Sample records for multi-wire proportional counter

  1. Experimental results from an X-ray imaging crystal spectrometer utilizing multi-wire proportional counter for KSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. G., E-mail: sglee@nfri.re.kr; Kim, Y. S.; Yoo, J. W.

    2016-11-15

    The inconsistency of the first experimental results from the X-ray imaging crystal spectrometer for the Korea Superconducting Tokamak Advanced Research device utilizing a multi-wire proportional counter (MWPC) is clarified after improving the photon-count rate of the data acquisition system for the MWPC and ground loop isolator for the whole spectrometer system. The improved MWPC is successfully applied to pure Ohmic plasmas as well as plasmas with high confinement modes.

  2. A suspended boron foil multi-wire proportional counter neutron detector

    NASA Astrophysics Data System (ADS)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-01

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 μm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the 10B(n,α)7Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal-neutron detection efficiency for enriched 10B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  3. Position-sensitive proportional counter with low-resistance metal-wire anode

    DOEpatents

    Kopp, Manfred K.

    1980-01-01

    A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).

  4. Multi-anode wire two dimensional proportional counter for detecting Iron-55 X-Ray Radiation

    NASA Astrophysics Data System (ADS)

    Weston, Michael William James

    Radiation detectors in many applications use small sensor areas or large tubes which only collect one-dimensional information. There are some applications that require analyzing a large area and locating specific elements such as contamination on the heat tiles of a space shuttle or features on historical artifacts. The process can be time consuming and scanning a large area in a single pass is beneficial. The use of a two dimensional multi-wire proportional counter provides a large detection window presenting positional information in a single pass. This thesis described the design and implementation of an experimental detector to evaluate a specific design intended for use as a handheld instrument. The main effort of this research was to custom build a detector for testing purposes. The aluminum chamber and all circuit boards were custom designed and built specifically for this application. Various software and programmable logic algorithms were designed to analyze the raw data in real time and attempted to determine what data was useful and what could be discarded. The research presented here provides results useful for designing an improved second generation detector in the future. With the anode wire spacing chosen and the minimal collimation of the radiation source, detected events occurred all over the detection grid at any time. The raw event data did not make determining the source position easy and further data correlation was required. An abundance of samples had multiple wire hits which were not useful because it falsely reported the source to be all over the place and at different energy levels. By narrowing down the results to only use the largest signal pairs on different axes in each event, a much more accurate analysis of where the source existed above the grid was determined. The basic principle and construction method was shown to work, however the gas selection, geometry and anode wire constructs proved to be poor. To provide a system optimized

  5. Proportional counter radiation camera

    DOEpatents

    Borkowski, C.J.; Kopp, M.K.

    1974-01-15

    A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)

  6. Multianode cylindrical proportional counter for high count rates

    DOEpatents

    Hanson, J.A.; Kopp, M.K.

    1980-05-23

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (< 60 keV) at count rates of greater than 10/sup 5/ counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  7. Multianode cylindrical proportional counter for high count rates

    DOEpatents

    Hanson, James A.; Kopp, Manfred K.

    1981-01-01

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (<60 keV) at count rates of greater than 10.sup.5 counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  8. Air Proportional Counter

    DOEpatents

    Simpson, Jr, J A

    1950-12-05

    A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.

  9. High-efficiency and low-background multi-segmented proportional gas counter for β-decay spectroscopy

    NASA Astrophysics Data System (ADS)

    Mukai, M.; Hirayama, Y.; Watanabe, Y. X.; Schury, P.; Jung, H. S.; Ahmed, M.; Haba, H.; Ishiyama, H.; Jeong, S. C.; Kakiguchi, Y.; Kimura, S.; Moon, J. Y.; Oyaizu, M.; Ozawa, A.; Park, J. H.; Ueno, H.; Wada, M.; Miyatake, H.

    2018-03-01

    A multi-segmented proportional gas counter (MSPGC) with high detection efficiency and low-background event rate has been developed for β-decay spectroscopy. The MSPGC consists of two cylindrically aligned layers of 16 counters (32 counters in total). Each counter has a long active length and small trapezoidal cross-section, and the total solid angle of the 32 counters is 80% of 4 π. β-rays are distinguished from the background events including cosmic-rays by analyzing the hit patterns of independent counters. The deduced intrinsic detection efficiency of each counter was almost 100%. The measured background event rate was 0.11 counts per second using the combination of veto counters for cosmic-rays and lead block shields for background γ-rays. The MSPGC was applied to measure the β-decay half-lives of 198Ir and 199mPt. The evaluated half-lives of T1/2 = 9 . 8(7) s and 12.4(7) s for 198Ir and 199mPt, respectively, were in agreement with previously reported values. The estimated absolute detection efficiency of the MSPGC from GEANT4 simulations was consistent with the evaluated efficiency from the analysis of the β- γ spectroscopy of 199Pt, saturating at approximately 60% for Qβ > 4 MeV.

  10. Proportional Counter Calibration and Analysis for 12C + p Resonance Scattering

    NASA Astrophysics Data System (ADS)

    Nelson, Austin; Rogachev, Grigory; Uberseder, Ethan; Hooker, Josh; Koshchiy, Yevgen

    2014-09-01

    Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three

  11. Chemical abundances of cosmic rays greater than 4.5 GV measured with a large area proportional counter-scintillation counter stack

    NASA Technical Reports Server (NTRS)

    Lheureux, J.; Fan, C. Y.; Mainardi, R.; Gloeckler, G.

    1974-01-01

    A 6500 sq cm-ster cosmic-ray detector consisting of 12 gas counter trays sandwiched between two large-area circular scintillation counters was flown from Palestine, Texas in November 1972 to study the composition of primary particles greater than 1.5 GeV/nucleon in the charge range from 3 to 30. For each analyzed event, the particle trajectory was recorded, using four 20-wire proportional counter trays. Also recorded were the energy loss in each of the solid counters and the dE/dx losses in each of the 12 gas counters. The large dynamic range of the detector is established by operating six of the gas counters in the ionization mode. A description of the instrument and some preliminary results are given.

  12. Chemical abundances of cosmic rays greater than 4.5 GV measured with a large area proportional counter-scintillation counter stack

    NASA Technical Reports Server (NTRS)

    Lheureux, J.; Fan, C. Y.; Gloeckler, G.; Mainardi, R.

    1973-01-01

    A 6500 sq cm-ster cosmic ray detector consisting of twelve gas counter trays sandwiched between two large area circular scintillation counters was flown from Palestine, Texas in November of 1972 to study the composition of primary particles 1.5 GeV/nucleon in the charge range 3 to 30. For each analyzed event, a recording was made of (1) the particle trajectory using four 20 wire proportional counter trays, (2) the energy loss in each of the solid counters, and (3) the dE/dx losses in each of the twelve gas counters. The large dynamic range of the detector is established by operating six of the gas counters in the ionization mode. A description of the instrument and some preliminary results are given.

  13. Soft X-ray astronomy proportional counter electronics

    NASA Technical Reports Server (NTRS)

    Gardner, W. R.

    1971-01-01

    The X-ray multiwire proportional counter is designed to measure cosmic X-ray fluxes at sounding rocket altitudes in the energy range of 0.1 to 10 keV. Four instruments will be launched in a Black Brant 4 rocket employing different combinations of detector windows and gas. The detector is constructed with two layers of twelve cells. A columnator is mounted on the face of one layer whose cells are wired together alternately to form two main detector sections. The electronics and gas regulation systems are mounted on the face of the second layer whose cells are wired together to form one anticoincidence detector section. Normally X-rays will have short ionization paths in only one of the main detector cells at a time and won't enter the anticoincidence detector cells. To distinguish between X-rays and charged particles, the instrument includes a coincidence discriminator, an anticoincidence discriminator, and a pulse rise time discriminator.

  14. Monitor proportional counter

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    1979-01-01

    An Uhuru class Ar-CO2 gas filled proportional counter sealed with a 1.5 mil beryllium window and sensitive to X-rays in the energy bandwidth from 1.5 to 22 keV is presented. This device is coaligned with the X-ray telescope aboard the Einstein Observatory and takes data as a normal part of the Observatory operations.

  15. A multiball read-out for the spherical proportional counter

    NASA Astrophysics Data System (ADS)

    Giganon, A.; Giomataris, I.; Gros, M.; Katsioulas, I.; Navick, X. F.; Tsiledakis, G.; Savvidis, I.; Dastgheibi-Fard, A.; Brossard, A.

    2017-12-01

    We present a novel concept of proportional gas amplification for the read-out of the spherical proportional counter. The standard single-ball read-out presents limitations for large diameter spherical detectors and high-pressure operations. We have developed a multi-ball read-out system which consists of several balls placed at a fixed distance from the center of the spherical vessel. Such a module can tune the volume electric field at the desired value and can also provide detector segmentation with individual ball read-out. In the latter case, the large volume of the vessel becomes a spherical time projection chamber with 3D capabilities.

  16. Multistep fluorescence gated proportional counters

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Weisskopf, Martin C.

    1990-01-01

    A proportional counter is introduced in which the levels of energy and spatial resolutions and background rejection permit the application of the device to X-ray astronomy. A multistep approach is employed in which photons cause a signal that triggers the system and measures the energy of the incident photon. The multistep approach permits good energy resolution from parallel geometry and from the imaging stage due to coupling of the imaging and amplification stages. The design also employs fluorescence gating to reduce background, a method that is compatible with the multistep technique. Use of the proportional counter is reported for NASA's supernova campaign, and the pair background is below 0.0001 counts/sq cm sec keV at the xenon k-edge. Potential improvements and applications are listed including the CASES, POF, and EXOSS mission programs.

  17. Iterative Track Fitting Using Cluster Classification in Multi Wire Proportional Chamber

    NASA Astrophysics Data System (ADS)

    Primor, David; Mikenberg, Giora; Etzion, Erez; Messer, Hagit

    2007-10-01

    This paper addresses the problem of track fitting of a charged particle in a multi wire proportional chamber (MWPC) using cathode readout strips. When a charged particle crosses a MWPC, a positive charge is induced on a cluster of adjacent strips. In the presence of high radiation background, the cluster charge measurements may be contaminated due to background particles, leading to less accurate hit position estimation. The least squares method for track fitting assumes the same position error distribution for all hits and thus loses its optimal properties on contaminated data. For this reason, a new robust algorithm is proposed. The algorithm first uses the known spatial charge distribution caused by a single charged particle over the strips, and classifies the clusters into ldquocleanrdquo and ldquodirtyrdquo clusters. Then, using the classification results, it performs an iterative weighted least squares fitting procedure, updating its optimal weights each iteration. The performance of the suggested algorithm is compared to other track fitting techniques using a simulation of tracks with radiation background. It is shown that the algorithm improves the track fitting performance significantly. A practical implementation of the algorithm is presented for muon track fitting in the cathode strip chamber (CSC) of the ATLAS experiment.

  18. Shielding concepts for low-background proportional counter arrays in surface laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Humble, Paul H.; Mace, Emily K.

    2016-02-01

    Development of ultra low background gas proportional counters has made the contribution from naturally occurring radioactive isotopes – primarily and activity in the uranium and thorium decay chains – inconsequential to instrumental sensitivity levels when measurements are performed in above ground surface laboratories. Simple lead shielding is enough to mitigate against gamma rays as gas proportional counters are already relatively insensitive to naturally occurring gamma radiation. The dominant background in these surface laboratory measurements using ultra low background gas proportional counters is due to cosmic ray generated muons, neutrons, and protons. Studies of measurements with ultra low background gas proportionalmore » counters in surface and underground laboratories as well as radiation transport Monte Carlo simulations suggest a preferred conceptual design to achieve the highest possible sensitivity from an array of low background gas proportional counters when operated in a surface laboratory. The basis for a low background gas proportional counter array and the preferred shielding configuration is reported, especially in relation to measurements of radioactive gases having low energy decays such as 37Ar.« less

  19. The MSFC large-area imaging multistep proportional counter

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Weisskopf, M. C.; Joy, M. K.

    1989-01-01

    A large-area multistep imaging proportional counter that is being currently developed at the Marshall Space Flight Center is described. The device, known as a multistep fluorescence gated detector, consists of a multiwire proportional counter (MWPC) with a preamplification region. The MWCP features superior spatial resolution with a very high degree of background rejection. It is ideally suited for use in X-ray astronomy in 20-100 keV energy range. The paper includes the MWPC schematic and a list of instrument specifications.

  20. GAMMA PROPORTIONAL COUNTER CONTAINING HIGH Z GAS AND LOW Z MODERATOR

    DOEpatents

    Fox, R.

    1963-07-23

    A gamma radiation counter employing a gas proportional counter is described. The radiation counter comprises a cylindrical gas proportional counter which contains a high atomic number gas and is surrounded by a low atomic number gamma radiation moderator material. At least one slit is provided in the moderator to allow accident gamma radiation to enter the moderator in the most favorable manner for moderation, and also to allow low energy gamma radiation to enter the counter without the necessity of passing through the moderator. This radiation counter is capable of detecting and measuring gamma radiation in the energy range of 0.5-5 Mev. (AEC)

  1. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  2. Characteristics of a high pressure gas proportional counter filled with xenon

    NASA Technical Reports Server (NTRS)

    Sakurai, H.; Ramsey, B. D.

    1991-01-01

    The characteristics of a conventional cylindrical geometry proportional counter filled with high pressure xenon gas up to 10 atm. were fundamentally investigated for use as a detector in hard X-ray astronomy. With a 2 percent methane gas mixture the energy resolutions at 10 atm. were 9.8 percent and 7.3 percent for 22 keV and 60 keV X-rays, respectively. From calculations of the Townsend ionization coefficient, it is shown that proportional counters at high pressure operate at weaker reduced electric field than low pressure counters. The characteristics of a parallel grid proportional counter at low pressure showed similar pressure dependence. It is suggested that this is the fundamental reason for the degradation of resolution observed with increasing pressure.

  3. Basic design of a multi wire proportional counter using Garfield++ for ILSF

    NASA Astrophysics Data System (ADS)

    Ghahremani Gol, M.; Ashrafi, S.; Rahighi, J.

    2016-12-01

    The Iranian Light Source Facility (ILSF) is a new 3 GeV third generation synchrotron radiation facility in Middle East, which at the time being is in its design stage. An important aspect for the scientific success of this new source will be the availability of well adapted detectors. Position-sensitive X-ray detectors have played an important role in synchrotron radiation X-ray experiments for many years and are still in use. An operational one-dimensional multiwire position sensitive detector with delay line readout produced by ILSF showed a position resolution of 230 μm. In this paper, we introduce a 2-D position sensitive gas detector based on a multiwire proportional chamber which will be used in small/wide angle scattering and diffraction experiments with synchrotron radiation at the ILSF. The parameters of its components, including the gas filling, gas pressure, temperature, the geometry of anode and cathodes planes as well as the expected performance of the designed system will be described in the following. For the design and the simulation of MWPC the Elmer and Garfield++ codes have been employed. We have built and tested a MWPC as a prototype at ILSF. The results obtained so far show a good position sensing. After primary test the detector has been optimized and is now ready for test at Elettra.

  4. Multiplexing readout channels in proportional counters

    NASA Technical Reports Server (NTRS)

    Caristi, James

    1991-01-01

    Proportional counters are important instruments used in sensing hard x-rays. The possibility is described of doubling the number of readout channels in the detector without increasing the electronics needed to amplify channel signals. This suggests that it should be possible, conversely, to reduce the number of amplifiers, thereby reducing the weight and energy budget of the instrument. Various numerical multiplexing schemes are analyzed, and a computer program is presented that can reconstruct multiplexed channel outputs with very good accuracy.

  5. Novel concept for neutron detection: proportional counter filled with 10B nanoparticle aerosol

    NASA Astrophysics Data System (ADS)

    Amaro, F. D.; Monteiro, C. M. B.; Dos Santos, J. M. F.; Antognini, A.

    2017-02-01

    The high neutron detection efficiency, good gamma-ray discrimination and non-toxicity of 3He made of proportional counters filled with this gas the obvious choice for neutron detection, particularly in radiation portal monitors (RPM), used to control the illicit transport of nuclear material, of which neutron detectors are key components. 3He is very rare and during the last decade this gas has become increasingly difficult to acquire. With the exception of BF3, which is toxic, no other gas can be used for neutron detection in proportional counters. We present an alternative where the 3He atoms are replaced by nanoparticles made of another neutron sensitive material, 10B. The particles are dispersed in a gaseous volume, forming an aerosol with neutron sensitive properties. A proportional counter filled with such aerosol was exposed to a thermal neutron beam and the recorded response indicates that the neutrons have interacted with the particles in the aerosol. This original technique, which transforms a standard proportional gas mixture into a neutron sensitive aerosol, is a breakthrough in the field of radiation detection and has the potential to become an alternative to the use of 3He in proportional counters.

  6. X-ray astronomy instrumentation studies. [design of a proportional counter and measurements of fluorescent radiation

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1981-01-01

    Preliminary designs were made for a multiplane, multiwire position sensitive proportional counter for X-ray use. Anode spacing was 2 mm and cathode spacing 1 mm. Assistance was provided in setting up and operating two multiwire proportional counters, one with 5 mm anode spacing, and the other with 2 mm spacing. Argon-based counter gases were used for preliminary work in assembling a working experimental system to measure xenon fluorescence yields. The design and specification of a high purity gas filling system capable of supplying mixtures of xenon and other gases to proportional counters was also performed. The system is mounted on a cart, is fully operational, and is flexible enough to be easily used as a pumping station for other clean applications. When needed, assistance was given to put into operation various computer-related pieces of equipment.

  7. Response of a tissue equivalent proportional counter to neutrons

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Robbins, D. E.; Gibbons, F.; Braby, L. A.

    2002-01-01

    The absorbed dose as a function of lineal energy was measured at the CERN-EC Reference-field Facility (CERF) using a 512-channel tissue equivalent proportional counter (TEPC), and neutron dose equivalent response evaluated. Although there are some differences, the measured dose equivalent is in agreement with that measured by the 16-channel HANDI tissue equivalent counter. Comparison of TEPC measurements with those made by a silicon solid-state detector for low linear energy transfer particles produced by the same beam, is presented. The measurements show that about 4% of dose equivalent is delivered by particles heavier than protons generated in the conducting tissue equivalent plastic. c2002 Elsevier Science Ltd. All rights reserved.

  8. Calibration methodology for proportional counters applied to yield measurements of a neutron burst.

    PubMed

    Tarifeño-Saldivia, Ariel; Mayer, Roberto E; Pavez, Cristian; Soto, Leopoldo

    2014-01-01

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods.

  9. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  10. Thin-window high-efficiency position sensitive proportional counter for the vacuum flat crystal spectrometers on the Lawrence Livermore National Laboratory electron beam ion trap (abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, G. V.; Beiersdorfer, P.; Goddard, R.

    2001-01-01

    We have mounted 1 {mu}m thick aluminized polyimide windows onto the position sensitive proportional counters employed by the wide-band flat crystal spectrometers at the Lawrence Livermore National Laboratory electron beam ion trap experiment. The aluminized polyimide, supported by thin wires across the short axis of the window, is used to isolate the detection chamber of the proportional counters, which operate at a pressure of 760 Torr, from the vacuum chamber of the spectrometer. The windows are modified versions of those developed for the proportional counters which were used during ground calibration of the Chandra X-ray Observatory. The transmission properties ofmore » these windows are, therefore, well known. The increased transmission efficiency of the polyimide windows relative to the 4 {mu}m thick polypropylene window material previously employed by our proportional counters has extended the useful range of the spectrometer from roughly 20 to 30 Aa at energies below the carbon edge, as well as increasing detection efficiency at wavelengths beyond the carbon edge. Using an octadecyl hydrogen maleate crystal with 2d=63.5Aa, we demonstrate the increased wavelength coverage by measuring the resonance, intercombination, and forbidden lines in helium-like NVII in two different density regimes. The thin polyimide windows have also increased the efficiency of the spectrometers entire wavelength range. To demonstrate the increased efficiency we compare the FeXVII spectrum in the 15--17 Aa band measured with the 1 {mu}m aluminized polyimide windows to the 4 {mu}m aluminized polypropylene windows. The comparison shows an average increase in efficiency of {approx}40%. The polyimide windows have a significantly lower leak rate than the polypropylene windows making it possible to achieve approximately an order of magnitude lower pressure in the spectrometer vacuum chamber which reduces the gas load on the trap region.« less

  11. A complete database for the Einstein imaging proportional counter

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1991-01-01

    A complete database for the Einstein Imaging Proportional Counter (IPC) was completed. The original data that makes up the archive is described as well as the structure of the database, the Op-Ed analysis system, the technical advances achieved relative to the analysis of (IPC) data, the data products produced, and some uses to which the database has been put by scientists outside Columbia University over the past year.

  12. Initial Characterization of Unequal-Length, Low-Background Proportional Counters for Absolute Gas-Counting Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Emily K.; Aalseth, Craig E.; Bonicalzi, Ricco

    Abstract. Characterization of two sets of custom unequal length proportional counters is underway at Pacific Northwest National Laboratory (PNNL). These detectors will be used in measurements to determine the absolute activity concentration of gaseous radionuclides (e.g., 37Ar). A set of three detectors has been fabricated based on previous PNNL ultra-low-background proportional counters (ULBPC) designs and now operate in PNNL’s shallow underground counting laboratory. A second set of four counters has also been fabricated using clean assembly of OFHC copper components for use in an above-ground counting laboratory. Characterization of both sets of detectors is underway with measurements of background rates,more » gas gain, energy resolution, and shielding considerations. These results will be presented along with uncertainty estimates of future absolute gas counting measurements.« less

  13. Initial characterization of unequal-length, low-background proportional counters for absolute gas-counting applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, E. K.; Aalseth, C. E.; Bonicalzi, R.

    Characterization of two sets of custom unequal length proportional counters is underway at Pacific Northwest National Laboratory (PNNL). These detectors will be used in measurements to determine the absolute activity concentration of gaseous radionuclides (e.g., {sup 37}Ar). A set of three detectors has been fabricated based on previous PNNL ultra-low-background proportional counter designs and now operate in PNNL's shallow underground counting laboratory. A second set of four counters has also been fabricated using clean assembly of Oxygen-Free High-Conductivity copper components for use in a shielded above-ground counting laboratory. Characterization of both sets of detectors is underway with measurements of backgroundmore » rates, gas gain, and energy resolution. These results will be presented along with a shielding study for the above-ground cave.« less

  14. FLEXIBLE GEIGER COUNTER

    DOEpatents

    Richter, H.G.; Gillespie, A.S. Jr.

    1963-11-12

    A flexible Geiger counter constructed from materials composed of vinyl chloride polymerized with plasticizers or co-polymers is presented. The counter can be made either by attaching short segments of corrugated plastic sleeving together, or by starting with a length of vacuum cleaner hose composed of the above materials. The anode is maintained substantially axial Within the sleeving or hose during tube flexing by means of polystyrene spacer disks or an easily assembled polyethylene flexible cage assembly. The cathode is a wire spiraled on the outside of the counter. The sleeving or hose is fitted with glass end-pieces or any other good insulator to maintain the anode wire taut and to admit a counting gas mixture into the counter. Having the cathode wire on the outside of the counter substantially eliminates the objectional sheath effect of prior counters and permits counting rates up to 300,000 counts per minute. (AEC)

  15. A sealed titanium window proportional counter for the detection of .5-keV X rays.

    NASA Technical Reports Server (NTRS)

    Mcclintock, J. E.; Levine, A.; Rappaport, S.

    1972-01-01

    A sealed Ti window proportional counter sensitive to X radiation in the energy range 0.35-0.45 keV and above 1.5 keV is described. Measurements of the Ti mass absorption coefficients and a graphical summary of the literature values are presented. For a proportional counter with a 930 microgram/sq cm (2.1-micron) Ti window, the peak efficiency at 0.45 keV is found to lie between 4.6% and 7.1%. An application in X-ray astronomy involving a rocket observation of Sco X-1 is discussed.

  16. Background in X-ray astronomy proportional counters

    NASA Technical Reports Server (NTRS)

    Bower, C. R.; Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.

    1991-01-01

    The authors report the results of an investigation into the nature of background events in proportional counters sensitive to X-ray photons having energy of less than 150 keV. Even with the use of thick shields composed of high-atomic-number material, a significant flux background in the detector's energy region can result from multiple Compton scattering in the mass surrounding the active region of the detector. The importance of the selection of detector components in the reduction of the background by more than an order of magnitude is emphasized. Experimental results are shown to agree qualitatively with Monte Carlo simulations. It is concluded that escape gating is a powerful means of determining the nature of background in flight detectors: the single/pair ratios reveal whether the detected events are charged particles or photons.

  17. Radiation from mixed multi-planar wire arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.

    2014-03-15

    The study of radiation from different wire materials in wire array Z-pinch plasma is a very challenging topic because it is almost impossible to separate different plasmas at the stagnation. A new approach is suggested based on planar wire array (PWA) loads to assess this problem. Multi-planar wire arrays are implemented that consist of few planes, each with the same number of wires and masses but from different wire materials, arranged in parallel rows. In particular, the experimental results obtained with triple PWAs (TPWAs) on the UNR Zebra generator are analyzed with Wire Ablation Dynamics Model, non-local thermodynamic equilibrium kineticmore » model, and 2D radiation magneto-hydrodynamic to illustrate this new approach. In TPWAs, two wire planes were from mid-atomic-number wire material and another plane was from alloyed Al, placed either in the middle or at the edge of the TPWA. Spatial and temporal properties of K-shell Al and L-shell Cu radiations were analyzed and compared from these two configurations of TPWAs. Advantages of the new approach are demonstrated and future work is discussed.« less

  18. The background in a balloon-borne fluorescence-gated proportional counter

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Bower, C. R.; Dietz, K. L.; Weisskopf, M. C.

    1990-01-01

    The results of an analysis of the background in a fluorescence-gated proportional counter operating over the energy range 3-150 keV are presented. It is found that the dominant background component is that produced by high energy qamma-rays that penetrate the shields and undergo multiple scattering in the detector body, resulting in photoelectric absorption in the detector gas. A careful choice of materials and thickness can move the peak of this emission outside of the detector sensitive range, thereby dramatically reducing the residual background.

  19. Design and performance of A 3He-free coincidence counter based on parallel plate boron-lined proportional technology

    DOE PAGES

    Henzlova, D.; Menlove, H. O.; Marlow, J. B.

    2015-07-01

    Thermal neutron counters utilized and developed for deployment as non-destructive assay (NDA) instruments in the field of nuclear safeguards traditionally rely on 3He-based proportional counting systems. 3He-based proportional counters have provided core NDA detection capabilities for several decades and have proven to be extremely reliable with range of features highly desirable for nuclear facility deployment. Facing the current depletion of 3He gas supply and the continuing uncertainty of options for future resupply, a search for detection technologies that could provide feasible short-term alternative to 3He gas was initiated worldwide. As part of this effort, Los Alamos National Laboratory (LANL) designedmore » and built a 3He-free full scale thermal neutron coincidence counter based on boron-lined proportional technology. The boronlined technology was selected in a comprehensive inter-comparison exercise based on its favorable performance against safeguards specific parameters. This paper provides an overview of the design and initial performance evaluation of the prototype High Level Neutron counter – Boron (HLNB). The initial results suggest that current HLNB design is capable to provide ~80% performance of a selected reference 3He-based coincidence counter (High Level Neutron Coincidence Counter, HLNCC). Similar samples are expected to be measurable in both systems, however, slightly longer measurement times may be anticipated for large samples in HLNB. The initial evaluation helped to identify potential for further performance improvements via additional tailoring of boron-layer thickness.« less

  20. Special-geometry proportional counters and techniques for detection of low-levels of X-rays and beta-particles

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1976-01-01

    The use and sensitivity of the multiwire proportional counter to detect Kr-85 in ambient air are examined. Data also cover monitoring beta and X-ray emitting radio nuclides at low activity levels. Results show the counter to have excellent properties for monitoring Kr-85 down to 0.0004 pCi cu/cm.

  1. Lineal energy calibration of mini tissue-equivalent gas-proportional counters (TEPC)

    NASA Astrophysics Data System (ADS)

    Conte, V.; Moro, D.; Grosswendt, B.; Colautti, P.

    2013-07-01

    Mini TEPCs are cylindrical gas proportional counters of 1 mm or less of sensitive volume diameter. The lineal energy calibration of these tiny counters can be performed with an external gamma-ray source. However, to do that, first a method to get a simple and precise spectral mark has to be found and then the keV/μm value of this mark. A precise method (less than 1% of uncertainty) to identify this markis described here, and the lineal energy value of this mark has been measured for different simulated site sizes by using a 137Cs gamma source and a cylindrical TEPC equipped with a precision internal 244Cm alpha-particle source, and filled with propane-based tissue-equivalent gas mixture. Mini TEPCs can be calibrated in terms of lineal energy, by exposing them to 137Cesium sources, with an overall uncertainty of about 5%.

  2. Cortical Composition Hierarchy Driven by Spine Proportion Economical Maximization or Wire Volume Minimization

    PubMed Central

    Karbowski, Jan

    2015-01-01

    The structure and quantitative composition of the cerebral cortex are interrelated with its computational capacity. Empirical data analyzed here indicate a certain hierarchy in local cortical composition. Specifically, neural wire, i.e., axons and dendrites take each about 1/3 of cortical space, spines and glia/astrocytes occupy each about (1/3)2, and capillaries around (1/3)4. Moreover, data analysis across species reveals that these fractions are roughly brain size independent, which suggests that they could be in some sense optimal and thus important for brain function. Is there any principle that sets them in this invariant way? This study first builds a model of local circuit in which neural wire, spines, astrocytes, and capillaries are mutually coupled elements and are treated within a single mathematical framework. Next, various forms of wire minimization rule (wire length, surface area, volume, or conduction delays) are analyzed, of which, only minimization of wire volume provides realistic results that are very close to the empirical cortical fractions. As an alternative, a new principle called “spine economy maximization” is proposed and investigated, which is associated with maximization of spine proportion in the cortex per spine size that yields equally good but more robust results. Additionally, a combination of wire cost and spine economy notions is considered as a meta-principle, and it is found that this proposition gives only marginally better results than either pure wire volume minimization or pure spine economy maximization, but only if spine economy component dominates. However, such a combined meta-principle yields much better results than the constraints related solely to minimization of wire length, wire surface area, and conduction delays. Interestingly, the type of spine size distribution also plays a role, and better agreement with the data is achieved for distributions with long tails. In sum, these results suggest that for the

  3. A High-Energy Focal-Plane Gas Scintillation Proportional Counter

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Austin, R. A.; Apple, J. A.; Dietz, K. L.

    1999-01-01

    We have developed a high-pressure Gas Scintillation Proportional Counter (GSPC) for the focus of a hard-x-ray telescope. It features an absorption region 50 mm in diameter and 50 mm deep, filled with Xenon + 4% He at 10(exp 6) Pa total pressure, which gives useful response (greater than 75% efficiency) up to the mirror cut-off of 70 keV. Tests with a prototype unit show an energy resolution of 3.5% at 60 keV and a spatial resolution of 0.35 mm from 30-50 keV. Two flight units are currently under construction for a balloon flight in September 1999. Full details of their design and performance will be presented together with available quick-look background data from the flight.

  4. Prediction of multi performance characteristics of wire EDM process using grey ANFIS

    NASA Astrophysics Data System (ADS)

    Kumanan, Somasundaram; Nair, Anish

    2017-09-01

    Super alloys are used to fabricate components in ultra-supercritical power plants. These hard to machine materials are processed using non-traditional machining methods like Wire cut electrical discharge machining and needs attention. This paper details about multi performance optimization of wire EDM process using Grey ANFIS. Experiments are designed to establish the performance characteristics of wire EDM such as surface roughness, material removal rate, wire wear rate and geometric tolerances. The control parameters are pulse on time, pulse off time, current, voltage, flushing pressure, wire tension, table feed and wire speed. Grey relational analysis is employed to optimise the multi objectives. Analysis of variance of the grey grades is used to identify the critical parameters. A regression model is developed and used to generate datasets for the training of proposed adaptive neuro fuzzy inference system. The developed prediction model is tested for its prediction ability.

  5. Demand-type gas supply system for rocket borne thin-window proportional counters

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Caravalho, R.; Catura, R. C.; Joki, E. G.

    1977-01-01

    A simple closed loop control system has been developed to maintain the gas pressure in thin-window proportional counters during rocket flights. This system permits convenient external control of detector pressure and system flushing rate. The control system is activated at launch with the sealing of a reference volume at the existing system pressure. Inflight control to plus or minus 2 torr at a working pressure of 760 torr has been achieved on six rocket flights.

  6. Simulations of electron avalanches in an ultra-low-background proportional counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, John W.; Aalseth, Craig; Dion, Michael P.

    2016-02-01

    New classes have been added to the simulation package Garfield++ to import the potential and electric field solutions generated by ANSYS R MaxwellTM v.16. Using these tools we report results on the simulation of electron avalanches and induced signal waveforms in comparison to experimental data of the ultra-lowbackground gas proportional counters being developed at Pacific Northwest National Laboratory. Furthermore, an improved mesh search algorithm based on Delaunay triangulation was implemented and provided at least a three order of magnitude time savings when compared to the built-in point-location search class of Garfield++.

  7. On studies of 3He and isobutane mixture as neutron proportional counter gas

    NASA Astrophysics Data System (ADS)

    Desai, S. S.; Shaikh, A. M.

    2006-02-01

    The performance of neutron detectors filled with 3He+iC 4H 10 (isobutane) gas mixtures has been studied and compared with the performance of detectors filled with 3He+Kr gas mixtures. The investigations are made to determine suitable concentration of isobutane in the gas mixture to design neutron proportional counters and linear position sensitive neutron detectors (1-D PSDs). Energy resolution, range of proportionality, plateau and gas gain characteristics are studied for various gas mixtures of 3He and isobutane. The values for various gas constants are determined by fitting the gas gains to Diethorn and Bateman's equations and their variation with isobutane concentration in the fill gas mixture is studied.

  8. Magnetic monopole search by 130 m(2)sr He gas proportional counter

    NASA Technical Reports Server (NTRS)

    Hara, T.; Hayashida, N.; Honda, M.; Kamata, K.; Kobayashi, M.; Kondo, T.; Matsubara, Y.; Mori, M.; Ohno, Y.; Tanahashi, G.

    1985-01-01

    A search experiment for cosmic ray magnetic monopoles was performed by means of atomic induction mechanism by using He mixture gas proportional counters of the calorimeter (130 square meters sr) at the center of the Akeno air shower array. In 3,482 hours operation no monopole candidate was observed. The upper limit of the monopole flux is 1.44 x 10 to the minus 13th power cm-z, sec -1, sr-1 (90% C.L.) for the velocity faster than 7 x 0.0001 c.

  9. Evaluation of a High Pressure Proportional Counter for the Detection of Radioactive Noble Gases

    DTIC Science & Technology

    1987-01-01

    Multiplication Curves Compared to Reconstructed Literature Curves .. .. ............ .81 6.4 Resolution .... . .. ......................... .... 90 v Figure...with 57 ~/57 energy resolution to 12% fwhm for Co photopeaks (-122 keV),sing argon fill gas at fifty atmospheres. Subsequent effects 0f a contami- nant...internal gas proportional counters for measuring low-level environmental radionuclides, resolutions to 27% fwhm and intrinsic efficiencies to 3 75

  10. A compact multi-wire-layered secondary winding for Tesla transformer.

    PubMed

    Zhao, Liang; Su, Jian-Cang; Li, Rui; Wu, Xiao-Long; Xu, Xiu-Dong; Qiu, Xu-Dong; Zeng, Bo; Cheng, Jie; Zhang, Yu; Gao, Peng-Cheng

    2017-05-01

    A compact multi-wire-layered (MWL) secondary winding for a Tesla transformer is put forward. The basic principle of this winding is to wind the metal wire on a polymeric base tube in a multi-layer manner. The tube is tapered and has high electrical strength and high mechanical strength. Concentric-circle grooves perpendicular to the axis of the tube are carved on the surface of the tube to wind the wire. The width of the groove is basically equal to the diameter of the wire so that the metal wire can be fixed in the groove without glue. The depth of the groove is n times of the diameter of the wire to realize the n-layer winding manner. All the concentric-circle grooves are connected via a spiral groove on the surface of the tube to let the wire go through. Compared with the traditional one-wire-layered (OWL) secondary winding for the Tesla transformer, the most conspicuous advantage of the MWL secondary winding is that the latter is compact with only a length of 2/n of the OWL. In addition, the MWL winding has the following advantages: high electrical strength since voids are precluded from the surface of the winding, high mechanical strength because polymer is used as the material of the base tube, and reliable fixation in the Tesla transformer as special mechanical connections are designed. A 2000-turn MWL secondary winding is fabricated with a winding layer of 3 and a total length of 1.0 m. Experiments to test the performance of this winding on a Tesla-type pulse generator are conducted. The results show that this winding can boost the voltage to 1 MV at a repetition rate of 50 Hz reliably for a lifetime longer than 10 4 pulses, which proves the feasibility of the MWL secondary winding.

  11. A compact multi-wire-layered secondary winding for Tesla transformer

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Su, Jian-cang; Li, Rui; Wu, Xiao-long; Xu, Xiu-dong; Qiu, Xu-dong; Zeng, Bo; Cheng, Jie; Zhang, Yu; Gao, Peng-cheng

    2017-05-01

    A compact multi-wire-layered (MWL) secondary winding for a Tesla transformer is put forward. The basic principle of this winding is to wind the metal wire on a polymeric base tube in a multi-layer manner. The tube is tapered and has high electrical strength and high mechanical strength. Concentric-circle grooves perpendicular to the axis of the tube are carved on the surface of the tube to wind the wire. The width of the groove is basically equal to the diameter of the wire so that the metal wire can be fixed in the groove without glue. The depth of the groove is n times of the diameter of the wire to realize the n-layer winding manner. All the concentric-circle grooves are connected via a spiral groove on the surface of the tube to let the wire go through. Compared with the traditional one-wire-layered (OWL) secondary winding for the Tesla transformer, the most conspicuous advantage of the MWL secondary winding is that the latter is compact with only a length of 2/n of the OWL. In addition, the MWL winding has the following advantages: high electrical strength since voids are precluded from the surface of the winding, high mechanical strength because polymer is used as the material of the base tube, and reliable fixation in the Tesla transformer as special mechanical connections are designed. A 2000-turn MWL secondary winding is fabricated with a winding layer of 3 and a total length of 1.0 m. Experiments to test the performance of this winding on a Tesla-type pulse generator are conducted. The results show that this winding can boost the voltage to 1 MV at a repetition rate of 50 Hz reliably for a lifetime longer than 104 pulses, which proves the feasibility of the MWL secondary winding.

  12. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  13. A high resolution gas scintillation proportional counter for studying low energy cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Hamilton, T. T.; Hailey, C. J.; Ku, W. H.-M.; Novick, R.

    1980-01-01

    In recent years much effort has been devoted to the development of large area gas scintillation proportional counters (GSPCs) suitable for use in X-ray astronomy. The paper deals with a low-energy GSPC for use in detecting sub-keV X-rays from cosmic sources. This instrument has a measured energy resolution of 85 eV (FWHM) at 149 eV over a sensitive area of 5 sq cm. The development of imaging capability for this instrument is discussed. Tests are performed on the feasibility of using an arrangement of several phototubes placed adjacent to one another to determine event locations in a large flat counter. A simple prototype has been constructed and successfully operated.

