Science.gov

Sample records for multi-wire ionization chambers

  1. DAVID--a translucent multi-wire transmission ionization chamber for in vivo verification of IMRT and conformal irradiation techniques.

    PubMed

    Poppe, B; Thieke, C; Beyer, D; Kollhoff, R; Djouguela, A; Rühmann, A; Willborn, K C; Harder, D

    2006-03-01

    Permanent in vivo verification of IMRT photon beam profiles by a radiation detector with spatial resolution, positioned on the radiation entrance side of the patient, has not been clinically available so far. In this work we present the DAVID system, which is able to perform this quality assurance measurement while the patient is treated. The DAVID system is a flat, multi-wire transmission-type ionization chamber, placed in the accessory holder of the linear accelerator and constructed from translucent materials in order not to interfere with the light field. Each detection wire of the chamber is positioned exactly in the projection line of a MLC leaf pair, and the signal of each wire is proportional to the line integral of the ionization density along this wire. Thereby, each measurement channel essentially presents the line integral of the ionization density over the opening width of the associated leaf pair. The sum of all wire signals is a measure of the dose-area product of the transmitted photon beam and of the total radiant energy administered to the patient. After the dosimetric verification of an IMRT plan, the values measured by the DAVID system are stored as reference values. During daily treatment the signals are re-measured and compared to the reference values. A warning is output if there is a deviation beyond a threshold. The error detection capability is a leaf position error of less than 1 mm for an isocentric 1 cm x 1 cm field, and of 1 mm for an isocentric 20 cm x 20 cm field. PMID:16481690

  2. DAVID—a translucent multi-wire transmission ionization chamber for in vivo verification of IMRT and conformal irradiation techniques

    NASA Astrophysics Data System (ADS)

    Poppe, B.; Thieke, C.; Beyer, D.; Kollhoff, R.; Djouguela, A.; Rühmann, A.; Willborn, K. C.; Harder, D.

    2006-03-01

    Permanent in vivo verification of IMRT photon beam profiles by a radiation detector with spatial resolution, positioned on the radiation entrance side of the patient, has not been clinically available so far. In this work we present the DAVID system, which is able to perform this quality assurance measurement while the patient is treated. The DAVID system is a flat, multi-wire transmission-type ionization chamber, placed in the accessory holder of the linear accelerator and constructed from translucent materials in order not to interfere with the light field. Each detection wire of the chamber is positioned exactly in the projection line of a MLC leaf pair, and the signal of each wire is proportional to the line integral of the ionization density along this wire. Thereby, each measurement channel essentially presents the line integral of the ionization density over the opening width of the associated leaf pair. The sum of all wire signals is a measure of the dose-area product of the transmitted photon beam and of the total radiant energy administered to the patient. After the dosimetric verification of an IMRT plan, the values measured by the DAVID system are stored as reference values. During daily treatment the signals are re-measured and compared to the reference values. A warning is output if there is a deviation beyond a threshold. The error detection capability is a leaf position error of less than 1 mm for an isocentric 1 cm × 1 cm field, and of 1 mm for an isocentric 20 cm × 20 cm field.

  3. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  4. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  5. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  6. Numerical studies of transient gain reduction process in a multi-wire proportional chamber

    SciTech Connect

    Katagiri, Ken; Furukawa, Takuji; Noda, Koji

    2011-05-15

    A gain reduction process caused by successive beam irradiation in a multi-wire proportional chamber was numerically investigated to clarify the relations between the gas gain variation and the ion density distribution. A numerical code was developed based on a two-dimensional drift-diffusion model in order to evaluate the ion and electron density distributions and the electric field variation caused by the space charge effect. In order to consider the gain reduction process which occurs under the high rate and successive irradiation, the simulations were performed for the time period of {approx}10-100 {mu}s, which is much longer than the time required for ions to travel from an anode to a cathode. The numerical simulation results showed that for the low gas gain regime of {approx}10, quasi-stationary density distribution of the ions was formed by the high-rate beams of {approx}10{sup 8}- 10{sup 10} particles per second, and that the transient variation of the gas gain became constant after establishment of the quasi-stationary ion density distributions.

  7. Multi-anode ionization chamber

    DOEpatents

    Bolotnikov, Aleksey E.; Smith, Graham; Mahler, George J.; Vanier, Peter E.

    2010-12-28

    The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

  8. Ionization-chamber smoke detector system

    DOEpatents

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  9. The GODDESS ionization chamber: developing robust windows

    NASA Astrophysics Data System (ADS)

    Blanchard, Rose; Baugher, Travis; Cizewski, Jolie; Pain, Steven; Ratkiewicz, Andrew; Goddess Collaboration

    2015-10-01

    Reaction studies of nuclei far from stability require high-efficiency arrays of detectors and the ability to identify beam-like particles, especially when the beam is a cocktail beam. The Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) is made up of the Oak Ridge-Rutgers University Barrel Array (ORRUBA) of silicon detectors for charged particles inside of the gamma-ray detector array Gammasphere. A high-rate ionization chamber is being developed to identify beam-like particles. Consisting of twenty-one alternating anode and cathode grids, the ionization chamber sits downstream of the target chamber and is used to measure the energy loss of recoiling ions. A critical component of the system is a thin and robust mylar window which serves to separate the gas-filled ionization chamber from the vacuum of the target chamber with minimal energy loss. After construction, windows were tested to assure that they would not break below the required pressure, causing harm to the wire grids. This presentation will summarize the status of the ionization chamber and the results of the first tests with beams. This work is supported in part by the U.S. Department of Energy and National Science Foundation.

  10. Making MUSIC: A multiple sampling ionization chamber

    NASA Astrophysics Data System (ADS)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  11. Nuclear Fission Investigation with Twin Ionization Chamber

    SciTech Connect

    Zeynalova, O.; Zeynalov, Sh.; Nazarenko, M.; Hambsch, F.-J.; Oberstedt, S.

    2011-11-29

    The purpose of the present paper was to report the recent results, obtained in development of digital pulse processing mathematics for prompt fission neutron (PFN) investigation using twin ionization chamber (TIC) along with fast neutron time-of-flight detector (ND). Due to well known ambiguities in literature (see refs. [4, 6, 9 and 11]), concerning a pulse induction on TIC electrodes by FF ionization, we first presented detailed mathematical analysis of fission fragment (FF) signal formation on TIC anode. The analysis was done using Ramo-Shockley theorem, which gives relation between charged particle motion between TIC electrodes and so called weighting potential. Weighting potential was calculated by direct numerical solution of Laplace equation (neglecting space charge) for the TIC geometry and ionization, caused by FF. Formulae for grid inefficiency (GI) correction and digital pulse processing algorithms for PFN time-of-flight measurements and pulse shape analysis are presented and discussed.

  12. Characterization of a homemade ionization chamber for radiotherapy beams.

    PubMed

    Neves, Lucio P; Perini, Ana P; dos Santos, Gelson P; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E

    2012-07-01

    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of (60)Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams. PMID:22153889

  13. Development of an optical digital ionization chamber

    SciTech Connect

    Turner, J.E.; Hunter, S.R.; Hamm, R.N.; Wright, H.A.; Hurst, G.S.; Gibson, W.A.

    1988-01-01

    We are developing a new device for optically detecting and imaging the track of a charged particle in a gas. The electrons in the particle track are made to oscillate rapidly by the application of an external, short-duration, high-voltage, RF electric field. The excited electrons produce additional ionization and electronic excitation of the gas molecules in their immediate vicinity, leading to copious light emission (fluorescence) from the selected gas, allowing the location of the electrons along the track to be determined. Two digital cameras simultaneously scan the emitted light across two perpendicular planes outside the chamber containing gas. The information thus obtained for a given track can be used to infer relevant quantities for microdosimetry and dosimetry, e.g., energy deposited, LET, and track structure in the gas. The design of such a device now being constructed and methods of obtaining the dosimetric data from the digital output will be described. 4 refs., 4 figs.

  14. A new ring-shaped graphite monitor ionization chamber

    NASA Astrophysics Data System (ADS)

    Yoshizumi, M. T.; Caldas, L. V. E.

    2010-07-01

    A ring-shaped monitor ionization chamber was developed at the Instituto de Pesquisas Energéticas e Nucleares. This ionization chamber presents an entrance window of aluminized polyester foil. The guard ring and collecting electrode are made of graphite coated Lucite plates. The main difference between this new ionization chamber and commercial monitor chambers is its ring-shaped design. The new monitor chamber has a central hole, allowing the passage of the direct radiation beam without attenuation; only the penumbra radiation is measured by the sensitive volume. This kind of ionization chamber design has already been tested, but using aluminium electrodes. By changing the electrode material from aluminium to a graphite coating, an improvement in the chamber response stability was expected. The pre-operational tests, as saturation curve, recombination loss and polarity effect showed satisfactory results. The repeatability and the long-term stability tests were also evaluated, showing good agreement with international recommendations.

  15. A Fast Ionization Chamber for GODDESS

    NASA Astrophysics Data System (ADS)

    Lumb, R. T.; Lipman, A. S.; Baugher, T.; Cizewski, J. A.; Ratkiewicz, A.; Pain, S. D.; Kozub, R. L.

    2014-09-01

    Transfer reactions are among the main methods used in nuclear physics to probe the structure of nuclei. Such information is needed to constrain nuclear models and to understand various nucleosynthesis processes. In many cases, the nuclear level densities are too high to be resolved in transfer reactions via charged particle detection alone. This problem and issues arising from contaminants in radioactive beams can be addressed by using particle- γ coincidence techniques along with heavy recoil identification in inverse kinematics. A device to accomplish these tasks is Gammasphere ORRUBA: Dual Detectors for Experimental Structure Studies (GODDESS), currently being commissioned for the ATLAS facility at ANL. We are currently building a compact, tilted grid ionization chamber for GODDESS to detect and identify beam-like recoils near zero degrees in the lab. The tilt (30 degrees off normal to the beam) helps the ion pairs to be detected quickly, after drifting only a short distance away from the beam axis. This reduces the response time, allowing counting rates of ~500,000/s. The design and current status of the project will be presented. Research supported by the U. S. DOE.

  16. The Analysis of Ionization Chambers Used for Detecting Smoke Particles

    NASA Astrophysics Data System (ADS)

    Turlej, Z. (Bish).

    Ionization type cells using a radioactive source of primary ions have been used as fire detectors for many years. They have proven sufficiently sensitive to give an alarm when exposed to the relatively small concentration of smoke particles that occur during the early stages of combustion when control of a fire is still possible. In this work the charging of smoke particles in ionization chambers such as typically employed in ionization smoke detectors are investigated theoretically and experimentally. The ionization chambers investigated in this work have parallel plate and spherical electrode geometries. In the absence of smoke particles, the ionization chambers were operated at some ambient electrode current, which depends upon the ion generation rate, the electrode geometries, the potential difference between the electrodes, and the thermodynamic properties of the gas within the chamber volume. When smoke particles are introduced into the ionization chamber they act as an additional sink for the ions, so that the ion current is reduced. The smoke particles in the experiment performed in this work were transferred from the particle generator to the volume surrounding the ionization chamber and allowed to diffuse inside the ionization chamber. An Aitken nuclei counter was employed to measure the concentration of smoke particles inside the ionization chamber. The electric current flowing through the ionization chamber was recorded as a function of time and concentration of the smoke particles inside the chamber. The current loss due to the particles present inside the chamber was calculated and compared with the experimental results. It was found that at the certain level of ambient electrode current, the current loss due to the smoke particles assumes a maximum value. This optimum operating electrode current was predicted by the mathematical model employed in this work. In the light of this model experimental ionization chambers of both parallel and spherical

  17. Radiation damage to tetramethlysilane and tetramethlygermanium ionization chambers

    NASA Astrophysics Data System (ADS)

    Hoshi, Y.; Higuchi, M.; Oyama, K.; Akaishi, H.; Yuta, H.; Abe, K.; Hasegawa, K.; Suekane, F.; Nagamine, T.; Kawamura, N.

    1994-08-01

    Two detector media suitable for a warm liquid, ionization chamber filled with tetramethylsilane(TMS) and tetramethylgermanium(TMG) were exposed to y radiation from a (sup 60)Co source up to dose 579Gray and 902Gray, respectively. The electron lifetimes and the free ion yields were measured as a function of accumulated radiation dose. A similar behavior of the electron lifetimes and the free ion yields with increasing radiation dose was observed between the TMS and TMG ionization chambers.

  18. RADIATION MONITOR CONTAINING TWO CONCENTRIC IONIZATION CHAMBERS AND MEANS FOR INSULATING THE SEPARATE CHAMBERS

    DOEpatents

    Braestrup, C.B.; Mooney, R.T.

    1964-01-21

    This invention relates to a portable radiation monitor containing two concentric ionization chambers which permit the use of standard charging and reading devices. It is particularly adapted as a personnel x-ray dosimeter and to this end comprises a small thin walled, cylindrical conductor forming an inner energy dependent chamber, a small thin walled, cylindrical conductor forming an outer energy independent chamber, and polymeric insulation means which insulates said chambers from each other and holds the chambers together with exposed connections in a simple, trouble-free, and compact assembly substantially without variation in directional response. (AEC)

  19. Construction and commissioning of a position-sensitive ionization chamber

    NASA Astrophysics Data System (ADS)

    Kwag, M. S.; Chae, K. Y.; Cha, S. M.; Kim, A.; Kim, M. J.; Lee, E. J.; Lee, J. H.

    2016-05-01

    A position-sensitive ionization chamber has been constructed and commissioned at the Physics Department of Sungkyunkwan University to extract position information on incident charged particles for future nuclear reaction measurements. By utilizing the newly-designed position-sensitive anodes and the previously-commissioned portable gas-filled ionization chamber by Chae et al., position information on incident particles could be obtained. The device was tested with an 241Am α-emitting source, and the standard deviation of the fitted Gaussian distribution was measured to be 1.76 mm when a collimator with a 2 mm hole was used.

  20. The response of ionization chambers to relativistic heavy nuclei

    NASA Technical Reports Server (NTRS)

    Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Fixsen, D. J.; Garrard, T. L.; Grimm, G.; Israel, M. H.; Klarmann, J.

    1985-01-01

    The LBL Bevalac for the Heavy Nuclei Experiment on HEAO-3, compared the response of a set of laboratory ionization chambers to beams of 26Fe, 36Kr, 54Xe, 67 Ho, and 79Au nuclei at maximum energies ranging from 1666 MeV/amu for Fe to 1049 MeV/amu for Au. The response of these chambers shows a significant deviation from the expected energy dependence, but only a slight deviation from Z sq scaling.

  1. Direct experimental determination of Frisch grid inefficiency in ionization chamber

    NASA Astrophysics Data System (ADS)

    Khriachkov, V. A.; Goverdovski, A. A.; Ketlerov, V. V.; Mitrofanov, V. F.; Semenova, N. N.

    1997-07-01

    The present work describes the method of direct experimental determination of the Frisch grid inefficiency in an ionization chamber. The method is based on analysis of the anode signal after Waveform Digitizer. It is shown that the calculated grid inefficiency value can differ much from the measured ones.

  2. A multiple sampling ionization chamber for the External Target Facility

    NASA Astrophysics Data System (ADS)

    Zhang, X. H.; Tang, S. W.; Ma, P.; Lu, C. G.; Yang, H. R.; Wang, S. T.; Yu, Y. H.; Yue, K.; Fang, F.; Yan, D.; Zhou, Y.; Wang, Z. M.; Sun, Y.; Sun, Z. Y.; Duan, L. M.; Sun, B. H.

    2015-09-01

    A multiple sampling ionization chamber used as a particle identification device for high energy heavy ions has been developed for the External Target Facility. The performance of this detector was tested with a 239Pu α source and RI beams. A Z resolution (FWHM) of 0.4-0.6 was achieved for nuclear fragments of 18O at 400 AMeV.

  3. HPXe ionization chambers for γ spectrometry at room temperature

    NASA Astrophysics Data System (ADS)

    Ottini-Hustache, S.; Monsanglant-Louvet, C.; Haan, S.; Dmitrenko, V.; Grachev, V.; Ulin, S.

    2004-01-01

    High pressure xenon (HPXe) ionization chambers exhibit many characteristics which make them particularly suitable for industrial γ spectrometry at room or higher temperature. The use of a gas as detection medium allows one to reach very large effective volumes and makes these chambers relatively insensitive to radiation damage. Further, the high atomic number of xenon ( Z=54) enhances the total absorption of incident photons and provides, combined to high pressure, a good enough detection efficiency with respect to solid state detectors. Furthermore, such ionization chambers with Frisch grid appear to be very stable over wide periods (e.g. a research prototype has been used aboard MIR orbital station for several years) and temperature range (up to 180°), without maintenance. The characteristics of different prototypes are presented. Their detection efficiency and energy resolution are studied as a function of incident γ ray energy. New developments in electronics and signal processing are also investigated to improve their performances.

  4. Ionization chamber for measurements of high-level tritium gas

    SciTech Connect

    Carstens, D.H.W.; David, W.R.

    1980-01-01

    The construction and calibration of a simple ionization-chamber apparatus for measurement of high level tritium gas is described. The apparatus uses an easily constructed but rugged chamber containing the unknown gas and an inexpensive digital multimeter for measuring the ion current. The equipment after calibration is suitable for measuring 0.01 to 100% tritium gas in hydrogen-helium mixes with an accuracy of a few percent. At both the high and low limits of measurements deviations from the predicted theoretical current are observed. These are briefly discussed.

  5. The response of ionization chambers to relativistic heavy nuclei

    NASA Technical Reports Server (NTRS)

    Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Fixsen, D. J.; Garrard, T. L.; Grimm, G.; Israel, M. H.; Klarmann, J.

    1985-01-01

    As part of a recent calibration at the LBL Bevalac for the Heavy Nuclei Experiment on HEAO-3, the response of a set of laboratory ionization chambers were compared to beams of 26Fe, 36 Kr, 54Xe, 67 Ho, and 79 Au nuclei at maximum energies ranging from 1666 MeV/amu for Fe to 1049 MeV/amu for Au. The response of these chambers shows a significant deviation from the expected energy dependence, but only a slight deviation from Z squared scaling.

  6. Ionization chamber response in intensity-modulated radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Markovic, Alexander

    The response of ionization chambers in IMRT fields has been investigated. Differences between measured and calculated values of average chamber dose associated with chamber position, volume averaging and low monitor unit effects were assessed with regards to patient specific IMRT quality assurance (QA). Calculations were performed with a commercially available treatment planning system (TPS). Inaccuracy of chamber positioning during QA was shown to adversely affect measurements due to steep dose gradients in the vicinity of penumbras generated by MLC leaf-tips. The measurement error was inversely related to chamber size. The Exradin A12 chamber showed errors of 4.1% and 9.6% in its short (0.61 cm) and long dimensions (2.2 cm) while the Exradin T14 Microchamber showed an error of 15.4% in its useful dimension (0.1 cm). A QA phantom was designed to improve positional accuracy and reproducibility. Setup reproducibility results showed a standard deviation of 0.93 and 1.1 mm in the longitudinal and lateral directions through the use of this phantom. The effect of leaf shadowing of a measurement chamber during IMRT QA was correlated to the error in point dose results. The error between calculation and measurement increased with a higher degree of chamber shadowing, which indicated that point dose results could be improved by placing the chamber in areas where the effect of shadowing was minimized. A linear systems approach was utilized to determine the chamber response function of three chambers for subsequent implementation in a TPS. Improvement in dose calculation accuracy was expected. The response functions were used in a TPS to design special chambers that had the same averaging properties as exhibited during water phantom measurements. Results were improved over using a chamber represented by a perfect cylinder, but spatial resolution limitations prevented optimal results. Another chamber design that was based on a heuristic approach yielded desired results with

  7. Development of a portable gas-filled ionization chamber

    NASA Astrophysics Data System (ADS)

    Chae, K. Y.; Cha, S. M.; Gwak, M. S.

    2014-02-01

    A new portable gas-filled ionization chamber has been designed and constructed at the Physics Department of Sung Kyun Kwan University. To overcome the maximum count rate of ˜105 particles per second of a conventional ionization chamber, which utilizes a Frisch grid, and to enhance the portability of a detector, we adopted the design of multiple electrodes and modified it from the original designs by Kimura et al. and Chae et al. The new design utilizes a stack of multiple electrodes installed perpendicular to the optical beam axis. This configuration provides a fast response time for the detector, which is essential for high-rate counting. The device has been tested with a 241Am ( t 1/2 = 432.2 years) radioactive α source, which mainly emits 5.486-MeV (branching ratio of 85%) and 5.443-MeV (branching ratio of 13%) α particles. An energy resolution of 6.3% was achieved.

  8. An ionization chamber shower detector for the LHC Luminosity Monitor

    SciTech Connect

    Speziali, V.; Beche, J.F.; Burks, M.T.; Datte, P.S.; Haguenauer, M.; manfredi, P.F.; Millaud, J.E.; Placidi, M.; Ratti, L.; Re, V.; Riot, V.J.; Schmickler, H.; Turner, W.C.

    2000-10-01

    The front IR quadrupole absorbers (TAS) and the IR neutral particle absorbers (TAN) in the high luminosity insertions of the Large Hadron Collider (LHC) each absorb approximately 1.8 TeV of forward collision products on average per pp interaction (~;;235W at design luminosity 1034cm-2s-1). This secondary particle flux can be exploited to provide a useful storage ring operations tool for optimization of luminosity. A novel segmented, multi-gap, pressurized gas ionization chamber is being developed for sampling the energy deposited near the maxima of the hadronic/ electromagnetic showers in these absorbers. The system design choices have been strongly influenced by optimization of signal to noise ratio and by the very high radiation environment. The ionization chambers are instrumented with low noise, fast, pulse shaping electronics to be capable of resolving individual bunch crossings at 40 MHz. Data on each bunch are to be separately accumulated over multiple bunch crossings until the desired statistical accuracy is obtained. At design luminosity approximately 2x103 bunch crossings will suffice for a 1percent luminosity measurement. In this paper we report the first experimental results of the ionization chamber and analog electronics. Single 450GeV protons from the SPS at CERN are used to simulate the hadronic/electromagnetic showers produced by the forward collision products from the interaction regions of the LHC.

  9. Two-dimensional position sensitive ionization chamber with GEM

    NASA Astrophysics Data System (ADS)

    Kitamura, Noritaka; Noro, Tetsuo; Sakaguchi, Satoshi; Takao, Hideaki; Nishio, Yasutaka

    2014-09-01

    We have been developing a multi-anode ionization chamber for Accelerator Mass Spectrometry (AMS) at Kyushu University. Furthermore, we are planning to construct a neutron detector with high position resolution by combining the chamber with Gas Electron Multiplier (GEM) and a neutron converter. One of purposes is the measurement of p-> , pn knockout reaction from unstable nuclei. The multi-anode ionization chamber is composed of subdivided multiple anodes, a cathode to produce an uniform electric field, and a Frisch grid. The chamber must have position sensitivity because obtaining a beam profile is required for AMS measurements, where counting loss should be avoided. Also in the case of the neutron detector, it is necessary to measure the position to deduce the scattering angles. We have recently established a two-dimensional position readout system by the following methods: the measurement of horizontal position is enabled by trimming some anodes into wedge-like shape, and vertical position can be determined by the ratio of induced charge on the grid to the total charge on anodes. In addition, improvement of S/N ratio is important for isotope separation and position resolution. We installed a rectangular-shaped GEM and tried improving S/N ratio by electron amplification.

  10. Development of a multi-anode ionization chamber

    NASA Astrophysics Data System (ADS)

    Makino, Hiroki; Morikawa, Tsuneyasu; Noro, Tetsuo; Maeda, Toyokazu

    2009-10-01

    A multi-anode ionization chamber with a Frisch grid has been developed. An immediate purpose is the use in accelerator mass spectrometry (AMS), but the system will also be applied to measurements in heavy-ion nuclear physics. In order to identify the incident heavy ions, the anode is divided into 16 sections so that the ionization distribution along the ion trajectory (Bragg curve) can be analyzed. Layout of the electrodes, for field shaping, has been determined based on calculations by using a computer code, Poisson-Superfish. A good discrimination of ^36Cl ions from background ^36S ions has been shown by the Monte Carlo simulation. For the signal readout, an originally designed charge-sensitive preamplifier was newly made by using conventional operational amplifiers so as to integrate the ionization charge and interface the shaped signal to the electronic modules of existing data acquisition system. These developments are still in progress. In the meeting, the overall performance of the ionization-chamber system investigated by using accelerated heavy ion beams will be presented.

  11. Response of ionization chamber based pocket dosimeter to beta radiation.

    PubMed

    Kumar, Munish; Gupta, Anil; Pradhan, S M; Bakshi, A K; Chougaonkar, M P; Babu, D A R

    2013-12-01

    Quantitative estimate of the response of ionization chamber based pocket dosimeters (DRDs) to various beta sources was performed. It has been established that the ionization chamber based pocket dosimeters do not respond to beta particles having energy (Emax)<1 MeV and same was verified using (147)Pm, (85)Kr and (204)Tl beta sources. However, for beta particles having energy >1 MeV, the DRDs exhibit measureable response and the values are ~8%, ~14% and ~27% per mSv for natural uranium, (90)Sr/(90)Y and (106)Ru/(106)Rh beta sources respectively. As the energy of the beta particles increases, the response also increases. The response of DRDs to beta particles having energy>1 MeV arises due to the fact that the thickness of the chamber walls is less than the maximum range of beta particles. This may also be one of the reasons for disparity between doses measured with passive/legal dosimeters (TLDs) and DRDs in those situations in which radiation workers are exposed to mixed field of gamma photons and beta particles especially at uranium processing plants, nuclear (power and research) reactors, waste management facilities and fuel reprocessing plants etc. The paper provides the reason (technical) for disparity between the doses recorded by TLDs and DRDs in mixed field of photons and beta particles. PMID:23978508

  12. Developing a fast ionization chamber for transfer reaction studies

    NASA Astrophysics Data System (ADS)

    Chae, K. Y.; Bardayan, D. W.; Smith, M. S.; Schmitt, K. T.; Ahn, S. H.; Peters, W. A.; Strauss, S.

    2011-10-01

    Detection of beam and beam like recoils at far forward angles is often critical for radioactive beam measurements in inverse kinematics. Gas-filled ionization chambers are well suited for these applications, since they have moderately good energy resolution and can take prolonged exposure to beam compared to fragile semiconductor detectors. Conventional ion counters using a Frisch grid, however, have slow response times because the ionized electrons must travel long distances to the anodes. To reduce response times, a fast ion counter using a tilted window and tilted electrodes was developed and tested at ORNL's Holifield Radioactive Ion Beam Facility, modified from an original design by Kimura et al.. The maximum counting rate and energy resolution, along with future plans for using the new ion counter, will be presented. This work was sponsored by the Office of Nuclear Physics, U.S. Department of Energy.

  13. Performance parameters of a liquid filled ionization chamber array

    SciTech Connect

    Poppe, B.; Stelljes, T. S.; Looe, H. K.; Chofor, N.; Harder, D.; Willborn, K.

    2013-08-15

    Purpose: In this work, the properties of the two-dimensional liquid filled ionization chamber array Octavius 1000SRS (PTW-Freiburg, Germany) for use in clinical photon-beam dosimetry are investigated.Methods: Measurements were carried out at an Elekta Synergy and Siemens Primus accelerator. For measurements of stability, linearity, and saturation effects of the 1000SRS array a Semiflex 31013 ionization chamber (PTW-Freiburg, Germany) was used as a reference. The effective point of measurement was determined by TPR measurements of the array in comparison with a Roos chamber (type 31004, PTW-Freiburg, Germany). The response of the array with varying field size and depth of measurement was evaluated using a Semiflex 31010 ionization chamber as a reference. Output factor measurements were carried out with a Semiflex 31010 ionization chamber, a diode (type 60012, PTW-Freiburg, Germany), and the detector array under investigation. The dose response function for a single detector of the array was determined by measuring 1 cm wide slit-beam dose profiles and comparing them against diode-measured profiles. Theoretical aspects of the low pass properties and of the sampling frequency of the detector array were evaluated. Dose profiles measured with the array and the diode detector were compared, and an intensity modulated radiation therapy (IMRT) field was verified using the Gamma-Index method and the visualization of line dose profiles.Results: The array showed a short and long term stability better than 0.1% and 0.2%, respectively. Fluctuations in linearity were found to be within ±0.2% for the vendor specified dose range. Saturation effects were found to be similar to those reported in other studies for liquid-filled ionization chambers. The detector's relative response varied with field size and depth of measurement, showing a small energy dependence accounting for maximum signal deviations of ±2.6% from the reference condition for the setup used. The σ-values of the

  14. A model for electron/ion recombination in ionization chambers

    SciTech Connect

    Sailor, W.C.

    1988-05-01

    The recombination of free electrons and positive ions along charged particle tracks in gases has been modeled using electron tranport equations, which assume homogeneous distribution in the vicinity of the tracks. The equations include space charge terms, which have been negelected in previous models. A formula for the electron yield as a function of detector applied potential is obtained from a perturbation solution valid when the ratio of the Debye length to the charge column radius is larger then unity. When this ratio is very large, the formula reduces to that of previous models. Pulse height measurements in a /sup 3/He ionization chamber indicate 2% to 30% losses to recombination which vary with applied field, particle type, and energy. Using reasonable values for the electron transport coefficients, the calculated loss of signal to recommendation is generally in agreement with experiment, but the variation with applied bias is stronger in the experiment.

