this paper we provide several significant extensions to poppr with a focus on large, genome-wide SNP data. Specifically, we provide several new functionalities including the new function mlg.filter to define clone boundaries allowing for inspection and definition of what is a clonal lineage, minimum spanning networks with reticulation, a sliding-window analysis of the index of association, modular bootstrapping of any genetic distance, and analyses across any level of hierarchies. PMID:26113860

  5. Genetic Characterization and Comparative Genome Analysis of Brucella melitensis Isolates from India.

    PubMed

    Azam, Sarwar; Rao, Sashi Bhushan; Jakka, Padmaja; NarasimhaRao, Veera; Bhargavi, Bindu; Gupta, Vivek Kumar; Radhakrishnan, Girish

    2016-01-01

    Brucellosis is the most frequent zoonotic disease worldwide, with over 500,000 new human infections every year. Brucella melitensis, the most virulent species in humans, primarily affects goats and the zoonotic transmission occurs by ingestion of unpasteurized milk products or through direct contact with fetal tissues. Brucellosis is endemic in India but no information is available on population structure and genetic diversity of Brucella spp. in India. We performed multilocus sequence typing of four B. melitensis strains isolated from naturally infected goats from India. For more detailed genetic characterization, we carried out whole genome sequencing and comparative genome analysis of one of the B. melitensis isolates, Bm IND1. Genome analysis identified 141 unique SNPs, 78 VNTRs, 51 Indels, and 2 putative prophage integrations in the Bm IND1 genome. Our data may help to develop improved epidemiological typing tools and efficient preventive strategies to control brucellosis. PMID:27525259

  6. Genetic polymorphism of MMP family and coronary disease susceptibility: a meta-analysis.

    PubMed

    Li, Min; Shi, Jingpu; Fu, Lingyu; Wang, Hailong; Zhou, Bo; Wu, Xiaomei

    2012-03-01

    The issue that genetic polymorphism of matrix metalloproteinase (MMP) family is in association with coronary disease is controversial. So we did a meta-analysis to clarify it clearly. We made a literature search of PubMed, the Web of Science, and Cochrane Collaboration's database to identify eligible reports. The methodological quality of each included studies was assessed. We calculated the pooled ORs with their 95%CI for each genetic polymorphism in STATA 11 software. Separate analysis was performed to address the consistency of results across the subgroup with different continents. A total of 39 studies were included, with a sample of 42269 individuals. This meta-analysis provided evidence that genetic polymorphism of MMP1-1607 1G/2G, MMP3-Gly45lys, MMP3-376 G/C, MMP3-1171 5A/6A, MMP9-1562 C/T and MMP9-R279Q have a small to medium effect on incidence of coronary disease. There was no evidence that MMP1-519 A/G, MMP1-340 T/C and MMP2-1306 C/T polymorphism could increase risk of coronary disease. Results from subgroup analysis supported a relation between MMP3-1711 5A allele, MMP9-1562 C allele and coronary disease especially in Asian population. The results provide moderate association between the six common genetic polymorphism of matrix metalloproteinase family and coronary disease. However, the challenge for researcher is identifying separate effect on different races. PMID:22226810

  7. Genetic analysis of chromosomal loci affecting the content of insoluble glutenin in common wheat.

    PubMed

    Jin, Huaibing; Wang, Zhaojun; Li, Da; Wu, Peipei; Dong, Zhengying; Rong, Chaowu; Liu, Xin; Qin, Huanju; Li, Huili; Wang, Daowen; Zhang, Kunpu

    2015-09-20

    In common wheat, insoluble glutenin (IG) is an important fraction of flour glutenin macropolymers, and insoluble glutenin content (IGC) is positively associated with key end-use quality parameters. Here, we present a genetic analysis of the chromosomal loci affecting IGC with the data collected from 90 common wheat varieties cultivated in four environments. Statistical analysis showed that IGC was controlled mainly genetically and influenced by the environment. Among the major genetic components known to affect end-use quality, 1BL/1RS translocation had a significantly negative effect on IGC across all four environments. As to the different alleles of Glu-A1, -B1 and -D1 loci, Glu-A1a, Glu-B1b and Glu-D1d exhibited relatively strong positive effects on IGC in all environments. To identify new loci affecting IGC, association mapping with 1355 DArT markers was conducted. A total of 133 markers were found associated with IGC in two or more environments (P < 0.05), ten of which consistently affected IGC in all four environments. The phenotypic variance explained by the ten markers varied from 4.66% to 8.03%, and their elite alleles performed significantly better than the inferior counterparts in enhancing IGC. Among the ten markers, wPt-3743 and wPt-733835 reflected the action of Glu-D1, and wPt-664972 probably indicated the effect of Glu-A1. The other seven markers, forming three clusters on 2AL, 3BL or 7BL chromosome arms, represented newly identified genetic determinants of IGC. Our work provided novel insights into the genetic control of IGC, which may facilitate wheat end-use quality improvement through molecular breeding in the future. PMID:26408094

  8. Genetic analysis of the purplish Washington clam (Saxidomus purpuratus Sowerby) of Korean coastal waters.

    PubMed

    Cho, Eun-Seob; Seo, Young-Il; Suh, Young-Sang

    2013-05-01

    To investigate the genetic structure of the purplish Washington clam population, Saxidomus purpuratus Sowerby, in Korea. A portion of mitochondrial COI gene sequences (605 bp) for phylogenetic comparison was determined. Sequence analysis of 62 individuals collected from six regions revealed 13 haplotypes. Phylogenetic analysis using Phylogeny Inference Package (PHYLIP) subdivided the purplish Washington clam into two clades (termed clade A and B), weak supported groups (< 65 of bootstrap value). This haplotype subdivision was also in accordance with geographic separation; one each at Masan, Yeosu, Samcheonpo, Jubyeon and Geojedo, and the other at Sineju. Population genetic analysis subdivided these two population groups with a geographic distance (d = 0.431, p = 0.379). Furthermore, in the Sineju population, the maximum sequence divergence (2.67%) and minimum nucleotide diversity (0.0012426) were shown in which might be reflective of a relatively small population size and the geographical isolation of the population as compared with other populations. However, a very high migration rate (N(m) = 59.62-infinite) and a very low level of geographic distance (F(ST) = -0.076-0.055) were noted to exist among the South and East Sea populations, suggesting that individuals between populations should show a significantly active genetic mixing and migration regardless of geography. These findings allowed us to conclude that the purplish Washington clam populations occurring in the South and East Sea were formed with randomly dispersed individuals. PMID:24617150

  9. Genetic Diversity and Population Structure Analysis of European Hexaploid Bread Wheat (Triticum aestivum L.) Varieties

    PubMed Central

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents. PMID:24718292

  10. Genetic analysis for a shared biological basis between migraine and coronary artery disease

    PubMed Central

    Winsvold, Bendik S.; Nelson, Christopher P.; Malik, Rainer; Gormley, Padhraig; Anttila, Verneri; Vander Heiden, Jason; Elliott, Katherine S.; Jacobsen, Line M.; Palta, Priit; Amin, Najaf; de Vries, Boukje; Hämäläinen, Eija; Freilinger, Tobias; Ikram, M. Arfan; Kessler, Thorsten; Koiranen, Markku; Ligthart, Lannie; McMahon, George; Pedersen, Linda M.; Willenborg, Christina; Won, Hong-Hee; Olesen, Jes; Artto, Ville; Assimes, Themistocles L.; Blankenberg, Stefan; Boomsma, Dorret I.; Cherkas, Lynn; Davey Smith, George; Epstein, Stephen E.; Erdmann, Jeanette; Ferrari, Michel D.; Göbel, Hartmut; Hall, Alistair S.; Jarvelin, Marjo-Riitta; Kallela, Mikko; Kaprio, Jaakko; Kathiresan, Sekar; Lehtimäki, Terho; McPherson, Ruth; März, Winfried; Nyholt, Dale R.; O'Donnell, Christopher J.; Quaye, Lydia; Rader, Daniel J.; Raitakari, Olli; Roberts, Robert; Schunkert, Heribert; Schürks, Markus; Stewart, Alexandre F.R.; Terwindt, Gisela M.; Thorsteinsdottir, Unnur; van den Maagdenberg, Arn M.J.M.; van Duijn, Cornelia; Wessman, Maija; Kurth, Tobias; Kubisch, Christian; Dichgans, Martin; Chasman, Daniel I.; Cotsapas, Chris; Zwart, John-Anker; Samani, Nilesh J.

    2015-01-01

    Objective: To apply genetic analysis of genome-wide association data to study the extent and nature of a shared biological basis between migraine and coronary artery disease (CAD). Methods: Four separate methods for cross-phenotype genetic analysis were applied on data from 2 large-scale genome-wide association studies of migraine (19,981 cases, 56,667 controls) and CAD (21,076 cases, 63,014 controls). The first 2 methods quantified the extent of overlapping risk variants and assessed the load of CAD risk loci in migraineurs. Genomic regions of shared risk were then identified by analysis of covariance patterns between the 2 phenotypes and by querying known genome-wide significant loci. Results: We found a significant overlap of genetic risk loci for migraine and CAD. When stratified by migraine subtype, this was limited to migraine without aura, and the overlap was protective in that patients with migraine had a lower load of CAD risk alleles than controls. Genes indicated by 16 shared risk loci point to mechanisms with potential roles in migraine pathogenesis and CAD, including endothelial dysfunction (PHACTR1) and insulin homeostasis (GIP). Conclusions: The results suggest that shared biological processes contribute to risk of migraine and CAD, but surprisingly this commonality is restricted to migraine without aura and the impact is in opposite directions. Understanding the mechanisms underlying these processes and their opposite relationship to migraine and CAD may improve our understanding of both disorders. PMID:27066539

  11. Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster

    PubMed Central

    2010-01-01

    Background Obesity and phenotypic traits associated with this condition exhibit significant heritability in natural populations of most organisms. While a number of genes and genetic pathways have been implicated to play a role in obesity associated traits, the genetic architecture that underlies the natural variation in these traits is largely unknown. Here, we used 40 wild-derived inbred lines of Drosophila melanogaster to quantify genetic variation in body weight, the content of three major metabolites (glycogen, triacylglycerol, and glycerol) associated with obesity, and metabolic rate in young flies. We chose these lines because they were previously screened for variation in whole-genome transcript abundance and in several adult life-history traits, including longevity, resistance to starvation stress, chill-coma recovery, mating behavior, and competitive fitness. This enabled us not only to identify candidate genes and transcriptional networks that might explain variation for energy metabolism traits, but also to investigate the genetic interrelationships among energy metabolism, behavioral, and life-history traits that have evolved in natural populations. Results We found significant genetically based variation in all traits. Using a genome-wide association screen for single feature polymorphisms and quantitative trait transcripts, we identified 337, 211, 237, 553, and 152 novel candidate genes associated with body weight, glycogen content, triacylglycerol storage, glycerol levels, and metabolic rate, respectively. Weighted gene co-expression analyses grouped transcripts associated with each trait in significant modules of co-expressed genes and we interpreted these modules in terms of their gene enrichment based on Gene Ontology analysis. Comparison of gene co-expression modules for traits in this study with previously determined modules for life-history traits identified significant modular pleiotropy between glycogen content, body weight, competitive

  12. Geographical Variations and Genetic Distances of Three Saxidomus purpuratus Populations ascertained by PCR Analysis.

    PubMed

    Yoon, Jong-Man

    2015-12-01

    .073), while the longest genetic distance among the twenty-one individuals that demonstrated significant molecular differences was between individuals GEOJE no. 03 and GUNSAN no. 09 (genetic distance = 0.669). Comparatively, individuals of GJP population were properly closely related to that of NKP population, as revealed in the hierarchical dendrogram of genetic distances. In due course, PCR analysis has revealed the significant genetic distance among three purplish Washington clam populations. PCR fragments discovered in this study could be valuable as a DNA marker of the three geographical clam populations to distinguish. PMID:26973978

  13. Population genetic structure of economically important Tortricidae (Lepidoptera) in South Africa: a comparative analysis.

    PubMed

    Timm, A E; Geertsema, H; Warnich, L

    2010-08-01

    Comparative studies of the population genetic structures of agricultural pests can elucidate the factors by which their population levels are affected, which is useful for designing pest management programs. This approach was used to provide insight into the six Tortricidae of major economic importance in South Africa. The population genetic structure of the carnation worm E. acerbella and the false codling moth T. leucotreta, analyzed using amplified fragment length polymorphism (AFLP) analysis, is presented here for the first time. These results were compared with those obtained previously for the codling moth Cydia pomonella, the oriental fruit moth Grapholita molesta, the litchi moth Cryptophlebia peltastica and the macadamia nut borer T. batrachopa. Locally adapted populations were detected over local geographic areas for all species. No significant differences were found among population genetic structures as result of population history (whether native or introduced) although host range (whether oligophagous or polyphagous) had a small but significant effect. It is concluded that factors such as dispersal ability and agricultural practices have the most important effects on genetically structuring populations of the economically important Tortricidae in South Africa. PMID:19941674

  14. Electroretinogram analysis of relative spectral sensitivity in genetically identified dichromatic macaques

    PubMed Central

    Hanazawa, Akitoshi; Mikami, Akichika; Angelika, Puti Sulistyo; Takenaka, Osamu; Goto, Shunji; Onishi, Akishi; Koike, Satoshi; Yamamori, Tetsuo; Kato, Keichiro; Kondo, Aya; Suryobroto, Bambang; Farajallah, Achmad; Komatsu, Hidehiko

    2001-01-01

    The retinas of macaque monkeys usually contain three types of photopigment, providing them with trichromatic color vision homologous to that of humans. However, we recently used molecular genetic analysis to identify several macaques with a dichromatic genotype. The affected X chromosome of these animals contains a hybrid gene of long-wavelength-sensitive (L) and middle-wavelength-sensitive (M) photopigments instead of separate genes encoding L and M photopigments. The product of the hybrid gene exhibits a spectral sensitivity close to that of M photopigment; consequently, male monkeys carrying the hybrid gene are genetic protanopes, effectively lacking L photopigment. In the present study, we assessed retinal expression of L photopigment in monkeys carrying the hybrid gene. The relative sensitivities to middle-wavelength (green) and long-wavelength (red) light were measured by electroretinogram flicker photometry. We found the sensitivity to red light to be extremely low in protanopic male monkeys compared with monkeys with the normal genotype. In female heterozygotes, sensitivity to red light was intermediate between the genetic protanopes and normal monkeys. Decreased sensitivity to long wavelengths was thus consistent with genetic loss of L photopigment. PMID:11427736

  15. Analysis of the association between host genetics, smoking, and sputum microbiota in healthy humans

    PubMed Central

    Lim, Mi Young; Yoon, Hyo Shin; Rho, Mina; Sung, Joohon; Song, Yun-Mi; Lee, Kayoung; Ko, GwangPyo

    2016-01-01

    Recent studies showing clear differences in the airway microbiota between healthy and diseased individuals shed light on the importance of the airway microbiota in health. Here, we report the associations of host genetics and lifestyles such as smoking, alcohol consumption, and physical activity with the composition of the sputum microbiota using 16S rRNA gene sequence data generated from 257 sputum samples of Korean twin-family cohort. By estimating the heritability of each microbial taxon, we found that several taxa, including Providencia and Bacteroides, were significantly influenced by host genetic factors. Smoking had the strongest effect on the overall microbial community structure among the tested lifestyle factors. The abundances of Veillonella and Megasphaera were higher in current-smokers, and increased with the pack-year value and the Fagerstrom Test of Nicotine Dependence (FTND) score. In contrast, Haemophilus decreased with the pack-year of smoking and the FTND score. Co-occurrence network analysis showed that the taxa were clustered according to the direction of associations with smoking, and that the taxa influenced by host genetics were found together. These results demonstrate that the relationships among sputum microbial taxa are closely associated with not only smoking but also host genetics. PMID:27030383

  16. Genetic Distances of Three White Clam (Meretrix lusoria) Populations Investigated by PCR Analysis

    PubMed Central

    Kim, Dae-Hyun; Yoon, Jong-Man

    2014-01-01

    The twenty-one individuals of Meretrix lusoria were secured from Gunsan, Shinan and Yeonggwang on the coast of the Yellow Sea and the southern sea in the Korean Peninsula, respectively. Amplification of a single COI fragment (720 bp) was imagined, and no apparent size differences were observed in amplified fragments between Meretrix lusoria and M. petechialis individuals. The size of the DNA fragments also varied excitedly, from 200 to 1,600 bp. The oligonucleotides primer BION-08 produced the least loci (a total of 17), with an average of 2.43 in the Gunsan population, in comparison to the other primers used. Remarkably, the primer BION-13 detected 42 shared loci by the three populations, major and/or minor fragments of sizes 200 bp and 400 bp, respectively, which were identical in all samples. The dendrogram gained by the seven oligonucleotides primers highlight three genetic clusters: cluster 1 (GUNSAN 01 ~ GUNSAN 07), cluster 2 (SHINAN 08 ~ SHINAN 14) and cluster 3 (YEONGGWANG 15 ~ YEONGGWANG 21). The longest genetic distance among the twenty-one Meretrix lusoria individuals that displayed significant molecular differences was between individuals GUNSAN no. 01 and SHINAN no. 14 (genetic distance = 0.574). Comparatively, individuals of SHINAN population were fairly closely related to that of YEONGGWANG population. In this study, PCR analysis has discovered significant genetic distances between two white clam population pairs (P<0.05). PMID:25949176

  17. Population genetic analysis of Borrelia burgdorferi isolates by multilocus enzyme electrophoresis.

    PubMed Central

    Boerlin, P; Peter, O; Bretz, A G; Postic, D; Baranton, G; Piffaretti, J C

    1992-01-01

    Fifty Borellia burgdorferi strains isolated from humans and ticks in Europe and the United States were analyzed by multilocus enzyme electrophoresis. Eleven genetic loci were characterized on the basis of the electrophoretic mobilities of their products. Ten loci were polymorphic. The average number of alleles per locus was 5.9, with a mean genetic diversity of 0.673 among electrophoretic types (ETs). The strains were grouped into 35 ETs constituting three main divisions (I, II, and III) separated at a genetic distance greater than 0.75. Divisions I, II, and III contained 13, 6, and 16 ETs, respectively. These findings, together with previous data from DNA hybridization and restriction enzyme analysis of rRNA genes, suggest that divisions I, II, and III may represent three distinct genomic species. All three divisions contained human clinical ETs. However, in division I, which includes the ET of the type strain of B. burgdorferi, the human pathogenic ETs constituted a single clone. The ETs of division I were from west-central Europe and the United States, whereas divisions II and III contained ETs from west-central and northern Europe but not from the United States. Finally, our data show that the genetic structure of B. burgdorferi populations is clonal. PMID:1548090