  14. Low energy recoil detection with a spherical proportional counter

    NASA Astrophysics Data System (ADS)

    Savvidis, I.; Katsioulas, I.; Eleftheriadis, C.; Giomataris, I.; Papaevangellou, T.

    2018-01-01

    We present results for the detection of low energy nuclear recoils in the keV energy region, from measurements performed with the Spherical Proportional Counter (SPC). An 241Am-9Be fast neutron source is used in order to obtain neutron-nucleus elastic scattering events inside the gaseous volume of the detector. The detector performance in the keV energy region was measured by observing the 5.9 keV line of a 55Fe X-ray source, with energy resolution of 10% (σ). The toolkit GEANT4 was used to simulate the irradiation of the detector by an 241Am-9Be source, while SRIM was used to calculate the Ionization Quenching Factor (IQF), the simulation results are compared with the measurements. The potential of the SPC in low energy recoil detection makes the detector a good candidate for a wide range of applications, including Supernova or reactor neutrino detection and Dark Matter (WIMP) searches (via coherent elastic scattering).

  15. Gas Scintillation Proportional Counters for High-Energy X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Apple, Jeffery

    2003-01-01

    A focal plane array of high-pressure gas scintillation proportional counters (GSPC) for a balloon-borne hard-x-ray telescope is under development at the Marshall Space Flight Center. These detectors have an active area of approx. 20 sq cm, and are filled with a high pressure (10(exp 6) Pa) xenon-helium mixture. Imaging is via crossed-grid position-sensitive phototubes sensitive in the UV region. The performance of the GSPC is well matched to that of the telescopes x-ray optics which have response to 75 keV and a focal spot size of approx. 500 microns. The detector s energy resolution, 4% FWHM at 60 keV, is adequate for resolving the broad spectral lines of astrophysical importance and for accurate continuum measurements. Full details of the instrument and its performance will be provided.

  16. Multi-service small-cell cloud wired/wireless access network based on tunable optical frequency comb

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Zhou, Kun; Yang, Liu; Pan, Lei; Liao, Zhen-wan; Zhang, Qiang

    2015-11-01

    In this paper, we demonstrate a novel multi-service wired/wireless integrated access architecture of cloud radio access network (C-RAN) based on radio-over-fiber passive optical network (RoF-PON) system, which utilizes scalable multiple- frequency millimeter-wave (MF-MMW) generation based on tunable optical frequency comb (TOFC). In the baseband unit (BBU) pool, the generated optical comb lines are modulated into wired, RoF and WiFi/WiMAX signals, respectively. The multi-frequency RoF signals are generated by beating the optical comb line pairs in the small cell. The WiFi/WiMAX signals are demodulated after passing through the band pass filter (BPF) and band stop filter (BSF), respectively, whereas the wired signal can be received directly. The feasibility and scalability of the proposed multi-service wired/wireless integrated C-RAN are confirmed by the simulations.

  17. Performance of large area x-ray proportional counters in a balloon experiment

    NASA Astrophysics Data System (ADS)

    Roy, J.; Agrawal, P. C.; Dedhia, D. K.; Manchanda, R. K.; Shah, P. B.; Chitnis, V. R.; Gujar, V. M.; Parmar, J. V.; Pawar, D. M.; Kurhade, V. B.

    2016-10-01

    ASTROSAT is India's first satellite fully devoted to astronomical observations covering a wide spectral band from optical to hard X-rays by a complement of 4 co-aligned instruments and a Scanning Sky X-ray Monitor. One of the instruments is Large Area X-ray Proportional Counter with 3 identical detectors. In order to assess the performance of this instrument, a balloon experiment with two prototype Large Area X-ray Proportional Counters (LAXPC) was carried out on 2008 April 14. The design of these LAXPCs was similar to those on the ASTROSAT except that their field of view (FOV) was 3 ∘ × 3 ∘ versus FOV of 1 ∘ × 1 ∘ for the LAXPCs on the ASTROSAT. The LAXPCs are aimed at the timing and spectral studies of X-ray sources in 3-80 keV region. In the balloon experiment, the LAXPC, associated electronics and support systems were mounted on an oriented platform which could be pre-programmed to track any source in the sky. A brief description of the LAXPC design, laboratory tests, calibration and the detector characteristics is presented here. The details of the experiment and background counting rates of the 2 LAXPCs at the float altitude of about 41 km are presented in different energy bands. The bright black hole X-ray binary Cygnus X-1 (Cyg X-1) was observed in the experiment for ˜ 3 hours. Details of Cyg X-1 observations, count rates measured from it in different energy intervals and the intensity variations of Cyg X-1 detected during the observations are presented and briefly discussed.

  18. Solar Power Wires Based on Organic Photovoltaic Materials

    NASA Astrophysics Data System (ADS)

    Lee, Michael R.; Eckert, Robert D.; Forberich, Karen; Dennler, Gilles; Brabec, Christoph J.; Gaudiana, Russell A.

    2009-04-01

    Organic photovoltaics in a flexible wire format has potential advantages that are described in this paper. A wire format requires long-distance transport of current that can be achieved only with conventional metals, thus eliminating the use of transparent oxide semiconductors. A phase-separated, photovoltaic layer, comprising a conducting polymer and a fullerene derivative, is coated onto a thin metal wire. A second wire, coated with a silver film, serving as the counter electrode, is wrapped around the first wire. Both wires are encased in a transparent polymer cladding. Incident light is focused by the cladding onto to the photovoltaic layer even when it is completely shadowed by the counter electrode. Efficiency values of the wires range from 2.79% to 3.27%.

  19. A technique for searching for the 2 K capture in 124Xe with a copper proportional counter

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-12-01

    An experimental technique for searching for the 2 K capture in 124Xe with a large low-background copper proportional counter is described. Such an experiment is conducted at the Baksan Neutrino Observatory of the Institute for Nuclear Research of the Russian Academy of Sciences. The experimental setup is located in the Low-Background Deep-Level Laboratory at a depth of 4900 m.w.e., where the flux of muons of cosmic rays is suppressed by a factor of 107 relative to that at the Earth's surface. The setup incorporates a proportional counter and low-background shielding (18 cm of copper, 15 cm of lead, and 8 cm of borated polyethylene). The results of processing the data obtained in 5 months of live measurement time are presented. A new limit on the half-life of 124Xe with respect to the 2 K capture is set at the level of 2.5 × 1021 years.

  20. Four pi-recoil proportional counter used as neutron spectrometer

    NASA Technical Reports Server (NTRS)

    Bennett, E. F.

    1968-01-01

    Study considers problems encountered in using 4 pi-recoil counters for neutron spectra measurement. Emphasis is placed on calibration, shape discrimination, variation of W, the average energy loss per ion pair, and the effects of differentiation on the intrinsic counter resolution.

  1. A Complete Public Archive for the Einstein Imaging Proportional Counter

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1996-01-01

    Consistent with our proposal to the Astrophysics Data Program in 1992, we have completed the design, construction, documentation, and distribution of a flexible and complete archive of the data collected by the Einstein Imaging Proportional Counter. Along with software and data delivered to the High Energy Astrophysics Science Archive Research Center at Goddard Space Flight Center, we have compiled and, where appropriate, published catalogs of point sources, soft sources, hard sources, extended sources, and transient flares detected in the database along with extensive analyses of the instrument's backgrounds and other anomalies. We include in this document a brief summary of the archive's functionality, a description of the scientific catalogs and other results, a bibliography of publications supported in whole or in part under this contract, and a list of personnel whose pre- and post-doctoral education consisted in part in participation in this project.

  2. Multi-wire slurry wafering demonstrations. [slicing silicon ingots for solar arrays

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1978-01-01

    Ten slicing demonstrations on a multi-wire slurry saw, made to evaluate the silicon ingot wafering capabilities, reveal that the present sawing capabilities can provide usable wafer area from an ingot 1.05m/kg (e.g. kerf width 0.135 mm and wafer thickness 0.265 mm). Satisfactory surface qualities and excellent yield of silicon wafers were found. One drawback is that the add-on cost of producing water from this saw, as presently used, is considerably higher than other systems being developed for the low-cost silicon solar array project (LSSA), primarily because the saw uses a large quantity of wire. The add-on cost can be significantly reduced by extending the wire life and/or by rescue of properly plated wire to restore the diameter.

  3. Compact multiwire proportional counters for the detection of fission fragments

    NASA Astrophysics Data System (ADS)

    Jhingan, Akhil; Sugathan, P.; Golda, K. S.; Singh, R. P.; Varughese, T.; Singh, Hardev; Behera, B. R.; Mandal, S. K.

    2009-12-01

    Two large area multistep position sensitive (two dimensional) multiwire proportional counters have been developed for experiments involving study of fission dynamics using general purpose scattering chamber facility at IUAC. Both detectors have an active area of 20×10 cm2 and provide position signals in horizontal (X) and vertical (Y) planes, timing signal for time of flight measurements and energy signal giving the differential energy loss in the active volume. The design features are optimized for the detection of low energy heavy ions at very low gas pressures. Special care was taken in setting up the readout electronics, constant fraction discriminators for position signals in particular, to get optimum position and timing resolutions along with high count rate handling capability of low energy heavy ions. A custom made charge sensitive preamplifier, having lower gain and shorter decay time, has been developed for extracting the differential energy loss signal. The position and time resolutions of the detectors were determined to be 1.1 mm full width at half maximum (FWHM) and 1.7 ns FWHM, respectively. The detector could handle heavy ion count rates exceeding 20 kHz without any breakdown. Time of flight signal in combination with differential energy loss signal gives a clean separation of fission fragments from projectile and target like particles. The timing and position signals of the detectors are used for fission coincidence measurements and subsequent extraction of their mass, angular, and total kinetic energy distributions. This article describes systematic study of these fission counters in terms of efficiency, time resolution, count rate handling capability, position resolution, and the readout electronics. The detector has been operated with both five electrode geometry and four electrode geometry, and a comparison has been made in their performances.

  4. HILT - A heavy ion large area proportional counter telescope for solar and anomalous cosmic rays

    NASA Technical Reports Server (NTRS)

    Klecker, Berndt; Hovestadt, Dietrich; Scholer, M.; Arbinger, H.; Ertl, M.; Kaestle, H.; Kuenneth, E.; Laeverenz, P.; Seidenschwang, E.; Blake, J. B.

    1993-01-01

    The HILT sensor has been designed to measure heavy ion elemental abundances, energy spectra, and direction of incidence in the mass range from He to Fe and in the energy range 4 to 250 MeV/nucleon. With its large geometric factor of 60 sq cm sr the sensor is optimized to provide compositional and spectral measurements for low intensity cosmic rays (i.e. for small solar energetic particle events and for the anomalous component of cosmic rays). The instrument combines a large area ion drift chamber-proportional counter system with two arrays of 16 Li-drift solid state detectors and 16 CsI crystals. The multi dE/dx-E technique provides a low background mass and energy determination. The sensor also measures particle direction. Combining these measurements with the information on the spacecraft position and attitude in the low-altitude polar orbit, it will be possible to infer the ionic charge of the ions from the local cutoff of the Earth's magnetic field. The ionic charge in this energy range is of particular interest because it provides unique clues to the origin of these particles and has not been investigated systematically so far. Together with the other instruments on board SAMPEX (LEICA, MAST, and PET), a comprehensive measurement of the entire solar and anomalous particle population will be achieved.

  5. Development of a Nanomaterial Anode for a Low-Voltage Proportional Counter for Neutron Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craps, Matthew Greg

    NanoTechLabs (NTL) in collaboration with the Savannah River National Laboratory (SRNL) and Clemson University have continued development of a next generation proportional counter (PC) for neutron detection utilizing robust, inexpensive nanostructured anodes while maximizing neutron capture. Neutron detectors are vital to national security as they can be used to detect illicit trafficking of radioactive materials, which could mean the presence of or planning of a dirty bomb attack. Typical PCs operate with high bias potentials that create electronic noise. Incorporating nanomaterials into the anode of PCs can theoretically operate at low voltages (eg. 10-300V) due to an increase in themore » electric field associated with a smaller diameter nano-scale anode. In addition to the lower operating voltage, typical high PC voltages (500-1200V) could be used to generate a larger electric field resulting in more electrons being collected, thus increasing the sensitivity of the PC. Other advantages of nano-PC include reduced platform size, weight, cost, and improved ruggedness. Clemson modeled the electric field around the CNT array tips. NTL grew many ordered CNT arrays as well as control samples and densified the arrays to improve the performance. The primary objective for this work is to provide evidence of a commercially viable technique for reducing the voltage of a parallel plate proportional counter using nanosized anodes. The parallel plate geometry has advantages over the typical cylindrical design based on more feasible placement of solid neutron absorbers and more geometrically practical windows for radiation capture and directional detection.« less

  6. The response of an RC line MWPC to primary cosmic rays. [Multi-Wire Proportional Counter

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Selig, W. J.; Austin, R. W.; Derrickson, J. H.; Parnell, T. A.

    1978-01-01

    A simple 50 x 50 sq cm MWPC plane was arranged as an RC-line and flown on a balloon flight with the MSFC-UAH Cosmic Ray experiment. Positions of primary cosmic ray tracks in the RC-line were determined by the risetime method and compared with the expected position as indicated by a best line fitted through four planes of the conventional MWPC hodoscope. Mean errors were estimated for sea-level muons, and CNO group and iron group particles. It is believed that the delta-rays accompanying the primaries degraded the position resolution. Measured standard deviations allowing for uncertainty in the true track position are of the order of 1 cm or less in the primary charge region between 7 and 26.

  7. PPM-based System for Guided Waves Communication Through Corrosion Resistant Multi-wire Cables

    NASA Astrophysics Data System (ADS)

    Trane, G.; Mijarez, R.; Guevara, R.; Pascacio, D.

    Novel wireless communication channels are a necessity in applications surrounded by harsh environments, for instance down-hole oil reservoirs. Traditional radio frequency (RF) communication schemes are not capable of transmitting signals through metal enclosures surrounded by corrosive gases and liquids. As an alternative to RF, a pulse position modulation (PPM) guided waves communication system has been developed and evaluated using a corrosion resistant 4H18 multi-wire cable, commonly used to descend electronic gauges in down-hole oil applications, as the communication medium. The system consists of a transmitter and a receiver that utilizes a PZT crystal, for electrical/mechanical coupling, attached to each extreme of the multi-wire cable. The modulator is based on a microcontroller, which transmits60 kHz guided wave pulses, and the demodulator is based on a commercial digital signal processor (DSP) module that performs real time DSP algorithms. Experimental results are presented, which were obtained using a 1m corrosion resistant 4H18multi-wire cable, commonly used with downhole electronic gauges in the oil sector. Although there was significant dispersion and multiple mode excitations of the transmitted guided wave energy pulses, the results show that data rates on the order of 500 bits per second are readily available employing PPM and simple communications techniques.

  8. First results of a simultaneous measurement of tritium and 14C in an ultra-low-background proportional counter for environmental sources of methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Emily K.; Aalseth, Craig E.; Day, Anthony R.

    Abstract Simultaneous measurement of tritium and 14C would provide an added tool for tracing organic compounds through environmental systems and is possible via beta energy spectroscopy of sample-derived methane in internal-source gas proportional counters. Since the mid-1960’s atmospheric tritium and 14C have fallen dramatically as the isotopic injections from above-ground nuclear testing have been diluted into the ocean and biosphere. In this work, the feasibility of simultaneous tritium and 14C measurements via proportional counters is revisited in light of significant changes in both the atmospheric and biosphere isotopics and the development of new ultra-low-background gas proportional counting capabilities for smallmore » samples (roughly 50 cc methane). A Geant4 Monte Carlo model of a Pacific Northwest National Laboratory (PNNL) proportional counter response to tritium and 14C is used to analyze small samples of two different methane sources to illustrate the range of applicability of contemporary simultaneous measurements and their limitations. Because the two methane sources examined were not sample size limited, we could compare the small-sample measurements performed at PNNL with analysis of larger samples performed at a commercial laboratory. The dual-isotope simultaneous measurement is well matched for methane samples that are atmospheric or have an elevated source of tritium (i.e. landfill gas). For samples with low/modern tritium isotopics (rainwater), commercial separation and counting is a better fit.« less

  9. Study of microdosimetric energy deposition patterns in tissue-equivalent medium due to low-energy neutron fields using a graphite-walled proportional counter.

    PubMed

    Waker, A J; Aslam

    2011-06-01

    To improve radiation protection dosimetry for low-energy neutron fields encountered in nuclear power reactor environments, there is increasing interest in modeling neutron energy deposition in metrological instruments such as tissue-equivalent proportional counters (TEPCs). Along with these computational developments, there is also a need for experimental data with which to benchmark and test the results obtained from the modeling methods developed. The experimental work described in this paper is a study of the energy deposition in tissue-equivalent (TE) medium using an in-house built graphite-walled proportional counter (GPC) filled with TE gas. The GPC is a simple model of a standard TEPC because the response of the counter at these energies is almost entirely due to the neutron interactions in the sensitive volume of the counter. Energy deposition in tissue spheres of diameter 1, 2, 4 and 8 µm was measured in low-energy neutron fields below 500 keV. We have observed a continuously increasing trend in microdosimetric averages with an increase in neutron energy. The values of these averages decrease as we increase the simulated diameter at a given neutron energy. A similar trend for these microdosimetric averages has been observed for standard TEPCs and the Rossi-type, TE, spherical wall-less counter filled with propane-based TE gas in the same energy range. This implies that at the microdosimetric level, in the neutron energy range we employed in this study, the pattern of average energy deposited by starter and insider proton recoil events in the gas is similar to those generated cumulatively by crosser and stopper events originating from the counter wall plus starter and insider recoil events originating in the sensitive volume of a TEPC.

  10. Dual-Chamber/Dual-Anode Proportional Counter Incorporating an Intervening Thin-Foil Solid Neutron Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatner, Lynn A; Neal, John S; Blackston, Matthew A

    2012-01-01

    A dual-chamber/dual-anode gas proportional counter utilizing thin solid 6LiF or 10B neutron converters coated on a 2-micon-thick Mylar film that is positioned between the two counter chambers and anodes has been designed, fabricated, and tested using a variety of fill gases including naturally abundant helium. In this device, neutron conversion products emitted from both sides of the coated converter foil are detected rather than having half of the products absorbed in the wall of a conventional tube type counter where the solid neutron converter is deposited on the tube wall. Geant4-based radiation transport calculations were used to determine the optimummore » neutron converter coating thickness for both isotopes. Solution methods for applying these optimized-thickness coatings on a Mylar film were developed that were carried out at room temperature without any specialized equipment and that can be adapted to standard coating methods such as silk screen or ink jet printing. The performance characteristics of the dual-chamber/dual-anode neutron detector were determined for both types of isotopically enriched converters. The experimental performance of the 6LiF converter-based detector was described well by modeling results from Geant4. Additional modeling studies of multiple-foil/multiple-chamber/anode configurations addressed the basic issue of the relatively longer absorption range of neutrons versus the shorter range of the conversion products for 6LiF and 10B. Combined with the experimental results, these simulations indicate that a high-performance neutron detector can be realized in a single device through the application of these multiple-foil/solid converter, multiple-chamber detector concepts.« less

  11. MCNP modelling of the wall effects observed in tissue-equivalent proportional counters.

    PubMed

    Hoff, J L; Townsend, L W

    2002-01-01

    Tissue-equivalent proportional counters (TEPCs) utilise tissue-equivalent materials to depict homogeneous microscopic volumes of human tissue. Although both the walls and gas simulate the same medium, they respond to radiation differently. Density differences between the two materials cause distortions, or wall effects, in measurements, with the most dominant effect caused by delta rays. This study uses a Monte Carlo transport code, MCNP, to simulate the transport of secondary electrons within a TEPC. The Rudd model, a singly differential cross section with no dependence on electron direction, is used to describe the energy spectrum obtained by the impact of two iron beams on water. Based on the models used in this study, a wall-less TEPC had a higher lineal energy (keV.micron-1) as a function of impact parameter than a solid-wall TEPC for the iron beams under consideration. An important conclusion of this study is that MCNP has the ability to model the wall effects observed in TEPCs.

  12. Neutron spectrum measurements using proton recoil proportional counters: results of measurements of leakage spectra for the Little Boy assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, E.F.; Yule, T.J.

    1984-01-01

    Measurements of degraded fission-neutron spectra using recoil proportional counters are done routinely for studies involving fast reactor mockups. The same techniques are applicable to measurements of neutron spectra required for personnel dosimetry in fast neutron environments. A brief discussion of current applications of these methods together with the results of a measurement made on the LITTLE BOY assembly at Los Alamos are here described.

  13. Real-time multi-mode neutron multiplicity counter

    DOEpatents

    Rowland, Mark S; Alvarez, Raymond A

    2013-02-26

    Embodiments are directed to a digital data acquisition method that collects data regarding nuclear fission at high rates and performs real-time preprocessing of large volumes of data into directly useable forms for use in a system that performs non-destructive assaying of nuclear material and assemblies for mass and multiplication of special nuclear material (SNM). Pulses from a multi-detector array are fed in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel, to reduce the latency associated with current shift-register systems. The word is read at regular intervals, all bits simultaneously, with no manipulation. The word is passed to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup. The word is used simultaneously in several internal processing schemes that assemble the data in a number of more directly useable forms. The detector includes a multi-mode counter that executes a number of different count algorithms in parallel to determine different attributes of the count data.

  14. High-Sensitivity X-ray Polarimetry with Amorphous Silicon Active-Matrix Pixel Proportional Counters

    NASA Technical Reports Server (NTRS)

    Black, J. K.; Deines-Jones, P.; Jahoda, K.; Ready, S. E.; Street, R. A.

    2003-01-01

    Photoelectric X-ray polarimeters based on pixel micropattern gas detectors (MPGDs) offer order-of-magnitude improvement in sensitivity over more traditional techniques based on X-ray scattering. This new technique places some of the most interesting astronomical observations within reach of even a small, dedicated mission. The most sensitive instrument would be a photoelectric polarimeter at the focus of 2 a very large mirror, such as the planned XEUS. Our efforts are focused on a smaller pathfinder mission, which would achieve its greatest sensitivity with large-area, low-background, collimated polarimeters. We have recently demonstrated a MPGD polarimeter using amorphous silicon thin-film transistor (TFT) readout suitable for the focal plane of an X-ray telescope. All the technologies used in the demonstration polarimeter are scalable to the areas required for a high-sensitivity collimated polarimeter. Leywords: X-ray polarimetry, particle tracking, proportional counter, GEM, pixel readout

  15. Performance of a multistep fluorescence-gated proportional counter for hard X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.

    1992-01-01

    Results from the first flight of our proportional counter in an imaging telescope led us to rebuild the detector. We have used a Penning gas mixture (xenon + 1 percent isobutylene) and introduced a preamplification region to improve the energy resolution. We have rebuilt the pressure vessel making novel use of molybdenum as the housing material in order to reduce the residual instrument background, particularly in the fluorescence-gated mode for which the detector design has been optimized. We have also increased the sensitive gas depth from 9 to 14 cm to further increase the sensitivity to both fluorescent pairs and conventional singles. Our calibrations have shown that the overall energy resolution of the detector has been enhanced by a factor of 2, and we predict that the sensitivity at float will increase by a factor of 3 in the 50-70 keV energy band.

  16. Quasiclassical theory of disordered multi-channel Majorana quantum wires

    NASA Astrophysics Data System (ADS)

    Neven, Patrick; Bagrets, Dmitry; Altland, Alexander

    2013-05-01

    Multi-channel spin-orbit quantum wires, when subjected to a magnetic field and proximity coupled to an s-wave superconductor, may support Majorana states. We study what happens to these systems in the presence of disorder. Inspired by the widely established theoretical methods of mesoscopic superconductivity, we develop á la Eilenberger a quasiclassical approach to topological nanowires valid in the limit of strong spin-orbit coupling. We find that the ‘Majorana number’ {\\cal M} , distinguishing between the state with Majorana fermions (symmetry class B) and no Majorana fermions (class D), is given by the product of two Pfaffians of gapped quasiclassical Green's functions fixed by the right and left terminals connected to the wire. A numerical solution of the Eilenberger equations reveals that the class D disordered quantum wires are prone to the formation of the zero-energy anomaly (class D impurity spectral peak) in the local density of states that shares the key features of the Majorana peak. In this way, we confirm the robustness of our previous conclusions (Bagrets and Altland 2012 Phys. Rev. Lett. 109 227005) on a more restrictive system setup. Generally speaking, we find that the quasiclassical approach provides a highly efficient means to address disordered class D superconductors both in the presence and in the absence of topological structures.

  17. A correction method of the anode wire modulation for 2D MWPCs detector

    NASA Astrophysics Data System (ADS)

    Wen, Z. W.; Qi, H. R.; Zhang, Y. L.; Wang, H. Y.; Liu, L.; Li, Y. H.

    2018-04-01

    The linearity performance of 2D Multi-Wire Proportional Chambers (MWPCs) detector across the anode wires is modulated by the discrete anode wires. A MWPCs dectector with the 2 mm anode wire spacing was developed to study the anode wire modulation effect. The 2D lineartity performance was measured with a 55Fe source which was moved by a electric mobile platform. The experimental results show that the deviation of the measured position depends upon the incident position in the axis across the anode wires and the curve between the measured position and the incident position is consistent with the sine function whose period is equal to the anode wire spacing. A correction method of the measured position across the anode wire direction was obtained by fitting the curve between the measured position and the incident position. The non-linearity of the measured position across the anode wire direction is reduced about 0.085% and the imaging capability is obviously improved after the data is modified by the correction method.

  18. Design and implementation of wire tension measurement system for MWPCs used in the STAR iTPC upgrade

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Shen, Fuwang; Wang, Shuai; Feng, Cunfeng; Li, Changyu; Lu, Peng; Thomas, Jim; Xu, Qinghua; Zhu, Chengguang

    2017-07-01

    The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper, the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.

  19. Dual wire weld feed proportioner

    NASA Technical Reports Server (NTRS)

    Nugent, R. E.

    1968-01-01

    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  20. Performance of Gas Scintillation Proportional Counter Array for High-Energy X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Apple, Jeffery

    2004-01-01

    A focal plane array of high-pressure gas scintillation proportional counters (GSPC) for a High Energy X-Ray Observatory (HERO) is developed at the Marshall Space Flight Center. The array is consisted from eight GSPCs and is a part of balloon born payload scheduled to flight in May 2004. These detectors have an active area of approximately 20 square centimeters, and are filled with a high pressure (10(exp 6) Pa) xenon-helium mixture. Imaging is via crossed-grid position-sensitive phototubes sensitive in the UV region. The performance of the GSPC is well matched to that of the telescopes x-ray optics which have response to 75 keV and a focal spot size of approximately 500 microns. The detector's energy resolution, 4% FWHM at 60 keV, is adequate for resolving the broad spectral lines of astrophysical importance and for accurate continuum measurements. Results of the on-earth detector calibration will be presented and in-flight detector performance will be provided, as available.

  1. Gold nanoparticle decorated multi-walled carbon nanotubes as counter electrode for dye sensitized solar cells.

    PubMed

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2012-11-01

    A novel counter electrode material for dye sensitized solar cells (DSSCs) composed of nanostructured Au particles decorated on functionalized multi-walled carbon nanotubes (f-MWNTs) is demonstrated for the first time. MWNTs synthesized by catalytic chemical vapor deposition technique are purified and functionalized by treating with concentrated acids. Au nanoparticles are decorated on f-MWNTs by a rapid and facile microwave assisted polyol reduction method. The materials are characterized by X-ray diffractometry, Fourier transform infra red spectroscopy and electron microscopy. The DSSC fabricated with Au/f-MWNTs based counter electrode shows enhanced power conversion efficiency (eta) of 4.9% under AM 1.5G simulated solar radiation. In comparison, the reference DSSCs fabricated with f-MWNTs and Pt counter electrodes show eta of 2.1% and 4.5%. This high performance of Au/f-MWNTs counter electrode is investigated using electrochemical impedance spectroscopy and cyclic voltammetry studies.

  2. Compact Tissue-equivalent Proportional Counter for Deep Space Human Missions.

    PubMed

    Straume, T; Braby, L A; Borak, T B; Lusby, T; Warner, D W; Perez-Nunez, D

    2015-10-01

    Effects on human health from the complex radiation environment in deep space have not been measured and can only be simulated here on Earth using experimental systems and beams of radiations produced by accelerators, usually one beam at a time. This makes it particularly important to develop instruments that can be used on deep-space missions to measure quantities that are known to be relatable to the biological effectiveness of space radiation. Tissue-equivalent proportional counters (TEPCs) are such instruments. Unfortunately, present TEPCs are too large and power intensive to be used beyond low Earth orbit (LEO). Here, the authors describe a prototype of a compact TEPC designed for deep space applications with the capability to detect both ambient galactic cosmic rays and intense solar particle event radiation. The device employs an approach that permits real-time determination of yD (and thus quality factor) using a single detector. This was accomplished by assigning sequential sampling intervals as detectors “1” and “2” and requiring the intervals to be brief compared to the change in dose rate. Tests with g rays show that the prototype instrument maintains linear response over the wide dose-rate range expected in space with an accuracy of better than 5% for dose rates above 3 mGy h(-1). Measurements of yD for 200 MeV n(-1) carbon ions were better than 10%. Limited tests with fission spectrum neutrons show absorbed dose-rate accuracy better than 15%.

  3. Compact Tissue-equivalent Proportional Counter for Deep Space Human Missions

    PubMed Central

    Straume, T.; Braby, L.A.; Borak, T.B.; Lusby, T.; Warner, D.W.; Perez-Nunez, D.

    2015-01-01

    Abstract Effects on human health from the complex radiation environment in deep space have not been measured and can only be simulated here on Earth using experimental systems and beams of radiations produced by accelerators, usually one beam at a time. This makes it particularly important to develop instruments that can be used on deep-space missions to measure quantities that are known to be relatable to the biological effectiveness of space radiation. Tissue-equivalent proportional counters (TEPCs) are such instruments. Unfortunately, present TEPCs are too large and power intensive to be used beyond low Earth orbit (LEO). Here, the authors describe a prototype of a compact TEPC designed for deep space applications with the capability to detect both ambient galactic cosmic rays and intense solar particle event radiation. The device employs an approach that permits real-time determination of (and thus quality factor) using a single detector. This was accomplished by assigning sequential sampling intervals as detectors “1” and “2” and requiring the intervals to be brief compared to the change in dose rate. Tests with γ rays show that the prototype instrument maintains linear response over the wide dose-rate range expected in space with an accuracy of better than 5% for dose rates above 3 mGy h−1. Measurements of for 200 MeV n−1 carbon ions were better than 10%. Limited tests with fission spectrum neutrons show absorbed dose-rate accuracy better than 15%. PMID:26313585

  4. Review of the Microdosimetric Studies for High-Energy Charged Particle Beams Using a Tissue-Equivalent Proportional Counter

    NASA Astrophysics Data System (ADS)

    Tsuda, Shuichi; Sato, Tatsuhiko; Ogawa, Tatsuhiko; Sasaki, Shinichi

    Lineal energy (y) distributions were measured for various types of charged particles such as protons and iron, with kinetic energies of up to 500 MeV/u, via the use of a wall-less tissue-equivalent proportional counter (TEPC). Radial dependencies of y distributions were also experimentally evaluated to investigate the track structures of protons, carbon, and iron beams. This paper reviews a series of measured data using the aforementioned TEPC as well as assesses the systematic verification of a microdosimetric calculation model of a y distribution incorporated into the particle and heavy ion transport code system (PHITS) and associated track structure models.

  5. Fast wire per wire X-ray data acquisition system for time-resolved small angle scattering experiments

    NASA Astrophysics Data System (ADS)

    Epstein, A.; Briquet-Laugier, F.; Sheldon, S.; Boulin, C.

    2000-04-01

    Most of the X-ray multi-wire gas detectors used at the EMBL Hamburg outstation for time-resolved studies of biological samples are readout, using the delay line method. The main disadvantage of such readout systems is their event rate limitation introduced by the delay line and the required time to digital conversion step. They also lack the possibility to deal with multiple events. To overcome these limitations, a new approach for the complete readout system was introduced. The new linear detection system is based on the wire per wire approach where each individual wire is associated to preamplifier/discriminator/counter electronics channel. High-density, front-end electronics were designed around a fast current sensitive preamplifier. An eight-channel board was designed to include the preamplifiers-discriminators and the differential ECL drivers output stages. The detector front-end consists of 25 boards directly mounted inside the detector assembly. To achieve a time framing resolution as short as 10 /spl mu/s, very fast histogramming is required. The only way to implement this for a high number of channels (200 in our case) is by using a distributed system. The digital part of the system consists of a crate controller, up to 16 acquisition boards (capable of handling fast histogramming for up to 32-channels each) and an optical-link board (based on the Cypress "Hot-Link" chip set). Both the crate controller and the acquisition boards are based on a standard RISC microcontroller (IDT R3081) plug-in board. At present, a dedicated CAMAC module which we developed is used to interface the digital front-end acquisition crate to the host via the optical link.

  6. The Current in a Wire

    ERIC Educational Resources Information Center

    Thompson, Keith

    2009-01-01

    This little problem arose because I was frustrated with the standard electromagnetism texts, which show the magnetic field due to a current-bearing wire outside the wire [proportional to] 1/r and inside [proportional to] r. However, they never point out that the moving electrons must be influenced by the magnetic field created by the other moving…

  7. Advanced X-ray Imaging Crystal Spectrometer for Magnetic Fusion Tokamak Devices

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Bog, M. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.

    2008-03-01

    An advanced X-ray imaging crystal spectrometer is currently under development using a segmented position sensitive detector and time-to-digital converter (TDC) based delay-line readout electronics for burning plasma diagnostics. The proposed advanced XICS utilizes an eight-segmented position sensitive multi-wire proportional counter and supporting electronics to increase the spectrometer performance includes the photon count-rate capability and spatial resolution.

  8. Design and implementation of wire tension measurement system for MWPCs used in the STAR iTPC upgrade

    DOE PAGES

    Wang, Xu; Shen, Fuwang; Wang, Shuai; ...

    2017-04-06

    The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper,more » the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.« less

  9. Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding

    NASA Astrophysics Data System (ADS)

    Shi, Jianjun; Zhu, Ping; Fu, Geyan; Shi, Shihong

    2018-05-01

    Coaxial laser inside wire cladding method is very promising as it has a very high efficiency and a consistent interaction between the laser and wire. In this paper, the energy and mass conservation law, and the regression algorithm are used together for establishing the mathematical models to study the relationship between the layer geometry characteristics (width, height and cross section area) and process parameters (laser power, scanning velocity and wire feeding speed). At the selected parameter ranges, the predicted values from the models are compared with the experimental measured results, and there is minor error existing, but they reflect the same regularity. From the models, it is seen the width of the cladding layer is proportional to both the laser power and wire feeding speed, while it firstly increases and then decreases with the increasing of the scanning velocity. The height of the cladding layer is proportional to the scanning velocity and feeding speed and inversely proportional to the laser power. The cross section area increases with the increasing of feeding speed and decreasing of scanning velocity. By using the mathematical models, the geometry characteristics of the cladding layer can be predicted by the known process parameters. Conversely, the process parameters can be calculated by the targeted geometry characteristics. The models are also suitable for multi-layer forming process. By using the optimized process parameters calculated from the models, a 45 mm-high thin-wall part is formed with smooth side surfaces.

  10. Low-level gamma and neutron monitoring based on use of proportional counter filled with 3He in polythene moderator: study of the responses to gamma and neutrons.

    PubMed

    Pszona, S; Bantsar, A; Tulik, P; Wincel, K; Zaręba, B

    2014-10-01

    It has been shown that a proportional counter filled with (3)He placed centrally inside a polythene sphere opens a new possibility for measuring gamma photons and neutrons in the separate pulse-height windows. The responses to gamma and neutrons (in terms of ambient dose equivalent) of the detector assembly consisting of 203-mm polythene sphere with centrally positioned 40-mm diameter (3)He proportional counter have been studied. The response to secondary gammas from capture process in hydrogen has also been studied. The rather preliminary studies indicate that the proposed measuring system has very promising features as an ambient dose equivalent device for mixed gamma-neutron fields. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Radiation Counters

    DOEpatents

    Simpson, Jr, J A

    1950-01-31

    Geiger-Mueller and proportional counters operating at low potentials (about 125-300 v) obtained by utilizing certain ratios of diameters of the electrodes and particular mixtures of noble gases as the ionizing medium are covered in this application.

  12. Advances in Multi-Pixel Photon Counter technology: First characterization results

    NASA Astrophysics Data System (ADS)

    Bonanno, G.; Marano, D.; Romeo, G.; Garozzo, S.; Grillo, A.; Timpanaro, M. C.; Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G.

    2016-01-01

    Due to the recent advances in silicon photomultiplier technology, new types of Silicon Photomultiplier (SiPM), also named Multi-Pixel Photon Counter (MPPC) detectors have become recently available, demonstrating superior performance in terms of their most important electrical and optical parameters. This paper presents the latest characterization results of the novel Low Cross-Talk (LCT) MPPC families from Hamamatsu, where a noticeable fill-factor enhancement and cross-talk reduction is achieved. In addition, the newly adopted resin coating has been proven to yield improved photon detection capabilities in the 280-320 nm spectral range, making the new LCT MPPCs particularly suitable for emerging applications like Cherenkov Telescope Array, and Astroparticle Physics.

  13. Quantum-well exciton polariton emission from multi-quantum-well wire structures

    NASA Astrophysics Data System (ADS)

    Kohl, M.; Heitmann, D.; Grambow, P.; Ploog, K.

    The radiative decay of quantum-well exciton (QWE) polaritons in microstructured Al0.3Ga0.7As - GaAs multi-quantum wells (MQW) has been studied by photoluminescence spectroscopy. Periodic wire structures with lateral periodicities a = 250-500 nm and lateral widths t = 100-200 nm have been fabricated by plasma etching. The thickness of the QWs was 13 nm. In the QW wire samples the free-exciton photoluminescence was strongly reduced and the QWE polariton emission was observed as a maximum peaked at a 3 meV higher energy than the free QWE transition. In samples which had only a microstructured cladding layer, the free-exciton photoluminescence was dominant in the spectrum and the QWE polariton emission was observed as a shoulder on the high-energy side of the free QWE transition. In addition, two transitions at the low energy side of the free QWE photoluminescence were present in the microstructured samples, which were related to etching induced states.

  14. Study of the effect of collisionality and cooling on the interactions of counter-streaming plasma flows as a function of wire material

    NASA Astrophysics Data System (ADS)

    Collins, Gilbert; Valenzuela, Julio; Aybar, Nicholas; Conti, Fabio; Beg, Farhat

    2017-10-01

    We report on the effects wire material on collisionality and radiative cooling on the interactions of counter-streaming plasma jets produced by conical wire arrays on the 200 kA GenASIS driver. In these interactions, mean free path (λmfp) scales with jet velocity (vjet4),atomic mass (A2), and ionization (Z*-4), while cooling scales with atomic mass. By changing the material of the jets one can create slowly cooling, weakly collisional regimes using C, Al, or Cu, or strongly cooled, effectively collisionless plasmas using Mo or W. The former produced smooth shocks soon after the jets collide (near the peak current of 150 ns) that grew in size over time. Interactions of the latter produced multiple structures of a different shape, at a later time ( 300 ns) that dissipated rapidly compared to the lower Z materials. We will report on the scaleability of these different materials to astrophysical phenomena. This work was partially supported by the Department of Energy Grant Number DE-SC0014493.