  15. NIST Ionization Chamber “A” Sample-Height Corrections

    PubMed Central

    Fitzgerald, Ryan

    2012-01-01

    For over 30 years scientists in the NIST radioactivity group have been using their pressurized ionization chamber “A” (PIC “A”) to make measurements of radioactivity and radioactive half-lives. We now have evidence that some of those reported measurements were incorrect due to slippage of the source positioning ring over time. The temporal change in the holder caused an error in the source-height within the chamber, which was thought to be invariant. This unaccounted-for height change caused a change in the detector response and thus a relative error in measured activity on the order of 10−5 to 10−3 per year, depending on the radionuclide. The drifting detector response affected calibration factors and half-life determinations. After discovering the problem, we carried out historic research and new sensitivity tests. As a result, we have created a quantitative model of the effect and have used that model to estimate corrections to some of the past measurement results from PIC “A”. In this paper we report the details and results of that model. Meanwhile, we have fixed the positioning ring and are recalibrating the detector using primary measurement methods and enhanced quality control measures. PMID:26900515

  16. Cosmic muon detector using proportional chambers

    NASA Astrophysics Data System (ADS)

    Varga, Dezső; Gál, Zoltán; Hamar, Gergő; Sára Molnár, Janka; Oláh, Éva; Pázmándi, Péter

    2015-11-01

    A set of classical multi-wire proportional chambers was designed and constructed with the main purpose of efficient cosmic muon detection. These detectors are relatively simple to construct, and at the same time are low cost, making them ideal for educational purposes. The detector layers have efficiencies above 99% for minimum ionizing cosmic muons, and their position resolution is about 1 cm, that is, particle trajectories are clearly observable. Visualization of straight tracks is possible using an LED array, with the discriminated and latched signal driving the display. Due to the exceptional operating stability of the chambers, the design can also be used for cosmic muon telescopes.

  17. Ionization collection efficiencies of some ionization chambers in pulsed and continuous radiation beams.

    PubMed

    Holt, J G; Stanton, R E; Sell, R E

    1978-01-01

    The most commonly used method of calibrating high-energy photon or electron beams consists in converting cavity ionization to dose by the application of the appropriate Clambda or CE multipled by the 60Co correction factor. The correct interpretation of calibration data for pulsed photon or electron beams requires a knowledge of the charge collection efficiencies of the ionization chambers used. The results are presented of efficiency measurements for both pulsed and continuous beams made with these chambers: 0.6-cm3 Farmer, 0.5-cm3 Spokas, 3-cm3 Shonka, 1-cm3 PTW, and 1-cm3 Memorial pancake. The dependence of collection efficiency on collection voltage, dose rate, and dose per pulse is demonstrated. These results are shown to agree with Boag's formulas for collection efficiency. Attention is drawn to the fact that several kinds of dosimeters provide only minimal collection voltages for efficient collection of charge at high dose rates, especially in Linac electron beams. It is recommended to check the collection efficiency of chambers which are to be used at high dose rates, and a simple method for this purpose is described. PMID:683147

  18. Polarity correction factor for flattening filter free photon beams in several cylindrical ionization chambers.

    PubMed

    Ogata, Toshiyuki; Uehara, Kazuyuki; Nakayama, Masao; Tsudou, Shinji; Masutani, Takashi; Okayama, Takanobu

    2016-07-01

    In this study, we aimed to compare the polarity correction factor in ionization chambers for flattening filter free (FFF) photon beams and flattening filter (FF) beams. Measurements were performed with both 6 and 10 MV FFF and FF beams. Five commercial ionization chambers were evaluated: PTW TN30013; IBA Dosimetry CC01, CC04, and CC13; and Exradin A12S. Except for the CC01 ionization chamber, the other four chambers showed less than a 0.3 % difference in the polarity effect between the FFF and the FF beams. The CC01 chamber showed a strong field-size-dependence, unlike the other chambers. The polarity effect for all chambers with FFF beams did not change with the dose rate. Except in the case of the CC01 chamber, the difference in the polarity effect between FFF and FF beams was not significant. PMID:26873138

  19. Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities

    SciTech Connect

    Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke; Sorimachi, Atsuyuki; Yatabe, Yoshinori; Miyahara, Nobuyuki

    2008-08-07

    For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.

  20. Investigation of electric field distribution on FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2016-07-01

    One of the important parameters for establishing charge particle equilibrium (CPE) conditions of free-air ionization chamber is an electric field distribution. In this paper, electric field distribution inside the ionization chamber was investigated by finite element method. For this purpose, the effects of adding guard plate and guard strips on the electric field distribution in the ionization chamber were studied. it is necessary to apply a lead box around the ionization chamber body to avoid of scattered radiation effects on the ionization chamber operation, but the lead box changes the electric field distribution. In the following, the effect of lead box on the electric field distribution was studied. Finally, electric field distribution factor (kfield) was calculated by the simulation. The results of the simulation showed that presence of the guard plate and guard strips, and applying a suitable potential to lead box, a convergence of kfield to 1 was achieved.

  1. High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation.

    PubMed

    Butler, D J; Stevenson, A W; Wright, T E; Harty, P D; Lehmann, J; Livingstone, J; Crosbie, J C

    2015-11-21

    Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response. PMID:26510214

  2. High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Butler, D. J.; Stevenson, A. W.; Wright, T. E.; Harty, P. D.; Lehmann, J.; Livingstone, J.; Crosbie, J. C.

    2015-11-01

    Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response.

  3. Characterization tests of a homemade ionization chamber in mammography standard radiation beams

    NASA Astrophysics Data System (ADS)

    Silva, J. O.; Nonato, F. B. C.; Caldas, L. V. E.

    2014-02-01

    A mammography homemade ionization chamber was developed to be applied for mammography energy range dosimetry. This chamber has a sensitive volume of 6 cm3 and is made of a Lucite body and graphite coated collecting electrode. Characteristics such as saturation, ion collection efficiency, linearity of chamber response versus air kerma rate and energy dependence were determined. The results obtained with the mammography homemade ionization chamber are within the limits stated in international recommendations. This chamber can be used in quality control programs in the diagnostic radiology area. All measurements were carried out at the Calibration Laboratory of IPEN.

  4. A multi-wire beam profile monitor in the AGS

    SciTech Connect

    Huang, H.; Buxton, W.; Castillo, V.; Glenn, J.W.

    1997-07-01

    A multi-wire beam profile monitor which can be used to directly monitor and control the optical matching between the Booster and AGS rings has been installed and tested in the AGS. Placement of a multi-wire monitor directly in the AGS provides profile measurements taken upon injection and the first two or more revolutions of the beam. The data from such measurements can be used to determine the optical properties of the beam transport line leading into the AGS.

  5. A new mini gas ionization chamber for IBA applications

    NASA Astrophysics Data System (ADS)

    Müller, A. M.; Cassimi, A.; Döbeli, M.; Mallepell, M.; Monnet, I.; Simon, M. J.; Suter, M.; Synal, H.-A.

    2011-12-01

    Novel prototypes of high resolution gas ionization chambers ( GIC) were designed with increased compactness and simplicity of the setup. They have no Frisch-grid and a simple anode wire. Under certain operating conditions these mini detectors have an energy resolution comparable with that of state-of-the-art GICs of much higher complexity. They can be operated both under vacuum and atmospheric pressure. First measurements were made with protons in the energy range of 0.3-1.0 MeV. For protons at 0.3 MeV an energy resolution of about 12 keV was achieved. With a 72 MeV 129Xe beam a relative resolution of 1.4% was obtained. Due to their versatility and reduced size the detectors can easily be applied in the field of ion beam analysis ( IBA) and accelerator mass spectrometry ( AMS) . Since they are almost completely insensitive to radiation damage they are especially suited for use in high fluence applications such as scanning transmission ion microscopy ( STIM). A comparison of the radiation hardness of the mini GIC with a Si PIN diode was therefore performed. The GIC showed no peak shift or change in energy resolution at all after collecting 10 15 protons per cm 2 while the performance of the Si detector clearly started to degrade at 10 12 particles per cm 2.

  6. Coplanar anode implementation in compressed xenon ionization chambers

    NASA Astrophysics Data System (ADS)

    Kiff, Scott Douglas

    This dissertation examines the problem of microphonic degradation of high-pressure xenon ionization chambers' energy spectra. A detector design that utilizes coplanar anodes is proposed to mitigate this problem, and an optimization study finds the best geometry given some constraints on the system. A radial position-sensing method is developed from theory and implemented in experiments, demonstrating usefulness in the areas of hardware diagnostics and energy spectrum enhancement. Detailed simulations quantify the effects of various physical processes on the measured energy spectrum; the processes that degrade the photopeak most severely also show promise for improvement via design and operational changes. Simulations show multiple-site events are undesirable due to resolution degradation. A hydrogen cooling admixture is implemented to improve energy resolution after detailed simulations predict advantageous performance changes. The detector linearity is shown to be quite good over the range tested, 80-1330 keV. The best measured energy resolution is 4.2% FWHM at 662 keV, which is near the range that would be considered competitive with the less-rugged detectors employing Frisch grids.

  7. Monte Carlo calculation of energy deposition in ionization chambers for tritium measurements

    NASA Astrophysics Data System (ADS)

    Zhilin, Chen; Shuming, Peng; Dan, Meng; Yuehong, He; Heyi, Wang

    2014-10-01

    Energy deposition in ionization chambers for tritium measurements has been theoretically studied using Monte Carlo code MCNP 5. The influence of many factors, including carrier gas, chamber size, wall materials and gas pressure, has been evaluated in the simulations. It is found that β rays emitted by tritium deposit much more energy into chambers flowing through with argon than with deuterium in them, as much as 2.7 times higher at pressure 100 Pa. As chamber size gets smaller, energy deposition decreases sharply. For an ionization chamber of 1 mL, β rays deposit less than 1% of their energy at pressure 100 Pa and only 84% even if gas pressure is as high as 100 kPa. It also indicates that gold plated ionization chamber results in the highest deposition ratio while aluminum one leads to the lowest. In addition, simulations were validated by comparison with experimental data. Results show that simulations agree well with experimental data.

  8. On the Frisch-Grid signal in ionization chambers

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Hambsch, F.-J.; Bencardino, R.; Pomp, S.; Oberstedt, S.; Zeynalov, Sh.

    2012-04-01

    A recent theoretical approach concerning the grid-inefficiency (GI) problem in Twin Frisch-Grid Ionization Chambers was validated experimentally. The experimental verification focused on the induced signal on the anode plate. In this work the investigation was extended by studying the grid signal. The aim was to verify the grid-signal dependency on the grid inefficiency σ. The measurements were made with fission fragments from Cf(sf)252, using two different grids, with 1 and 2 mm wire distances, leading to the GI values: σ=0.031 and σ=0.083, respectively. The theoretical grid signal was confirmed because the detected grid pulse-height distribution was smaller for the larger σ. By applying the additive GI correction approach, the two grid pulse heights were consistent. In the second part of the work, the corrected grid signal was used to deduce emission angles of the fission fragments. It is inconvenient to treat the grid signal by means of conventional analogue electronics, because of its bipolarity. Therefore, the anode and grid signals were summed to create a unipolar, angle-dependent pulse height. Until now the so-called summing method has been the well-established approach to deduce the angle from the grid signal. However, this operation relies strongly on an accurate and stable calibration between the two summed signals. By application of digital-signal processing, the grid signal's bipolarity is no longer an issue. Hence one can bypass the intermediate summation step of the two different pre-amplifier signals, which leads to higher stability. In this work the grid approach was compared to the summing method in three cases: Cf(sf)252, U(n,f)235 and U(n,f)234. By using the grid directly, the angular resolution was found equally good in the first case but gave 7% and 20% improvements, respectively, in the latter cases.

  9. GSFC's Multi-Wire Gas Proportional Counter

    NASA Astrophysics Data System (ADS)

    Serlemitsos, Peter J.

    2013-01-01

    The Goddard X-ray group made its appearance in 1964 as a one person (Elihu Boldt) appendage to the well established cosmic ray group, then headed by Frank MacDonald. This discipline proximity was crucial because it meant superb technical support from the start, which allowed the fledging group to quickly advance toward directions of choice. When I became the 2nd member of the group in 1966, the new discipline still relied on bulky gas counters, stacked to make up a usable detection area. Slim opportunities existed for timing or spectral inferences. Elihu's strong interest in pursuing the reported diffuse cosmic radiation had to be set aside, as improving this situation appeared to be years away. Cosmic ray researchers had long used charged particle timing techniques for cleaning up their data, but those appeared irrelevant for our purposes because of the large, background generating, mass of the gas containment vessels and the slow drift in the counter gas of the charge from photon interaction sites to the counter anode. We had to deal with these realities in whatever choices we made for our future instruments. The multi-wire gas proportional counter emerged from our still small group in the late1960s, demonstrating on several rocket and balloon flights a greatly reduced detector background, improved event timing and adequate resolution for addressing key spectral features. Three of these detectors, flown in 1975 on NASA's 8th orbiting solar observatory, were successfully used for some 3 years to conduct non dispersive, 1-10 keV spectroscopy on many galactic and extragalactic sources, including several clusters of galaxies. In 1977 we flew a set of larger detectors on the first of NASA's High Energy Astrophysical Observatories (HEAO). These were specifically designed for the study of the X-ray background. Finally, the largest instruments of this family were flown in 1995 by our group on NASA's Rossi X-ray Timing Explorer, RXTE, which observed over a remarkable 16

  10. Construction of an ionization chamber for the measurement of dose of low energy x-rays

    SciTech Connect

    Perez, Y. B. Alcantara; Jimenez, F. J. Ramirez

    2008-08-11

    We designed and constructed the prototype of an ionization chamber to measure the dose of an X-ray tube with Molybdenum anode. This X-ray tube is located in the Physics department at CINVESTAV and is used for medical physics purposes in the imaging area. The ionization chamber is designed to measure doses on biological samples exposed to X-rays and will be applied in radiation protection studies.

  11. Pencil beam proton radiography using a multilayer ionization chamber.

    PubMed

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program. PMID:27164479

  12. Pencil beam proton radiography using a multilayer ionization chamber

    NASA Astrophysics Data System (ADS)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  ‑0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (‑1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  13. Possibility of using cylindrical ionization chambers for percent depth-dose measurements in clinical electron beams

    SciTech Connect

    Ono, Takeshi; Araki, Fujio; Yoshiyama, Fumiaki

    2011-08-15

    Purpose: This study investigated the possibility of using cylindrical ionization chambers for percent depth-dose (PDD) measurements in high-energy clinical electron beams. Methods: The cavity correction factor, P{sub cav}, for cylindrical chambers with various diameters was calculated as a function of depth from the surface to R{sub 50}, in the energy range of 6-18 MeV electrons with the EGSnrc C ++ -based user-code CAVITY. The results were compared with those for IBA NACP-02 and PTW Roos parallel-plate ionization chambers. The effective point of measurement (EPOM) for the cylindrical chamber and the parallel-plate chamber was positioned according to the IAEA TRS-398 code of practice. The overall correction factor, P{sub Q}, and the percent depth-ionization (PDI) curve for a PTW30013 Farmer-type chamber were also compared with those of NACP-02 and Roos chambers. Results: The P{sub cav} values at depths between the surface and R{sub 50} for cylindrical chambers were all lower than those with parallel-plate chambers. However, the variation in depth for cylindrical chambers equal to or less than 4 mm in diameter was equivalent to or smaller than that for parallel-plate chambers. The P{sub Q} values for the PTW30013 chamber mainly depended on P{sub cav}, and for parallel-plate chambers depended on the wall correction factor, P{sub wall}, rather than P{sub cav}. P{sub Q} at depths from the surface to R{sub 50} for the PTW30013 chamber was consequently a lower value than that with parallel-plate chambers. However, the variation in depth was equivalent to that of parallel-plate chambers at electron energies equal to or greater than 9 MeV. The shift to match calculated PDI curves for the PTW30013 chamber and water (perturbation free) varied from 0.65 to 0 mm between 6 and 18 MeV beams. Similarly, the shifts for NACP-02 and Roos chambers were 0.5-0.6 mm and 0.2-0.3 mm, respectively, and were nearly independent of electron energy. Conclusions: Calculated PDI curves for PTW

  14. Ionization statistics and diffusion: analytical estimate of their contribution to spatial resolution of drift chambers

    SciTech Connect

    Tarnopolsky, G.J.

    1983-01-01

    The spatial resolution of a drift chamber often is the foremost design parameter. The calculation described here - a design tool - permits us to estimate the contributions of ionization statistics and diffusion to the spatial resolution when actually sampling the drift pulse waveform. Useful formulae are derived for the cylindrical and jet-chamber cell geometries.

  15. Beam tests of ionization chambers for the NuMI neutrino beam

    SciTech Connect

    Robert M. Zwaska et al.

    2003-09-25

    We have conducted tests at the Fermilab Booster of ionization chambers to be used as monitors of the NuMI neutrino beamline. The chambers were exposed to proton fluxes of up to 10{sup 12} particles/cm{sup 2}/1.56 {micro}s. We studied space charge effects which can reduce signal collection from the chambers at large charged particle beam intensities.

  16. Investigation of the applicability of a special parallel-plate ionization chamber for x-ray beam dosimetry

    NASA Astrophysics Data System (ADS)

    Perini, Ana P.; P. Neves, Lucio; E. Caldas, Linda V.

    2014-02-01

    Diagnostic x-rays are the greatest source of exposition to ionizing radiation of the population worldwide. In order to obtain accurate and lower-cost dosimeters for quality control assurance of medical x-ray facilities, a special ionization chamber was designed at the Calibration Laboratory of the IPEN, for dosimetry in diagnostic radiology beams. For the chamber characterization some tests were undertaken. Monte Carlo simulations were proposed to evaluate the distribution of the deposited energy in the sensitive volume of the ionization chamber and the collecting electrode effect on the chamber response. According to the obtained results, this special ionization chamber presents potential use for dosimetry of conventional diagnostic radiology beams.

  17. FPGA based fast synchronous serial multi-wire links synchronization

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2013-10-01

    The paper debates synchronization method of multi-wire, serial link of constant latency, by means of pseudo-random numbers generators. The solution was designed for various families of FPGA circuits. There were debated synchronization algorithm and functional structure of parameterized transmitter and receiver modules. The modules were realized in VHDL language in a behavioral form.

  18. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3–5% higher than the calorimetry, within the stated uncertainties.

  19. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers.

    PubMed

    Lye, J E; Harty, P D; Butler, D J; Crosbie, J C; Livingstone, J; Poole, C M; Ramanathan, G; Wright, T; Stevenson, A W

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties. PMID:27192396

  20. Theoretical study of energy deposition in ionization chambers for tritium measurements

    NASA Astrophysics Data System (ADS)

    Chen, Zhilin; Peng, Shuming; Meng, Dan; He, Yuehong; Wang, Heyi

    2013-10-01

    Energy deposition in ionization chambers has been theoretically studied for tritium measurements in gaseous form. A one-dimension model is introduced to establish the quantitative relationship between energy deposition rate and many factors, including carrier gas, gas pressure, wall material, chamber size, and gas temperature. Energy deposition rate has been calculated at pressure varying from 5 kPa to 500 kPa based on some approximations. It is found that energy deposition rate varies greatly for different parameters, especially at low gas pressure. For the same chamber, energy deposition rate in argon is much higher than in deuterium, as much as 70.7% higher at 5 kPa. Gold plated chamber gives highest energy deposition rate in the calculations while aluminum chamber results in the lowest. As chamber size gets smaller, β ray emitted by tritium will deposit less energy in the sensitive region of the chamber. For chambers flowing through with the same gas, energy deposition rate in a 10 L chamber is 23.9% higher than in a 0.05 L chamber at 5 kPa. Gas temperature also places slight influence on energy deposition rate, and 373 K will lead to 6.7% lower deposition rate than 233 K at 5 kPa. In addition, experiments have been performed to obtain energy deposition rate in a gold plated chamber, which show good accordance with theoretical calculations.

  1. Theoretical study of energy deposition in ionization chambers for tritium measurements

    SciTech Connect

    Chen, Zhilin; Peng, Shuming; Meng, Dan; He, Yuehong; Wang, Heyi

    2013-10-15

    Energy deposition in ionization chambers has been theoretically studied for tritium measurements in gaseous form. A one-dimension model is introduced to establish the quantitative relationship between energy deposition rate and many factors, including carrier gas, gas pressure, wall material, chamber size, and gas temperature. Energy deposition rate has been calculated at pressure varying from 5 kPa to 500 kPa based on some approximations. It is found that energy deposition rate varies greatly for different parameters, especially at low gas pressure. For the same chamber, energy deposition rate in argon is much higher than in deuterium, as much as 70.7% higher at 5 kPa. Gold plated chamber gives highest energy deposition rate in the calculations while aluminum chamber results in the lowest. As chamber size gets smaller, β ray emitted by tritium will deposit less energy in the sensitive region of the chamber. For chambers flowing through with the same gas, energy deposition rate in a 10 L chamber is 23.9% higher than in a 0.05 L chamber at 5 kPa. Gas temperature also places slight influence on energy deposition rate, and 373 K will lead to 6.7% lower deposition rate than 233 K at 5 kPa. In addition, experiments have been performed to obtain energy deposition rate in a gold plated chamber, which show good accordance with theoretical calculations.

  2. Dosimetric application of a special pencil ionization chamber in radiotherapy X-ray beams

    NASA Astrophysics Data System (ADS)

    Neves, Lucio P.; Perini, Ana P.; Fernández-Varea, José M.; Cassola, Vagner F.; Kramer, Richard; Khoury, Helen J.; Caldas, Linda V. E.

    2014-02-01

    The aim of this work was to study the performance of a pencil ionization chamber with a sensitive volume of only 1.06 cm3 and a length of 3.0 cm, developed at the Calibration Laboratory of the IPEN, in very low-energy radiotherapy X-ray beams. These beams are still used for certain skin cancer treatments due to their rapid attenuation in tissue. The dosimeter performance was evaluated in some tests proposed by the IEC 60731 standard: short- and long-term stability and linearity of response. For a complete analysis of the dosimeter response, the EGSnrc Monte Carlo simulation was utilized to investigate the influence of its different parts on the ionization chamber response. All results of the tests were in accordance with the recommended limits, and this work shows that it is possible to extend the application of this pencil-type ionization chamber developed at the LCI.

  3. Virtual Frisch-grid ionization chambers filled with high-pressure Xe

    NASA Astrophysics Data System (ADS)

    Bolotnikov, Aleksey E.; Austin, Robert; Bolozdynya, Alexander; Richards, John D.

    2004-10-01

    New approaches to the design of high-pressure Xe (HPXe) ionization chambers are described. HPXe ionization chambers represent a well-known technique for detecting gamma rays in the energy range between 50 keV and 3 MeV. Since the HPXe detector is an electron-only carrier device, its commonly accepted design includes a Frisch-grid-a metal mesh employed for the electrostatic shielding from the immobile positive ions. The grid is a key element of the device"s design which provides good energy resolution of the detector, typically 2-3% FWHM at 662 keV. However, the grid makes the design more complex and less rugged, especially for field applications. Recently, we developed several designs of HPXe ionization chambers without shielding grids. The results obtained from the testing of these devices are presented here.

  4. Performance of three pencil-type ionization chambers (10 cm) in computed tomography standard beams

    NASA Astrophysics Data System (ADS)

    de Castro, Maysa C.; Xavier, Marcos; Caldas, Linda V. E.

    2016-07-01

    The use of computed tomography (CT) has increased over the years, thus generating a concern about the doses received by patients undergoing this procedure. Therefore, it is necessary to perform routinely beam dosimetry with the use of a pencil-type ionization chamber. This detector is the most utilized in the procedures of quality control tests on this kind of equipment. The objective of this work was to perform some characterization tests in standard CT beams, as the saturation curve, polarity effect, ion collection efficiency and linearity of response, using three ionization chambers, one commercial and two developed at the IPEN.

  5. Response and Monte Carlo evaluation of a reference ionization chamber for radioprotection level at calibration laboratories

    NASA Astrophysics Data System (ADS)

    Neves, Lucio P.; Vivolo, Vitor; Perini, Ana P.; Caldas, Linda V. E.

    2015-07-01

    A special parallel plate ionization chamber, inserted in a slab phantom for the personal dose equivalent Hp(10) determination, was developed and characterized in this work. This ionization chamber has collecting electrodes and window made of graphite, and the walls and phantom made of PMMA. The tests comprise experimental evaluation following international standards and Monte Carlo simulations, employing the PENELOPE code to evaluate the design of this new dosimeter. The experimental tests were conducted employing the radioprotection level quality N-60 established at the IPEN, and all results were within the recommended standards.

  6. A multiple sampling time projection ionization chamber for nuclear fragment tracking and charge measurement

    NASA Astrophysics Data System (ADS)

    Bauer, G.; Bieser, F.; Brady, F. P.; Chance, J. C.; Christie, W. F.; Gilkes, M.; Lindenstruth, V.; Lynen, U.; Müller, Walter F. J.; Romero, J. L.; Sann, H.; Tull, C. E.; Warren, P.

    1997-02-01

    A detector has been developed for the tracking and charge measurement of the projectile fragment nuclei produced in relativistic nuclear collisions. This device, MUSIC II, is a second generation Multiple Sampling Ionization Chamber (MUSIC), and employs the principles of ionization and time projection chambers. It provides unique charge determination for charges Z≥6, and excellent track position measurement. MUSIC II has been used most recently with the EOS (Equation of State) TPC and other EOS Collaboration detectors. Earlier it was used with other systems in experiments at the Heavy Ion Superconducting Spectrometer (HISS) facility at Lawrence Berkeley Laboratory and the ALADIN spectrometer at GSI.

  7. Characterization of a free air ionization chamber for low energy X-rays

    NASA Astrophysics Data System (ADS)

    Silva, N. F.; Xavier, M.; Vivolo, V.; Caldas, L. V. E.

    2016-07-01

    Free air ionization chambers are used by most primary metrology laboratories as primary standards of the quantities air kerma and exposure in X-ray beams. The free air ionization chamber for low energies of the Calibration Laboratory (LCI) of IPEN showed in a characterization test a problem in the set responsible for the variation of its sensitive volume. After a modification in the support of the micrometers used for the movement of the internal cylinder and the establishment of a new alignment system protocol, the tests were redone. The objective of this work was to present the results obtained in the new condition.

  8. Pulse mode readout techniques for use with non-gridded industrial ionization chambers

    SciTech Connect

    Popov, Vladimir E.; Degtiarenko, Pavel V.

    2011-10-01

    Highly sensitive readout technique for precision long-term radiation measurements has been developed and tested in the Radiation Control Department at Jefferson Lab. The new electronics design is used to retrieve ionization data in a pulse mode. The dedicated data acquisition system works with M=Audio Audiophile 192 High-Definition 24-bit/192 kHz audio cards, taking data in continuous waveform recording mode. The on-line data processing algorithms extract signals of the ionization events from the data flow and measure the ionization value for each event. Two different ion chambers are evaluated. The first is a Reuter-Stokes Argon-filled (at 25 atm) High Pressure Ionization Chamber (HPIC), commonly used as a detector part in many GE Reuter-Stokes instruments of the RSS series. The second is a VacuTec Model 70181, 5 atm Xenon-filled ionization chamber. Results for both chambers indicate that the techniques allow using industrial ICs for high sensitivity and precision long-term radiation measurements, while at the same time providing information about spectral characteristics of the radiation fields.

  9. Assessment of small volume ionization chambers as reference dosimeters in high-energy photon beams

    NASA Astrophysics Data System (ADS)

    Le Roy, M.; de Carlan, L.; Delaunay, F.; Donois, M.; Fournier, P.; Ostrowsky, A.; Vouillaume, A.; Bordy, J. M.

    2011-09-01

    LNE-LNHB is involved in a European project aiming at establishing absorbed dose-to-water standards for photon-radiation fields down to 2 × 2 cm2. This requires the calibration of reference ionization chambers of small volume. Twenty-four ionization chambers of eight different types with volume ranging from 0.007 to 0.057 cm3 were tested in a 60Co beam. For each chamber, two major characteristics were investigated: (1) the stability of the measured current as a function of the irradiation time under continuous irradiation. At LNE-LNHB, the variation of the current should be less than ±0.1% in comparison with its first value (over a 16 h irradiation time); (2) the variation of the ionization current with the applied polarizing voltage and polarity. Leakage currents were also measured. Results show that (1) every tested PTW (31015, 31016 and 31014) and Exradin A1SL chambers demonstrate a satisfying stability under irradiation. Other types of chambers have a stability complying with the stability criterion for some or none of them. (2) IBA CC01, IBA CC04 and Exradin A1SL show a proper response as a function of applied voltage for both polarities. PTW, Exradin A14SL and Exradin A16 do not. Only three types of chambers were deemed suitable as reference chambers according to LNE-LNHB requirements and specifications from McEwen (2010 Med. Phys. 37 2179-93): Exradin A1SL chambers (3/3), IBA CC04 (2/3) and IBA CC01 (1/3). The Exradin A1SL type with an applied polarizing voltage of 150 V was chosen as an LNE-LNHB reference chamber type in 2 × 2 cm2 radiation fields.

  10. Breast in vivo dosimetry by a portal ionization chamber

    SciTech Connect

    Grimaldi, Luca; D'Onofrio, Guido; Cilla, Savino; Fidanzio, Andrea; Stimato, Gerardina; Azario, Luigi; Deodato, Francesco; Macchia, Gabriella; Morganti, Alessio; Piermattei, Angelo

    2007-03-15

    This work reports a practical method for the determination of the in vivo breast middle dose value, D{sub m}, on the beam central axis, using a signal S{sub t}, obtained by a small thimble ion chamber positioned at the center of the electronic portal imaging device, and irradiated by the x-ray beam transmitted through the patient. The use of a stable ion chamber reduces many of the disadvantages associated with the use of diodes as their periodic recalibration and positioning is time consuming. The method makes use of a set of correlation functions obtained by the ratios S{sub t}/D{sub m}, determined by irradiating cylindrical water phantoms with different diameters. The method proposed here is based on the determination of the water-equivalent thickness of the patient, along the beam central axis, by the treatment planning system that makes use of the electron densities obtained by a computed tomography scanner. The method has been applied for the breast in vivo dosimetry of ten patients treated with a manual intensity modulation with four asymmetric beams. In particular, two tangential rectangular fields were first delivered, thereafter a fraction of the dose (typically less than 10%) was delivered with two multi leaf-shaped beams which included only the mammarian tissue. Only the two rectangular fields were tested and for every checked field five measurements were carried out. Applying a continuous quality assurance program based on the tests of patient setup, machine settings and dose planning, the proposed method is able to verify agreements between the computed dose D{sub m,TPS} and the in vivo dose value D{sub m}, within 4%.