  18. Genetic admixture history of Eastern Indonesia as revealed by Y-chromosome and mitochondrial DNA analysis.

    PubMed

    Mona, Stefano; Grunz, Katharina E; Brauer, Silke; Pakendorf, Brigitte; Castrì, Loredana; Sudoyo, Herawati; Marzuki, Sangkot; Barnes, Robert H; Schmidtke, Jörg; Stoneking, Mark; Kayser, Manfred

    2009-08-01

    Eastern Indonesia possesses more linguistic diversity than any other region in Southeast Asia, with both Austronesian (AN) languages that are of East Asian origin, as well as non-Austronesian (NAN) languages of likely Melanesian origin. Here, we investigated the genetic history of human populations from seven eastern Indonesian islands, including AN and NAN speakers, as well as the relationship between languages and genes, by means of nonrecombining Y-chromosomal (NRY) and mitochondrial DNA (mtDNA) analysis. We found that the eastern Indonesian gene pool consists of East Asian as well as Melanesian components, as might be expected based on linguistic evidence, but also harbors putative indigenous eastern Indonesian signatures that perhaps reflect the initial occupation of the Wallacea by aboriginal hunter-gatherers already in Palaeolithic times. Furthermore, both NRY and mtDNA data showed a complete lack of correlation between linguistic and genetic relationships, most likely reflecting genetic admixture and/or language shift. In addition, we noted a small fraction of the NRY and mtDNA data shared between eastern Indonesians and Australian Aborigines likely reflecting an ancient link between Asia and Australia. Our data thus provide insights into the complex genetic ancestry history of eastern Indonesian islanders characterized by several admixture episodes and demonstrate a clear example of the lack of the often-assumed correlation between the genes and languages of human populations. PMID:19414523

  19. Analysis of Genetic Code Ambiguity Arising from Nematode-Specific Misacylated tRNAs

    PubMed Central

    Hamashima, Kiyofumi; Mori, Masaru; Andachi, Yoshiki; Tomita, Masaru; Kohara, Yuji; Kanai, Akio

    2015-01-01

    The faithful translation of the genetic code requires the highly accurate aminoacylation of transfer RNAs (tRNAs). However, it has been shown that nematode-specific V-arm-containing tRNAs (nev-tRNAs) are misacylated with leucine in vitro in a manner that transgresses the genetic code. nev-tRNAGly (CCC) and nev-tRNAIle (UAU), which are the major nev-tRNA isotypes, could theoretically decode the glycine (GGG) codon and isoleucine (AUA) codon as leucine, causing GGG and AUA codon ambiguity in nematode cells. To test this hypothesis, we investigated the functionality of nev-tRNAs and their impact on the proteome of Caenorhabditis elegans. Analysis of the nucleotide sequences in the 3’ end regions of the nev-tRNAs showed that they had matured correctly, with the addition of CCA, which is a crucial posttranscriptional modification required for tRNA aminoacylation. The nuclear export of nev-tRNAs was confirmed with an analysis of their subcellular localization. These results show that nev-tRNAs are processed to their mature forms like common tRNAs and are available for translation. However, a whole-cell proteome analysis found no detectable level of nev-tRNA-induced mistranslation in C. elegans cells, suggesting that the genetic code is not ambiguous, at least under normal growth conditions. Our findings indicate that the translational fidelity of the nematode genetic code is strictly maintained, contrary to our expectations, although deviant tRNAs with misacylation properties are highly conserved in the nematode genome. PMID:25602944

  20. BisoGenet: a new tool for gene network building, visualization and analysis

    PubMed Central

    2010-01-01

    Background The increasing availability and diversity of omics data in the post-genomic era offers new perspectives in most areas of biomedical research. Graph-based biological networks models capture the topology of the functional relationships between molecular entities such as gene, protein and small compounds and provide a suitable framework for integrating and analyzing omics-data. The development of software tools capable of integrating data from different sources and to provide flexible methods to reconstruct, represent and analyze topological networks is an active field of research in bioinformatics. Results BisoGenet is a multi-tier application for visualization and analysis of biomolecular relationships. The system consists of three tiers. In the data tier, an in-house database stores genomics information, protein-protein interactions, protein-DNA interactions, gene ontology and metabolic pathways. In the middle tier, a global network is created at server startup, representing the whole data on bioentities and their relationships retrieved from the database. The client tier is a Cytoscape plugin, which manages user input, communication with the Web Service, visualization and analysis of the resulting network. Conclusion BisoGenet is able to build and visualize biological networks in a fast and user-friendly manner. A feature of Bisogenet is the possibility to include coding relations to distinguish between genes and their products. This feature could be instrumental to achieve a finer grain representation of the bioentities and their relationships. The client application includes network analysis tools and interactive network expansion capabilities. In addition, an option is provided to allow other networks to be converted to BisoGenet. This feature facilitates the integration of our software with other tools available in the Cytoscape platform. BisoGenet is available at http://bio.cigb.edu.cu/bisogenet-cytoscape/. PMID:20163717

  1. Temporal genetic analysis of the endangered tidewater goby: extinction-colonization dynamics or drift in isolation?

    PubMed

    Kinziger, Andrew P; Hellmair, Michael; McCraney, W Tyler; Jacobs, David K; Goldsmith, Greg

    2015-11-01

    Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction-colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field-based approaches for assessment of the extinction-colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction-colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction-colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within-site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20-30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction-colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction-colonization dynamics or as a stand-alone tool when field data are lacking. PMID:26460923

  2. Centromere-Linkage Analysis and Consolidation of the Zebrafish Genetic Map

    PubMed Central

    Johnson, S. L.; Gates, M. A.; Johnson, M.; Talbot, W. S.; Horne, S.; Baik, K.; Rude, S.; Wong, J. R.; Postlethwait, J. H.

    1996-01-01

    The ease of isolating mutations in zebrafish will contribute to an understanding of a variety of processes common to all vertebrates. To facilitate genetic analysis of such mutations, we have identified DNA polymorphisms closely linked to each of the 25 centromeres of zebrafish, placed centromeres on the linkage map, increased the number of mapped PCR-based markers to 652, and consolidated the number of linkage groups to the number of chromosomes. This work makes possible centromere-linkage analysis, a novel, rapid method to assign mutations to a specific linkage group using half-tetrads. PMID:8846904

  3. Segregation studies and linkage analysis of Atlantic salmon microsatellites using haploid genetics.

    PubMed

    Slettan, A; Olsaker, I; Lie, O

    1997-06-01

    A genetic marker map of Atlantic salmon would facilitate the identification of loci influencing economically important traits. In the present paper we describe five new Atlantic salmon microsatellites. Segregation studies and linkage analysis of these and previously published microsatellites were carried out in pedigrees consisting of diploid dams and haploid gynogenetic offspring. We confirm earlier reports that salmon microsatellites tend to have a higher number of repeat units than those of mammals. Linkage analysis revealed that three microsatellites belong to a linkage group spanning approximately 50 cM of the genome, whereas the remaining 10 markers seem to be unlinked. PMID:9203354

  4. Multidisciplinary Design, Analysis, and Optimization Tool Development using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley

    2008-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space A dministration Dryden Flight Research Center to automate analysis and design process by leveraging existing tools such as NASTRAN, ZAERO a nd CFD codes to enable true multidisciplinary optimization in the pr eliminary design stage of subsonic, transonic, supersonic, and hypers onic aircraft. This is a promising technology, but faces many challe nges in large-scale, real-world application. This paper describes cur rent approaches, recent results, and challenges for MDAO as demonstr ated by our experience with the Ikhana fire pod design.

  5. Genetic diversity analysis of sugarcane germplasm based on fluorescence-labeled simple sequence repeat markers and a capillary electrophoresis-based genotyping platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity analysis, which refers to the elaboration of total extent of genetic characteristics in the genetic makeup of a certain species, constitutes a classical strategy for the study of diversity, population genetic structure, and breeding practices. In this study, fluorescence-labeled se...

  6. Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis.

    PubMed

    Bonham-Carter, Oliver; Steele, Joe; Bastola, Dhundy

    2014-11-01

    Modern sequencing and genome assembly technologies have provided a wealth of data, which will soon require an analysis by comparison for discovery. Sequence alignment, a fundamental task in bioinformatics research, may be used but with some caveats. Seminal techniques and methods from dynamic programming are proving ineffective for this work owing to their inherent computational expense when processing large amounts of sequence data. These methods are prone to giving misleading information because of genetic recombination, genetic shuffling and other inherent biological events. New approaches from information theory, frequency analysis and data compression are available and provide powerful alternatives to dynamic programming. These new methods are often preferred, as their algorithms are simpler and are not affected by synteny-related problems. In this review, we provide a detailed discussion of computational tools, which stem from alignment-free methods based on statistical analysis from word frequencies. We provide several clear examples to demonstrate applications and the interpretations over several different areas of alignment-free analysis such as base-base correlations, feature frequency profiles, compositional vectors, an improved string composition and the D2 statistic metric. Additionally, we provide detailed discussion and an example of analysis by Lempel-Ziv techniques from data compression. PMID:23904502

  7. Genetic associations in polypoidal choroidal vasculopathy: A systematic review and meta-analysis

    PubMed Central

    Liu, Ke; Chen, Li Jia; Hou, Ping; Chen, Weiqi; Pang, Chi Pui

    2012-01-01

    Purpose To investigate the genetic associations of polypoidal choroidal vasculopathy (PCV), the genetic difference between PCV and age-related macular degeneration (AMD), and the genotype-phenotype correlation of PCV. Methods A systematic review and meta-analysis were performed. Published articles about genetic associations of PCV identified from a literature search were reviewed. The following data from individual studies were extracted and analyzed: 1) comparison of genetic polymorphisms between PCV and controls; 2) comparison of genetic polymorphisms between PCV and AMD; and 3) comparison of phenotypes between different genotype groups. Results A total of 33 articles fulfilled the inclusion criteria. With meta-analyses, variants in four genes were found to be significantly associated with PCV: LOC387715 rs10490924 (n=9, allelic odds ratio [OR]=2.27, p<0.00001), HTRA1 rs11200638 (n=4, OR=2.72, p<0.00001), CFH rs1061170 (n=4, OR=1.72, p<0.00001), CFH rs800292 (n=5, OR=2.10, p<0.00001), and C2 rs547154 (n=3, OR=0.56, p=0.01). LOC387715 rs10490924 was the only variant showing a significant difference between PCV and wet AMD (n=5, OR=0.66, p<0.00001). The risk genotypes of rs10490924 were associated with larger lesion size, greater chance of vitreous hemorrhage, and worse therapeutic response in PCV. Conclusions LOC387715 rs10490924 was associated with PCV and its clinical manifestations, and showed a discrepant distribution between PCV and AMD. Variants in HTRA1, CFH, and C2 were also associated with PCV. PMID:22509112

  8. Genetic diversity analysis of Capsicum spp germplasm bank accessions based on α/β-esterase polymorphism.

    PubMed

    Monteiro, E R; Bronzato, A R; Orasmo, G R; Lopes, A C A; Gomes, R L F; Mangolin, C A; Machado, M F P S

    2013-01-01

    Genetic diversity and structure were analyzed in 10 accessions belonging to Banco Ativo de Germoplasma de Capsicum located at Federal University of Piauí in northwestern Brazil that receives pepper samples grown in community gardens in various regions and Brazilian states. Selections were made from seeds of C. chinense (4 accessions), C. annuum (5 accessions), and C. baccatum (1 accession). Samples consisting of leaves were collected from 4-10 plants of each accession (a total of 85 plants). Native polyacrylamide gel electrophoresis was used to identify α- and β-esterase polymorphisms. Polymorphism was clearly detected in 5 loci. Sixteen alleles were found at 5 α/β-esterase loci of the three Capsicum species. In the C. chinense samples, the highest HO and HE values were 0.3625 and 0.4395, respectively, whereas in C. annuum samples, HO and HE values were 0.2980 and 0.3310, respectively; the estimated HO and HE values in C. chinense samples were higher than those detected in C. annuum samples. A deficit of homozygous individuals was found in C. chinense (FIS = -0.6978) and C. annuum (FIS = 0.7750). Genetic differentiation between C. chinense and C. annuum at these loci was high (FST = 0.1867) indicating that C. chinense and C. annuum are genetically structured species for α/β- esterase isozymes. The esterase analysis showed high genetic diversity among the C. chinense and C. annuum samples and very high genetic differentiation (FST = 0.6321) among the C. chinense and C. annuum samples and the C. baccatum accession. PMID:23661440

  9. Two-trait-locus linkage analysis: A powerful strategy for mapping complex genetic traits

    SciTech Connect

    Schork, N.J.; Boehnke, M. ); Terwilliger, J.D.; Ott, J. )

    1993-11-01

    Nearly all diseases mapped to date follow clear Mendelian, single-locus segregation patterns. In contrast, many common familial diseases such as diabetes, psoriasis, several forms of cancer, and schizophrenia are familial and appear to have a genetic component but do not exhibit simple Mendelian transmission. More complex models are required to explain the genetics of these important diseases. In this paper, the authors explore two-trait-locus, two-marker-locus linkage analysis in which two trait loci are mapped simultaneously to separate genetic markers. The authors compare the utility of this approach to standard one-trait-locus, one-marker-locus linkage analysis with and without allowance for heterogeneity. The authors also compare the utility of the two-trait-locus, two-marker-locus analysis to two-trait-locus, one-marker-locus linkage analysis. For common diseases, pedigrees are often bilineal, with disease genes entering via two or more unrelated pedigree members. Since such pedigrees often are avoided in linkage studies, the authors also investigate the relative information content of unilineal and bilineal pedigrees. For the dominant-or-recessive and threshold models that the authors consider, the authors find that two-trait-locus, two-marker-locus linkage analysis can provide substantially more linkage information, as measured by expected maximum lod score, than standard one-trait-locus, one-marker-locus methods, even allowing for heterogeneity, while, for a dominant-or-dominant generating model, one-locus models that allow for heterogeneity extract essentially as much information as the two-trait-locus methods. For these three models, the authors also find that bilineal pedigrees provide sufficient linkage information to warrant their inclusion in such studies. The authors discuss strategies for assessing the significance of the two linkages assumed in two-trait-locus, two-marker-locus models. 37 refs., 1 fig., 4 tabs.

  10. Time-series analysis reveals genetic responses to intensive management of razorback sucker (Xyrauchen texanus)

    PubMed Central

    Dowling, Thomas E; Turner, Thomas F; Carson, Evan W; Saltzgiver, Melody J; Adams, Deborah; Kesner, Brian; Marsh, Paul C

    2014-01-01

    Time-series analysis is used widely in ecology to study complex phenomena and may have considerable potential to clarify relationships of genetic and demographic processes in natural and exploited populations. We explored the utility of this approach to evaluate population responses to management in razorback sucker, a long-lived and fecund, but declining freshwater fish species. A core population in Lake Mohave (Arizona-Nevada, USA) has experienced no natural recruitment for decades and is maintained by harvesting naturally produced larvae from the lake, rearing them in protective custody, and repatriating them at sizes less vulnerable to predation. Analyses of mtDNA and 15 microsatellites characterized for sequential larval cohorts collected over a 15-year time series revealed no changes in geographic structuring but indicated significant increase in mtDNA diversity for the entire population over time. Likewise, ratios of annual effective breeders to annual census size (Nb/Na) increased significantly despite sevenfold reduction of Na. These results indicated that conservation actions diminished near-term extinction risk due to genetic factors and should now focus on increasing numbers of fish in Lake Mohave to ameliorate longer-term risks. More generally, time-series analysis permitted robust testing of trends in genetic diversity, despite low precision of some metrics. PMID:24665337

  11. Single-Cell Genetic Analysis Using Automated Microfluidics to Resolve Somatic Mosaicism.

    PubMed

    Szulwach, Keith E; Chen, Peilin; Wang, Xiaohui; Wang, Jing; Weaver, Lesley S; Gonzales, Michael L; Sun, Gang; Unger, Marc A; Ramakrishnan, Ramesh

    2015-01-01

    Somatic mosaicism occurs throughout normal development and contributes to numerous disease etiologies, including tumorigenesis and neurological disorders. Intratumor genetic heterogeneity is inherent to many cancers, creating challenges for effective treatments. Unfortunately, analysis of bulk DNA masks subclonal phylogenetic architectures created by the acquisition and distribution of somatic mutations amongst cells. As a result, single-cell genetic analysis is becoming recognized as vital for accurately characterizing cancers. Despite this, methods for single-cell genetics are lacking. Here we present an automated microfluidic workflow enabling efficient cell capture, lysis, and whole genome amplification (WGA). We find that ~90% of the genome is accessible in single cells with improved uniformity relative to current single-cell WGA methods. Allelic dropout (ADO) rates were limited to 13.75% and variant false discovery rates (SNV FDR) were 4.11x10(-6), on average. Application to ER-/PR-/HER2+ breast cancer cells and matched normal controls identified novel mutations that arose in a subpopulation of cells and effectively resolved the segregation of known cancer-related mutations with single-cell resolution. Finally, we demonstrate effective cell classification using mutation profiles with 10X average exome coverage depth per cell. Our data demonstrate an efficient automated microfluidic platform for single-cell WGA that enables the resolution of somatic mutation patterns in single cells. PMID:26302375

  12. Genetic identification and phylogeny of three species of the genus Trachurus based on mitochondrial DNA analysis.

    PubMed

    Karaiskou, Nikoletta; Apostolidis, Apostolos P; Triantafyllidis, Alexandros; Kouvatsi, Anastasia; Triantaphyllidis, Costas

    2003-01-01

    The genetic identification and the phylogenetic relationships of 3 European species of the genus Trachurus (T. trachurus, T. mediterraneus, and T. picturatus) across their geographical distribution, have been investigated by mitochondrial DNA analysis. Both cytochrome b and 16S ribosomal DNA sequence analysis revealed the existence of several species-specific positions that distinguish the 3 studied species. Genetic distances between the species indicated that T. mediterraneus and T. picturatus are more closely related than T. trachurus. Similar topologies have been produced by neighbor-joining, maximum-likelihood, and maximum-parsimony trees, and they were in accordance with previous taxonomic classification. Internucleotide and intranucleotide diversity of T. picturatus was 2 times higher than that of T. mediterraneus and T. trachurus, possibly owing to the low levels of fishing pressure for T. picturatus. This is the first report of the phylogenetic relationships of the 3 Trachurus species and provides a possible scenario of the time of divergence related to the closure of the Gibraltar Straits. In addition, the present results can be used for genetic identification of the 3 species, even from the early stage of eggs, and for detection of commercial fraud. PMID:14730432

  13. Time-series analysis reveals genetic responses to intensive management of razorback sucker (Xyrauchen texanus).

    PubMed

    Dowling, Thomas E; Turner, Thomas F; Carson, Evan W; Saltzgiver, Melody J; Adams, Deborah; Kesner, Brian; Marsh, Paul C