  15. Instability of counter-rotating stellar disks

    NASA Astrophysics Data System (ADS)

    Hohlfeld, R. G.; Lovelace, R. V. E.

    2015-09-01

    We use an N-body simulation, constructed using GADGET-2, to investigate an accretion flow onto an astrophysical disk that is in the opposite sense to the disk's rotation. In order to separate dynamics intrinsic to the counter-rotating flow from the impact of the flow onto the disk, we consider an initial condition in which the counter-rotating flow is in an annular region immediately exterior the main portion of the astrophysical disk. Such counter-rotating flows are seen in systems such as NGC 4826 (known as the "Evil Eye Galaxy"). Interaction between the rotating and counter-rotating components is due to two-stream instability in the boundary region. A multi-armed spiral density wave is excited in the astrophysical disk and a density distribution with high azimuthal mode number is excited in the counter-rotating flow. Density fluctuations in the counter-rotating flow aggregate into larger clumps and some of the material in the counter-rotating flow is scattered to large radii. Accretion flow processes such as this are increasingly seen to be of importance in the evolution of multi-component galactic disks.

  16. Calibration of the Large Area X-Ray Proportional Counter (LAXPC) Instrument on board AstroSat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antia, H. M.; Yadav, J. S.; Chauhan, Jai Verdhan

    We present the calibration and background model for the Large Area X-ray Proportional Counter (LAXPC) detectors on board AstroSat . The LAXPC instrument has three nominally identical detectors to achieve a large collecting area. These detectors are independent of each other, and in the event analysis mode they record the arrival time and energy of each photon that is detected. The detectors have a time resolution of 10 μ s and a dead-time of about 42 μ s. This makes LAXPC ideal for timing studies. The energy resolution and peak channel-to-energy mapping were obtained from calibration on the ground usingmore » radioactive sources coupled with GEANT4 simulations of the detectors. The response matrix was further refined from observations of the Crab after launch. At around 20 keV the energy resolution of the detectors is 10%–15%, while the combined effective area of the three detectors is about 6000 cm{sup 2}.« less

  17. Proportional drift tubes for large area muon detectors

    NASA Technical Reports Server (NTRS)

    Cho, C.; Higashi, S.; Hiraoka, N.; Maruyama, A.; Okusawa, T.; Sato, T.; Suwada, T.; Takahashi, T.; Umeda, H.

    1985-01-01

    A proportional drift chamber which consists of eight rectangular drift tubes with cross section of 10 cm x 5 cm, a sense wire of 100 micron phi gold-plated tungsten wire and the length of 6 m, was tested using cosmic ray muons. Spatial resolution (rms) is between 0.5 and 1 mm over drift space of 50 mm, depending on incident angle and distance from sense wire.

  18. Simultaneous, proportional, multi-axis prosthesis control using multichannel surface EMG.

    PubMed

    Yatsenko, Dimitri; McDonnall, Daniel; Guillory, K Shane

    2007-01-01

    Most upper limb prosthesis controllers only allow the individual selection and control of single joints of the limb. The main limiting factor for simultaneous multi-joint control is usually the availability of reliable independent control signals that can intuitively be used. In this paper, a novel method is presented for extraction of individual muscle source signals from surface EMG array recordings, based on EMG energy orthonormalization along principle movement vectors. In cases where independently-controllable muscles are present in residual limbs, this method can be used to provide simultaneous, multi-axis, proportional control of prosthetic systems. Initial results are presented for simultaneous control of wrist rotation, wrist flexion/extension, and grip open/close for two intact subjects under both isometric and non-isometric conditions and for one subject with transradial amputation.

  19. Wired/wireless access integrated RoF-PON with scalable generation of multi-frequency MMWs enabled by polarization multiplexed FWM in SOA.

    PubMed

    Xiang, Yu; Chen, Chen; Zhang, Chongfu; Qiu, Kun

    2013-01-14

    In this paper, we propose and demonstrate a novel integrated radio-over-fiber passive optical network (RoF-PON) system for both wired and wireless access. By utilizing the polarization multiplexed four-wave mixing (FWM) effect in a semiconductor optical amplifier (SOA), scalable generation of multi-frequency millimeter-waves (MMWs) can be provided so as to assist the configuration of multi-frequency wireless access for the wire/wireless access integrated ROF-PON system. In order to obtain a better performance, the polarization multiplexed FWM effect is investigated in detail. Simulation results successfully verify the feasibility of our proposed scheme.

  20. Calibration of an Ultra-Low-Background Proportional Counter for Measuring 37Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifert, Allen; Aalseth, Craig E.; Bonicalzi, Ricco

    Abstract. An ultra-low-background proportional counter (ULBPC) design has been developed at Pacific Northwest National Laboratory (PNNL) using clean materials, primarily electrochemically-purified copper. This detector, along with an ultra-low-background counting system (ULBCS), was developed to complement a new shallow underground laboratory (30 meters water-equivalent) constructed at PNNL. The ULBCS design includes passive neutron and gamma shielding, along with an active cosmic-veto system. This system provides a capability for making ultra-sensitive measurements to support applications like age-dating soil hydrocarbons with 14C/3H, age-dating of groundwater with 39Ar, and soil-gas assay for 37Ar to support On-Site Inspection (OSI). On-Site Inspection is a key componentmore » of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclides created by an underground nuclear explosion are valuable signatures of a Treaty violation. For OSI, the 35-day half-life of 37Ar, produced from neutron interactions with calcium in soil, provides both high specific activity and sufficient time for inspection before decay limits sensitivity. This work describes the calibration techniques and analysis methods developed to enable quantitative measurements of 37Ar samples over a broad range of pressures. These efforts, along with parallel work in progress on gas chemistry separation, are expected to provide a significant new capability for 37Ar soil gas background studies.« less

  1. Time Distribution Using SpaceWire in the SCaN Testbed on ISS

    NASA Technical Reports Server (NTRS)

    Lux, James P.

    2012-01-01

    A paper describes an approach for timekeeping and time transfer among the devices on the CoNNeCT project s SCaN Testbed. It also describes how the clocks may be synchronized with an external time reference; e.g., time tags from the International Space Station (ISS) or RF signals received by a radio (TDRSS time service or GPS). All the units have some sort of counter that is fed by an oscillator at some convenient frequency. The basic problem in timekeeping is relating the counter value to some external time standard such as UTC. With SpaceWire, there are two approaches possible: one is to just use SpaceWire to send a message, and use an external wire for the sync signal. This is much the same as with the RS- 232 messages and l pps line from a GPS receiver. However, SpaceWire has an additional capability that was added to make it easier - it can insert and receive a special "timecode" word in the data stream.

  2. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    NASA Astrophysics Data System (ADS)

    Di Giovanni, A.

    2018-03-01

    This work concerned the preliminary tests and characterization of a cryogenic preamplifier board for an array made of 16 S13370-3050CN (VUV4 family) Multi-Pixel Photon Counters manufactured by Hamamatsu and operated at liquid xenon temperature. The proposed prototype is based on the use of the Analog Devices AD8011 current feedback operational amplifier. The detector allows for single photon detection, making this device a promising choice for the future generation of neutrino and dark matter detectors based on liquid xenon targets.

  3. Advances in the RXTE Proportional Counter Array Calibration: Nearing the Statistical Limit

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, Nikolai; Jahoda, Keith; Markwardt, Craig; Swank, Jean; Strohmayer, Tod

    2012-01-01

    During its 16 years of service Rossi X-ray Timing Explorer (RXTE) mission has provided an extensive archive of data, which will serve as a primary source of high cadence observation of variable X-ray sources for fast timing studies. It is, therefore, very important to have the most reliable calibration of RXTE instruments. The Proportional Counter Array (PCA) is the primary instrument on-board RXTE which provides data in 2-50 keY with higher than millisecond time resolution in up to 256 energy channels. In 2009 RXTE team revised the response residual minimization method used to derive the parameters of the PCA physical model. The procedure is now based on the residual minimization between the model spectrum for Crab nebula emission and a calibration data set consisting of a number of spectra from the Crab and the on-board Am241 calibration source, uniformly covering a whole RXTE span. The new method led to a much more effective model convergence and allowed for better understanding of the behavior of the PCA energy-to-channel relationship. It greatly improved the response matrix performance. We describe the new version of the RXTE/PCA response generator PCARMF vll.7 along with the corresponding energy-to-channel conversion table (version e05v04) and their difference from the previous releases of PCA calibration. The new PCA response adequately represents the spectrum of the calibration sources and successfully predicts the energy of the narrow iron emission line in Cas-A throughout the RXTE mission.

  4. Wire-shaped perovskite solar cell based on TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan; Kulkarni, Sneha A.; Li, Zhen; Xu, Wenjing; Batabyal, Sudip K.; Zhang, Sam; Cao, Anyuan; Wong, Lydia Helena

    2016-05-01

    In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

  5. Development of a multi-element microdosimetric detector based on a thick gas electron multiplier

    NASA Astrophysics Data System (ADS)

    Anjomani, Z.; Hanu, A. R.; Prestwich, W. V.; Byun, S. H.

    2017-03-01

    A prototype multi-element gaseous microdosimetric detector was developed using the Thick Gas Electron Multiplier (THGEM) technique. The detector aims at measuring neutron and gamma-ray dose rates for weak neutron-gamma radiation fields. The multi-element design was employed to increase the neutron detection efficiency. The prototype THGEM multi-element detector consists of three layers of tissue equivalent plastic hexagons and each layer houses a hexagonal array of seven cylindrical gas cavity elements with equal heights and diameters of 17 mm. The final detector structure incorporates 21 gaseous volumes. Owing to the absence of wire electrodes, the THGEM multi-element detector offers flexible and convenient fabrication. The detector responses to neutron and gamma-ray were investigated using the McMaster Tandetron 7Li(p,n) neutron source. The dosimetric performance of the detector is presented in contrast to the response of a commercial tissue equivalent proportional counter. Compared to the standard TEPC response, the detector gave a consistent microdosimetric response with an average discrepancy of 8 % in measured neutron absorbed dose. An improvement of a factor of 3.0 in neutron detection efficiency has been accomplished with only a small degradation in energy resolution. However, its low energy cut off is about 6 keV/μm, which is not sufficient to measure the gamma-ray dose. This problem will be addressed by increasing the electron multiplication gain using double THGEM layers.

  6. Recent developments in multi-wire fixed abrasive slicing technique (FAST). [for low cost silicon wafer production from ingots

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.; Smith, M. B.; Lynch, L. D.

    1982-01-01

    Slicing is an important processing step for all technologies based on the use of ingots. A comparison of the economics of three slicing techniques shows that the fixed abrasive slicing technique (FAST) is superior to the internal diameter (ID) and the multiblade slurry (MBS) techniques. Factors affecting contact length are discussed, taking into account kerf width, rocking angle, ingot size, and surface speed. Aspects of blade development are also considered. A high concentration of diamonds on wire has been obtained in wire packs usd for FAST slicing. The material removal rate was found to be directly proportional to the pressure at the diamond tips.

  7. Simulated Response of a Tissue-equivalent Proportional Counter on the Surface of Mars.

    PubMed

    Northum, Jeremy D; Guetersloh, Stephen B; Braby, Leslie A; Ford, John R

    2015-10-01

    Uncertainties persist regarding the assessment of the carcinogenic risk associated with galactic cosmic ray (GCR) exposure during a mission to Mars. The GCR spectrum peaks in the range of 300(-1) MeV n to 700 MeV n(-1) and is comprised of elemental ions from H to Ni. While Fe ions represent only 0.03% of the GCR spectrum in terms of particle abundance, they are responsible for nearly 30% of the dose equivalent in free space. Because of this, radiation biology studies focusing on understanding the biological effects of GCR exposure generally use Fe ions. Acting as a thin shield, the Martian atmosphere alters the GCR spectrum in a manner that significantly reduces the importance of Fe ions. Additionally, albedo particles emanating from the regolith complicate the radiation environment. The present study uses the Monte Carlo code FLUKA to simulate the response of a tissue-equivalent proportional counter on the surface of Mars to produce dosimetry quantities and microdosimetry distributions. The dose equivalent rate on the surface of Mars was found to be 0.18 Sv y(-1) with an average quality factor of 2.9 and a dose mean lineal energy of 18.4 keV μm(-1). Additionally, albedo neutrons were found to account for 25% of the dose equivalent. It is anticipated that these data will provide relevant starting points for use in future risk assessment and mission planning studies.

  8. Controlling Low-Rate Signal Path Microdischarge for an Ultra-Low-Background Proportional Counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, Emily K.; Aalseth, Craig E.; Bonicalzi, Ricco

    2013-05-01

    ABSTRACT Pacific Northwest National Laboratory (PNNL) has developed an ultra-low-background proportional counter (ULBPC) made of high purity copper. These detectors are part of an ultra-low-background counting system (ULBCS) in the newly constructed shallow underground laboratory at PNNL (at a depth of ~30 meters water-equivalent). To control backgrounds, the current preamplifier electronics are located outside the ULBCS shielding. Thus the signal from the detector travels through ~1 meter of cable and is potentially susceptible to high voltage microdischarge and other sources of electronic noise. Based on initial successful tests, commercial cables and connectors were used for this critical signal path. Subsequentmore » testing across different batches of commercial cables and connectors, however, showed unwanted (but still low) rates of microdischarge noise. To control this noise source, two approaches were pursued: first, to carefully validate cables, connectors, and other commercial components in this critical signal path, making modifications where necessary; second, to develop a custom low-noise, low-background preamplifier that can be integrated with the ULBPC and thus remove most commercial components from the critical signal path. This integrated preamplifier approach is based on the Amptek A250 low-noise charge-integrating preamplifier module. The initial microdischarge signals observed are presented and characterized according to the suspected source. Each of the approaches for mitigation is described, and the results from both are compared with each other and with the original performance seen with commercial cables and connectors.« less

  9. RADIATION COUNTER

    DOEpatents

    Goldsworthy, W.W.

    1958-02-01

    This patent relates to a radiation counter, and more particularly, to a scintillation counter having high uniform sensitivity over a wide area and capable of measuring alpha, beta, and gamma contamination over wide energy ranges, for use in quickly checking the contami-nation of personnel. Several photomultiplier tubes are disposed in parallel relationship with a light tight housing behind a wall of scintillation material. Mounted within the housing with the photomultipliers are circuit means for producing an audible sound for each pulse detected, and a range selector developing a voltage proportional to the repetition rate of the detected pulses and automatically altering its time constant when the voltage reaches a predetermined value, so that manual range adjustment of associated metering means is not required.

  10. Experimental investigation of thermal processes in the multi-ring Couette system with counter rotation of cylinders

    NASA Astrophysics Data System (ADS)

    Mamonov, V. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2016-01-01

    The effect of parameters of the multi-ring Couette system with counter rotating coaxial cylinders on the process of thermal energy release in a viscous liquid filling this system is considered with regard to the problem of determining the possibility of creating the high-performance wind heat generator. The multi-cylinder rotor design allows directly conversion of the mechanical power of a device consisting of two "rotor" wind turbines with a common axis normal to the air flow into the thermal energy in a wide range of rotational speed of the cylinders. Experimental results on the measurement of thermal power released in the pilot heat generator at different relative angular speeds of cylinder rotation are presented.

  11. Measurement of the electron and ion temperatures by the x-ray imaging crystal spectrometer on joint Texas experimental tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.

    An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the K{sub α} spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.

  12. Measurement of high-energy prompt gamma-rays from neutron induced fission of U-235

    NASA Astrophysics Data System (ADS)

    Makii, Hiroyuki; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Léguillon, Romain; Ogawa, Tatsuhiko; Soldner, Torsten; Hambsch, Franz-Josef; Astier, Alain; Pollitt, Andrew; Petrache, Costel; Tsekhanovich, Igor; Mathieu, Ludovic; Aïche, Mourad; Frost, Robert; Czajkowski, Serge; Guo, Song; Köster, Ulli

    2017-09-01

    We have developed a new setup to measure prompt γ-rays from the 235U(nth,f) reaction. The setup consists of two multi-wire proportional counters (MWPCs) to detect the fission fragments, two LaBr3(Ce) scintillators to measure the γ-rays. The highly efficient setup was installed at the PF1B beam line of the Institut Laue Langevin (ILL). We have successfully measured the γ-ray spectrum up to about 20 MeV for the fist time in neutron-induced fission.

  13. Use of propane as a quench gas in argon-filled proportional counters and comparison with other quench gases

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Ramsey, B. D.

    1988-01-01

    An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.

  14. Gated strip proportional detector

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  15. Gated strip proportional detector

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  16. Neutron counter based on beryllium activation

    NASA Astrophysics Data System (ADS)

    Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.

    2014-08-01

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  17. Recent development of the Multi-Grid detector for large area neutron scattering instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerard, Bruno

    2015-07-01

    Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, {sup 3}He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using {sup 3}He PSDs mounted side by side to cover tens of m{sup 2}. As a result of the so-called '{sup 3}He shortage crisis{sup ,} the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternativemore » techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B{sub 4}C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with

  18. Einstein Observatory SSS and MPC observations of the complex X-ray spectra of Seyfert galaxies. [Solid State Spectrometer and Monitor Proportional Counter

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Weaver, K. A.; Mushotzky, R. F.; Holt, S. S.; Madejski, G. M.

    1991-01-01

    The X-ray spectra of 25 Seyfert galaxies measured with the Solid State Spectrometer on the Einstein Observatory have been investigated. This new investigation utilizes simultaneous data from the Monitor Proportional Counter, and automatic correction for systematic effects in the Solid State Spectrometer which were previously handled subjectively. It is found that the best-fit single-power-law indices generally agree with those previously reported, but that soft excesses of some form are inferred for about 48 percent of the sources. One possible explanation of the soft excess emission is a blend of soft X-ray lines, centered around 0.8 keV. The implications of these results for accretion disk models are discussed.

  19. Simultaneous measurement of tritium and radiocarbon by ultra-low-background proportional counting.

    PubMed

    Mace, Emily; Aalseth, Craig; Alexander, Tom; Back, Henning; Day, Anthony; Hoppe, Eric; Keillor, Martin; Moran, Jim; Overman, Cory; Panisko, Mark; Seifert, Allen

    2017-08-01

    Use of ultra-low-background capabilities at Pacific Northwest National Laboratory provide enhanced sensitivity for measurement of low-activity sources of tritium and radiocarbon using proportional counters. Tritium levels are nearly back to pre-nuclear test backgrounds (~2-8 TU in rainwater), which can complicate their dual measurement with radiocarbon due to overlap in the beta decay spectra. We present results of single-isotope proportional counter measurements used to analyze a dual-isotope methane sample synthesized from ~120mg of H 2 O and present sensitivity results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Simultaneous measurement of tritium and radiocarbon by ultra-low-background proportional counting

    DOE PAGES

    Mace, Emily; Aalseth, Craig; Alexander, Tom; ...

    2016-12-21

    Use of ultra-low-background capabilities at Pacific Northwest National Laboratory provide enhanced sensitivity for measurement of low-activity sources of tritium and radiocarbon using proportional counters. Tritium levels are nearly back to pre-nuclear test backgrounds (~2-8 TU in rainwater), which can complicate their dual measurement with radiocarbon due to overlap in the beta decay spectra. In this paper, we present results of single-isotope proportional counter measurements used to analyze a dual-isotope methane sample synthesized from ~120 mg of H 2O and present sensitivity results.

  1. Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials.

    PubMed

    Jongsma, Marije A; Pelser, Floris D H; van der Mei, Henny C; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J; Ren, Yijin

    2013-05-01

    Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on different wires used for bonded retainers and the susceptibility of in vitro biofilms to oral antimicrobials. Orthodontic wires were exposed to saliva, and in vitro biofilm formation was evaluated using plate counting and live/dead staining, together with effects of exposure to toothpaste slurry alone or followed by antimicrobial mouthrinse application. Wires were also placed intra-orally for 72 h in human volunteers and undisturbed biofilm formation was compared by plate counting and live/dead staining, as well as by denaturing gradient gel electrophoresis for compositional differences in biofilms. Single-strand wires attracted only slightly less biofilm in vitro than multi-strand wires. Biofilms on stainless steel single-strand wires however, were much more susceptible to antimicrobials from toothpaste slurries and mouthrinses than on single-strand gold wires and biofilms on multi-strand wires. Also, in vivo significantly less biofilm was found on single-strand than on multi-strand wires. Microbial composition of biofilms was more dependent on the volunteer involved than on wire type. Biofilms on single-strand stainless steel wires attract less biofilm in vitro and are more susceptible to antimicrobials than on multi-strand wires. Also in vivo, single-strand wires attract less biofilm than multi-strand ones. Use of single-strand wires is preferred over multi-strand wires, not because they attract less biofilm, but because biofilms on single-strand wires are not protected against antimicrobials as in crevices and niches as on multi-strand wires.

  2. AUTOMATIC COUNTER

    DOEpatents

    Robinson, H.P.

    1960-06-01

    An automatic counter of alpha particle tracks recorded by a sensitive emulsion of a photographic plate is described. The counter includes a source of mcdulated dark-field illumination for developing light flashes from the recorded particle tracks as the photographic plate is automatically scanned in narrow strips. Photoelectric means convert the light flashes to proportional current pulses for application to an electronic counting circuit. Photoelectric means are further provided for developing a phase reference signal from the photographic plate in such a manner that signals arising from particle tracks not parallel to the edge of the plate are out of phase with the reference signal. The counting circuit includes provision for rejecting the out-of-phase signals resulting from unoriented tracks as well as signals resulting from spurious marks on the plate such as scratches, dust or grain clumpings, etc. The output of the circuit is hence indicative only of the tracks that would be counted by a human operator.

  3. Critical current densities of Jelly-Roll and powder metallurgy Nb{sub 3}Al wires as a function of temperature and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thieme, C.L.H.; Kim, J.B.; Takayasu, M.

    Critical current densities of multi-filamentary Nb{sub 3}Al wire made with the Jelly-Roll process (JR) and mono-core powder metallurgy process (PM) wire were measured as a function of temperature and magnetic field. The temperature dependence of the resistive critical field B{sub c2} was measured in PM wires. There is a significant difference between these resistive B{sub c2} values and the ones determined by Kramer plots. The field dependence of the critical current depends on the manufacturing method. In general, it follows a relationship that falls between pure Kramer and one where the pinning force is inversely proportional with B{sup 2}. Inmore » contrast with Nb{sub 3}Sn no maximum in the bulk pinning force is observed down to 3 T (0.15MxB{sub c2}).« less

  4. Comparisons of LET distributions measured in low-earth orbit using tissue-equivalent proportional counters and the position-sensitive silicon-detector telescope (RRMD-III)

    NASA Technical Reports Server (NTRS)

    Doke, T.; Hayashi, T.; Borak, T. B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Determinations of the LET distribution, phi(L), of charged particles within a spacecraft in low-Earth orbit have been made. One method used a cylindrical tissue-equivalent proportional counter (TEPC), with the assumption that for each measured event, lineal energy, y, is equal to LET and thus phi(L) = phi(y). The other was based on the direct measurement of LETs for individual particles using a charged-particle telescope consisting of position-sensitive silicon detectors called RRMD-III. There were differences of up to a factor of 10 between estimates of phi(L) using the two methods on the same mission. This caused estimates of quality factor to vary by a factor of two between the two methods.

  5. Neutron counter based on beryllium activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large areamore » gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.« less

  6. Initial investigations into the damping characteristics of wire rope vibration isolators

    NASA Technical Reports Server (NTRS)

    Cutchins, M. A.; Cochran, J. E., Jr.; Kumar, K.; Fitz-Coy, N. G.; Tinker, M. L.

    1987-01-01

    Passive dampers composed of coils of multi-strand wire rope are investigated. Analytical results range from those produced by complex NASTRAN models to those of a Coulomb damping model with variable friction force. The latter agrees well with experiment. The Coulomb model is also utilized to generate hysteresis loops. Various other models related to early experimental investigations are described. Significant closed-form static solutions for physical properties of single-and multi-strand wire ropes are developed for certain specific geometries and loading conditions. NASTRAN models concentrate on model generation and mode shapes of 2-strand and 7-strand straight wire ropes with interfacial forces.

  7. Thermal Testing and Integration: Magnetospheric MultiScale (MMS) Observatories with Digital 1-Wire Sensors

    NASA Technical Reports Server (NTRS)

    Solimani, Jason A.; Rosanova, Santino

    2015-01-01

    Thermocouples require two thin wires to be routed out of the spacecraft to connect to the ground support equipment used to monitor and record the temperature data. This large number of wires that exit the observatory complicates integration and creates an undesirable heat path during testing. These wires exiting the spacecraft need to be characterized as a thermal short that will not exist during flight. To minimize complexity and reduce thermal variables from these ground support equipment (GSE) wires, MMS pursued a hybrid path for temperature monitoring, utilizing thermocouples and digital 1-wire temperature sensors. Digital 1-wire sensors can greatly reduce harness mass, length and complexity as they can be spliced together. For MMS, 350 digital 1-wire sensors were installed on the spacecraft with only 18 wires exiting as opposed to a potential 700 thermocouple wires. Digital 1-wire sensors had not been used in such a large scale at NASAGSFC prior to the MMS mission. During the MMS thermal vacuum testing a lessons learned matrix was formulated that will assist future integration of 1-wires into thermal testing and one day into flight.

  8. The response of a spherical tissue-equivalent proportional counter to iron particles from 200-1000 MeV/nucleon

    NASA Technical Reports Server (NTRS)

    Gersey, B. B.; Borak, T. B.; Guetersloh, S. B.; Zeitlin, C.; Miller, J.; Heilbronn, L.; Murakami, T.; Iwata, Y.; Chatterjee, A. (Principal Investigator)

    2002-01-01

    The radiation environment on board the space shuttle and the International Space Station includes high-Z and high-energy (HZE) particles that are part of the galactic cosmic radiation (GCR) spectrum. Iron-56 particles are considered to be one of the most biologically important parts of the GCR spectrum. Tissue-equivalent proportional counters (TEPCs) are used as active dosimeters on manned space flights. These TEPCs are further used to determine the average quality factor for each space mission. A TEPC simulating a 1-microm-diameter sphere of tissue was exposed as part of a particle spectrometer to (56)Fe particles at energies from 200-1000 MeV/nucleon. The response of TEPCs in terms of mean lineal energy, y(F), and dose mean lineal energy, y(D), as well as the energy deposited at different impact parameters through the detector was determined for six different incident energies of (56)Fe particles in this energy range. Calculations determined that charged-particle equilibrium was achieved for each of the six experiments. Energy depositions at different impact parameters were calculated using a radial dose distribution model, and the results were compared to experimental data.

  9. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    NASA Astrophysics Data System (ADS)

    Arneodo, F.; Benabderrahmane, M. L.; Bruno, G.; Conicella, V.; Di Giovanni, A.; Fawwaz, O.; Messina, M.; Candela, A.; Franchi, G.

    2018-06-01

    We present the performances and characterization of an array made of S13370-3050CN (VUV4 generation) Multi-Pixel Photon Counters manufactured by Hamamatsu and equipped with a low power consumption preamplifier operating at liquid xenon temperature (∼ 175 K). The electronics is designed for the readout of a matrix of maximum dimension of 8 × 8 individual photosensors and it is based on a single operational amplifier. The detector prototype presented in this paper utilizes the Analog Devices AD8011 current feedback operational amplifier, but other models can be used depending on the application. A biasing correction circuit has been implemented for the gain equalization of photosensors operating at different voltages. The results show single photon detection capability making this device a promising choice for future generation of large scale dark matter detectors based on liquid xenon, such as DARWIN.

  10. Exploding wires initiation of nitromethane sensitized by diethylenetriamine

    NASA Astrophysics Data System (ADS)

    Ushnurtsev, A. E.; Shilkin, N. S.; Utkin, A. V.; Mintsev, V. B.

    2018-01-01

    Experiments on initiation of nitromethane sensitized by diethylenetriamine in weight proportion 98/2 by exploding wires were conducted. Several conditions of initiation of low speed detonation were determined.

  11. Measurement of microdosimetric spectra with a wall-less tissue-equivalent proportional counter for a 290 MeV/u 12C beam.

    PubMed

    Tsuda, Shuichi; Sato, Tatsuhiko; Takahashi, Fumiaki; Satoh, Daiki; Endo, Akira; Sasaki, Shinichi; Namito, Yoshihito; Iwase, Hiroshi; Ban, Shuichi; Takada, Masashi

    2010-09-07

    The frequency distribution of the lineal energy, y, of a 290 MeV/u carbon beam was measured to obtain the dose-weighted mean of y and compare it with the linear energy transfer (LET). In the experiment, a wall-less tissue-equivalent proportional counter (TEPC) in a cylindrical volume with a simulated diameter of 0.72 microm was used. The measured frequency distribution of y as well as its dose-mean value agrees within 10% uncertainty with the corresponding data from microdosimetric calculations using the PHITS code. The ratio of the measured dose-mean lineal energy to the LET of the 290 MeV/u carbon beam is 0.73, which is much smaller than the corresponding data obtained by a wall TEPC. This result demonstrates that a wall-less TEPC is necessary to precisely measure the dose-mean of y for energetic heavy ion beams.

  12. Model-Based Testability Assessment and Directed Troubleshooting of Shuttle Wiring Systems

    NASA Technical Reports Server (NTRS)

    Deb, Somnath; Domagala, Chuck; Shrestha, Roshan; Malepati, Venkatesh; Cavanaugh, Kevin; Patterson-Hine, Ann; Sanderfer, Dwight; Cockrell, Jim; Norvig, Peter (Technical Monitor)

    2000-01-01

    We have recently completed a pilot study on the Space shuttle wiring system commissioned by the Wiring Integrity Research (WIRe) team at NASA Ames Research Center, As the space shuttle ages, it is experiencing wiring degradation problems including arcing, chaffing insulation breakdown and broken conductors. A systematic and comprehensive test process is required to thoroughly test and quality assure (QA) the wiring systems. The NASA WIRe team recognized the value of a formal model based analysis for risk-assessment and fault coverage analysis. However. wiring systems are complex and involve over 50,000 wire segments. Therefore, NASA commissioned this pilot study with Qualtech Systems. Inc. (QSI) to explore means of automatically extracting high fidelity multi-signal models from wiring information database for use with QSI's Testability Engineering and Maintenance System (TEAMS) tool.

  13. High Accuracy, Two-Dimensional Read-Out in Multiwire Proportional Chambers

    DOE R&D Accomplishments Database

    Charpak, G.; Sauli, F.

    1973-02-14

    In most applications of proportional chambers, especially in high-energy physics, separate chambers are used for measuring different coordinates. In general one coordinate is obtained by recording the pulses from the anode wires around which avalanches have grown. Several methods have been imagined for obtaining the position of an avalanche along a wire. In this article a method is proposed which leads to the same range of accuracies and may be preferred in some cases. The problem of accurate measurements for large-size chamber is also discussed.

  14. Monte Carlo Simulations Comparing the Response of a Novel Hemispherical Tepc to Existing Spherical and Cylindrical Tepcs for Neutron Monitoring and Dosimetry.

    PubMed

    Broughton, David P; Waker, Anthony J

    2017-05-01

    Neutron dosimetry in reactor fields is currently mainly conducted with unwieldy flux monitors. Tissue Equivalent Proportional Counters (TEPCs) have been shown to have the potential to improve the accuracy of neutron dosimetry in these fields, and Multi-Element Tissue Equivalent Proportional Counters (METEPCs) could reduce the size of instrumentation required to do so. Complexity of current METEPC designs has inhibited their use beyond research. This work proposes a novel hemispherical counter with a wireless anode ball in place of the traditional anode wire as a possible solution for simplifying manufacturing. The hemispherical METEPC element was analyzed as a single TEPC to first demonstrate the potential of this new design by evaluating its performance relative to the reference spherical TEPC design and a single element from a cylindrical METEPC. Energy deposition simulations were conducted using the Monte Carlo code PHITS for both monoenergetic 2.5 MeV neutrons and the neutron energy spectrum of Cf-D2O moderated. In these neutron fields, the hemispherical counter appears to be a good alternative to the reference spherical geometry, performing slightly better than the cylindrical counter, which tends to underrespond to H*(10) for the lower neutron energies of the Cf-D2O moderated field. These computational results are promising, and if follow-up experimental work demonstrates the hemispherical counter works as anticipated, it will be ready to be incorporated into an METEPC design.

  15. Ultra-bright γ-ray flashes and dense attosecond positron bunches from two counter-propagating laser pulses irradiating a micro-wire target.

    PubMed

    Li, Han-Zhen; Yu, Tong-Pu; Hu, Li-Xiang; Yin, Yan; Zou, De-Bin; Liu, Jian-Xun; Wang, Wei-Quan; Hu, Shun; Shao, Fu-Qiu

    2017-09-04

    We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 10 23 W/cm 2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 10 24 photons s -1 mm -2 mrad -2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e - e + pair bunches are produced with the positron energy density as high as 10 17 J/m 3 and number of 10 9 . Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.

  16. Multiwire proportional chamber development

    NASA Technical Reports Server (NTRS)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  17. MICRODOSIMETRIC MEASUREMENT OF SECONDARY RADIATION IN THE PASSIVE SCATTERED PROTON THERAPY ROOM OF iTHEMBA LABS USING A TISSUE-EQUIVALENT PROPORTIONAL COUNTER.

    PubMed

    Chiriotti, S; Parisi, A; Vanhavere, F; De Saint-Hubert, M; Vandevoorde, C; Slabbert, J; Beukes, P; de Kock, E; Symons, J

    2018-04-13

    Measurements of the dose equivalent at different distances from the isocenter of the proton therapy center at iThemba LABS were previously performed with a tissue-equivalent proportional counter (TEPC). These measurements showed that the scattered radiation levels were one or two orders of magnitude higher in comparison to other passive scattering delivery systems. In order to reduce these radiation levels, additional shielding was installed shortly after the measurements were done. Therefore, the aim of this work is to quantify and assess the reduction of the secondary doses delivered in the proton therapy room at iThemba LABS after the installation of the additional shielding. This has been performed by measuring microdosimetric spectra with a TEPC at 11 locations around the isocenter when a clinical modulated beam of 200 MeV proton was impinging onto a water phantom placed at the isocenter.

  18. Flexibility and hardness of dental stainless steel wrought wires used in Thailand.

    PubMed

    Benjakul, P; Cheunarrom, C; Ongthiemsak, C

    2001-03-01

    Stainless steel wrought wires used as clasp arms for removable partial dentures in Thailand were compared with those used in some other countries (in the as-received condition) in terms of flexibility, Vickers microhardness and composition. The results showed that there were significant differences (P< or =0.05) among the wires. A Japanese stainless steel wire (SK) was obviously different from the others. It had the lowest proportional limit and microhardness, but its flexibility was almost the same. The chemical composition of each wire was not greatly different. The wires were about 18-20 wt% chromium and 8-9 wt% nickel, except for the SK wire, which had about 12 wt% nickel.

  19. Lifetime Extension of the Gas Discharge Detectors with Plasma Etching of Silicon Deposits in 80%CF4 + 20%CO2

    NASA Astrophysics Data System (ADS)

    Gavrilov, G. E.; Vakhtel, V. M.; Maysuzenko, D. A.; Tavtorkina, T. A.; Fetisov, A. A.; Shvetsova, N. Yu.

    2017-12-01

    A method of elimination of silicon compounds from the anode wire of an aged proportional counter is presented. The aging of a counter with a 70%Ar + 30%CO2 and a 60%Ar + 30%CO2 + 10%CF4 working mixture was stimulated by a 90Sr β source. To accelerate the process of aging, the gas mixture flow to the counter was supplied through a pipe with RTV coated wall. As a result, the amplitude of the signal decreased 70% already at accumulated charge of Q = 0.03 C/cm. The etching of the silicon compounds on the wire surface with an 80%CF4 + 20%CO2 gas mixture discharge led to full recovery of the operating characteristics of detector and an increase in the lifetime. A scanning electron microscopy and X-ray spectroscopy analysis of the recovered wire surface were performed. In accordance with the results, a good quality of wire cleaning from SiO2 compounds was obtained.

  20. Concentrator bifacial crystalline silicon solar cells with multi-wire metallization attached to TCO layers using transparent conductive polymers

    NASA Astrophysics Data System (ADS)

    Untila, Gennady; Chebotareva, Alla; Kost, Tatiana; Salazkin, Sergei; Shaposhnikova, Vera; Shvarts, Maxim

    2017-09-01

    Replacing expensive silver with inexpensive copper for the metallization of silicon wafer solar cells can lead to substantial reductions in material costs associated with cell production. A promising approach is the use of multi-wire design. This technology uses many wires in the place of busbars, and the copper wires are "soldered" during the low-temperature lamination process to the fingers (printed or plated) or to the transparent conductive oxide (TCO) layer, e.g. in the case of the α-Si/c-Si heterojunction cells. Here we describe a solar cell design in which wires are attached to TCO layers using transparent conductive polymer (TCP) films. To this end, we have synthesized a number of thermoplastics, poly(arylene ether ketone) copolymers (co-PAEKs), containing phthalide in their main chain. The fraction of phthalide-containing units in the copolymers was p = 3, 5, 15, and 50 mol %. With increasing p, the peak strain temperature of the co-PAEKs rises from 205 to 290 °C and their optical band gap and refractive index increase from 3.12 to 3.15 eV and from 1.6 to 1.614, respectively. The copolymers have a negligible absorption coefficient in the wavelength range 400- 1100 nm. When exposed to an excess pressure of 1 atm or above, co-PAEK films less than 30 µm in thickness undergo a transition from a dielectric to a conductive state. The resistivity (ρC) of wire/TCP/TCO (ITO = In2O3:Sn and IFO = In2O3:F) contacts ranges from 0.37 to 1.43 mΩ cm2. The polymer with the highest phthalide content (p = 50 mol %) has the lowest ρC. The average work of adhesion per unit area determined by pulling off the wires from the polymer surface depends on both the phthalide content of the co-PAEKs and their reduced viscosity, ranging from 14.3 to 43.5 N/cm. The highest value was obtained for the co-PAEK with p = 50 mol %. We have fabricated low-concentration bifacial IFO/(n+pp+)Cz-Si/ITO solar cells with a wire contact grid attached to IFO and ITO using a co-PAEK film. The

  1. Methodology for the Determination of the Photon Detection Efficiency of Large-Area Multi-Pixel Photon Counters

    NASA Astrophysics Data System (ADS)

    Beattie, T.; Lolos, G. J.; Papandreou, Z.; Semenov, A. Yu.; Teigrob, L. A.

    2015-08-01

    Large-area, multi-pixel photon counters will be used for the electromagnetic Barrel Calorimeter of the GlueX experiment at Jefferson Lab. These photo sensors are based on a 3 ×3 mm2 cell populated by 50 μm pixels, with 16 such cells tiled in a 4 ×4 arrangement in the array. The 16 cells are summed electronically and the signals are amplified. The photon detection efficiency of a group of first-article units at room temperature under conditions similar to those of the experiment was extracted to be (28 ±2(stat) ±2(syst))%, by employing an analysis methodology based on Poisson statistics carried out on the summed energy signals from the units.