  11. Source geometry factors for HDR 192Ir brachytherapy secondary standard well-type ionization chamber calibrations

    NASA Astrophysics Data System (ADS)

    Shipley, D. R.; Sander, T.; Nutbrown, R. F.

    2015-03-01

    Well-type ionization chambers are used for measuring the source strength of radioactive brachytherapy sources before clinical use. Initially, the well chambers are calibrated against a suitable national standard. For high dose rate (HDR) 192Ir, this calibration is usually a two-step process. Firstly, the calibration source is traceably calibrated against an air kerma primary standard in terms of either reference air kerma rate or air kerma strength. The calibrated 192Ir source is then used to calibrate the secondary standard well-type ionization chamber. Calibration laboratories are usually only equipped with one type of HDR 192Ir source. If the clinical source type is different from that used for the calibration of the well chamber at the standards laboratory, a source geometry factor, ksg, is required to correct the calibration coefficient for any change of the well chamber response due to geometric differences between the sources. In this work we present source geometry factors for six different HDR 192Ir brachytherapy sources which have been determined using Monte Carlo techniques for a specific ionization chamber, the Standard Imaging HDR 1000 Plus well chamber with a type 70010 HDR iridium source holder. The calculated correction factors were normalized to the old and new type of calibration source used at the National Physical Laboratory. With the old Nucletron microSelectron-v1 (classic) HDR 192Ir calibration source, ksg was found to be in the range 0.983 to 0.999 and with the new Isodose Control HDR 192Ir Flexisource ksg was found to be in the range 0.987 to 1.004 with a relative uncertainty of 0.4% (k = 2). Source geometry factors for different combinations of calibration sources, clinical sources, well chambers and associated source holders, can be calculated with the formalism discussed in this paper.

  12. Stability of A-150 plastic ionization chamber response over a ~30 year period

    SciTech Connect

    Kroc, Thomas K.; Lennox, Arlene J.; /Fermilab

    2007-08-01

    At the NIU Institute for Neutron Therapy at Fermilab, the clinical tissue-equivalent ionization chamber response is measured every treatment day using a cesium source that was configured to match readings obtained at the National Bureau of Standards. Daily measurements are performed in air using the air-to-tissue dose conversion factors given in AAPM Report no. 7. The measured exposure calibration factors have been tabulated and graphed as a function of time from 1978 to present. For A-150 plastic ionization chambers, these factors exhibit a sinusoidal variation with a period of approximately one year and amplitude of {+-} 1%. This variation, attributable to the hygroscopic nature of A-150 plastic, is correlated with the relative humidity of the facility, and is greater than the humidity corrections for gas described in the literature. Our data suggest that chamber calibration should be performed at least weekly to accommodate these variations.

  13. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Etezov, R. A.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-11-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the 222Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  14. Determination of ion recombination correction factors for a liquid ionization chamber in megavoltage photon beams

    NASA Astrophysics Data System (ADS)

    Choi, Sang Hyoun; Kim, Kum-Bae; Ji, Young Hoon; Kim, Chan Hyeong; Kim, Seonghoon; Huh, Hyun Do

    2015-05-01

    The aim of this study is to determine the ion recombination correction factor for a liquid ionization chamber in a high energy photon beam by using our experimental method. The ion recombination correction factors were determined by using our experimental method and were compared with theoretical and experimental methods proposed by using the theoretical method (Greening, Johansson) and the two-dose rate method in a cobalt beam and a high energy photon beam. In order to apply the liquid ionization chamber in a reference and small field dosimetry, we acquired the absorbed dose to water correction coefficient, the beam quality correction factor, and the influence quantities for the microLion chamber according to the TRS-398 protocol and applied the results to a high energy photon beam used in clinical fields. As a result, our experimental method for ion recombination in a cobalt beam agreed with the results from the heoretical method (Greening theory) better than it did with the results from the two-dose rate method. For high energy photon beams, the two-dose rate and our experimental methods were in good agreement, less than 2% deviation, while the theoretical general collection efficiency (Johansson et al.) deviated greatly from the experimental values. When we applied the factors for the absorbed dose to water measurement, the absorbed dose to water for the microLion chamber was in good agreement, within 1%, compared with the values for the PTW 30013 chamber in 6 and 10 MV Clinac iX and 6 and 15 MV Oncor impression. With these results, not only can the microLion ionization chamber be used to measure the absorbed dose to water in a reference condition, it can also be used to a the chamber for small, non-standard field dosimetry.

  15. Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading

    NASA Astrophysics Data System (ADS)

    Smit, K.; van Asselen, B.; Kok, J. G. M.; Aalbers, A. H. L.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2013-09-01

    In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953.

  16. Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading.

    PubMed

    Smit, K; van Asselen, B; Kok, J G M; Aalbers, A H L; Lagendijk, J J W; Raaymakers, B W

    2013-09-01

    In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953. PMID:23938362

  17. Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields

    NASA Astrophysics Data System (ADS)

    McNiven, Andrea L.

    The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the

  18. Total diesel exhaust particulate length measurements using a modified household smoke alarm ionization chamber.

    PubMed

    Vojtisek-Lom, Michal

    2011-02-01

    To evaluate the effectiveness of various means to combat the negative health effects of ultrafine particles emitted by internal combustion engines, a reliable, low-cost instrument for dynamic measurements of the exhaust emissions of ultrafine particulate matter (PM) is needed. In this study, an ordinary ionization-type building smoke detector was modified to serve as a measuring ionization chamber and utilized for dynamic measurements of PM emissions from diesel engines. When used with diluted exhaust, the readings show an excellent correlation with total particulate length. The instrument worked well with raw and diluted exhaust and with varying emission levels and is well suitable for on-board use. PMID:21387930

  19. A liquid xenon ionization chamber in an all-fluoropolymer vessel

    NASA Astrophysics Data System (ADS)

    LePort, F.; Pocar, A.; Bartoszek, L.; DeVoe, R.; Fierlinger, P.; Flatt, B.; Gratta, G.; Green, M.; Koffas, T.; Montero Díez, M.; Neilson, R.; O'Sullivan, K.; Waldman, S.; Wodin, J.; Woisard, D.; Baussan, E.; Breidenbach, M.; Conley, R.; Fairbank, W.; Farine, J.; Hall, C.; Hall, K.; Hallman, D.; Hargrove, C.; Hodgson, J.; Jeng, S.; Leonard, D. S.; Mackay, D.; Martin, Y.; Odian, A.; Ounalli, L.; Piepke, A.; Prescott, C. Y.; Rowson, P. C.; Skarpaas, K.; Schenker, D.; Sinclair, D.; Stekhanov, V.; Strickland, V.; Virtue, C.; Vuilleumier, J.-L.; Vuilleumier, J.-M.; Wamba, K.; Weber, P.

    2007-08-01

    A novel technique has been developed to build vessels for liquid xenon ionization detectors entirely out of an ultra-clean fluoropolymer. One such detector was operated inside a welded, He leak tight, all-fluoropolymer chamber. The measured energy resolution for 570 keV gamma rays is σ/E=5.1% at a drift field of 1.5 kV/cm, in line with the best values obtained for ionization only detectors run in LXe using conventional, metal vessels.

  20. Megampere Multi-Wire Z-{theta} Pinch

    SciTech Connect

    Selemir, V.D.; Repin, P.B.; Pikulin, I.V.; Volkov, A.A.; Orlov, A.P.; Tatsenko, O.M.; Markevtsev, I.M.; Moiseenko, A.N.; Selyavsky, V.T.; Dydykin, P.S.; Grebenev, E.V.; Bukharov, V.F.; Ryaslov, E.A.; Kudryavtsev, V.P.; Kotelnikov, D.V.; Duday, P.V.

    2006-01-05

    Experimental results on study of magnetic flux compression efficiency with a plasma shell, formed at electric explosion of a multi-wire cylindrical frame are presented. Liners of 70 mm diameter consisting of 48 tungsten wires of 11 {mu}m diameter were used. The liner was put into longitudinal quasi-stationary magnetic field with induction of 0.45 T and powered with the current having amplitude up to 1.5 MA at rise time of {approx}1 {mu}s. A magneto-optical detector recorded magnetic fields in the center of the liner system, which exceeded initial value of the magnetic field in a factor of 10.

  1. Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers.

    PubMed

    Žerovnik, Gašper; Kaiba, Tanja; Radulović, Vladimir; Jazbec, Anže; Rupnik, Sebastjan; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-02-01

    CEA developed fission chambers and ionization chambers were utilized at the JSI TRIGA reactor to measure neutron and gamma fields. The measured axial fission rate distributions in the reactor core are generally in good agreement with the calculated values using the Monte Carlo model of the reactor thus verifying both the computational model and the fission chambers. In future, multiple absolutely calibrated fission chambers could be used for more accurate online reactor thermal power monitoring. PMID:25479432

  2. Neutron and gamma detector using an ionization chamber with an integrated body and moderator

    DOEpatents

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Lestone, John Paul

    2006-07-18

    A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an ionization chamber, into the center of which an anode extends from the plastic lid. A working gas is disposed within the ionization chamber and a high biasing voltage is connected to the cathode. Processing electronics are coupled to the anode and process current pulses which are converted into Gaussian pulses, which are either counted as neutrons or integrated as gammas, in response to whether pulse amplitude crosses a neutron threshold. The detector according to the invention may be readily fabricated into single or multilayer detector arrays.

  3. Simulations of ^12C Break Up In A Twin Ionization Chamber

    NASA Astrophysics Data System (ADS)

    Segal, C. B.; Patel, N. R.; Greife, U.; Rehm, K. E.; Deibel, C. M.; Greene, J.; Henderson, D.; Jiang, C. L.; Kay, B. P.; Lee, H. Y.; Pardo, R.; Notani, M.; Marley, S. T.; Tang, X. D.

    2008-10-01

    In stellar explosions the triple α decay process is key to forming the life-giving ^12C . This experiment is to further investigate the energy region in ^12C around 10 MeV where a theoretically predicted 2^+ state has yet to be observed. The motivation for studying this is to better understand the ^12C nucleosynthesis process that occurs in red giant stars where the short lived ^8Be interacts with alphas at extreme temperature and pressure scenarios which then in turn creates ^12C. We study the particle-unbound states by implanting ^12B into a twin Frisch grid ionization chamber and following the decay into ^12C and subsequently into three α particles. The response of this ionization chamber to the detection of multiple α particles was studied using various simulation programs. Results of these simulations and limits for the predicted 2^+ state will be presented.

  4. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    SciTech Connect

    Müller, O. Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  5. Hard disk drive based microsecond X-ray chopper for characterization of ionization chambers and photodiodes.

    PubMed

    Müller, O; Lützenkirchen-Hecht, D; Frahm, R

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper. PMID:25832273

  6. Application of the Shockley-Ramo theorem on the grid inefficiency of Frisch grid ionization chambers

    NASA Astrophysics Data System (ADS)

    Göök, A.; Hambsch, F.-J.; Oberstedt, A.; Oberstedt, S.

    2012-02-01

    The concept of grid inefficiency in Frisch grid ionization chambers and its influence on the anode pulse shape is explained in terms of the Shockley-Ramo theorem for induced charges. The grid inefficiency correction is deduced from numerically calculated weighting potentials. A method to determine the correction factor experimentally is also presented. Experimental and calculated values of the correction factor are shown to be in good agreement.

  7. Study of the replacement correction factors for ionization chamber dosimetry by Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Wang, Lilie

    In ionization chamber radiation dosimetry, the introduction of the ion chamber into medium will unavoidably distort the radiation field near the chamber because the chamber cavity material (air) is different from the medium. A replacement correction factor, Prepl was introduced in order to correct the chamber readings to give an accurate radiation dose in the medium without the presence of the chamber. Generally it is very hard to measure the values of Prepl since they are intertwined with the chamber wall effect. In addition, the P repl values always come together with the stopping-power ratio of the two media involved. This makes the problem of determining the P repl values even more complicated. Monte Carlo simulation is an ideal method to investigate the replacement correction factors. In this study, four different methods of calculating the values of Prepl by Monte Carlo simulation are discussed. Two of the methods are designated as 'direct' methods in the sense that the evaluation of the stopping-power ratio is not necessary. The systematic uncertainties of the two direct methods are estimated to be about 0.1-0.2% which comes from the ambiguous definition of the energy cutoff Delta used in the Spencer-Attix cavity theory. The two direct methods are used to calculate the values of P repl for both plane-parallel chambers and cylindrical thimble chambers in either electron beams or photon beams. The calculation results are compared to measurements. For electron beams, good agreements are obtained. For thimble chambers in photon beams, significant discrepancies are observed between calculations and measurements. The experiments are thus investigated and the procedures are simulated by the Monte Carlo method. It is found that the interpretation of the measured data as the replacement correction factors in dosimetry protocols are not correct. In applying the calculation to the BIPM graphite chamber in a 60Co beam, the calculated values of P repl differ from those

  8. Comparative study of ionization chamber detectors vis-a-vis a CCD detector for dispersive XAS measurement in transmission geometry

    SciTech Connect

    Poswal, A. K.; Agrawal, A.; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K.

    2013-02-05

    We have designed and fabricated parallel plate ionization chamber detectors and voltage vs. current characteristics (V-I curve) of the detectors were recorded with synchrotron radiation to qualify for use in X-ray Absorption Spectroscopy (XAS) measurements. After qualifying the ionization chambers, the detectors were used in the dispersive EXAFS beamline (BL-08) at INDUS-2 SRS in Turbo-XAS geometry. Using the same setup and under the same setting, XAS spectra were also recorded with a CCD detector and the observation on relative performance of the ionization chamber vis-a-vis the CCD detector is presented in this paper.

  9. Comparative study of ionization chamber detectors vis-à-vis a CCD detector for dispersive XAS measurement in transmission geometry

    NASA Astrophysics Data System (ADS)

    Poswal, A. K.; Agrawal, A.; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K.

    2013-02-01

    We have designed and fabricated parallel plate ionization chamber detectors and voltage vs. current characteristics (V-I curve) of the detectors were recorded with synchrotron radiation to qualify for use in X-ray Absorption Spectroscopy (XAS) measurements. After qualifying the ionization chambers, the detectors were used in the dispersive EXAFS beamline (BL-08) at INDUS-2 SRS in Turbo-XAS geometry. Using the same setup and under the same setting, XAS spectra were also recorded with a CCD detector and the observation on relative performance of the ionization chamber vis-a-vis the CCD detector is presented in this paper.

  10. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500

    SciTech Connect

    Stelljes, T. S. Looe, H. K.; Chofor, N.; Poppe, B.; Harmeyer, A.; Reuter, J.; Harder, D.

    2015-04-15

    Purpose: The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. Methods: The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm{sup 2} measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulated dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array’s readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor k{sub NR} for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array’s central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. Results: The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1

  11. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    NASA Astrophysics Data System (ADS)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  12. An evaluation of ionization chambers for the relative dosimetry of kilovoltage x-ray beams

    SciTech Connect

    Hill, Robin; Mo Zhao; Haque, Mamoon; Baldock, Clive

    2009-09-15

    In this work, the authors have evaluated ten different ionization chambers for the relative dosimetry of kilovoltage x-ray beams in the energy range of 50-280 kVp. Percentage depth doses in water and relative detector response (in Solid Water and in air) were measured for each of the x-ray beams studied using a number of chambers. Measured depth dose data were compared with Monte Carlo calculated depth doses using the EGSnrc Monte Carlo package and the BEAMnrc user code. The accuracy of the phase space files generated by BEAMnrc was verified by calculating the half-value layer and comparing with the measured half-value layer of each x-ray beam. The results indicate that the Advanced Markus, Markus, NACP, and Roos parallel plate ionization chambers were suitable for the measurement of depth dose data in this beam quality range with an uncertainty of less than 3%, including in the regions close to the water surface. While the relative detector response of the Farmer and scanning thimble chambers exhibited a better energy response, they were not suitable for depth dose measurements in the first 5 mm below the water surface with differences of up to 12% in the surface dose measurement for the 50 kVp x-ray beam. These differences were due to dose artifacts generated by the chamber size and the dose gradient. However, at depths greater than 5 mm, the Farmer and thimble scanning chambers gave uncertainties of less than 3% for the depth dose measurements for all beam energies. The PTW PinPoint 31006 chamber was found to give varying dose differences of up to 8% depending on the x-ray beam energy; this was attributed to the steel central electrode. The authors recommend that one of the parallel plate ionization chambers investigated be used to determine depth dose data for kilovoltage x-ray beams in the energy range studied and give correct dose information close to the surface and at depth in the water phantom.

  13. An ionization chamber with Frisch grids for studies of high-energy neutron-induced fission

    NASA Astrophysics Data System (ADS)

    Tutin, G. A.; Ryzhov, I. V.; Eismont, V. P.; Kireev, A. V.; Condé, H.; Elmgren, K.; Olsson, N.; Renberg, P.-U.

    2001-01-01

    A gridded ionization chamber for fission fragment detection is described. The chamber has been specially designed for use at the quasi-monoenergetic 7Li(p, n) neutron source at the The Svedberg Laboratory, Uppsala, Sweden. The detector permits measurements of fission fragment energy and emission angle for two targets with diameter of up to 10 cm. The time response of the chamber (⩽5 ns FWHM) is adequate to apply time-of-flight discrimination against background events induced by non-peak neutrons. Results of angular anisotropy measurements for the 232Th (n, f) and 238U(n, f) reactions in the 20-160 MeV energy range are given.

  14. Theoretical study of Jesse effect in tritium measurements using ionization chambers

    NASA Astrophysics Data System (ADS)

    Chen, Zhilin; Peng, Shuming; Lu, Hanghang; Tan, Zhaoyi; Wang, Heyi; Long, Xingui; Masao, Matsuyama

    2016-01-01

    Jesse effect caused by impurities in helium might enhance the output signal significantly in tritium measurements with ionization chamber, which will lead to overestimation of tritium concentration in experiments. A theoretical method was proposed to evaluate Jesse effect quantitatively. Results indicate that besides Penning ionization, sub-excitation electrons also place very important influence on ionization enhancement by Jesse effect. An experiential expression about the relationship between enhancement factor and impurity concentration was established, in which second order of it fits experimental results very well. Theoretical calculation method in this paper is also applicable to evaluate Jesse effect in other kinds of mixtures besides hydrogen as impurities in helium. In addition, Jesse effects about tritium molecules as impurities have also been investigated.

  15. An online proton beam monitor for cancer therapy based on ionization chambers with micro pattern readout

    NASA Astrophysics Data System (ADS)

    Basile, E.; Carloni, A.; Castelluccio, D. M.; Cisbani, E.; Colilli, S.; De Angelis, G.; Fratoni, R.; Frullani, S.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Vacca, G.

    2012-03-01

    A unique compact LINAC accelerator for proton therapy is under development in Italy within the TOP-IMPLART project. The proton beam will reach the kinetic energy of 230 MeV, it will have a widely variable current intensity (0.1-10 μA, with average up to 3.5 nA) associated with a high pulse repetition frequency (1-3.5 μs long pulses at 10-100 Hz). The TOP-IMPLART system will provide a fully active 3+1D dose delivery, that is longitudinal (energy modulation), transverse active spot scanning, and current intensity modulation. These accelerator features will permit a highly conformational dose distribution, which therefore requires an effective, online, beam monitor system with wide dynamic range, good sensitivity, adequate spatial resolution and rapid response. In order to fulfill these requisites a new device is under development for the monitoring of the beam intensity profile, its centroid and direction; it is based on transmission, segmented, ionization chambers with typical active area of 100 × 100 mm2. Micro pattern x/y pad like design has been used for the readout plane in order to maximize the field uniformity, reduce the chamber thickness and obtain both beam coordinates on a single chamber. The chamber prototype operates in ionization region to minimize saturation and discharge effects. Simulations (based on FLUKA) have been carried on to study the perturbation of the chamber on the beam parameters and the effects on the delivered dose (on a water phantom). The charge collected in each channel is integrated by dedicated auto-ranging readout electronics: an original scheme has been developed in order to have an input dynamic range greater than 104 with sensitivity better than 3%. This is achieved by a dynamical adjustment of the integrating capacitance to the signal intensity.

  16. Large-angle ionization chambers for brachytherapy air-kerma-strength measurements

    NASA Astrophysics Data System (ADS)

    Culberson, Wesley S.

    There has been a significant increase in the use of low-energy photon-emitting radionuclides in the past decade to treat cancer with a special form of radiation therapy called brachytherapy. For treating prostate cancer, brachytherapy sources are approximately the size of a grain of rice and are normally radioactive 125I or 103Pd sources encapsulated in titanium or plastic. Although these sources have proven effective in the treatment of cancer, the clinical dosimetry is difficult due to the unique varieties available and their typically. A large-angle free-air chamber at the National Institute of Standards and Technology (NIST) called the Wide-Angle Free-Air Chamber (WAFAC) is the current standard for measuring the strength of low-energy photon-emitting radionuclides for brachytherapy. This chamber has served the clinical medical physics community well and is a significant improvement over previous standards. However, it has some shortcomings. This thesis describes the development of a new large-angle ionization chamber at the University of Wisconsin called the Variable-Aperture Free-Air Chamber (VAFAC) to measure brachytherapy sources with extended capabilities. This chamber is constructed to explore characteristics in the calibration of brachytherapy seeds by quantifying potential variations caused by anisotropy and the change in response with integration angle. In addition, the characterization of yet another large-angle free-air chamber called the Grossvolumen Extrapolationskammer (GROVEX) in the German national standards institute Physikalisch-Technische Bundesanstalt (PTB) is also presented. The objective of this thesis is to present improved measurement techniques with free-air ionization chambers that will improve the accuracy of the dose delivered to patients. First, it will be shown that the UW VAFAC is capable of measuring conventional 125I or 103Pd seeds as well as longer sources, coiled sources, and miniature x-ray tubes. Additionally, the VAFAC

  17. Ion recombination corrections of ionization chambers in flattening filter-free photon radiation.

    PubMed

    Wang, Yuenan; Easterling, Stephen B; Ting, Joseph Y

    2012-01-01

    The flattening filter free (FFF) X-rays can provide much higher dose rate at the treatment target compared to the conventional flattened X-rays. However, the substantial increase of dose rate for FFF beams may affect the ion recombination correction factor, which is required for accurate measurements using ionization chambers in clinical dosimetry. The purpose of this work is to investigate the ion recombination of three types of commonly used ion chambers (Farmer, PinPoint and plane-parallel) in the FFF photon radiation. Both 6 MV and 10 MV flattened and FFF beams were fully commissioned on a Varian TrueBeam linear accelerator. The ion recombination correction factor, P(ion), was determined using the two-voltage technique for a 0.6 cc Farmer chamber, a 0.015 cc PinPoint chamber, and a 0.02 cc parallel-plate chamber at different source-to-axis distances (SAD) in a solid water phantom or water tank phantom at a depth of 10 cm in a 10 × 10 cm(2) field. Good repeatability of measurements was demonstrated. Less than 1% difference in P(ion) between the flattened and FFF photons for all three ion chambers was observed. At a SAD of 100 cm and a depth of 10 cm for a 10 × 10 cm(2) field, P(ion) for the Farmer chamber was 1.004 and 1.008 for the 6 MV flattened and FFF beams, respectively. At the same setup using the Farmer chamber, P(ion) was 1.002 and 1.015 for the 10MV flattened and FFF beams, respectively. All P(ion) results for the Farmer, PinPoint, or parallel plate chamber in the 6 MV and 10 MV flattened and FFF beams were within 2% from the unity (1 ≤ P(ion) < 1.02). The P(ion) ratio of the FFF to flattened beams was 0.99~1.01 for both 6 MV and 10 MV photons. The ion recombination effect of the Farmer, PinPoint, and plane-parallel chamber in the FFF beams is not substantially different from that in the conventional flattened beams. PMID:22955642

  18. Influence of field size on a PTW type 23342 plane-parallel ionization chamber's response

    SciTech Connect

    Austerlitz, C.; Villar, H.P.; Santos, M.A.P.

    2004-12-01

    The response of a PTW type 23342 plane-parallel ionization chamber, both in air and in phantom, was evaluated for x-ray tube potentials between 30 and 100 kV and radiation field diameters ranging from 30 to 70 mm. The experiments were performed with a calibrated Pantak x-ray machine and made use of the same set of x-ray qualities adopted by the PTB primary laboratory for the calibration of such chambers. A Plexiglas registered phantom (1.18 g cm{sup -3}) 110 mm long, 110 mm wide, and 80 mm deep was used for phantom measurements. X-ray qualities were characterized by using 99.99% pure aluminum filters. On the basis of the IAEA's TRS 398, the article discusses the dependence of the plane-parallel ionization chamber readings with field size in air and in phantom, its implication with regard to clinical dosimetry, cross-calibration, and dissemination of calibration factors.

  19. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    NASA Astrophysics Data System (ADS)

    Fourmentel, D.; Filliatre, P.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Carcreff, H.

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g-1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  20. Use of relativistic rise in ionization chambers for measurement of high energy heavy nuclei

    NASA Technical Reports Server (NTRS)

    Barthelmy, S. D.; Israel, M. H.; Klarmann, J.; Vogel, J. S.

    1983-01-01

    A balloon-borne instrument has been constructed to measure the energy spectra of cosmic-ray heavy nuclei in the range of about 0.3 to about 100 GeV/amu. It makes use of the relativistic rise portion of the Bethe-Bloch curve in ionization chambers for energy determination in the 10- to 100-GeV/amu interval. The instrument consists of six layers of dual-gap ionization chambers for energy determination above 10 GeV/amu. Charge is determined with a NE114 scintillator and a Pilot 425 plastic Cerenkov counter. A CO2 gas Cerenkov detector (1 atm; threshold of 30 GeV/amu) calibrates the ion chambers in the relativistic rise region. The main emphasis of the instrument is the determination of the change of the ratio of Iron (26) to the Iron secondaries (21-25) in the energy range of 10 to 100 GeV/amu. Preliminary data from a balloon flight in the fall of 1982 from Palestine, TX is presented.

  1. Monte Carlo calculations of correction factors for plane-parallel ionization chambers in clinical electron dosimetry

    SciTech Connect

    Araki, Fujio

    2008-09-15

    Recent standard dosimetry protocols recommend that plane-parallel ionization chambers be used in the measurements of depth-dose distributions or the calibration of low-energy electron beams with beam quality R{sub 50}<4 g/cm{sup 2}. In electron dosimetry protocols with the plane-parallel chambers, the wall correction factor, P{sub wall}, in water is assumed to be unity and the replacement correction factor, P{sub repl}, is taken to be unity for well-guarded plane-parallel chambers, at all measurement depths. This study calculated P{sub wall} and P{sub repl} for NACP-02, Markus, and Roos plane-parallel chambers in clinical electron dosimetry using the EGSnrc Monte Carlo code system. The P{sub wall} values for the plane-parallel chambers increased rapidly as a function of depth in water, especially at lower energy. The value around R{sub 50} for NACP-02 was about 10% greater than unity at 4 MeV. The effect was smaller for higher electron energies. Similarly, P{sub repl} values with depth increased drastically at the region with the steep dose gradient for lower energy. For Markus P{sub repl} departed more than 10% from unity close to R{sub 50} due to the narrow guard ring width. P{sub repl} for NACP-02 and Roos was close to unity in the plateau region of depth-dose curves that includes a reference depth, d{sub ref}. It was also found that the ratio of the dose to water and the dose to the sensitive volume in the air cavity for the plane-parallel chambers, D{sub w}/[D{sub air}]{sub pp}, at d{sub ref} differs significantly from that assumed by electron dosimetry protocols.

  2. Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Hambsch, F.-J.; Bencardino, R.; Oberstedt, S.; Pomp, S.

    2012-05-01

    Ionization chambers with Frisch grids have been very successfully applied to neutron-induced fission-fragment studies during the past 20 years. They are radiation resistant and can be easily adapted to the experimental conditions. The use of Frisch grids has the advantage to remove the angular dependency from the charge induced on the anode plate. However, due to the Grid Inefficiency (GI) in shielding the charges, the anode signal remains slightly angular dependent. The correction for the GI is, however, essential to determine the correct energy of the ionizing particles. GI corrections can amount to a few percent of the anode signal. Presently, two contradicting correction methods are considered in literature. The first method adding the angular-dependent part of the signal to the signal pulse height; the second method subtracting the former from the latter. Both additive and subtractive approaches were investigated in an experiment where a Twin Frisch-Grid Ionization Chamber (TFGIC) was employed to detect the spontaneous fission fragments (FF) emitted by a 252Cf source. Two parallel-wire grids with different wire spacing (1 and 2 mm, respectively), were used individually, in the same chamber side. All the other experimental conditions were unchanged. The 2 mm grid featured more than double the GI of the 1 mm grid. The induced charge on the anode in both measurements was compared, before and after GI correction. Before GI correction, the 2 mm grid resulted in a lower pulse-height distribution than the 1 mm grid. After applying both GI corrections to both measurements only the additive approach led to consistent grid independent pulse-height distributions. The application of the subtractive correction on the contrary led to inconsistent, grid-dependent results. It is also shown that the impact of either of the correction methods is small on the FF mass distributions of 235U(nth, f).

  3. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernández Niello, J.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15C+12C fusion reactions at energies around the Coulomb barrier.

  4. Application of patent BR102013018500-0 in well type ionization chambers

    NASA Astrophysics Data System (ADS)

    Sousa, C. H. S.; Peixoto, J. G. P.

    2016-07-01

    The definition of the radioactive sample position in a well type ionization chamber is the largest source of uncertainty in the measurement of quantity activity. The determination of this parameter in two activimeters helped to improve their accuracies, from 2.62 and 2.59% to 3.87 and 1.74%, with and without the use of the positioning device, concluding, that with their use has reached an uncertainty of U =2276 and 0.2677% (k = 2) 95.45%.