    2014-03-01

    Time-series analysis is used widely in ecology to study complex phenomena and may have considerable potential to clarify relationships of genetic and demographic processes in natural and exploited populations. We explored the utility of this approach to evaluate population responses to management in razorback sucker, a long-lived and fecund, but declining freshwater fish species. A core population in Lake Mohave (Arizona-Nevada, USA) has experienced no natural recruitment for decades and is maintained by harvesting naturally produced larvae from the lake, rearing them in protective custody, and repatriating them at sizes less vulnerable to predation. Analyses of mtDNA and 15 microsatellites characterized for sequential larval cohorts collected over a 15-year time series revealed no changes in geographic structuring but indicated significant increase in mtDNA diversity for the entire population over time. Likewise, ratios of annual effective breeders to annual census size (N b /N a) increased significantly despite sevenfold reduction of N a. These results indicated that conservation actions diminished near-term extinction risk due to genetic factors and should now focus on increasing numbers of fish in Lake Mohave to ameliorate longer-term risks. More generally, time-series analysis permitted robust testing of trends in genetic diversity, despite low precision of some metrics. PMID:24665337

  14. The population genetics of familial mediterranean fever: a meta-analysis study.

    PubMed

    Papadopoulos, V P; Giaglis, S; Mitroulis, I; Ritis, K

    2008-11-01

    Our aim was to construct a Familial Mediterranean Fever (FMF) cumulative database and to propose a MEFV based phylogenetic tree. Data were collected from published studies. A meta-analysis based on 16,756 chromosomes from FMF patients and normal individuals from 14 affected populations was performed. Arlequin 2.0 and Phylip 3.2 software were used for population genetics analysis and phylogenetic tree construction. We have shown that MEFV mutations are distributed non-uniformly along the Mediterranean Sea area. The most frequent mutations detected in FMF patients are M694V (39.6%), V726A (13.9%), M680I (11.4%), E148Q (3.4%), and M694I (2.9%), while 28.8% of chromosomes carry unidentified or no mutations, especially in Western Europeans. The mean overall carrier rate is 0.186 with peak values in Arabs, Armenians, Jews, and Turks. Only V726A obeys the Hardy-Weinberg law in FMF patients implying that this mutation is the most ancient. Jews present the most intense genetic isolation and drift; thus they might have nested de novo mutations and accelerated evolution. Besides Jews, three population groups might follow distinct evolutionary lines (Asia Minor, Eastern European, and Western European). In conclusion, the MEFV mutation pattern is non-uniform regarding distribution, phenotypic expression, neutrality and population genetics characteristics. Jews are the candidate population for founder effects in MEFV. PMID:18691160

  15. Genome-wide Comparative Analysis of Atopic Dermatitis and Psoriasis Gives Insight into Opposing Genetic Mechanisms

    PubMed Central

    Baurecht, Hansjörg; Hotze, Melanie; Brand, Stephan; Büning, Carsten; Cormican, Paul; Corvin, Aiden; Ellinghaus, David; Ellinghaus, Eva; Esparza-Gordillo, Jorge; Fölster-Holst, Regina; Franke, Andre; Gieger, Christian; Hubner, Norbert; Illig, Thomas; Irvine, Alan D.; Kabesch, Michael; Lee, Young A.E.; Lieb, Wolfgang; Marenholz, Ingo; McLean, W.H. Irwin; Morris, Derek W.; Mrowietz, Ulrich; Nair, Rajan; Nöthen, Markus M.; Novak, Natalija; O’Regan, Grainne M.; Schreiber, Stefan; Smith, Catherine; Strauch, Konstantin; Stuart, Philip E.; Trembath, Richard; Tsoi, Lam C.; Weichenthal, Michael; Barker, Jonathan; Elder, James T.; Weidinger, Stephan; Cordell, Heather J.; Brown, Sara J.

    2015-01-01

    Atopic dermatitis and psoriasis are the two most common immune-mediated inflammatory disorders affecting the skin. Genome-wide studies demonstrate a high degree of genetic overlap, but these diseases have mutually exclusive clinical phenotypes and opposing immune mechanisms. Despite their prevalence, atopic dermatitis and psoriasis very rarely co-occur within one individual. By utilizing genome-wide association study and ImmunoChip data from >19,000 individuals and methodologies developed from meta-analysis, we have identified opposing risk alleles at shared loci as well as independent disease-specific loci within the epidermal differentiation complex (chromosome 1q21.3), the Th2 locus control region (chromosome 5q31.1), and the major histocompatibility complex (chromosome 6p21–22). We further identified previously unreported pleiotropic alleles with opposing effects on atopic dermatitis and psoriasis risk in PRKRA and ANXA6/TNIP1. In contrast, there was no evidence for shared loci with effects operating in the same direction on both diseases. Our results show that atopic dermatitis and psoriasis have distinct genetic mechanisms with opposing effects in shared pathways influencing epidermal differentiation and immune response. The statistical analysis methods developed in the conduct of this study have produced additional insight from previously published data sets. The approach is likely to be applicable to the investigation of the genetic basis of other complex traits with overlapping and distinct clinical features. PMID:25574825

  16. SecureMA: protecting participant privacy in genetic association meta-analysis

    PubMed Central

    Xie, Wei; Kantarcioglu, Murat; Bush, William S.; Crawford, Dana; Denny, Joshua C.; Heatherly, Raymond; Malin, Bradley A.

    2014-01-01

    Motivation: Sharing genomic data is crucial to support scientific investigation such as genome-wide association studies. However, recent investigations suggest the privacy of the individual participants in these studies can be compromised, leading to serious concerns and consequences, such as overly restricted access to data. Results: We introduce a novel cryptographic strategy to securely perform meta-analysis for genetic association studies in large consortia. Our methodology is useful for supporting joint studies among disparate data sites, where privacy or confidentiality is of concern. We validate our method using three multisite association studies. Our research shows that genetic associations can be analyzed efficiently and accurately across substudy sites, without leaking information on individual participants and site-level association summaries. Availability and implementation: Our software for secure meta-analysis of genetic association studies, SecureMA, is publicly available at http://github.com/XieConnect/SecureMA. Our customized secure computation framework is also publicly available at http://github.com/XieConnect/CircuitService Contact: b.malin@vanderbilt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25147357

  17. Genetic parameter estimates of growth curve and reproduction traits in Japanese quail.

    PubMed

    Narinc, Dogan; Karaman, Emre; Aksoy, Tulin; Firat, Mehmet Ziya

    2014-01-01

    The goal of selection studies in broilers is to obtain genetically superior chicks in terms of major economic traits, which are mainly growth rate, meat yield, and feed conversion ratio. Multiple selection schedules for growth and reproduction are used in selection programs within commercial broiler dam lines. Modern genetic improvement methods have not been applied in experimental quail lines. The current research was conducted to estimate heritabilities and genetic correlations for growth and reproduction traits in a Japanese quail flock. The Gompertz equation was used to determine growth curve parameters. The Gibbs sampling under a multi-trait animal model was applied to estimate the heritabilities and genetic correlations for these traits. A total of 948 quail were used with complete pedigree information to estimate the genetic parameters. Heritability estimates of BW, absolute and relative growth rates at 5 wk of age (AGR and RGR), β0 and β2 parameters, and age at point of inflection (IPT) of Gompertz growth curve, total egg number (EN) from the day of first lay to 24 wk of age were moderate to high, with values ranging from 0.25 to 0.40. A low heritability (0.07) for fertility (FR) and a strong genetic correlation (0.83) between FR and EN were estimated in our study. Body weight exhibited negative genetic correlation with EN, FR, RGR, and IPT. This genetic antagonism among the mentioned traits may be overcome using modern poultry breeding methods such as selection using multi-trait best linear unbiased prediction and crossbreeding. PMID:24570419

  18. Genetic Analysis of Population Structure and Reproductive Mode of the Termite Reticulitermes chinensis Snyder

    PubMed Central

    Huang, Qiuying; Li, Ganghua; Husseneder, Claudia; Lei, Chaoliang

    2013-01-01

    The subterranean termite Reticulitermes chinensis Snyder is an important pest of trees and buildings in China. Here, we characterized genetic structure and reproductive modes of R. chinensis from China for the first time. A total of 1,875 workers from 75 collection sites in Huanggang, Changsha and Chongqing cities were genotyped at eight microsatellite loci. Analysis of genetic clusters showed two subpopulations in Chongqing city. The Huanggang population showed a uniform genetic pattern and was separated from the other populations by the largest genetic distances (FST: 0.17–0.20). In contrast, smaller genetic distances (FST: 0.05–0.12) separated Changsha, Chongqing-1 and Chongqing-2 populations. Chongqing-1 was the only population showing a genetic bottleneck. Isolation by distance among colonies in the Huanggang population indicated limited alate dispersal or colony budding. Lack of isolation by distance among colonies within the populations of Changsha, Chongqing-1 and Chongqing-2, suggested long-range dispersal by alates and/or human-mediated transport. Overall, extended family colonies (73.91%) were predominant in all four populations, followed by simple (20.29%), and mixed family colonies (5.80%). Most simple families were headed by inbred related reproductive pairs in the Changsha population, while most simple families in the Chongqing-1 population were headed by outbred unrelated pairs. Simple families in the Huanggang population were a mixture of colonies headed by outbred or inbred reproductive pairs. The sample size of simple families in the Chongqing-2 population was too small to yield significant results. Extended families in all four populations were headed on the average by ≤10 neotenics. Mixed families likely originated from pleometrosis. Presence of heterozygote genotypes showed that all neotenic reproductives collected in addition from five field colonies in Wuhan city were sexually produced, suggesting that these colonies did not undergo

  19. Genetic analysis of phosphoprotein and matrix protein of rabies viruses isolated in Brazil.

    PubMed

    Kobayashi, Yuki; Okuda, Hiromi; Nakamura, Kana; Sato, Go; Itou, Takuya; Carvalho, Adolorata A B; Silva, Marlon V; Mota, Carla S; Ito, Fumio H; Sakai, Takeo

    2007-11-01

    To investigate the genetic characteristics of phosphoprotein (P) and matrix protein (M) genes of variable rabies virus (RV) prevalent in Brazil, the authors genetically characterized the P and M genes from 30 Brazilian RV field isolates. Phylogenetic analysis based on the P and M genes revealed the presence of six RV variants that consisted primarily of three insectivorous bats, the vampire bat, dog and fox in Brazil. Specific amino acid substitutions corresponding to these phylogenetic lineages were observed, with Asp(42) and Glu(62) in the P protein found to be characteristic of Brazilian chiroptera- and carnivora-related RVs, respectively. Amino acid sequence motifs predicted to associate with a viral function in the P and M proteins were conserved among Brazilian RV variants. PMID:18057829

  20. Molecular screening of genetic defects with RNA-SSCP analysis: the PKU and cystinuria model.

    PubMed

    Giannattasio, S; Bisceglia, L; Lattanzio, P; Grifa, A; Dianzani, I; Gasparini, P; Marra, E

    1995-06-01

    RNA single-strand conformation polymorphism (rSSCP) is a recently developed method for detecting genetic defects. This technique requires DNA amplification with a polymerase chain reaction making use of one T7 promoter-containing primer. Amplification products are subsequently transcribed in vitro and the labelled transcripts are analysed for single-strand conformation changes. rSSCP has been applied to mutation screening of the phenylalanine hydroxylase gene and rBAT cDNA, from PKU and cystinuric patients, respectively. Experimental evidence shows that 83% and 86% of screened PKU and cystinuric mutations, respectively, give rise to detectable rSSCP signals. Thus, results obtained show that RNA single-strand conformation polymorphism analysis is generally applicable and is a suitable technique for detecting genetic disease causing mutations, both in basic research and in clinical practice. PMID:7477014

  1. [Predicting genetic modification targets based on metabolic network analysis--a review].

    PubMed

    Li, Peishun; Ma, Hongwu; Zhao, Xueming; Chen, Tao

    2016-01-01

    Construction of artificial cell factory to produce specific compounds of interest needs wild strain to be genetically engineered. In recent years, with the reconstruction of many genome-scale metabolic networks, a number of methods have been proposed based on metabolic network analysis for predicting genetic modification targets that lead to overproduction of compounds of interest. These approaches use constraints of stoichiometry and reaction reversibility in genome-scale models of metabolism and adopt different mathematical algorithms to predict modification targets, and thus can discover new targets that are difficult to find through traditional intuitive methods. In this review, we introduce the principle, merit, demerit and application of various strain optimization methods in detail. The main problems in existing methods and perspectives on this emerging research field are also discussed, aiming to provide guidance to choose the appropriate methods according to different types of products and the reliability of the predicted results. PMID:27363195

  2. Multiscale analysis of Hymenocallis coronaria (Amaryllidaceae) genetic diversity, genetic structure, and gene movement under the influence of unidirectional stream flow.

    PubMed

    Markwith, Scott H; Scanlon, Michael J

    2007-02-01

    Understanding gene movement patterns in unidirectional flow environments and their effect on patterns of genetic diversity and genetic structure is necessary to manage these systems. Hypotheses and models to explain genetic patterns in streams are rare, and the results of macrophyte studies are inconsistent. This study addresses Ritland's (Canadian Journal of Botany 67: 2017-2024) unidirectional diversity hypothesis, the one-dimensional stepping stone model, and the metapopulation model within and among populations. Hymenocallis coronaria, an aquatic macrophyte of rocky river shoals of the SE USA, was sampled in four river basins. Within populations and among populations <16.2 km apart had significant isolation by distance. However, the rate of gene flow decay was not consistent with a one-dimensional stepping stone model, nor was evidence strong or consistent for Ritland's hypothesis. Some evidence indicates that localized metapopulation processes may be affecting genetic diversity and structure; however, gene flow patterns inconsistent with the assumptions of the linear and unidirectional models are also a possible influence. We discuss three variants on the one-dimensional stepping stone model. Future research in linear environments should examine the expectations of these models. This study is also one of the first efforts to calculate population genetic parameters using a new program, TETRASAT. PMID:21642217

  3. Genetic linkage analysis in familial breast and ovarian cancer: Results from 214 families

    SciTech Connect

    Easton, D.F.; Ford, D. ); Bishop, D.T.; Crockford, G.P. )

    1993-04-01

    This paper reports the results of a collaborative linkage study involving 214 breast cancer families, including 57 breast-ovarian cancer families; this represents almost all the known families with 17q linkage data. Six markers on 17q, spanning approximately 30 cM, were typed in the families. The aims of the study were to define more precisely the localization of the disease gene, the extent of genetic heterogeneity and the characteristics of linked families and to estimate the penetrance of the 17q gene. Under the assumption of no genetic heterogeneity, the strongest linkage evidence was obtained with D17S588. Multipoint linkage analysis allowing for genetic heterogeneity provided evidence that the predisposing gene lies between the markers D17S588 and D17S250, an interval whose genetic length is estimated to be 8.3 cM in males and 18.0 cM in females. This position was supported over other intervals by odds of 66:1. The location of the gene with respect to D17S579 could not be determined unequivocally. Under the genetic model used in the analysis, the best estimate of the proportion of linked breast-ovarian cancer families was 1.0 (lower LOD -- 1 limit 0.79). In contrast, there was significant evidence of genetic heterogeneity among the families without ovarian cancer, with an estimated 45% being linked. These results suggest that a gene(s) on chromosome 17q accounts for the majority of families in which both early-onset breast cancer and ovarian cancer occur but that other genes predisposing to breast cancer exist. By examining the fit of the linkage data to different penetrance functions, the cumulative risk associated with the 17q gene was estimated to be 59% by age 50 years and 82% by age 70 years. The corresponding estimates for the breast-ovary families were 67% and 76%, and those for the families without ovarian cancer were 49% and 90%; these penetrance functions did not differ significantly from one another. 42 refs., 5 figs., 2 tabs.

  4. Thrombophilia and venous thromboembolism in pregnancy: a meta-analysis of genetic risk.

    PubMed

    Ziakas, Panayiotis D; Poulou, Loukia S; Pavlou, Matthaios; Zintzaras, Elias

    2015-08-01

    Three common polymorphic variants, namely Factor V Leiden (FVL), Prothrombin G20210A (PT G20210A) and Methylenetetrahydrofolate Reductase (MTHFR) C677T are candidate genes for venous thromboembolism (VTE) in pregnancy. We performed a literature review and meta-analysis of pertinent genetic association studies (GAS) in pregnancy, to quantify the genetic risk of VTE in pregnancy. We used the model-free approach of generalized odds ratio (ORG) to estimate gene-to-disease association and explored the mode of inheritance using the degree of dominance h index. Twelve case-control GAS studies provided the full genotype distributions for at least one candidate gene to assess the genetic risk. FVL was associated with a significant risk of VTE in pregnancy (ORG 7.28; 95% confidence interval 5.53-9.58) and a dominant mode of inheritance (h=0.76), that is the effect of heterozygous carriers will lie close to the homozygous mutant genotype. PT G20210A mutation was also associated with a significant VTE risk (ORG 5.43; 95% CI 3.66-8.03) and had an over-dominant mode of inheritance (h=1.5), suggesting that the effect of heterozygous carriers may exceed that of homozygous mutant. MTHFR C677T had no association with VTE risk in pregnancy (ORG 1.24; 95% CI 0.88-1.73). Our analysis provided robust data on VTE in pregnancy, relative to FVL and PT G20210A status and suggested that the genetic effects of heterozygous over homozygous carriers do not justify stratification of heterozygous as "lower risk" over homozygous mutants. On clinical grounds this may impact decisions to preferentially exclude heterozygous from anticoagulation prophylaxis. PMID:26115054

  5. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder.