  2. Investigation of violin mode Q for wires of various materials

    NASA Astrophysics Data System (ADS)

    Dawid, Daryush J.; Kawamura, Seiji

    1997-12-01

    The Q factors of violin modes for wires of various materials have been measured in order to determine which would be most suitable for use in the suspension of test masses in the initial laser interferometer gravitational wave observatory (LIGO) interferometers. A "guitar" type apparatus was employed to measure violin mode Qs, and losses due to clamping and other practical sources were successfully suppressed below the level of intrinsic wire losses. Steel music wire was found to give the highest extrapolated Q factors under LIGO conditions among the wires we tested. This extrapolated Q sets a target for the LIGO suspension which can be attained if all the losses other than the intrinsic wire loss are successfully suppressed. The measured Qs for the steel, tungsten, and titanium wire, which were approximately frequency independent for the first two to three modes, were found to be roughly proportional to the square root of the tension in the wire. This is consistent with the theory of violin mode losses due to frequency-independent intrinsic wire losses.

  3. Radiation characteristics of Al wire arrays on Z*

    NASA Astrophysics Data System (ADS)

    Coverdale, C. A.; Ampleford, D. J.; Jones, B.; Cuneo, M. E.; Hansen, S.; Jennings, C. A.; Moore, N.; Jones, S. C.; Deeney, C.

    2011-10-01

    Analysis of mixed material nested wire array experiments at Z have shown that the inner wire array dominates the hottest regions of the stagnated z pinch. In those experiments, substantial free-bound continuum radiation was observed when Al was fielded on the inner wire array. Experiments with Al (5% Mg) on both wire arrays have also been fielded, with variations in the free-bound continuum observed. These variations appear to be tied to the initial mass and diameter of the wire array. The results presented here will investigate the trends in the measured emission (Al and Mg K-shell and free-bound continuum) and will compare the measured output to more recent Al wire array experimental results on the refurbished Z accelerator. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. +current address: NNSA/DOE Headquarters, Washington D.C.

  4. Low Temperature Conductance of Thin Metal Wires and Films.

    NASA Astrophysics Data System (ADS)

    Masden, Joseph Thomas

    The topic of this thesis is the study of electrical conduction in one and two dimensional systems; specifically the effects predicted by localization and electron-electron interaction theory. We have measured the resistance of wires with very small cross-sectional areas at low temperatures. We find at low temperatures that the resistance varies as T('- 1/2) and that the magnitude of the resistance rise is inversely proportional to the area, as found previously by others. From an analysis of the temperature dependence of the resistance, we find a characteristic length of 0.18 (mu)m at 1K for Pt and AuPd wires, which is the same length found by others. We have also measured the resistance of thin Pt and AuPd films and find that the resistance increases as the temperature decreases. This increase varies as the logarithm of the temperature, and the magnitude of the increase is proportional to the sheet resistance for films with sheet resistances less than about 2 K(OMEGA). A method for fabricating short wires and films was developed to determine the characteristic length by measuring the length dependence of the resistance rise. According to the theories, the behavior of the wires and films should change when the length of the wire or film is comparable to the characteristic length. For the short wires, we found this to be so, and our results are in semi-quantitative agreement with the theory. In short films, we also see an effect as the length of the film is decreased, but the results appear to be inconsistent with the theory, at least in its present form.

  5. Effect of wire size on maxillary arch force/couple systems for a simulated high canine malocclusion.

    PubMed

    Major, Paul W; Toogood, Roger W; Badawi, Hisham M; Carey, Jason P; Seru, Surbhi

    2014-12-01

    To better understand the effects of copper nickel titanium (CuNiTi) archwire size on bracket-archwire mechanics through the analysis of force/couple distributions along the maxillary arch. The hypothesis is that wire size is linearly related to the forces and moments produced along the arch. An Orthodontic Simulator was utilized to study a simplified high canine malocclusion. Force/couple distributions produced by passive and elastic ligation using two wire sizes (Damon 0.014 and 0.018 inch) measured with a sample size of 144. The distribution and variation in force/couple loading around the arch is a complicated function of wire size. The use of a thicker wire increases the force/couple magnitudes regardless of ligation method. Owing to the non-linear material behaviour of CuNiTi, this increase is less than would occur based on linear theory as would apply for stainless steel wires. The results demonstrate that an increase in wire size does not result in a proportional increase of applied force/moment. This discrepancy is explained in terms of the non-linear properties of CuNiTi wires. This non-proportional force response in relation to increased wire size warrants careful consideration when selecting wires in a clinical setting. © 2014 British Orthodontic Society.

  6. Multi-Pixel Photon Counters for Optofluidic Characterization of Particles and Microalgae

    PubMed Central

    Asrar, Pouya; Sucur, Marta; Hashemi, Nastaran

    2015-01-01

    We have developed an optofluidic biosensor to study microscale particles and different species of microalgae. The system is comprised of a microchannel with a set of chevron-shaped grooves. The chevrons allows for hydrodynamic focusing of the core stream in the center using a sheath fluid. The device is equipped with a new generation of highly sensitive photodetectors, multi-pixel photon counter (MPPC), with high gain values and an extremely small footprint. Two different sizes of high intensity fluorescent microspheres and three different species of algae (Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana) were studied. The forward scattering emissions generated by samples passing through the interrogation region were carried through a multimode fiber, located in 135 degree with respect to the excitation fiber, and detected by a MPPC. The signal outputs obtained from each sample were collected using a data acquisition system and utilized for further statistical analysis. Larger particles or cells demonstrated larger peak height and width, and consequently larger peak area. The average signal output (integral of the peak) for Chlamydomonas reinhardtii strain 21 gr, Chlamydomonas suppressor, and Chlorella sorokiniana falls between the values found for the 3.2 and 10.2 μm beads. Different types of algae were also successfully characterized. PMID:26075506

  7. Metallurgical characterization of a new nickel-titanium wire for rotary endodontic instruments.

    PubMed

    Alapati, Satish B; Brantley, William A; Iijima, Masahiro; Clark, William A T; Kovarik, Libor; Buie, Caesar; Liu, Jie; Ben Johnson, William

    2009-11-01

    A novel thermomechanical processing procedure has been developed that yields a superelastic (SE) nickel-titanium (NiTi) wire (M-Wire) that laboratory testing shows has improved mechanical properties compared with conventional SE austenitic NiTi wires used for manufacture of rotary instruments. The objective of this study was to determine the origin of the improved mechanical properties. Specimens from 2 batches of M-Wire prepared under different processing conditions and from 1 batch of standard-processed SE wire for rotary instruments were examined by scanning transmission electron microscopy, temperature-modulated differential scanning calorimetry, micro-x-ray diffraction, and scanning electron microscopy with x-ray energy-dispersive spectrometric analyses. The processing for M-Wire yields a microstructure containing martensite, that the proportions of NiTi phases depend on processing conditions, and that the microstructure exhibits pronounced evidence of alloy strengthening. The presence of Ti(2)Ni precipitates in both microstructures indicates that M-Wire and the conventional SE wire for rotary instruments are titanium-rich.

  8. Development of a neutron spectrometer using multi-wire spark chambers for the measurement of the spectra of stray neutrons in the vicinity of high energy accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Chun Bin

    A method of neutron spectrometry which measures the energy spectra of the stray neutrons around the high energy accelerators, roughly between 50 MeV and 300 MeV has been developed using a series of multi-wire spark chambers and polyethylene n-p converters.

  9. Development of subminiature multi-sensor hot-wire probes

    NASA Technical Reports Server (NTRS)

    Westphal, Russell V.; Ligrani, Phillip M.; Lemos, Fred R.

    1988-01-01

    Limitations on the spatial resolution of multisensor hot wire probes have precluded accurate measurements of Reynolds stresses very near solid surfaces in wind tunnels and in many practical aerodynamic flows. The fabrication, calibration and qualification testing of very small single horizontal and X-array hot-wire probes which are intended to be used near solid boundaries in turbulent flows where length scales are particularly small, is described. Details of the sensor fabrication procedure are reported, along with information needed to successfully operate the probes. As compared with conventional probes, manufacture of the subminiature probes is more complex, requiring special equipment and careful handling. The subminiature probes tested were more fragile and shorter lived than conventional probes; they obeyed the same calibration laws but with slightly larger experimental uncertainty. In spite of these disadvantages, measurements of mean statistical quantities and spectra demonstrate the ability of the subminiature sensors to provide the measurements in the near wall region of turbulent boundary layers that are more accurate than conventional sized probes.

  10. External wire-frame fixation of digital skin grafts: a non-invasive alternative to the K-wire insertion method.

    PubMed

    Huang, Chenyu; Ogawa, Rei; Hyakusoku, Hiko

    2014-08-01

    The current skin graft fixation methods for digits, including the Kirschner wire insertion technique, can be limited by inadequate or excessive fixation and complications such as infection or secondary injuries. Therefore, the external wire-frame fixation method was invented and used for skin grafting of digits. This study aimed to investigate external wire-frame fixation of digital skin grafts as a non-invasive alternative to the K-wire insertion method. In 2005-2012, 15 patients with burn scar contractures on the hand digits received a skin graft that was then fixed with an external wire frame. The intra-operative time needed to make the wire frame, the postoperative time to frame and suture removal, the graft survival rate, the effect of contracture release and the complications were recorded. In all cases, the contracture release was 100%. The complete graft survival rate was 98.6%. Four patients had epithelial necrosis in <5% of the total area. There were no other complications such as pressure ulcer or hypoxia of fingers. External wire-frame fixation is simple, minimally invasive and a custom-made technique for skin grafting of the fingers. It was designed for its potential benefits and the decreased risk it poses to patients with scar contractures on their fingers. It can be implemented in three phases of grafting, does not affect the epiphyseal line or subsequent finger growth and is suitable for children with multi-digit involvement. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  11. X-ray observations of LMC X-3 with the monitor proportional counter aboard the HEAO 2 Einstein observatory - A comparison with Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Darbro, W. A.; Elsner, R. F.; Williams, A. C.; Kahn, S. M.; Grindlay, J. E.; Naranan, S.; Sutherland, P. G.

    1983-01-01

    A comparison is presented of the black hole candidates LMC X-3 and Cygnus X-1 based on Einstein observations of LMC X-3 with the monitor proportional counter. A spectral analysis shows LMC X-3 to be more like the typical bright galactic X-ray source than Cygnus X-1. A search for periodic pulsations over a period range from 0.2 ms to over 1000 s set upper limits at the 90 percent confidence level of the order of 10 percent. An analysis of the aperiodic variability of LMC X-3 shows none of the shot noise behavior characteristic of Cygnus X-1. The absence of distinctive X-ray properties common to both sources suggests that the identification of black hole candidates on the basis of X-ray properties similar to Cygnus X-1 (or LMC X-3) is not reliable.

  12. The counter and consultation room work explored in the Netherlands.

    PubMed

    Mobach, Mark P

    2008-08-01

    To determine the frequency and nature of conversations at the counter and of private consultations at three Dutch community pharmacies. In a purposive and convenience sample of three Dutch community pharmacies two work categories were investigated: counter work and consultation room work with self-reporting tally. The study took 6 weeks: 2 weeks at each pharmacy. The number of care related conversations and consultations emerging in the counter work and consultation room work. About 43% of all counter conversations consisted of the provision of pharmaceutical information and 72% of the consultations in the separate consultation room dealt with care related activities. However, only 18 consultations were held in this latter room: 0.4% of all reported conversations. The proportion of care related work at the counter and in the consultation room did have significant substance. There are however serious possibilities to change pharmaceutical care for the better. It is suggested that standard procedures at the counter may help increasing care related work. The presence of a separate consultation room may increase the number of consultations held in private, when combined with raising patient awareness of its existence.

  13. Carbon-14 dating of small samples by proportional counting.

    PubMed

    Harbottle, G; Sayre, E V; Stoenner, R W

    1979-11-09

    Conventional carbon-14 dating by means of gas proportional counters has been extended to samples containing as little as 10 milligrams of carbon. The accuracy of the dating procedure has been checked by dating sequoia tree-ring samples of the 1st century A.D. and B.C. and an oak tree-ring sample of the 19th century A.D.

  14. Counter-facing plasma guns for efficient extreme ultra-violet plasma light source

    NASA Astrophysics Data System (ADS)

    Kuroda, Yusuke; Yamamoto, Akiko; Kuwabara, Hajime; Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko

    2013-11-01

    A plasma focus system composed of a pair of counter-facing coaxial guns was proposed as a long-pulse and/or repetitive high energy density plasma source. We applied Li as the source of plasma for improvement of the conversion efficiency, the spectral purity, and the repetition capability. For operation of the system with ideal counter-facing plasma focus mode, we changed the system from simple coaxial geometry to a multi-channel configuration. We applied a laser trigger to make synchronous multi-channel discharges with low jitter. The results indicated that the configuration is promising to make a high energy density plasma with high spectral efficiency.

  15. Analysis of counter flow of corona wind for heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Shin, Dong Ho; Baek, Soo Hong; Ko, Han Seo

    2018-03-01

    A heat sink for cooling devices using the counter flow of a corona wind was developed in this study. Detailed information about the numerical investigations of forced convection using the corona wind was presented. The fins of the heat sink using the counter flow of a corona wind were also investigated. The corona wind generator with a wire-to-plate electrode arrangement was used for generating the counter flow to the fin. The compact and simple geometric characteristics of the corona wind generator facilitate the application of the heat sink using the counter flow, demonstrating the heat sink is effective for cooling electronic devices. Parametric studies were performed to analyze the effect of the counter flow on the fins. Also, the velocity and temperature were measured experimentally for the test mock-up of the heat sink with the corona wind generator to verify the numerical results. From a numerical study, the type of fin and its optimal height, length, and pitch were suggested for various heat fluxes. In addition, the correlations to calculate the mass of the developed heat sink and its cooling performance in terms of the heat transfer coefficient were derived. Finally, the cooling efficiencies corresponding to the mass, applied power, total size, and noise of the devices were compared with the existing commercial central processing unit (CPU) cooling devices with rotor fans. As a result, it was confirmed that the heat sink using the counter flow of the corona wind showed appropriate efficiencies for cooling electronic devices, and is a suitable replacement for the existing cooling device for high power electronics.

  16. AXAF VETA-I mirror encircled energy measurements and data reduction

    NASA Technical Reports Server (NTRS)

    Zhao, Ping; Freeman, Mark D.; Hughes, John P.; Kellogg, Edwin M.; Nguyen, Dan T.; Joy, Marshall; Kolodziejczak, Jeffery J.

    1992-01-01

    The AXAF VETA-I mirror encircled energy was measured with a series of apertures and two flow gas proportional counters at five X-ray energies ranging from 0.28 to 2.3 keV. The proportional counter has a thin plastic window with an opaque wire mesh supporting grid. Depending on the counter position, this mesh can cause the X-ray transmission to vary as much as +/-9 percent, which directly translates into an error in the encircled energy. In order to correct this wire mesh effect, window scan measurements were made, in which the counter was scanned in both horizontal (Y) and vertical (Z) directions with the aperture fixed. Post VETA measurement of the VXDS setup were made to determine the exact geometry and position of the mesh grid. Computer models of the window mesh were developed to simulate the X-ray transmission based on this measurement. The window scan data were fitted to such mesh models and corrections were made. After this study, the mesh effect was well understood and the final results of the encircled energy were obtained with an uncertainty of less than 0.8 percent.

  17. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  18. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  19. Two-step tunneling technique of deep brain stimulation extension wires-a description.

    PubMed

    Fontaine, Denys; Vandersteen, Clair; Saleh, Christian; von Langsdorff, Daniel; Poissonnet, Gilles

    2013-12-01

    While a significant body of literature exists on the intracranial part of deep brain stimulation surgery, the equally important second part of the intervention related to the subcutaneous tunneling of deep brain stimulation extension wires is rarely described. The tunneling strategy can consist of a single passage of the extension wires from the frontal incision site to the subclavicular area, or of a two-step approach that adds a retro-auricular counter-incision. Each technique harbors the risk of intraoperative and postoperative complications. At our center, we perform a two-step tunneling procedure that we developed based on a cadaveric study. In 125 consecutive patients operated since 2002, we did not encounter any complication related to our tunneling method. Insufficient data exist to fully evaluate the advantages and disadvantages of each tunneling technique. It is of critical importance that authors detail their tunneling modus operandi and report the presence or absence of complications. This gathered data pool may help to formulate a definitive conclusions on the safest method for subcutaneous tunneling of extension wires in deep brain stimulation.

  20. Quantitative basis for component factors of gas flow proportional counting efficiencies

    NASA Astrophysics Data System (ADS)

    Nichols, Michael C.

    This dissertation investigates the counting efficiency calibration of a gas flow proportional counter with beta-particle emitters in order to (1) determine by measurements and simulation the values of the component factors of beta-particle counting efficiency for a proportional counter, (2) compare the simulation results and measured counting efficiencies, and (3) determine the uncertainty of the simulation and measurements. Monte Carlo simulation results by the MCNP5 code were compared with measured counting efficiencies as a function of sample thickness for 14C, 89Sr, 90Sr, and 90Y. The Monte Carlo model simulated strontium carbonate with areal thicknesses from 0.1 to 35 mg cm-2. The samples were precipitated as strontium carbonate with areal thicknesses from 3 to 33 mg cm-2 , mounted on membrane filters, and counted on a low background gas flow proportional counter. The estimated fractional standard deviation was 2--4% (except 6% for 14C) for efficiency measurements of the radionuclides. The Monte Carlo simulations have uncertainties estimated to be 5 to 6 percent for carbon-14 and 2.4 percent for strontium-89, strontium-90, and yttrium-90. The curves of simulated counting efficiency vs. sample areal thickness agreed within 3% of the curves of best fit drawn through the 25--49 measured points for each of the four radionuclides. Contributions from this research include development of uncertainty budgets for the analytical processes; evaluation of alternative methods for determining chemical yield critical to the measurement process; correcting a bias found in the MCNP normalization of beta spectra histogram; clarifying the interpretation of the commonly used ICRU beta-particle spectra for use by MCNP; and evaluation of instrument parameters as applied to the simulation model to obtain estimates of the counting efficiency from simulated pulse height tallies.

  1. Distributed performance counters

    DOEpatents

    Davis, Kristan D; Evans, Kahn C; Gara, Alan; Satterfield, David L

    2013-11-26

    A plurality of first performance counter modules is coupled to a plurality of processing cores. The plurality of first performance counter modules is operable to collect performance data associated with the plurality of processing cores respectively. A plurality of second performance counter modules are coupled to a plurality of L2 cache units, and the plurality of second performance counter modules are operable to collect performance data associated with the plurality of L2 cache units respectively. A central performance counter module may be operable to coordinate counter data from the plurality of first performance counter modules and the plurality of second performance modules, the a central performance counter module, the plurality of first performance counter modules, and the plurality of second performance counter modules connected by a daisy chain connection.

  2. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and bare...

  3. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and bare...

  4. InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Alonso-Álvarez, D.; Thomas, T.; Führer, M.; Hylton, N. P.; Ekins-Daukes, N. J.; Lackner, D.; Philipps, S. P.; Bett, A. W.; Sodabanlu, H.; Fujii, H.; Watanabe, K.; Sugiyama, M.; Nasi, L.; Campanini, M.

    2014-08-01

    Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6° misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longer lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1 μs, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetimes could be exploited to enhance carrier collection and reduce dark current losses. Light absorption by these QWRs is 1.6 times weaker than QWs, as revealed by EQE measurements, which emphasises the need for more layers of nanostructures or the use light trapping techniques. Contrary to what we expected, QWR show very low absorption anisotropy, only 3.5%, which was the main drawback a priori of this nanostructure. We attribute this to a reduced lateral confinement inside the wires. These results encourage further study and optimization of QWRs for high efficiency solar cells.

  5. Increasing component functionality via multi-process additive manufacturing

    NASA Astrophysics Data System (ADS)

    Coronel, Jose L.; Fehr, Katherine H.; Kelly, Dominic D.; Espalin, David; Wicker, Ryan B.

    2017-05-01

    Additively manufactured components, although extensively customizable, are often limited in functionality. Multi-process additive manufacturing (AM) grants the ability to increase the functionality of components via subtractive manufacturing, wire embedding, foil embedding and pick and place. These processes are scalable to include several platforms ranging from desktop to large area printers. The Multi3D System is highlighted, possessing the capability to perform the above mentioned processes, all while transferring a fabricated component with a robotic arm. Work was conducted to fabricate a patent inspired, printed missile seeker. The seeker demonstrated the advantage of multi-process AM via introduction of the pick and place process. Wire embedding was also explored, with the successful interconnect of two layers of embedded wires in different planes. A final demonstration of a printed contour bracket, served to show the reduction of surface roughness on a printed part is 87.5% when subtractive manufacturing is implemented in tandem with AM. Functionality of the components on all the cases was improved. Results included optical components embedded within the printed housing, wires embedded with interconnection, and reduced surface roughness. These results highlight the improved functionality of components through multi-process AM, specifically through work conducted with the Multi3D System.

  6. Synchronized Re-Entrant Flux Reversal of Multiple FeSiB Amorphous Wires Having the Larger Output

    NASA Astrophysics Data System (ADS)

    Takajo, Minoru; Yamasaki, Jiro

    Technique to synchronize the re-entrant flux reversal of the multiple magnetostrictive Fe77.5Si7.5B15 amorphous wires was developed using a flux keeper of amorphous ribbons contacted to the wire ends. It is comprehended that the characteristics of the re-entrant flux takes place respectively at almost the same time in the three Fe-Si-B amorphous wires with a diameter of 65, 95μm. This phenomenon can be explained by considering the strong magnetic coupling of wires and amorphous ribbon by stray field from the each wire ends. As a result, the magnitude of the induced voltage in the sense coil is increased in proportion to the multiplication of the number of the wires.

  7. A New Global Multi-fluid MHD Model of the Solar Corona

    NASA Astrophysics Data System (ADS)

    van der Holst, B.; Chandran, B. D. G.; Alterman, B. L.; Kasper, J. C.; Toth, G.

    2017-12-01

    We present a multi-fluid generalization of the AWSoM model, a global magnetohydrodynamic (MHD) solar corona model with low-frequency Alfven wave turbulence (van der Holst et al., 2014). This new extended model includes electron and multi-ion temperatures and velocities (protons and alpha particles). The coronal heating and acceleration is addressed via outward propagating low-frequency Alfven waves that are partially reflected by Alfven speed gradients. The nonlinear interaction of these counter-propagating waves results in turbulent energy cascade. To apportion the wave dissipation to the electron and ion temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating as described by Chandran et al. (2011, 2013). This heat partitioning results in a more than mass proportional heating among ions.

  8. High-Accuracy Measurements of the Centre of Gravity of Avalanches in Proportional Chambers

    DOE R&D Accomplishments Database

    Charpak, G.; Jeavons, A.; Sauli, F.; Stubbs, R.

    1973-09-24

    In a multiwire proportional chamber the avalanches occur close to the anode wires. The motion of the positive ions in the large electric fields at the vicinity of the wires induces fast-rising positive pulses on the surrounding electrodes. Different methods have been developed in order to determine the position of the centre of the avalanches. In the method we describe, the centre of gravity of the pulse distribution is measured directly. It seems to lead to an accuracy which is limited only by the stability of the spatial distribution of the avalanches generated by the process being measured.

  9. Measurement of the stochastic radial dose distribution for a 30-MeV proton beam using a wall-less tissue-equivalent proportional counter

    PubMed Central

    Tsuda, S.; Sato, T.; Ogawa, T.

    2016-01-01

    The frequency distribution of the lineal energy, y, of a 30-MeV proton beam was measured as a function of the radial distance from the beam path, and the dosed mean of y,y¯D, was obtained to investigate the radial dependence of y¯D. A wall-less tissue-equivalent proportional counter, in a cylindrical volume with simulated diameters of 0.36, 0.72 and 1.44 µm was used for the measurement of y distributions, yf(y). The measured values of yf(y) summed in the radial direction agreed fairly well with the corresponding data taken from the microdosimetric calculations using the PHITS code. The y¯D value of the 30-MeV proton beam presented its smallest value at r = 0.0 and gradually increased with radial distance, and the y¯D values of heavy ions such as iron showed rapid decrease with radial distance. This experimental result demonstrated that the stochastic deposited energy distribution of high-energy protons in the microscopic region is rather constant in the core as well as in the penumbra region of the track structure. PMID:25956785

  10. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trolley Wires and Trolley Feeder Wires § 75.1003...

  11. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trolley Wires and Trolley Feeder Wires § 75.1003...

  12. Status On Multi-microsecond Prepulse Technique On Sphinx Machine Going From Nested To Single Wire Array For 800 ns Implosion Time Z-pinch

    NASA Astrophysics Data System (ADS)

    Maury, P.; Calamy, H.; Grunenwald, J.; Lassalle, F.; Zucchini, F.; Loyen, A.; Georges, A.; Morell, A.; Bedoch, J. P.

    2009-01-01

    The Sphinx machine[1] is a 6 MA, 1 μS driver based on the LTD technology, used for Z-pinch experiments. Important improvements of Sphinx radiation output were recently obtained using a multi-microsecond current prepulse[2]. Total power per unit of length is multiplied by a factor of 6 and FWHM divided by a factor of 2.5. Early breakdown of the wires during the prepulse phase dramatically changes the ablation phase leading to an improvement of axial homogeneity of both the implosion and the final radiating column. As a consequence, the cathode bubble observed on classical shots is definitively removed. The implosion is then centered and zippering effect is reduced, leading to simultaneous x-ray emission of the whole length. A great reproducibility is obtained. Nested arrays were used before to mitigate the Rayleigh-Taylor instabilities during the implosion phase. Further experiments with pre-pulse technique are described here were inner array was removed. The goal of these experiments was to see if long prepulse could give stable enough implosion with single array and at the same time increase the η parameter by reducing the mass of the load. Experimental results of single wire array loads of typical dimension 5 cm in height with implosion time between 700 and 900 ns and diameter varying between 80 and 140 mm are given. Parameters of the loads were varying in term of radius and number of wires. Comparisons with nested wire array loads are done and trends are proposed. Characteristics of both the implosion and the final radiating column are shown. 2D MHD numerical simulations of single wire array become easier as there is no interaction between outer and inner array anymore. A systematic study was done using injection mass model to benchmark simulation with experiments.

  13. Carbon nanotube wires with continuous current rating exceeding 20 Amperes

    NASA Astrophysics Data System (ADS)

    Cress, Cory D.; Ganter, Matthew J.; Schauerman, Christopher M.; Soule, Karen; Rossi, Jamie E.; Lawlor, Colleen C.; Puchades, Ivan; Ubnoske, Stephen M.; Bucossi, Andrew R.; Landi, Brian J.

    2017-07-01

    A process to fabricate carbon nanotube (CNT) wires with diameters greater than 1 cm and continuous current carrying capability exceeding 20 A is demonstrated. Wires larger than 5 mm are formed using a multi-step radial densification process that begins with a densified CNT wire core followed by successive wrapping of additional CNT material to increase the wire size. This process allows for a wide range of wire diameters to be fabricated, with and without potassium tetrabromoaurate (KAuBr4) chemical doping, and the resulting electrical and thermal properties to be characterized. Electrical measurements are performed with on/off current steps to obtain the maximum current before reaching a peak CNT wire temperature of 100 °C and before failure, yielding values of instantaneous currents in excess of 45 A for KAuBr4 doped CNT wires with a diameter of 6 mm achieved prior to failure. The peak temperature of the wires at failure (˜530 °C) is correlated with the primary decomposition peak observed in thermal gravimetric analysis of a wire sample confirming that oxidation is the primary failure mode of CNT wires operated in air. The in operando stability of doped CNT wires is confirmed by monitoring the resistance and temperature, which remain largely unaltered over 40 days and 1 day for wires with 1.5 mm and 11.2 mm diameters, respectively. The 100 °C continuous current rating, or ampacity, is measured for a range of doped CNT wire diameters and corresponding linear mass densities ρL. To describe the results, a new form of the fuse-law, where the critical current is defined as I ∝ρL3 /4, is developed and shows good agreement with the experimental data. Ultimately, CNT wires are shown to be stable electrical conductors, with failure current densities in excess of 50 A in the case of a convectively cooled 11.2 mm doped CNT wire, and amenable for use in applications that have long-term, high-current demands.

  14. Proportional counter device for detecting electronegative species in an air sample

    DOEpatents

    Allman, Steve L.; Chen, Fang C.; Chen, Chung-Hsuan

    1994-01-01

    Apparatus for detecting an electronegative species comprises an analysis chamber, an inlet communicating with the analysis chamber for admitting a sample containing the electronegative species and an ionizable component, a radioactive source within the analysis chamber for emitting radioactive energy for ionizing a component of the sample, a proportional electron detector within the analysis chamber for detecting electrons emitted from the ionized component, and a circuit for measuring the electrons and determining the presence of the electronegative species by detecting a reduction in the number of available electrons due to capture of electrons by the electronegative species.

  15. Proportional counter device for detecting electronegative species in an air sample

    DOEpatents

    Allman, S.L.; Chen, F.C.; Chen, C.H.

    1994-03-08

    Apparatus for detecting an electronegative species comprises an analysis chamber, an inlet communicating with the analysis chamber for admitting a sample containing the electronegative species and an ionizable component, a radioactive source within the analysis chamber for emitting radioactive energy for ionizing a component of the sample, a proportional electron detector within the analysis chamber for detecting electrons emitted from the ionized component, and a circuit for measuring the electrons and determining the presence of the electronegative species by detecting a reduction in the number of available electrons due to capture of electrons by the electronegative species. 2 figures.

  16. Over-the-counter medications containing diphenhydramine and doxylamine used by older adults to improve sleep.

    PubMed

    Abraham, Olufunmilola; Schleiden, Loren; Albert, Steven M

    2017-08-01

    Background The unintentional misuse of over-the-counter sleep aids among older adults is an important public health problem and a focus of Healthy People 2020. Accordingly, the 2015 Beers Criteria for Potentially Inappropriate Medication Use in Older Adults recommends that individuals 65 years or older avoid use of diphenhydramine and doxylamine; however, many over-the-counter sleep products contain these active ingredients. Objective To identify the proportion of older adults using an over-the-counter medication containing diphenhydramine or doxylamine, and compare their characteristics with older adults using an over-the-counter medication that does not contain these ingredients. Setting Study participants were recruited from the Community Registry of the Pittsburgh Claude D. Pepper Older Americans Independence Center. Method The study sample was taken from a larger survey of 1025 participants on sleep health and over-the-counter sleep medication use conducted from February to April 2015. A subset of 169 participants aged 65 and older reporting taking at least one over-the-counter product to improve sleep within the past 30 days (16.5%) were selected for our analysis on associations between participant characteristics and potentially inappropriate use of over-the-counter sleep medications. Main outcome measure The proportion and characteristics of older adults taking at least one over-the-counter medication containing diphenhydramine or doxylamine. Results Of the 223 over-the-counter sleep medications listed by participants, 115 (52%) contained diphenhydramine or doxylamine. Using the Beers Criteria, we found that more than half of participants (59%) had used a potentially inappropriate over-the-counter medication containing diphenhydramine or doxylamine to improve sleep within the past 30 days. Participants taking at least one diphenhydramine or doxylamine containing medication were less likely to be aware of any safety risks in taking over-the-counter sleep

  17. Observation of EAS using a large water tank

    NASA Technical Reports Server (NTRS)

    Inoue, K.; Sakuyama, H.; Suzuki, N.; Suzuki, T.

    1985-01-01

    Using a large water tank (30 m in diameter, 4.5 m in depth) transition of extensive air showers (EAS) was investigated at Taro (200 m above sea level). There are set 150,0.4 sq m proportional counters on the bottom of the water tank. A conventional EAS array of 25 plastic scintillation detectors was arranged within several tens meter from the water tank. A proportional counter (10x10x200 cc x2) is made of a square shaped pipe of iron. Tungsten wire (100 mu m phi) is stretched tight in the center of the counter. A gas mixture of 90% argon and 10% methane is used at 760 mmHg. About 3000 EAS were obtained through 1 m of water since 1984.

  18. InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso-Álvarez, D.; Thomas, T.; Führer, M.

    Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6° misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longermore » lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1 μs, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetimes could be exploited to enhance carrier collection and reduce dark current losses. Light absorption by these QWRs is 1.6 times weaker than QWs, as revealed by EQE measurements, which emphasises the need for more layers of nanostructures or the use light trapping techniques. Contrary to what we expected, QWR show very low absorption anisotropy, only 3.5%, which was the main drawback a priori of this nanostructure. We attribute this to a reduced lateral confinement inside the wires. These results encourage further study and optimization of QWRs for high efficiency solar cells.« less

  19. Experimental and numerical investigations of wire bending by linear winding of rectangular tooth coils

    NASA Astrophysics Data System (ADS)

    Komodromos, A.; Tekkaya, A. E.; Hofmann, J.; Fleischer, J.

    2018-05-01

    Since electric motors are gaining in importance in many fields of application, e.g. hybrid electric vehicles, optimization of the linear coil winding process greatly contributes to an increase in productivity and flexibility. For the investigation of the forming behavior of the winding wire the material behavior is characterized in different experimental setups. Numerical examinatons of the linear winding process are carried out in a case study for a rectangular bobbin in order to analyze the influence of forming parameters on the resulting properties of the wound coil. Besides the numerical investigation of the linear winding method by using the finite element method (FEM), a multi-body dynamics (MBD) simulation is carried out. The multi-body dynamics simulation is necessary to represent the movement of the bodies as well as the connection of the components during winding. The finite element method is used to represent the material behavior of the copper wire and the plastic strain distribution within the wire. It becomes clear that the MBD simulation is not sufficient for analyzing the process and the wire behavior in its entirety. Important parameters that define the final coil properties cannot be analyzed in the manner of a precise manifestation, e.g. the clearance between coil bobbin and wire as well as the wire deformation behavior in form of a diameter reduction which negatively affects the ohmic resistance. Finally, the numerical investigations are validated experimentally by linear winding tests.

  20. Ethernet based data logger for gaseous detectors

    NASA Astrophysics Data System (ADS)

    Swain, S.; Sahu, P. K.; Sahu, S. K.

    2018-05-01

    A data logger is designed to monitor and record ambient parameters such as temperature, pressure and relative humidity along with gas flow rate as a function of time. These parameters are required for understanding the characteristics of gas-filled detectors such as Gas Electron Multiplier (GEM) and Multi-Wire Proportional Counter (MWPC). The data logger has different microcontrollers and has been interfaced to an ethernet port with a local LCD unit for displaying all measured parameters. In this article, the explanation of the data logger design, hardware, and software description of the master microcontroller and the DAQ system along with LabVIEW interface client program have been presented. We have implemented this device with GEM detector and displayed few preliminary results as a function of above parameters.

  1. Basic Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This module is the first in a series of three wiring publications; it serves as the foundation for students enrolled in a wiring program. It is a prerequisite to either "Residential Wiring" or "Commercial and Industrial Wiring." The module contains 16 instructional units that cover the following topics: occupational…

  2. Influence of sliding friction on leveling force of superelastic NiTi arch wire: A computational analysis

    NASA Astrophysics Data System (ADS)

    Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.

    2017-10-01

    This study investigated the influence of sliding friction toward the effective force of superelastic NiTi arch wire applied in orthodontic bracing for tooth leveling. A three-dimensional finite-element model integrated with superelastic subroutine and contact interaction was used to predict the contribution of friction on force-deflection curve of NiTi wire in three brackets bending configuration. It was found that the friction between the wire and the bracket increased proportionally as a function of wire deflection, thus transforming the constant force characteristic of NiTi material into a slope. The highest magnitude of sliding friction was measured to be 3.1 N and 2.2 N with respect to the activation and deactivation of the arch wire.

  3. Wire stripper

    NASA Technical Reports Server (NTRS)

    Economu, M. A. (Inventor)

    1978-01-01

    An insulation stripper is described which is especially useful for shielded wire, the stripper including a first pair of jaws with blades extending substantially perpendicular to the axis of the wire, and a second pair of jaws with blades extending substantially parallel to the axis of the wire. The first pair of jaws is pressed against the wire so the blades cut into the insulation, and the device is turned to form circumferential cuts in the insulation. Then the second pair of jaws is pressed against the wire so the blades cut into the insulation, and the wire is moved through the device to form longitudinal cuts that permit easy removal of the insulation. Each of the blades is located within the concave face of a V-block, to center the blades on the wire and to limit the depth of blade penetration.

  4. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames...

  5. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames...

  6. The response of a scintillation counter below an emulsion chamber to heavy nucleus interactions in the chamber

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; hide

    1985-01-01

    In 1982 a hybrid electronic counter-emulsion chamber experiment was flown on a balloon to study heavy nucleus interactions in the 20 to approximately 100 GeV/AMU energy range. A gas Cerenkov counter, two solid Cerenkov counters, and a proportional counter hodoscope gave the primary energy, the primary charge and the trajectory of the particles, respectively. Using the trajectory information cosmic ray nuclei of Z 10 were found reliably and efficiently, and interaction characteristics of the Fe group nuclei were measured in the chamber. A plastic scintillator below the emulsion chamber responded to showers resulting from interactions in the chamber and to noninteracting nuclei. Data on the response of the counter have been compared with simulations of hadronic-electromagnetic cascades to derive the average neutral energy fraction released by the heavy interactions, and to predict the performance of this kind of counter at higher energies. For the interacting events of highest produced particles multiplicity comparison between various simulations and the shower counter signal have been made.

  7. Mechanism of supporting sub-communicator collectives with O(64) counters as opposed to one counter for each sub-communicator

    DOEpatents

    Kumar, Sameer; Mamidala, Amith R.; Ratterman, Joseph D.; Blocksome, Michael; Miller, Douglas

    2013-09-03

    A system and method for enhancing barrier collective synchronization on a computer system comprises a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program being executed by a processor. The system includes providing a plurality of communicators for storing state information for a bather algorithm. Each communicator designates a master core in a multi-processor environment of the computer system. The system allocates or designates one counter for each of a plurality of threads. The system configures a table with a number of entries equal to the maximum number of threads. The system sets a table entry with an ID associated with a communicator when a process thread initiates a collective. The system determines an allocated or designated counter by searching entries in the table.

  8. Retention of coded wire tags, and their effect on maturation and survival of yellow mealworms (Coleoptera: Tenebrionidae)

    USGS Publications Warehouse

    Schaffler, James J.; Isely, J.J.

    2001-01-01

    This study demonstrates that coded wire tags can be used to mark certain insect larvae without adverse effects on maturation, and that tags are retained through the adult phase in high enough proportion for practical application. Coded wire tags also offer the benefit that marked organisms can be identified to the batch or individual level.

  9. Hot-wire Laser Welding of Deep and Wide Gaps

    NASA Astrophysics Data System (ADS)

    Näsström, J.; Frostevarg, J.; Silver, T.