  5. Liquid ionization chamber measurements of dose distributions in small 6 MV photon beams

    NASA Astrophysics Data System (ADS)

    Dasu, Alexandru; Löfroth, Per-Olov; Wickman, Göran

    1998-01-01

    A new liquid ionization chamber (LIC) design optimized for high spatial resolution was used for measurements of dose distributions in radiation fields intended for stereotactic radiosurgery (SRS). This work was mainly focused on the properties of this detector in radiation fields from linear accelerators for clinical radiotherapy (pulsed radiation with dose rates from approximately 0.5 to and beam diameters down to 8 mm). The narrow beams used in stereotactic radiosurgery require detectors with small sizes in order to provide a good spatial resolution. The LIC is investigated to see whether it can be used as a detector for dose measurements in beams currently used for stereotactic radiosurgery. Its properties are compared with those of silicon diodes. The comparisons include output factor (OF), depth dose and profile measurements in 6 MV photon fields of different sizes. For OF measurements, an NACP air ionization chamber was also used in the comparison. The dependence of the response on the detector orientation in the photon beam is also investigated for the diodes and the LIC. The results suggest that LICs can provide better properties than diodes for measuring dose distributions in narrow photon beams.

  6. Strip Ionization Chamber as Beam Monitor in the Proton Therapy Eye Treatment

    NASA Astrophysics Data System (ADS)

    Marchetto, F.; Cirio, R.; Garella, M. A.; Giordanengo, S.; Boriano, A.; Givehchi, N.; La Rosa, A.; Peroni, C.; Donetti, M.; Bourhaleb, F.; Pitta', G.; Cirrone, G. A. P.; Cuttone, G.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-04-01

    Since spring 2002, ocular pathologies have been treated in Catania at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) within a collaboration between INFN Laboratori Nazionali del Sud (LNS), Physics Department, Ophthalmology Institute, Radiology Institute of the Catania University and CSFNSM Catania. A beam line from a 62 MeV Superconducting Cyclotron is used to treat shallow tumors. The beam is conformed to the tumor shape with a passive delivery system. A detector system has been developed in collaboration with INFN-Torino to be used as real time beam monitor. The detector, placed upstream of the patient collimator, consists of two parallel plate ionization chambers with the anode segmented in strips. Each anode is made of 0.5 mm-wide 256 strips corresponding to (12.8 × 12.8) cm2 sensitive area. With the two strip ionization chambers one can measure the relevant beam parameters during treatment to probe both asymmetry and flatness. In the test carried out at CATANA the detector has been used under different and extreme beam conditions. Preliminary results are given for profiles and skewness, together with a comparison with reference detectors.

  7. Technical Note: Experimental determination of the effective point of measurement of two cylindrical ionization chambers in a clinical proton beam

    SciTech Connect

    Sugama, Yuya; Nishio, Teiji; Onishi, Hiroshi

    2015-07-15

    Purpose: IAEA TRS-398 notes that cylindrical ionization chambers are preferred for reference proton dosimetry. If a cylindrical ionization chamber is used in a phantom to measure the dose as a function of depth, the effective point of measurement (EPOM) must be taken into account. IAEA TRS-398 recommends a displacement of 0.75 times the inner cavity radius (0.75R) for heavy ion beams. Theoretical models by Palmans and by Bhullar and Watchman confirmed this value. However, the experimental results vary from author to author. The purpose of this study is to accurately measure the displacement and explain the past experimental discrepancies. Methods: In this work, we measured the EPOM of cylindrical ionization chambers with high accuracy by comparing the Bragg-peak position obtained with cylindrical ionization chambers (PTW 30013, PTW 31016) to that obtained using a plane-parallel ionization chamber (PTW 34045). Results: The EPOMs of PTW 30013 and 31016 were shifted by 0.92 ± 0.07 R with R = 3.05 mm and 0.90 ± 0.14 R with R = 1.45 mm, respectively, from the reference point toward the source. Conclusions: The EPOMs obtained were greater than the value of 0.75R proposed by the IAEA TRS-398 and the analytical results.

  8. A new standard cylindrical graphite-walled ionization chamber for dosimetry in 60Co beams at calibration laboratories

    NASA Astrophysics Data System (ADS)

    Neves, Lucio P.; Perini, Ana P.; Caldas, Linda V. E.

    2014-11-01

    60Co sources are used mostly at dosimetry laboratories for calibration of ionization chambers utilized for radiotherapy dosimetry, mainly in those laboratories where there is no linear accelerator available. In this work, a new cylindrical ionization chamber was developed and characterized to be used as a reference dosimeter at the Calibration Laboratory of the IPEN. The characterization tests were performed according to the IEC 60731 standard, and all tests presented results within its recommended limits. Furthermore, the correction factors for the wall, stem, central collecting electrode, nonaxial uniformity and the mass-energy absorption coefficient were determined using the EGSnrc Monte Carlo code. The air kerma rate determined with this new dosimeter was compared to the one obtained with the IPEN standard, presenting a difference of 1.5%. Therefore, the new ionization chamber prototype developed and characterized in this work presents potential use as a primary standard dosimeter at radiation metrology laboratories.

  9. Determination of small-field correction factors for cylindrical ionization chambers using a semiempirical method

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won

    2016-02-01

    A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1  ×  1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.

  10. Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field

    NASA Astrophysics Data System (ADS)

    Smit, K.; Kok, J. G. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2014-04-01

    At the UMC Utrecht a prototype MR-linac has been installed. The system consists of an 8 MV Elekta linear accelerator and a 1.5 T Philips MRI system. This paper investigates the performance of the IC PROFILER™, a multi-axis ionization chamber array, in a 1.5 T magnetic field. The influence of the magnetic field on the IC PROFILER™ reproducibility, dose response linearity, pulse rate frequency dependence, power to electronics, panel orientation and ionization chamber shape were investigated. The linearity, reproducibility, pulse rate frequency dependence, panel orientation and ionization chamber shape are unaffected by the magnetic field. When the measurements results are normalized to the centre reference chamber, the measurements can commence unaltered. Orientation of the ionization chambers in the magnetic field is of importance, therefore caution must be taken when comparing or normalizing results from several different axes. IC PROFILER™ dose profiles were compared with film dose profiles obtained simultaneously in the MR-linac. Deviation between the film and the IC PROFILER™ data was caused by the noise in the film, indicating correct performance of the IC PROFILER™ in the transverse 1.5 T magnetic field.

  11. Beta and Gamma Correction Factors for the Eberline R0-20 Ionization Chamber Survey Instrument

    SciTech Connect

    Johnson, Michelle L.; Rathbone, Bruce A.; Bratvold, Thomas E.

    2001-08-10

    This technical document provides details of derived correction factors for the Eberline R0-20 survey meter, which uses an ionization chamber to measure ambient exposure rates. A thin end window allows the instrument to measure exposure rates from non-penetrating radiation (i.e., beta radiation). Correction factors are provided for contact measurements with beta and gamma disk sources, gamma beams and, finally, general area beta fields. Beta correction factors are based on the instrument's response to 204Tl, selected as the most conservative isotope for beta correction factors, as indicated in previous studies of similar instruments using 204Tl, 147Pm, and 90Sr(Y) isotopes (LANL 1982). Gamma correction factors are based on 137Cs, considered the predominant source of gamma radiation on the Hanford Site.

  12. Particle emission angle determination in Frisch grid ionization chambers by electron drift-time measurements

    NASA Astrophysics Data System (ADS)

    Göök, A.; Chernykh, M.; Enders, J.; Oberstedt, A.; Oberstedt, S.

    2010-09-01

    The double kinetic energy measurement of fission fragments with a double-sided Frisch grid ionization chamber allows a careful determination of the emission angle, which is essential in order to apply appropriate energy-loss corrections. We present a drift-time method, which uses the time that free electrons need to drift from the location of their creation, e.g. by a fission fragment in the counting gas, to the grid, before inducing a signal on the anode. Such a measurement leaves energy and angular information fully decoupled. We demonstrate the applicability of the drift-time method for the example of the 234,238U (γ,f) reactions performed at the superconducting Darmstadt electron linear accelerator. The angular resolutions achieved with this method are comparable to those obtained with other methods.

  13. The mass dependence of the signal peak height of a Bragg-curve ionization chamber

    NASA Astrophysics Data System (ADS)

    Shenhav, N. J.; Stelzer, H.

    1985-01-01

    The Bragg-curve detector of the parallel plate ionization chamber type generates a signal that is a distorted replica of the original Bragg-curve. In result of this distortion, the signal peak height is not only a function of the atomic number of the heavy ion, as it is often stated, but also of the particle mass. This mass effect was studied with the aid of computer simulation, and it was found to be dependent on the Frisch grid to anode gap width and on the detector gas. The charge resolution of the detector is affected very significantly by this mass dependence of the signal peak height. Therefore, a careful selection of the detector gas and the grid to anode gap width is necessary, if good charge resolution over a wide range of heavy ions is required.

  14. Energy resolution of gas ionization chamber for high-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Sato, Yuki; Taketani, Atsushi; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Nishimura, Daiki; Fukuda, Mitsunori; Inabe, Naohito; Murakami, Hiroyuki; Yoshida, Koichi; Kubo, Toshiyuki

    2014-01-01

    The energy resolution is reported for high-energy heavy ions with energies of nearly 340 MeV/nucleon and was measured using a gas ionization chamber filled with a 90%Ar/10%CH4 gas mixture. We observed that the energy resolution is proportional to the inverse of the atomic number of incident ions and to the inverse-square-root of the gas thickness. These results are consistent with the Bethe-Bloch formula for the energy loss of charged particles and the Bohr expression for heavy ion energy straggling. In addition, the influence of high-energy δ-rays generated in the detector on the energy deposition is discussed.

  15. Comparison of pencil-type ionization chamber calibration results and methods between dosimetry laboratories.

    PubMed

    Hourdakis, Costas J; Büermann, Ludwig; Ciraj-Bjelac, Olivera; Csete, Istvan; Delis, Harry; Gomola, Igor; Persson, Linda; Novak, Leos; Petkov, Ivailo; Toroi, Paula

    2016-01-01

    A comparison of calibration results and procedures in terms of air kerma length product, PKL, and air kerma, K, was conducted between eight dosimetry laboratories. A pencil-type ionization chamber (IC), generally used for computed tomography dose measurements, was calibrated according to three calibration methods, while its residual signal and other characteristics (sensitivity profile, active length) were assessed. The results showed that the "partial irradiation method" is the preferred method for the pencil-type IC calibration in terms of PKL and it could be applied by the calibration laboratories successfully. Most of the participating laboratories achieved high level of agreement (>99%) for both dosimetry quantities (PKL and K). Estimated relative standard uncertainties of comparison results vary among laboratories from 0.34% to 2.32% depending on the quantity, beam quality and calibration method applied. Detailed analysis of the assigned uncertainties have been presented and discussed. PMID:26508013

  16. Quality assurance of proton beams using a multilayer ionization chamber system

    SciTech Connect

    Dhanesar, Sandeep; Sahoo, Narayan; Kerr, Matthew; Taylor, M. Brad; Summers, Paige; Zhu, X. Ronald; Poenisch, Falk; Gillin, Michael

    2013-09-15

    Purpose: The measurement of percentage depth-dose (PDD) distributions for the quality assurance of clinical proton beams is most commonly performed with a computerized water tank dosimetry system with ionization chamber, commonly referred to as water tank. Although the accuracy and reproducibility of this method is well established, it can be time-consuming if a large number of measurements are required. In this work the authors evaluate the linearity, reproducibility, sensitivity to field size, accuracy, and time-savings of another system: the Zebra, a multilayer ionization chamber system.Methods: The Zebra, consisting of 180 parallel-plate ionization chambers with 2 mm resolution, was used to measure depth-dose distributions. The measurements were performed for scattered and scanned proton pencil beams of multiple energies delivered by the Hitachi PROBEAT synchrotron-based delivery system. For scattered beams, the Zebra-measured depth-dose distributions were compared with those measured with the water tank. The principal descriptors extracted for comparisons were: range, the depth of the distal 90% dose; spread-out Bragg peak (SOBP) length, the region between the proximal 95% and distal 90% dose; and distal-dose fall off (DDF), the region between the distal 80% and 20% dose. For scanned beams, the Zebra-measured ranges were compared with those acquired using a Bragg peak chamber during commissioning.Results: The Zebra demonstrated better than 1% reproducibility and monitor unit linearity. The response of the Zebra was found to be sensitive to radiation field sizes greater than 12.5 × 12.5 cm; hence, the measurements used to determine accuracy were performed using a field size of 10 × 10 cm. For the scattered proton beams, PDD distributions showed 1.5% agreement within the SOBP, and 3.8% outside. Range values agreed within −0.1 ± 0.4 mm, with a maximum deviation of 1.2 mm. SOBP length values agreed within 0 ± 2 mm, with a maximum deviation of 6 mm. DDF

  17. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources

    SciTech Connect

    Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel; Perez-Calatayud, Jose; Simancas, Fernando; Lallena, Antonio M.; Gazdic-Santic, Maja

    2013-12-15

    Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and

  18. A multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    NASA Astrophysics Data System (ADS)

    Christie, W. B.; Romero, J. L.; Brady, F. P.; Tull, C. E.; Castaneda, C. M.; Barasch, E. F.; Webb, M. L.; Drummond, J. R.; Crawford, H. J.; Flores, I.; Greiner, D. E.; Lindstrom, P. J.; Sann, H.; Young, J. C.

    1987-04-01

    A large area (1 m × 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy "loss", d E/d x, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon40A and 0.30e fwhm for 1.08 GeV/nucleon139La and139La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with α ≅ 100 μm.

  19. Front-end electronics and data acquisition system for a multi-wire 3D gas tracker

    NASA Astrophysics Data System (ADS)

    Łojek, K.; Rozpȩdzik, D.; Bodek, K.; Perkowski, M.; Severijns, N.

    2015-12-01

    This paper presents the design and implementation of the front-end electronics and the data acquisition (DAQ) system for readout of multi-wire drift chambers (MWDC). Apart of the conventional drift time measurement the system delivers the hit position along the wire utilizing the charge division technique. The system consists of preamplifiers, and analog and digital boards sending data to a back-end computer via an Ethernet interface. The data logging software formats the received data and enables an easy access to the data analysis software. The use of specially designed preamplifiers and peak detectors allows the charge-division readout of the low resistance signal wire. The implication of the charge-division circuitry onto the drift time measurement was studied and the overall performance of the electronic system was evaluated in dedicated off-line tests.

  20. Photon beam quality correction factors for the NE2571A and NE2581A thimble ionization chambers using PENELOPE.

    PubMed

    Erazo, Fabián; Lallena, Antonio M

    2016-01-01

    The beam quality correction factor kQ,Q0 and the perturbation factor pQ for photon beams were calculated for the NE2571A and NE2581A ionization chambers, using the Monte Carlo simulation code PENELOPE. Results are compared to those quoted for the NE2571 and NE2581 chambers in previous works. Both kQ,Q0 and pQ obtained for NE2571A and NE2581A chambers agree with those of their predecessors NE2571 and NE2581 ones. PMID:26602965

  1. A new approach to the determination of air kerma using primary-standard cavity ionization chambers

    NASA Astrophysics Data System (ADS)

    Burns, D. T.

    2006-02-01

    A consistent formalism is presented using Monte Carlo calculations to determine the reference air kerma from the measured energy deposition in a primary-standard cavity ionization chamber. A global approach avoiding the use of cavity ionization theory is discussed and its limitations shown in relation to the use of the recommended value for W. The role of charged-particle equilibrium is outlined and the consequent requirements placed on the calculations are detailed. Values for correction factors are presented for the BIPM air-kerma standard for 60Co, making use of the Monte Carlo code PENELOPE, a detailed geometrical model of the BIPM 60Co source and event-by-event electron transport. While the wall correction factor kwall = 1.0012(2) is somewhat lower than the existing value, the axial non-uniformity correction kan = 1.0027(3) is significantly higher. The use of a point source in the evaluation of kan is discussed. A comparison is made of the calculated dose ratio with the Bragg-Gray and Spencer-Attix stopping-power ratios, the results indicating a preference for the Bragg-Gray approach in this particular case. A change to the recommended value for W of up to 2 parts in 103 is discussed. The uncertainties arising from the geometrical models, the use of phase-space files, the radiation transport algorithms and the underlying radiation interaction coefficients are estimated.

  2. Fast-neutron spectrometry using a ³He ionization chamber and digital pulse shape analysis.

    PubMed

    Chichester, D L; Johnson, J T; Seabury, E H

    2012-08-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type (3)He ionization chamber to measure the fast-neutron spectra of a deuterium-deuterium electronic neutron generator, a bare (252)Cf spontaneous fission neutron source, and of the transmitted fast neutron spectra of a (252)Cf source attenuated by water, graphite, liquid nitrogen, and magnesium. Rise-time dPSA has been employed using the common approach for analyzing n +(3)He→(1)H+(3)H ionization events and improved to account for wall-effect and pile-up events, increasing the fidelity of these measurements. Simulations have been performed of the different experimental arrangements and compared with the measurements, demonstrating general agreement between the dPSA-processed fast-neutron spectra and predictions. The fast-neutron resonance features of the attenuation cross sections of the attenuating materials are clearly visible within the resolution limits of the electronics used for the measurements, and the potential applications of high-resolution fast-neutron spectrometry for nuclear nonproliferation and safeguards measurements are discussed. PMID:22728128

  3. Ionization chamber measurements of the half-lives of 24Na, 42K, 76As and 198Au.

    PubMed

    Unterweger, M P; Lindstrom, R M

    2004-01-01

    Samples of 24Na, 42K, 76As and 198Au were produced by irradiation in the National Institute of Standards and Technology (NIST) reactor, and examined for impurities before and after measurement. Half-life measurements were carried out in the NIST 4pigamma pressurized ionization chamber. The results are compared to presently accepted values and previous NIST measurements. PMID:14987662

  4. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams.

    PubMed

    Verhaegen, F; Zakikhani, R; Dusautoy, A; Palmans, H; Bostock, G; Shipley, D; Seuntjens, J

    2006-03-01

    Recent dosimetry protocols for clinical high-energy electron beams recommend measurements of absorbed dose-to-water with a plane-parallel or cylindrical ionization chamber. For well-guarded plane-parallel ionization chambers, the ionization chamber perturbation factor in water, p(Q), has a recommended value of unity in all protocols. This assumption was investigated in detail in this study for one of the recommended ionization chambers in the protocols: the Scanditronix NACP-02 plane-parallel ionization chamber. Monte Carlo (MC) simulations of the NACP-02 ionization chamber with the EGSnrc code were validated against backscatter experiments. MC simulations were then used to calculate p(wall), p(cav) and p(Q) perturbation factors and water-to-air Spencer-Attix stopping powers in 4-19 MeV electron beams of a calibration laboratory (NPL), and in 6-22 MeV clinical electron beams from a Varian CL2300 accelerator. Differences between calculated and the currently recommended (Burns et al 1996 Med. Phys. 23 383-8) stopping powers, water-to-air, were found to be limited to 0.9% at depths between the reference depth z(ref) and the depth where the dose has decreased to 50% of the maximum dose, R50. p(wall) was found to exceed unity by 2.3% in the 4 MeV NPL calibration beam at z(ref). For higher energy electron beams p(wall) decreased to a value of about 1%. Combined with a p(cav) about 1% below unity for all energies at z(ref), this was found to cause p(Q) to exceed unity significantly for all energies. In clinical electron beams all three perturbation factors were found to increase with depth. Our findings indicate that the perturbation factors have to be taken into account in calibration procedures and for clinical depth dose measurements with the NACP-02 ionization chamber. PMID:16481689

  5. Time-resolved dosimetry using a pinpoint ionization chamber as quality assurance for IMRT and VMAT

    SciTech Connect

    Louwe, Robert J. W. Satherley, Thomas; Day, Rebecca A.; Greig, Lynne; Wendling, Markus; Monshouwer, René

    2015-04-15

    Purpose: To develop a method to verify the dose delivery in relation to the individual control points of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) using an ionization chamber. In addition to more effective problem solving during patient-specific quality assurance (QA), the aim is to eventually map out the limitations in the treatment chain and enable a targeted improvement of the treatment technique in an efficient way. Methods: Pretreatment verification was carried out for 255 treatment plans that included a broad range of treatment indications in two departments using the equipment of different vendors. In-house developed software was used to enable calculation of the dose delivery for the individual beamlets in the treatment planning system (TPS), for data acquisition, and for analysis of the data. The observed deviations were related to various delivery and measurement parameters such as gantry angle, field size, and the position of the detector with respect to the field edge to distinguish between error sources. Results: The average deviation of the integral fraction dose during pretreatment verification of the planning target volume dose was −2.1% ± 2.2% (1 SD), −1.7% ± 1.7% (1 SD), and 0.0% ± 1.3% (1 SD) for IMRT at the Radboud University Medical Center (RUMC), VMAT (RUMC), and VMAT at the Wellington Blood and Cancer Centre, respectively. Verification of the dose to organs at risk gave very similar results but was generally subject to a larger measurement uncertainty due to the position of the detector at a high dose gradient. The observed deviations could be related to limitations of the TPS beam models, attenuation of the treatment couch, as well as measurement errors. The apparent systematic error of about −2% in the average deviation of the integral fraction dose in the RUMC results could be explained by the limitations of the TPS beam model in the calculation of the beam penumbra. Conclusions: This

  6. The control system of the multi-strip ionization chamber for the HIMM

    NASA Astrophysics Data System (ADS)

    Li, Min; Yuan, Y. J.; Mao, R. S.; Xu, Z. G.; Li, Peng; Zhao, T. C.; Zhao, Z. L.; Zhang, Nong

    2015-03-01

    Heavy Ion Medical Machine (HIMM) is a carbon ion cancer treatment facility which is being built by the Institute of Modern Physics (IMP) in China. In this facility, transverse profile and intensity of the beam at the treatment terminals will be measured by the multi-strip ionization chamber. In order to fulfill the requirement of the beam position feedback to accomplish the beam automatic commissioning, less than 1 ms reaction time of the Data Acquisition (DAQ) of this detector must be achieved. Therefore, the control system and software framework for DAQ have been redesigned and developed with National Instruments Compact Reconfigurable Input/Output (CompactRIO) instead of PXI 6133. The software is Labview-based and developed following the producer-consumer pattern with message mechanism and queue technology. The newly designed control system has been tested with carbon beam at the Heavy Ion Research Facility at Lanzhou-Cooler Storage Ring (HIRFL-CSR) and it has provided one single beam profile measurement in less than 1 ms with 1 mm beam position resolution. The fast reaction time and high precision data processing during the beam test have verified the usability and maintainability of the software framework. Furthermore, such software architecture is easy-fitting to applications with different detectors such as wire scanner detector.

  7. Proton beam dosimetry: a comparison between the Faraday cup and an ionization chamber.

    PubMed

    Cambria, R; Hérault, J; Brassart, N; Silari, M; Chauvel, P

    1997-06-01

    From the theoretical point of view, the Faraday cup (FC) is an absolute instrument for fluence measurements of proton beams. As the FC is easily manufactured it can be considered an 'in-house' calibration system. Moreover, at the moment no national standards for proton dosimetry are available. Up to now the experimental tests of these instruments show that much study still has to be done to better understand their use in reference dosimetry. To investigate the possibility of using an FC as a secondary standard, an FC was jointly designed by the 'TERA Collaboration' and 'Centre Antoine-Lacassagne' (Nice, France) to evaluate the main parameters of the instrument. A comparison between two FCs of different designs--the 'TERA FC' and the 'Nice FC'--and an ionization chamber (IC) used for routine proton dosimetry was carried out. Results show that the two FCs agree to within 1.5-3.6%. While the differences between FC and IC are larger--6% for the 'TERA FC' and 8.2% for the 'Nice FC', the FC giving a lower dose evaluation--they follow the same trend shown by the calorimetric measurements. The data show that once the beam characteristics are defined, the fluence measurements are reproducible and show a good accuracy. PMID:9194137

  8. Assaying of targets for nuclear measurements with a gridded ionization chamber

    NASA Astrophysics Data System (ADS)

    Budtz-Jørgensen, C.; Knitter, H. H.; Bortels, G.

    1985-06-01

    An ionization chamber with a Frisch grid is used to determine both the energy ( E) of the charge particles emitted from the sample positioned coplanar with the cathode, and the cosine of the emission angle (ϑ) with respect to the normal of the cathode Using the combined information on cosϑ and E, problems in particle counting due to sample absoprtion and scattering effect can be circumvented and sample source strengths are readily determined to an accurary of 0.3%. However, it is emphasized that the source strength can be determined from the particles emitted in a large solid angle close to 2τ sr, which means a considerable higher efficiency than for the conventional low geometry counting techniques. Moreover the present method, within reasonable limits is insensitive to source shape and thickness homogeneity. The technique will be illustrated by measurements of alpha particles and fission fragments emitted from a set of four vacuum evaporated UF 4, three electrodeposited and one suspension-sprayed 235U 3O 8 layers. The energy and angular distributions of alpha particles and of the heavy alpha recoils emitted from a self transferred 224Ra source will be discussed. The low energetic alpha recoils might be useful as probes for the investigation of ultrathin ( < 400 Å) layers.

  9. Detecting MLC errors in stereotactic radiotherapy plans with a liquid filled ionization chamber array.

    PubMed

    O'Connor, Patrick; Seshadri, Venkatakrisnan; Charles, Paul

    2016-03-01

    Quality assurance of stereotactic radiotherapy demands the use of equipment with the highest resolution and sensitivity available. This study examines the sensitivity of a commercially available liquid-filled ionization chamber array-the Octavius 1000 SRS (PTW, Frieburg, Germany) for detecting small (sub-millimetre) multi-leaf collimator (MLC) alignment errors in static square fields (side length 16-40 mm). Furthermore, the effectiveness of detecting small MLC errors in clinical stereotactic radiotherapy patient plans using the device was also evaluated. The commonly used gamma pass rate metric (of the measurements compared with treatment planning system generated results) was used. The gamma pass rates were then evaluated as a function of MLC position error (MLC error size 0.1-2.5 mm). The detector array exhibited a drop in pass rate between plans without error and those which had MLC errors induced. For example a drop in pass rate of 4.5 % (gamma criteria 3 %, 1 mm) was observed when a 0.8 mm error was introduced into a 16 mm square field. Furthermore the drop in pass rate increased as the MLC position error increased. This study showed that the Octavius 1000 SRS array could be a useful tool for applications requiring the detection of small geometric delivery uncertainties. PMID:26979835

  10. A patient-specific quality assurance study on absolute dose verification using ionization chambers of different volumes in RapidArc treatments

    SciTech Connect

    Syam Kumar, S.A.; Sukumar, Prabakar; Sriram, Padmanaban; Rajasekaran, Dhanabalan; Aketi, Srinu; Vivekanandan, Nagarajan

    2012-01-01

    The recalculation of 1 fraction from a patient treatment plan on a phantom and subsequent measurements have become the norms for measurement-based verification, which combines the quality assurance recommendations that deal with the treatment planning system and the beam delivery system. This type of evaluation has prompted attention to measurement equipment and techniques. Ionization chambers are considered the gold standard because of their precision, availability, and relative ease of use. This study evaluates and compares 5 different ionization chambers: phantom combinations for verification in routine patient-specific quality assurance of RapidArc treatments. Fifteen different RapidArc plans conforming to the clinical standards were selected for the study. Verification plans were then created for each treatment plan with different chamber-phantom combinations scanned by computed tomography. This includes Medtec intensity modulated radiation therapy (IMRT) phantom with micro-ionization chamber (0.007 cm{sup 3}) and pinpoint chamber (0.015 cm{sup 3}), PTW-Octavius phantom with semiflex chamber (0.125 cm{sup 3}) and 2D array (0.125 cm{sup 3}), and indigenously made Circular wax phantom with 0.6 cm{sup 3} chamber. The measured isocenter absolute dose was compared with the treatment planning system (TPS) plan. The micro-ionization chamber shows more deviations when compared with semiflex and 0.6 cm{sup 3} with a maximum variation of -4.76%, -1.49%, and 2.23% for micro-ionization, semiflex, and farmer chambers, respectively. The positive variations indicate that the chamber with larger volume overestimates. Farmer chamber shows higher deviation when compared with 0.125 cm{sup 3}. In general the deviation was found to be <1% with the semiflex and farmer chambers. A maximum variation of 2% was observed for the 0.007 cm{sup 3} ionization chamber, except in a few cases. Pinpoint chamber underestimates the calculated isocenter dose by a maximum of 4.8%. Absolute dose

  11. A standard Fricke dosimeter compared to an ionization chamber used for dosimetric characterization of 60Co photon beam

    NASA Astrophysics Data System (ADS)

    Moussous, Ouiza; Medjadj, Toufik

    2016-06-01

    The main objective of this study was to investigate the Fricke dosimeter water equivalent system for measurement of dosimetric parameters for photon beam. The parameters measured with the Fricke dosimeter were compared to those obtained with an ionization chamber. In this work characteristics for 60Co γ-rays of field sizes ranging from 5 × 5 cm2 to 20 × 20 cm2 are reported. The measurements were carried out in the secondary standard dosimetry laboratory using a collimated 60Co gamma source therapy unit. The 60Co beam output in terms of absorbed dose to water was obtained as per IAEA TRS 398 recommendations using cylindrical ionization chamber, whose ND,w has been supplied by the IAEA's reference laboratory. Specific quantities measured include: output factors, peak scatter factor, lateral beam profiles and percentage depth dose. The Fricke dosimeters were irradiated in a water phantom using the suitable poly (methyl methacrylate), PMMA stand. Our results demonstrate that Fricke dosimeter and ionization chamber agree with each other.