    PubMed

    Ashbrook, David G; Williams, Robert W; Lu, Lu; Hager, Reinmar

    2015-01-01

    Bipolar disorder (BD) is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS) have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium's bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis. We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1, and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG, and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG, and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG, and TNR influence intercellular signaling in the striatum. PMID:26190982

  6. Genetic Analysis and QTL Mapping of Seed Coat Color in Sesame (Sesamum indicum L.)

    PubMed Central

    Zhang, Haiyang; Miao, Hongmei; Wei, Libin; Li, Chun; Zhao, Ruihong; Wang, Cuiying

    2013-01-01

    Seed coat color is an important agronomic trait in sesame, as it is associated with seed biochemical properties, antioxidant content and activity and even disease resistance of sesame. Here, using a high-density linkage map, we analyzed genetic segregation and quantitative trait loci (QTL) for sesame seed coat color in six generations (P1, P2, F1, BC1, BC2 and F2). Results showed that two major genes with additive-dominant-epistatic effects and polygenes with additive-dominant-epistatic effects were responsible for controlling the seed coat color trait. Average heritability of the major genes in the BC1, BC2 and F2 populations was 89.30%, 24.00%, and 91.11% respectively, while the heritability of polygenes was low in the BC1 (5.43%), in BC2 (0.00%) and in F2 (0.89%) populations. A high-density map was constructed using 724 polymorphic markers. 653 SSR, AFLP and RSAMPL loci were anchored in 14 linkage groups (LG) spanning a total of 1,216.00 cM. The average length of each LG was 86.86 cM and the marker density was 1.86 cM per marker interval. Four QTLs for seed coat color, QTL1-1, QTL11-1, QTL11-2 and QTL13-1, whose heritability ranged from 59.33%–69.89%, were detected in F3 populations using CIM and MCIM methods. Alleles at all QTLs from the black-seeded parent tended to increase the seed coat color. Results from QTLs mapping and classical genetic analysis among the P1, P2, F1, BC1, BC2 and F2 populations were comparatively consistent. This first QTL analysis and high-density genetic linkage map for sesame provided a good foundation for further research on sesame genetics and molecular marker-assisted selection (MAS). PMID:23704951

  7. The genetics of Alzheimer's disease in Brazil: 10 years of analysis in a unique population.

    PubMed

    Oliveira, J R M; Nishimura, A L; Lemos, R R; Zatz, M

    2009-01-01

    Alzheimer's Disease (AD) is the most common type of dementia among the elderly, with devastating consequences for the patient, their relatives, and caregivers. More than 300 genetic polymorphisms have been involved with AD, demonstrating that this condition is polygenic and with a complex pattern of inheritance. This paper aims to report and compare the results of AD genetics studies in case-control and familial analysis performed in Brazil since our first publication, 10 years ago. They include the following genes/markers: Apolipoprotein E (APOE), 5-hidroxytryptamine transporter length polymorphic region (5-HTTLPR), brain-derived neurotrophin factor (BDNF), monoamine oxidase A (MAO-A), and two simple-sequence tandem repeat polymorphisms (DXS1047 and D10S1423). Previously unpublished data of the interleukin-1alpha (IL-1alpha) and interleukin-1 beta (IL-1beta) genes are reported here briefly. Results from others Brazilian studies with AD patients are also reported at this short review. Four local families studied with various markers at the chromosome 21, 19, 14, and 1 are briefly reported for the first time. The importance of studying DNA samples from Brazil is highlighted because of the uniqueness of its population, which presents both intense ethnical miscegenation, mainly at the east coast, but also clusters with high inbreeding rates in rural areas at the countryside. We discuss the current stage of extending these studies using high-throughput methods of large-scale genotyping, such as single nucleotide polymorphism microarrays, associated with bioinformatics tools that allow the analysis of such extensive number of genetics variables, with different levels of penetrance. There is still a long way between the huge amount of data gathered so far and the actual application toward the full understanding of AD, but the final goal is to develop precise tools for diagnosis and prognosis, creating new strategies for better treatments based on genetic profile. PMID

  8. Genetic analysis and QTL mapping of seed coat color in sesame (Sesamum indicum L.).

    PubMed

    Zhang, Haiyang; Miao, Hongmei; Wei, Libin; Li, Chun; Zhao, Ruihong; Wang, Cuiying

    2013-01-01

    Seed coat color is an important agronomic trait in sesame, as it is associated with seed biochemical properties, antioxidant content and activity and even disease resistance of sesame. Here, using a high-density linkage map, we analyzed genetic segregation and quantitative trait loci (QTL) for sesame seed coat color in six generations (P1, P2, F1, BC1, BC2 and F2). Results showed that two major genes with additive-dominant-epistatic effects and polygenes with additive-dominant-epistatic effects were responsible for controlling the seed coat color trait. Average heritability of the major genes in the BC1, BC2 and F2 populations was 89.30%, 24.00%, and 91.11% respectively, while the heritability of polygenes was low in the BC1 (5.43%), in BC2 (0.00%) and in F2 (0.89%) populations. A high-density map was constructed using 724 polymorphic markers. 653 SSR, AFLP and RSAMPL loci were anchored in 14 linkage groups (LG) spanning a total of 1,216.00 cM. The average length of each LG was 86.86 cM and the marker density was 1.86 cM per marker interval. Four QTLs for seed coat color, QTL1-1, QTL11-1, QTL11-2 and QTL13-1, whose heritability ranged from 59.33%-69.89%, were detected in F3 populations using CIM and MCIM methods. Alleles at all QTLs from the black-seeded parent tended to increase the seed coat color. Results from QTLs mapping and classical genetic analysis among the P1, P2, F1, BC1, BC2 and F2 populations were comparatively consistent. This first QTL analysis and high-density genetic linkage map for sesame provided a good foundation for further research on sesame genetics and molecular marker-assisted selection (MAS). PMID:23704951

  9. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    PubMed Central

    Ashbrook, David G.; Williams, Robert W.; Lu, Lu; Hager, Reinmar

    2015-01-01

    Bipolar disorder (BD) is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS) have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium's bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis. We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1, and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG, and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG, and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG, and TNR influence intercellular signaling in the striatum. PMID:26190982

  10. landgenreport: a new r function to simplify landscape genetic analysis using resistance surface layers.

    PubMed

    Gruber, Bernd; Adamack, Aaron T

    2015-09-01

    We describe functions recently added to the r package popgenreport that can be used to perform a landscape genetic analysis (LGA) based on landscape resistance surfaces, which aims to detect the effect of landscape features on gene flow. These functions for the first time implement a LGA in a single framework. Although the approach has been shown to be a valuable tool to study gene flow in landscapes, it has not been widely used to date, despite the type of data being widely available. In part, this is likely due to the necessity to use several software packages to perform landscape genetic analyses. To apply LGA functions, two types of data sets are required: a data set with spatially referenced and genotyped individuals, and a resistance layer representing the effect of the landscape. The function outputs three pairwise distance matrices from these data: a genetic distance matrix, a cost distance matrix and a Euclidean distance matrix. Statistical tests are performed to test whether the cost matrix contributes to the understanding of the observed population structure. A full report on the analysis and outputs in the form of plots and tables of all intermediate steps of the LGA is produced. It is possible to customize the LGA to allow for different cost path approaches and measures of genetic distances. The package is written in the r language and is available through the Comprehensive r Archive. Comprehensive tutorials and information on how to install and use the package are provided at the authors' website (www.popgenreport.org). PMID:25644761

  11. Setting up Multiplex Panels for Genetic Testing of Familial Hypertrophic Cardiomyopathy Based on Linkage Analysis

    PubMed Central

    SAGHAFI, Hoorieh; HAGHJOO, Majid; SABBAGH, Sima; SAMIEE, Niloofar; VAKILIAN, Farve; SALEHI OMRAN, Mohammad Taghi; DADASHI, Masoomeh; AMIN, Ahmad; KERAMATIPOUR, Mohammad

    2016-01-01

    Background: Familial hypertrophic cardiomyopathy (HCM) is caused by mutations in genes encoding cardiac sarcomere proteins. Nowadays genetic testing of HCM plays an important role in clinical practice by contributing to the diagnosis, prognosis, and screening of high-risk individuals. The aim of this study was developing a reliable testing strategy for HCM based on linkage analysis and appropriate for Iranian population. Methods: Six panels of four microsatellite markers surrounding MYH7, MYBPC3, TNNT2, TNNI3, TPM1, and MYL2 genes (24 markers in total) were selected for multiplex PCR and fragment length analysis. Characteristics of markers and informativeness of the panels were evaluated in 50 unrelated Iranians. The efficacy of the strategy was verified in a family with HCM. Results: All markers were highly polymorphic. The panels were informative in 96–100% of samples. Multipoint linkage analysis excluded the linkage between the disease and all six genes by obtaining maximum LOD score ≤−2. Conclusion: This study suggests a reliable genetic testing method based on linkage analysis between 6 sarcomere genes and familial HCM. It could be applied for diagnostic, predictive, or screening testing in clinical setting. PMID:27141495

  12. Extended genetic analysis of Brazilian isolates of Bacillus cereus and Bacillus thuringiensis

    PubMed Central

    Zahner, Viviane; Silva, Ana Carolina Telles de Carvalho e; de Moraes, Gabriela Pinhel; McIntosh, Douglas; de Filippis, Ivano

    2013-01-01

    Multiple locus sequence typing (MLST) was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR). Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap), encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species. PMID:23440117

  13. A flexible likelihood framework for detecting associations with secondary phenotypes in genetic studies using selected samples: application to sequence data

    PubMed Central

    Liu, Dajiang J; Leal, Suzanne M

    2012-01-01

    For most complex trait association studies using next-generation sequencing, in addition to the primary phenotype of interest, many clinically important secondary traits are also available, which can be analyzed to map susceptibility genes. Owing to high sequencing costs, most studies use selected samples, and the sampling mechanisms of these studies can be complicated. When the primary and secondary traits are correlated, analyses of secondary phenotypes can cause spurious associations in selected samples and existing methods are inadequate to adjust for them. To address this problem, a likelihood-based method, MULTI-TRAIT-ASSOCIATION (MTA) was developed. MTA is flexible and can be applied to any study with known sampling mechanisms. It also allows efficient inferences of genetic parameters. To investigate the power of MTA and different study designs, extensive simulations were performed under rigorous population genetic and phenotypic models. It is demonstrated that there are great benefits for analyzing secondary phenotypes in selected samples. In particular, using case–control samples and samples with extreme primary phenotypes can be more powerful than analyzing random samples of equivalent size. One major challenge for sequence-based association studies is that most data sets are not of sufficient size to be adequately powered. By applying MTA, data sets ascertained under distinct mechanisms or targeted at different primary traits can be jointly analyzed to map common phenotypes and greatly increase power. The combined analysis can be performed using freely available data sets from public repositories, for example, dbGaP. In conclusion, MTA will have an important role in dissecting the etiology of complex traits. PMID:22166943

  14. Genetic analysis of five sedentary fish species in middle Laranjinha River (upper Paraná River basin): A case study.

    PubMed

    Frantine-Silva, W; Ferreira, D G; Nascimento, R H C; Fracasso, J F; Conte, J E; Ramos, F P; Carvalho, S; Galindo, B A

    2015-01-01

    Most studies of diversity and genetic structure in neotropical fish have focused on commercial species from large rivers or their reservoirs. However, smaller tributaries have been identified as an important alternative migratory route, with independent pools of genetic diversity. In this context, the present study aimed to evaluate genetic diversity and structure in five neotropical fish species from a region of Laranjinha River in the upper Paraná River basin. PCR-RAPD (random amplified polymorphic DNA) markers were used to characterize around 40 individuals of each species distributed upstream and downstream of Corredeira Dam that interrupts the river. The descriptive index of genetic diversity (P = 30.5-82%; HE 0.122-0.312) showed that the populations have acceptable levels of genetic diversity. The values for Nei's genetic distance (DN min 0.0110 and max 0.0306) as well as the genetic structure index and the analysis of molecular variance (AMOVA, ϕST min 0.0132 and max 0.0385) demonstrated low, but significant levels of genetic structure. Bayesian analysis of assignment found two k clusters, including several individuals with mixed ancestry for all populations from the five species analyzed. These findings along with historical data on rainfall and the low dimensions of the dam studied here support the hypothesis that periodic floods enable the transit of individuals between different localities mitigating the differentiation process between populations. PMID:26782514

  15. A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL ANALYSIS OF GENETIC DIVERSITY

    EPA Science Inventory

    In addition to measuring spatial patterns of genetic diversity, population genetic measures of biological resources should include temporal data that indicate whether the observed patterns are the result of historical or contemporary processes. In general, genetic measures focus...

  16. The Limits of Genetic Influence: A Behavior-Genetic Analysis of Infant-Caregiver Relationship Quality and Temperament

    ERIC Educational Resources Information Center

    Roisman, Glenn I.; Fraley, R. Chris

    2006-01-01

    This report presents data on 9-month-old twin pairs (n[MZ]=172; n[DZ]=333) from the Early Childhood Longitudinal Study, demonstrating that the role of genetic variation among infants is trivial and the shared and nonshared environment is substantial in accounting for the observed quality of infant-caregiver relationships. In contrast, maternal…

  17. About DNA databasing and investigative genetic analysis of externally visible characteristics: A public survey.

    PubMed

    Zieger, Martin; Utz, Silvia

    2015-07-01

    During the last decade, DNA profiling and the use of DNA databases have become two of the most employed instruments of police investigations. This very rapid establishment of forensic genetics is yet far from being complete. In the last few years novel types of analyses have been presented to describe phenotypically a possible perpetrator. We conducted the present study among German speaking Swiss residents for two main reasons: firstly, we aimed at getting an impression of the public awareness and acceptance of the Swiss DNA database and the perception of a hypothetical DNA database containing all Swiss residents. Secondly, we wanted to get a broader picture of how people that are not working in the field of forensic genetics think about legal permission to establish phenotypic descriptions of alleged criminals by genetic means. Even though a significant number of study participants did not even know about the existence of the Swiss DNA database, its acceptance appears to be very high. Generally our results suggest that the current forensic use of DNA profiling is considered highly trustworthy. However, the acceptance of a hypothetical universal database would be only as low as about 30% among the 284 respondents to our study, mostly because people are concerned about the security of their genetic data, their privacy or a possible risk of abuse of such a database. Concerning the genetic analysis of externally visible characteristics and biogeographical ancestry, we discover a high degree of acceptance. The acceptance decreases slightly when precise characteristics are presented to the participants in detail. About half of the respondents would be in favor of the moderate use of physical traits analyses only for serious crimes threatening life, health or sexual integrity. The possible risk of discrimination and reinforcement of racism, as discussed by scholars from anthropology, bioethics, law, philosophy and sociology, is mentioned less frequently by the study

  18. Molecular genetic analysis of a cattle population to reconstitute the extinct Algarvia breed

    PubMed Central

    2010-01-01

    Background Decisions to initiate conservation programmes need to account for extant variability, diversity loss and cultural and economic aspects. Molecular markers were used to investigate if putative Algarvia animals could be identified for use as progenitors in a breeding programme to recover this nearly extinct breed. Methods 46 individuals phenotypically representative of Algarvia cattle were genotyped for 27 microsatellite loci and compared with 11 Portuguese autochthonous and three imported breeds. Genetic distances and factorial correspondence analyses (FCA) were performed to investigate the relationship among Algarvia and related breeds. Assignment tests were done to identify representative individuals of the breed. Y chromosome and mtDNA analyses were used to further characterize Algarvia animals. Gene- and allelic-based conservation analyses were used to determine breed contributions to overall genetic diversity. Results Genetic distance and FCA results confirmed the close relationship between Algarvia and southern Portuguese breeds. Assignment tests without breed information classified 17 Algarvia animals in this cluster with a high probability (q > 0.95). With breed information, 30 cows and three bulls were identified (q > 0.95) that could be used to reconstitute the Algarvia breed. Molecular and morphological results were concordant. These animals showed intermediate levels of genetic diversity (MNA = 6.0 ± 1.6, Rt = 5.7 ± 1.4, Ho = 0.63 ± 0.19 and He = 0.69 ± 0.10) relative to other Portuguese breeds. Evidence of inbreeding was also detected (Fis = 0.083, P < 0.001). The four Algarvia bulls had Y-haplotypes H6Y2 and H11Y2, common in Portuguese cattle. The mtDNA composition showed prevalence of T3 matrilines and presence of the African-derived T1a haplogroup. This analysis confirmed the genetic proximity of Algarvia and Garvonesa breeds (Fst = 0.028, P > 0.05). Algarvia cattle provide an intermediate contribution (CB = 6.18, CW = -0.06 and D1 = 0

  19. Genome-level analysis of genetic regulation of liver gene expression networks

    SciTech Connect

    Gatti, Daniel; Maki, Akira; Chesler, Elissa J; Kirova, Roumyana; Kosyk, Oksana; Lu, Lu; Manly, Kenneth; Matthews, Douglas B.; Qu, Yanhua; Williams, Robert; Perkins, Andy; Langston, Michael A; Threadgill, David; Rusyn, Ivan

    2007-01-01

    Liver is the primary site for metabolism of nutrients, drugs and chemical agents. While metabolic pathways are complex and tightly regulated, genetic variation among individuals, reflected in variation in gene expression levels, introduces complexity into research on liver disease. This study aimed to dissect genetic networks that control liver gene expression by combining largescale quantitative mRNA expression analysis with genetic mapping in a reference population of BXD recombinant inbred mouse strains for which extensive SNP, haplotype and phenotypic data is publicly available. We profiled gene expression in livers of naive mice of both sexes from C57BL/6J, DBA/2J, B6D2F1, and 37 BXD strains using Agilent oligonucleotide microarrays. This data was used to map quantitative trait loci (QTLs) responsible for variation in expression of about 19,000 transcripts. We identified polymorphic cis- and trans-acting loci, including several loci that control expression of large numbers of genes in liver, by comparing the physical transcript position with the location of the controlling QTL. The data is available through a public web-based resource (www.genenetwork.org) that allows custom data mining, identification of co-regulated transcripts and correlated phenotypes, cross-tissue and -species comparisons, as well as testing of a broad array of hypotheses.

  20. Genetic analysis of a novel invasion of Puerto Rico by an exotic constricting snake

    USGS Publications Warehouse

    Reynolds, R. Graham; Puente-Rolón, Alberto R.; Reed, Robert N.; Revell, Liam J.

    2013-01-01

    The tropical island Puerto Rico is potentially vulnerable to invasion by some species of exotic snakes; however, until now no established populations had been reported. Here we report and genetically characterize the nascent invasion of Puerto Rico by an exotic constricting snake of the family Boidae (Boa constrictor) using mtDNA and microsatellite data. Over 150 individual B. constrictor have been removed from Mayagüez municipality since May 2011, and our results from the genetic analysis of 32 individuals suggest that this population was recently founded by individuals of one subspecies from a genetic lineage common to zoo and breeding collections, but that the potential propagule pool consists of two subspecies. We also suggest that anthropogenic long-distance dispersal within the island of Puerto Rico may be occurring from the established population, with implications for further establishment across the island. This study represents the first report of the naturalization of an invasive species of boid snake in Puerto Rico and will be important in determining mitigation strategies for this invasion as well as providing a basis for comparison to other on-going studies of invasive snakes.

  1. Genetic diversity analysis of tree peony germplasm using iPBS markers.

    PubMed

    Duan, Y B; Guo, D L; Guo, L L; Wei, D F; Hou, X G

    2015-01-01

    We examined the genetic diversity of 10 wild species (populations) and 55 varieties of tree peony using inter-primer binding site (iPBS) markers. From a total of 36 iPBS primers, 16 were selected based on polymorphic amplification. The number of bands amplified by each primer ranged from 9 to 19, with an average of 12.88 bands per primer. The length of bands ranged from 100 to 2000 bp, concentrated at 200 to 1800 bp. Sixteen primers amplified 206 bands in total, of which 173 bands were polymorphic with a polymorphism ratio of 83.98%. Each primer amplified 10.81 polymorphic bands on average. The data were then used to construct a phylogenetic tree using unweighted pair group method with arithmetic mean methods. Clustering analysis showed that the genetic relationships among the varieties were not only related to the genetic background or geographic origin, but also to the flowering phase, flower color, and flower type. Our data also indicated that iPBS markers were useful tools for classifying tree peony germplasms and for tree peony breeding, and the specific bands were helpful for molecular identification of tree peony varieties. PMID:26214434

  2. Microsatellite Analysis of the Population Genetic Structure of Anolis carolinensis Introduced to the Ogasawara Islands.