    Heavy section Gas Metal Arc Welding (GMAW) usually requires special edge preparation and several passes. One alternative for increased performance is Laser Arc Hybrid Welding (LAHW). For very thick sheets however, imperfections like root drops or solidification cracks can occur. In this study, other techniques are also studied, including multi-pass filling of deep gaps with wire deposition. A laser is then used to melt the filler and base material. The hot- and cold wire laser welding processes are highly sensitive to wire-laser positioning, where controlled melting of the wire is essential. Apart from a comprehensive literature survey, preliminary experiments were also performed in order to find a novel method variant that can successfully fill deep and wide gaps. The method applied uses a defocused laser that generates the melt pool. A resistance heated wire is fed into the melt pool front in a leading position. This is similar to additive manufacturing techniques such as laser direct metal deposition with wire. A layer height of several millimeters can be achieved and rather low laser power can be chosen. The preliminary experiments were observed using high speed imaging and briefly evaluated by visual examination of the resulting beads. Using a defocused laser beam turned out to have two major advantages; 1. It adds heat to the melt pool in a manner that properly fuses the bottom and walls of the base material. 2. It counteracts difficulties due to an irregularly oscillating filler wire. These early results show that this can be a promising technique for joining thick steels with wide gaps.

  10. Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Chai, Dean J.; Olney, David J.

    2010-01-01

    The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.

  11. Measurement of the stochastic radial dose distribution for a 30-MeV proton beam using a wall-less tissue-equivalent proportional counter.

    PubMed

    Tsuda, S; Sato, T; Ogawa, T

    2016-02-01

    The frequency distribution of the lineal energy, y, of a 30-MeV proton beam was measured as a function of the radial distance from the beam path, and the dosed mean of y, y¯(D), was obtained to investigate the radial dependence of y¯(D). A wall-less tissue-equivalent proportional counter, in a cylindrical volume with simulated diameters of 0.36, 0.72 and 1.44 µm was used for the measurement of y distributions, yf(y). The measured values of yf(y) summed in the radial direction agreed fairly well with the corresponding data taken from the microdosimetric calculations using the PHITS code. The y¯(D) value of the 30-MeV proton beam presented its smallest value at r = 0.0 and gradually increased with radial distance, and the y¯(D) values of heavy ions such as iron showed rapid decrease with radial distance. This experimental result demonstrated that the stochastic deposited energy distribution of high-energy protons in the microscopic region is rather constant in the core as well as in the penumbra region of the track structure. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Systematic measurement of lineal energy distributions for proton, He and Si ion beams over a wide energy range using a wall-less tissue equivalent proportional counter.

    PubMed

    Tsuda, Shuichi; Sato, Tatsuhiko; Takahashi, Fumiaki; Satoh, Daiki; Sasaki, Shinichi; Namito, Yoshihito; Iwase, Hiroshi; Ban, Shuichi; Takada, Masashi

    2012-01-01

    The frequency distributions of the lineal energy, y, of 160 MeV proton, 150 MeV/u helium, and 490 MeV/u silicon ion beams were measured using a wall-less tissue equivalent proportional counter (TEPC) with a site size of 0.72 µm. The measured frequency distributions of y as well as the dose-mean values, y(D), agree with the corresponding data calculated using the microdosimetric function of the particle and heavy ion transport code system PHITS. The values of y(D) increase in the range of LET below ~10 keV µm(-1) because of discrete energy deposition by delta rays, while the relation is reversed above ~10 keV µm(-1) as the amount of energy escaping via delta rays increases. These results indicate that care should be taken with the difference between y(D) and LET when estimating the ionization density that usually relates to relative biological effectiveness (RBE) of energetic heavy ions.

  13. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method

    NASA Astrophysics Data System (ADS)

    Li, Ruoyang; Wang, Tianjiao; Wang, Chunming; Yan, Fei; Shao, Xinyu; Hu, Xiyuan; Li, Jianmin

    2014-12-01

    This paper details a new method that combines laser autogenous welding, laser wire filling welding and hybrid laser-GMAW welding to weld 30 mm thick plate using a multi-layer, multi-pass process. A “Y” shaped groove was used to create the joint. Research was also performed to optimize the groove size and the processing parameters. Laser autogenous welding is first used to create the backing weld. The lower, narrowest part of the groove is then welded using laser wire filling welding. Finally, the upper part of the groove is welded using laser-GMAW hybrid welding. Additionally, the wire feeding and droplet transfer behaviors are observed by high speed photography. The two main conclusions from this work are: the wire is often biased towards the side walls, resulting in a lack of fusion at the joint and the creation of other defects for larger groove sizes. Additionally, this results in the droplet transfer behavior becoming unstable, leading to a poor weld appearance for smaller groove sizes.

  14. Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows

    NASA Astrophysics Data System (ADS)

    Sharaf, S.; Da Silva, M.; Hampel, U.; Zippe, C.; Beyer, M.; Azzopardi, B.

    2011-10-01

    Wire mesh sensors (WMS) are fast imaging instruments that are used for gas-liquid and liquid-liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas-liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air-deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s-1 and 1.4 m s-1 at two liquid velocities of 0.2 and 0.7 m s-1. The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe.

  15. Microstructure and mechanical properties of China low activation martensitic steel joint by TIG multi-pass welding with a new filler wire

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Zhang, Junyu; Wu, Qingsheng

    2017-07-01

    Tungsten Inner Gas (TIG) welding is employed for joining of China low activation martensitic (CLAM) steel. A new filler wire was proposed, and the investigation on welding with various heat input and welding passes were conducted to lower the tendency towards the residual of δ ferrite in the joint. With the optimized welding parameters, a butt joint by multi-pass welding with the new filler wire was prepared to investigate the microstructure and mechanical properties. The microstructure of the joint was observed by optical microscope (OM) and scanning electron microscope (SEM). The hardness, Charpy impact and tensile tests of the joint were implemented at room temperature (25 °C). The results revealed that almost full martensite free from ferrite in the joints were obtained by multipass welding with the heat input of 2.26 kJ/mm. A certain degree of softening occurred at the heat affected zone of the joint according to the results of tensile and hardness tests. The as welded joints showed brittle fracture in the impact tests. However, the joints showed toughness fracture after tempering and relatively better comprehensive performance were achieved when the joints were tempered at 740 °C for 2 h.

  16. Design, development and calibration of HTS wire based LOX level sensor probe

    NASA Astrophysics Data System (ADS)

    Karunanithi, R.; Jacob, S.; Nadig, D. S.; Prasad, M. V. N.; Gour, A. S.; Gowthaman, M.; Deekshith, P.; Shrivastava, V.

    2014-01-01

    For space applications, the weight of the liquid level sensors are of major concern as they affect the payload fraction and hence the cost. An attempt is made to design and test a light weight High Temperature Superconductor (HTS) wire based liquid level sensor for Liquid Oxygen (LOX) tank used in the cryostage of the spacecraft. The total resistance value measured of the HTS wire is inversely proportional to the liquid level. A HTS wire (SF12100) of 12mm width and 2.76m length without copper stabilizer has been used in the level sensor. The developed HTS wire based LOX level sensor is calibrated against a discrete diode array type level sensor. Liquid Nitrogen (LN2) and LOX has been used as cryogenic fluid for the calibration purpose. The automatic data logging for the system has been done using LabVIEW11. The net weight of the developed sensor is less than 1 kg.

  17. A reliability analysis tool for SpaceWire network

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.

  18. Counter-ion Dependent, Longitudinal Unzipping of Multi-Walled Carbon Nanotubes to Highly Conductive and Transparent Graphene Nanoribbons

    PubMed Central

    Shinde, Dhanraj B.; Majumder, Mainak; Pillai, Vijayamohanan K.

    2014-01-01

    Here we report for the first time, a simple hydrothermal approach for the bulk production of highly conductive and transparent graphene nanoribbons (GNRs) using several counter ions from K2SO4, KNO3, KOH and H2SO4 in aqueous media, where, selective intercalation followed by exfoliation gives highly conducting GNRs with over 80% yield. In these experiments, sulfate and nitrate ions act as a co-intercalant along with potassium ions resulting into exfoliation of multi-walled carbon nanotubes (MWCNTs) in an effective manner. The striking similarity of experimental results in KOH and H2SO4 that demonstrates partially damaged MWCNTs, implies that no individual K+, SO42− ion plays a key role in unwrapping of MWCNTs, rather this process is largely effective in the presence of both cations and anions working in a cooperative manner. The GNRs can be used for preparing conductive 16 kΩsq−1, transparent (82%) and flexible thin films using low cost fabrication method. PMID:24621526

  19. Mechanism of supporting sub-communicator collectives with O(64) counters as opposed to one counter for each sub-communicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sameer; Mamidala, Amith R.; Ratterman, Joseph D.

    A system and method for enhancing barrier collective synchronization on a computer system comprises a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program being executed by a processor. The system includes providing a plurality of communicators for storing state information for a bather algorithm. Each communicator designates a master core in a multi-processor environment of the computer system. The system allocates or designates one counter for each of a plurality of threads. The system configures a table with a number of entries equal tomore » the maximum number of threads. The system sets a table entry with an ID associated with a communicator when a process thread initiates a collective. The system determines an allocated or designated counter by searching entries in the table.« less

  20. Mechanism of supporting sub-communicator collectives with o(64) counters as opposed to one counter for each sub-communicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blocksome, Michael; Kumar, Sameer; Mamidala, Amith R.

    A system and method for enhancing barrier collective synchronization on a computer system comprises a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program being executed by a processor. The system includes providing a plurality of communicators for storing state information for a barrier algorithm. Each communicator designates a master core in a multi-processor environment of the computer system. The system allocates or designates one counter for each of a plurality of threads. The system configures a table with a number of entries equal tomore » the maximum number of threads. The system sets a table entry with an ID associated with a communicator when a process thread initiates a collective. The system determines an allocated or designated counter by searching entries in the table.« less

  1. Measurement and simulation of lineal energy distribution at the CERN high energy facility with a tissue equivalent proportional counter.

    PubMed

    Rollet, S; Autischer, M; Beck, P; Latocha, M

    2007-01-01

    The response of a tissue equivalent proportional counter (TEPC) in a mixed radiation field with a neutron energy distribution similar to the radiation field at commercial flight altitudes has been studied. The measurements have been done at the CERN-EU High-Energy Reference Field (CERF) facility where a well-characterised radiation field is available for intercomparison. The TEPC instrument used by the ARC Seibersdorf Research is filled with pure propane gas at low pressure and can be used to determine the lineal energy distribution of the energy deposition in a mass of gas equivalent to a 2 microm diameter volume of unit density tissue, of similar size to the nuclei of biological cells. The linearity of the detector response was checked both in term of dose and dose rate. The effect of dead-time has been corrected. The influence of the detector exposure location and orientation in the radiation field on the dose distribution was also studied as a function of the total dose. The microdosimetric distribution of the absorbed dose as a function of the lineal energy has been obtained and compared with the same distribution simulated with the FLUKA Monte Carlo transport code. The dose equivalent was calculated by folding this distribution with the quality factor as a function of linear energy transfer. The comparison between the measured and simulated distributions show that they are in good agreement. As a result of this study the detector is well characterised, thanks also to the numerical simulations the instrument response is well understood, and it's currently being used onboard the aircrafts to evaluate the dose to aircraft crew caused by cosmic radiation.

  2. Imaging proportional counters for the stellar X-ray polarimeter. [on Soviet Spectrum X-Gamma mission

    NASA Technical Reports Server (NTRS)

    Watkins, R. B., Jr.; Kaaret, P.

    1990-01-01

    The xenon-filled IPCs being developed for the Stellar X-ray Polarimeter are described. The requirements placed on the IPCs by the design of the polarimeter are discussed and results on the performance of prototype counters are presented. The design of a prototype of the IPCs is described. Finally, the performance of the prototype is reported. Due to the extremely low count rates encountered in X-ray polarimetry, efficient background rejection is the most critical parameter of the IPCs. Using a background rejection scheme employing anticoincidence and pulse shape discrimination, a rejection efficiency of 99 percent has been achieved for Co-60-induced events over an energy range of 2 to 15 keV while retaining more than 80 percent of the X-ray efficiency.

  3. Detection near 1-nm with a laminar-flow, water-based condensation particle counter

    DOE PAGES

    Hering, Susanne V.; Lewis, Gregory S.; Spielman, Steven R.; ...

    2016-11-18

    Presented is a laminar-flow, water-based condensation particle counter capable of particle detection near 1 nm. This instrument employs a three-stage, laminar-flow growth tube with a “moderator” stage that reduces the temperature and water content of the output flow without reducing the peak supersaturation, and makes feasible operation at the large temperature differences necessary for achieving high supersaturations. The instrument has an aerosol flow of 0.3 L/min, and does not use a filtered sheath flow. It is referred to as a “versatile” water condensation particle counter, or vWCPC, as operating temperatures can be adjusted in accordance with the cut-point desired. Whenmore » operated with wall temperatures of ~2°C, >90°C, and ~22°C for the three stages, respectively, the vWCPC detects particles generated from a heated nichrome wire with a 50% efficiency cut-point near 1.6 nm mobility diameter. At these operating temperatures, it also detects 10–20% of large molecular ions formed from passing filtered ambient air through a bipolar ion source. Decreasing the temperature difference between the first two stages, with the first and second stages operated at 10 and 90°C, respectively, essentially eliminates the response to charger ions, and raises the 50% efficiency cut-point for the nichrome wire particles to 1.9 nm mobility diameter. Here, the time response, as measured by rapid removal of an inlet filter, yields a characteristic time constant of 195 ms.« less

  4. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates

    PubMed Central

    Duan, Liuyang; Zhou, Zhaoyao; Yao, Bibo

    2018-01-01

    There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs) with a thickness of 0.5 mm–3 mm and a porosity of 10–35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures). The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm–50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The coarser wires led to a

  5. Fabrication, Structural Characterization and Uniaxial Tensile Properties of Novel Sintered Multi-Layer Wire Mesh Porous Plates.

    PubMed

    Duan, Liuyang; Zhou, Zhaoyao; Yao, Bibo

    2018-01-17

    There is an increasing interest in developing porous metals or metallic foams for functional and structural applications. The study of the physical and mechanical properties of porous metals is very important and helpful for their application. In this paper, a novel sintered multilayer wire mesh porous plate material (WMPPs) with a thickness of 0.5 mm-3 mm and a porosity of 10-35% was prepared by winding, pressing, rolling, and subsequently vacuum sintering them. The pore size and total size distribution in the as-prepared samples were investigated using the bubble point method. The uniaxial tensile behavior of the WMPPs was investigated in terms of the sintering temperature, porosity, wire diameter, and manufacturing technology. The deformation process and the failure mechanism under the tensile press was also discussed based on the appearance of the fractures (SEM figures). The results indicated that the pore size and total size distribution were closely related to the raw material used and the sintering temperature. For the WMPPs prepared by the wire mesh, the pore structures were inerratic and the vast majority of pore size was less than 10 μm. On the other hand, for the WMPPs that were prepared by wire mesh and powder, the pore structures were irregular and the pore size ranged from 0 μm-50 μm. The experimental data showed that the tensile strength of WMPPs is much higher than any other porous metals or metallic foams. Higher sintering temperatures led to coarser joints between wires and resulted in higher tensile strength. The sintering temperature decreased from 1330 °C to 1130 °C and the tensile strength decreased from 296 MPa to 164 MPa. Lower porosity means that there are more metallurgical joints and metallic frameworks resisting deformation per unit volume. Therefore, lower porosities exhibit higher tensile strength. An increase of porosity from 17.14% to 32.5% led to the decrease of the tensile strength by 90 MPa. The coarser wires led to a bigger

  6. Review of effects of dielectric coatings on electrical exploding wires and Z pinches

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Li, Xingwen; Li, Mo; Li, Yang; Qiu, Aici

    2017-10-01

    As the most powerful x-ray source in the laboratories, the wire array Z pinches have been of great relevance to inertial confinement fusions, laboratory astrophysics, and other high-energy density applications. In order to produce x-ray with greater power and higher efficiency, the dynamics of wire array has been investigated extensively, and various methods have been proposed to improve the implosion quality of the wire array. This review focuses on the experimental and theoretical investigations regarding the effects of the dielectric coatings on electrical exploding wires and Z pinches. Since the early 2000, the electrical wire explosion related to the first stage of the wire array Z pinches has been studied extensively, and the results indicated that the dielectric coatings can significantly increase the joule energy deposition into a wire in the initial stage, and even the corona free explosion of tungsten wires can be achieved. Recently, there is an increasing interest in the dynamics of insulated wire array Z pinches. By applying dielectric coatings, the ablation process is suppressed, the x-ray start time is delayed, and the possibility of multi-peak radiation is decreased. This review is organized by the evolution dynamics of wire array Z pinches, and a broad introduction to relevant scientific concepts and various other applications are presented. According to the current research status, the challenges, opportunities and further developments of Z pinch loads using dielectric coatings are proposed to further promote the researches and their applications.

  7. Finding Feasible Abstract Counter-Examples

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Dwyer, Matthew B.; Visser, Willem; Clancy, Daniel (Technical Monitor)

    2002-01-01

    A strength of model checking is its ability to automate the detection of subtle system errors and produce traces that exhibit those errors. Given the high computational cost of model checking most researchers advocate the use of aggressive property-preserving abstractions. Unfortunately, the more aggressively a system is abstracted the more infeasible behavior it will have. Thus, while abstraction enables efficient model checking it also threatens the usefulness of model checking as a defect detection tool, since it may be difficult to determine whether a counter-example is feasible and hence worth developer time to analyze. We have explored several strategies for addressing this problem by extending an explicit-state model checker, Java PathFinder (JPF), to search for and analyze counter-examples in the presence of abstractions. We demonstrate that these techniques effectively preserve the defect detection ability of model checking in the presence of aggressive abstraction by applying them to check properties of several abstracted multi-threaded Java programs. These new capabilities are not specific to JPF and can be easily adapted to other model checking frameworks; we describe how this was done for the Bandera toolset.

  8. The acetone bandpass detector for inverse photoemission: operation in proportional and Geiger–Müller modes

    NASA Astrophysics Data System (ADS)

    Thiede, Christian; Niehues, Iris; Schmidt, Anke B.; Donath, Markus

    2018-06-01

    Inverse photoemission is the most versatile experimental tool to study the unoccupied electronic structure at surfaces of solids. Typically, the experiments are performed in the isochromat mode with bandpass photon detectors. For gas-filled counters, the bandpass behavior is realized by the combination of the photoionization threshold of the counting gas as the high-pass filter and the ultraviolet transmission cutoff of an alkaline earth fluoride entrance window as the low-pass filter. The transmission characteristics of the entrance window determine the optical bandpass. The performance of the counter depends on the composition of the detection gas and the fill-gas pressure, the readout electronics and the counter geometry. For the well-known combination of acetone and CaF2, the detector can be operated in proportional and Geiger–Müller modes. In this work, we review aspects concerning the working principles, the counter construction and the read-out electronics. We identify optimum working parameters and provide a step-by-step recipe how to build, install and operate the device.

  9. Wire-bonder-assisted integration of non-bondable SMA wires into MEMS substrates

    NASA Astrophysics Data System (ADS)

    Fischer, A. C.; Gradin, H.; Schröder, S.; Braun, S.; Stemme, G.; van der Wijngaart, W.; Niklaus, F.

    2012-05-01

    This paper reports on a novel technique for the integration of NiTi shape memory alloy wires and other non-bondable wire materials into silicon-based microelectromechanical system structures using a standard wire-bonding tool. The efficient placement and alignment functions of the wire-bonding tool are used to mechanically attach the wire to deep-etched silicon anchoring and clamping structures. This approach enables a reliable and accurate integration of wire materials that cannot be wire bonded by traditional means.

  10. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Protection of insulated wire; splice in underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...

  11. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Protection of insulated wire; splice in underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...

  12. High efficiency proportional neutron detector with solid liner internal structures

    DOEpatents

    Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.

    2014-08-05

    A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.

  13. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  14. Energy Deposition and Condition of the Metal Core in Exploding Wire Experiments

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.; McDaniel, D. H.; Waisman, E. M.; Sasorov, P. V.

    2002-11-01

    Measurements of the Joule energy deposition into exploding wire and its relation with condition of the expanding wire core are presented. Wires of nine different metals with diameters of 10-30 microns, have been exploded by fast 150A/ns and slow 20A/ns pulses, in vacuum and in air. It has been shown by interferometry and light emission that expanding wire core has different conditions. The substances with small atomization enthalpy (Ag, Al, Cu, Au) demonstrate full vaporization of the wire core. The refractory metals (Ti, Pt, Mo, W) demonstrates that core consists from vapor and small and hot microparticles. In this case we observe "firework effect" when large radiation from the wire exceed the energy deposition time in a three order of magnitude. For non-refractory metals radiation dropping fast in 100 ns time scale due to effective adiabatic cooling. It is possible if main part of the metal core was vaporized. The interferometrical investigation of the refraction coefficient of expanding metal core is proof this conclusion. It has been shown that energy deposition before surface breakdown dependent strongly from current rate, surface coatings, environment, wire diameter and radial electric field. The regime of wire explosion in vacuum without shunting plasma shell has been realized for fast exploding mode. In this case we observe anomaly high energy deposition in to the wire core exceeding regular value in almost 20 times. The experimental results for Al wire have been compared with ALEGRA 2D MHD simulations. *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL8500.

  15. Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents.

    PubMed

    He, Hao; Zhang, Qixing; Tu, Ran; Zhao, Luyao; Liu, Jia; Zhang, Yongming

    2016-12-15

    The dripping behavior of the molten thermoplastic insulation of copper wire, induced by flame spread under overload currents, was investigated for a better understanding of energized electrical wire fires. Three types of sample wire, with the same polyethylene insulation thickness and different core diameters, were used in this study. First, overload current effects on the transient one-dimensional wire temperature profile were predicted using simplified theoretical analysis; the heating process and equilibrium temperature were obtained. Second, experiments on the melting characteristics were conducted in a laboratory environment, including drop formation and frequency, falling speed, and combustion on the steel base. Third, a relationship between molten mass loss and volume variation was proposed to evaluate the dripping time and frequency. A strong current was a prerequisite for the wire dripping behavior and the averaged dripping frequency was found to be proportional to the square of the current based on the theoretical and experimental results. Finally, the influence of dripping behavior on the flame propagation along the energized electrical wire was discussed. The flame width, bright flame height and flame spreading velocity presented different behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. DC motor proportional control system for orthotic devices

    NASA Technical Reports Server (NTRS)

    Blaise, H. T.; Allen, J. R.

    1972-01-01

    Multi-channel proportional control system for operation of dc motors for use with externally-powered orthotic arm braces is described. Components of circuitry and principles of operation are described. Schematic diagram of control circuit is provided.

  17. Wire Array Photovoltaics

    NASA Astrophysics Data System (ADS)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  18. Spin correlations in quantum wires

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Pokrovsky, Valery L.

    2015-04-01

    We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.

  19. Single Particle Transport Through Carbon Nanotube Wires: Effect of Defects and Polyhedral Cap

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Govidan, T. R.

    1999-01-01

    The ability to manipulate carbon nanotubes with increasing precision has enabled a large number of successful electron transport experiments. These studies have primarily focussed on characterizing transport through both metallic and semiconducting wires. Tans et al. demonstrated ballistic transport in single-wall nanotubes for the first time, although the experimental configuration incurred large contact resistance. Subsequently, methods of producing low contact resistances have been developed and two terminal conductances smaller than 50 k-ohms have been repeatably demonstrated in single-wall and multi-wall nanotubes. In multi-wall nanotubes, Frank et al. demonstrated a resistance of approximately h/2e(exp 2) in a configuration where the outermost layer made contact to a liquid metal. This was followed by the work of de Pablo et al. where a resistance of h(bar)/27e(exp 2) (approximately 478 ohms) was measured in a configuration where electrical contact was made to many layers of a multi-wall nanotube. Frank et al. and Pablo et al. note that each conducting layer contributes a conductance of only 2e(exp 2)/h, instead of the 4e(exp 2)/h that a single particle mode counting picture yields. These small resistances have been obtained in microns long nanotubes, making them the best conducting molecular wires to date. The large conductance of nanotube wires stems from the fact that the crossing bands of nanotubes are robust to defect scattering.

  20. Communication and wiring in the cortical connectome

    PubMed Central

    Budd, Julian M. L.; Kisvárday, Zoltán F.

    2012-01-01

    In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimize communication there is a trade-off between spatial (construction) and temporal (routing) costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fiber tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for cortical wiring patterns

  1. Radial dependence of lineal energy distribution of 290-MeV/u carbon and 500-MeV/u iron ion beams using a wall-less tissue-equivalent proportional counter

    PubMed Central

    Tsuda, Shuichi; Sato, Tatsuhiko; Watanabe, Ritsuko; Takada, Masashi

    2015-01-01

    Using a wall-less tissue-equivalent proportional counter for a 0.72-μm site in tissue, we measured the radial dependence of the lineal energy distribution, yf(y), of 290-MeV/u carbon ions and 500-MeV/u iron ion beams. The measured yf(y) distributions and the dose-mean of y, y¯D, were compared with calculations performed with the track structure simulation code TRACION and the microdosimetric function of the Particle and Heavy Ion Transport code System (PHITS). The values of the measured y¯D were consistent with calculated results within an error of 2%, but differences in the shape of yf(y) were observed for iron ion irradiation. This result indicates that further improvement of the calculation model for yf(y) distribution in PHITS is needed for the analytical function that describes energy deposition by delta rays, particularly for primary ions having linear energy transfer in excess of a few hundred keV μm−1. PMID:25210053

  2. A numerical simulation of tooth movement by wire bending.

    PubMed

    Kojima, Yukio; Fukui, Hisao

    2006-10-01

    In orthodontic treatment, wires are bent and attached to teeth to move them via elastic recovery. To predict how a tooth will move, the initial force system produced from the wire is calculated. However, the initial force system changes as the tooth moves and may not be used to predict the final tooth position. The purpose of this study was to develop a comprehensive mechanical, 3-dimensional, numerical model for predicting tooth movement. Tooth movements produced by wire bending were simulated numerically. The teeth moved as a result of bone remodeling, which occurs in proportion to stress in the periodontal ligament. With an off-center bend, a tooth near the bending position was subjected to a large moment and tipped more noticeably than the other teeth. Also, a tooth far from the bending position moved slightly in the mesial or the distal direction. With the center V-bend, when the second molar was added as an anchor tooth, the tipping angle and the intrusion of the canine increased, and movement of the first molar was prevented. When a wire with an inverse curve of Spee was placed in the mandibular arch, the calculated tendency of vertical tooth movements was the same as the measured result. In these tooth movements, the initial force system changed as the teeth moved. Tooth movement was influenced by the size of the root surface area. Tooth movements produced by wire bending could be estimated. It was difficult to predict final tooth positions from the initial force system.

  3. Novel T-shaped GaSb/InAsN quantum wire for mid-infrared laser applications

    NASA Astrophysics Data System (ADS)

    Ridene, Said

    2017-10-01

    In this work, we investigate GaSb /InAs1-xNx T-shaped quantum wire active region in mid-infrared laser. Multi-band k.p model and variational formalism are applied to find the confinement energies, the band structures, and optical gain. We then present a method of numerical calculation that is suited to any T-shaped quantum wire. By tuning the quantum wire thickness, the TE- and TM-polarized optical gain up to 21 ×103 cm-1 can be obtained for λ = 3.11 μm at room temperature (RT), which is very promising to serve as an alternative active region for high-efficiency mid-infrared laser applications.

  4. Multi-pin chemiresistors for microchemical sensors

    DOEpatents

    Ho, Clifford K [Albuquerque, NM

    2007-02-20

    A multi-pin chemiresistor for use in microchemical sensors. A pair of free-standing, bare wires is supported by an electrically insulating support, and are oriented parallel to each other and spaced closely together. A free-standing film of a chemically sensitive polymer that swells when exposed to vapors of a volatile chemical is formed in-between the pair of closely-spaced wires by capillary action. Similar in construction to a thermocouple, this "chemicouple" is relatively inexpensive and easy to fabricate by dipping the pair of bare wires into a bath of well-mixed chemiresistor ink. Also, a chemiresistor "stick" is formed by dipping an electrically insulating rod with two or more linear or spiral-wrapped electrical traces into the bath of well-mixed chemiresistor ink, which deposits a uniform coating of the chemically sensitive polymer on the rod and the electrical traces. These "sticks" can be easily removed and replaced from a multi-chemiresistor plug.

  5. SpaceWire Driver Software for Special DSPs

    NASA Technical Reports Server (NTRS)

    Clark, Douglas; Lux, James; Nishimoto, Kouji; Lang, Minh

    2003-01-01

    A computer program provides a high-level C-language interface to electronics circuitry that controls a SpaceWire interface in a system based on a space qualified version of the ADSP-21020 digital signal processor (DSP). SpaceWire is a spacecraft-oriented standard for packet-switching data-communication networks that comprise nodes connected through bidirectional digital serial links that utilize low-voltage differential signaling (LVDS). The software is tailored to the SMCS-332 application-specific integrated circuit (ASIC) (also available as the TSS901E), which provides three highspeed (150 Mbps) serial point-to-point links compliant with the proposed Institute of Electrical and Electronics Engineers (IEEE) Standard 1355.2 and equivalent European Space Agency (ESA) Standard ECSS-E-50-12. In the specific application of this software, the SpaceWire ASIC was combined with the DSP processor, memory, and control logic in a Multi-Chip Module DSP (MCM-DSP). The software is a collection of low-level driver routines that provide a simple message-passing application programming interface (API) for software running on the DSP. Routines are provided for interrupt-driven access to the two styles of interface provided by the SMCS: (1) the "word at a time" conventional host interface (HOCI); and (2) a higher performance "dual port memory" style interface (COMI).

  6. Generation and Transport of Hot Electrons in Cone-Wire Targets

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2009-11-01

    We present results from a series of experiments where cone-wire targets in various configurations were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Initial experiments were performed on the Vulcan petawatt laser at the Rutherford Appleton Laboratory and Titan laser at the Lawrence Livermore National Laboratory. Results with aluminum cones joined to Cu wires of diameters from 10 to 40 μm show that the laser coupling efficiency to electron energy within the wire is proportional to the cross sectional area of the wire. In addition, coupling into the wire was observed to decrease with the laser prepulse and cone-wall thickness. More recently, this study was extended, using the OMEGA EP laser. The resulting changes in coupling energy give indications of the scaling as we approach FI-relevant conditions. Requirements for FI scale fast ignition cone parameters: tip thickness, wall thickness, laser prepulse and laser pulse length, will be discussed. In collaboration with T. Yabuuchi, T. Ma, D. Higginson, H. Sawada, J. King, M.H. Key, K.U. Akli, Al Elsholz, D. Batani, H. Chen, R.R. Freeman, L. Gizzi, J. Green, S. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, D.Larson, A.J. MacKinnon, H. McLean, A. MacPhee, P.A. Norreys, P.K Patel, R. B. Stephens, W. Theobald, R. Town, M. Wei, S. Wilks, Roger Van Maren, B. Westover and L. VanWoerkom.

  7. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface is disclosed. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest. 4 figs.

  8. Turbulence measurements in a swirling confined jet flowfield using a triple hot-wire probe

    NASA Technical Reports Server (NTRS)

    Janjua, S. I.; Mclaughlin, D. K.

    1982-01-01

    An axisymmetric swirling confined jet flowfield, similar to that encountered in gas turbine combustors was investigated using a triple hot-wire probe. The raw data from the three sensors were digitized using ADC's and stored on a Tektronix 4051 computer. The data were further reduced on the computer to obtain time-series for the three instantaneous velocity components in the flowfield. The time-mean velocities and the turbulence quantities were deduced. Qualification experiments were performed and where possible results compared with independent measurements. The major qualification experiments involved measurements performed in a non-swirling flow compared with conventional X-wire measurements. In the swirling flowfield, advantages of the triple wire technique over the previously used multi-position single hot-wire method are noted. The measurements obtained provide a data base with which the predictions of turbulence models in a recirculating swirling flowfield can be evaluated.

  9. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1999-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  10. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  11. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  12. Facile fabrication of wire-type indium gallium zinc oxide thin-film transistors applicable to ultrasensitive flexible sensors.

    PubMed

    Kim, Yeong-Gyu; Tak, Young Jun; Kim, Hee Jun; Kim, Won-Gi; Yoo, Hyukjoon; Kim, Hyun Jae

    2018-04-03

    We fabricated wire-type indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) using a self-formed cracked template based on a lift-off process. The electrical characteristics of wire-type IGZO TFTs could be controlled by changing the width and density of IGZO wires through varying the coating conditions of template solution or multi-stacking additional layers. The fabricated wire-type devices were applied to sensors after functionalizing the surface. The wire-type pH sensor showed a sensitivity of 45.4 mV/pH, and this value was an improved sensitivity compared with that of the film-type device (27.6 mV/pH). Similarly, when the wire-type device was used as a glucose sensor, it showed more variation in electrical characteristics than the film-type device. The improved sensing properties resulted from the large surface area of the wire-type device compared with that of the film-type device. In addition, we fabricated wire-type IGZO TFTs on flexible substrates and confirmed that such structures were very resistant to mechanical stresses at a bending radius of 10 mm.

  13. Two-Wire to Four-Wire Audio Converter

    NASA Technical Reports Server (NTRS)

    Talley, G. L., Jr; Seale, B. L.

    1983-01-01

    Simple circuit provides interface between normally incompatible voicecommunication lines. Circuit maintains 40 dB of isolation between input and output halves of four-wire line permitting two-wire line to be connected. Balancing potentiometer, Rg, adjusts gain of IC2 to null feed through from input to output. Adjustment is done on workbench just after assembly.

  14. Experimental verification of a gain reduction model for the space charge effect in a wire chamber

    NASA Astrophysics Data System (ADS)

    Nagakura, Naoki; Fujii, Kazuki; Harayama, Isao; Kato, Yu; Sekiba, Daiichiro; Watahiki, Yumi; Yamashita, Satoru

    2018-01-01

    A wire chamber often suffers significant saturation of the multiplication factor when the electric field around its wires is strong. An analytical model of this effect has previously been proposed [Y. Arimoto et al., Nucl. Instrum. Meth. Phys. Res. A 799, 187 (2015)], in which the saturation was described by the multiplication factor, energy deposit density per wire length, and one constant parameter. In order to confirm the validity of this model, a multi-wire drift chamber was developed and irradiated by a MeV-range proton beam at the University of Tsukuba. The saturation effect was compared for energy deposits ranging from 70 keV/cm to 180 keV/cm and multiplication factors 3× 103 to 3× 104. The chamber was rotated with respect to the proton beam in order to vary the space charge density around the wires. The energy deposit distribution corrected for the effect was consistent with the result of a Monte Carlo simulation, thus validating the proposed model.

  15. 2. TYPICAL OVERHEAD WIRE CONSTRUCTION CURVE GUY WIRE ARRANGEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. TYPICAL OVERHEAD WIRE CONSTRUCTION - CURVE GUY WIRE ARRANGEMENT (ABANDONED WEST LEG OF WYE AT SIXTH AVENUE AND PINE STREET) - Yakima Valley Transportation Company Interurban Railroad, Trackage, Yakima, Yakima County, WA

  16. Wire-inhomogeneity detector

    DOEpatents

    Gibson, G.H.; Smits, R.G.; Eberhard, P.H.

    1982-08-31

    A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in eddy currents. Eddy currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite core, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.

  17. Larger sized wire arrays on 1.5 MA Z-pinch generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safronova, A. S., E-mail: alla@unr.edu; Kantsyrev, V. L., E-mail: alla@unr.edu; Weller, M. E., E-mail: alla@unr.edu

    Experiments on the UNR Zebra generator with Load Current Multiplier (LCM) allow for implosions of larger sized wire array loads than at standard current of 1 MA. Advantages of larger sized planar wire array implosions include enhanced energy coupling to plasmas, better diagnostic access to observable plasma regions, and more complex geometries of the wire loads. The experiments with larger sized wire arrays were performed on 1.5 MA Zebra with LCM (the anode-cathode gap was 1 cm, which is half the gap used in the standard mode). In particular, larger sized multi-planar wire arrays had two outer wire planes frommore » mid-atomic-number wires to create a global magnetic field (gmf) and plasma flow between them. A modified central plane with a few Al wires at the edges was put in the middle between outer planes to influence gmf and to create Al plasma flow in the perpendicular direction (to the outer arrays plasma flow). Such modified plane has different number of empty slots: it was increased from 6 up to 10, hence increasing the gap inside the middle plane from 4.9 to 7.7 mm, respectively. Such load configuration allows for more independent study of the flows of L-shell mid-atomic-number plasma (between the outer planes) and K-shell Al plasma (which first fills the gap between the edge wires along the middle plane) and their radiation in space and time. We demonstrate that such configuration produces higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions and how the load geometry (size of the gap in the middle plane) influences K-shell Al radiation. In particular, K-shell Al radiation was delayed compared to L-shell mid-atomic-number radiation when the gap in the middle plane was large enough (when the number of empty slots was increased up to ten)« less

  18. Wire Test Grip Fixture

    NASA Technical Reports Server (NTRS)

    Burke, Christopher S.

    2011-01-01

    Wire-testing issues, such as the gripping strains imposed on the wire, play a critical role in obtaining clean data. In a standard test frame fitted with flat wedge grips, the gripping action alone creates stresses on the wire specimen that cause the wire to fail at the grip location. A new test frame, which is outfitted with a vacuum chamber, negated the use of any conventional commercially available wire test fixtures, as only 7 in. (17.8 cm) existed between the grip faces. An innovative grip fixture was designed to test thin gauge wire for a variety of applications in an existing Instron test frame outfitted with a vacuum chamber.

  19. Low latency counter event indication

    DOEpatents

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY

    2008-09-16

    A hybrid counter array device for counting events with interrupt indication includes a first counter portion comprising N counter devices, each for counting signals representing event occurrences and providing a first count value representing lower order bits. An overflow bit device associated with each respective counter device is additionally set in response to an overflow condition. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits. An operatively coupled control device monitors each associated overflow bit device and initiates incrementing a second count value stored at a corresponding memory location in response to a respective overflow bit being set. The incremented second count value is compared to an interrupt threshold value stored in a threshold register, and, when the second counter value is equal to the interrupt threshold value, a corresponding "interrupt arm" bit is set to enable a fast interrupt indication. On a subsequent roll-over of the lower bits of that counter, the interrupt will be fired.

  20. Low latency counter event indication

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2010-08-24

    A hybrid counter array device for counting events with interrupt indication includes a first counter portion comprising N counter devices, each for counting signals representing event occurrences and providing a first count value representing lower order bits. An overflow bit device associated with each respective counter device is additionally set in response to an overflow condition. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits. An operatively coupled control device monitors each associated overflow bit device and initiates incrementing a second count value stored at a corresponding memory location in response to a respective overflow bit being set. The incremented second count value is compared to an interrupt threshold value stored in a threshold register, and, when the second counter value is equal to the interrupt threshold value, a corresponding "interrupt arm" bit is set to enable a fast interrupt indication. On a subsequent roll-over of the lower bits of that counter, the interrupt will be fired.

  1. Stretchable glucose biofuel cell with wirings made of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fujimagari, Yusuke; Nishioka, Yasushiro

    2015-12-01

    In this study, we fabricated a flexible and stretchable glucose-biofuel cell with wirings made of multi wall carbon nanotube (MWCNTs) on a polydimethylsiloxane substrate. The biofuel cell investigated consists of a porous carbon anode (area of 30 mm2) modified by glucose oxidase and ferrocene, and a cathode (area of 30 mm2) modified by bilirubin oxidase. The anode and the cathode were connected with the MWCNT wirings. The maximum power of 0.31 μW at 76.6 mV, which corresponds to a power density of 1.04 μW/cm2, was realized by immersing the biofuel cell in a phosphate buffer solution with a glucose concentration of 100 mM, at room temperature.