  12. Development of a Liquefied Noble Gas Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Lesser, Ezra; White, Aaron; Aidala, Christine

    2015-10-01

    Liquefied noble gas detectors have been used for various applications in recent years for detecting neutrinos, neutrons, photons, and potentially dark matter. The University of Michigan is developing a detector with liquid argon to produce scintillation light and ionization electrons. Our data collection method will allow high-resolution energy measurement and spatial reconstruction of detected particles by using multi-pixel silicon photomultipliers (SiPM) and a cylindrical time projection chamber (TPC) with a multi-wire endplate. We have already designed a liquid argon condenser and purification unit surrounded by an insulating vacuum, constructed circuitry for temperature and pressure sensors, and created software to obtain high-accuracy sensor readouts. The status of detector development will be presented. Funded through the Michigan Memorial Phoenix Project.

  13. The effect of low-energy electrons on the response of ion chambers to ionizing photon beams

    NASA Astrophysics Data System (ADS)

    La Russa, Daniel J.

    Cavity ionization chambers are one of the most popular and widely used devices for quantifying ionizing photon beams. This popularity originates from the precision of these devices and the relative ease with which ionization measurements are converted to quantities of interest in therapeutic radiology or radiation protection, collectively referred to as radiation dosimetry. The formalisms used for these conversions, known as cavity theory, make several assumptions about the electron spectrum in the low-energy range resulting from the incident photon beam. These electrons often account for a significant fraction of the ion chamber response. An inadequate treatment of low-energy electrons can therefore significantly effect calculated quantities of interest. This thesis sets out to investigate the effect of low-energy electrons on (1) the use of Spencer-Attix cavity theory with 60Co beams; and (2) the standard temperature-pressure correction factor, P TP, used to relate the measured ionization to a set of reference temperature and pressure conditions for vented ion chambers. Problems with the PTP correction are shown to arise when used with kilovoltage x rays, where ionization measurements are due primarily to electrons that do not have enough energy to cross the cavity. A combination of measurements and Monte Carlo calculations using the EGSnrc Monte Carlo code demonstrate the breakdown of PTP in these situations when used with non-air-equivalent chambers. The extent of the breakdown is shown to depend on cavity size, energy of the incident photons, and the composition of the chamber. In the worst case, the standard P TP factor overcorrects the response of an aluminum chamber by ≈12% at an air density typical of Mexico City. The response of a more common graphite-walled chamber with similar dimensions at the same air density is undercorrected by ≈ 2%. The EGSnrc Monte Carlo code is also used to investigate Spencer-Attix cavity theory as it is used in the

  14. Use of a novel two-dimensional ionization chamber array for pencil beam scanning proton therapy beam quality assurance.

    PubMed

    Lin, Liyong; Kang, Minglei; Solberg, Timothy D; Mertens, Thierry; Baeumer, Christian; Ainsley, Christopher G; McDonough, James E

    2015-01-01

    The need to accurately and efficiently verify both output and dose profiles creates significant challenges in quality assurance of pencil beam scanning (PBS) proton delivery. A system for PBS QA has been developed that combines a new two-dimensional ionization chamber array in a waterproof housing that is scanned in a water phantom. The MatriXX PT has the same detector array arrangement as the standard MatriXX(Evolution) but utilizes a smaller 2 mm plate spacing instead of 5mm. Because the bias voltage of the MatriXX PT and Evolution cannot be changed, PPC40 and FC65-G ionization chambers were used to assess recombination effects. The PPC40 is a parallel plate chamber with an electrode spacing of 2mm, while the FC65-G is a Farmer chamber FC65-G with an electrode spacing of 2.8 mm. Three bias voltages (500, 200, and 100 V) were used for both detectors to determine which radiation type (continuous, pulse or pulse-scanned beam) could closely estimate Pion from the ratios of charges collected. In comparison with the MatriXX(Evolution), a significant improvement in measurement of absolute dose with the MatriXX PT was observed. While dose uncertainty of the MatriXX(Evolution) can be up to 4%, it is < 1% for the MatriXX PT. Therefore the MatriXX(Evolution) should not be used for QA of PBS for conditions in which ion recombination is not negligible. Farmer chambers should be used with caution for measuring the absolute dose of PBS beams, as the uncertainty of Pion can be > 1%; chambers with an electrode spacing of 2 mm or smaller are recommended. PMID:26103492

  15. SU-E-T-415: An Ionization Chamber Array with High Spatial Resolution for External Beam Radiotherapy

    SciTech Connect

    Togno, M; Wilkens, J; Menichelli, D

    2014-06-01

    Purpose: To characterize an ionization chamber array technology with high spatial resolution and high charge collection efficiency for external beam radiotherapy. Methods: The prototype under test is a linear array of air vented ionization chambers developed by IBA Dosimetry, consisting of 80 pixels with 3.5mm spatial resolution and 4mm{sup 3} sensitive volume. The detector was characterized in a plastic phantom with {sup 60} Co radiation and MV X-rays from an ELEKTA Agility LINAC (with flattened and unflattened beam qualities). Bias voltage was varied in order to evaluate charge collection efficiency. A commercial array of ionization chambers (MatriXX Evolution, IBA Dosimetry) and an amorphous silicon flat panel in direct conversion configuration were used as references. Results: Repeatability (0.4%) and stability under continuous gamma irradiation (0.3%) are very good, in spite of low active volume and sensitivity (∼200pC/Gy). Charge collection efficiency is higher than 99% already at 150V with ∼2mGy dose per pulse, leading to a ±1.1% sensitivity change with dose per pulse in the range 0.09-2mGy (covering all flattened and unflattened applications). Measured dose profiles are in agreement with MatriXX for fields larger than 2×2cm{sup 2}, in which case the linear array offers a much better characterization of the penumbra region. Down to 1×1cm{sup 2}, measured profiles are in very good agreement with the flat panel. Conclusion: The array represents a valuable tool for the characterization of treatment fields in which high spatial resolution is required, together with the dosimetric performance of air vented ionization chambers. Such a technology would be particularly valuable in association with advanced treatment modalities such as rotational radiotherapy, stereotactic treatments (even with unflattened beam qualities) and proton therapy, due to the insensitivity of the chambers on dose per pulse. In the future, a two dimensional prototype based on this

  16. A Liquid Xenon Ionization Chamber in an All-fluoropolymer Vessel

    SciTech Connect

    LePort, F.; Pocar, A.; Bartoszek, L.; DeVoe, R.; Fierlinger, P.; Flatt, B.; Gratta, G.; Green, M.; Montero Diez, M.; Neilson, R.; O'Sullivan, K.; Wodin, J.; Woisard, D.; Baussan, E.; Breidenbach, M.; Conley, R.; Fairbank, W., Jr.; Farine, J.; Hall, K.; Hallman, D.; Hargrove, C.; /Stanford U., Phys. Dept. /Applied Plastics Technology, Bristol /Neuchatel U. /SLAC /Colorado State U. /Laurentian U. /Carleton U. /Alabama U. /Moscow, ITEP

    2007-02-26

    A novel technique has been developed to build vessels for liquid xenon ionization detectors entirely out of ultra-clean fluoropolymer. We describe the advantages in terms of low radioactivity contamination, provide some details of the construction techniques, and show the energy resolution achieved with a prototype all-fluoropolymer ionization detector.

  17. Discovery of multiple, ionization-created CS{sub 2} anions and a new mode of operation for drift chambers

    SciTech Connect

    Snowden-Ifft, Daniel P.

    2014-01-15

    This paper focuses on the surprising discovery of multiple species of ionization-created CS{sub 2} anions in gas mixtures containing electronegative CS{sub 2} and O{sub 2}, identified by their slightly different drift velocities. Data are presented to understand the formation mechanism and identity of these new anions. Regardless of the micro-physics, however, this discovery offers a new, trigger-less mode of operation for the drift chambers. A demonstration of trigger-less operation is presented.

  18. Correction factors for ionization chamber dosimetry in CyberKnife: Machine-specific, plan-class, and clinical fields

    SciTech Connect

    Gago-Arias, Araceli; Antolin, Elena; Fayos-Ferrer, Francisco; Simon, Rocio; Gonzalez-Castano, Diego M.; Palmans, Hugo; Sharpe, Peter; Gomez, Faustino; Pardo-Montero, Juan

    2013-01-15

    Purpose: The aim of this work is the application of the formalism for ionization chamber reference dosimetry of small and nonstandard fields [R. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjaell, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich, and S. Vatnitsky, 'A new formalism for reference dosimetry of small and nonstandard fields,' Med. Phys. 35, 5179-5186 (2008)] to the CyberKnife robotic radiosurgery system. Correction factors for intermediate calibration fields, a machine-specific reference field (msr) and two plan-class specific reference fields (pcsr), have been studied. Furthermore, the applicability of the new formalism to clinical dosimetry has been analyzed through the investigation of two clinical treatments. Methods: PTW31014 and Scanditronix-Wellhofer CC13 ionization chamber measurements were performed for the fields under investigation. Absorbed dose to water was determined using alanine reference dosimetry, and experimental correction factors were calculated from alanine to ionization chamber readings ratios. In addition, correction factors were calculated for the intermediate calibration fields and one of the clinical treatment fields using the Monte Carlo method and these were compared with the experimental values. Results: Overall correction factors deviating from unity by approximately 2% were obtained from both measurements and simulations, with values below and above unity for the studied intermediate calibration fields and clinical fields for the ionization chambers under consideration. Monte Carlo simulations yielded correction factors comparable with those obtained from measurements for the machine-specific reference field, although differences from 1% to 3.3% were observed between measured and calculated correction factors for the composite intermediate calibration fields. Dose distribution inhomogeneities are thought to be responsible for such discrepancies. Conclusions: The differences found between overall

  19. Dosimetric Verification and Validation of Conformal and IMRT Treatments Fields with an Ionization Chamber 2D-Array

    NASA Astrophysics Data System (ADS)

    Evangelina, Figueroa M.; Gabriel, Reséndiz G.; Miguel, Pérez P.

    2008-08-01

    A three-dimensional treatment planning system requires comparisons of calculated and measured dose distributions. It is necessary to confirm by means of patient specific QA that the dose distributions are correctly calculated, and that the patient data is correctly transferred to and delivered by the treatment machine. We used an analysis software for bi-dimensional dosimetric verification of conformal treatment and IMRT fields using as objective criterion the gamma index. An ionization chamber bi-dimensional array was used for absolute dose measurement in the complete field area.

  20. Near-field transport by a bent multi-wire endoscope

    NASA Astrophysics Data System (ADS)

    Latioui, Hafssaa; Silveirinha, Mário G.

    2016-08-01

    In this paper, we investigate the impact of bending a multi-wire endoscope in the context of subwavelength imaging and near-field transport. To this end, we study the reflection and transmission by a "bent" wire medium in different configurations and demonstrate that the structure can be quite robust to the effect of bending provided the total length of the bent wires satisfies the Fabry-Pérot condition. The study is carried out relying on an analytical homogenization theory and using two additional boundary conditions obtained with physical arguments. It is proven that a structure formed by two connected sets of tilted metallic wires can allow for the near field transport with a deeply subwavelength resolution. To illustrate the applications and potentials of the results, the performance of bent multi-wire endoscopes is characterized using full wave numerical simulations.

  1. Effect of recombination in a high quantum efficiency prototype ionization-chamber-based electronic portal imaging device

    SciTech Connect

    Gopal, A.; Samant, S. S.

    2007-08-15

    The quantum efficiency (QE) of an imaging detector can be increased by utilizing a thick, high-density detection medium to increase the number of quantum interactions. However, image quality is more accurately described by the detection quantum efficiency (DQE). If a significant fraction of the increase in the number of detected quanta from a thick, dense detector were to result in useful imaging signal, this represents a favorable case where enhanced QE leads to increased DQE. However, for ionization-type detectors, one factor that limits DQE is the recombination between ion pairs that acts as a secondary quantum sink due to which enhancement in QE may not result in higher DQE depending on the extent of the signal loss from recombination. Therefore, an analysis of signal loss mechanisms or quantum sinks in an imaging system is essential for validating the overall benefit of high QE detectors. In this paper, a study of ion recombination as a secondary quantum sink is presented for a high QE prototype ion-chamber-based electronic portal imaging device (EPID): the kinestatic charge detector (KCD). The KCD utilizes a high pressure noble gas (krypton or xenon at 100 atm) and an arbitrarily large detector thickness (of the order of centimeters), resulting in a high QE imager. Compared with commercial amorphous silicon flat panel imagers that provide DQE(0){approx_equal}0.01, the KCD has much higher DQE. Studies indicated that DQE(0)=0.20 for 6.1 cm thick, 100 atm ({rho}=3.4 g/cm{sup 3}) xenon chamber, and DQE(0)=0.34 for a 9.1 cm thick chamber. A series of experiments was devised and conducted to determine the signal loss due to recombination for a KCD chamber. The measurements indicated a fractional recombination loss of about 14% for a krypton chamber and about 18% for a xenon chamber under standard operating conditions (100 atm chamber pressure and 1275 V/cm electric field intensity). A theoretical treatment of the effect of recombination on imaging signal

  2. Investigation and performance tests of a new parallel plate ionization chamber with double sensitive volume for measuring diagnostic X-rays

    NASA Astrophysics Data System (ADS)

    Sharifi, B.; Zamani Zeinali, H.; Soltani, J.; Negarestani, A.; Shahvar, A.

    2015-01-01

    Medical diagnostic equipment, like diagnostic radiology and mammography require a dosimeter with high accuracy for dosimetry of the diagnostic X-ray beam. Ionization chambers are suitable instruments for dosimetry of diagnostic-range X-ray beams because of their appropriate response and high reliability. This work introduces the design and fabrication of a new parallel plate ionization chamber with a PMMA body, graphite-coated PMMA windows (0.5 mm thick) and a graphite-foil central electrode (0.1 mm thick, 0.7 g/cm3 dense). This design improves upon the response characteristics of existing designs through the specific choice of materials as well as the appropriate size and arrangement of the ionization chamber components. The results of performance tests conducted at the Secondary Standard Dosimetry laboratory in Karaj-Iran demonstrated the short and long-term stability, the low leakage current, the low directional dependence, and the high ion collection efficiency of the design. Furthermore, the FLUKA Monte Carlo simulations confirmed the low effect of central electrode on this new ionization chamber response. The response characteristics of the parallel plate ionization chamber presented in this work makes the instrument suitable for use as a standard dosimeter in laboratories.

  3. SU-D-19A-01: Can Farmer-Type Ionization Chambers Be Used to Improve the Accuracy of Low-Energy Electron Beam Reference Dosimetry?

    SciTech Connect

    Muir, B R; McEwen, M R

    2014-06-01

    Purpose: To investigate the use of cylindrical Farmer-type ionization chambers to improve the accuracy of low-energy electron beam calibration. Historically, these chamber types have not been used in beams with incident energies less than 10 MeV (R{sub 5} {sub 0} < 4.3 cm) because early investigations suggested large (up to 5 %) fluence perturbation factors in these beams, implying that a significant component of uncertainty would be introduced if used for calibration. More recently, the assumptions used to determine perturbation corrections for cylindrical chambers have been questioned. Methods: Measurements are made with cylindrical chambers in Elekta Precise 4, 8 and 18 MeV electron beams. Several chamber types are investigated that employ graphite walls and aluminum electrodes with very similar specifications (NE2571, NE2505/3, FC65-G). Depth-ionization scans are measured in water in the 8 and 18 MeV beams. To reduce uncertainty from chamber positioning, measurements in the 4 MeV beam are made at the reference depth in Virtual Water™. The variability of perturbation factors is quantified by comparing normalized response of various chambers. Results: Normalized ion chamber response varies by less than 0.7 % for similar chambers at average electron energies corresponding to that at the reference depth from 4 or 6 MeV beams. Similarly, normalized measurements made with similar chambers at the reference depth in the 4 MeV beam vary by less than 0.4 %. Absorbed dose calibration coefficients derived from these results are stable within 0.1 % on average over a period of 6 years. Conclusion: These results indicate that the uncertainty associated with differences in fluence perturbations for cylindrical chambers with similar specifications is only 0.2 %. The excellent long-term stability of these chambers in both photon and electron beams suggests that these chambers might offer the best performance for all reference dosimetry applications.

  4. A novel convolution-based approach to address ionization chamber volume averaging effect in model-based treatment planning systems

    NASA Astrophysics Data System (ADS)

    Barraclough, Brendan; Li, Jonathan G.; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2015-08-01

    The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to

  5. Intelligent monitor functional model with ionization chamber for mixed nuclear radiation field measurements

    SciTech Connect

    Valcov, N.; Purghel, L.; Celarel, A.

    1998-12-31

    By using the statistical discrimination technique, the components of an ionization current, due to a mixed radiation field, may be simultaneously measured. A functional model, including a series manufactured gamma-ray ratemeter was done, as an intermediate step in the design of specialized nuclear instrumentation, in order to check the concept of statistical discrimination method. The obtained results are in good agreement with the estimations of the statistical discrimination method.

  6. Two-dimensional and quasi-three-dimensional dosimetry of hadron and photon beams with the Magic Cube and the Pixel Ionization Chamber.

    PubMed

    Cirio, R; Garelli, E; Schulte, R; Amerio, S; Boriano, A; Bourhaleb, F; Coutrakon, G; Donetti, M; Giordanengo, S; Koss, P; Madon, E; Marchetto, F; Nastasi, U; Peroni, C; Santuari, D; Sardo, A; Scielzo, G; Stasi, M; Trevisiol, E

    2004-08-21

    Two detectors for fast two-dimensional (2D) and quasi-three-dimensional (quasi-3D) verification of the dose delivered by radiotherapy beams have been developed at University and Istituto Nazionale di Fisica Nucleare (INFN) of Torino. The Magic Cube is a stack of strip-segmented ionization chambers interleaved with water-equivalent slabs. The parallel plate ionization chambers have a sensitive area of 24 x 24 cm2, and consist of 0.375 cm wide and 24 cm long strips. There are a total of 64 strips per chamber. The Magic Cube has been tested with the clinical proton beam at Loma Linda University Medical Centre (LLUMC), and was shown to be capable of fast and precise quasi-3D dose verification. The Pixel Ionization Chamber (PXC) is a detector with pixel anode segmentation. It is a 32 x 32 matrix of 1024 cylindrical ionization cells arranged in a square 24 x 24 cm2 area. Each cell has 0.4 cm diameter and 0.55 cm height, at a pitch of 0.75 cm separates the centre of adjacent cells. The sensitive volume of each single ionization cell is 0.07 cm3. The detectors are read out using custom designed front-end microelectronics and a personal computer-based data acquisition system. The PXC has been used to verify dynamic intensity-modulated radiotherapy for head-and-neck and breast cancers. PMID:15446800

  7. Two-dimensional and quasi-three-dimensional dosimetry of hadron and photon beams with the Magic Cube and the Pixel Ionization Chamber

    NASA Astrophysics Data System (ADS)

    Cirio, R.; Garelli, E.; Schulte, R.; Amerio, S.; Boriano, A.; Bourhaleb, F.; Coutrakon, G.; Donetti, M.; Giordanengo, S.; Koss, P.; Madon, E.; Marchetto, F.; Nastasi, U.; Peroni, C.; Santuari, D.; Sardo, A.; Scielzo, G.; Stasi, M.; Trevisiol, E.

    2004-08-01

    Two detectors for fast two-dimensional (2D) and quasi-three-dimensional (quasi-3D) verification of the dose delivered by radiotherapy beams have been developed at University and Istituto Nazionale di Fisica Nucleare (INFN) of Torino. The Magic Cube is a stack of strip-segmented ionization chambers interleaved with water-equivalent slabs. The parallel plate ionization chambers have a sensitive area of 24 × 24 cm2, and consist of 0.375 cm wide and 24 cm long strips. There are a total of 64 strips per chamber. The Magic Cube has been tested with the clinical proton beam at Loma Linda University Medical Centre (LLUMC), and was shown to be capable of fast and precise quasi-3D dose verification. The Pixel Ionization Chamber (PXC) is a detector with pixel anode segmentation. It is a 32 × 32 matrix of 1024 cylindrical ionization cells arranged in a square 24 × 24 cm2 area. Each cell has 0.4 cm diameter and 0.55 cm height, at a pitch of 0.75 cm separates the centre of adjacent cells. The sensitive volume of each single ionization cell is 0.07 cm3. The detectors are read out using custom designed front-end microelectronics and a personal computer-based data acquisition system. The PXC has been used to verify dynamic intensity-modulated radiotherapy for head-and-neck and breast cancers.

  8. Simulation of the Mg(Ar) ionization chamber currents by different Monte Carlo codes in benchmark gamma fields

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chun; Liu, Yuan-Hao; Nievaart, Sander; Chen, Yen-Fu; Wu, Shu-Wei; Chou, Wen-Tsae; Jiang, Shiang-Huei

    2011-10-01

    High energy photon (over 10 MeV) and neutron beams adopted in radiobiology and radiotherapy always produce mixed neutron/gamma-ray fields. The Mg(Ar) ionization chambers are commonly applied to determine the gamma-ray dose because of its neutron insensitive characteristic. Nowadays, many perturbation corrections for accurate dose estimation and lots of treatment planning systems are based on Monte Carlo technique. The Monte Carlo codes EGSnrc, FLUKA, GEANT4, MCNP5, and MCNPX were used to evaluate energy dependent response functions of the Exradin M2 Mg(Ar) ionization chamber to a parallel photon beam with mono-energies from 20 keV to 20 MeV. For the sake of validation, measurements were carefully performed in well-defined (a) primary M-100 X-ray calibration field, (b) primary 60Co calibration beam, (c) 6-MV, and (d) 10-MV therapeutic beams in hospital. At energy region below 100 keV, MCNP5 and MCNPX both had lower responses than other codes. For energies above 1 MeV, the MCNP ITS-mode greatly resembled other three codes and the differences were within 5%. Comparing to the measured currents, MCNP5 and MCNPX using ITS-mode had perfect agreement with the 60Co, and 10-MV beams. But at X-ray energy region, the derivations reached 17%. This work shows us a better insight into the performance of different Monte Carlo codes in photon-electron transport calculation. Regarding the application of the mixed field dosimetry like BNCT, MCNP with ITS-mode is recognized as the most suitable tool by this work.

  9. Characterization and performances of a monitoring ionization chamber dedicated to IBA-universal irradiation head for Pencil Beam Scanning

    NASA Astrophysics Data System (ADS)

    Courtois, C.; Boissonnat, G.; Brusasco, C.; Colin, J.; Cussol, D.; Fontbonne, J. M.; Marchand, B.; Mertens, T.; de Neuter, S.; Peronnel, J.

    2014-02-01

    Every radiotherapy center has to be equipped with real-time beam monitoring devices. In 2008, we developed an ionization chamber in collaboration with the IBA (Ion Beam Applications) company. This monitoring device called IC2/3 was developed to be used in IBA universal irradiation head for Pencil Beam Scanning (PBS). Here we present the characterization of the IC2/3 monitor in the energy and flux ranges used in protontherapy. The equipment has been tested with an IBA cyclotron able to deliver proton beams from 70 to 230 MeV. This beam monitoring device has been validated and is now installed at the Westdeutsches Protonentherapiezentrum Essen protontherapy center (WPE, Germany). The results obtained in both terms of spatial resolution and dose measurements are at least equal to the initial specifications needed for PBS purposes. The detector measures the dose with a relative uncertainty lower than 1% in the range from 0.5 Gy/min to 8 Gy/min while the spatial resolution is better than 250 μm. The technology has been patented and five IC2/3 chambers were delivered to IBA. Nowadays, IBA produces the IC2/3 beam monitoring device as a part of its Proteus 235 product.

  10. Electron beam quality kQ,Q0 factors for various ionization chambers: a Monte Carlo investigation with penelope

    NASA Astrophysics Data System (ADS)

    Erazo, F.; Brualla, L.; Lallena, A. M.

    2014-11-01

    In this work we calculate the beam quality correction factor {{k}\\text{Q,{{\\text{Q}}0}}} for various plane-parallel ionization chambers. A set of Monte Carlo calculations using the code penelope/penEasy have been carried out to calculate the overall correction factor fc,Q for eight electron beams corresponding to a Varian Clinac 2100 C/D, with nominal energies ranging between 6 MeV and 22 MeV, for a 60Co beam, that has been used as the reference quality Q0 and also for eight monoenergetic electron beams reproducing the quality index R50 of the Clinac beams. Two field sizes, 10 × 10 cm2 and 20 × 20 cm2 have been considered. The {{k}\\text{Q,{{\\text{Q}}0}}} factors have been calculated as the ratio between fc,Q and {{f}\\text{c,{{\\text{Q}}0}}} . Values for the Exradin A10, A11, A11TW, P11, P11TW, T11 and T11TW ionization chambers, manufactured by Standard Imaging, as well as for the NACP-02 have been obtained. The results found with the Clinac beams for the two field sizes analyzed show differences below 0.6%, even in the case of the higher energy electron beams. The {{k}\\text{Q,{{\\text{Q}}0}}} values obtained with the Clinac beams are 1% larger than those found with the monoenergetic beams for the higher energies, above 12 MeV. This difference can be ascribed to secondary photons produced in the linac head and the air path towards the phantom. Contrary to what was quoted in a previous work (Sempau et al 2004 Phys. Med. Biol. 49 4427-44), the beam quality correction factors obtained with the complete Clinac geometries and with the monoenergetic beams differ significantly for energies above 12 MeV. Material differences existing between chambers that have the same geometry produce non-negligible modifications in the value of these correction factors.

  11. Electron beam quality k(Q,Q0) factors for various ionization chambers: a Monte Carlo investigation with PENELOPE.

    PubMed

    Erazo, F; Brualla, L; Lallena, A M

    2014-11-01

    In this work we calculate the beam quality correction factor k(Q,Q0) for various plane-parallel ionization chambers. A set of Monte Carlo calculations using the code PENELOPE/PENEASY have been carried out to calculate the overall correction factor f(c,Q) for eight electron beams corresponding to a Varian Clinac 2100 C/D, with nominal energies ranging between 6 MeV and 22 MeV, for a (60)Co beam, that has been used as the reference quality Q0 and also for eight monoenergetic electron beams reproducing the quality index R50 of the Clinac beams. Two field sizes, 10 × 10 cm(2) and 20 × 20 cm(2) have been considered. The k(Q,Q0) factors have been calculated as the ratio between f(c,Q) and f(c,Q0). Values for the Exradin A10, A11, A11TW, P11, P11TW, T11 and T11TW ionization chambers, manufactured by Standard Imaging, as well as for the NACP-02 have been obtained. The results found with the Clinac beams for the two field sizes analyzed show differences below 0.6%, even in the case of the higher energy electron beams. The k(Q,Q0) values obtained with the Clinac beams are 1% larger than those found with the monoenergetic beams for the higher energies, above 12 MeV. This difference can be ascribed to secondary photons produced in the linac head and the air path towards the phantom. Contrary to what was quoted in a previous work (Sempau et al 2004 Phys. Med. Biol. 49 4427-44), the beam quality correction factors obtained with the complete Clinac geometries and with the monoenergetic beams differ significantly for energies above 12 MeV. Material differences existing between chambers that have the same geometry produce non-negligible modifications in the value of these correction factors. PMID:25325343

  12. Fast-Neutron Spectrometry Using a 3He Ionization Chamber and Digital Pulse Shape Analysis

    SciTech Connect

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-05-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type 3He proportional counter to measure the fast neutron spectra of bare 252Cf and 241AmBe neutron sources. Measurements have also been made to determine the attenuated fast neutron spectra of 252Cf shielded by several materials including water, graphite, liquid nitrogen, magnesium, and tungsten. Rise-time dPSA has been employed using the common rise-time approach for analyzing n +3He ? 1H + 3H ionization events and a new approach has been developed to improve the fidelity of these measurements. Simulations have been performed for the different experimental arrangements and are compared, demonstrating general agreement between the dPSA processed fast neutron spectra and predictions.

  13. Dosimetry for the MRI accelerator: the impact of a magnetic field on the response of a Farmer NE2571 ionization chamber.

    PubMed

    Meijsing, I; Raaymakers, B W; Raaijmakers, A J E; Kok, J G M; Hogeweg, L; Liu, B; Lagendijk, J J W

    2009-05-21

    The UMC Utrecht is constructing a 1.5 T MRI scanner integrated with a linear accelerator (Lagendijk et al 2008 Radiother. Oncol. 86 25-9). The goal of this device is to facilitate soft-tissue contrast based image-guided radiotherapy, in order to escalate the dose to the tumour while sparing surrounding normal tissues. Dosimetry for the MRI accelerator has to be performed in the presence of a magnetic field. This paper investigates the feasibility of using a Farmer NE2571 ionization chamber for absolute dosimetry. The impact of the mcagnetic field on the response of this ionization chamber has been measured and simulated using GEANT4 Monte Carlo simulations. Two orientations of the ionization chamber with respect to the incident beam and the magnetic field which are feasible in the MRI accelerator configuration are taken into account. Measurements are performed using a laboratory magnet ranging from 0 to 1.2 T. In the simulations a range from 0 to 2 T is used. For both orientations, the measurements and simulations agreed within the uncertainty of the measurements and simulations. In conclusion, the response of the ionization chamber as a function of the magnetic field is understood and can be simulated using GEANT4 Monte Carlo simulations. PMID:19387100

  14. Thimble ionization chambers in medium-energy x-ray beams and the role of constructive details of the central electrode: Monte Carlo simulations and measurements

    NASA Astrophysics Data System (ADS)

    Ubrich, F.; Wulff, J.; Kranzer, R.; Zink, K.