    PubMed

    Sugawara, Hirotaka; Takahashi, Hiroo; Hayashi, Fumio

    2015-01-01

    DNA analysis can reveal the origins and dispersal patterns of invasive species. The green anole Anolis carolinensis is one such alien animal, which has been dispersed widely by humans from its native North America to many Pacific Ocean islands. In the Ogasawara (Bonin) Islands, this anole was recorded from Chichi-jima at the end of the 1960s, and then from Haha-jima in the early 1980s. These two islands are inhabited. In 2013, it was also found on the uninhabited Ani-jima, close to Chichi-jima. Humans are thought to have introduced the anole to Haha-jima, while the mode of introduction to Ani-jima is unknown. To clarify its dispersal patterns within and among these three islands, we assessed the fine-scale population genetic structure using five microsatellite loci. The results show a homogeneous genetic structure within islands, but different genetic structures among islands, suggesting that limited gene flow occurs between islands. The recently established Ani-jima population may have originated from several individuals simultaneously, or by repeated immigration from Chichi-jima. We must consider frequent incursions among these islands to control these invasive lizard populations and prevent their negative impact on native biodiversity. PMID:25660696

  3. Human thromboxane A2 receptor genetic variants: in silico, in vitro and "in platelet" analysis.

    PubMed

    Gleim, Scott; Stitham, Jeremiah; Tang, Wai Ho; Li, Hong; Douville, Karen; Chelikani, Prashen; Rade, Jeffrey J; Martin, Kathleen A; Hwa, John

    2013-01-01

    Thromboxane and its receptor have emerged as key players in modulating vascular thrombotic events. Thus, a dysfunctional hTP genetic variant may protect against (hypoactivity) or promote (hyperactivity) vascular events, based upon its activity on platelets. After extensive in silico analysis, six hTP-α variants were selected (C(68)S, V(80)E, E(94)V, A(160)T, V(176)E, and V(217)I) for detailed biochemical studies based on structural proximity to key regions involved in receptor function and in silico predictions. Variant biochemical profiles ranged from severe instability (C(68)S) to normal (V(217)I), with most variants demonstrating functional alteration in binding, expression or activation (V(80)E, E(94)V, A(160)T, and V(176)E). In the absence of patient platelet samples, we developed and validated a novel megakaryocyte based system to evaluate human platelet function in the presence of detected dysfunctional genetic variants. Interestingly, variant V80E exhibited reduced platelet activation whereas A160T demonstrated platelet hyperactivity. This report provides the most comprehensive in silico, in vitro and "in platelet" evaluation of hTP variants to date and highlightscurrent inherent problems in evaluating genetic variants, with possible solutions. The study additionally provides clinical relevance to characterized dysfunctional hTP variants. PMID:23840660

  4. Genetic diversity and molecular phylogeography of Chinese domestic goats by large-scale mitochondrial DNA analysis.

    PubMed

    Zhao, Yongju; Zhao, Runze; Zhao, Zhongquan; Xu, Huizhong; Zhao, Erhu; Zhang, Jiahua

    2014-06-01

    Mitochondrial DNA (mtDNA) D-loop sequences of 666 individuals (including 109 new individuals, 557 individuals retrieved from GenBank) from 33 Chinese domestic goat breeds throughout China were used to investigate their mtDNA variability and molecular phylogeography. The results showed that all goat breeds in this study proved to be extremely diverse, and the average haplotype diversity and nucleotide diversity were 0.990 ± 0.001 and 0.032 ± 0.001, respectively. The 666 sequences gave 326 different haplotypes. Phylogenetic analyses revealed that there were 4 mtDNA haplogroups identified in Chinese domestic goats, in which haplogroup A was predominant and widely distributed. Our finding was consistent with archaeological data and other genetic diversity studies. Amova analysis showed there was significant geographical structuring. Almost 84.31% of genetic variation was included in the within-breed variance component and only 4.69% was observed among the geographic distributions. This genetic diversity results further supported the previous view of multiple maternal origins of Chinese domestic goats, and the results on the phylogenetic relationship contributed to a better understanding of the history of goat domestication and modern production of domestic goats. PMID:24532161

  5. Genetic Analysis and Follow-Up of 25 Neonatal Diabetes Mellitus Patients in China

    PubMed Central

    Cao, Bingyan; Gong, Chunxiu; Wu, Di; Lu, Chaoxia; Liu, Fang; Liu, Xiaojing; Zhang, Yingxian; Gu, Yi; Qi, Zhan; Li, Xiaoqiao; Liu, Min; Li, Wenjing; Su, Chang; Liang, Xuejun; Feng, Mei

    2016-01-01

    Aims. To study the clinical features, genetic etiology, and the correlation between phenotype and genotype of neonatal diabetes mellitus (NDM) in Chinese patients. Methods. We reviewed the medical records of 25 NDM patients along with their follow-up details. Molecular genetic analysis was performed. We compared the HbA1c levels between PNDM group and infantile-onset T1DM patients. Results. Of 25 NDM patients, 18 (72.0%) were PNDM and 7 (28.0%) were TNDM. Among 18 PNDM cases, 6 (33.3%) had known KATP channel mutations (KATP-PNDM). There were six non-KATP mutations, five novel mutations, including INS, EIF2AK3 (n = 2), GLIS3, and SLC19A2, one known EIF2AK3 mutation. There are two ABCC8 mutations in TNDM cases and one paternal UPD6q24. Five of the six KATP-PNDM patients were tried for glyburide transition, and 3 were successfully switched to glyburide. Mean HbA1c of PNDM was not significantly different from infantile onset T1DM (7.2% versus 7.4%, P = 0.41). Conclusion. PNDM accounted for 72% of NDM patients. About one-third of PNDM and TNDM patients had KATP mutations. The genetic etiology could be determined in 50% of PNDM and 43% of TNDM cases. PNDM patients achieved good glycemic control with insulin or glyburide therapy. The etiology of NDM suggests polygenic inheritance. PMID:26839896

  6. Genetic diversity analysis of okra (Abelmoschus esculentus L.) by inter-simple sequence repeat (ISSR) markers.

    PubMed

    Yuan, C Y; Zhang, C; Wang, P; Hu, S; Chang, H P; Xiao, W J; Lu, X T; Jiang, S B; Ye, J Z; Guo, X H

    2014-01-01

    Okra (Abelmoschus esculentus L.) is not only a nutrient-rich vegetable but also an important medicinal herb. Inter-simple sequence repeat (ISSR) markers were employed to investigate the genetic diversity and differentiation of 24 okra genotypes. In this study, the PCR products were separated by electrophoresis on 8% nondenaturing polyacrylamide gel and visualized by silver staining. The 22 ISSR primers produced 289 amplified DNA fragments, and 145 (50%) fragments were polymorphic. The 289 markers were used to construct the dendrogram based on the unweighted pair-group method with arithmetic average (UPGMA) cluster analysis. The dendrogram indicated that 24 okras were clustered into 4 geographically distinct groups. The average polymorphism information content (PIC) was 0.531929, which showed that the majority of primers were informative. The high values of allele frequency, genetic diversity, and heterozygosity showed that primer-sample combinations produced measurable fragments. The mean distances ranged from 0.045455 to 0.454545. The dendrogram indicated that the ISSR markers succeeded in distinguishing most of the 24 varieties in relation to their genetic backgrounds and geographical origins. PMID:24841648

  7. Genetic analysis of leg problems and growth in a random mating broiler population.

    PubMed

    González-Cerón, F; Rekaya, R; Anthony, N B; Aggrey, S E

    2015-02-01

    Improvement in growth has been widely reported as the cause of increased incidence of leg problems in broiler chickens. We report herein the genetic relationship between growth and leg problems in a random mating broiler control population. The traits studied were valgus (VL), varus (VR), and tibial dyschondroplasia (TD), which were expressed on a binary scale of 0 (normal) and 1 (abnormal); growth rates from 0 to 4 wk (BWG 0-4) and from 0 to 6 wk of age (BWG 0-6); and residual feed intake from 5 to 6 wk of age (RFI 5-6). A threshold-linear mixed model was employed for the joint analysis of the categorical and linear traits. Incidences of VL, VR, and TD were 26, 4, and 2%, respectively. Heritability of leg problems ranged from 0.11 to 0.13. Phenotypic correlations alluded to an unfavorable relationship between growth and leg problems; however, the genetic relationship between growth and leg problems was extremely weak, ranging from 0.01 to 0.08. There is, therefore, a basis for genetic improvement in leg problems. However, improved management practices would also be important to reduce incidence of leg problems in broiler chickens. PMID:25589079

  8. Antigenic and genetic analysis of a recently isolated H1N1 swine influenza virus.

    PubMed

    Olsen, C W; McGregor, M W; Cooley, A J; Schantz, B; Hotze, B; Hinshaw, V S

    1993-10-01

    Hemagglutinins (HA) of H1N1 swine influenza viruses isolated in the United States have remained antigenically and genetically conserved for many years. In contrast to such conservation, the HA of A/Swine/Nebraska/1/92 (Sw/Neb) could readily be distinguished from those of contemporary porcine viruses. Twenty-eight amino acid mutations differentiated the HA of Sw/Neb and A/Swine/Indiana/1726/88, the most recent H1N1 swine influenza virus for which HA sequence data were available. Among these differences were mutations at potential asparagine-linked glycosylation sites and charge changes at many residues. The Sw/Neb virus also could be differentiated from other swine influenza viruses in hemagglutination-inhibition assays with monoclonal antibodies to recent H1 swine HA. Nonetheless, overall sequence analysis of the HA and the nucleoprotein genes of Sw/Neb indicated that this virus was more closely related genetically to classic H1N1 swine influenza viruses than to H1N1 avian or human viruses. Infection of swine with Sw/Neb under experimental conditions induced clinical signs and lesions typical of swine influenza. However, affected swine in the field had high, persistent fevers, but relatively mild signs of respiratory tract disease. This study indicated that an antigenically and genetically novel variant of swine influenza virus was detected in the United States. PMID:8250388

  9. Detection and genetic analysis of group II capsules in Aeromonas hydrophila.

    PubMed

    Zhang, Y L; Lau, Y L; Arakawa, E; Leung, K Y

    2003-04-01

    The genetic organization and sequences of the group II capsule gene cluster of Aeromonas hydrophila PPD134/91 have been determined previously. The purified capsular polysaccharides can increase the ability of avirulent strain PPD35/85 to survive in naive tilapia serum but have no inhibitory effect on the adhesion of PPD134/91 to carp epithelial cells. In this study, the presence of group II capsules among 33 randomly chosen A. hydrophila strains was examined by electron microscopy and genetic analysis. Ten strains were found to produce group II capsules. A PCR detection system was developed to identify two types of group II capsules (IIA and IIB) based on their genetic organization in the region II gene clusters. Group IIA capsules in the authors' collection of A. hydrophila strains are mainly found in the O : 18 and O : 34 serogroups, while group IIB capsules are found in the O : 21 and O : 27 serogroups. The presence of group II capsules in A. hydrophila strongly correlates with the serum and phagocyte survival abilities (seven out of ten strains). The results indicate that the authors' PCR detection system can constitute a reliable assay for the classification of group II capsules in A. hydrophila. PMID:12686647

  10. Construction of a genetic linkage map and QTL analysis in bambara groundnut.

    PubMed

    Ahmad, Nariman Salih; Redjeki, Endah Sri; Ho, Wai Kuan; Aliyu, Siise; Mayes, Katie; Massawe, Festo; Kilian, Andrzej; Mayes, Sean

    2016-07-01

    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an indigenous underutilized legume that has the potential to improve food security in semi-arid Africa. So far, there are a lack of reports of controlled breeding populations that could be used for variety development and genetic studies. We report here the construction of the first genetic linkage map of bambara groundnut using a F3 population derived from a "narrow" cross between two domesticated landraces (Tiga Nicuru and DipC) with marked divergence in phenotypic traits. The map consists of 238 DArT array and SSR based markers in 21 linkage groups with a total genetic distance of 608.3 cM. In addition, phenotypic traits were evaluated for a quantitative trait loci (QTL) analysis over two generations. A total of 36 significant QTLs were detected for 19 traits. The phenotypic effect explained by a single QTL ranged from 11.6% to 49.9%. Two stable QTLs were mapped for internode length and growth habit. The identified QTLs could be useful for marker-assisted selection in bambara groundnut breeding programmes. PMID:27253730

  11. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles* #

    PubMed Central

    Li, Ping; Li, Xuan; Gu, Qing; Lou, Xiu-yu; Zhang, Xiao-mei; Song, Da-feng; Zhang, Chen

    2016-01-01

    Objective: In previous studies, Lactobacillus plantarum ZJ316 showed probiotic properties, such as antimicrobial activity against various pathogens and the capacity to significantly improve pig growth and pork quality. The purpose of this study was to reveal the genes potentially related to its genetic adaptation and probiotic profiles based on comparative genomic analysis. Methods: The genome sequence of L. plantarum ZJ316 was compared with those of eight L. plantarum strains deposited in GenBank. BLASTN, Mauve, and MUMmer programs were used for genome alignment and comparison. CRISPRFinder was applied for searching the clustered regularly interspaced short palindromic repeats (CRISPRs). Results: We identified genes that encode proteins related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, bile salt resistance, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Conclusions: Comparative characterization of the L. plantarum ZJ316 genome provided the genetic basis for further elucidating the functional mechanisms of its probiotic properties. ZJ316 could be considered a potential probiotic candidate. PMID:27487802

  12. Divergence genetics analysis reveals historical population genetic processes leading to contrasting phylogeographic patterns in co-distributed species.

    PubMed

    McGovern, Tamara M; Keever, Carson C; Saski, Christopher A; Hart, Michael W; Marko, Peter B

    2010-11-01

    Coalescent samplers are computational time machines for inferring the historical demographic genetic processes that have given rise to observable patterns of spatial genetic variation among contemporary populations. We have used traditional characterizations of population structure and coalescent-based inferences about demographic processes to reconstruct the population histories of two co-distributed marine species, the frilled dog whelk, Nucella lamellosa, and the bat star, Patiria miniata. Analyses of population structure were consistent with previous work in both species except that additional samples of N. lamellosa showed a larger regional genetic break on Vancouver Island (VI) rather than between the southern Alexander Archipelago as in P. miniata. Our understanding of the causes, rather than just the patterns, of spatial genetic variation was dramatically improved by coalescent analyses that emphasized variation in population divergence times. Overall, gene flow was greater in bat stars (planktonic development) than snails (benthic development) but spatially homogeneous within species. In both species, these large phylogeographic breaks corresponded to relatively ancient divergence times between populations rather than regionally restricted gene flow. Although only N. lamellosa shows a large break on VI, population separation times on VI are congruent between species, suggesting a similar response to late Pleistocene ice sheet expansion. The absence of a phylogeographic break in P. miniata on VI can be attributed to greater gene flow and larger effective population size in this species. Such insights put the relative significance of gene flow into a more comprehensive historical biogeographic context and have important implications for conservation and landscape genetic studies that emphasize the role of contemporary gene flow and connectivity in shaping patterns of population differentiation. PMID:21040048

  13. Mapping Genetic Diversity of Cherimoya (Annona cherimola Mill.): Application of Spatial Analysis for Conservation and Use of Plant Genetic Resources

    PubMed Central

    van Zonneveld, Maarten; Scheldeman, Xavier; Escribano, Pilar; Viruel, María A.; Van Damme, Patrick; Garcia, Willman; Tapia, César; Romero, José; Sigueñas, Manuel; Hormaza, José I.

    2012-01-01

    There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at

  14. Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources.

    PubMed

    Zonneveld, Maarten van; Scheldeman, Xavier; Escribano, Pilar; Viruel, María A; Van Damme, Patrick; Garcia, Willman; Tapia, César; Romero, José; Sigueñas, Manuel; Hormaza, José I

    2012-01-01

    There is a growing call for inventories that evaluate geographic patterns in diversity of plant genetic resources maintained on farm and in species' natural populations in order to enhance their use and conservation. Such evaluations are relevant for useful tropical and subtropical tree species, as many of these species are still undomesticated, or in incipient stages of domestication and local populations can offer yet-unknown traits of high value to further domestication. For many outcrossing species, such as most trees, inbreeding depression can be an issue, and genetic diversity is important to sustain local production. Diversity is also crucial for species to adapt to environmental changes. This paper explores the possibilities of incorporating molecular marker data into Geographic Information Systems (GIS) to allow visualization and better understanding of spatial patterns of genetic diversity as a key input to optimize conservation and use of plant genetic resources, based on a case study of cherimoya (Annona cherimola Mill.), a Neotropical fruit tree species. We present spatial analyses to (1) improve the understanding of spatial distribution of genetic diversity of cherimoya natural stands and cultivated trees in Ecuador, Bolivia and Peru based on microsatellite molecular markers (SSRs); and (2) formulate optimal conservation strategies by revealing priority areas for in situ conservation, and identifying existing diversity gaps in ex situ collections. We found high levels of allelic richness, locally common alleles and expected heterozygosity in cherimoya's putative centre of origin, southern Ecuador and northern Peru, whereas levels of diversity in southern Peru and especially in Bolivia were significantly lower. The application of GIS on a large microsatellite dataset allows a more detailed prioritization of areas for in situ conservation and targeted collection across the Andean distribution range of cherimoya than previous studies could do, i.e. at

  15. Genetic Relationship of Productive Life, Production and Type Traits of Korean Holsteins at Early Lactations.

    PubMed

    Wasana, Nidarshani; Cho, GwangHyun; Park, SuBong; Kim, SiDong; Choi, JaeGwan; Park, ByungHo; Park, ChanHyuk; Do, ChangHee

    2015-09-01

    The present study was performed to study the genetic relationship of productive life with production and type traits of Korean Holsteins at first three lactations. The data for the analysis from 56,054, 28,997, and 11,816 animals of first, second and third parity cows which were born from 2006 to 2011 were collected by Dairy Cattle Improvement Center, National Agricultural Co-operative Federation. Milk, protein and fat yields adjusted for 305 days and average somatic cell score considered as production traits and analyzed type traits were stature, strength, body depth, dairy form, rump angle, rump width, rear leg side view, foot angle, front attachment placement, rear attachment height, rear attachment width, udder cleft, udder depth, front teat placement and front teat length. A multi trait genetic analysis was performed using Wombat program with restricted maximum likelihood animal model composed of fixed effect of birth year, farm and the random effect of animal and random residual effect according to the traits. Heritability estimates of productive life were between 0.06 and 0.13. Genetic and phenotypic correlations between production and productive life traits ranged from 0.35 to 0.04 for milk, 0.16 to 0.05 for protein and 0.18 to 0.02 f 15-0034 (2nd) 150520 or fat. Somatic cells score showed a negative genetic and phenotypic correlation with productive life and also udder type traits, indicating that the selection for higher udder traits will likely to improve resistance to mastitis and persistence in the herd. Among all dairy form type traits, udder characters such as udder cleft showed a significant relationship with productive life. However, a specific change of heritabilities or correlations were not observed with the change of parity. Moreover, further studies are needed to further confirm the significance of the above traits and the effect of parity on above relationships in order to minimize both voluntary and involuntary culling rates while improving