  2. Wire ablation dynamics model and its application to imploding wire arrays of different geometries.

    PubMed

    Esaulov, A A; Kantsyrev, V L; Safronova, A S; Velikovich, A L; Shrestha, I K; Williamson, K M; Osborne, G C

    2012-10-01

    The paper presents an extended description of the amplified wire ablation dynamics model (WADM), which accounts in a single simulation for the processes of wire ablation and implosion of a wire array load of arbitrary geometry and wire material composition. To investigate the role of wire ablation effects, the implosions of cylindrical and planar wire array loads at the university based generators Cobra (Cornell University) and Zebra (University of Nevada, Reno) have been analyzed. The analysis of the experimental data shows that the wire mass ablation rate can be described as a function of the current through the wire and some coefficient defined by the wire material properties. The aluminum wires were found to ablate with the highest rate, while the copper ablation is the slowest one. The lower wire ablation rate results in a higher inward velocity of the ablated plasma, a higher rate of the energy coupling with the ablated plasma, and a more significant delay of implosion for a heavy load due to the ablation effects, which manifest the most in a cylindrical array configuration and almost vanish in a single-planar array configuration. The WADM is an efficient tool suited for wire array load design and optimization in wide parameter ranges, including the loads with specific properties needed for the inertial confinement fusion research and laboratory astrophysics experiments. The data output from the WADM simulation can be used to simplify the radiation magnetohydrodynamics modeling of the wire array plasma.

  3. Windows: Life after Wire.

    ERIC Educational Resources Information Center

    Razwick, Jerry

    2003-01-01

    Although wired glass is extremely common in school buildings, the International Building Code adopted new standards that eliminate the use of traditional wired glass in K-12 schools, daycare centers, and athletic facilities. Wired glass breaks easily, and the wires can cause significant injuries by forming dangerous snags when the glass breaks.…

  4. Silicon sensors for catheters and guide wires

    NASA Astrophysics Data System (ADS)

    Goosen, Hans F.

    2001-11-01

    One area that can make use of the miniature size of present day micro electromechanical systems (MEMS) is that of the medical field of minimally invasive interventions. These procedures, used for both diagnosis and treatment, use catheters that are advanced through the blood vessels deep into the body, without the need for surgery. However, once inside the body, the doctor performing the procedure is completely reliant on the information the catheter(s) can provide in addition to the projection imaging of a fluoroscope. A good range of sensors for catheters is required for a proper diagnosis. To this end, miniature sensors are being developed to be fitted to catheters and guide wires. As the accurate positioning of these instruments is problematic, it is necessary to combine several sensors on the same guide wire or catheter to measure several parameters in the same location. This however, brings many special problems to the design of the sensors, such as small size, low power consumption, bio-compatibility of materials, robust design for patient safety, a limited number of connections, packaging, etc. This paper will go into both the advantages and design problems of micromachined sensors and actuators in catheters and guide wires. As an example, a multi parameter blood sensor, measuring flow velocity, pressure and oxygen saturation, will be discussed.

  5. Explosion symmetry improvement of polyimide-coated tungsten wire in vacuum on negative discharge facility

    NASA Astrophysics Data System (ADS)

    Li, Mo; Wu, Jian; Lu, Yihan; Li, Xingwen; Li, Yang; Qiu, Mengtong

    2018-01-01

    Tungsten wire explosion is very asymmetric when fast current rate and insulated coatings are both applied on negative discharge facility using a 24-mm-diameter cathode geometry, which is commonly used on mega-ampere facilities. It is inferred, based on an analytical treatment of the guiding center drift and COMSOL simulations, that the large negative radial electric field causes early voltage breakdown and terminates energy deposition into the wire core on the anode side of the wire. After the anode side is short circuited, the radial electric field along the wire surface on the cathode side will change its polarity and thus leading to additional energy deposition into the wire core. This change causes ˜10 times larger energy deposition and ˜14 times faster explosion velocity in the cathode side than the anode side. In order to reduce this asymmetry, a hollow cylindrical cathode geometry was used to reverse the polarity of radial electric field and was optimized to use on multi-MA facilities. In this case, fully vaporized polyimide-coated tungsten wire with great symmetry improvement was achieved with energy deposition of ˜8.8 eV/atom. The atomic and electronic density distributions for the two different load geometries were obtained by the double-wavelength measurement.

  6. Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polypyrrole composite counter electrodes prepared by electrophoresis/electrochemical polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jun; Niu, Hai-jun; Wen, Hai-lin

    2013-03-15

    Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor ofmore » electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R{sub ct} of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I{sub 3}{sup −} reduction can potentially be used as the CE in a high-performance DSSC.« less

  7. Dual wire welding torch and method

    DOEpatents

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  8. Wire-guided sphincterotomy.

    PubMed

    Sherman, S; Uzer, M F; Lehman, G A

    1994-12-01

    Guidewire-assisted techniques have acquired an important role in endoscopic interventions in the pancreaticobiliary tree. The wire-guided sphincterotome allows the endoscopist to maintain direct access to the biliary tree before or after the sphincterotomy. It has the additional advantages of allowing for more expeditious placement of accessories and being useful in combined percutaneous-endoscopic procedures. There are two basic designs of wire-guided sphincterotomes. The single-channel model has a single lumen for both the cutting wire and guidewire and requires guidewire removal before the application of power. The double-channel model has two separate lumens for the guidewire and stainless steel cutting wire. In vitro data suggest that significant capacitive coupling currents (or short circuits) may occur on the standard Teflon-coated guidewire when used with a double lumen sphincterotome, resulting in electrosurgical burns. Thus, the manufacturers of the double-lumen models recommend removing the Teflon-coated wire before performing sphincterotomy. Although limited data in humans have been published, it appears that wire-guided sphincterotomy and standard sphincterotomy have similar complication rates. More safety information in humans is awaited.

  9. Samus Counter Lifting Fixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stredde, H.; /Fermilab

    1998-05-27

    A lifting fixture has been designed to handle the Samus counters. These counters are being removed from the D-zero area and will be transported off site for further use at another facility. This fixture is designed specifically for this particular application and will be transferred along with the counters. The future use of these counters may entail installation at a facility without access to a crane and therefore a lift fixture suitable for both crane and/or fork lift usage has been created The counters weigh approximately 3000 lbs. and have threaded rods extended through the counter at the top comersmore » for lifting. When these counters were first handled/installed these rods were used in conjunction with appropriate slings and handled by crane. The rods are secured with nuts tightened against the face of the counter. The rod thread is M16 x 2({approx}.625-inch dia.) and extends 2-inch (on average) from the face of the counter. It is this cantilevered rod that the lift fixture engages with 'C' style plates at the four top comers. The strongback portion of the lift fixture is a steel rectangular tube 8-inch (vertical) x 4-inch x .25-inch wall, 130-inch long. 1.5-inch square bars are welded perpendicular to the long axis of the rectangular tube at the appropriate lift points and the 'C' plates are fastened to these bars with 3/4-10 high strength bolts -grade 8. Two short channel sections are positioned-welded-to the bottom of the rectangular tube on 40 feet centers, which are used as locators for fork lift tines. On the top are lifting eyes for sling/crane usage and are rated at 3500 lbs. safe working load each - vertical lift only.« less

  10. U.S. Navy Wire-Rope Handbook. Volume 2. Wire-Rope Analysis and Design Data

    DTIC Science & Technology

    1976-01-01

    beneficial from the standpoint of wire - bending stress. How- ever, there is a design trade-off here in that the smaller L/d becomes, the lower are the...wires of a rope, it is first necessary to determine the radii of curvature of the wires prior to and after bending the rope. The wire - bending stress can... wire bending stress. 4.3. CONTACT STRESSES Contact stresses in a wire rope are one of the most important determinants of its fatigue life and are, by far

  11. Portable multiplicity counter

    DOEpatents

    Newell, Matthew R [Los Alamos, NM; Jones, David Carl [Los Alamos, NM

    2009-09-01

    A portable multiplicity counter has signal input circuitry, processing circuitry and a user/computer interface disposed in a housing. The processing circuitry, which can comprise a microcontroller integrated circuit operably coupled to shift register circuitry implemented in a field programmable gate array, is configured to be operable via the user/computer interface to count input signal pluses receivable at said signal input circuitry and record time correlations thereof in a total counting mode, coincidence counting mode and/or a multiplicity counting mode. The user/computer interface can be for example an LCD display/keypad and/or a USB interface. The counter can include a battery pack for powering the counter and low/high voltage power supplies for biasing external detectors so that the counter can be configured as a hand-held device for counting neutron events.

  12. A position-sensitive X-ray detector for the HEAO-A satellite.

    NASA Technical Reports Server (NTRS)

    Held, D.; Weisskopf, M. C.

    1973-01-01

    A position-sensitive, low-energy proportional counter system is described which will be used on the High-Energy Astronomical Observatory, Mission A, spacecraft. The associated system incorporates the capability to employ pulse-shape discrimination for background rejection and interpolation circuitry to locate the centroid of an X-ray event with an accuracy of approximately one eighth the cathode-wire spacing.

  13. Next Generation Wiring

    NASA Technical Reports Server (NTRS)

    Medelius, Petro; Jolley, Scott; Fitzpatrick, Lilliana; Vinje, Rubiela; Williams, Martha; Clayton, LaNetra; Roberson, Luke; Smith, Trent; Santiago-Maldonado, Edgardo

    2007-01-01

    Wiring is a major operational component on aerospace hardware that accounts for substantial weight and volumetric space. Over time wire insulation can age and fail, often leading to catastrophic events such as system failure or fire. The next generation of wiring must be reliable and sustainable over long periods of time. These features will be achieved by the development of a wire insulation capable of autonomous self-healing that mitigates failure before it reaches a catastrophic level. In order to develop a self-healing insulation material, three steps must occur. First, methods of bonding similar materials must be developed that are capable of being initiated autonomously. This process will lead to the development of a manual repair system for polyimide wire insulation. Second, ways to initiate these bonding methods that lead to materials that are similar to the primary insulation must be developed. Finally, steps one and two must be integrated to produce a material that has no residues from the process that degrades the insulating properties of the final repaired insulation. The self-healing technology, teamed with the ability to identify and locate damage, will greatly improve reliability and safety of electrical wiring of critical systems. This paper will address these topics, discuss the results of preliminary testing, and remaining development issues related to self-healing wire insulation.

  14. International space station wire program

    NASA Technical Reports Server (NTRS)

    May, Todd

    1995-01-01

    Hardware provider wire systems and current wire insulation issues for the International Space Station (ISS) program are discussed in this viewgraph presentation. Wire insulation issues include silicone wire contamination, Tefzel cold temperature flexibility, and Russian polyimide wire insulation. ISS is a complex program with hardware developed and managed by many countries and hundreds of contractors. Most of the obvious wire insulation issues are known by contractors and have been precluded by proper selection.

  15. Guaranteeing Spoof-Resilient Multi-Robot Networks

    DTIC Science & Technology

    2015-05-12

    particularly challenging attack on this assumption is the so-called “Sybil attack.” In a Sybil attack a malicious agent can generate (or spoof) a large...cybersecurity in general multi-node networks (e.g. a wired LAN), the same is not true for multi- robot networks [14, 28], leaving them largely vulnerable...key passing or cryptographic authen- tication is difficult to maintain due to the highly dynamic and distributed nature of multi-robot teams where

  16. Kirschner wire bending.

    PubMed

    Firoozabadi, Reza; Kramer, Patricia A; Benirschke, Stephen K

    2013-11-01

    Although Kirschner wires are useful implants in many situations, migration of the wire and irritation of the surrounding soft tissues are common complications. Seven steps are described herein, which result in a Kirschner wire that is bent 180° angle, providing a smooth anchor into bone. Use of this technique produces implants that provide stable fixation with few soft tissue complications.

  17. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  18. High speed curved position sensitive detector

    DOEpatents

    Hendricks, Robert W.; Wilson, Jack W.

    1989-01-01

    A high speed curved position sensitive porportional counter detector for use in x-ray diffraction, the detection of 5-20 keV photons and the like. The detector employs a planar anode assembly of a plurality of parallel metallic wires. This anode assembly is supported between two cathode planes, with at least one of these cathode planes having a serpentine resistive path in the form of a meander having legs generally perpendicular to the anode wires. This meander is produced by special microelectronic fabrication techniques whereby the meander "wire" fans outwardly at the cathode ends to produce the curved aspect of the detector, and the legs of the meander are small in cross-section and very closely spaced whereby a spatial resolution of about 50 .mu.m can be achieved. All of the other performance characteristics are about as good or better than conventional position sensitive proportional counter type detectors. Count rates of up to 40,000 counts per second with 0.5 .mu.s shaping time constants are achieved.

  19. Wire harness twisting aid

    NASA Technical Reports Server (NTRS)

    Casey, E. J.; Commadore, C. C.; Ingles, M. E.

    1980-01-01

    Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.

  20. Reliability Criteria for Thick Bonding Wire.

    PubMed

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  1. Reliability Criteria for Thick Bonding Wire

    PubMed Central

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  2. 30 CFR 75.1003-1 - Other requirements for guarding of trolley wires and trolley feeder wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wires and trolley feeder wires. 75.1003-1 Section 75.1003-1 Mineral Resources MINE SAFETY AND HEALTH... Trolley Wires and Trolley Feeder Wires § 75.1003-1 Other requirements for guarding of trolley wires and trolley feeder wires. Adequate precaution shall be taken to insure that equipment being moved along...

  3. 30 CFR 75.1003-1 - Other requirements for guarding of trolley wires and trolley feeder wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wires and trolley feeder wires. 75.1003-1 Section 75.1003-1 Mineral Resources MINE SAFETY AND HEALTH... Trolley Wires and Trolley Feeder Wires § 75.1003-1 Other requirements for guarding of trolley wires and trolley feeder wires. Adequate precaution shall be taken to insure that equipment being moved along...

  4. New Regimes of Implosions of Larger Sized Wire Arrays With and Without Modified Central Plane at 1.5-1.7 MA Zebra

    NASA Astrophysics Data System (ADS)

    Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Stafford, A.; Keim, S. F.; Petkov, E. E.; Lorance, M.; Chuvatin, A. S.; Coverdale, C. A.; Jones, B.

    2013-10-01

    The recent experiments at 1.5-1.7 MA on Zebra at UNR with larger sized planar wires arrays (compared to the wire loads at 1 MA current) have demonstrated higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions. Such multi-planar wire arrays had two outer wire planes from mid-Z material to create a global magnetic field (gmf) and mid-Z plasma flow between them. Also, they included a modified central plane with a few Al wires at the edges to influence gmf and to create Al plasma flow in the perpendicular direction. The stationary shock waves which existed over tens of ns on shadow images and the early x-ray emissions before the PCD peak on time-gated spectra were observed. The most recent experiments with similar loads but without the central wires demonstrated a very different regime of implosion with asymmetrical jets and no precursor formation. This work was supported by NNSA under DOE Cooperative Agreement DE-NA0001984 and in part by DE-FC52-06NA27616. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  5. Thin wire pointing method

    NASA Technical Reports Server (NTRS)

    Green, G.; Mattauch, R. J. (Inventor)

    1983-01-01

    A method is described for forming sharp tips on thin wires, in particular phosphor bronze wires of diameters such as one-thousandth inch used to contact micron size Schottky barrier diodes, which enables close control of tip shape and which avoids the use of highly toxic solutions. The method includes dipping an end of a phosphor bronze wire into a dilute solution of sulfamic acid and applying a current through the wire to electrochemically etch it. The humidity in the room is controlled to a level of less than 50%, and the voltage applied between the wire and another electrode in the solutions is a half wave rectified voltage. The current through the wire is monitored, and the process is stopped when the current falls to a predetermined low level.

  6. Redundant operation of counter modules

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1980-01-01

    A technique for the redundant operation of counter modules is described. Redundant operation is maintained by detecting the zero state of each counter and clearing the other to that state, thus periodically resynchronizing the counters, and obtaining an output from both counters through AC coupled diode-OR gates. Redundant operation of counter flip flops is maintained in a similar manner, and synchronous operation of redundant squarewave clock generators of the feedback type is effected by connecting together the feedback inputs of the squarewave generators through a coupling resistor, and obtaining an output from both generators through AC coupled diode-OR gates.

  7. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  8. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2010-03-30

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  9. Measurements of multi-scalar mixing in a turbulent coaxial jet

    NASA Astrophysics Data System (ADS)

    Hewes, Alais; Mydlarski, Laurent

    2017-11-01

    There are relatively few studies of turbulent multi-scalar mixing, despite the occurrence of this phenomenon in common processes (e.g. chemically reacting flows, oceanic mixing). In the present work, we simultaneously measure the evolution of two passive scalars (temperature and helium concentration) and velocity in a coaxial jet. Such a flow is particularly relevant, as coaxial jets are regularly employed in applications of turbulent non-premixed combustion, which relies on multi-scalar mixing. The coaxial jet used in the current experiment is based on the work of Cai et al. (J. Fluid Mech., 2011), and consists of a vertically oriented central jet of helium and air, surrounded by an annular flow of (unheated) pure air, emanating into a slow co-flow of (pure) heated air. The simultaneous two-scalar and velocity measurements are made using a 3-wire hot-wire anemometry probe. The first two wires of this probe form an interference (or Way-Libby) probe, and measure velocity and concentration. The third wire, a hot-wire operating at a low overheat ratio, measures temperature. The 3-wire probe is used to obtain concurrent velocity, concentration, and temperature statistics to characterize the mixing process by way of single and multivariable/joint statistics. Supported by the Natural Sciences and Engineering Research Council of Canada (Grant 217184).

  10. GASEOUS SCINTILLATION COUNTER

    DOEpatents

    Eggler, C.; Huddleston, C.M.

    1959-04-28

    A gaseous excitation counter for detecting the presence amd measuring the energy of subatomic particles and electromagnetic radiation is described. The counter includes a gas-tight chamber filled with an elemental gas capable of producing ultra-violet excitation quanta when irradiated with subatomic particles and electromagnetic radiation. The gas has less than one in a thousand parts ultra-violet absorbing contamination. When nuclear radiation ps present the ultra-violet light produced by the gas strikes a fluorescent material within the counter, responsive to produce visible excitation quanta, and photo-sensitive counting means detect the visible emission.

  11. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of insulated...

  12. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of insulated...

  13. Easily-wired toggle switch

    NASA Technical Reports Server (NTRS)

    Dean, W. T.; Stringer, E. J.

    1979-01-01

    Crimp-type connectors reduce assembly and disassembly time. With design, no switch preparation is necessary and socket contracts are crimped to wires inserted in module attached to back of toggle switch engaging pins inside module to make electrical connections. Wires are easily removed with standard detachment tool. Design can accommodate wires of any gage and as many terminals can be placed on switch as wire gage and switch dimensions will allow.

  14. Integration of gold-sputtered electrofluidic paper on wire-included analytical platforms for glucose biosensing.

    PubMed

    Núnez-Bajo, Estefanía; Carmen Blanco-López, M; Costa-García, Agustín; Teresa Fernández-Abedul, M

    2017-05-15

    This work describes the fabrication and evaluation of an electroanalytical paper-based platform based on the combination of both, reusable and disposable materials in order to generate simple, versatile and low-cost microfluidic devices. With this aim, a holder containing metal wires that act as reusable reference and counter electrodes has been developed. The gold-sputtered paper electrode is disposable and easily interchangeable, meanwhile the platform that includes reference and counter electrodes can be reused. The detection zone in the paper is delimited by drawing a hydrophobic line with an inexpensive permanent marker. The effect of experimental variables such as adding solutions through the face where the gold was sputtered (upwards) or through the opposite one (downwards) as well as of other working parameters were studied by cyclic and differential pulse voltammetry with potassium ferrocyanide as a common redox probe and indicator species for enzymatic, immune and DNA biosensing. Enzymatic determination of glucose in real food samples prove the feasibility of the developed system for the construction of electrochemical biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Impact tensile testing of wires

    NASA Technical Reports Server (NTRS)

    Dawson, T. H.

    1976-01-01

    The test consists of fixing one end of a wire specimen and allowing a threaded falling weight to strike the other. Assuming the dynamic stress in the wire to be a function only of its strain, energy considerations show for negligible wire inertia effects that the governing dynamic stress-strain law can be determined directly from impact energy vs. wire elongation data. Theoretical calculations are presented which show negligible wire inertia effects for ratios of wire mass to striking mass of the order of .01 or less. The test method is applied to soft copper wires and the dynamic stress-strain curve so determined is found to be about 30 percent higher than the corresponding static curve.

  16. Comparative range of orthodontic wires.

    PubMed

    Ingram, S B; Gipe, D P; Smith, R J

    1986-10-01

    ADA specification No. 32 for determining the range (elastic limit) of orthodontic wires uses the bending of a wire section treated as a cantilever beam. An alternative method for defining the range of orthodontic wires proposed by Waters (1981) is to wrap wire sections around mandrels of varying diameters and measure the deformation imparted after unwrapping. Four brass mandrels with a total of 46 test diameters ranging from 3.5 to 60.0 mm were used in this study. Wire sections 9 cm in length were rolled on the mandrel with a hand lathe. The mandrel cross section required to produce a predetermined amount of deformation (2 mm arc height for a 5 cm chord) was defined as the yield diameter for that particular wire. No individual wire was tested twice so as to avoid introduction of strain history. Test samples of 488 different orthodontic wires supplied by nine commercial distributors were evaluated (a total of 4,747 samples). Stainless steel wires of identical dimensions had a large variation in range, depending on the state of strain hardening and heat treatment. For example, 0.020 inch round wire had yield diameters ranging from 22.8 mm for Australian special plus orange (TP Laboratories) to 42.9 mm for Nubryte gold (G.A.C. International). Chromium cobalt wires had less range than stainless steel before heat treatment, but increased greatly in range after heat treatment. Nitinol (Unitek) had the greatest range of all wires tested (yield diameter of 8.7 mm for 0.016 inch Nitinol). Multistranded stainless steel wires had yield diameters between 9.0 and 14.0 mm.

  17. [Use and potential risks of over-the-counter analgesics].

    PubMed

    Freytag, A; Quinzler, R; Freitag, M; Bickel, H; Fuchs, A; Hansen, H; Hoefels, S; König, H-H; Mergenthal, K; Riedel-Heller, S G; Schön, G; Weyerer, S; Wegscheider, K; Scherer, M; van den Bussche, H; Haefeli, W E; Gensichen, J

    2014-04-01

    We investigated the use of prescription and non-prescription (over-the-counter, OTC) analgesics and the associated risks in elderly patients with multiple morbidities. Pain medication use was evaluated from the baseline data (2008/2009) of the MultiCare cohort enrolling elderly patients with multiple morbidities who were treated by primary care physicians (trial registration: ISRCTN89818205). We considered opioids (N02A), other analgesics, and antipyretics (N02B) as well as nonsteroidal anti-inflammatory drugs (NSAIDs; M01A). OTC use, duplicate prescription, dosages, and interactions were examined for acetylsalicylic acid, diclofenac, (dex)ibuprofen, naproxen, and acetaminophen. Of 3,189 patients with multiple morbidities aged 65-85 years, 1,170 patients reported to have taken at least one prescription or non-prescription analgesic within the last 3 months (36.7 %). Of these, 289 patients (24.7 % of 1,170) took at least one OTC analgesic. Duplicate prescription was observed in 86 cases; 15 of these cases took the analgesics regularly. In two cases, the maximum daily dose of diclofenac was exceeded due to duplicate prescription. In 235 cases, patients concurrently took a drug with a potentially clinically relevant interaction. In 43 cases (18.3 % of 235) an OTC analgesic, usually ibuprofen, was involved. About one third of the elderly patients took analgesics regularly or as needed. Despite the relatively high use of OTC analgesics, the proportions of duplicate prescription, medication overdoses, and adverse interactions due to OTC products was low.

  18. Studies of friction and wear characteristics of various wires for wire-brush skids

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.

    1977-01-01

    The friction and wear characteristics of 22 types and sizes of wires for potential use in wire-brush skids were studied. These characteristics were determined by placing brushes made from candidate wires on a belt sander whose moving belt simulated landing roll-out distance. At the same time, the drag force and wear behavior were monitored. Data were obtained over distances up to 3048 m (10,000 ft) at preselected bearing pressures of 172 to 1034 kPa (25 to 150 psi). In general, the friction coefficient developed by the candidate wires was found to be independent of bearing pressure and ranged between 0.4 and 0.6 under the test conditions of this investigation. The friction coefficient was not degraded when the surface was wetted and appears to be independent of wire diameter except perhaps when wire size is relatively large compared with the surface asperities. Generally, the high friction demonstrated by the soft materials was accompanied by high wear rates; conversely, the hard materials provided greater wear resistance but offered lower friction. For all test wires, the wear was shown to increase with increasing bearing pressure, in general, for the same bearing pressure, wear increased with increasing wire diameter and decreased when the surface was wetted.

  19. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  20. Splicing Wires Permanently With Explosives

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1990-01-01

    Explosive joining process developed to splice wires by enclosing and metallurgically bonding wires within copper sheets. Joints exhibit many desirable characteristics, 100-percent conductivity and strength, no heat-induced annealing, no susceptibility to corrosion in contacts between dissimilar metals, and stability at high temperature. Used to join wires to terminals, as well as to splice wires. Applicable to telecommunications industry, in which millions of small wires spliced annually.

  1. Over-the-counter Acne Treatments

    PubMed Central

    Graber, Emmy M.

    2012-01-01

    Acne is a common dermatological disorder that most frequently affects adolescents; however, individuals may be affected at all ages. Many people who suffer from acne seek treatment from both prescription and over-the-counter acne medications. Due to convenience, lower cost, and difficulty getting an appointment with a dermatologist, the use of over-the-counter acne treatments is on the rise. As the plethora of over-the-counter acne treatment options can be overwhelming, it is important that dermatologists are well-versed on this subject to provide appropriate information about treatment regimens and potential drug interactions and that their patients see them as well-informed. This article reviews the efficacy of various over-the-counter acne treatments based on the current literature. A thorough literature review revealed there are many types of over-the-counter acne treatments and each are designed to target at least one of the pathogenic pathways that are reported to be involved in the development of acne lesions. Many of the key over-the-counter ingredients are incorporated in different formulations to broaden the spectrum and consumer appeal of available products. Unfortunately, many over-the-counter products are not well-supported by clinical studies, with a conspicuous absence of double-blind or investigator-blind, randomized, vehicle-controlled studies. Most studies that do exist on over-the-counter acne products are often funded by the manufacturer. Use of over-the-counter acne treatments is a mainstay in our society and it is important that dermatologists are knowledgeable about the different options, including potential benefits and limitations. Overall, over-the-counter acne therapies can be classified into the following five major groups: cleansers, leave-on products, mechanical treatments, essential oils, and vitamins. PMID:22808307

  2. Fabrication of Pd-Cr wire

    NASA Technical Reports Server (NTRS)

    Diamond, Sidney; Leach, Dennen M.

    1989-01-01

    Fabrication of Pd-13 percent Cr alloy wires is described. Melting, casting, swaging and annealing processes are discussed. Drawing to reach two diameters (0.003 inch and 0.00176 inch) of wire is described. Representative micrographs of the Pd-Cr alloy at selected stages during wire fabrication are included. The resistance of the wire was somewhat lower, by about 15 to 20 percent, than comparable wire of other alloys used for strain gages.

  3. 46 CFR 111.60-11 - Wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD... Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be component insulated. (c) Wire, other than in switchboards, must meet the requirements in sections 24.6.7 and...

  4. 46 CFR 111.60-11 - Wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD... Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be component insulated. (c) Wire, other than in switchboards, must meet the requirements in sections 24.6.7 and...

  5. Fast scintillation counter system and performance

    NASA Technical Reports Server (NTRS)

    Sasaki, H.; Nishioka, A.; Ohmori, N.; Kusumose, M.; Nakatsuka, T.; Horiki, T.; Hatano, Y.

    1985-01-01

    An experimental study of the fast scintillation counter (FS) system to observe a shower disk structure at Mt. Norikura is described, especially the system performance and a pulse wave-form by a single charge particles. The photomultiplier tube (PT) pulse appears at the leading edge of the main pulse. To remove this PT-pulse from the main pulse, the frame of the scintillator vessel was changed. The fast triggering system was made to decrease the dead time which came from the use of the function of the self triggering of the storage oscilloscope (OSC). To provide a new field on the multi-parameter study of the cosmic ray showers, the system response of the FS system also improved as a result of many considerations.

  6. Countering Threat Networks

    DTIC Science & Technology

    2016-12-21

    PLANNING TO COUNTER THREAT NETWORKS  Joint Intelligence Preparation of the Operational Environment and Threat Networks...Army Expeditionary Forensic Facility in Afghanistan ........ E-9 E-4 Exploitation Support to Intelligence Fusion and Decision Making ......... E-10...Approach The groundwork for successful countering threat networks activities starts with information and intelligence to develop an understanding

  7. Weld Wire Investigation Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, M.A.

    1999-03-22

    After GTA welding reservoir A production/process prove-in assemblies, X-ray examination detected a lack of sidewall fusion. After examining several possible causes, it was determined that the weld wire filler metal was responsible, particularly the wire cleaning process. The final conclusion was that the filler wire must be abrasively cleaned in a particular manner to perform as required. The abrasive process was incorporated into the wire material specification, ensuring consistency for all reservoir GTA welding at AlliedSignal Federal Manufacturing and Technologies (FM and T).

  8. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. [Statutory Provisions] Trailing cables for mobile equipment shall...

  9. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. [Statutory Provisions] Trailing cables for mobile equipment shall...

  10. Superconducting wire manufactured

    NASA Astrophysics Data System (ADS)

    Fu, Yuexian; Sun, Yue; Xu, Shiming; Peng, Ying

    1985-10-01

    The MF Nb/Cu Extrusion Tube Method was used to manufacture 3 kg of stable practical MF Nb2Sn composite superconducting wire containing pure Cu(RRR approx. 200)/Ta. The draw state composite wire diameter was 0.56 mm, it contained 11,448 x 2.6 micron Nb core, and the twist distance was 1.5 cm. The composite wire cross-section was pure Cu/Ta/11,448 Nb core/Cu/ 91Sn-Cu; containing 22.8 v. % pure Cu, 13.3 v. % Ta; within the Ta layer to prevent Sn diffusion. The wire was sheathed in nonalkaline glass fiber as an insulating layer. A section of wire weighing 160 g was cut off and coiled it into a small solenoid. After reaction diffusion processing at 675 C/30 and curing by vacuum dipping in paraffin, it was measured in a Nb-Ti backfield of 7.2 T intensity, a current of 129 A was passed through the Nb3Sn solenoid and produced a strength of 2.5 T, the overall magnetic field intensity of the composite magnet reached 9.7 T. At this time, the wire full current density J sub c.w. = 5.2 x 10 to the 4th power A/sq cm; the effective current density J sub c (Nb + Sn - Cu) = 8.2 x 10 to the 4th power A/sq cm.

  11. X-ray Power Increase from Symmetrized Wire-Array z-Pinch Implosions on Saturn.*

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Allshouse, G. O.; Marder, B. M.; Nash, T. J.; Mock, R. C.; Douglas, M. R.; Spielman, R. B.; Seaman, J. F.; McGurn, J. S.; Jobe, D.; Gilliland, T. L.; Vargas, M.; Struve, K. W.; Stygar, W. A.; Hammer, J. H.; Degroot, J. S.; Eddleman, J. L.; Peterson, D. L.; Whitney, K. G.; Thornhill, J. W.; Pulsifer, P. E.; Apruzese, J. P.; Mosher, D.; Maron, Y.

    1996-11-01

    A systematic experimental study of annular aluminum wire z-pinches on the Saturn accelerator at Sandia National Laboratories shows that, for the first time, many of the measured spatial characteristics and x-ray powers can be correlated to 1D and 2D, radiation-magneto-hydrodynamic code (RMHC) simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual wire plasmas to that of a continuous plasma shell when the circumferential gap between wires in the array is reduced below 1.4 +1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4±0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma-shell regime, x-ray power has been more than tripled over that generated in the wire-plasma regime. In the full paper, measured characteristics in the plasma-shell regime are compared with 2D, 1- and 20-mm axial length simulations of the implosion using a multi-photon-group Lagrangian RMHC^1 and a three-temperature Eulerian RMHC,^2 respectively. ^1J.H. Hammer, et al., Phys. Plasmas 3, 2063 (1996). ^2D.L. Peterson, et al., Phys. Plasmas 3, 368 (1996). Work supported by U.S. DOE Contract No. DE-AC04-94AL85000.

  12. Radial dependence of lineal energy distribution of 290-MeV/u carbon and 500-MeV/u iron ion beams using a wall-less tissue-equivalent proportional counter.

    PubMed

    Tsuda, Shuichi; Sato, Tatsuhiko; Watanabe, Ritsuko; Takada, Masashi

    2015-01-01

    Using a wall-less tissue-equivalent proportional counter for a 0.72-μm site in tissue, we measured the radial dependence of the lineal energy distribution, yf(y), of 290-MeV/u carbon ions and 500-MeV/u iron ion beams. The measured yf(y) distributions and the dose-mean of y, [Formula: see text], were compared with calculations performed with the track structure simulation code TRACION and the microdosimetric function of the Particle and Heavy Ion Transport code System (PHITS). The values of the measured [Formula: see text] were consistent with calculated results within an error of 2%, but differences in the shape of yf(y) were observed for iron ion irradiation. This result indicates that further improvement of the calculation model for yf(y) distribution in PHITS is needed for the analytical function that describes energy deposition by delta rays, particularly for primary ions having linear energy transfer in excess of a few hundred keV μm(-1). © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  13. Braided Multi-Electrode Probes (BMEPs) for Neural Interfaces

    NASA Astrophysics Data System (ADS)

    Kim, Tae Gyo

    Although clinical use of invasive neural interfaces is very limited, due to safety and reliability concerns, the potential benefits of their use in brain machine interfaces (BMIs) seem promising and so they have been widely used in the research field. Microelectrodes as invasive neural interfaces are the core tool to record neural activities and their failure is a critical issue for BMI systems. Possible sources of this failure are neural tissue motions and their interactions with stiff electrode arrays or probes fixed to the skull. To overcome these tissue motion problems, we have developed novel braided multi-electrode probes (BMEPs). By interweaving ultra-fine wires into a tubular braid structure, we obtained a highly flexible multi-electrode probe. In this thesis we described BMEP designs and how to fabricate BMEPs, and explore experiments to show the advantages of BMEPs through a mechanical compliance comparison and a chronic immunohistological comparison with single 50microm nichrome wires used as a reference electrode type. Results from the mechanical compliance test showed that the bodies of BMEPs have 4 to 21 times higher compliance than the single 50microm wire and the tethers of BMEPs were 6 to 96 times higher compliance, depending on combinations of the wire size (9.6microm or 12.7microm), the wire numbers (12 or 24), and the length of tether (3, 5 or 10 mm). Results from the immunohistological comparison showed that both BMEPs and 50microm wires anchored to the skull caused stronger tissue reactions than unanchored BMEPs and 50microm wires, and 50microm wires caused stronger tissue reactions than BMEPs. In in-vivo tests with BMEPs, we succeeded in chronic recordings from the spinal cord of freely jumping frogs and in acute recordings from the spinal cord of decerebrate rats during air stepping which was evoked by mesencephalic locomotor region (MLR) stimulation. This technology may provide a stable and reliable neural interface to spinal cord

  14. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding.

    PubMed

    Goffin, N J; Higginson, R L; Tyrer, J R

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  15. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding

    PubMed Central

    Higginson, R. L.; Tyrer, J. R.

    2016-01-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure. PMID:28119550

  16. Hydrogen in Mono-Atomic Gold Wires

    NASA Astrophysics Data System (ADS)

    Barnett, Robert N.; Sherbakov, Andrew G.; Landman, Uzi; Hakkinen, Hannu

    2004-03-01

    Results of ab-initio scalar relativistic density functional calculations of the interaction between a mono-atomic gold wire (suspended between two gold tips) and a hydrogen molecule, at various stages of wire stretching, are presented. The hydrogen molecule does not bind to the wire until the wire is sufficiently stretched, i.e. starting to break, at which time the molecule inserts itself into the wire restoring a fraction of the conductance quantum g. With subsequent compression of the wire the axis of the molecule gradually tips away from the wire axis until it becomes "quasi-dissociated" with the H-H axis perpendicular to the wire. At this point the conductance almost vanishes, while for the bare wire the conductance at this tip-to-tip separation is close to 1g. These results, and the frequency of various vibrational modes of the hydrogen molecule, are compared with recent experimental and theoretical work involving platinum wires.

  17. 1 mil gold bond wire study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, themore » gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.« less

  18. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Treesearch

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  19. Sign-And-Magnitude Up/Down Counter

    NASA Technical Reports Server (NTRS)

    Cole, Steven W.

    1991-01-01

    Magnitude-and-sign counter includes conventional up/down counter for magnitude part and special additional circuitry for sign part. Negative numbers indicated more directly. Counter implemented by programming erasable programmable logic device (EPLD) or programmable logic array (PLA). Used in place of conventional up/down counter to provide sign and magnitude values directly to other circuits.

  20. Influence of bolt tightening torque, wire size, and component reuse on wire fixation in circular external fixation.

    PubMed

    Wosar, Marc A; Marcellin-Little, Denis J; Roe, Simon C

    2002-01-01

    To evaluate the effects of bolt torque, wire size, and component reuse on the ability to maintain wire tension in 3 external skeletal fixation systems. Biomechanical study. Yield strength in tension of 1.0-, 1.2-, 1.5-, and 1.6-mm-diameter wires, and yield strength in torque of Hofmann Small Bone Fixation (SBF) cannulated and slotted bolts and IMEX regular and miniature bolts were determined on a testing machine. The minimum bolt tightening torque needed to prevent wire slippage at clinically recommended wire tensions was determined. Components were tested 10 times, and loads at slippage were recorded. The IMEX system required a mean of 8 Nm of bolt tightening torque to maintain 900 N (1.6-mm wires). The SBF system required a mean of 3 Nm bolt torque to maintain 300 N (1.0-mm wires) and 5 Nm to maintain 600 N (1.2-mm wires). The SBF cannulated bolt required 9 Nm of torque to maintain 900 N (1.5-mm wires). The SBF slotted bolts could only maintain 800 N before yield. The IMEX miniature system required a mean bolt torque of 1.1 Nm to maintain 300 N. The cannulated and slotted bolts from both manufacturers failed to maintain 70% of initial wire tension after 7 and 4 uses, respectively. The IMEX systems and the SBF system using 1.0- and 1.2-mm wires could maintain clinically recommended wire tension safely. Only the IMEX system could maintain clinically recommended wire tension safely using 1.5- or 1.6-mm wires. The SBF system using 1.0- and 1.2-mm wires and the IMEX system using all wire sizes can maintain clinically relevant wire tension. The SBF system using 1.5-mm wires could not. Cannulated and slotted bolts should not be used more than 6 and 3 times, respectively. Nuts should not be reused. Copyright 2002 by The American College of Veterinary Surgeons

  1. A Kirschner wire as a transverse-axis guide to improve acetabular cup positioning.

    PubMed

    Ishidou, Y; Hirotsu, M; Setoguchi, T; Nagano, S; Kakoi, H; Yokouchi, M; Yamamoto, T; Komiya, S

    2016-04-01

    To compare cup-positioning accuracy in total hip arthroplasty (THA) with or without use of a Kirschner wire as a transverse-axis guide for pelvic alignment. Records of 18 men and 73 women (mean age, 60 years) who underwent primary THA with (n=49) or without (n=42) use of a Kirschner wire as a transverse-axis guide for pelvic alignment were reviewed. A 2.4-mm Kirschner wire as a transversea-xis guide was inserted to the anterior superior iliac spine and was parallel to a line linking the left and right anterior superior iliac spine. The safe zone for cup positioning was defined as 30º to 50° abduction and 10º to 30º anteversion. Of the 5 operative surgeons, 2 were classified as experienced (total surgical volume >300) and 3 as inexperienced (total surgical volume of <50). The proportion of patients with the cup in the safe zone was compared in patients with or without use of the transverse-axis guide and in experienced and inexperienced surgeons. For inexperienced surgeons, the use of the transverse-axis guide significantly improved the proportion of patients with the cup in the safe zone from 90% to 100% for abduction, from 50% to 82.4% for anteversion, and from 40% to 82.4% for both. Patients with the cup inside or outside the safe zone were comparable in terms of body height, weight, BMI, subcutaneous fat thickness, incision length, and acetabular cup size. The use of the transverse-axis guide improved the accuracy of cup positioning by inexperienced surgeons.