    2008-09-01

    This paper presents investigations of thimble ionization chamber response in medium-energy kilovoltage x-ray beams (70-280 kVp, 0.09-3.40 mm Cu HVL). Two thimble ionization chambers (PTW30015 and PTW30016) were investigated, regarding the influence of the central electrode dimensions made of aluminum. Measurements were carried out in photon fields of different beam quality. Corresponding Monte Carlo simulations employing the EGSnrc Monte Carlo code system were performed. The simulations included the modelling of the x-ray tube and measurement setup for generation of x-ray spectra. These spectra were subsequently used to calculate the absorbed energy in the air cavity of the two thimble ionization chamber models and the air kerma at the reference point of the chambers. Measurements and simulations revealed an optimal diameter of the central electrode, concerning an almost energy-independent response of the ionizaton chamber. The Monte Carlo simulations are in good agreement with the measured values, expressed in beam quality correction factors kQ. The agreement was generally within 0.6% but could only be achieved with an accurate model of the central electrode including its exact shape. Otherwise, deviations up to 8.5% resulted, decreasing with higher photon energies, which can be addressed to the high yield of the photoelectric effect in the electrode material aluminum at low photon energies.

  15. NOTE: Determination of the recombination correction factor kS for some specific plane-parallel and cylindrical ionization chambers in pulsed photon and electron beams

    NASA Astrophysics Data System (ADS)

    Bruggmoser, G.; Saum, R.; Schmachtenberg, A.; Schmid, F.; Schüle, E.

    2007-01-01

    It has been shown from an evaluation of the inverse reading of the dosemeter (1/M) against the inverse of the polarizing voltage (1/V), obtained with a number of commercially available ionization chambers, using dose per pulse values between 0.16 and 5 mGy, that a linear relationship between the recombination correction factor kS and dose per pulse (DPP) can be found. At dose per pulse values above 1 mGy the method of a general equation with coefficients dependent on the chamber type gives more accurate results than the Boag method. This method was already proposed by Burns and McEwen (1998, Phys. Med. Biol. 43 2033) and avoids comprehensive and time-consuming measurements of Jaffé plots which are a prerequisite for the application of the multi-voltage analysis (MVA) or the two-voltage analysis (TVA). We evaluated and verified the response of ionization chambers on the recombination effect in pulsed accelerator beams for both photons and electrons. Our main conclusions are: (1) The correction factor kS depends only on the DPP and the chamber type. There is no influence of radiation type and energy. (2) For all the chambers investigated there is a linear relationship between kS and DPP up to 5 mGy/pulse, and for two chambers we could show linearity up to 40 mGy/pulse. (3) A general formalism, such as that of Boag, characterizes chambers exclusively by the distance of the electrodes and gives a trend for the correction factor, and therefore (4) a general formalism has to reflect the influence of the chamber construction on the recombination by the introduction of chamber-type dependent coefficients.

  16. Comparison of two dose-area-product ionization chambers with different conductive surface coating for over-table and under-table tube configurations

    SciTech Connect

    Bednarek, D.R.; Rudin, S.

    2000-03-01

    A custom-built graphite-coated transmission ionization chamber is compared to the VacuDAP 2001 (VacuTec, Dresden, Germany), which has transparent conductive electrodes. A study was made of the dependence of response on x-ray tube potential for both types of chamber under identical conditions of exposure using over-table and under-table x-ray tubes. Since the calibration factor is the dose-area product of the radiation incident on the patient per chamber reading, it depends on the intrinsic response of the chamber as well as the effect of material in the beam between the x-ray tube and patient. Differences of about 20% were measured between the intrinsic and the over-table calibration factors and between the over-table and the under-table calibration factors for both chambers. The VacuDAP display is specifically calibrated for the over-table condition and would overstate the actual DAP in the under-table case. The intrinsic response of the graphite chamber is nearly independent of tube potential. Although the variation of response with tube potential of the graphite chamber is increased when it is used as an over-table and an under-table patient monitor, it shows less overall variation of response than the VacuDAP. The average deviation of each range of 40 to 140 kVp for both chambers.

  17. Experimental analysis of general ion recombination in a liquid-filled ionization chamber in high-energy photon beams

    SciTech Connect

    Chung, Eunah; Seuntjens, Jan; Davis, Stephen

    2013-06-15

    Purpose: To study experimentally the general ion recombination effect in a liquid-filled ionization chamber (LIC) in high-energy photon beams. Methods: The general ion recombination effect on the response of a micro liquid ion chamber (microLion) was investigated with a 6 MV photon beam in normal and SRS modes produced from a Varian{sup Registered-Sign} Novalis Tx{sup TM} linear accelerator. Dose rates of the linear accelerator were set to 100, 400, and 1000 MU/min, which correspond to pulse repetition frequencies of 60, 240, and 600 Hz, respectively. Polarization voltages applied to the microLion were +800 and +400 V. The relative collection efficiency of the microLion response as a function of dose per pulse was experimentally measured with changing polarization voltage and pulse repetition frequencies and was compared with the theoretically calculated value. Results: For the 60 Hz pulse repetition frequency, the experimental relative collection efficiency was not different from the theoretical one for a pulsed beam more than 0.3% for both polarization voltages. For a pulsed radiation beam with a higher pulse repetition frequency, the experimental relative collection efficiency converged to the theoretically calculated efficiency for continuous beams. This result indicates that the response of the microLion tends toward the response to a continuous beam with increasing pulse repetition frequency of a pulsed beam because of low ion mobility in the liquid. Conclusions: This work suggests an empirical method to correct for differences in general ion recombination of a LIC between different radiation fields. More work is needed to quantitatively explain the LIC general ion recombination behavior in pulsed beams generated from linear accelerators.

  18. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in a Cosmic Simulation Chamber

    NASA Astrophysics Data System (ADS)

    Bejaoui, Salma; Salama, Farid

    2015-08-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs [1, 2]. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions [see 3 for a review]. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser-induced fluorescence (LIF) technique [4] and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examinedReferences[1] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J., 458 (1996) p.621[2] F. Salama, The ISO Revolution, EDP Sciences, Les Ulis, France (1999) p.65[3] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press,4, S251,(2008), p. 357 (2008) and references therein.[4

  19. Experimental determination of the absorbed dose to water in a scanned proton beam using a water calorimeter and an ionization chamber

    NASA Astrophysics Data System (ADS)

    Gagnebin, Solange; Twerenbold, Damian; Pedroni, Eros; Meer, David; Zenklusen, Silvan; Bula, Christian

    2010-03-01

    The absorbed dose to water is the reference physical quantity for the energy absorbed in tissue when exposed to beams of ionizing radiation in radiotherapy. The SI unit of absorbed dose to water is the gray (Gy = 1 J/kg). Ionization chambers are used as the dosimeters of choice in the clinical environment because they show a high reproducibility and are easy to use. However, ionization chambers have to be calibrated in order to convert the measured electrical charge into absorbed dose to water. In addition, protocols require these conversion factors to be SI traceable to a primary standard of absorbed dose to water. We present experimental results where the ionization chamber used for the dosimetry for the scanned proton beam facility at PSI is compared with the direct determination of absorbed dose to water from the METAS primary standard water calorimeter. The agreement of 3.2% of the dose values measured by the two techniques are within their respective statistical uncertainties.

  20. On the interpretation of current-voltage curves in ionization chambers using the exact solution of the Thomson problem

    NASA Astrophysics Data System (ADS)

    Ridenti, M. A.; Pascholati, P. R.; Gonçalves, J. A. C.; Bueno, C. C.

    2015-09-01

    The I - ΔV characteristic curve of a well type ionization chamber irradiated with 192Ir sources (0.75 Ci-120 Ci) was fitted using the exact solution of the Thomson problem. The recombination coefficient and saturation current were estimated using this new approach. The saturation current was compared with the results of the conventional method based on Boag-Wilson formula. It was verified that differences larger than 1% between both methods only occurred at activities higher than 55 Ci. We concluded that this new approach is recommended for a more accurate estimate of the saturation current when it is not possible to measure currents satisfying the condition I /Isat > 0.95. From the calibration curve the average value of pairs of carriers created per unit volume was estimated to be equal to η = 8.1 ×10-3cm-3s-1 Bq-1 and from that value it was estimated that ~ 17 pairs were created on average per second for each decay of the source.

  1. Development of a high-resolution room-temperature compressed-xenon cylindrical ionization-chamber gamma radiation detector

    NASA Astrophysics Data System (ADS)

    Tepper, Gary C.; Losee, Jon R.; Palmer, Robert L.

    1998-07-01

    Highly compressed and purified xenon is emerging as an important detection medium for high resolution, room temperature gamma radiation spectroscopy. Detectors based on compressed xenon offer a unique combination of thermal stability, high energy resolution and large volume. Furthermore, fluid based detectors are not susceptible to radiation damage, and can be constructed in a variety of geometries. However, some important factors have delayed the development of practical xenon detectors for widespread use. These factors include the relatively high operational pressures and voltages and the need to maintain extremely high xenon purity. We have recently developed a 0.7 liter gridded ionization chamber xenon gamma radiation detector in a cylindrical geometry. The detector operates at room temperature and provides an intrinsic energy resolution of 1.8% at 662 keV which is five times greater than scintillation based spectrometers. The detector design and performance variables are discussed in comparison to a previous detector constructed in a planar geometry. Our results indicate that practical xenon detectors can now be developed for a wide variety of applications.

  2. Time-of-flight ERD with a 200 mm2 Si3N4 window gas ionization chamber energy detector

    NASA Astrophysics Data System (ADS)

    Julin, Jaakko; Laitinen, Mikko; Sajavaara, Timo

    2014-08-01

    Low energy heavy ion elastic recoil detection work has been carried out in Jyväskylä since 2009 using home made timing detectors, a silicon energy detector and a timestamping data acquisition setup forming a time-of-flight-energy telescope. In order to improve the mass resolution of the setup a new energy detector was designed to replace the silicon solid state detector, which suffered from radiation damage and had poor resolution for heavy recoils. In this paper the construction and operation of an isobutane filled gas ionization chamber with a 14 × 14 mm2 100 nm thick silicon nitride window are described. In addition to greatly improved energy resolution for heavy ions, the detector is also able to detect hydrogen recoils simultaneously in the energy range of 100-1000 keV. Additionally the detector has position sensitivity by means of timing measurement, which can be performed without compromising the performance of the detector in any other way. The achieved position sensitivity improves the depth resolution near the surface.

  3. A two-dimensional liquid-filled ionization chamber array prototype for small-field verification: characterization and first clinical tests.

    PubMed

    Brualla-González, Luis; Gómez, Faustino; Vicedo, Aurora; González-Castaño, Diego M; Gago-Arias, Araceli; Pazos, Antonio; Zapata, Martín; Roselló, Joan V; Pardo-Montero, Juan

    2012-08-21

    In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ≃ 12% for front versus near-lateral incidence, which can impact the verification of full treatments with different incidences. In such a case, an anisotropy correction factor can be applied. Output factors of small square fields measured with the device show a small systematic over-response, less than 1%, when compared to unshielded diode measurements. An IMRT radiosurgery treatment has been acquired with the liquid-filled ionization chamber device and compared with film dosimetry by using the gamma method, showing good agreement: over 99% passing rates for 1.2% and 1.2 mm for an incidence-per-incidence analysis; 100% passing rates for tolerances 1.8% and 1.8 mm when the whole treatment is analysed and the anisotropy correction factor is applied. The point dose verification for each incidence of the treatment performed with the liquid-filled ionization chamber agrees within 1% with a CC01 ionization chamber. This prototype has shown the utility of this kind of technology for the verification of small fields/treatments. Currently, a larger device covering a 5 cm × 5 cm area is under development. PMID:22850081

  4. Alpha-beta monitoring system based on pair of simultaneous Multi-Wire Proportional Counters

    NASA Astrophysics Data System (ADS)

    Wengrowicz, U.; Amidan, D.; Orion, I.

    2016-08-01

    A new approach for a simultaneous alpha-beta Multi-wire Proportional Counter (MWPC) is presented. The popular approach for alpha-beta monitoring systems consists of a large area MWPC using noble gas flow such as Argon Methane. This method of measurement is effective but requires large-scale and expensive maintenance due to the needs of gas flow control and periodic replacements. In this work, a pair of simultaneous MWPCs for alpha-beta measuring is presented. The developed detector consists of a sealed gas MWPC sensor for beta particles, behind a free air alpha sensor. This approach allows effective simultaneous detection and discrimination of both alpha and beta radiation without the maintenance cost noble gas flow required for unsealed detectors.

  5. Multi-wire slurry wafering demonstrations. [slicing silicon ingots for solar arrays

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1978-01-01

    Ten slicing demonstrations on a multi-wire slurry saw, made to evaluate the silicon ingot wafering capabilities, reveal that the present sawing capabilities can provide usable wafer area from an ingot 1.05m/kg (e.g. kerf width 0.135 mm and wafer thickness 0.265 mm). Satisfactory surface qualities and excellent yield of silicon wafers were found. One drawback is that the add-on cost of producing water from this saw, as presently used, is considerably higher than other systems being developed for the low-cost silicon solar array project (LSSA), primarily because the saw uses a large quantity of wire. The add-on cost can be significantly reduced by extending the wire life and/or by rescue of properly plated wire to restore the diameter.

  6. Gas gain operations with single photon resolution using an integrating ionization chamber in small-angle X-ray scattering experiments

    NASA Astrophysics Data System (ADS)

    Menk, R. H.; Sarvestani, A.; Besch, H. J.; Walenta, A. H.; Amenitsch, H.; Bernstorff, S.

    2000-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. Initially, MicroCAT was thought of as a shielding grid (Frisch-grid) but later was used as an active electron amplification device that enables single X-ray photon resolution measurements at low fluxes even with integrating readout electronics. Moreover, the adjustable gas gain that continuously covers the entire range from pure ionization chamber mode up to high gas gains (30 000 and more) provides stable operation yielding a huge dynamic range of about 10 8 and more. First measurements on biological samples using small angle X-ray scattering techniques with synchrotron radiation will be presented.

  7. Chemical ionization mass spectrometric measurements of SO2 emissions from jet engines in flight and test chamber operations

    NASA Astrophysics Data System (ADS)

    Hunton, D. E.; Ballenthin, J. O.; Borghetti, J. F.; Federico, G. S.; Miller, T. M.; Thorn, W. F.; Viggiano, A. A.; Anderson, B. E.; Cofer, W. R.; McDougal, D. S.; Wey, C. C.

    2000-11-01

    We report the results of two measurements of the concentrations and emission indices of gas-phase sulfur dioxide (EI(SO2)) in the exhaust of an F100-200E turbofan engine. The broad goals of both experiments were to obtain exhaust sulfur speciation and aerosol properties as a function of fuel sulfur content. In the first campaign, an instrumented NASA T-39 Sabreliner aircraft flew in close formation behind several F-16 fighter aircraft to obtain near-field plume composition and aerosol properties. In the second, an F-100 engine of the same type was installed in an altitude test chamber at NASA Glenn Research Center where gas composition and nonvolatile aerosol concentrations and size distributions were obtained at the exit plane of the engine. In both experiments, SO2 concentrations were measured with the Air Force Research Laboratory chemical ionization mass spectrometer as a function of altitude, engine power, and fuel sulfur content. A significant aspect of the program was the use of the same fuels, the same engine type, and many of the same diagnostics in both campaigns. Several different fuels were purchased specifically for these experiments, including high-sulfur Jet A (˜1150 ppmm S), low-sulfur Jet A (˜10 ppmm S), medium-sulfur mixtures of these two fuels, and military JP-8+100 (˜170 and ˜300 ppmm S). The agreement between the flight and test cell measurements of SO2 concentrations was excellent, showing an overall precision of better than ±10% and an estimated absolute accuracy of ±20%. The EI(SO2) varied from 2.49 g SO2/kg fuel for the high-sulfur fuel in the test chamber to less than 0.01 g/kg for the lowest-sulfur fuel. No dependence of emission index on engine power, altitude or simulated altitude, separation distance or plume age, or the presence of contrails was observed. In all experiments the measured EI(SO2) was consistent with essentially all of the fuel sulfur appearing as gas-phase SO2 in the exhaust. However, accurate determination of S

  8. Comparison of depth-dose distributions of proton therapeutic beams calculated by means of logical detectors and ionization chamber modeled in Monte Carlo codes

    NASA Astrophysics Data System (ADS)

    Pietrzak, Robert; Konefał, Adam; Sokół, Maria; Orlef, Andrzej

    2016-08-01

    The success of proton therapy depends strongly on the precision of treatment planning. Dose distribution in biological tissue may be obtained from Monte Carlo simulations using various scientific codes making it possible to perform very accurate calculations. However, there are many factors affecting the accuracy of modeling. One of them is a structure of objects called bins registering a dose. In this work the influence of bin structure on the dose distributions was examined. The MCNPX code calculations of Bragg curve for the 60 MeV proton beam were done in two ways: using simple logical detectors being the volumes determined in water, and using a precise model of ionization chamber used in clinical dosimetry. The results of the simulations were verified experimentally in the water phantom with Marcus ionization chamber. The average local dose difference between the measured relative doses in the water phantom and those calculated by means of the logical detectors was 1.4% at first 25 mm, whereas in the full depth range this difference was 1.6% for the maximum uncertainty in the calculations less than 2.4% and for the maximum measuring error of 1%. In case of the relative doses calculated with the use of the ionization chamber model this average difference was somewhat greater, being 2.3% at depths up to 25 mm and 2.4% in the full range of depths for the maximum uncertainty in the calculations of 3%. In the dose calculations the ionization chamber model does not offer any additional advantages over the logical detectors. The results provided by both models are similar and in good agreement with the measurements, however, the logical detector approach is a more time-effective method.

  9. Large area neutron detector based on Li6 ionization chamber with integrated body-moderator of high density polyethylene

    SciTech Connect

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Chung, Kiwhan; Makela, Mark F.

    2009-06-30

    A detector was developed and funded by DHS to be a lower cost alternative to 3He detectors. A 6Li foil-lined ionization chamber was prepared with fill gas at one atmosphere and pulse mode operation. The high-density polyethylene (HOPE) body serves also as a neutron moderator. All electrodes, including high voltage bias supply, are hermetically sealed within the plastic slabs.

  10. Measurement of absorbed dose-to-water for an HDR {sup 192}Ir source with ionization chambers in a sandwich setup

    SciTech Connect

    Araki, Fujio; Kouno, Tomohiro; Ohno, Takeshi; Kakei, Kiyotaka; Yoshiyama, Fumiaki; Kawamura, Shinji

    2013-09-15

    Purpose: In this study, a dedicated device for ion chamber measurements of absorbed dose-to-water for a Nucletron microSelectron-v2 HDR {sup 192}Ir brachytherapy source is presented. The device uses two ionization chambers in a so-called sandwich assembly. Using this setup and by taking the average reading of the two chambers, any dose error due to difficulties in absolute positioning (centering) of the source in between the chambers is cancelled to first order. The method's accuracy was examined by comparing measurements with absorbed dose-to-water determination based on the AAPM TG-43 protocol.Methods: The optimal source-to-chamber distance (SCD) for {sup 192}Ir dosimetry was determined from ion chamber measurements in a water phantom. The {sup 192}Ir source was sandwiched between two Exradin A1SL chambers (0.057 cm{sup 3}) at the optimal SCD separation. The measured ionization was converted to the absorbed dose-to-water using a {sup 60}Co calibration factor and a Monte Carlo-calculated beam quality conversion factor, k{sub Q}, for {sup 60}Co to {sup 192}Ir. An uncertainty estimate of the proposed method was determined based on reproducibility of measurements at different institutions for the same type of source.Results: The optimal distance for the A1SL chamber measurements was determined to be 5 cm from the {sup 192}Ir source center, considering the depth dependency of k{sub Q} for {sup 60}Co to {sup 192}Ir and the chamber positioning. The absorbed dose to water measured at (5 cm, 90°) on the transverse axis was 1.3% lower than TG-43 values and its reproducibility and overall uncertainty were 0.8% and 1.7%, respectively. The measurement doses at anisotropic points agreed within 1.5% with TG-43 values.Conclusions: The ion chamber measurement of absorbed dose-to-water with a sandwich method for the {sup 192}Ir source provides a more accurate, direct, and reference dose compared to the dose-to-water determination based on air-kerma strength in the TG-43 protocol

  11. SU-E-T-561: Development of Depth Dose Measurement Technique Using the Multilayer Ionization Chamber for Spot Scanning Method

    SciTech Connect

    Takayanagi, T; Fujitaka, S; Umezawa, M; Ito, Y; Nakashima, C; Matsuda, K

    2014-06-01

    Purpose: To develop a measurement technique which suppresses the difference between profiles obtained with a multilayer ionization chamber (MLIC) and with a water phantom. Methods: The developed technique multiplies the raw MLIC data by a correction factor that depends on the initial beam range and water equivalent depth. The correction factor is derived based on a Bragg curve calculation formula considering range straggling and fluence loss caused by nuclear reactions. Furthermore, the correction factor is adjusted based on several integrated depth doses measured with a water phantom and the MLIC. The measured depth dose profiles along the central axis of the proton field with a nominal field size of 10 by 10 cm were compared between the MLIC using the new technique and the water phantom. The spread out Bragg peak was 20 cm for fields with a range of 30.6 cm and 6.9 cm. Raw MLIC data were obtained with each energy layer, and integrated after multiplying by the correction factor. The measurements were performed by a spot scanning nozzle at Nagoya Proton Therapy Center, Japan. Results: The profile measured with the MLIC using the new technique is consistent with that of the water phantom. Moreover, 97% of the points passed the 1% dose /1mm distance agreement criterion of the gamma index. Conclusion: We have demonstrated that the new technique suppresses the difference between profiles obtained with the MLIC and with the water phantom. It was concluded that this technique is useful for depth dose measurement in proton spot scanning method.

  12. SU-D-213-04: Accounting for Volume Averaging and Material Composition Effects in An Ionization Chamber Array for Patient Specific QA

    SciTech Connect

    Fugal, M; McDonald, D; Jacqmin, D; Koch, N; Ellis, A; Peng, J; Ashenafi, M; Vanek, K

    2015-06-15

    Purpose: This study explores novel methods to address two significant challenges affecting measurement of patient-specific quality assurance (QA) with IBA’s Matrixx Evolution™ ionization chamber array. First, dose calculation algorithms often struggle to accurately determine dose to the chamber array due to CT artifact and algorithm limitations. Second, finite chamber size and volume averaging effects cause additional deviation from the calculated dose. Methods: QA measurements were taken with the Matrixx positioned on the treatment table in a solid-water Multi-Cube™ phantom. To reduce the effect of CT artifact, the Matrixx CT image set was masked with appropriate materials and densities. Individual ionization chambers were masked as air, while the high-z electronic backplane and remaining solid-water material were masked as aluminum and water, respectively. Dose calculation was done using Varian’s Acuros XB™ (V11) algorithm, which is capable of predicting dose more accurately in non-biologic materials due to its consideration of each material’s atomic properties. Finally, the exported TPS dose was processed using an in-house algorithm (MATLAB) to assign the volume averaged TPS dose to each element of a corresponding 2-D matrix. This matrix was used for comparison with the measured dose. Square fields at regularly-spaced gantry angles, as well as selected patient plans were analyzed. Results: Analyzed plans showed improved agreement, with the average gamma passing rate increasing from 94 to 98%. Correction factors necessary for chamber angular dependence were reduced by 67% compared to factors measured previously, indicating that previously measured factors corrected for dose calculation errors in addition to true chamber angular dependence. Conclusion: By comparing volume averaged dose, calculated with a capable dose engine, on a phantom masked with correct materials and densities, QA results obtained with the Matrixx Evolution™ can be significantly

  13. Long-term stability of liquid ionization chambers with regard to their qualification as local reference dosimeters for low dose-rate absorbed dose measurements in water.

    PubMed

    Bahar-Gogani, J; Grindborg, J E; Johansson, B E; Wickman, G

    2001-03-01

    The long-term sensitivity and calibration stability of liquid ionization chambers (LICs) has been studied at a local and a secondary standards dosimetry laboratory over a period of 3 years. The chambers were transported several times by mail between the two laboratories for measurements. The LICs used in this work are designed for absorbed dose measurements in the dose rate region of 0.1-100 mGy min(-1) and have a liquid layer thickness of 1 mm and a sensitive volume of 16.2 mm3. The liquids used as sensitive media in the chambers are mixtures of isooctane (C8H18) and tetramethylsilane (Si(CH3)4) in different proportions (about 2 to 1). Operating at a polarizing voltage of 300 V the leakage current of the chambers was stable and never exceeded 3% of the observable current at a dose rate of about 1 mGy min(-1). The volume sensitivity of the chambers was measured to be of the order of 10(-9) C Gy(-1) mm3. No systematic changes in the absorbed dose to water calibration was observed for any of the chambers during the test period (sigma < 0.2%). Variations in chamber dose response with small changes in the polarizing voltage as well as sensitivity changes with accumulated absorbed dose were also investigated. Measurements showed that the LIC response varies by 0.15% per 1% change in applied voltage around 300 V. No significant change could be observed in the LIC sensitivity after a single absorbed dose of 15 kGy. The results indicate that the LIC can be made to serve as a calibration transfer instrument and a reference detector for absorbed dose to water determinations providing good precision and long-term reproducibility. PMID:11277221

  14. Monte Carlo simulations and benchmark measurements on the response of TE(TE) and Mg(Ar) ionization chambers in photon, electron and neutron beams

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chun; Huang, Tseng-Te; Liu, Yuan-Hao; Chen, Wei-Lin; Chen, Yen-Fu; Wu, Shu-Wei; Nievaart, Sander; Jiang, Shiang-Huei

    2015-06-01

    The paired ionization chambers (ICs) technique is commonly employed to determine neutron and photon doses in radiology or radiotherapy neutron beams, where neutron dose shows very strong dependence on the accuracy of accompanying high energy photon dose. During the dose derivation, it is an important issue to evaluate the photon and electron response functions of two commercially available ionization chambers, denoted as TE(TE) and Mg(Ar), used in our reactor based epithermal neutron beam. Nowadays, most perturbation corrections for accurate dose determination and many treatment planning systems are based on the Monte Carlo technique. We used general purposed Monte Carlo codes, MCNP5, EGSnrc, FLUKA or GEANT4 for benchmark verifications among them and carefully measured values for a precise estimation of chamber current from absorbed dose rate of cavity gas. Also, energy dependent response functions of two chambers were calculated in a parallel beam with mono-energies from 20 keV to 20 MeV photons and electrons by using the optimal simple spherical and detailed IC models. The measurements were performed in the well-defined (a) four primary M-80, M-100, M120 and M150 X-ray calibration fields, (b) primary 60Co calibration beam, (c) 6 MV and 10 MV photon, (d) 6 MeV and 18 MeV electron LINACs in hospital and (e) BNCT clinical trials neutron beam. For the TE(TE) chamber, all codes were almost identical over the whole photon energy range. In the Mg(Ar) chamber, MCNP5 showed lower response than other codes for photon energy region below 0.1 MeV and presented similar response above 0.2 MeV (agreed within 5% in the simple spherical model). With the increase of electron energy, the response difference between MCNP5 and other codes became larger in both chambers. Compared with the measured currents, MCNP5 had the difference from the measurement data within 5% for the 60Co, 6 MV, 10 MV, 6 MeV and 18 MeV LINACs beams. But for the Mg(Ar) chamber, the derivations reached 7

  15. Absolute dose measurements by means of a small cylindrical ionization chamber for very high dose per pulse high energy electron beams

    SciTech Connect

    Karaj, E.; Righi, S.; Di Martino, F.

    2007-03-15

    Very high dose per pulse (3-13 cGy/pulse) high energy electron beams are currently produced by special linear accelerators (linac) dedicated to Intra Operative Radiation Therapy (IORT). The electron beams produced by such linacs are collimated by special Perspex applicators of various size and cylindrically shaped. The biggest problems from the dosimetric point of view are caused by the high dose-per-pulse values and the use of inclined applicators. In this work measurements of absolute dose for the inclined applicators were done by using a small cylindrical ionization chamber, type CC01 (Wellhofer), a parallel plane ionization chamber type Markus (PTW 23343) and radiochromic films type EBT. We show a method which allows calculating the quality correction factors for CC01 chamber with an uncertainty of 1% and the absolute dose value for the inclined applicators using CC01 with an uncertainty of 3.1% for electron beams of energy of 6 and 7 MeV produced by the linac dedicated to IORT Novac7.

  16. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields.

    PubMed

    Brede, H J; Greif, K-D; Hecker, O; Heeg, P; Heese, J; Jones, D T L; Kluge, H; Schardt, D

    2006-08-01

    Absolute dose measurements with a transportable water calorimeter and ionization chambers were performed at a water depth of 20 mm in four different types of radiation fields, for a collimated (60)Co photon beam, for a collimated neutron beam with a fluence-averaged mean energy of 5.25 MeV, for collimated proton beams with mean energies of 36 MeV and 182 MeV at the measuring position, and for a (12)C ion beam in a scanned mode with an energy per atomic mass of 430 MeV u(-1). The ionization chambers actually used were calibrated in units of air kerma in the photon reference field of the PTB and in units of absorbed dose to water for a Farmer-type chamber at GSI. The absorbed dose to water inferred from calorimetry was compared with the dose derived from ionometry by applying the radiation-field-dependent parameters. For neutrons, the quantities of the ICRU Report 45, for protons the quantities of the ICRU Report 59 and for the (12)C ion beam, the recommended values of the International Atomic Energy Agency (IAEA) protocol (TRS 398) were applied. The mean values of the absolute absorbed dose to water obtained with these two independent methods agreed within the standard uncertainty (k = 1) of 1.8% for calorimetry and of 3.0% for ionometry for all types and energies of the radiation beams used in this comparison. PMID:16861773

  17. (18)F primary standard at ENEA-INMRI by three absolute techniques and calibration of a well-type IG11 ionization chamber.

    PubMed

    Capogni, Marco; Carconi, Pierluigi; De Felice, Pierino; Fazio, Aldo

    2016-03-01

    A new (18)F primary standardization carried out at ENEA-INMRI by three different absolute techniques, i.e. 4πγNaI(Tl)γ high-efficiency counting, TDCR and 4πβ(LS)-γ[NaI(Tl)] coincidence counting method, allowed the calibration of a fixed well-reentrant IG11 ionization chamber (IC), with an uncertainty lower than 1%, and to check the calibration factor of a portable well-type IC NPL-CRC model, previously calibrated. By the new standard the ENEA-INMRI was linked to the BIPM International Reference System (SIR) through the BIPM SIR Transfer Instrument (SIRTI). PMID:26774395

  18. Instantaneous and continuous measurement of /sup 14/C-labeled substrate oxidation to /sup 14/CO2 by minute tissue specimens: an ionization chamber method

    SciTech Connect

    Davidson, W.D.; Klein, K.L.; Kurokawa, K.; Soll, A.H.