  16. Genetic Relationship of Productive Life, Production and Type Traits of Korean Holsteins at Early Lactations

    PubMed Central

    Wasana, Nidarshani; Cho, GwangHyun; Park, SuBong; Kim, SiDong; Choi, JaeGwan; Park, ByungHo; Park, ChanHyuk; Do, ChangHee

    2015-01-01

    The present study was performed to study the genetic relationship of productive life with production and type traits of Korean Holsteins at first three lactations. The data for the analysis from 56,054, 28,997, and 11,816 animals of first, second and third parity cows which were born from 2006 to 2011 were collected by Dairy Cattle Improvement Center, National Agricultural Co-operative Federation. Milk, protein and fat yields adjusted for 305 days and average somatic cell score considered as production traits and analyzed type traits were stature, strength, body depth, dairy form, rump angle, rump width, rear leg side view, foot angle, front attachment placement, rear attachment height, rear attachment width, udder cleft, udder depth, front teat placement and front teat length. A multi trait genetic analysis was performed using Wombat program with restricted maximum likelihood animal model composed of fixed effect of birth year, farm and the random effect of animal and random residual effect according to the traits. Heritability estimates of productive life were between 0.06 and 0.13. Genetic and phenotypic correlations between production and productive life traits ranged from 0.35 to 0.04 for milk, 0.16 to 0.05 for protein and 0.18 to 0.02 f 15-0034 (2nd) 150520 or fat. Somatic cells score showed a negative genetic and phenotypic correlation with productive life and also udder type traits, indicating that the selection for higher udder traits will likely to improve resistance to mastitis and persistence in the herd. Among all dairy form type traits, udder characters such as udder cleft showed a significant relationship with productive life. However, a specific change of heritabilities or correlations were not observed with the change of parity. Moreover, further studies are needed to further confirm the significance of the above traits and the effect of parity on above relationships in order to minimize both voluntary and involuntary culling rates while improving

  17. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    PubMed

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. PMID:27091876

  18. Relationships of OPG Genetic Polymorphisms with Susceptibility to Cardiovascular Disease: A Meta-Analysis.

    PubMed

    Song, De-Hua; Zhou, Peng-Zhen; Xiu, Xiao-Lin; Zhou, Guang-Hui; Sun, Yu-Xia; Song, Chun

    2016-01-01

    BACKGROUND The aim of this meta-analysis was to determine whether genetic polymorphisms in the osteoprotegerin (OPG) gene contribute to increased risk of cardiovascular disease (CVD). MATERIAL AND METHODS Electronic databases were searched carefully without any language restriction. Analyses of data were conducted using STATA software. Odds ratios (OR) and 95% confidence intervals (95%CI) were also calculated. RESULTS Seven clinical case-control studies that enrolled 1170 CVD patients and 1194 healthy subjects were included. The results indicated that OPG gene polymorphism might be closely associated with susceptibility to CVD, especially for rs2073617 T>C and rs2073618 G>C polymorphisms. Ethnicity-stratified analysis indicated that genetic polymorphism in the OPG were closely related with the pathogenesis of CVD among Asians (all P<0.001), but no obvious relationship was found among Caucasians (all P>0.05). CONCLUSIONS Our meta-analysis provided quantitative evidence that OPG gene polymorphism may be closely related to an increased risk of CVD, especially for rs2073617 T>C and rs2073618 G>C polymorphisms. PMID:27068490

  19. The Role of Gingival Melanin Pigmentation in Inflammation of Gingiva, Based on Genetic Analysis

    PubMed Central

    Eid, Hossam A; Syed, Sadatullah; Soliman, Abdel Nasser MM

    2013-01-01

    Background: Aim of the study was to investigate the relationship of melanin pigment and inflammatory process within gingival tissues based on clinical and genetic analysis by differential display technique and DNA sequencing. Materials and Methods: Seventy gingival biopsy specimens were taken from individuals with melanin pigmentation as well as healthy and inflamed gingiva. Specimens were examined by differential display technique using six different arbitrary primers. Cloning, sequencing and sequence analysis for six different genes were performed. Results: Gingival specimens with hyperpigmentation (clinical melanin score = 3) showed presence of both, down- and up-regulatory genes when compared with the gingival specimen with clinical melanin score 0. These genes may have a role in curtailing the progress of gingival inflammation associated with melanin hyperpigmentation. Conclusion: Melanin hyper pigmentation may possess a defensive role against progress of gingival inflammation How to cite this article:Eid HA, Syed S, Soliman AN. The Role of Gingival Melanin Pigmentation in Inflammation of Gingiva, Based on Genetic Analysis. J Int Oral Health 2013; 5(4):1-7. PMID:24155612

  20. [Genetic analysis of the putative remains of general Władysław Sikorski].

    PubMed

    Kupiec, Tomasz; Branicki, Wojciech

    2009-01-01

    The paper presents results of genetic identification studies carried out in material collected during exhumation of the putative body of general Władysław Sikorski, buried in a sarcophagus in Saint Leonard's crypt in the Wawel Cathedral. The analysis of STR-type autosomal markers, Y-STR markers and sequences of HVI and HVII regions of mitochondrial DNA carried out in samples collected for genetic analysis--fragments of the thigh bone and a tooth--yielded a full set of results. The same mtDNA profile was also determined in hair revealed on the underpants and shirt secured from the studied body. The mitochondrial DNA profile determined in the bone material and also in the hair matched the profile characteristic for a female relative through the maternal line of general Władysław Sikorski. The obtained evidence supports the hypothesis that the studied body is that of general Sikorski. An additional analysis of position SNP rs12913832 located on the HERC2 gene revealed the presence of genotype C/C, which suggests that general Władysław Sikorski had light (most probably blue) eyes. PMID:19711812

  1. Utilizing graph theory to select the largest set of unrelated individuals for genetic analysis.

    PubMed

    Staples, Jeffrey; Nickerson, Deborah A; Below, Jennifer E

    2013-02-01

    Many statistical analyses of genetic data rely on the assumption of independence among samples. Consequently, relatedness is either modeled in the analysis or samples are removed to "clean" the data of any pairwise relatedness above a tolerated threshold. Current methods do not maximize the number of unrelated individuals retained for further analysis, and this is a needless loss of resources. We report a novel application of graph theory that identifies the maximum set of unrelated samples in any dataset given a user-defined threshold of relatedness as well as all networks of related samples. We have implemented this method into an open source program called Pedigree Reconstruction and Identification of a Maximum Unrelated Set, PRIMUS. We show that PRIMUS outperforms the three existing methods, allowing researchers to retain up to 50% more unrelated samples. A unique strength of PRIMUS is its ability to weight the maximum clique selection using additional criteria (e.g. affected status and data missingness). PRIMUS is a permanent solution to identifying the maximum number of unrelated samples for a genetic analysis. PMID:22996348

  2. Genetic Diversity in Passiflora Species Assessed by Morphological and ITS Sequence Analysis

    PubMed Central

    Ramaiya, Shiamala Devi; Bujang, Japar Sidik; Zakaria, Muta Harah

    2014-01-01

    This study used morphological characterization and phylogenetic analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA to investigate the phylogeny of Passiflora species. The samples were collected from various regions of East Malaysia, and discriminant function analysis based on linear combinations of morphological variables was used to classify the Passiflora species. The biplots generated five distinct groups discriminated by morphological variables. The group consisted of cultivars of P. edulis with high levels of genetic similarity; in contrast, P. foetida was highly divergent from other species in the morphological biplots. The final dataset of aligned sequences from nine studied Passiflora accessions and 30 other individuals obtained from GenBank database (NCBI) yielded one most parsimonious tree with two strongly supported clades. Maximum parsimony (MP) tree showed the phylogenetic relationships within this subgenus Passiflora support the classification at the series level. The constructed phylogenic tree also confirmed the divergence of P. foetida from all other species and the closeness of wild and cultivated species. The phylogenetic relationships were consistent with results of morphological assessments. The results of this study indicate that ITS region analysis represents a useful tool for evaluating genetic diversity in Passiflora at the species level. PMID:25050402

  3. Mutations Affecting Sexual Conjugation and Related Processes in SACCHAROMYCES CEREVISIAE. II. Genetic Analysis of Nonmating Mutants

    PubMed Central

    Mackay, Vivian; Manney, Thomas R.

    1974-01-01

    Rare diploids formed by sterile mutants have been studied by tetrad analysis. Sixteen classes of mutants representing at least five distinct genetic loci have been defined. One group of mutations, isolated only in α, maps at the mating-type locus, while none of the others shows any linkage to mating type. Some of the mutations are nonspecific for mating type, while others act only on a or α. In addition, mutations were found that prevent sporulation when heterozygous in diploids. These appear to be mutations of the mating-type alleles. PMID:4595644

  4. Genetic Algorithms for Agent-Based Infrastructure Interdependency Modeling and Analysis

    SciTech Connect

    May Permann

    2007-03-01

    Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, electric power, telecommunication, and financial networks. This paper describes initial research combining agent-based infrastructure modeling software and genetic algorithms (GAs) to help optimize infrastructure protection and restoration decisions. This research proposes to apply GAs to the problem of infrastructure modeling and analysis in order to determine the optimum assets to restore or protect from attack or other disaster. This research is just commencing and therefore the focus of this paper is the integration of a GA optimization method with a simulation through the simulation’s agents.

  5. Cone photopigment variations in Cebus apella monkeys evidenced by electroretinogram measurements and genetic analysis

    PubMed Central

    Soares, Juliana G.M.; Fiorani, Mario; Araujo, Eduardo A.; Zana, Yossi; Bonci, Daniela M.O.; Neitz, Maureen; Ventura, Dora F.; Gattass, Ricardo

    2011-01-01

    We investigated the color vision pattern in male and female Cebus apella monkeys by means of electroretinogram measurements and genetic analysis. Our objective was to establish a simple, fast and efficient protocol in order to determine the chromatic vision pattern in Cebus monkeys. We found five among ten possible different phenotypes, two trichromats and three dichromats. We also found that Cebus present a new allele with spectral peak near 552 nm, with the amino acid combination SFT at positions 180, 277 and 285 of the opsin gene, in addition to the previously described SYT, AFT and AFA alleles. PMID:19883678

  6. [Molecular genetic analysis of malaria mosquitoes of the Anopheles maculipennis (Diptera, Culicidae) complex in Azerbaijan].

    PubMed

    Gordeev, M I; Bezzhonova, O V; Goriacheva, I I; Shaĭkevich, E V; Zvantsov, A B; Mamedov, S; Mutdalibov, N; Gasymov, E; Ezhov, M N

    2010-01-01

    Molecular genetic analysis of malaria vectors in the Republic of Azerbaijan has identified three species of malaria mosquitoes of the Anopheles maculipennis complex: An. maculipennis, An. sacharovi, and An. persiensis. An. melanoon has not been found. An. sacharovi has been ascertained to predominate in the low-lying areas of the country. An. maculipennis prevails in the north, on the foothills of the Great Caucasus and it is also observed in the south, on the Talysh foothills and mountains. An. persiensis has been first recorded for the malaria mosquito fauna in the CNS. This species has been detected only in the south of the republic (Lenkoran and Astar districts). PMID:21395043

  7. The Analysis of Quantitative Traits for Simple Genetic Models from Parental, F1 and Backcross Data

    PubMed Central

    Elston, R. C.; Stewart, John

    1973-01-01

    The following models are considered for the genetic determination of quantitative traits: segregation at one locus, at two linked loci, at any number of equal and additive unlinked loci, and at one major locus and an indefinite number of equal and additive loci. In each case an appropriate likelihood is given for data on parental, F1 and backcross individuals, assuming that the environmental variation is normally distributed. Methods of testing and comparing the various models are presented, and methods are suggested for the simultaneous analysis of two or more traits. PMID:4711900

  8. GENETICS OF SOMATIC MAMMALIAN CELLS, X. COMPLEMENTATION ANALYSIS OF GLYCINE-REQUIRING MUTANTS*

    PubMed Central

    Kao, Fa-Ten; Chasin, Lawrence; Puck, Theodore T.

    1969-01-01

    Complementation analysis at the single gene level has been carried out on 13 different, recessive, glycine-requiring mutants produced by action of mutagenic agents on the CHO-K1 Chinese hamster cell. The mutants form four different complementation classes indicating that at least four separate genes can produce a growth requirement for glycine. The four classes of mutants can be distinguished biochemically as well as genetically. Existence of these four mutant classes appears to explain the preponderance of the glycine-requiring forms in the auxotrophs produced by treatment of the parental cell with mutagenic agents. PMID:5271752

  9. Genetic overlap between type 2 diabetes and major depressive disorder identified by bioinformatics analysis

    PubMed Central

    Ji, Hong-Fang; Zhuang, Qi-Shuai; Shen, Liang

    2016-01-01

    Our study investigated the shared genetic etiology underlying type 2 diabetes (T2D) and major depressive disorder (MDD) by analyzing large-scale genome wide association studies statistics. A total of 496 shared SNPs associated with both T2D and MDD were identified at p-value ≤ 1.0E-07. Functional enrichment analysis showed that the enriched pathways pertained to immune responses (Fc gamma R-mediated phagocytosis, T cell and B cell receptors signaling), cell signaling (MAPK, Wnt signaling), lipid metabolism, and cancer associated pathways. The findings will have potential implications for future interventional studies of the two diseases. PMID:27007159

  10. Genetic barcodes

    DOEpatents

    Weier, Heinz -Ulrich G

    2015-08-04

    Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.

  11. A system for exact and approximate genetic linkage analysis of SNP data in large pedigrees

    PubMed Central

    Silberstein, Mark; Weissbrod, Omer; Otten, Lars; Tzemach, Anna; Anisenia, Andrei; Shtark, Oren; Tuberg, Dvir; Galfrin, Eddie; Gannon, Irena; Shalata, Adel; Borochowitz, Zvi U.; Dechter, Rina; Thompson, Elizabeth; Geiger, Dan

    2013-01-01

    Motivation: The use of dense single nucleotide polymorphism (SNP) data in genetic linkage analysis of large pedigrees is impeded by significant technical, methodological and computational challenges. Here we describe Superlink-Online SNP, a new powerful online system that streamlines the linkage analysis of SNP data. It features a fully integrated flexible processing workflow comprising both well-known and novel data analysis tools, including SNP clustering, erroneous data filtering, exact and approximate LOD calculations and maximum-likelihood haplotyping. The system draws its power from thousands of CPUs, performing data analysis tasks orders of magnitude faster than a single computer. By providing an intuitive interface to sophisticated state-of-the-art analysis tools coupled with high computing capacity, Superlink-Online SNP helps geneticists unleash the potential of SNP data for detecting disease genes. Results: Computations performed by Superlink-Online SNP are automatically parallelized using novel paradigms, and executed on unlimited number of private or public CPUs. One novel service is large-scale approximate Markov Chain–Monte Carlo (MCMC) analysis. The accuracy of the results is reliably estimated by running the same computation on multiple CPUs and evaluating the Gelman–Rubin Score to set aside unreliable results. Another service within the workflow is a novel parallelized exact algorithm for inferring maximum-likelihood haplotyping. The reported system enables genetic analyses that were previously infeasible. We demonstrate the system capabilities through a study of a large complex pedigree affected with metabolic syndrome. Availability: Superlink-Online SNP is freely available for researchers at http://cbl-hap.cs.technion.ac.il/superlink-snp. The system source code can also be downloaded from the system website. Contact: omerw@cs.technion.ac.il Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23162081

  12. Microsatellite based analysis of genetic diversity of popular black pepper genotypes in South India.

    PubMed

    Joy, Nisha; Prasanth, V P; Soniya, E V

    2011-08-01

    The genotypes of black pepper are morphologically and genotypically highly diverse and carry all the cumulative variations inherited and maintained through generations. The present study describes the Simple Sequence Repeat (SSR) or microsatellite based assessment of genetic diversity among forty popular genotypes and four different species of black pepper in Southern region of India. For isolation of SSR primers, our earlier attempts with enrichment strategies like 'Triplex affinity capture' did not extract a single SSR primer due to close proximity of restriction sites to the SSR motif. Hence we developed a 'Sequential Reverse Genome Walking (SRGW)' strategy with better enrichment efficiency of 72% that generated seven new SSR primers. Genotyping precisely discriminated majority of genotypes which indicated that the SSR primers are very informative. A total of 62 alleles with an average of 15.5 alleles over 4 loci were identified. All the SSR primers showed an average Polymorphism Information Content (PIC) value of 0.85. The estimated average Shared Allele Frequency ranged between 1.57 and 20.12%. The PCA plot revealed four closely related individual groups and identified Karimunda, Wild pepper and a local landrace 'local b' as the most divergent genotypes. Cluster analysis exposed the genetic relatedness between hybrids and selections with other known cultivars. The introduction of black pepper from South India to Malaysia was emphasized from the observation of genetic similarity of Malaysian cultivar 'Kuching' with other indigenous popular cultivars. The study was first to portray the precise genetic relatedness among the major indigenous genotypes of black pepper. PMID:21874534

  13. Quantitative Genetic Analysis of Thermal Dissipation in Arabidopsis1[W][OA

    PubMed Central

    Jung, Hou-Sung; Niyogi, Krishna K.