  2. 49 CFR 234.231 - Fouling wires.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fouling wires. 234.231 Section 234.231..., Inspection, and Testing Maintenance Standards § 234.231 Fouling wires. Each set of fouling wires in a highway... single duplex wire with single plug acting as fouling wires is prohibited. Existing installations having...

  3. 49 CFR 234.231 - Fouling wires.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fouling wires. 234.231 Section 234.231..., Inspection, and Testing Maintenance Standards § 234.231 Fouling wires. Each set of fouling wires in a highway... single duplex wire with single plug acting as fouling wires is prohibited. Existing installations having...

  4. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ning, E-mail: ding-ning@iapcm.ac.cn; Zhang, Yang, E-mail: ding-ning@iapcm.ac.cn; Xiao, Delong, E-mail: ding-ning@iapcm.ac.cn

    2014-12-15

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosionmore » phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of

  5. Apollo experience report: Electrical wiring subsystem

    NASA Technical Reports Server (NTRS)

    White, L. D.

    1975-01-01

    The general requirements of the electrical wiring subsystems and the problem areas and solutions that occurred during the major part of the Apollo Program are detailed in this report. The concepts and definitions of specific requirements for electrical wiring; wire-connecting devices; and wire-harness fabrication, checkout, and installation techniques are discussed. The design and development of electrical wiring and wire-connecting devices are described. Mission performance is discussed, and conclusions and recommendations for future programs are presented.

  6. Forming Refractory Insulation On Copper Wire

    NASA Technical Reports Server (NTRS)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  7. Manually Operated Welding Wire Feeder

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor)

    2001-01-01

    A manual welding wire feeder apparatus comprising a bendable elongate metal frame with a feed roller mounted at the center thereof for rotation about an axis transverse to the longitudinal axis of the frame. The frame ends are turned up as tabs and each provided with openings in alignment with each other and the mid-width center of the roller surface. The tab openings are sized to accommodate welding wire and each extends to a side edge of the tab, both opening on the same side of the frame, whereby welding wire can be side-loaded onto the frame. On the side of the frame, opposite the roller a lock ring handle is attached tangentially and is rotatable about the attachment point and an axis perpendicular to the frame. The device is grasped in the hand normally used to hold the wire. A finger is placed through the loop ring and the frame positioned across the palm and lower fingers. The thumb is positioned atop the wire so it can be moved from the back of the frame across the roller, and towards the front. In doing so, the wire is advanced at a steady rate in axial alignment with the tab openings and roller. To accommodate different wire diameters the frame is bendable about its center in the plane of the frame axis and wire so as to keep the wire in sufficient tension against the roller and to keep the wire fixed when the frame is tilted and thumb pressure released.

  8. Electrode carrying wire for GTAW welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)

    1990-01-01

    A welding torch for gas tungsten arc welding apparatus has a hollow tungsten electrode including a ceramic liner and forms the filler metal wire guide. The wire is fed through the tungsten electrode thereby reducing the size of the torch to eliminate clearance problems which exist with external wire guides. Since the wire is preheated from the tungsten more wire may be fed into the weld puddle, and the wire will not oxidize because it is always within the shielding gas.

  9. Internal wire guide for GTAW welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)

    1989-01-01

    A welding torch for gas tungsten arc welding apparatus has a filler metal wire guide positioned within the torch, and within the shielding gas nozzle. The wire guide is adjacent to the tungsten electrode and has a ceramic liner through which the wire is fed. This reduces the size of the torch and eliminates the outside clearance problems that exit with external wire guides. Additionally, since the wire is always within the shielding gas, oxidizing of the wire is eliminated.

  10. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with signal apparatus. 234.239 Section 234.239 Transportation Other Regulations Relating to... Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or... of the apparatus. This requirement applies to each wire at each terminal in all housings including...

  11. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with signal apparatus. 234.239 Section 234.239 Transportation Other Regulations Relating to... Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or... of the apparatus. This requirement applies to each wire at each terminal in all housings including...

  12. Cavitation during wire brushing

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zou, Jun; Ji, Chen

    2016-11-01

    In our daily life, brush is often used to scrub the surface of objects, for example, teeth, pots, shoes, pool, etc. And cleaning rust and stripping paint are accomplished using wire brush. Wire brushes also can be used to clean the teeth for large animals, such as horses, crocodiles. By observing brushing process in water, we capture the cavitation phenomenon on the track of moving brush wire. It shows that the cavitation also can affect the surface. In order to take clear and entire pictures of cavity, a simplified model of one stainless steel wire brushing a boss is adopted in our experiment. A transparent organic tank filled with deionized water is used as a view box. And a high speed video camera is used to record the sequences. In experiment, ambient pressure is atmospheric pressure and deionized water temperature is kept at home temperature. An obvious beautiful flabellate cavity zone appears behind the moving steel wire. The fluctuation of pressure near cavity is recorded by a hydrophone. More movies and pictures are used to show the behaviors of cavitation bubble following a restoring wire. Beautiful tracking cavitation bubble cluster is captured and recorded to show.

  13. Over-the-Counter Medicines

    MedlinePlus

    Over-the-counter (OTC) medicines are drugs you can buy without a prescription. Some OTC medicines relieve aches, pains and itches. Some prevent or cure ... the Food and Drug Administration decides whether a medicine is safe enough to sell over-the-counter. ...

  14. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation.

    PubMed

    Kim, Ju-Won; Park, Seunghee

    2018-01-02

    In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.

  15. A Thermal Analysis of a Hot-Wire Probe for Icing Applications

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Rigby, David L.; Venkataraman, Krishna

    2014-01-01

    This paper presents a steady-state thermal model of a hot-wire instrument applicable to atmospheric measurement of water content in clouds. In this application, the power required to maintain the wire at a given temperature is used to deduce the water content of the cloud. The model considers electrical resistive heating, axial conduction, convection to the flow, radiation to the surroundings, as well as energy loss due to the heating, melting, and evaporation of impinging liquid and or ice. All of these parameters can be varied axially along the wire. The model further introduces a parameter called the evaporation potential which locally gauges the maximum fraction of incoming water that evaporates. The primary outputs of the model are the steady-state power required to maintain a spatially-average constant temperature as well as the variation of that temperature and other parameters along the wire. The model is used to understand the sensitivity of the hot-wire performance to various flow and boundary conditions including a detailed comparison of dry air and wet (i.e. cloud-on) conditions. The steady-state power values are compared to experimental results from a Science Engineering Associates (SEA) Multi-Element probe, a commonly used water-content measurement instrument. The model results show good agreement with experiment for both dry and cloud-on conditions with liquid water content. For ice, the experimental measurements under read the actual water content due to incomplete evaporation and splashing. Model results, which account for incomplete evaporation, are still higher than experimental results where the discrepancy is attributed to splashing mass-loss which is not accounted in the model.

  16. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  17. [Separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire in the treatment of displaced inferior pole fractures of the patella].

    PubMed

    Zhang, J; Jiang, X Y; Huang, X W

    2016-06-18

    To investigate the clinical efficacy and outcomes of two separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire in the treatment of displaced inferior pole fractures of the patella. From January 2013 to January 2015, 15 consecutive patients (mean age 54.5 years) with inferior pole fractures of the patella were retrospectively included in this study. All the patients underwent open reduction and internal fixation by separate vertical wiring combined with tension band and Kirschner-wire plus cerclage wire through longitudinal incision, 4.5 d (range: 3.1-5.9 d) after initial injury. A safety check for early knee range of motion was performed before wound closure. The complications including infection, nonunion, loss of fixation and any wire breakage or irritation from implant were recorded. Anteroposterior and lateral views of the knee joint obtained during the follow-up were used to assess bony union based on the time when the fracture line disappeared. At the time of the final outpatient follow up, functional evaluation of the knee joint was conducted by Bostman system. The follow-up time was 13.1 months (range: 12-19 months) after surgery on average, immediate motion without immobilization in all the cases was allowed and there was no case of reduction loss of the fracture and wire breakage. There was no case of irritation from the implant. At the final follow-up, the average range of motion (ROM) arc was 126.7° (range: 115°-140°), the average ROM lag versus contralateral healthy leg was 10.3° (range: 0°-35°). The mean Bostman score at the last follow-up was 28.9 (range: 27-30), and graded excellent in most cases. Two separate vertical wiring is an easy and effective method to reduce the displaced inferior pole fracture of patella. Augmentation of separate vertical wiring with tension band and Kirschner-wire plus cerclage wire in these patients provides enough strength to protected the early exercise of the knee joint and

  18. A method for building low loss multi-layer wiring for superconducting microwave devices

    NASA Astrophysics Data System (ADS)

    Dunsworth, A.; Barends, R.; Chen, Yu; Chen, Zijun; Chiaro, B.; Fowler, A.; Foxen, B.; Jeffrey, E.; Kelly, J.; Klimov, P. V.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Neven, H.; Martinis, John M.; Megrant, A.

    2018-02-01

    Complex integrated circuits require multiple wiring layers. In complementary metal-oxide-semiconductor processing, these layers are robustly separated by amorphous dielectrics. These dielectrics would dominate energy loss in superconducting integrated circuits. Here, we describe a procedure that capitalizes on the structural benefits of inter-layer dielectrics during fabrication and mitigates the added loss. We use a deposited inter-layer dielectric throughout fabrication and then etch it away post-fabrication. This technique is compatible with foundry level processing and can be generalized to make many different forms of low-loss wiring. We use this technique to create freestanding aluminum vacuum gap crossovers (airbridges). We characterize the added capacitive loss of these airbridges by connecting ground planes over microwave frequency λ/4 coplanar waveguide resonators and measuring resonator loss. We measure a low power resonator loss of ˜3.9 × 10-8 per bridge, which is 100 times lower than that of dielectric supported bridges. We further characterize these airbridges as crossovers, control line jumpers, and as part of a coupling network in gmon and fluxmon qubits. We measure qubit characteristic lifetimes (T1s) in excess of 30 μs in gmon devices.

  19. Frequency response in short thermocouple wires

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Meeks, E. L.; Ma, J.; Fralick, G. C.

    1992-01-01

    Theoretical expressions are derived for the steady state frequency response of a thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for a nonuniform wire with unequal material properties and wire diameters across the junction. The amplitude ratio at low frequency omega approaches 0 agrees with the results of Scadron and Warshawsky (1952) for a steady state temperature distribution. Moreover, the frequency response for a nonuniform wire in the limit of infinite length l approaches infinity is shown to reduce to a simple expression that is analogous to the classic first order solution for a thermocouple wire with uniform properties. Theoretical expressions are also derived for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire and a two material wire with unequal material properties across the junction. For the case of a one material supported wire, an exact solution is derived which compares favorably with an approximate expression that only matches temperatures at the support junction. Moreover, for the case of a two material supported wire, an analytical expression is derived that closely correlates numerical results. Experimental measurements are made for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire (type K) and a two material wire (type T) with unequal material properties across the junction. The data for the amplitude ratio and phase angle are correlated to within 10 pct. with the theoretical predictions of Forney and Fralick (1991). This is accomplished by choosing a natural frequency omega sub n for the wire data to correlate the first order response at large gas temperature frequencies. It is found that a large bead size, however, will increase the amplitude ratio at

  20. Counter-transference and counter-experience in the treatment of violence prone youth.

    PubMed

    King, C H

    1976-01-01

    The constant confrontation inherent in therapeutic intervention with violence prone children, some of whome have committed homicide, is explored. Problems unique to work with these youths are discussed in terms of counter-transference issues for clinicians and counter-experience of teachers and child care workers. Suggestions for training and supervision are offered.

  1. Self-Catalyzed CdTe Wires.

    PubMed

    Baines, Tom; Papageorgiou, Giorgos; Hutter, Oliver S; Bowen, Leon; Durose, Ken; Major, Jonathan D

    2018-04-25

    CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111) oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.

  2. Orbiter Kapton wire operational requirements and experience

    NASA Technical Reports Server (NTRS)

    Peterson, R. V.

    1994-01-01

    The agenda of this presentation includes the Orbiter wire selection requirements, the Orbiter wire usage, fabrication and test requirements, typical wiring installations, Kapton wire experience, NASA Kapton wire testing, summary, and backup data.

  3. Moving Large Wiring-Harness Boards

    NASA Technical Reports Server (NTRS)

    Shepherd, Samuel D.; Gurman, Isaac

    1990-01-01

    Carrier for wiring-harness fabrication boards enables lone operator to move board easily and safely. Holds harness while operator fabricating, while being stored, and being transported to equipment frame for mounting. When positioned for assembly of wiring harness, board and carrier give operator easy and convenient access to wires and cables, when positioned for transfer of wiring harness to or from storage area, carrier holds board securely while moved by one person.

  4. Wire EDM for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  5. Worklife expectancy in a cohort of Danish employees aged 55-65 years - comparing a multi-state Cox proportional hazard approach with conventional multi-state life tables.

    PubMed

    Pedersen, Jacob; Bjorner, Jakob Bue

    2017-11-15

    Work life expectancy (WLE) expresses the expected time a person will remain in the labor market until he or she retires. This paper compares a life table approach to estimating WLE to an approach based on multi-state proportional hazards models. The two methods are used to estimate WLE in Danish members and non-members of an early retirement pensioning (ERP) scheme according to levels of health. In 2008, data on self-rated health (SRH) was collected from 5212 employees 55-65 years of age. Data on previous and subsequent long-term sickness absence, unemployment, returning to work, and disability pension was collected from national registers. WLE was estimated from multi-state life tables and through multi-state models. Results from the multi-state model approach agreed with the life table approach but provided narrower confidence intervals for small groups. The shortest WLE was seen for employees with poor SRH and ERP membership while the longest WLE was seen for those with good SRH and no ERP membership. Employees aged 55-56 years with poor SRH but no ERP membership had shorter WLE than employees with good SRH and ERP membership. Relative WLE reversed for the two groups after age 57. At age 55, employees with poor SRH could be expected to spend approximately 12 months on long-term sick leave and 9-10 months unemployed before they retired - regardless of ERP membership. ERP members with poor SRH could be expected to spend 4.6 years working, while non-members could be expected to spend 7.1 years working. WLE estimated through multi-state models provided an effective way to summarize complex data on labor market affiliation. WLE differed noticeably between members and non-members of the ERP scheme. It has been hypothesized that while ERP membership would prompt some employees to retire earlier than they would have done otherwise, this effect would be partly offset by reduced time spent on long-term sick leave or unemployment. Our data showed no indication of

  6. High strength, wire-reinforced electroformed structures

    NASA Technical Reports Server (NTRS)

    Kazaroff, J. M.; Duscha, R. A.; Mccandless, L. C.

    1974-01-01

    Using half-round reinforcing wires, electrodeposited matrix metal readily fills spaces between wires in intimate contact with wires and without voids. Procedure combines advantages of electroforming with high-strength of commonly available wire to produce non-welded shell structures for high pressure uses.

  7. Spring control of wire harness loops

    NASA Technical Reports Server (NTRS)

    Curcio, P. J.

    1979-01-01

    Negator spring control guides wire harness between movable and fixed structure. It prevents electrical wire harness loop from jamming or being severed as wire moves in response to changes in position of aircraft rudder. Spring-loaded coiled cable controls wire loop regardless of rudder movement.

  8. Performance and field tests of a handheld Compton camera using 3-D position-sensitive scintillators coupled to multi-pixel photon counter arrays

    NASA Astrophysics Data System (ADS)

    Kishimoto, A.; Kataoka, J.; Nishiyama, T.; Fujita, T.; Takeuchi, K.; Okochi, H.; Ogata, H.; Kuroshima, H.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Adachi, S.; Uchiyama, T.; Suzuki, H.

    2014-11-01

    After the nuclear disaster in Fukushima, radiation decontamination has become particularly urgent. To help identify radiation hotspots and ensure effective decontamination operation, we have developed a novel Compton camera based on Ce-doped Gd3Al2Ga3O12 scintillators and multi-pixel photon counter (MPPC) arrays. Even though its sensitivity is several times better than that of other cameras being tested in Fukushima, we introduce a depth-of-interaction (DOI) method to further improve the angular resolution. For gamma rays, the DOI information, in addition to 2-D position, is obtained by measuring the pulse-height ratio of the MPPC arrays coupled to ends of the scintillator. We present the detailed performance and results of various field tests conducted in Fukushima with the prototype 2-D and DOI Compton cameras. Moreover, we demonstrate stereo measurement of gamma rays that enables measurement of not only direction but also approximate distance to radioactive hotspots.

  9. SpaceWire Data Handling Demonstration System

    NASA Astrophysics Data System (ADS)

    Mills, S.; Parkes, S. M.; O'Gribin, N.

    2007-08-01

    The SpaceWire standard was published in 2003 with the aim of providing a standard for onboard communications, defining the physical and data link layers of an interconnection, in order to improve reusability, reliability and to reduce the cost of mission development. The many benefits which it provides mean that it has already been used in a number of missions, both in Europe and throughout the world. Recent work by the SpaceWire community has included the development of higher level protocols for SpaceWire, such as the Remote Memory Access Protocol (RMAP) which can be used for many purposes, including the configuration of SpaceWire devices. Although SpaceWire has become very popular, the various ways in which it can be used are still being discovered, as are the most efficient ways to use it. At the same time, some in the space industry are not even aware of SpaceWire's existence. This paper describes the SpaceWire Data Handling Demonstration System that has been developed by the University of Dundee. This system simulates an onboard data handling network based on SpaceWire. It uses RMAP for all communication, and so demonstrates how SpaceWire and standardised higher level protocols can be used onboard a spacecraft. The system is not only a good advert for those who are unfamiliar with the benefits of SpaceWire, it is also a useful tool for those using SpaceWire to test ideas.

  10. Selected developments in laser wire stripping. [cutting insulation from aerospace-type wires and cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The operation of mechanical and thermal strippers and the early development of laser wire strippers are reviewed. NASA sponsored development of laser wire stripping for space shuttle includes bench-type strippers as well as an advanced portable hand-held stripper which incorporates a miniaturized carbon dioxide laser and a rotating optics unit with a gas-jet assist and debris exhaust. Drives and controls girdle the wire and slit the remaining slug without manual assistance. This unit can strip wire sizes 26 through 12 gage. A larger-capacity hand-held unit for wire sizes through 1/0 gage was built using a neodynium-doped yttrium aluminum garnet (Nd:YAG) laser. The hand-held units have a flexible umbilical cable to an accompanying cart that carries the power supply, gas supply, cooling unit, and the controls.

  11. Investigation of factors affecting the heater wire method of calibrating fine wire thermocouples

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.

    1972-01-01

    An analytical investigation was made of a transient method of calibrating fine wire thermocouples. The system consisted of a 10 mil diameter standard thermocouple (Pt, Pt-13% Rh) and an 0.8 mil diameter chromel-alumel thermocouple attached to a 20 mil diameter electrically heated platinum wire. The calibration procedure consisted of electrically heating the wire to approximately 2500 F within about a seven-second period in an environment approximating atmospheric conditions at 120,000 feet. Rapid periodic readout of the standard and fine wire thermocouple signals permitted a comparison of the two temperature indications. An analysis was performed which indicated that the temperature distortion at the heater wire produced by the thermocouple junctions appears to be of negligible magnitude. Consequently, the calibration technique appears to be basically sound, although several practical changes which appear desirable are presented and discussed. Additional investigation is warranted to evaluate radiation effects and transient response characteristics.

  12. Transport of high intensity laser-generated hot electrons in cone coupled wire targets

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2008-04-01

    In this talk, we present results from a series of experiments where cone-wire targets were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Experiments were performed on the petawatt laser at the Rutherford Appleton Laboratory. A 500J, 1ps laser (I ˜ 4 x 10^20 W/cm-2) was focused by an f/3 off-axis parabolic mirror into hollow aluminum cones joined at their tip to Cu wires of diameters from 10 to 40 μm. The three main diagnostics fielded were a copper Kalpha Bragg crystal imager, a single hit CCD camera spectrometer and a Highly Oriented Pyrolytic Graphite (HOPG) spectrometer. The resulting data were cross-calibrated to obtain the absolute Kalpha yield. Comparison of the axially diminishing absolute Cu Kα intensity with modeling shows that the penetration of the hot electrons is consistent with one dimensional ohmic potential limited transport (1/e length ˜ 100 μm). The laser coupling efficiency to electron energy within the wire is shown to be proportional to the cross sectional area of the wire, reaching 15% for 40 μm wires. We find that the hot electron temperature within the wire was <=750 keV, significantly lower than that predicted by the ponderomotive scaling. A comparison of the experimental results with 2D hybrid PIC simulations using e-PLAS code will be presented and relevance to Fast Ignition will be discussed at the meeting. *In collaboration with J.A. King, M.H. Key, K.U. Akli, R.R. Freeman, J. Green, S. P. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, T. Ma, A.J. MacKinnon, A. MacPhee, R. Mason, P.A. Norreys, P.K Patel, T. Phillips, R. Stephens, W. Theobald, R.P.J. Town, M. Wei, L. Van Woerkom, B. Zhang.

  13. Towards plant wires.

    PubMed

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Twin-Axial Wire Antenna

    DTIC Science & Technology

    2015-08-06

    12 and 14 can be of differing gauges and can be either stranded or solid. In a prototype, both conductors were made from #22 solid copper wire ...08-2015 Publication Twin-Axial Wire Antenna David A. Tonn Naval Under Warfare Center Division, Newport 1176 Howell St., Code 00L, Bldg 102T...Approved for Public Release Distribution is unlimited Attorney Docket No. 300030 1 of 10 TWIN-AXIAL WIRE ANTENNA STATEMENT OF GOVERNMENT INTEREST

  15. Counter-Learning under Oppression

    ERIC Educational Resources Information Center

    Kucukaydin, Ilhan

    2010-01-01

    This qualitative study utilized the method of narrative analysis to explore the counter-learning process of an oppressed Kurdish woman from Turkey. Critical constructivism was utilized to analyze counter-learning; Frankfurt School-based Marcusian critical theory was used to analyze the sociopolitical context and its impact on the oppressed. Key…

  16. Wire Composition: Its Effect on Metal Disintegration and Particle Formation in Twin-Wire Arc-Spraying Process

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Abdulgader, M.

    2013-03-01

    The wire tips in twin-wire arc-spraying (TWAS) are heated in three different zones. A high-speed camera was used to observe the melting behavior, metal breakup, and particle formation under different operating conditions. In zone (I), the wire tips are melted (liquidus metal) and directly atomized in the form of smaller droplets. Their size is a function of the specific properties of the molten metal and the exerting aerodynamic forces. Zone (II) is directly beneath zone (I) and the origin of the extruded metal sheets at the wire tips. The extruded metal sheets in the case of cored wires are shorter than those observed while using solid wires. In this study, the effects of adjustable parameters and powder filling on melting behavior, particle formation, and process instability were revealed, and a comparison between solid and cored wires was made. The findings can improve the accuracy of the TWAS process modeling.

  17. 29 CFR 1919.79 - Wire rope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Wire rope. 1919.79 Section 1919.79 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.79 Wire rope. (a) Wire rope and replacement wire rope shall be of the same size, same or better grade, and same construction...

  18. 29 CFR 1919.79 - Wire rope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Wire rope. 1919.79 Section 1919.79 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.79 Wire rope. (a) Wire rope and replacement wire rope shall be of the same size, same or better grade, and same construction...

  19. NASA wiring for space applications program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman

    1995-01-01

    An overview of the NASA Wiring for Space Applications Program and its relationship to NASA's space technology enterprise is given in viewgraph format. The mission of the space technology enterprise is to pioneer, with industry, the development and use of space technology to secure national economic competitiveness, promote industrial growth, and to support space missions. The objectives of the NASA Wiring for Space Applications Program is to improve the safety, performance, and reliability of wiring systems for space applications and to develop improved wiring technologies for NASA flight programs and commercial applications. Wiring system failures in space and commercial applications have shown the need for arc track resistant wiring constructions. A matrix of tests performed versus wiring constructions is presented. Preliminary data indicate the performance of the Tensolite and Filotex hybrid constructions are the best of the various candidates.

  20. Analysis of the effects of atomic mass, jet velocity, and radiative cooling on the dimensionless parameters of counter-propagating, weakly collisional plasma flows

    NASA Astrophysics Data System (ADS)

    Collins, Gilbert; Valenzuela, Julio; Beg, Farhat

    2016-10-01

    We have studied the collision of counter-propagating plasma flows using opposing conical wire arrays driven by the 200kA, 150ns rise-time `GenASIS' driver. These plasma flows produced weakly collisional, well-defined bow-shock structures. Varying initial parameters such as the opening angle of the array and the atomic mass of the wires allowed us to modify quantities such as the density contrast between jets, intra-jet mean free path (λmfp, scales with v, atomic mass A, and ionization state Zi-4) , Reynolds number (Re, scales with AZ), and the Peclet number (Pe, scales with Z). We calculate these dimensionless quantities using schlieren imagery, interferometry, and emission data, and determine whether they meet the scaling criteria necessary for the comparison to and subsequent study of astrophysical plasmas. This work was partially supported by the Department of Energy Grant Number DE-SC0014493.

  1. Welding wire pressure sensor assembly

    NASA Technical Reports Server (NTRS)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  2. Building a multi-cathode-gas-filled scintillator detector for fission fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahgoub, M., E-mail: mmahgoub@jazanu.edu.sa; Physics department, Technical University of Munich, D-85748 Garching

    2016-06-10

    Radiation cannot be detected directly by human senses, indeed detecting and identifying the fission products or decay yield with high accuracy is a great challenge for experimental physicist. In this work we are building a Multi-Cathode-Gas-filled Scintillator MCGS detector. The detector consists of two parts. First: anode-wire proportional chamber and cathode strip foil, which measure the energy loss of the particles in the gas, due to the ionization, and identifies the position of the products on the detector plane depending on their energy with the presence of a magnetic field. Second: a 7 mm thick scintillator attached to a photomultipliermore » tube in the back end of the detector. This part measures the rest energy of the particles. A data acquisition system records the events and the particles infonnation. The yields are identified from the energy loss to rest energy ratio.« less

  3. 30 CFR 77.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators. ...

  4. 30 CFR 77.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators. ...

  5. Divergent discourse between protests and counter-protests: #BlackLivesMatter and #AllLivesMatter.

    PubMed

    Gallagher, Ryan J; Reagan, Andrew J; Danforth, Christopher M; Dodds, Peter Sheridan

    2018-01-01

    Since the shooting of Black teenager Michael Brown by White police officer Darren Wilson in Ferguson, Missouri, the protest hashtag #BlackLivesMatter has amplified critiques of extrajudicial killings of Black Americans. In response to #BlackLivesMatter, other Twitter users have adopted #AllLivesMatter, a counter-protest hashtag whose content argues that equal attention should be given to all lives regardless of race. Through a multi-level analysis of over 860,000 tweets, we study how these protests and counter-protests diverge by quantifying aspects of their discourse. We find that #AllLivesMatter facilitates opposition between #BlackLivesMatter and hashtags such as #PoliceLivesMatter and #BlueLivesMatter in such a way that historically echoes the tension between Black protesters and law enforcement. In addition, we show that a significant portion of #AllLivesMatter use stems from hijacking by #BlackLivesMatter advocates. Beyond simply injecting #AllLivesMatter with #BlackLivesMatter content, these hijackers use the hashtag to directly confront the counter-protest notion of "All lives matter." Our findings suggest that Black Lives Matter movement was able to grow, exhibit diverse conversations, and avoid derailment on social media by making discussion of counter-protest opinions a central topic of #AllLivesMatter, rather than the movement itself.

  6. Divergent discourse between protests and counter-protests: #BlackLivesMatter and #AllLivesMatter

    PubMed Central

    Reagan, Andrew J.; Danforth, Christopher M.; Dodds, Peter Sheridan

    2018-01-01

    Since the shooting of Black teenager Michael Brown by White police officer Darren Wilson in Ferguson, Missouri, the protest hashtag #BlackLivesMatter has amplified critiques of extrajudicial killings of Black Americans. In response to #BlackLivesMatter, other Twitter users have adopted #AllLivesMatter, a counter-protest hashtag whose content argues that equal attention should be given to all lives regardless of race. Through a multi-level analysis of over 860,000 tweets, we study how these protests and counter-protests diverge by quantifying aspects of their discourse. We find that #AllLivesMatter facilitates opposition between #BlackLivesMatter and hashtags such as #PoliceLivesMatter and #BlueLivesMatter in such a way that historically echoes the tension between Black protesters and law enforcement. In addition, we show that a significant portion of #AllLivesMatter use stems from hijacking by #BlackLivesMatter advocates. Beyond simply injecting #AllLivesMatter with #BlackLivesMatter content, these hijackers use the hashtag to directly confront the counter-protest notion of “All lives matter.” Our findings suggest that Black Lives Matter movement was able to grow, exhibit diverse conversations, and avoid derailment on social media by making discussion of counter-protest opinions a central topic of #AllLivesMatter, rather than the movement itself. PMID:29668754

  7. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery.

    PubMed

    Oh, You Na; Ha, Keong Jun; Kim, Joon Bum; Jung, Sung-Ho; Choo, Suk Jung; Chung, Cheol Hyun; Lee, Jae Won

    2015-08-01

    Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA) was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578), major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99), minor wound complications (3.6% vs. 2.0%, p=0.279), or mediastinitis (0.8% vs. 1.0%, p=1.00). Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068). The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  8. 29 CFR 1926.1413 - Wire rope-inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Apparent deficiencies in this category are: (A) Visible broken wires, as follows: (1) In running wire ropes: Six randomly distributed broken wires in one rope lay or three broken wires in one strand in one rope... around the rope. (2) In rotation resistant ropes: Two randomly distributed broken wires in six rope...

  9. 29 CFR 1926.1413 - Wire rope-inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Apparent deficiencies in this category are: (A) Visible broken wires, as follows: (1) In running wire ropes: Six randomly distributed broken wires in one rope lay or three broken wires in one strand in one rope... around the rope. (2) In rotation resistant ropes: Two randomly distributed broken wires in six rope...

  10. 29 CFR 1926.1413 - Wire rope-inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Apparent deficiencies in this category are: (A) Visible broken wires, as follows: (1) In running wire ropes: Six randomly distributed broken wires in one rope lay or three broken wires in one strand in one rope... around the rope. (2) In rotation resistant ropes: Two randomly distributed broken wires in six rope...

  11. PROCESSING OF HIGH-PERFORMANCE Nb{sub 3}Sn WIRES THROUGH A NEW DIFFUSION REACTION USING Sn BASED ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachikawa, K.; Sasaki, H.; Yamaguchi, M.

    Tightly consolidated Sn-Ta and Sn-B based alloys have been prepared by the reaction among constituent metal powders at 750-775 deg. C. Sn-Ta and Sn-B based alloys exhibit quite similar microstructures. A small amount of Ti addition seems to improve the bonding between Ta or B particles and Sn matrix. Nb{sub 3}Sn wires have been fabricated by the Jelly Roll (JR) and Multi-rod (MR) process using Sn based alloy sheet and rod, respectively. Thick Nb{sub 3}Sn layers with nearly stoichiometric A15 composition are synthesized through a new diffusion mechanism between Nb and Sn based alloy. B{sub c2}(4.2 K)'s of 26.9 Tmore » (mid) and 26.5 T (mid) have been obtained in the JR and MR processed wires, respectively, using Sn-Ta based alloy. These wires exhibit enough non-Cu J{sub c} to be used above 20 T and 4.2 K. T{sub c} of JR wires using Sn-B based sheet is 18.14 K (offset) which is slightly higher than that of wires using Sn-Ta based sheet.« less

  12. Plasma arc torch with coaxial wire feed

    DOEpatents

    Hooper, Frederick M

    2002-01-01

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  13. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation.

    PubMed

    Chen, Qing-yu; Cheng, Shao-wen; Wang, Wei; Lin, Zhong-qin; Zhang, Wei; Kou, Dong-quan; Shen, Yue; Ying, Xiao-zhou; Cheng, Xiao-jie; Lv, Chuan-zhu; Peng, Lei

    2011-02-01

    To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years). The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood's rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages.

  14. Effect of time and pH on physical-chemical properties of orthodontic brackets and wires.

    PubMed

    Dos Santos, Aretha Aliny Ramos; Pithon, Matheus Melo; Carlo, Fabíola Galbiatti Carvalho; Carlo, Hugo Lemes; de Lima, Bruno Alessandro Silva Guedes; Dos Passos, Tibério Andrade; Lacerda-Santos, Rogério

    2015-03-01

    To test the hypothesis that treatment time, debris/biofilm, and oral pH have an influence on the physical-chemical properties of orthodontic brackets and arch wires. One hundred twenty metal brackets were evaluated. They were divided into four groups (n  =  30) according to treatment time: group C (control) and groups T12, T24, and T36 (brackets recovered after 12, 24, and 36 months of treatment, respectively). Rectangular stainless-steel arch wires that remained in the oral cavity for 12 to 24 months were also analyzed. Dimensional stability, surface morphology, composition of brackets, resistance to sliding of the bracket-wire set, surface roughness of wires, and oral pH were analyzed. One-way analysis of variance, followed by a Tukey multiple comparisons test, was used for statistical analysis (P < .05). Carbon and oxygen were shown to be elements that increased expressively and in direct proportion to time, and there was a progressive increase in the coefficient of friction and roughness of wires as a function of time of clinical use after 36 months. Oral pH showed a significant difference between group T36 and its control (P  =  .014). The hypothesis was partially accepted: treatment time and biofilm and debris accumulation in bracket slots were shown to have more influence on the degradation process and frictional force of these devices than did oral pH.

  15. Wire rope tension control of hoisting systems using a robust nonlinear adaptive backstepping control scheme.

    PubMed

    Zhu, Zhen-Cai; Li, Xiang; Shen, Gang; Zhu, Wei-Dong

    2018-01-01

    This paper concerns wire rope tension control of a double-rope winding hoisting system (DRWHS), which consists of a hoisting system employed to realize a transportation function and an electro-hydraulic servo system utilized to adjust wire rope tensions. A dynamic model of the DRWHS is developed in which parameter uncertainties and external disturbances are considered. A comparison between simulation results using the dynamic model and experimental results using a double-rope winding hoisting experimental system is given in order to demonstrate accuracy of the dynamic model. In order to improve the wire rope tension coordination control performance of the DRWHS, a robust nonlinear adaptive backstepping controller (RNABC) combined with a nonlinear disturbance observer (NDO) is proposed. Main features of the proposed combined controller are: (1) using the RNABC to adjust wire rope tensions with consideration of parameter uncertainties, whose parameters are designed online by adaptive laws derived from Lyapunov stability theory to guarantee the control performance and stability of the closed-loop system; and (2) introducing the NDO to deal with uncertain external disturbances. In order to demonstrate feasibility and effectiveness of the proposed controller, experimental studies have been conducted on the DRWHS controlled by an xPC rapid prototyping system. Experimental results verify that the proposed controller exhibits excellent performance on wire rope tension coordination control compared with a conventional proportional-integral (PI) controller and adaptive backstepping controller. Copyright © 2017 ISA. All rights reserved.

  16. Counter-rotating accretion discs

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Romanova, M. M.; Koldoba, A. V.

    2015-01-01

    Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud on to the surface of an existing corotating disc or from the counter-rotating gas moving radially inwards to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc centre. We discuss high-resolution axisymmetric hydrodynamic simulations of viscous counter-rotating discs for the cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic α-viscosity including all terms in the viscous stress tensor. For the vertically separated components, a shear layer forms between them and the middle part of this layer free-falls to the disc centre. The accretion rates are increased by factors of ˜102-104 over that for a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dependent on the viscosity and the mass fraction of the counter-rotating gas. In the case of radially separated components where the inner disc corotates and the outer disc rotates in the opposite direction, a gap between the two components opens and closes quasi-periodically. The accretion rates are ≳25 times larger than those for a disc rotating in one direction with the same viscosity.

  17. Hot wire production of single-wall and multi-wall carbon nanotubes

    DOEpatents

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  18. Electromagnetic scattering by a straight thin wire

    NASA Technical Reports Server (NTRS)

    Shamansky, Harry T.; Dominek, Allen K.; Peters, Leon, Jr.

    1989-01-01

    The traveling-wave energy, which multiply diffracts on a straight thin wire, is represented as a sum of terms, each with a distinct physical meaning, that can be individually examined in the time domain. Expressions for each scattering mechanism on a straight thin wire are cast in the form of four basic electromagnetic wave concepts: diffraction, attachment, launch, and reflection. Using the basic mechanisms from P. Ya. Ufimtsev (1962), each of the scattering mechanisms is included into the total scattered field for the straight thin wire. Scattering as a function of angle and frequency is then compared to the moment-method solution. These analytic expressions are then extended to a lossy wire with a simple approximate modification using the propagation velocity on the wire as derived from the Sommerfeld wave on a straight lossy wire. Both the perfectly conducting and lossy wire solutions are compared to moment-method results, and excellent agreement is found. As is common with asymptotic solutions, when the electrical length of wire is smaller than 0.2 lambda the results lose accuracy. The expressions modified to approximate the scattering for the lossy thin wire yield excellent agreement even for lossy wires where the wire radius is on the order of skin depth.

  19. 75 FR 60480 - In the Matter of Certain Bulk Welding Wire Containers and Components Thereof and Welding Wire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... Welding Wire Containers and Components Thereof and Welding Wire; Notice of Commission Determination To... within the United States after importation of certain bulk welding wire containers, components thereof, and welding wire by reason of infringement of certain claims of United States Patent Nos. 6,260,781; 6...

  20. 49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with signal apparatus. 236.76 Section 236.76 Transportation Other Regulations Relating to... wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise so... apparatus. [49 FR 3384, Jan. 26, 1984] Inspections and Tests; All Systems ...

  1. 49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with signal apparatus. 236.76 Section 236.76 Transportation Other Regulations Relating to... wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise so... apparatus. [49 FR 3384, Jan. 26, 1984] Inspections and Tests; All Systems ...