    1981-06-01

    The vibrating reed electrometer and ionization chamber have been adapted for the instantaneous and continuous measurement of /sup 14/C-labeled substrate oxidation to /sup 14/CO2 by minute quantities of isolated tissues. This modified technique, utilizing a ''closed'' circulation incubation system, is 10-50 times as sensitive as the previously described ''open'' circulation techniques. Substrate oxidation curves are described for human erythrocytes and polymorphonuclear leucocytes, canine parietal cells and isolated segments of the rat nephron. This apparatus should prove to be a useful tool for metabolic studies of small quantities of isolated tissue.

  19. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    SciTech Connect

    Groetz, J.-E. Mavon, C.; Fromm, M.; Ounoughi, N.; Belafrites, A.

    2014-08-15

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  20. Direct measurement of absorbed dose to water in HDR {sup 192}Ir brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43

    SciTech Connect

    Sarfehnia, Arman; Kawrakow, Iwan; Seuntjens, Jan

    2010-04-15

    Purpose: Gafchromic film and ionometric calibration procedures for HDR {sup 192}Ir brachytherapy sources in terms of dose rate to water are presented and the experimental results are compared to the TG-43 protocol as well as with the absolute dose measurement results from a water calorimetry-based primary standard. Methods: EBT-1 Gafchromic films, an A1SL Exradin miniature Shonka thimble type chamber, and an SI HDR 1000 Plus well-type chamber (Standard Imaging, Inc., Middleton, WI) with an ADCL traceable S{sub k} calibration coefficient (following the AAPM TG-43 protocol) were used. The Farmer chamber and Gafchromic film measurements were performed directly in water. All results were compared to direct and absolute absorbed dose to water measurements from a 4 deg. C stagnant water calorimeter. Results: Based on water calorimetry, the authors measured the dose rate to water to be 361{+-}7 {mu}Gy/(h U) at a 55 mm source-to-detector separation. The dose rate normalized to air-kerma strength for all the techniques agree with the water calorimetry results to within 0.83%. The overall 1-sigma uncertainty on water calorimetry, ionization chamber, Gafchromic film, and TG-43 dose rate measurement amounts to 1.90%, 1.44%, 1.78%, and 2.50%, respectively. Conclusions: This work allows us to build a more realistic uncertainty estimate for absorbed dose to water determination using the TG-43 protocol. Furthermore, it provides the framework necessary for a shift from indirect HDR {sup 192}Ir brachytherapy dosimetry to a more accurate, direct, and absolute measurement of absorbed dose to water.

  1. Dosimetry for electron Intra-Operative RadioTherapy: Comparison of output factors obtained through alanine/EPR pellets, ionization chamber and Monte Carlo-GEANT4 simulations for IORT mobile dedicate accelerator

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria

    2015-09-01

    In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus

  2. Dependence of charge collection distributions and dose on the gas type filling the ionization chamber for a p(66)Be(49) clinical neutron beam

    SciTech Connect

    Awschalom, M.; Haken, R.K.T.

    1985-01-01

    Measurements of central axis depth charge distributions (CADCD) in a p(66)Be(49) clinical neutron beam using A-150 TE plastic ionization chambers (IC) have shown that these distributions are dependent on the gas type filling the ICs. IC volumes from 0.1 to 8 cm/sup 3/ and nine different gases were investigated. Off axis ratios and build-up measurements do not seem to be as sensitive to gas type. The gas dosimetry constants given in the AAPM Protocol for Neutron Beam Dosimetry for air and methane based TE gases were tested for consistency in water and in TE solution filled phantoms at depths of 10 cm, when used in conjunction with an IC having 5 mm thick walls of A-150. 29 refs., 7 figs., 1 tab.

  3. The FiR 1 photon beam model adjustment according to in-air spectrum measurements with the Mg(Ar) ionization chamber.

    PubMed

    Koivunoro, H; Schmitz, T; Hippeläinen, E; Liu, Y-H; Serén, T; Kotiluoto, P; Auterinen, I; Savolainen, S

    2014-06-01

    The mixed neutron-photon beam of FiR 1 reactor is used for boron-neutron capture therapy (BNCT) in Finland. A beam model has been defined for patient treatment planning and dosimetric calculations. The neutron beam model has been validated with an activation foil measurements. The photon beam model has not been thoroughly validated against measurements, due to the fact that the beam photon dose rate is low, at most only 2% of the total weighted patient dose at FiR 1. However, improvement of the photon dose detection accuracy is worthwhile, since the beam photon dose is of concern in the beam dosimetry. In this study, we have performed ionization chamber measurements with multiple build-up caps of different thickness to adjust the calculated photon spectrum of a FiR 1 beam model. PMID:24588987

  4. Comparison of dosimeter response: ionization chamber, TLD, and Gafchromic EBT2 film in 3D-CRT, IMRT, and SBRT techniques for lung cancer

    NASA Astrophysics Data System (ADS)

    Fitriandini, A.; Wibowo, W. E.; Pawiro, S. A.

    2016-03-01

    This research was conducted by measuring point dose in the target area (lungs), heart, and spine using four dosimeters (PTW N30013, Exradin A16, TLD, and the Gafchromic EBT2 film). The measurement was performed in CIRS 002LFC thorax phantom. The main objective of this study was to compare the dosimetry of those different systems. Dose measurements performed only in a single fraction of irradiation. The measurements result shown that TLD has the least accuracy and precision. As the effect of volume averaging, ionization chamber reaches the discrepancy value up to -13.30% in the target area. EBT2 film has discrepancy value of <1% in the 3D-CRT and IMRT techniques. This dosimeter is proposed to be an appropriate alternative dosimeter to be used at point dose verification.

  5. Characterization of radiation beams used to determinate the correction factor for a CyberKnife® unit reference field using ionization chambers

    SciTech Connect

    Aragón-Martínez, Nestor Massillon-JL, Guerda; Gómez-Muñoz, Arnulfo

    2014-11-07

    This paper aimed to characterize a 6 MV x-ray beam from a Varian® iX linear accelerator in order to obtain the correction factors needed by the IAEA/AAPM new formalism{sup 1}. The experiments were performed in a liquid water phantom under different irradiation conditions: a) Calibration of the reference field of 10 cm × 10 cm at 90 cm SSD and 10 cm depth was carried out according to the TRS-398 protocol using three ionization chambers (IC) calibrated in different reference laboratory and b) Measurement of the absorbed dose rate at 70 cm SSD and 10 cm depth in a 10 cm × 10 cm and 5.4 cm × 5.4 cm fields was obtained in order to simulate the CyberKnife® conditions where maximum distance between the source and the detector is equal to 80 cm and the maximum field size is 6 cm diameter. Depending where the IC was calibrated, differences between 0.16% and 2.24% in the absorbed dose rate measured in the 10 cm × 10 cm field at 90 cm SSD were observed, while for the measurements at 70 cm SSD, differences between 1.27% and 3.88% were obtained. For the 5.4 cm × 5.4 cm field, the absorbed dose measured with the three ICs varies between 1.37% and 3.52%. The increase in the difference on the absorbed dose when decreasing the SSD could possibly be associated to scattering radiation generated from the collimators and/or the energy dependence of the ionization chambers to low-energy radiation. The results presented in this work suggest the importance of simulating the CyberKnife® conditions using other linear accelerator for obtaining the correction factors as proposed by the IAEA/AAPM new formalism in order to measure the absorbed dose with acceptable accuracy.

  6. Characterization of radiation beams used to determinate the correction factor for a CyberKnife® unit reference field using ionization chambers

    NASA Astrophysics Data System (ADS)

    Aragón-Martínez, Nestor; Gómez-Muñoz, Arnulfo; Massillon-JL, Guerda

    2014-11-01

    This paper aimed to characterize a 6 MV x-ray beam from a Varian® iX linear accelerator in order to obtain the correction factors needed by the IAEA/AAPM new formalism1. The experiments were performed in a liquid water phantom under different irradiation conditions: a) Calibration of the reference field of 10 cm × 10 cm at 90 cm SSD and 10 cm depth was carried out according to the TRS-398 protocol using three ionization chambers (IC) calibrated in different reference laboratory and b) Measurement of the absorbed dose rate at 70 cm SSD and 10 cm depth in a 10 cm × 10 cm and 5.4 cm × 5.4 cm fields was obtained in order to simulate the CyberKnife® conditions where maximum distance between the source and the detector is equal to 80 cm and the maximum field size is 6 cm diameter. Depending where the IC was calibrated, differences between 0.16% and 2.24% in the absorbed dose rate measured in the 10 cm × 10 cm field at 90 cm SSD were observed, while for the measurements at 70 cm SSD, differences between 1.27% and 3.88% were obtained. For the 5.4 cm × 5.4 cm field, the absorbed dose measured with the three ICs varies between 1.37% and 3.52%. The increase in the difference on the absorbed dose when decreasing the SSD could possibly be associated to scattering radiation generated from the collimators and/or the energy dependence of the ionization chambers to low-energy radiation. The results presented in this work suggest the importance of simulating the CyberKnife® conditions using other linear accelerator for obtaining the correction factors as proposed by the IAEA/AAPM new formalism in order to measure the absorbed dose with acceptable accuracy.

  7. Reference dosimetry at the Australian Synchrotron's imaging and medical beamline using free-air ionization chamber measurements and theoretical predictions of air kerma rate and half value layer

    SciTech Connect

    Crosbie, Jeffrey C.; Rogers, Peter A. W.; Stevenson, Andrew W.; Hall, Christopher J.; Lye, Jessica E.; Nordstroem, Terese; Midgley, Stewart M.; Lewis, Robert A.

    2013-06-15

    Purpose: Novel, preclinical radiotherapy modalities are being developed at synchrotrons around the world, most notably stereotactic synchrotron radiation therapy and microbeam radiotherapy at the European Synchrotron Radiation Facility in Grenoble, France. The imaging and medical beamline (IMBL) at the Australian Synchrotron has recently become available for preclinical radiotherapy and imaging research with clinical trials, a distinct possibility in the coming years. The aim of this present study was to accurately characterize the synchrotron-generated x-ray beam for the purposes of air kerma-based absolute dosimetry. Methods: The authors used a theoretical model of the energy spectrum from the wiggler source and validated this model by comparing the transmission through copper absorbers (0.1-3.0 mm) against real measurements conducted at the beamline. The authors used a low energy free air ionization chamber (LEFAC) from the Australian Radiation Protection and Nuclear Safety Agency and a commercially available free air chamber (ADC-105) for the measurements. The dimensions of these two chambers are different from one another requiring careful consideration of correction factors. Results: Measured and calculated half value layer (HVL) and air kerma rates differed by less than 3% for the LEFAC when the ion chamber readings were corrected for electron energy loss and ion recombination. The agreement between measured and predicted air kerma rates was less satisfactory for the ADC-105 chamber, however. The LEFAC and ADC measurements produced a first half value layer of 0.405 {+-} 0.015 and 0.412 {+-} 0.016 mm Cu, respectively, compared to the theoretical prediction of 0.427 {+-} 0.012 mm Cu. The theoretical model based upon a spectrum calculator derived a mean beam energy of 61.4 keV with a first half value layer of approximately 30 mm in water. Conclusions: The authors showed in this study their ability to verify the predicted air kerma rate and x-ray attenuation

  8. Measurements of miniature ionization chamber currents in the JSI TRIGA Mark II reactor demonstrate the importance of the delayed contribution to the photon field in nuclear reactors

    NASA Astrophysics Data System (ADS)

    Radulović, Vladimir; Fourmentel, Damien; Barbot, Loïc; Villard, Jean-François; Kaiba, Tanja; Gašper, Žerovnik; Snoj, Luka

    2015-12-01

    The characterization of experimental locations of a research nuclear reactor implies the determination of neutron and photon flux levels within, with the best achievable accuracy. In nuclear reactors, photon fluxes are commonly calculated by Monte Carlo simulations but rarely measured on-line. In this context, experiments were conducted with a miniature gas ionization chamber (MIC) based on miniature fission chamber mechanical parts, recently developed by the CEA (French Atomic Energy and Alternative Energies Commission) irradiated in the core of the Jožef Stefan Institute TRIGA Mark II reactor in Ljubljana, Slovenia. The aim of the study was to compare the measured MIC currents with calculated currents based on simulations with the MCNP6 code. A discrepancy of around 50% was observed between the measured and the calculated currents; in the latter taking into consideration only the prompt photon field. Further experimental measurements of MIC currents following reactor SCRAMs (reactor shutdown with rapid insertions of control rods) provide evidence that over 30% of the total measured signal is due to the delayed photon field, originating from fission and activation products, which are untreated in the calculations. In the comparison between the measured and calculated values, these findings imply an overall discrepancy of less than 20% of the total signal which is still unexplained.

  9. Derivation of a formula describing the saturation correction of plane-parallel ionization chambers in pulsed fields with arbitrary repetition rate

    NASA Astrophysics Data System (ADS)

    Karsch, Leonhard

    2016-04-01

    Gas-filled ionization chambers are widely used radiation detectors in radiotherapy. A quantitative description and correction of the recombination effects exists for two cases, for continuous radiation exposure and for pulsed radiation fields with short single pulses. This work gives a derivation of a formula for pulsed beams with arbitrary pulse rate for which the prerequisites of the two existing descriptions are not fulfilled. Furthermore, an extension of the validity of the two known cases is investigated. The temporal evolution of idealized charge density distributions within a plane parallel chamber volume is described for pulsed beams of vanishing pulse duration and arbitrary pulse repetition rate. First, the radiation induced release, movement and collection of the charge carriers without recombination are considered. Then, charge recombination is calculated basing on these simplified charge distributions and the time dependent spatial overlap of positive and negative charge carrier distributions. Finally, a formula for the calculation of the saturation correction factor is derived by calculation and simplification of the first two terms of a Taylor expansion for small recombination. The new formula of saturation correction contains the two existing cases, descriptions for exposure by single pulses and continuous irradiation, as limiting cases. Furthermore, it is possible to determine the pulse rate range for which each of the three descriptions is applicable by comparing the dependencies of the new formula with the two existing cases. As long as the time between two pulses is lower than one third of the collection time of the chamber, the formalism for a continuous exposure can be used. The known description for single pulse irradiation is only valid if the repetition rate is less than 1.2 times the inverse collection time. For all other repetition rates in between the new formula should be used. The experimental determination by Jaffe diagrams can be

  10. Homolytic Reactive Mass Spectrometry of Fullerenes: Peculiarities of the Reactions of C60 with Aromatic Compounds in the Ionization Chambers of Mass Spectrometers and in Solution

    NASA Astrophysics Data System (ADS)

    Lyakhovetsky, Yury I.; Shilova, Elena A.; Belokon, Alexander I.; Panz, Larisa I.; Tumanskii, Boris L.

    2013-04-01

    C60 reacted with PhH, PhCl, BnH, BnNH2, and o-C2H2B10H10 in the electron impact (EI) ion source of a mass spectrometer at 300 °C forming phenyl, benzyl, and o-carboranyl adducts, respectively, stabilized by hydrogen addition and loss. Besides, the additions to C60 of methyl and phenyl radicals for toluene, and a phenyl radical for benzylamine were observed. A homolytic reaction mechanism was suggested involving the reaction of the radicals formed from the aromatics under EI with C60 at the ionization chamber walls. While the ion/molecule reaction of C60 with benzene performed by Sun et al. under chemical ionization conditions at 200 °C afforded the complex C60•PhH+•, quite a different isomer, HC60Ph+•, was detected in the present study as a sequence of the different reaction mechanisms. C60 also reacted with benzyl bromide in the laser desorption/ionization (LDI) source of a mass spectrometer to give C60CPh+. Phenyl and benzyl derivatives of C60 were found, respectively, when the reactions of the fullerene with PhCl, BnH, and BnBr were performed in solution under ultra violet irradiation. For the reaction with toluene, the strong chemically induced dynamic electron polarization of the intermediate benzylfullerenyl radical with the reverse phase effect was found. The coincidence of the results of the mass spectrometry and solution reactions of C60 with aromatics, even though incomplete, additionally supports the hypothesis, formulated earlier, that the former results can predict the latter ones to a significant extent and shows that this conclusion is valid for both EI and LDI initiated reactions in mass spectrometers.

  11. Assaying multiple 125I seeds with the well-ionization chamber SourceCheck4π 33005 and a new insert

    PubMed Central

    Ballester, Facundo; Perez-Calatayud, Jose; Vijande, Javier

    2015-01-01

    Purpose To provide a practical solution that can be adopted in clinical routine to fulfill the AAPM-ESTRO recommendations regarding quality assurance of seeds used in prostate permanent brachytherapy. The aim is to design a new insert for the well-ionization chamber SourceCheck4π 33005 (PTW, Germany) that allows evaluating the mean air-kerma strength of up to ten 125I seeds with one single measurement instead of measuring each seed individually. Material and methods The material required is: a) the SourceCheck4π 33005 well-ionization chamber provided with a PTW insert to measure the air-kerma strength S K of one single seed at a time; b) a newly designed insert that accommodates ten seeds in one column, which allows measuring the mean S K of the ten seeds in one single measurement; and c) a container with ten seeds from the same batch and class of the seeds used for the patient implant, and a set of nine non-radioactive seeds. The new insert is characterized by determining its calibration coefficient, used to convert the reading of the well-chamber when ten seeds are measured to their mean S K. The proposed method is validated by comparing the mean S K of the ten seeds obtained from the new insert with the individual measurement of S K of each seed, evaluated with the PTW insert. Results The ratio between the calibration coefficient of the new insert and the calibration coefficient of the PTW insert for the SourceCheck4π 33005 is 1.135 ± 0.007 (k = 1). The mean S K of a set of ten seeds evaluated with this new system is in agreement with the mean value obtained from measuring independently the S K of each seed. Conclusions The new insert and procedure allow evaluating the mean S K of ten seeds prior to the implant in a single measurement. The method is faster and more efficient from radiation protection point of view than measuring the individual S K of each seed. PMID:26816507

  12. The development of new devices for accurate radiation dose measurement: A guarded liquid ionization chamber and an electron sealed water calorimeter

    NASA Astrophysics Data System (ADS)

    Stewart, Kristin J.

    In this work we developed two new devices that aim to improve the accuracy of relative and reference dosimetry for radiation therapy: a guarded liquid ionization chamber (GLIC) and an electron sealed water (ESW) calorimeter. With the GLIC we aimed to develop a perturbation-free energy-independent detector with high spatial resolution for relative dosimetry. We achieved sufficient stability for short-term measurements using the GLIC-03, which has a sensitive volume of approximately 2 mm3. We evaluated ion recombination in pulsed photon beams using a theoretical model and also determined a new empirical method to correct for relative differences in general recombination which could be used in cases where the theoretical model was not applicable. The energy dependence of the GLIC-03 was 1.1% between 6 and 18 MV photon beams. Measurements in the build-up region of an 18 MV beam indicated that this detector produces minimal perturbation to the radiation field and confirmed the validity of the empirical recombination correction. The ESW calorimeter was designed to directly measure absorbed dose to water in clinical electron beams. We obtained reproducible measurements for 6 to 20 MeV beams. We determined corrections for perturbations to the radiation field caused by the glass calorimeter vessel and for conductive heat transfer due to the dose gradient and non-water materials. The overall uncertainty on the ESW calorimeter dose was 0.5% for the 9 to 20 MeV beams and 1.0% for 6 MeV, showing for the first time that the development of a water-calorimeter-based standard for electron beams over a wide range of energies is feasible. Comparison between measurements with the ESW calorimeter and the NRC photon beam standard calorimeter in a 6 MeV beam revealed a discrepancy of 0.7+/-0.2% which is still under investigation. Absorbed-dose beam quality conversion factors in electron beams were measured using the ESW calorimeter for the Exradin A12 and PTW Roos ionization chambers

  13. Comparison of the response of a NaI scintillation crystal with a pressurized ionization chamber as a function of altitude, radiation level and Ra-226 concentration

    SciTech Connect

    Provencher, R.; Smith, G.; Borak, T.B.; Kearney, P.

    1986-01-01

    The Grand Junction Uranium Mill Tailings Remedial Action-Radiological Survey Activities Group (UMTRA-RASA) program employs a screening method in which external exposure rates are used to determine if a property contaminated with uranium mill tailings is eligible for remedial action. Portable NaI detectors are used by survey technicians to locate contaminated areas and determine exposure rates. The exposure rate is calculated using a regression equation derived from paired measurements made with a pressurized ionization chamber (PIC) and a NaI detector. During July of 1985 extensive measurements were taken using a PIC and a NaI scintillator with both analogue and digital readout for a wide range of exposure rates and at a variety of elevations. The surface soil was sampled at most of these locations and analyzed for /sup 226/Ra. The response of the NaI detectors was shown to be highly correlated to radiation level but not to /sup 226/Ra concentration or elevation.

  14. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  15. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    SciTech Connect

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R.; Hong-Nian Jow

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm{sup 3} thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm{sup 3} active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response.

  16. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE PAGESBeta

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm−3 s, corresponding to approximately 1.0 to 7.5 daysmore » of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  17. The effect of a compression paddle on energy response, calibration and measurement with mammographic dosimeters using ionization chambers and solid-state detectors

    NASA Astrophysics Data System (ADS)

    Hourdakis, C. J.; Boziari, A.; Koumbouli, E.

    2009-02-01

    A compression paddle is always used in mammography x-ray examinations, in order to improve image quality and reduce patient doses. Although clinical dose measurements should be performed with the paddle to interfere with the x-ray beam, calibration of mammography dosimeters is performed free in air without the presence of the paddle. The paddle hardens the x-ray beam, which has an impact on a dosimeter performance, particularly on high-energy-dependent detectors. Due to the paddle, clinical mammography x-ray systems may exhibit beams with HVL values exceeding those of the IEC 61267 RQR-M series qualities at which dosimeters are usually calibrated. In this study, the influence of the paddle in mammography dosimetry is examined, in Mo/Mo anode/filter x-ray qualities. PMMA slabs of 1, 2 and 3 mm thickness and Al foils of 0.05, 0.10 and 0.15 mm thicknesses were used to simulate the paddles, producing beams with HVL values from 0.28 up to 0.43 mmAl. In these qualities, four solid-state (ST) detectors and three ionizations chambers (IC) were calibrated in terms of Kair and NK and kQ were deduced. The results showed that all IC and two modern-type ST dosimeters have a flat energy response in the above HVL range (less than 3%), so their calibration factor at RQR-M2 quality could be safely used for clinical measurements. Two other ST dosimeters exhibit up to 20% energy response, so differences up to 15% in dose measurement may be observed if the effect of paddle on their performance is ignored. Finally, the need of additional mammographic calibration qualities to the existing IEC 61267 RQR-M series is examined and discussed.

  18. The effect of a compression paddle on energy response, calibration and measurement with mammographic dosimeters using ionization chambers and solid-state detectors.

    PubMed

    Hourdakis, C J; Boziari, A; Koumbouli, E

    2009-02-21

    A compression paddle is always used in mammography x-ray examinations, in order to improve image quality and reduce patient doses. Although clinical dose measurements should be performed with the paddle to interfere with the x-ray beam, calibration of mammography dosimeters is performed free in air without the presence of the paddle. The paddle hardens the x-ray beam, which has an impact on a dosimeter performance, particularly on high-energy-dependent detectors. Due to the paddle, clinical mammography x-ray systems may exhibit beams with HVL values exceeding those of the IEC 61267 RQR-M series qualities at which dosimeters are usually calibrated. In this study, the influence of the paddle in mammography dosimetry is examined, in Mo/Mo anode/filter x-ray qualities. PMMA slabs of 1, 2 and 3 mm thickness and Al foils of 0.05, 0.10 and 0.15 mm thicknesses were used to simulate the paddles, producing beams with HVL values from 0.28 up to 0.43 mmAl. In these qualities, four solid-state (ST) detectors and three ionizations chambers (IC) were calibrated in terms of Kair and N(K) and k(Q) were deduced. The results showed that all IC and two modern-type ST dosimeters have a flat energy response in the above HVL range (less than 3%), so their calibration factor at RQR-M2 quality could be safely used for clinical measurements. Two other ST dosimeters exhibit up to 20% energy response, so differences up to 15% in dose measurement may be observed if the effect of paddle on their performance is ignored. Finally, the need of additional mammographic calibration qualities to the existing IEC 61267 RQR-M series is examined and discussed. PMID:19168939

  19. Isobar separation of 93Zr and 93Nb at 24 MeV with a new multi-anode ionization chamber

    NASA Astrophysics Data System (ADS)

    Martschini, Martin; Buchriegler, Josef; Collon, Philippe; Kutschera, Walter; Lachner, Johannes; Lu, Wenting; Priller, Alfred; Steier, Peter; Golser, Robin

    2015-10-01

    93Zr with a half-life of 1.6 Ma is produced with high yield in nuclear fission, and thus should be present as a natural or anthropogenic trace isotope in all compartments of the general environment. Sensitive measurements of this isotope would immediately find numerous applications, however, its detection at sufficiently low levels has not yet been achieved. AMS measurements of 93Zr suffer from the interference of the stable isobar 93Nb. At the Vienna Environmental Research Accelerator VERA a new multi-anode ionization chamber was built. It is optimized for isobar separation in the medium mass range and is based on the experience from AMS experiments of 36Cl at our 3-MV tandem accelerator facility. The design provides high flexibility in anode configuration and detector geometry. After validating the excellent energy resolution of the detector with 36S, it was recently used to study iron-nickel and zirconium-niobium-molybdenum isobar separation. To our surprise, the separation of 94Zr (Z = 40) from 94Mo (Z = 42) was found to be much better than that of 58Fe (Z = 26) from 58Ni (Z = 28), despite the significantly larger ΔZ/Z of the latter pair. This clearly contradicts results from SRIM-simulations and suggests that differences in the stopping behavior may unexpectedly favor identification of 93Zr. At 24 MeV particle energy, a 93Nb (Z = 41) suppression factor of 1000 is expected based on a synthetic 93Zr spectrum obtained by interpolation between experimental spectra from the two neighboring stable isotopes 92Zr and 94Zr. Assuming realistic numbers for chemical niobium reduction, a detection level of 93Zr/Zr below 10-9 seems feasible.

  20. Flow chamber

    DOEpatents

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  1. Accuracy of the electron transport in mcnp5 and its suitability for ionization chamber response simulations: A comparison with the egsnrc and penelope codes

    SciTech Connect

    Koivunoro, Hanna; Siiskonen, Teemu; Kotiluoto, Petri; Auterinen, Iiro; Hippelaeinen, Eero; Savolainen, Sauli

    2012-03-15

    Purpose: In this work, accuracy of the mcnp5 code in the electron transport calculations and its suitability for ionization chamber (IC) response simulations in photon beams are studied in comparison to egsnrc and penelope codes. Methods: The electron transport is studied by comparing the depth dose distributions in a water phantom subdivided into thin layers using incident energies (0.05, 0.1, 1, and 10 MeV) for the broad parallel electron beams. The IC response simulations are studied in water phantom in three dosimetric gas materials (air, argon, and methane based tissue equivalent gas) for photon beams ({sup 60}Co source, 6 MV linear medical accelerator, and mono-energetic 2 MeV photon source). Two optional electron transport models of mcnp5 are evaluated: the ITS-based electron energy indexing (mcnp5{sub ITS}) and the new detailed electron energy-loss straggling logic (mcnp5{sub new}). The electron substep length (ESTEP parameter) dependency in mcnp5 is investigated as well. Results: For the electron beam studies, large discrepancies (>3%) are observed between the mcnp5 dose distributions and the reference codes at 1 MeV and lower energies. The discrepancy is especially notable for 0.1 and 0.05 MeV electron beams. The boundary crossing artifacts, which are well known for the mcnp5{sub ITS}, are observed for the mcnp5{sub new} only at 0.1 and 0.05 MeV beam energies. If the excessive boundary crossing is eliminated by using single scoring cells, the mcnp5{sub ITS} provides dose distributions that agree better with the reference codes than mcnp5{sub new}. The mcnp5 dose estimates for the gas cavity agree within 1% with the reference codes, if the mcnp5{sub ITS} is applied or electron substep length is set adequately for the gas in the cavity using the mcnp5{sub new}. The mcnp5{sub new} results are found highly dependent on the chosen electron substep length and might lead up to 15% underestimation of the absorbed dose. Conclusions: Since the mcnp5 electron

  2. SU-E-T-552: Monte Carlo Calculation of Correction Factors for a Free-Air Ionization Chamber in Support of a National Air-Kerma Standard for Electronic Brachytherapy

    SciTech Connect

    Mille, M; Bergstrom, P

    2015-06-15

    Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or current can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure that dose

  3. Calorimetric determination of kQ factors for NE 2561 and NE 2571 ionization chambers in 5 cm × 5 cm and 10 cm × 10 cm radiotherapy beams of 8 MV and 16 MV photons

    NASA Astrophysics Data System (ADS)

    Krauss, Achim; Kapsch, Ralf-Peter

    2007-10-01

    The relative uncertainty of the ionometric determination of the absorbed dose to water, Dw, in the reference dosimetry of high-energy photon beams is in the order of 1.5% and is dominated by the uncertainty of the calculated chamber- and energy-dependent correction factors kQ. In the present investigation, kQ values were determined experimentally in 5 cm × 5 cm and 10 cm × 10 cm radiotherapy beams of 8 MV and 16 MV bremsstrahlung by means of a water calorimeter operated at 4 °C. Ionization chambers of the types NE 2561 and NE 2571 were calibrated directly in the water phantom of the calorimeter. The measurements were carried out at the linear accelerator of the Physikalisch-Technische Bundesanstalt. It is shown that the kQ factor of a single ionization chamber can be measured with a standard uncertainty of less than 0.3%. No significant variations of kQ were found for the different lateral sizes of the radiation fields used in this investigation.