    2009-01-01

    Feedback deexcitation is a photosynthetic regulatory mechanism that can protect plants from high light stress by harmlessly dissipating excess absorbed light energy as heat. To understand the genetic basis for intraspecies differences in thermal dissipation capacity, we investigated natural variation in Arabidopsis (Arabidopsis thaliana). We determined the variation in the amount of thermal dissipation by measuring nonphotochemical quenching (NPQ) of chlorophyll fluorescence in Arabidopsis accessions of diverse origins. Ll-1 and Sf-2 were selected as high NPQ Arabidopsis accessions, and Columbia-0 (Col-0) and Wassilewskija-2 were selected as relatively low NPQ accessions. In spite of significant differences in NPQ, previously identified NPQ factors were indistinguishable between the high and the low NPQ accessions. Intermediate levels of NPQ in Ll-1 × Col-0 F1 and Sf-2 × Col-0 F1 compared to NPQ levels in their parental lines and continuous distribution of NPQ in F2 indicated that the variation in NPQ is under the control of multiple nuclear factors. To identify genetic factors responsible for the NPQ variation, we developed a polymorphic molecular marker set for Sf-2 × Col-0 at approximately 10-centimorgan intervals. From quantitative trait locus (QTL) mapping with undistorted genotype data and NPQ measurements in an F2 mapping population, we identified two high NPQ QTLs, HQE1 (high qE 1, for high energy-dependent quenching 1) and HQE2, on chromosomes 1 and 2, and the phenotype of HQE2 was validated by analysis of near isogenic lines. Neither QTL maps to a gene that had been identified previously in extensive forward genetics screens using induced mutants, suggesting that quantitative genetics can be used to find new genes affecting thermal dissipation. PMID:19339502

  14. Autosomal microsatellite and mtDNA genetic analysis in Sicily (Italy).

    PubMed

    Romano, V; Calì, F; Ragalmuto, A; D'Anna, R P; Flugy, A; De Leo, G; Giambalvo, O; Lisa, A; Fiorani, O; Di Gaetano, C; Salerno, A; Tamouza, R; Charron, D; Zei, G; Matullo, G; Piazza, A

    2003-01-01

    DNA samples from 465 blood donors living in 7 towns of Sicily, the largest island of Italy, have been collected according to well defined criteria, and their genetic heterogeneity tested on the basis of 9 autosomal microsatellite and mitochondrial DNA polymorphisms for a total of 85 microsatellite allele and 10 mtDNA haplogroup frequencies. A preliminary account of the results shows that: a) the samples are genetically heterogeneous; b) the first principal coordinates of the samples are correlated more with their longitude than with their latitude, and this result is even more remarkable when one outlier sample (Butera) is not considered; c) distances among samples calculated from allele and haplogroup frequencies and from the isonymy matrix are weakly correlated (r = 0.43, P = 0.06) but such correlation disappears (r = 0.16) if the mtDNA haplogroups alone are taken into account; d) mtDNA haplogroups and microsatellite distances suggest settlements of people occurred at different times: divergence times inferred from microsatellite data seem to describe a genetic composition of the town of Sciacca mainly derived from settlements after the Roman conquest of Sicily (First Punic war, 246 BC), while all other divergence times take root from the second to the first millennium BC, and therefore seem to backdate to the pre-Hellenistic period. A more reliable association of these diachronic genetic strata to different historical populations (e.g. Sicani, Elymi, Siculi), if possible, must be postponed to the analysis of more samples and hopefully more informative uniparental DNA markers such as the recently available DHPLC-SNP polymorphisms of the Y chromosome. PMID:12556234

  15. Genetic Variants Associated with Breast Cancer Risk: Comprehensive Field Synopsis, Meta-Analysis, and Epidemiologic Evidence

    PubMed Central

    Zhang, Ben; Beeghly-Fadiel, Alicia; Long, Jirong; Zheng, Wei

    2011-01-01

    SUMMARY Background Over 1,000 reports have been published during the past two decades on associations between genetic variants in candidate genes and breast cancer risk. Results have been generally inconsistent. We conducted literature searches and meta-analyses to provide a field synopsis of the current understanding of the genetic architecture of breast cancer risk. Methods Systematic literature searches for candidate gene association studies of breast cancer risk were conducted in two stages using PubMed on or before February 28, 2010. A total of 24,500 publications were identified, of which, 1,059 were deemed eligible for inclusion. Meta-analyses were conducted for 279 genetic variants in 128 candidate genes or chromosomal loci that had a minimum of three data sources available. Variants with significant associations by meta-analysis were assessed using the Venice criteria and scored as having strong, moderate, or weak cumulative evidence for an association with breast cancer risk. Findings Fifty-one variants in 40 genes showed statistically significant associations with breast cancer risk. Cumulative epidemiologic evidence for an association with breast cancer risk was graded as strong for 10 variants in six genes (ATM, CASP8, CHEK2, CTLA4, NBN, and TP53), moderate for four variants in four genes (ATM, CYP19A1, TERT, and XRCC3), and weak for 37 additional variants. Additionally, in meta-analyses that included a minimum of 10,000 cases and 10,000 controls, convincing evidence of no association with breast cancer risk was identified for 45 variants in 37 genes. Interpretation While most genetic variants evaluated in previous candidate gene studies showed no association with breast cancer risk in meta-analyses, 14 variants in 9 genes were found to have moderate to strong evidence for an association with breast cancer risk. Further evaluation of these variants is warranted. PMID:21514219

  16. Heritability and genetic association analysis of cognition in the Diabetes Heart Study.

    PubMed

    Cox, Amanda J; Hugenschmidt, Christina E; Raffield, Laura M; Langefeld, Carl D; Freedman, Barry I; Williamson, Jeff D; Hsu, Fang-Chi; Bowden, Donald W

    2014-08-01

    Cognitive performance is an important component of healthy aging. Type 2 diabetes (T2D) is associated with negative outcomes for the brain and cognition, although causal mechanisms have not been definitely determined. Genetic risk factors warrant further consideration in this context. This study examined the heritability of cognitive function as assessed by (1) the Digit Symbol Substitution Task; (2) the Modified Mini-Mental State Examination; (3) the Stroop Task; (4) the Rey Auditory-Verbal Learning Task; and (5) the Controlled Oral Word Association Task for Phonemic and Semantic Fluency, in the family-based, T2D-enriched, Diabetes Heart Study sample (n = 550 participants from 257 families). The genetic basis of these cognitive measures was further evaluated by association analysis with candidate single-nucleotide polymorphisms (SNPs) and genome-wide SNP data. Measures of cognitive function were significantly heritable (hˆ(2) = 0.28-0.62) following adjustment for age, gender, and education. A total of 31 SNPs (from 26 genes/regions) selected to form an a priori set of candidate SNPs showed limited evidence of association with cognitive function when applying conservative metrics of significance. Genome-wide assessment of both noncoding and coding variants revealed suggestive evidence of association for several coding variants including rs139509083 in CNST (p = 4.9 × 10(-9)), rs199968569 in PLAA (p = 4.9 × 10(-9)) and rs138487371 in PCDH8 (p = 3.7 × 10(-8)). The identification of a heritable component to cognitive performance in T2D suggests a role for genetic contributors to cognitive performance even in the presence of metabolic disease and other associated comorbidities and is supported by the identification of genetic association signals in functionally plausible candidates. PMID:24684796

  17. Genetic Evaluation of Dual-Purpose Buffaloes (Bubalus bubalis) in Colombia Using Principal Component Analysis

    PubMed Central

    Agudelo-Gómez, Divier; Pineda-Sierra, Sebastian; Cerón-Muñoz, Mario Fernando

    2015-01-01

    Genealogy and productive information of 48621 dual-purpose buffaloes born in Colombia between years 1996 and 2014 was used. The following traits were assessed using one-trait models: milk yield at 270 days (MY270), age at first calving (AFC), weaning weight (WW), and weights at the following ages: first year (W12), 18 months (W18), and 2 years (W24). Direct additive genetic and residual random effects were included in all the traits. Maternal permanent environmental and maternal additive genetic effects were included for WW and W12. The fixed effects were: contemporary group (for all traits), sex (for WW, W12, W18, and W24), parity (for WW, W12, and MY270). Age was included as covariate for WW, W12, W18 and W24. Principal component analysis (PCA) was conducted using the genetic values of 133 breeding males whose breeding-value reliability was higher than 50% for all the traits in order to define the number of principal components (PC) which would explain most of the variation. The highest heritabilities were for W18 and MY270, and the lowest for AFC; with 0.53, 0.23, and 0.17, respectively. The first three PCs represented 66% of the total variance. Correlation of the first PC with meat production traits was higher than 0.73, and it was -0.38 with AFC. Correlations of the second PC with maternal genetic component traits for WW and W12 were above 0.75. The third PC had 0.84 correlation with MY270. PCA is an alternative approach for analyzing traits in dual-purpose buffaloes and reduces the dimension of the traits. PMID:26230093

  18. Genetic Evaluation of Dual-Purpose Buffaloes (Bubalus bubalis) in Colombia Using Principal Component Analysis.

    PubMed

    Agudelo-Gómez, Divier; Pineda-Sierra, Sebastian; Cerón-Muñoz, Mario Fernando

    2015-01-01

    Genealogy and productive information of 48621 dual-purpose buffaloes born in Colombia between years 1996 and 2014 was used. The following traits were assessed using one-trait models: milk yield at 270 days (MY270), age at first calving (AFC), weaning weight (WW), and weights at the following ages: first year (W12), 18 months (W18), and 2 years (W24). Direct additive genetic and residual random effects were included in all the traits. Maternal permanent environmental and maternal additive genetic effects were included for WW and W12. The fixed effects were: contemporary group (for all traits), sex (for WW, W12, W18, and W24), parity (for WW, W12, and MY270). Age was included as covariate for WW, W12, W18 and W24. Principal component analysis (PCA) was conducted using the genetic values of 133 breeding males whose breeding-value reliability was higher than 50% for all the traits in order to define the number of principal components (PC) which would explain most of the variation. The highest heritabilities were for W18 and MY270, and the lowest for AFC; with 0.53, 0.23, and 0.17, respectively. The first three PCs represented 66% of the total variance. Correlation of the first PC with meat production traits was higher than 0.73, and it was -0.38 with AFC. Correlations of the second PC with maternal genetic component traits for WW and W12 were above 0.75. The third PC had 0.84 correlation with MY270. PCA is an alternative approach for analyzing traits in dual-purpose buffaloes and reduces the dimension of the traits. PMID:26230093

  19. Integrating chemical mutagenesis and whole genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia

    PubMed Central

    Kokes, Marcela; Dunn, Joe Dan; Granek, Joshua A.; Nguyen, Bidong D.; Barker, Jeffrey R.; Valdivia, Raphael H.; Bastidas, Robert J.

    2015-01-01

    SUMMARY Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically-induced mutants of the genetically-intransigent pathogen Chlamydia trachomatis, in which all mutations have been identified by whole genome sequencing, providing a platform for reverse genetic applications. An analysis of possible loss-of-function mutations in the collection uncovered plasticity in the central metabolic properties of this obligate intracellular pathogen. We also describe the use of the library in a forward genetic screen that identified InaC as a bacterial factor that binds host ARF and 14-3-3 proteins to modulate F-actin assembly and Golgi redistribution around the pathogenic vacuole. This work provides a robust platform for reverse and forward genetic approaches in Chlamydia and should serve as a valuable resource to the community. PMID:25920978

  20. Enhanced genetic analysis of single human bioparticles recovered by simplified micromanipulation from forensic 'touch DNA' evidence.

    PubMed

    Farash, Katherine; Hanson, Erin K; Ballantyne, Jack

    2015-01-01

    DNA profiles can be obtained from 'touch DNA' evidence, which comprises microscopic traces of human biological material. Current methods for the recovery of trace DNA employ cotton swabs or adhesive tape to sample an area of interest. However, such a 'blind-swabbing' approach will co-sample cellular material from the different individuals, even if the individuals' cells are located in geographically distinct locations on the item. Thus, some of the DNA mixtures encountered in touch DNA samples are artificially created by the swabbing itself. In some instances, a victim's DNA may be found in significant excess thus masking any potential perpetrator's DNA. In order to circumvent the challenges with standard recovery and analysis methods, we have developed a lower cost, 'smart analysis' method that results in enhanced genetic analysis of touch DNA evidence. We describe an optimized and efficient micromanipulation recovery strategy for the collection of bio-particles present in touch DNA samples, as well as an enhanced amplification strategy involving a one-step 5 µl microvolume lysis/STR amplification to permit the recovery of STR profiles from the bio-particle donor(s). The use of individual or few (i.e., "clumps") bioparticles results in the ability to obtain single source profiles. These procedures represent alternative enhanced techniques for the isolation and analysis of single bioparticles from forensic touch DNA evidence. While not necessary in every forensic investigation, the method could be highly beneficial for the recovery of a single source perpetrator DNA profile in cases involving physical assault (e.g., strangulation) that may not be possible using standard analysis techniques. Additionally, the strategies developed here offer an opportunity to obtain genetic information at the single cell level from a variety of other non-forensic trace biological material. PMID:25867046

  1. Heritability and genome-wide linkage analysis of migraine in the genetic isolate of Norfolk Island.

    PubMed

    Cox, Hannah C; Lea, Rod A; Bellis, Claire; Nyholt, Dale R; Dyer, Thomas D; Haupt, Larisa M; Charlesworth, Jac; Matovinovic, Elizabeth; Blangero, John; Griffiths, Lyn R

    2012-02-15

    Migraine is a common neurovascular disorder with a complex envirogenomic aetiology. In an effort to identify migraine susceptibility genes, we conducted a study of the isolated population of Norfolk Island, Australia. A large portion of the permanent inhabitants of Norfolk Island are descended from 18th Century English sailors involved in the infamous mutiny on the Bounty and their Polynesian consorts. In total, 600 subjects were recruited including a large pedigree of 377 individuals with lineage to the founders. All individuals were phenotyped for migraine using International Classification of Headache Disorders-II criterion. All subjects were genotyped for a genome-wide panel of microsatellite markers. Genotype and phenotype data for the pedigree were analysed using heritability and linkage methods implemented in the programme SOLAR. Follow-up association analysis was performed using the CLUMP programme. A total of 154 migraine cases (25%) were identified indicating the Norfolk Island population is high-risk for migraine. Heritability estimation of the 377-member pedigree indicated a significant genetic component for migraine (h(2)=0.53, P=0.016). Linkage analysis showed peaks on chromosome 13q33.1 (P=0.003) and chromosome 9q22.32 (P=0.008). Association analysis of the key microsatellites in the remaining 223 unrelated Norfolk Island individuals showed evidence of association, which strengthen support for the linkage findings (P≤0.05). In conclusion, a genome-wide linkage analysis and follow-up association analysis of migraine in the genetic isolate of Norfolk Island provided evidence for migraine susceptibility loci on chromosomes 9q22.22 and 13q33.1. PMID:22197687

  2. Genetic analysis of starch paste viscosity parameters in glutinous rice (Oryza sativa L.).

    PubMed

    Yan, Chang-Jie; Tian, Zhi-Xi; Fang, Yu-Wei; Yang, Ya-Chun; Li, Jian; Zeng, Sheng-Yuan; Gu, Shi-Liang; Xu, Chen-Wu; Tang, Shu-Zhu; Gu, Ming-Hong

    2011-01-01

    Starch paste viscosity plays an important role in estimating the cooking, eating, and processing quality of rice. The inheritance of starch paste viscosity in glutinous rice remains undefined. In the present study, 118 glutinous rice accessions were collected, and the genotypes of 17 starch synthesis-related genes (SSRG) were analyzed by using 43 gene-specific molecular markers. Association analysis indicated that 10 of 17 SSRGs were involved in controlling the rapid visco analyzer (RVA) profile parameters. Among these, the PUL gene was identified to play an important role in control of peak viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV), breakdown viscosity (BDV), peak time (PeT), and paste temperature (PaT) in glutinous rice. Other SSRGs involved only a few RVA profile parameters. Furthermore, interactions between SSRGs were found being responsible for PeT, PaT, and BDV. Some of the RVA parameters, including PKV, HPV, CPV, CSV, and PaT, were mainly governed by single SSRG, whereas other parameters, such as BDV, SBV, and PeT, were controlled by a few SSRGs, functioning cooperatively. Further, three near-isogenic lines (NIL) of a japonica glutinous cv. Suyunuo as genetic background, with PUL, SSIII-1, and SSIII-2 alleles replaced with those of indica cv. Guichao 2, were employed to verify the genetic effects of the various genes, and the results were consistent with those obtained from the association analysis. These findings indicated that starch paste viscosity in glutinous rice had a complex genetic system, and the PUL gene played an important role in determining the RVA profile parameters in glutinous rice. These results provide important information for potentially improving the quality of glutinous rice. PMID:20737264

  3. Comparative mRNA analysis of behavioral and genetic mouse models of aggression.

    PubMed

    Malki, Karim; Tosto, Maria G; Pain, Oliver; Sluyter, Frans; Mineur, Yann S; Crusio, Wim E; de Boer, Sietse; Sandnabba, Kenneth N; Kesserwani, Jad; Robinson, Edward; Schalkwyk, Leonard C; Asherson, Philip

    2016-04-01

    Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially regulated in a stress (behavioral) mouse model of aggression with those from a recent genetic mouse model aggression. The study used a discovery-replication design using two independent mRNA studies from mouse brain tissue. The discovery study identified strain (BALB/cJ and C57BL/6J) × stress (chronic mild stress or control) interactions. Probe sets differentially regulated in the discovery set were intersected with those uncovered in the replication study, which evaluated differences between high and low aggressive animals from three strains specifically bred to study aggression. Network analysis was conducted on overlapping genes uncovered across both studies. A significant overlap was found with the genetic mouse study sharing 1,916 probe sets with the stress model. Fifty-one probe sets were found to be strongly dysregulated across both studies mapping to 50 known genes. Network analysis revealed two plausible pathways including one centered on the UBC gene hub which encodes ubiquitin, a protein well-known for protein degradation, and another on P38 MAPK. Findings from this study support the stress model of aggression, which showed remarkable molecular overlap with a genetic model. The study uncovered a set of candidate genes including the Erg2 gene, which has previously been implicated in different psychopathologies. The gene networks uncovered points at a Redox pathway as potentially being implicated in aggressive related behaviors. © 2016 Wiley Periodicals, Inc. PMID:26888158

  4. Informativeness of minisatellite and microsatellite markers for genetic analysis in papaya.

    PubMed

    Oliveira, G A F; Dantas, J L L; Oliveira, E J

    2015-10-01

    The objective of this study was to evaluate information on minisatellite and microsatellite markers in papaya (Carica papaya L.). Forty minisatellites and 91 microsatellites were used for genotyping 24 papaya accessions. Estimates of genetic diversity, genetic linkage and analyses of population structure were compared. A lower average number of alleles per locus was observed in minisatellites (3.10) compared with microsatellites (3.57), although the minisatellites showed rarer alleles (18.54 %) compared with microsatellite (13.85 %). Greater expected (He = 0.52) and observed (Ho = 0.16) heterozygosity was observed in the microsatellites compared with minisatellites (He = 0.42 and Ho = 0.11), possibly due to the high number of hermaphroditic accessions, resulting in high rates of self-fertilization. The polymorphic information content and Shannon-Wiener diversity were also higher for microsatellites (from 0.47 to 1.10, respectively) compared with minisatellite (0.38 and 0.85, respectively). The probability of paternity exclusion was high for both markers (>0.999), and the combined probability of identity was from 1.65(-13) to 4.33(-38) for mini- and micro-satellites, respectively, which indicates that both types of markers are ideal for genetic analysis. The Bayesian analysis indicated the formation of two groups (K = 2) for both markers, although the minisatellites indicated a substructure (K = 4). A greater number of accessions with a low probability of assignment to specific groups were observed for microsatellites. Collectively, the results indicated higher informativeness of microsatellites. However, the lower informative power of minisatellites may be offset by the use of larger number of loci. Furthermore, minisatellites are subject to less error in genotyping because there is greater power to detect genotyping systems when larger motifs are used. PMID:26280323

  5. [The construction of the genetic map and QTL locating analysis on chromosome 2 in swine].

    PubMed

    Qu, Yan-Chun; Deng, Chang-Yan; Xiong, Yuan-Zhu; Zheng, Rong; Yu, Li; Su, Yu-Hong; Liu, Gui-Lan

    2002-01-01

    The study constructed the genetic linkage map of porcine chromosome 2 and further analysis of quantitative trait loci was conducted. The results of the study demonstrated that all 7 microsatellite loci we chose were with relatively high polymorphism, and its polymorphic information content was from 0.40182 to 0.58477. The genetic map we constructed for resource family was 152.9 cM in length, with the order of all loci highly consistent with the USDA map. All marker intervals were longer than USDA map with the interval between marker Sw2516 and Sw1201 as an exception. Furthermore, we conducted QTLs locating analysis by combining the genetic map with the phenotypic data. QTLs affecting lively estimated traits such as lean meat percentage, were located at 60-65 cM on chromosome 2, while QTLs for the height and marbling of Longissmus dorsi muscle were located at 20 cM and 55 cM, respectively Among them, QTL for estimated lean meat percentage was significant at chromosome-wise level (P < 0.01) and was responsible for 21.55% of the phenotypic variance. QTLs for the height and marbling of Longissmus dorsi muscle were responsible for 10.12% and 10.97% of the phenotypic variance, respectively. The additive and dominance effect of lively estimated traits were in the inverse tendency, while the QTL for the height of Longissmus dorsi muscle had its additive and dominance effect in the same tendency and was with advantageous allele in Large White. The QTLs we detected had relatively large effect on phenotype and built a basis for molecular marker assisted selection and breeding. PMID:12645259

  6. Mining, genetic mapping and expression analysis of EST-derived resistance gene homologs (RGHs) in cotton

    PubMed Central

    2014-01-01

    Background Cotton is the dominant textile crop and also serves as an important oil crop. An estimated 15% economic loss associated with cotton production in China has been caused by diseases, and no resistance genes have been cloned in this crop. Molecular markers developed from resistance gene homologues (RGHs) might be tightly linked with target genes and could be used for marker-assisted selection (MAS) or gene cloning. Results To genetically map expressed RGHs, 100 potential pathogenesis-related proteins (PRPs) and 215 resistance gene analogs (RGAs) were identified in the cotton expressed sequence tag database, and 347 specific primers were developed. Meanwhile, 61 cotton genome-derived RGA markers and 24 resistance gene analog polymorphism (RGAP) markers from published papers were included to view their genomic distribution. As a result, 38 EST-derived and 17 genome-derived RGH markers were added to our interspecific genetic map. These 55 markers were distributed on 18 of the 26 cotton chromosomes, with 34 markers on 6 chromosomes (Chr03, Chr04, Chr11, Chr17, Chr19 and Chr26). Homologous RGHs tended to be clustered; RGH clusters appeared on 9 chromosomes, with larger clusters on Chr03, Chr04 and Chr19, which suggests that RGH clusters are widely distributed in the cotton genome. Expression analysis showed that 19 RGHs were significantly altered after inoculation with the V991 stain of Verticillium dahliae. Comparative mapping showed that four RGH markers were linked with mapped loci for Verticillium wilt resistance. Conclusions The genetic mapping of RGHs confirmed their clustering in cotton genome. Expression analysis and comparative mapping suggest that EST-derived RGHs participate in cotton resistance. RGH markers are seemed to be useful tools to detected resistance loci and identify candidate resistance genes in cotton. PMID:25064562

  7. Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution

    PubMed Central

    Chandler, Christopher H.; Chari, Sudarshan; Dworkin, Ian

    2013-01-01

    The premise of genetic analysis is that a causal link exists between phenotypic and allelic variation. Yet it has long been documented that mutant phenotypes are not a simple result of a single DNA lesion, but rather are due to interactions of the focal allele with other genes and the environment. Although an experimentally rigorous approach focused on individual mutations and isogenic control strains has facilitated amazing progress within genetics and related fields, a glimpse back suggests that a vast complexity has been omitted from our current understanding of allelic effects. Armed with traditional genetic analyses and the foundational knowledge they have provided, we argue that the time and tools are ripe to return to the under-explored aspects of gene function and embrace the context-dependent nature of genetic effects. We assert that a broad understanding of genetic effects and the evolutionary dynamics of alleles requires identifying how mutational outcomes depend upon the “wild-type” genetic background. Furthermore, we discuss how best to exploit genetic background effects to broaden genetic research programs. PMID:23453263

  8. Comparing family members' motivations and attitudes towards genetic testing for hereditary breast and ovarian cancer: a qualitative analysis

    PubMed Central

    Dancyger, Caroline; Smith, Jonathan A; Jacobs, Chris; Wallace, Melissa; Michie, Susan

    2010-01-01

    Genetic testing for hereditary breast and ovarian cancer reveals significant risk information regarding one's chances of developing cancer that has potential implications for patients and their families. This study reports on the motivations and attitudes of index patients and their relatives towards genetic testing for hereditary breast and ovarian cancer. In total, 10 female index patients and 20 of their relatives were interviewed regarding their experiences of communicating genetic information within their families, and their motivations and attitudes towards genetic testing. The analysis found two types of ‘family groups': groups strongly committed to genetic testing and groups uncertain about testing. Within committed family groups, index patients and their relatives felt obliged to be tested for others, leading some relatives to be tested without having fully thought through their decision or the implications of knowing their mutation status. These family groups also described considerations in relation to the value of testing for themselves. In family groups uncertain about testing, relatives had not attended for predictive testing, had postponed decision making until some point in the future or had expressed ambivalence about the value of testing for themselves. Results suggest the value of explicitly acknowledging motivations for genetic testing within the context of family obligations, relationships and communication, and the possible value of involving family members in genetic counselling and decision making from a family's first contact with genetic services. PMID:20648056

  9. Explaining public resistance to genetically modified corn: an analysis of the distribution of benefits and risks.

    PubMed

    Wu, Felicia

    2004-06-01

    Genetically modified (GM) crops have met with widespread approval among scientists and policy makers in the United States, but public approval of GM crops, both domestically and abroad, is progressing much more slowly. An underlying cause of public wariness may be that both nations and individual consumers do not perceive significant benefits to themselves from GM crops, while fearing the risks they may incur. In this study, an economic analysis is conducted to determine whether the benefits of one type of GM corn, Bt corn (genetically modified to resist damage from the ECB and Southwestern corn borer), outweigh the potential risks; and who the "winners" and "losers" are among stakeholder groups that may be affected by Bt corn. It is found that Bt corn growers, consumers, and industry all benefit from Bt corn adoption, though the purported health and environmental benefits of reducing chemical pesticide usage through Bt corn are negligible. Though the aggregated public benefit is large, the welfare gain to individual consumers is small and may not make up for perceived risks. While environmental and health risks of Bt corn are unlikely, the potential market risks-impacting both the organic corn market and total U.S. corn exports-are found to be significant. Currently, distributional analysis is not a part of regulatory decision making of Bt corn in the United States; yet it may help to explain why decision makers at both the government and individual-consumer levels have failed to embrace Bt corn and other GM crops. PMID:15209940

  10. Analysis of genetic variation of porcine reproductive and respiratory syndrome virus (PRRSV) isolates in Central China

    PubMed Central

    LIU, Can; NING, Yibao; XU, Binrui; GONG, Wenzhi; ZHANG, Dongdong

    2016-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an epidemic etiology in pigs of all ages causing reproductive failure and respiratory manifestation. PRRSV has been circulating in Chinese pig farms for almost 20 years. The aim of the present study was to fully understand the extent of the genetic diversity and molecular characteristics of PRRSVs in Central China. A strain of PRRSV isolated from a recent outbreak farm in Hunan province in Central China, designated HUN-2014, was sequenced and analyzed with 39 other PRRSVs from 1998 to 2014 in Central China. Comparative results of genomic sequences revealed that all 40 PRRSVs belonged to the North American genotype (NA genotype) and shared 88.8–99.0% homology. Phylogenetic analysis showed three subgenotypes, namely conventional PRRSV (C-PRRSV), specially mutant PRRSV (S-PRRSV) and highly pathogenic PRRSV (HP-PRRSV), in all 40 PRRSVs. Moreover, comparative analysis of amino acid (AA) sequences of NSP2, GP3, GP5 and ORF5a revealed the main evolution trend of PRRSVs in Central China from 1998 to 2014, which was from C-PRRSV to HP-PRRSV, accompanied by different evolving directions to S-PRRSV. In conclusion, both the major evolutionary trend and special features of genetic variation should be emphasized as theoretical basis for development of new vaccines and control strategies for PRRS. PMID:26781704

  11. Genetic analysis of individual origins supports isolation of grizzly bears in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Haroldson, Mark A.; Schwartz, Charles; Kendall, Katherine C.; Gunther, Kerry A.; Moody, David S.; Frey, Kevin L.; Paetkau, David

    2010-01-01

    The Greater Yellowstone Ecosystem (GYE) supports the southernmost of the 2 largest remaining grizzly bear (Ursus arctos) populations in the contiguous United States. Since the mid-1980s, this population has increased in numbers and expanded in range. However, concerns for its long-term genetic health remain because of its presumed continued isolation. To test the power of genetic methods for detecting immigrants, we generated 16-locus microsatellite genotypes for 424 individual grizzly bears sampled in the GYE during 1983–2007. Genotyping success was high (90%) and varied by sample type, with poorest success (40%) for hair collected from mortalities found ≥1 day after death. Years of storage did not affect genotyping success. Observed heterozygosity was 0.60, with a mean of 5.2 alleles/marker. We used factorial correspondence analysis (Program GENETIX) and Bayesian clustering (Program STRUCTURE) to compare 424 GYE genotypes with 601 existing genotypes from grizzly bears sampled in the Northern Continental Divide Ecosystem (NCDE) (FST  =  0.096 between GYE and NCDE). These methods correctly classified all sampled individuals to their population of origin, providing no evidence of natural movement between the GYE and NCDE. Analysis of 500 simulated first-generation crosses suggested that over 95% of such bears would also be detectable using our 16-locus data set. Our approach provides a practical method for detecting immigration in the GYE grizzly population. We discuss estimates for the proportion of the GYE population sampled and prospects for natural immigration into the GYE.

  12. Spatio-temporal Genetic Structuring of Leishmania major in Tunisia by Microsatellite Analysis

    PubMed Central

    Harrabi, Myriam; Bettaieb, Jihène; Ghawar, Wissem; Toumi, Amine; Zaâtour, Amor; Yazidi, Rihab; Chaâbane, Sana; Chalghaf, Bilel; Hide, Mallorie; Bañuls, Anne-Laure; Ben Salah, Afif

    2015-01-01

    In Tunisia, cases of zoonotic cutaneous leishmaniasis caused by Leishmania major are increasing and spreading from the south-west to new areas in the center. To improve the current knowledge on L. major evolution and population dynamics, we performed multi-locus microsatellite typing of human isolates from Tunisian governorates where the disease is endemic (Gafsa, Kairouan and Sidi Bouzid governorates) and collected during two periods: 1991–1992 and 2008–2012. Analysis (F-statistics and Bayesian model-based approach) of the genotyping results of isolates collected in Sidi Bouzid in 1991–1992 and 2008–2012 shows that, over two decades, in the same area, Leishmania parasites evolved by generating genetically differentiated populations. The genetic patterns of 2008–2012 isolates from the three governorates indicate that L. major populations did not spread gradually from the south to the center of Tunisia, according to a geographical gradient, suggesting that human activities might be the source of the disease expansion. The genotype analysis also suggests previous (Bayesian model-based approach) and current (F-statistics) flows of genotypes between governorates and districts. Human activities as well as reservoir dynamics and the effects of environmental changes could explain how the disease progresses. This study provides new insights into the evolution and spread of L. major in Tunisia that might improve our understanding of the parasite flow between geographically and temporally distinct populations. PMID:26302440

  13. Systematic Genetic Analysis of the SMPD1 Gene in Chinese Patients with Parkinson's Disease.

    PubMed

    Deng, Sheng; Deng, Xiong; Song, Zhi; Xiu, Xiaofei; Guo, Yi; Xiao, Jingjing; Deng, Hao

    2016-09-01

    To examine the association between the sphingomyelin phosphodiesterase 1, acid lysosomal (SMPD1) gene, and Parkinson's disease (PD) in Han Chinese from Central South part of Mainland China, we performed systematic genetic analysis in 502 Chinese Han patients with PD and 637 gender-, age-, and ethnicity-matched normal controls from Central South part of the Mainland China. We identified 11 single nucleotide variants and Leu-Ala (Val) repeat variants in the SMPD1 gene in our large cohort. Two novel missense variants, c.638A > C (p.H213P) and c.1673T > C (p.L558P), and a rare known missense variant, c.1805G > A (p.R602H, rs370129081), were identified in three sporadic PD cases. None of these three variants were observed in controls. Additionally, case-control analysis showed association between Leu-Ala (Val) repeat variants in SMPD1 and Chinese Han patients with PD (P = 0.015, χ (2) = 8.451). Our data provide supportive evidence that some genetic variants in SMPD1 increase the risk of PD in the Chinese Han population. PMID:26377108

  14. [Generalized epilepsy with febrile seizures plus: clinical and genetic analysis of three Serbian families].

    PubMed

    Ristić, Aleksandar J; Janković, Slavko; Annesi, Grazzia; Carrideo, Sara; Annesi, Ferdinanda; Gambardella, Antonio; Maksimović, Goran; Gnjatović, Brankica; Petrović, Igor; Vojvodić, Nikola; Sokić, Dragoslav

    2005-01-01

    The results of clinical and genetic analysis of three Serbian families (pedigrees) with autosomal dominant inheritance, incomplete penetrance and phenotypic features of GEFS+ are presented in this study. Mutation analysis of the SCN1A, SCN1B and GABRG2 genes was performed in all affected and some unaffected members of these three families. Twenty-six exons of SCN1A, five exons of SCN1B and nine exons of GABRG2 were individually amplified using primers based on intronic sequence. PCR products were sequenced in both forward and reverse directions. Subsequently, the samples were run and analyzed using 377 DNA automated sequencer. No consanguinity was noticed. The MM and OM family members live in Republic of Srpska while KS family originates from the central Serbia. No mutations of the exons of SCN1A, SCN1B and GABRG2 genes were found in tested subjects. Obligate carriers in MM family (III-1, III-2, and III-4) exhibit variable expressivity or incomplete penetrance rather than proof of polygenetic inheritance. OM pedigree follows autosomal dominant pattern despite reduced penetrance. Bilinear transmission may assume the possibility of multigenetic mode of inheritance in KS family. The fact that all affected members in three Serbian families were negative for mutations in SCN1A, SCN1B and GABRG2 genes strongly supports the hypothesis of significant genetic heterogeneity of GEFS+. Recognizing GEFS+ on clinical grounds contributes to more precise integration of this syndrome into already existing classification of epileptic syndromes. PMID:16053169

  15. Analysis of genetic variation of porcine reproductive and respiratory syndrome virus (PRRSV) isolates in Central China.

    PubMed

    Liu, Can; Ning, Yibao; Xu, Binrui; Gong, Wenzhi; Zhang, Dongdong

    2016-05-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an epidemic etiology in pigs of all ages causing reproductive failure and respiratory manifestation. PRRSV has been circulating in Chinese pig farms for almost 20 years. The aim of the present study was to fully understand the extent of the genetic diversity and molecular characteristics of PRRSVs in Central China. A strain of PRRSV isolated from a recent outbreak farm in Hunan province in Central China, designated HUN-2014, was sequenced and analyzed with 39 other PRRSVs from 1998 to 2014 in Central China. Comparative results of genomic sequences revealed that all 40 PRRSVs belonged to the North American genotype (NA genotype) and shared 88.8-99.0% homology. Phylogenetic analysis showed three subgenotypes, namely conventional PRRSV (C-PRRSV), specially mutant PRRSV (S-PRRSV) and highly pathogenic PRRSV (HP-PRRSV), in all 40 PRRSVs. Moreover, comparative analysis of amino acid (AA) sequences of NSP2, GP3, GP5 and ORF5a revealed the main evolution trend of PRRSVs in Central China from 1998 to 2014, which was from C-PRRSV to HP-PRRSV, accompanied by different evolving directions to S-PRRSV. In conclusion, both the major evolutionary trend and special features of genetic variation should be emphasized as theoretical basis for development of new vaccines and control strategies for PRRS. PMID:26781704

  16. Genetic diversity and recombination analysis in the coat protein gene of Banana bract mosaic virus.

    PubMed

    Balasubramanian, V; Selvarajan, R

    2014-06-01

    Banana bract mosaic virus (BBrMV), a member of the genus Potyvirus, family Potyviridae, is the causal agent of the bract mosaic disease (BBrMD) that causes serious yield losses in banana and plantain in India and the Philippines. In this study, global genetic diversity and molecular evolution of BBrMV based on the capsid protein (CP) gene were investigated. Multiple alignments of CP gene of 49 BBrMV isolates showed nucleotide (nt) and amino acid (aa) identity of 79-100 and 80-100 %, respectively. Phylogenetic analysis revealed that except two Indians isolates (TN14 and TN16), all isolates clustered together. Eleven recombination events were detected using Recombination Detection Program. Codon-based maximum-likelihood methods revealed that most of the codons in the CP gene were under negative or neutral selection except for codons 28, 43, and 92 which were under positive selection. Gene flow between BBrMV populations of banana and cardamom was relatively frequent but not between two different populations of banana infecting isolates identified in this study. This is the first report on genetic diversity, and evolution of BBrMV isolates based on recombination and phylogenetic analysis in India. PMID:24691817

  17. A Two-Stage Approximation for Analysis of Mixture Genetic Models in Large Pedigrees

    PubMed Central

    Habier, D.; Totir, L. R.; Fernando, R. L.

    2010-01-01

    Information from cosegregation of marker and QTL alleles, in addition to linkage disequilibrium (LD), can improve genomic selection. Variance components linear models have been proposed for this purpose, but accommodating dominance and epistasis is not straightforward with them. A full-Bayesian analysis of a mixture genetic model is favorable in this respect, but is computationally infeasible for whole-genome analyses. Thus, we propose an approximate two-step approach that neglects information from trait phenotypes in inferring ordered genotypes and segregation indicators of markers. Quantitative trait loci (QTL) fine-mapping scenarios, using high-density markers and pedigrees of five generations without genotyped females, were simulated to test this strategy against an exact full-Bayesian approach. The latter performed better in estimating QTL genotypes, but precision of QTL location and accuracy of genomic breeding values (GEBVs) did not differ for the two methods at realistically low LD. If, however, LD was higher, the exact approach resulted in a slightly higher accuracy of GEBVs. In conclusion, the two-step approach makes mixture genetic models computationally feasible for high-density markers and large pedigrees. Furthermore, markers need to be sampled only once and results can be used for the analysis of all traits. Further research is needed to evaluate the two-step approach for complex pedigrees and to analyze alternative strategies for modeling LD between QTL and markers.