  4. Practical method for determination of air kerma by use of an ionization chamber toward construction of a secondary X-ray field to be used in clinical examination rooms.

    PubMed

    Maehata, Itsumi; Hayashi, Hiroaki; Kimoto, Natsumi; Takegami, Kazuki; Okino, Hiroki; Kanazawa, Yuki; Tominaga, Masahide

    2016-07-01

    We propose a new practical method for the construction of an accurate secondary X-ray field using medical diagnostic X-ray equipment. For accurate measurement of the air kerma of an X-ray field, it is important to reduce and evaluate the contamination rate of scattered X-rays. To determine the rate quantitatively, we performed the following studies. First, we developed a shield box in which an ionization chamber could be set at an inner of the box to prevent detection of the X-rays scattered from the air. In addition, we made collimator plates which were placed near the X-ray source for estimation of the contamination rate by scattered X-rays from the movable diaphragm which is a component of the X-ray equipment. Then, we measured the exposure dose while changing the collimator plates, which had diameters of 25-90 mm(ϕ). The ideal value of the exposure dose was derived mathematically by extrapolation to 0 mm(ϕ). Tube voltages ranged from 40 to 130 kV. Under these irradiation conditions, we analyzed the contamination rate by the scattered X-rays. We found that the contamination rates were less than 1.7 and 2.3 %, caused by air and the movable diaphragm, respectively. The extrapolated value of the exposure dose has been determined to have an uncertainty of 0.7 %. The ionization chamber used in this study was calibrated with an accuracy of 5 %. Using this kind of ionization chamber, we can construct a secondary X-ray field with an uncertainty of 5 %. PMID:26994011

  5. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  6. Measurements of neutron-induced fission cross-sections of 205Tl, 204,206,207,208Pb and 209Bi with a multi-section Frisch-gridded ionization chamber

    NASA Astrophysics Data System (ADS)

    Ryzhov, I. V.; Tutin, G. A.; Mitryukhin, A. G.; Oplavin, V. S.; Soloviev, S. M.; Blomgren, J.; Renberg, P.-U.; Meulders, J. P.; El Masri, Y.; Keutgen, Th.; Prieels, R.; Nolte, R.

    2006-06-01

    Neutron-induced fission cross-sections of 205Tl, 204,206,207,208Pb and 209Bi have been measured in the energy range from 30 to 180 MeV. The measurements were performed with quasi-monoenergetic neutron beams using a multi-section Frisch-gridded ionization chamber. The neutron-induced fission cross-sections of 238U were used as reference data. The experimental techniques are described in detail as well as the data processing. The results are compared with existing experimental data.

  7. SU‐C‐105‐05: Reference Dosimetry of High‐Energy Electron Beams with a Farmer‐Type Ionization Chamber

    SciTech Connect

    Muir, B; Rogers, D

    2013-06-15

    Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber in high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.

  8. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  9. Proton beam monitor chamber calibration.

    PubMed

    Gomà, C; Lorentini, S; Meer, D; Safai, S

    2014-09-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences-of the order of 3%-were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth-i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers-rather than cylindrical chambers-for the reference dosimetry of pseudo-monoenergetic proton beams. PMID:25109620

  10. SU-E-T-625: Use and Choice of Ionization Chambers for the Commissioning of Flattened and Flattening-Filter-Free Photon Beams: Determination of Recombination Correction Factor (ks)

    SciTech Connect

    Stucchi, C; Mongioj, V; Carrara, M; Pignoli, E; Bonfantini, F; Bresolin, A

    2014-06-15

    Purpose: To evaluate the recombination effect for some ionization chambers to be used for linacs commissioning for Flattened Filter (FF) and Flattening Filter Free (FFF) photon beams. Methods: A Varian TrueBeam linac with five photon beams was used: 6, 10 and 15 MV FF and 6 and 10 MV FFF. Measurements were performed in a water tank and in a plastic water phantom with different chambers: a mini-ion chamber (IC CC01, IBA), a plane-parallel ion chamber (IC PPC05, IBA) and two Farmer chambers (NE2581 and FPC05-IBA). Measurement conditions were Source- Surface Distance of 100 cm, two field sizes (10x10 and 40x40 cm2) and five depths (1cm, maximum buildup, 5cm, 10cm and 20cm). The ion recombination factors (kS), obtained from the Jaffe's plots (voltage interval 50-400 V), were evaluated at the recommended operating voltage of +300V. Results: Dose Per Pulse (DPP) at dmax was 0.4 mGy/pulse for FF beams, 1.0 mGy/pulse and 1.9 mGy/pulse for 6MV and 10 MV FFF beams respectively. For all measurement conditions, kS ranged between 0.996 and 0.999 for IC PPC05, 0.997 and 1.008 for IC CC01. For the FPC05 IBA Farmer IC, kS varied from 1.001 to 1.011 for FF beams, from 1.004 to 1.015 for 6 MV FFF and from 1.009 to 1.025 for 10 MV FFF. Whereas, for NE2581 IC the values ranged from 1.002 to 1.009 for all energy beams and measurement conditions. Conclusion: kS depends on the chamber volume and the DPP, which in turn depends on energy beam but is independent of dose rate. Ion chambers with small active volume can be reliably used for dosimetry of FF and FFF beams even without kS correction. On the contrary, for absolute dosimetry of FFF beams by Farmer ICs it is necessary to evaluate and apply the kS correction. Partially supported by Lega Italiana Lotta contro i Tumori (LILT)

  11. Exposure chamber

    DOEpatents

    Moss, Owen R.; Briant, James K.

    1983-01-01

    An exposure chamber includes an imperforate casing having a fluid inlet at the top and an outlet at the bottom. A single vertical series of imperforate trays is provided. Each tray is spaced on all sides from the chamber walls. Baffles adjacent some of the trays restrict and direct the flow to give partial flow back and forth across the chambers and downward flow past the lowermost pan adjacent a central plane of the chamber.

  12. Study and full simulation of ten different gases on sealed Multi-Wire Proportional Counter (MWPC) by using Garfield and Maxwell codes.

    PubMed

    Shohani, M Ebrahimi; Golgoun, S M; Aminipour, M; Shabani, A; Mazoochi, A R; Akbari, R Maghsoudi; Mohammadzadeh, M; Davarpanah, M R; Sardari, D; Sadeghi, M; Mofrad, F Babapour; Jafari, A

    2016-09-01

    In this research gas sealed Multi-Wire Proportional Counter (MWPC) including blades between anode wires and beta particles of (90)Sr with 196keV mean energy were considered. Ten different gases such as Noble gases mixtures with methane and several other pure gases were studied. In this type of detector, by using Garfield and Maxwell codes and for each of the gases, variation of different parameters such as first Townsend, electron attachment coefficients with variable electric field and their effects on pulse height or collected charge and in turn on Signal to Noise Ratio (SNR) were studied. Also the effect of anode voltage and its diameter and the pressure of gas on the pulse height were studied. Results show that Garfield and Maxwell codes can be used to study and improve the design of other gaseous detectors. PMID:27451113

  13. SU-E-T-96: Demonstration of a Consistent Method for Correcting Surface Dose Measurements Using Both Solid State and Ionization Chamber Detectors

    SciTech Connect

    Reynolds, T; Gerbi, B; Higgins, P

    2014-06-01

    Purpose: To compare the surface dose (SD) measured using a PTW 30-360 extrapolation chamber with different commonly used dosimeters (Ds): parallel plate ion chambers (ICs): RMI-449 (Attix), Capintec PS-033, PTW 30-329 (Markus) and Memorial; TLD chips (cTLD), TLD powder (pTLD), optically stimulated (OSLs), radiochromic (EXR2) and radiographic (EDR2) films, and to provide an intercomparison correction to Ds for each of them. Methods: Investigations were performed for a 6 MV x-ray beam (Varian Clinac 2300, 10x10 cm{sup 2} open field, SSD = 100 cm). The Ds were placed at the surface of the solid water phantom and at the reference depth dref=1.7cm. The measurements for cTLD, OSLs, EDR2 and EXR2 were corrected to SD using an extrapolation method (EM) indexed to the baseline PTW 30-360 measurements. A consistent use of the EM involved: 1) irradiation of three Ds stacked on top of each other on the surface of the phantom; 2) measurement of the relative dose value for each layer; and, 3) extrapolation of these values to zero thickness. An additional measurement was performed with externally exposed OSLs (eOSLs), that were rotated out of their protective housing. Results: All single Ds measurements overestimated the SD compared with the extrapolation chamber, except for Attix IC. The closest match to the true SD was measured with the Attix IC (− 0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EXR2 (14%), EDR2 (14.8%) and OSL (26%). The EM method of correction for SD worked well for all Ds, except the unexposed OSLs. Conclusion: This EM cross calibration of solid state detectors with an extrapolation or Attix chamber can provide thickness corrections for cTLD, eOSLs, EXR2, and EDR2. Standard packaged OSLs were not found to be simply corrected.

  14. SU-E-P-35: Real-Time Patient Transit Dose Verification of Volumetric Modulated Arc Radiotherapy by a 2D Ionization Chamber Array

    SciTech Connect

    Liu, X

    2015-06-15

    Purpose: To explore the real-time dose verification method in volumetric modulated arc radiotherapy (VMAT) with a 2D array ion chamber array. Methods: The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source-detector distance (SDD)was 140cm. 8mm RW3 solid water was added to the detector panel to achieve maximum readings.The patient plans for esophageal, prostate and liver cancers were selected to deliver on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real-time patient transit dose measurements were performed at each fraction. Dose distributions wereevaluated using gamma index criteria of 3mm DTA and 3% dose difference referred to the firsttime Result. Results: The gamma index pass rate in the Cheese phantom were about 98%; The gamma index pass rate for esophageal, liver and prostate cancer patient were about 92%,94%, and 92%, respectively; Gamma pass rate for all single fraction were more than 90%. Conclusion: The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.

  15. Application of FIGAERO (Filter Inlet for Gases and AEROsol) coupled to a high resolution time of flight chemical ionization mass spectrometer to field and chamber organic aerosol: Implications for carboxylic acid formation and gas-particle partitioning from monoterpene oxidation

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Wildt, J.; Thornton, J. A.

    2013-12-01

    We present measurements of a large suite of gas and particle phase carboxylic acid containing compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. A prototype operated with acetate negative ion proton transfer chemistry was deployed on the Julich Plant Atmosphere Chamber to study a-pinene oxidation, and a modified version was deployed at the SMEAR II forest station in Hyytiälä, Finland and SOAS, in Brent Alabama. We focus here on results from JPAC and Hyytiälä, where we utilized the same ionization method most selective towards carboxylic acids. In all locations, 100's of organic acid compounds were observed in the gas and particles and many of the same composition acids detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. Particulate organics detected by FIGAERO are highly correlated with organic aerosol mass measured by an AMS, providing additional volatility and molecular level information about collected aerosol. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. Moreover the detailed structure in the thermal desorption signals reveals a contribution from thermal decomposition of large molecular weight organics and or oligomers with implications for partitioning measurements and model validation

  16. Laboratory chamber experiments exploring the potential use of artificially ionized layers of gas as a Bragg reflector for over-the-horizon signals

    NASA Astrophysics Data System (ADS)

    Kuo, S. P.; Zhang, Y. S.; Lee, M. C.; Kossey, Paul; Barker, Robert J.

    1992-12-01

    A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependence of the breakdown conditions on the pressure and pulse length is examined. The results are shown to be consistent with the appearance of tail erosion of microwave pulse caused by air breakdown. Bragg scattering experiments, using the plasma layers as a Bragg reflector are then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory. Moreover, the time domain measurement of wave scattering provides an unambiguous way for determining the temporal evolution of electron density during the first 100-microsec period.

  17. Laboratory chamber experiments exploring the potential use of artificially ionized layers of gas as a Bragg reflector for over-the-horizon signals

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.; Lee, M. C.; Kossey, Paul; Barker, Robert J.

    1992-01-01

    A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependence of the breakdown conditions on the pressure and pulse length is examined. The results are shown to be consistent with the appearance of tail erosion of microwave pulse caused by air breakdown. Bragg scattering experiments, using the plasma layers as a Bragg reflector are then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory. Moreover, the time domain measurement of wave scattering provides an unambiguous way for determining the temporal evolution of electron density during the first 100-microsec period.

  18. Calibration of the RSS-131 high efficiency ionization chamber for radiation dose monitoring during plasma experiments conducted on plasma focus device

    NASA Astrophysics Data System (ADS)

    Szewczak, Kamil; Jednoróg, Sławomir

    2014-10-01

    Plasma research poses a radiation hazard. Due to the program of deuterium plasma research using the PF-1000 device, it is an intensive source of neutrons (up to 1011 n · pulse -1) with energy of 2,45 MeV and ionizing electromagnetic radiation with a broad energy spectrum. Both types of radiation are mostly emitted in ultra-short pulses (˜100 ns). The aim of this work was to test and calibrate the RSS-131 radiometer for its application in measurements of ultra-short electromagnetic radiation pulses with broad energy spectrum emitted during PF-1000 discharge. In addition, the results of raw measurements performed in the control room are presented.

  19. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  20. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  1. CONTINUOUSLY SENSITIVE BUBBLE CHAMBER

    DOEpatents

    Good, R.H.

    1959-08-18

    A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.

  2. A new construction technique of high granularity and high transparency drift chambers for modern high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Chiarello, G.; Chiri, C.; Corvaglia, A.; Grancagnolo, F.; Miccoli, A.; Panareo, M.; Pepino, A.; Pinto, C.; Primiceri, P.; Spedicato, M.; Tassielli, G. F.

    2016-07-01

    Modern experiments for the search of extremely rare processes require high resolutions (order of 50-200 keV/c) tracking systems for particle momenta in the range of 50-300 MeV/c, dominated by multiple scattering contributions. We will present a newly developed construction technique for ultra-low mass Drift Chambers fulfilling this goal. It consists of (1) a semiautomatic wiring machine with a high degree of control over wire mechanical tensioning (better than 0.2 g) and over wire positioning (of the order of 20 μm) for simultaneous wiring of multi-wire layers; (2) a contact-less IR laser soldering tool designed for a feed-through-less wire anchoring system; (3) an automatic handling system for storing and transporting the multi-wire layers to be placed over the drift chamber end-plates. These techniques have been successfully implemented at INFN-Lecce and University of Salento and are currently being used for the construction of Drift Chamber of the MEG (μ → eγ) upgrade experiment.

  3. Multisegmented ion chamber for CT scanner dosimetry

    SciTech Connect

    Moore, M.M.; Cacak, R.K.; Hendee, W.R.

    1981-01-01

    A multisegmented, ionization chamber capable of determining dosimetric profiles from a CT scanner has been developed and tested. The chamber consists of a number of 2 mm wide electrically isolated segments from which ionization currents may be measured. Presented here are the performance characteristics of the chamber including energy response, dose linearity, and corrections for ''cross talk'' between segments. Sample dosimetric profiles are depicted for 3 and 6 mm nominal beam widths at two locations in a dosimetric phantom positioned in the x-ray beam of a fourth generation CT scanner. The results agree well with the conventional method of obtaining dosimetry measurements with TLD chips.

  4. Magma chambers

    NASA Technical Reports Server (NTRS)

    Marsh, Bruce D.

    1989-01-01

    Recent observational and theoretical investigations of terrestrial magma chambers (MCs) are reviewed. Consideration is given to the evidence for MCs with active convection and crystal sorting, problems of direct MC detection, theoretical models of MC cooling, the rheology and dynamics of solidification fronts, crystal capture and differentiation, convection with solidification, MC wall flows, and MC roof melting. Diagrams, graphs, and a list of problems requiring further research are provided.

  5. New standards for ionizing radiation measurements

    SciTech Connect

    Lamperti, P.J.; Johnson, C.M.

    1995-12-31

    The Ionizing Radiation Division has developed new national standards for mammographic X rays and for brachytherapy sources, such as iodine-125. The Attix chamber, a variable volume free-air ionization chamber, has been established as the primary national standard for mammographic X rays. The Attix chamber resides in the newly developed NIST Mammography Calibration Range and will be used to perform routine calibrations. The wide-angle free-air ionization chamber utilizes a large volume and a novel electric field configuration in order to circumvent the limitations of conventional free-air chambers. Seventeen beam qualities for X rays from molybdenum (Mo) and rhodium (Rh) anodes have been parameterized for the calibration of mammographic ionization chambers. The beam qualities available include anode/filter combinations of Mo/Mo, Mo/Rh and Rh/Rh. The mammography range was developed in collaborations with the U.S. Food and Drug Administration`s (FDA) Center for Devices and Radiological Health, the implementors of the Mammography Quality Standards Act (MQSA) of 1992. The wide-angle free-air ionization chamber has been used to measure the output of two types of iodine-125 seeds, those with resin balls and those with silver wire. Both free-air chambers have been intercompared with the Ritz parallel-plate free-air ionization chamber.

  6. Changes in left ventricular function as determined by the multi-wire gamma camera at near presyncopal levels of lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Pintner, R.; Fortney, S.; Mulvagh, S.; Lacy, J.

    1992-01-01

    At presyncopal levels of lower body negative pressure (LBNP), we have frequently observed electrocardiographic responses that may be due to changes in cardiac position and/or shape, but could be indicative of altered myocardial function. To further investigate this, we evaluated cardiac function using a nuclear imaging technique in 21 healthy subjects (17 men and 4 women) after 30 minutes of supine rest and near the end of a presyncopal-limited LBNP exposure (LBNP averaged 65 plus or minus 3 mmHg at injection). Cardiac first pass images were obtained with a Multi-Wire Gamma Camera following an intravenous bolus injection of 30-50 millicurries of Tantalum-178. Manual blood pressures and electrocardiograms were obtained throughout the 3 minute graded LBNP protocol. Between rest and injection during LBNP, heart rate increased (P less than 0.01) from 67 plus or minus 3 beats per minute to 99 plus or minus beats per minute, systolic blood pressure decreased (P less than 0.01) from 110 plus or minus 3 mmHg to 107 plus or minus 3 mmHg and left ventricular ejection fraction (EF) decreased (P less than 0.01) from 0.57 plus or minus 0.02 to 0.48 plus or minus 0.02. During LBNP, ST segment depression of at least 0.5 mm occurred in 7 subjects. Subjects with ST depression had greater reductions (P = 0.05) in EF than subjects without ST depression (0.15 plus or minus 0.07 versus 0.005 plus or minus 0.03), but also tolerated greater levels (P less than 0.05) of negative pressure (88 plus or minus mmHg versus 69 plus or minus 5 mmHg). There was a significant relationship between presyncopal LBNP level and EF (R(exp 2) = 0.50, P less than 0.05). Our findings suggest there may be a decrease in systolic myocardial function at high levels of LBNP.

  7. High-efficiency electron ionizer for a mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Darrach, Murray R. (Inventor); Orient, Otto J. (Inventor)

    2001-01-01

    The present invention provides an improved electron ionizer for use in a quadrupole mass spectrometer. The improved electron ionizer includes a repeller plate that ejects sample atoms or molecules, an ionizer chamber, a cathode that emits an electron beam into the ionizer chamber, an exit opening for excess electrons to escape, at least one shim plate to collimate said electron beam, extraction apertures, and a plurality of lens elements for focusing the extracted ions onto entrance apertures.

  8. SπRIT: A time-projection chamber for symmetry-energy studies

    NASA Astrophysics Data System (ADS)

    Shane, R.; McIntosh, A. B.; Isobe, T.; Lynch, W. G.; Baba, H.; Barney, J.; Chajecki, Z.; Chartier, M.; Estee, J.; Famiano, M.; Hong, B.; Ieki, K.; Jhang, G.; Lemmon, R.; Lu, F.; Murakami, T.; Nakatsuka, N.; Nishimura, M.; Olsen, R.; Powell, W.; Sakurai, H.; Taketani, A.; Tangwancharoen, S.; Tsang, M. B.; Usukura, T.; Wang, R.; Yennello, S. J.; Yurkon, J.

    2015-06-01

    A time-projection chamber (TPC) called the SAMURAI Pion-Reconstruction and Ion-Tracker (SπRIT) has recently been constructed at Michigan State University as part of an international effort to constrain the symmetry-energy term in the nuclear Equation of State (EoS). The SπRIT TPC will be used in conjunction with the SAMURAI spectrometer at the Radioactive Isotope Beam Factory (RIBF) at RIKEN to measure yield ratios for pions and other light isospin multiplets produced in central collisions of neutron-rich heavy ions, such as 132Sn+124Sn. The SπRIT TPC can function both as a TPC detector and as an active target. It has a vertical drift length of 50 cm, parallel to the magnetic field. Gas multiplication is achieved through the use of a multi-wire anode plane. Image charges, produced in the 12096 pads, are read out with the recently developed Generic Electronics for TPCs.

  9. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  10. Liquid argon Time Projection Chamber

    SciTech Connect

    Doe, P.J.; Mahler, H.J.; Chen, H.H.

    1984-01-01

    The principal features of the liquid argon TPC are outlined and the status of development efforts, particularly at UCI, are discussed. Technical problems associated with liquid TPC's are: the liquid must be maintained at a high level of purity to enable long distance drifting of ionization electrons, and the signal size is small due to the absence of practical charge multiplication as found in gas chambers. These problems have been largely resolved in studies using small (1 to 100 l) detectors, thus allowing a realistic consideration of the physics potential of such devices.

  11. Right/left assignment in drift chambers and proportional multiwire chambers (PWC's) using induced signals

    DOEpatents

    Walenta, Albert H.

    1979-01-01

    Improved multiwire chamber having means for resolving the left/right ambiguity in the location of an ionizing event. The chamber includes a plurality of spaced parallel anode wires positioned between spaced planar cathodes. Associated with each of the anode wires are a pair of localizing wires, one positioned on either side of the anode wire. The localizing wires are connected to a differential amplifier whose output polarity is determined by whether the ionizing event occurs to the right or left of the anode wire.

  12. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, Scott A.; Glish, Gary L.

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  13. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  14. High pressure multiwire proportional and gas microstrip chambers for medical radiology

    NASA Astrophysics Data System (ADS)

    Babichev, E. A.; Baru, S. E.; Khabakhpashev, A. G.; Kolachev, G. M.; Neustroev, V. V.; Pestov, Yu. N.; Ponomarev, O. A.; Savinov, G. M.; Shekhtman, L. I.; Martinez-Davalos, A.; Speller, R. D.; Miller, D. J.

    1995-02-01

    Application of MultiWire Proportional Chambers (MWPC) and MicroStrip Gas Chambers (MSGC) in medical radiography is discussed. These detectors are capable of detecting X-rays in counting mode with high efficiency, thus giving essential dose reduction compared to film/screen techniques. This was demonstrated on several Digital Radiographic Devices (DRD) with one-dimensional MWPC and scanning in the orthogonal direction. Effective pixel sizes of 1 mm and 0.5 mm for different devices with highly parallel readout systems has been achieved. The counting rate capability of DRDs is ˜ 500 kHz/pixel, which is enough to get high statistics of X-rays with a short exposure. Dose saving factors from 1 to 2 orders of magnitude for several common examinations were demonstrated. Further development of this approach can be made with MSGC which reproduce operation of MWPC in a much smaller scale. First tests of prototype chambers with 200 μm pitch of strips at high pressure have shown the possibility to reach a gain of ˜ 10 4 in a 6 bar Xe mixture. A proper choice of substrate material permits one to avoid charging problems at high fluxes. These features allow, one to build a counting device with 0.2 mm pixels for the detection of X-rays of 20-60 keV.

  15. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  16. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  17. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  18. Poster — Thur Eve — 24: Commissioning and preliminary measurements using an Attix-style free air ionization chamber for air kerma measurements on the BioMedical Imaging and Therapy beamlines at the Canadian Light Source

    SciTech Connect

    Anderson, D; McEwen, M; Shen, H; Siegbahn, EA; Fallone, BG; Warkentin, B

    2014-08-15

    Synchrotron facilities, including the Canadian Light Source (CLS), provide opportunities for the development of novel imaging and therapy applications. A vital step progressing these applications toward clinical trials is the availability of accurate dosimetry. In this study, a refurbished Attix-style (cylindrical) free air chamber (FAC) is tested and used for preliminary air kerma measurements on the two BioMedical Imaging and Therapy (BMIT) beamlines at the CLS. The FAC consists of a telescoping chamber that relies on a difference measurement of collected charge in expanded and collapsed configurations. At the National Research Council's X-ray facility, a Victoreen Model 480 FAC was benchmarked against two primary standard FACs. The results indicated an absolute accuracy at the 0.5% level for energies between 60 and 150 kVp. A series of measurements were conducted on the small, non-uniform X-ray beams of the 05B1-1 (∼8 – 100 keV) and 05ID-2 (∼20 – 200 keV) beamlines for a variety of energies, filtrations and beam sizes. For the 05B1-1 beam with 1.1 mm of Cu filtration, recombination corrections of less than 5 % could only be achieved for field sizes no greater than 0.5 mm × 0.6 mm (corresponding to an air kerma rate of ∼ 57 Gy/min). Ionic recombination thus presents a significant challenge to obtaining accurate air kerma rate measurements using this FAC in these high intensity beams. Future work includes measurements using a smaller aperture to sample a smaller and thus more uniform beam area, as well as experimental and Monte Carlo-based investigation of correction factors.

  19. Comment on 'Proton beam monitor chamber calibration'.

    PubMed

    Palmans, Hugo; Vatnitsky, Stanislav M

    2016-09-01

    We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961-71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ionization chamber in the experimental determination of the number of protons per monitor unit. It is further claimed that similar discrepancies between calorimetry and ionization chamber based dosimetry indicate that [Formula: see text]-values tabulated for proton beams in IAEA TRS-398 might be overestimated. In this commentary we show, however, that this supporting argument misrepresents the evidence in the literature and that the results presented, together with published data, rather confirm that there exist unresolved problems with Faraday cup dosimetry. We also show that the comparison in terms of the number of protons gives a biased view on the uncertainty estimates for both detectors while the quantity of interest is absorbed dose to water or dose-area-product to water, even if a beam monitor is calibrated in terms of the number of protons. Gomà et al (2014 Phys. Med. Biol. 59 4961-71) also report on the discrepancy between cylindrical and plane-parallel ionization chambers and confirm experimentally that in the presence of a depth dose gradient, theoretical values of the effective point of measurement, or alternatively a gradient correction factor, account for the discrepancy. We believe this does not point to an error or shortcoming of IAEA TRS-398, which prescribes taking the centre of cylindrical ionization chambers as reference point, since it recommends reference dosimetry to be performed in the absence of a depth dose gradient. But these observations reveal that important aspects of beam monitor calibration in scanned proton beams are not addressed in IAEA TRS-398 given that those types of beams were not widely implemented at the time of its publication

  20. New plasma source based on contact ionization

    SciTech Connect

    Schrittwieser, R.; Koslover, R.; Karim, R.; Rynn, N.

    1985-07-01

    A new type of plasma source is presented: A collisionless plasma is formed by producing ions on one end and electrons on the other of a cylindrical vacuum chamber in a solenoidal magnetic field. The ions are produced by contact ionization of potassium on tungsten. The source of electrons is a LaB/sub 6/ plate. In the usual single-ended Q machine the elements rhenium, iridium, and platinum are tested as ionizing metals for potassium and barium.

  1. The emulsion chamber technology experiment

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.

  2. The Mobile Chamber

    NASA Technical Reports Server (NTRS)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  3. Target chambers for gammashpere

    SciTech Connect

    Carpenter, M.P.; Falout, J.W.; Nardi, B.G.

    1995-08-01

    One of our responsibilities for Gammasphere, was designing and constructing two target chambers and associated beamlines to be used with the spectrometer. The first chamber was used with the early implementation phase of Gammasphere, and consisted of two spun-Al hemispheres welded together giving a wall thickness of 0.063 inches and a diameter of 12 inches.

  4. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  5. Static diffusion cloud chambers

    NASA Technical Reports Server (NTRS)

    Ayers, G.

    1981-01-01

    The chamber geometry and optical arrangement are described. The supersaturation range is given and consists of readings taken at five fixed points: 0.25%, 0.5%, 0.75%, 1.0%, and 1.25%. The detection system is described including light source, cameras, and photocell detectors. The temperature control and the calibration of the chamber are discussed.

  6. 45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), VIEW LOOKING EAST. LEAD ENCLOSED PIPING IS DRAIN FROM BOILER CHAMBER No. 1 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  7. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  8. The Mars Chamber

    NASA Video Gallery

    The Mars chamber is a box about the size of a refrigerator that re-creates the temperatures, pressures, and atmosphere of the Martian surface, essentially creating a Mars environment on Earth! Scie...

  9. Sleeve reaction chamber system

    SciTech Connect

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  10. Reply to comment on 'Proton beam monitor chamber calibration'.

    PubMed

    Gomà, Carles; Lorentini, Stefano; Meer, David; Safai, Sairos

    2016-09-01

    This reply shows that the discrepancy of about 3% between Faraday cup dosimetry and reference dosimetry using a cylindrical ionization chamber found in Gomà (2014 Phys. Med. Biol. 59 4961-71) seems to be due to an overestimation of the beam quality correction factors tabulated in IAEA TRS-398 for the cylindrical chamber used, rather than to 'unresolved problems with Faraday cup dosimetry', as suggested by Palmans and Vatnitsky (2016 Phys. Med. Biol. 61 6585-93). Furthermore, this work shows that a good agreement between reference dosimetry and Faraday cup dosimetry is possible, provided accurate beam quality correction factors for proton beams are used. The review on W air values presented by Palmans and Vatnitsky is believed to be inaccurate, as it is based on the imprecise assumption of ionization chamber perturbation correction factors in proton beams being equal to unity. PMID:27535895