  2. Wire metamaterials: physics and applications.

    PubMed

    Simovski, Constantin R; Belov, Pavel A; Atrashchenko, Alexander V; Kivshar, Yuri S

    2012-08-16

    The physics and applications of a broad class of artificial electromagnetic materials composed of lattices of aligned metal rods embedded in a dielectric matrix are reviewed. Such structures are here termed wire metamaterials. They appear in various settings and can operate from microwaves to THz and optical frequencies. An important group of these metamaterials is a wire medium possessing extreme optical anisotropy. The study of wire metamaterials has a long history, however, most of their important and useful properties have been revealed and understood only recently, especially in the THz and optical frequency ranges where the wire media correspond to the lattices of microwires and nanowires, respectively. Another group of wire metamaterials are arrays and lattices of nanorods of noble metals whose unusual properties are driven by plasmonic resonances. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Modular high speed counter employing edge-triggered code

    DOEpatents

    Vanstraelen, Guy F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a "0" to "1" transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  4. Modular high speed counter employing edge-triggered code

    DOEpatents

    Vanstraelen, G.F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a 0'' to 1'' transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  5. Study on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn-Ca Alloy Wire for Biomaterial Application

    NASA Astrophysics Data System (ADS)

    Zheng, Maobo; Xu, Guangquan; Liu, Debao; Zhao, Yue; Ning, Baoqun; Chen, Minfang

    2018-03-01

    Due to their excellent biocompatibility and biodegradability, magnesium alloy wires have attracted much attention for biomaterial applications including orthopedic K-wires and sutures in wound closure. In this study, Mg-3Zn-0.2Ca alloy wires were prepared by cold drawing combined with proper intermediate annealing process. Microstructures, texture, mechanical properties and corrosion behavior of Mg-3Zn-0.2Ca alloy wire in a simulated body fluid were investigated. The results showed that the secondary phase and average grain size of the Mg-3Zn-0.2Ca alloy were refined in comparison with the as-extruded alloy and a strong (0002)<10-10>//DD basal fiber texture system was formed after multi-pass cold drawing. After the annealing, most of the basal planes were tilted to the drawing direction (DD) by about 35°, presenting the characteristics of random texture, and the texture intensity decreased. The as-annealed wire shows good mechanical properties with the ultimate tensile strength (UTS), yield strength (YS) and elongation of 253 ± 8.5 MPa, 212 ± 11.3 MPa and 9.2 ± 0.9%, respectively. Electrochemical and hydrogen evolution measurements showed that the corrosion resistance of the Mg-3Zn-0.2Ca alloy wire was improved after the annealing. The immersion test indicated that the Mg-3Zn-0.2Ca wire exhibited uniform corrosion behavior during the initial period of immersion, but then exhibited local corrosion behavior.

  6. Waveguide bends from nanometric silica wires

    NASA Astrophysics Data System (ADS)

    Tong, Limin; Lou, Jingyi; Mazur, Eric

    2005-02-01

    We propose to use bent silica wires with nanometric diameters to guide light as optical waveguide bend. We bend silica wires with scanning tunneling microscope probes under an optical microscope, and wire bends with bending radius smaller than 5 μm are obtained. Light from a He-Ne laser is launched into and guided through the wire bends, measured bending loss of a single bend is on the order of 1 dB. Brief introductions to the optical wave guiding and elastic bending properties of silica wires are also provided. Comparing with waveguide bends based on photonic bandgap structures, the waveguide bends from silica nanometric wires show advantages of simple structure, small overall size, easy fabrication and wide useful spectral range, which make them potentially useful in the miniaturization of photonic devices.

  7. Real-time {sup 90}Sr Counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Naomi; Kawai, Hideyuki; Kodama, Satoshi

    2015-07-01

    Radioisotopes have been emitted around Japan due to a nuclear accident at the Fukushima Daiichi nuclear power station in March 2011. A problem is the contaminated water including the atomic nucleus which relatively has a long half- life time and soluble such as {sup 90}Sr, {sup 137}Cs. Internal exposures by {sup 90}Sr are more dangerous than {sup 137}Cs's because Sr has effective half-life time of 18 years and property of accumulation in a born. We have developed real-time {sup 90}Sr counter which is sensitive beta-ray of maximum kinematic energy of 2.28 MeV from {sup 90}Sr and insensitive of beta-ray ofmore » maximum kinematic energy of 1.17 MeV and gamma-ray from {sup 90}Sr by Cherenkov detection. This counter composes of Cerenkov counter, trigger scintillation counter and veto counter. Silica aerogel for Cherenkov counter can obtain refractive index between 1.017 and 1.049 easily. And wavelength shifting fiber (WLSF) is used as a light guide for extending effective area and producing lower cost. A mechanism of the identification of {sup 90}Sr is explained in following. In case of {sup 90}Sr, when the trigger counter reacts on the beta-ray from {sup 90}Sr, aerogel emits the Cherenkov light and WLSF reacts and read the Cherenkov light. On the other hand, in case of {sup 137}Cs, the trigger counter reacts on the beta-ray, aerogel stops the beta- ray and Cherenkov light is not emitted. Therefore, aerogel has a function as a radiator and shielding material. the gamma-ray is not reacted on the lower density detector. Cosmic rays would be also reacted by the veto counter. A prototype counter whose the effective area is 30 cm x 10 cm was obtained (2.0±1.2){sup 3} of mis-identification as {sup 137}Cs/{sup 90}Sr. Detection limit in the surface contamination inspection depends on measurement time and effective area mainly. The sensitivity of wide range, 10{sup -2} - 10{sup 4} Bq/cm{sup 2}, is obtained by adjustment of detection level in circuit of this counter. A lower

  8. Magnet-wire wrapping tool for integrated circuits

    NASA Technical Reports Server (NTRS)

    Takahashi, T. H.

    1972-01-01

    Wire-dispensing tool which resembles mechanical pencil is used to wrap magnet wire around integrated circuit terminals uniformly and securely without damaging insulative coating on wire. Tool is hand-held and easily manipulated to execute wire wrapping movements.

  9. Method and apparatus for laying wire arrays

    DOEpatents

    Horowitz, Seymour M.; Nesbitt, Dale D.

    1986-01-01

    Wire arrays (11) having a continuous wire (12) which is formed into a predetermined pattern and adhered to a backing material or substrate (13) are fabricated by applying adhesive material (16a, 16b) along opposite edge portions (17, 18) of the substrate, positioning a row of winding spools (21) along each of the edge portions and repeatedly extending the wire between and around successive spools at the opposite edge portions. The wound wire is then traveled along each spool toward the substrate and into contact with the adhesive. The spools are then removed and a coating of hardenable material (54) is applied to secure the wound wire to the substrate. Tension in the wire is relieved prior to contact of the wire with the adhesive and a small amount of slack is introduced into the wire before the final coating step. Mechanism (32) is provided for lifting the spools away from the substrate without disturbing the wound wire. The method and apparatus enable manufacture of precisely configured wire arrays without complex or costly equipment and do not require structural alterations in the substrate for the purpose of accommodating to fabrication equipment.

  10. A new life for the wavelength-dispersive X-ray spectrometer (WDS): incorporation of a silicon drift detector into the WDS for improved quantification and X-ray mapping

    NASA Astrophysics Data System (ADS)

    Wuhrer, R.; Moran, K.

    2018-01-01

    The wavelength-dispersive X-ray spectrometer (WDS) has been around for a long time and the design has not changed much since its original development. The electron microprobe operator using WDS has to be meticulous in monitoring items such as gas flow, gas purity, gas pressure, noise levels of baseline and window, gas flow proportional counter (GFPC) voltage levels, count rate suppression, anode wire contamination and other detector parameters. Recent development and improvements of silicon drift detectors (SDD’s) has allowed the incorporation of a SDD as the X-ray detector in place of the proportional counter (PC) and/or gas flow proportional counter (GFPC). This allows minimal mechanical alteration and no loss of movement range. The superiority of a WDS with a SDD, referred to as SD-WDS, is easily seen once in operation. The SD-WDS removes many artefacts including the worse of all high order diffraction, thus allowing more accurate analysis. The incorporation of the SDD has been found to improve the light and mid element range and consequently improving the detection limit for these elements. It is also possible to obtain much more reliable results at high count rates with almost no change in resolution, gain and zero-peak characteristics of the energy spectrum.

  11. RCS of resonant scatterers with attached wires

    NASA Astrophysics Data System (ADS)

    Trueman, C. W.; Mishra, S. R.; Kubina, S. J.; Larose, C. L.

    1993-03-01

    Some aircraft carry wire antennas for HF communication. This paper investigates the effect of such wires on the radar cross section (RCS) at HF frequencies by comparing the RCS of a strip, a cylinder, and a rod with and without an attached wire. The RCS is found for broadside incidence and for end-on incidence of the plane wave for scatterer lengths from 0.4 to 3.8 wavelengths, typical of aircraft size at HF frequencies. It is shown that the RCS of such fuselage-like targets with a wire 'antenna' is quite different from that of the targets without the wire. For broadside incidence, the wire contributes a sharp peak-and-trough to the RCS at the wire's fundamental resonant frequency. For end-on incidence the wire considerably enhances the RCS at frequencies making its length odd multiples of the quarter-wave.

  12. Lingual straight wire method.

    PubMed

    Takemoto, Kyoto; Scuzzo, Giuseppe; Lombardo, L U C A; Takemoto, Y U I

    2009-12-01

    The mushroom arch-wire is mainly used in lingual orthodontic treatment but the complicated wire bending it requires affects both the treatment results and the time spent at the chair. The author proposes a new lingual straight wire method (LSW) in order to facilitate arch coordination and simplify the mechanics. The attention paid to the set-up model and bracket positioning and bonding plus the use of the new LSW method will also improve patient comfort. Copyright 2009 Collège Européen d'Orthodontie. Published by Elsevier Masson SAS.. All rights reserved.

  13. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    NASA Astrophysics Data System (ADS)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  14. Multiple channel programmable coincidence counter

    DOEpatents

    Arnone, Gaetano J.

    1990-01-01

    A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

  15. Non-periodic multi-slit masking for a single counter rotating 2-disc chopper and channeling guides for high resolution and high intensity neutron TOF spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartkowiak, M.; Hofmann, T.; Stüßer, N.

    2017-02-01

    Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the μs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.

  16. 49 CFR 236.838 - Wire, shunt.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wire, shunt. 236.838 Section 236.838 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Wire, shunt. A wire forming part of a shunt circuit. ...

  17. 49 CFR 236.838 - Wire, shunt.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Wire, shunt. 236.838 Section 236.838 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Wire, shunt. A wire forming part of a shunt circuit. ...

  18. Space Shuttle Columbia Aging Wiring Failure Analysis

    NASA Technical Reports Server (NTRS)

    McDaniels, Steven J.

    2005-01-01

    A Space Shuttle Columbia main engine controller 14 AWG wire short circuited during the launch of STS-93. Post-flight examination divulged that the wire had electrically arced against the head of a nearby bolt. More extensive inspection revealed additional damage to the subject wire, and to other wires as well from the mid-body of Columbia. The shorted wire was to have been constructed from nickel-plated copper conductors surrounded by the polyimide insulation Kapton, top-coated with an aromatic polyimide resin. The wires were analyzed via scanning electron microscope (SEM), energy dispersive X-Ray spectroscopy (EDX), and electron spectroscopy for chemical analysis (ESCA); differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed on the polyimide. Exemplar testing under laboratory conditions was performed to replicate the mechanical damage characteristics evident on the failed wires. The exemplar testing included a step test, where, as the name implies, a person stepped on a simulated wire bundle that rested upon a bolt head. Likewise, a shear test that forced a bolt head and a torque tip against a wire was performed to attempt to damage the insulation and conductor. Additionally, a vibration test was performed to determine if a wire bundle would abrade when vibrated against the head of a bolt. Also, an abrasion test was undertaken to determine if the polyimide of the wire could be damaged by rubbing against convolex helical tubing. Finally, an impact test was performed to ascertain if the use of the tubing would protect the wire from the strike of a foreign object.

  19. Shape-Memory Wires Switch Rotary Actuator

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron J.

    1992-01-01

    Thermomechanical rotary actuator based on shape-memory property of alloy composed of equal parts of titanium and nickel. If alloy stretched while below transition temperature, it reverts to original length when heated above transition temperature. Two capstans on same shaft wrapped with shape-memory wires. As one wire heated, it contracts and stretches opposite wire. Wires heated in alternation so they switch shaft between two extreme angular positions; "on" and "off" positions of rotary valve.

  20. 47 CFR 32.2321 - Customer premises wiring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Customer premises wiring. 32.2321 Section 32... Customer premises wiring. (a) This account shall include all amounts transferred from the former Account 232, Station Connections, inside wiring subclass. (b) Embedded Customer Premises Wiring is that...

  1. STRS SpaceWire FPGA Module

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.

    2011-01-01

    An FPGA module leverages the previous work from Goddard Space Flight Center (GSFC) relating to NASA s Space Telecommunications Radio System (STRS) project. The STRS SpaceWire FPGA Module is written in the Verilog Register Transfer Level (RTL) language, and it encapsulates an unmodified GSFC core (which is written in VHDL). The module has the necessary inputs/outputs (I/Os) and parameters to integrate seamlessly with the SPARC I/O FPGA Interface module (also developed for the STRS operating environment, OE). Software running on the SPARC processor can access the configuration and status registers within the SpaceWire module. This allows software to control and monitor the SpaceWire functions, but it is also used to give software direct access to what is transmitted and received through the link. SpaceWire data characters can be sent/received through the software interface, as well as through the dedicated interface on the GSFC core. Similarly, SpaceWire time codes can be sent/received through the software interface or through a dedicated interface on the core. This innovation is designed for plug-and-play integration in the STRS OE. The SpaceWire module simplifies the interfaces to the GSFC core, and synchronizes all I/O to a single clock. An interrupt output (with optional masking) identifies time-sensitive events within the module. Test modes were added to allow internal loopback of the SpaceWire link and internal loopback of the client-side data interface.

  2. Means for accommodating large overstrain in lead wires. [by storing extra length of wire in stretchable loop

    NASA Technical Reports Server (NTRS)

    Rumble, C. V.; Driscoll, K. L. (Inventor)

    1974-01-01

    An electrical wire is reported along whose length loops are formed at intervals and retained in a plastic capsule that allows unfolding of the loop when tension is exerted on the opposite ends of the wire. The capsule is formed by encompassing each loop with a sleeve of heat shrinkable synthetic plastic material which overlaps the loop and heat shrinking the overlapping portions. Thus, a length of electrical wire is formed which stores extra lengths of wire in the quantity needed to match the expected stretching of materials or elements such as ropes, cords and the like of high elongation to which the electrical wire may be attached.

  3. Mountain Plains Learning Experience Guide: Electrical Wiring. Course: Electrical Wiring Rough-In.

    ERIC Educational Resources Information Center

    Arneson, R.; And Others

    One of two individualized courses included in an electrical wiring curriculum, this course covers electrical installations that are generally hidden within the structure. The course is comprised of four units: (1) Outlet and Switch Boxes, (2) Wiring, (3) Service Entrance, and (4) Signal and Low Voltage Systems. Each unit begins with a Unit…

  4. 49 CFR 393.28 - Wiring systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  5. 49 CFR 393.28 - Wiring systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  6. 49 CFR 393.28 - Wiring systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  7. 49 CFR 393.28 - Wiring systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  8. Integrating the Gradient of the Thin Wire Kernel

    NASA Technical Reports Server (NTRS)

    Champagne, Nathan J.; Wilton, Donald R.

    2008-01-01

    A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form

  9. Californium Recovery from Palladium Wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Jon D.

    2014-08-01

    The recovery of 252Cf from palladium- 252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO 3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, whichmore » ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.« less

  10. Failure analysis of explanted sternal wires.

    PubMed

    Shih, Chun-Ming; Su, Yea-Yang; Lin, Shing-Jong; Shih, Chun-Che

    2005-05-01

    To classify and understand the mechanisms of surface damages and fracture mechanisms of sternal wires, explanted stainless steel sternal wires were collected from patients with sternal dehiscence following open-heart surgery. Surface alterations and fractured ends of sternal wires were examined and analyzed. Eighty fractured wires extracted from 25 patients from January 1999 to December 2003, with mean implantation interval of 55+/-149 days (range 5-729 days) after cardiac surgery, were studied by various techniques. The extracted wires were cleaned and the fibrotic tissues were removed. Irregularities and fractured ends were assayed by a scanning electron microscopy. After stereomicroscopy and documentation, the explants were cleaned with 1% sodium hypochlorite to remove the blood and tissues and was followed by cleaned with deionized water and alcohol. The explants were examined by stereomicroscopy, and irregularities on surface and fracture surfaces of sternal wires were assayed by scanning electron microscopy, energy dispersive X-ray analysis (EDAX) and X-ray mapping. The explants with surrounding fibrotic tissue were stained and examined with stereomicroscopy and transmission electronic microscopy. Corrosion pits were found on the surface of explanted sternal wires. EDAX and X-ray mapping examinations revealed diminution of nickel concentration in the severely corroded pits on sternal wires. A feature of transgranular cracking was observed for stress corrosion cracking and striation character for typical corrosion fatigue was also identified. TEM examination of tissue showed the metallic particles in phagolysosomes of macrophages inside the surrounding sternal tissue. The synergic effect of hostile environment and the stress could be the precursors of failures for sternal wires.

  11. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  12. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  13. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  14. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... buildup of condensation. (b) Each cable and wire must— (1) Have stranded copper conductors with sufficient... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than cables, are used in systems operating at a potential of greater than 50 volts, the wire and associated...

  15. 21 CFR 870.1330 - Catheter guide wire.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Catheter guide wire. 870.1330 Section 870.1330...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1330 Catheter guide wire. (a) Identification. A catheter guide wire is a coiled wire that is designed to fit inside a...

  16. 21 CFR 870.1330 - Catheter guide wire.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Catheter guide wire. 870.1330 Section 870.1330...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1330 Catheter guide wire. (a) Identification. A catheter guide wire is a coiled wire that is designed to fit inside a...

  17. A Vibrating Wire System For Quadrupole Fiducialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization stepmore » of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our

  18. Novel Wiring Technologies for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  19. Si Wire-Array Solar Cells

    NASA Astrophysics Data System (ADS)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  20. Mechanical behavior of M-Wire and conventional NiTi wire used to manufacture rotary endodontic instruments.

    PubMed

    Pereira, Erika S J; Gomes, Renata O; Leroy, Agnès M F; Singh, Rupinderpal; Peters, Ove A; Bahia, Maria G A; Buono, Vicente T L

    2013-12-01

    Comparison of physical and mechanical properties of one conventional and a new NiTi wire, which had received an additional thermomechanical treatment. Specimens of both conventional (NiTi) and the new type of wire, called M-Wire (MW), were subjected to tensile and three-point bending tests, Vickers microhardness measurements, and to rotating-bending fatigue tests at a strain-controlled level of 6%. Fracture surfaces were observed by scanning electron microscopy and the non-deformed microstructures by transmission electron microscopy. The thermomechanical treatment applied to produce the M-Wire apparently increased the tensile strength and Vickers microhardness of the material, but its apparent Young modulus was smaller than that of conventionally treated NiTi. The three-point bending tests showed a higher flexibility for MW which also exhibited a significantly higher number of cycles to failure. M-Wire presented mechanical properties that can render endodontic instruments more flexible and fatigue resistant than those made with conventionally processed NiTi wires. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 2

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shane M.; Godley, Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis methods and test data is shown to be very good.

  2. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 1

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shame M.; Godley, Richard Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis, simulation, and test data is shown to be very good.

  3. Getting "Wired" for McLuhan's Cyberculture.

    ERIC Educational Resources Information Center

    McMurdo, George

    1995-01-01

    Examines the introduction of the computing magazine, "Wired", into the United Kingdom's (UK) market. Presents conversations with the founder and editorial staff of the UK edition, and discusses the accessibility of "Wired" via the World Wide Web. Describes 10 articles from United States "Wired" back-issues and…

  4. Connecting to Thermocouples with Fewer Lead Wires

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2003-01-01

    A simple technique has been devised to reduce the number of lead wires needed to connect an array of thermocouples to the instruments (e.g., voltmeters) used to read their output voltages. Because thermocouple wires are usually made of expensive metal alloys, reducing the number of lead wires can effect a considerable reduction in the cost of such an array. Reducing the number of wires also reduces the number of terminals and the amount of space needed to accommodate the wires.

  5. 30 CFR 75.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wire ropes; scope. 75.1430 Section 75.1430... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1430 Wire ropes; scope. (a) Sections 75.1430 through 75.1438 apply to wire ropes in service used to hoist— (1) Persons in...

  6. 30 CFR 75.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Wire ropes; scope. 75.1430 Section 75.1430... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1430 Wire ropes; scope. (a) Sections 75.1430 through 75.1438 apply to wire ropes in service used to hoist— (1) Persons in...

  7. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in the...

  8. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in the...

  9. Reusable Hot-Wire Cable Cutter

    NASA Technical Reports Server (NTRS)

    Pauken, Michael T.; Steinkraus, Joel M.

    2010-01-01

    During the early development stage of balloon deployment systems for missions, nichrome wire cable cutters were often used in place of pyro-actuated cutters. Typically, a nichrome wire is wrapped around a bundle of polymer cables with a low melting point and connected to a relay-actuated electric circuit. The heat from the nichrome reduces the strength of the cable bundle, which quickly breaks under a mechanical load and can thus be used as a release mechanism for a deployment system. However, the use of hand-made heated nichrome wire for cutters is not very reliable. Often, the wrapped nichrome wire does not cut through the cable because it either pulls away from its power source or does not stay in contact with the cable being cut. Because nichrome is not readily soldered to copper wire, unreliable mechanical crimps are often made to connect the nichrome to an electric circuit. A self-contained device that is reusable and reliable was developed to sever cables for device release or deployment. The nichrome wire in this new device is housed within an enclosure to prevent it from being damaged by handling. The electric power leads are internally connected within the unit to the nichrome wire using a screw terminal connection. A bayonet plug, a quick and secure method of connecting the cutter to the power source, is used to connect the cutter to the power leads similar to those used in pyro-cutter devices. A small ceramic tube [0.25-in. wide 0.5-in. long (.6.4-mm wide 13-mm long)] houses a spiraled nichrome wire that is heated when a cable release action is required. The wire is formed into a spiral coil by wrapping it around a mandrel. It is then laid inside the ceramic tube so that it fits closely to the inner surface of the tube. The ceramic tube provides some thermal and electrical insulation so that most of the heat generated by the wire is directed toward the cable bundle in the center of the spiral. The ceramic tube is cemented into an aluminum block, which

  10. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords

    NASA Astrophysics Data System (ADS)

    Kim, Taegyo; Branner, Almut; Gulati, Tanuj; Giszter, Simon F.

    2013-08-01

    Objective. To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress. Approach. We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results. Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions. Significance. Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.

  11. Basic Research Needs for Countering Terrorism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, W.; Michalske, T.; Trewhella, J.

    2002-03-01

    To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism.

  12. Synchronization in counter-rotating oscillators.

    PubMed

    Bhowmick, Sourav K; Ghosh, Dibakar; Dana, Syamal K

    2011-09-01

    An oscillatory system can have opposite senses of rotation, clockwise or anticlockwise. We present a general mathematical description of how to obtain counter-rotating oscillators from the definition of a dynamical system. A type of mixed synchronization emerges in counter-rotating oscillators under diffusive scalar coupling when complete synchronization and antisynchronization coexist in different state variables. We present numerical examples of limit cycle van der Pol oscillator and chaotic Rössler and Lorenz systems. Stability conditions of mixed synchronization are analytically obtained for both Rössler and Lorenz systems. Experimental evidences of counter-rotating limit cycle and chaotic oscillators and mixed synchronization are given in electronic circuits.

  13. GEIGER-MULLER TYPE COUNTER TUBE

    DOEpatents

    Fowler, I.L.; Watt, L.A.K.

    1959-12-15

    A single counter tube capable of responding to a wide range of intensities is described. The counter tube comprises a tubular cathode and an anode extending centrally of the cathode. The spacing between the outer surface of the anode and the inner surface of the cathode is varied along the length of the tube to provide different counting volumes in adjacent portions of the tube. A large counting volume in one portion adjacent to a low-energy absorption window gives adequate sensitivity for measuring lowintensity radiation, while a smaller volume with close electrode spacing is provided in the counter to make possible measurement of intense garnma radiation fields.

  14. Commercial and Industrial Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  15. Anisotropic Thermal Response of Packed Copper Wire

    DOE PAGES

    Wereszczak, Andrew A.; Emily Cousineau, J.; Bennion, Kevin; ...

    2017-04-19

    The apparent thermal conductivity of packed copper wire test specimens was measured parallel and perpendicular to the axis of the wire using laser flash, transient plane source, and transmittance test methods. Approximately 50% wire packing efficiency was produced in the specimens using either 670- or 925-μm-diameter copper wires that both had an insulation coating thickness of 37 μm. The interstices were filled with a conventional varnish material and also contained some remnant porosity. The apparent thermal conductivity perpendicular to the wire axis was about 0.5–1 W/mK, whereas it was over 200 W/mK in the parallel direction. The Kanzaki model andmore » an finite element analysis (FEA) model were found to reasonably predict the apparent thermal conductivity perpendicular to the wires but thermal conductivity percolation from nonideal wire-packing may result in their underestimation of it.« less

  16. CALCIUM ABSORPTION IN MAN: BASED ON LARGE VOLUME LIQUID SCINTILLATION COUNTER STUDIES.

    PubMed

    LUTWAK, L; SHAPIRO, J R

    1964-05-29

    A technique has been developed for the in vivo measurement of absorption of calcium in man after oral administration of 1 to 5 microcuries of calcium-47 and continuous counting of the radiation in the subject's arm with a large volume liquid scintillation counter. The maximum value for the arm counting technique is proportional to the absorption of tracer as measured by direct stool analysis. The rate of uptake by the arm is lower in subjects with either the malabsorption syndrome or hypoparathyroidism. The administration of vitamin D increases both the absorption rate and the maximum amount of calcium absorbed.

  17. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Guy wires. 57.12047 Section 57.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.12047 Guy wires. Guy wires of poles supporting high-voltage transmission lines shall meet the...

  18. Novel Designs of Quantum Reversible Counters

    NASA Astrophysics Data System (ADS)

    Qi, Xuemei; Zhu, Haihong; Chen, Fulong; Zhu, Junru; Zhang, Ziyang

    2016-11-01

    Reversible logic, as an interesting and important issue, has been widely used in designing combinational and sequential circuits for low-power and high-speed computation. Though a significant number of works have been done on reversible combinational logic, the realization of reversible sequential circuit is still at premature stage. Reversible counter is not only an important part of the sequential circuit but also an essential part of the quantum circuit system. In this paper, we designed two kinds of novel reversible counters. In order to construct counter, the innovative reversible T Flip-flop Gate (TFG), T Flip-flop block (T_FF) and JK flip-flop block (JK_FF) are proposed. Based on the above blocks and some existing reversible gates, the 4-bit binary-coded decimal (BCD) counter and controlled Up/Down synchronous counter are designed. With the help of Verilog hardware description language (Verilog HDL), these counters above have been modeled and confirmed. According to the simulation results, our circuits' logic structures are validated. Compared to the existing ones in terms of quantum cost (QC), delay (DL) and garbage outputs (GBO), it can be concluded that our designs perform better than the others. There is no doubt that they can be used as a kind of important storage components to be applied in future low-power computing systems.

  19. Characterization of copper and nichrome wires for safety fuse

    NASA Astrophysics Data System (ADS)

    Murdani, E.

    2016-11-01

    Fuse is an important component of an electrical circuit to limiting the current through the electrical circuit for electrical equipment safety. Safety fuses are made of a conductor such as copper and nichrome wires. The aim of this research was to determine the maximum current that can flow in the conductor wires (copper and nichrome). In the experiment used copper and nichrome wires by varying the length of wires (0.2 cm to 20 cm) and diameter of wires (0.1, 0.2, 0.3, 0.4 and 0.5) mm until maximum current reached that marked by melted or broken wire. From this experiment, it will be obtained the dependences data of maximum current to the length and diameter of wires. All data are plotted and it's known as a standard curve. The standard curve will provide an alternative choice of replacing fuse wire according to the maximum current requirement, including the wire type (copper and nichrome wires) and wire dimensions (length and diameter of wire).

  20. Length-dependent structural stability of linear monatomic Cu wires

    NASA Astrophysics Data System (ADS)

    Singh, Gurvinder; Kumar, Krishan; Singh, Baljinder; Moudgil, R. K.

    2018-05-01

    We present first-principle calculations based on density functional theory for the finite-length monatomic Cu atom linear wires. The structure and its stability with increasing wire length in terms of number of atoms (N) is determined. Interestingly, the bond length is found to exhibit an oscillatory structure (the so-called magic length phenomenon), with a qualitative change in oscillatory behavior as one moves from even N wire to odd N wire. The even N wires follow simple even-odd oscillations whereas odd N wires show a phase change at the half length of the wires. The stability of the wire structure, determined in terms of the wire formation energy, also contains even-odd oscillation as a function of wire length. However, the oscillations in formation energy reverse its phase after the wire length is increased beyond N=12. Our findings are seen to be qualitatively consistent with recent simulations for a similar class finite-length metal atom wires.

  1. 21 CFR 864.5200 - Automated cell counter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated cell counter. 864.5200 Section 864.5200....5200 Automated cell counter. (a) Identification. An automated cell counter is a fully-automated or semi-automated device used to count red blood cells, white blood cells, or blood platelets using a sample of the...

  2. Design and implementation of a hot-wire probe for simultaneous velocity and vorticity vector measurements in boundary layers

    NASA Astrophysics Data System (ADS)

    Zimmerman, S.; Morrill-Winter, C.; Klewicki, J.

    2017-10-01

    A multi-sensor hot-wire probe for simultaneously measuring all three components of velocity and vorticity in boundary layers has been designed, fabricated and implemented in experiments up to large Reynolds numbers. The probe consists of eight hot-wires, compactly arranged in two pairs of orthogonal ×-wire arrays. The ×-wire sub-arrays are symmetrically configured such that the full velocity and vorticity vectors are resolved about a single central location. During its design phase, the capacity of this sensor to accurately measure each component of velocity and vorticity was first evaluated via a synthetic experiment in a set of well-resolved DNS fields. The synthetic experiments clarified probe geometry effects, allowed assessment of various processing schemes, and predicted the effects of finite wire length and wire separation on turbulence statistics. The probe was subsequently fabricated and employed in large Reynolds number experiments in the Flow Physics Facility wind tunnel at the University of New Hampshire. Comparisons of statistics from the actual probe with those from the simulated sensor exhibit very good agreement in trend, but with some differences in magnitude. These comparisons also reveal that the use of gradient information in processing the probe data can significantly improve the accuracy of the spanwise velocity measurement near the wall. To the authors' knowledge, the present are the largest Reynolds number laboratory-based measurements of all three vorticity components in boundary layers.

  3. Counter electrodes in dye-sensitized solar cells.

    PubMed

    Wu, Jihuai; Lan, Zhang; Lin, Jianming; Huang, Miaoliang; Huang, Yunfang; Fan, Leqing; Luo, Genggeng; Lin, Yu; Xie, Yimin; Wei, Yuelin

    2017-10-02

    Dye-sensitized solar cells (DSSCs) are regarded as prospective solar cells for the next generation of photovoltaic technologies and have become research hotspots in the PV field. The counter electrode, as a crucial component of DSSCs, collects electrons from the external circuit and catalyzes the redox reduction in the electrolyte, which has a significant influence on the photovoltaic performance, long-term stability and cost of the devices. Solar cells, dye-sensitized solar cells, as well as the structure, principle, preparation and characterization of counter electrodes are mentioned in the introduction section. The next six sections discuss the counter electrodes based on transparency and flexibility, metals and alloys, carbon materials, conductive polymers, transition metal compounds, and hybrids, respectively. The special features and performance, advantages and disadvantages, preparation, characterization, mechanisms, important events and development histories of various counter electrodes are presented. In the eighth section, the development of counter electrodes is summarized with an outlook. This article panoramically reviews the counter electrodes in DSSCs, which is of great significance for enhancing the development levels of DSSCs and other photoelectrochemical devices.

  4. Counter-responses as organizers in adolescent analysis and therapy.

    PubMed

    Richmond, M Barrie

    2004-01-01

    The author introduces Counter-response as a phenomological term to replace theory-burdened terms like counter-transference, counter-identification, and counter-resistance. He discusses the analyst's use of self (drawing on the comparison with Winnicott's use of the object) in processing the expectable destabilizing counter-reactions that occur in working therapeutically with disturbed adolescents and their parents. Further; he discusses the counter-reaction to the patient's narrative, acting-out, and how re-enactments can serve as an organizer for understanding the patient's inner life when the analyst formulates his/her counter-response. Emphasis is placed on the therapist forming his or her own narrative with the adolescent that takes into account the evoked counter-reaction. For this purpose, the author recommends the use of a combined counter-response and metaphor-orienting perspective to acknowledge and work with the denial, illusions, reversal of perspective, and catastrophic anxieties experienced with these adolescents. The counter-response perspective permits the emergence of the disturbed adolescent's novel narrative; however, since these experiences can be destabilizing or disruptive, the author also recommends the use of a personal metaphor to anticipate the reluctance to examining, processing, and formulating the analyst's dysphoric counter-reaction. With the use of the counter-response, the analyst's therapeutic ideal is to achieve a more optimal balance between using accepted narrative theories and exploring novel enactment experiences. His swimming metaphor stratagem is designed to keep the analyst in these difficult encounters.

  5. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  6. In-Situ Wire Damage Detection System

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Tate, Lanetra; Smith, Trent; Gibson, Tracy; Medelius, Pedro; Jolley, Scott

    2012-01-01

    An In-Situ Wire Damage Detection System (ISWDDS) has been developed that is capable of detecting damage to a wire insulation, or a wire conductor, or to both. The system will allow for realtime, continuous monitoring of wiring health/integrity and reduce the number of false negatives and false positives while being smaller, lighter in weight, and more robust than current systems. The technology allows for improved safety and significant reduction in maintenance hours for aircraft, space vehicles, satellites, and other critical high-performance wiring systems for industries such as energy production and mining. The integrated ISWDDS is comprised of two main components: (1) a wire with an innermost core conductor, an inner insulation film, a conductive layer or inherently conductive polymer (ICP) covering the inner insulation film, an outermost insulation jacket; and (2) smart connectors and electronics capable of producing and detecting electronic signals, and a central processing unit (CPU) for data collection and analysis. The wire is constructed by applying the inner insulation films to the conductor, followed by the outer insulation jacket. The conductive layer or ICP is on the outer surface of the inner insulation film. One or more wires are connected to the CPU using the smart connectors, and up to 64 wires can be monitored in real-time. The ISWDDS uses time domain reflectometry for damage detection. A fast-risetime pulse is injected into either the core conductor or conductive layer and referenced against the other conductor, producing transmission line behavior. If either conductor is damaged, then the signal is reflected. By knowing the speed of propagation of the pulse, and the time it takes to reflect, one can calculate the distance to and location of the damage.

  7. Measuring Inhomogeneities In Thermocouple Wires

    NASA Technical Reports Server (NTRS)

    Burkett, Cecil G., Jr.; West, James W.; Crum, James R.

    1993-01-01

    Spools rotated to pull thermocouple wires through liquid nitrogen, while output voltage of thermocouple recorded on strip chart. Wires exposed to severe temperature gradients, amounting to overall change of 200 degrees C, where they enter and leave liquid nitrogen. If wires homogeneous, net output voltage zero. If inhomogeneity passes through liquid-nitrogen/air interface, resulting deviation of output voltage from zero seen immediately on strip chart. If inhomogeneity greater than allowable, reels stopped temporarily so inhomogeneity tagged before wound onto takeup reel.

  8. High-performance, stretchable, wire-shaped supercapacitors.

    PubMed

    Chen, Tao; Hao, Rui; Peng, Huisheng; Dai, Liming

    2015-01-07

    A general approach toward extremely stretchable and highly conductive electrodes was developed. The method involves wrapping a continuous carbon nanotube (CNT) thin film around pre-stretched elastic wires, from which high-performance, stretchable wire-shaped supercapacitors were fabricated. The supercapacitors were made by twisting two such CNT-wrapped elastic wires, pre-coated with poly(vinyl alcohol)/H3PO4 hydrogel, as the electrolyte and separator. The resultant wire-shaped supercapacitors exhibited an extremely high elasticity of up to 350% strain with a high device capacitance up to 30.7 F g(-1), which is two times that of the state-of-the-art stretchable supercapacitor under only 100% strain. The wire-shaped structure facilitated the integration of multiple supercapacitors into a single wire device to meet specific energy and power needs for various potential applications. These supercapacitors can be repeatedly stretched from 0 to 200% strain for hundreds of cycles with no change in performance, thus outperforming all the reported state-of-the-art stretchable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Compressor surge counter

    DOEpatents

    Castleberry, Kimberly N.

    1983-01-01

    A surge counter for a rotating compressor is provided which detects surging by monitoring the vibration signal from an accelerometer mounted on the shaft bearing of the compressor. The circuit detects a rapid increase in the amplitude envelope of the vibration signal, e.g., 4 dB or greater in less than one second, which is associated with a surge onset and increments a counter. The circuit is rendered non-responsive for a period of about 5 seconds following the detection which corresponds to the duration of the surge condition. This prevents multiple registration of counts during the surge period due to rapid swings in vibration amplitude during the period.

  10. Numerical Simulation of Unsteady Turbulent Flow Induced by Two-Dimensional Elevator Car and Counter Weight System

    NASA Astrophysics Data System (ADS)

    Shi, Li-qun; Liu, Ying-zheng; Jin, Si-yu; Cao, Zhao-min

    2007-12-01

    A two-dimensional model of unsteady turbulent flow induced by high-speed elevator system was established in the present study. The research was focused on the instantaneous variation of the aerodynamic force on the car structure during traversing motion of the counter weight in the hoistway. A dynamic meshing method was employed to treat the multi-body motion system to avoid poor distortion of meshes. A comprehensive understanding of this significant aspect was obtained by varying the horizontal gap (Δ = 0.1m, 0.2m, and 0.3m) between the elevator car and the counter weight, and the moving speed ( U 0 = 2m/s, 6m/s, and 10m/s) of the elevator system. A pulsed intensification of the aerodynamic force on the elevator car and subsequent appearance of large valley with negative aerodynamic force were clearly observed in the numerical results. In parameters studied (Δ = 0.1m, U 0 = 2m/s, 6m/s, 10m/s), the peaked horizontal and vertical forces are respectively 7-11 and 4.3-5.65 times of that when the counter weight is far from the car. These results demonstrated the prominent influence of the traversing counter weight on aerodynamic force on the elevator car, which is of great significance to designers of high-speed elevator system.

  11. [Mechanics analysis of fracture of orthodontic wires].

    PubMed

    Wang, Yeping; Sun, Xiaoye; Zhang, Longqi

    2003-03-01

    Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.

  12. Lunar Module Wiring Design Considerations and Failure Modes

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the considerations for the design of wiring for the Lunar Module. Included are a review of the choice of conductors and insulations, the wire splicing (i.e., crimping, and soldering), the wire connectors, and the fabrication of the wire harnesses. The problems in fabrication include the wires being the wrong length, the damage due to the sharp edges, the requried use of temproary protective covers and inadequate training. The problems in the wire harness installation include damge from sharp eges, work on adjacent harnesses, connector damage, and breaking wires. Engineering suggestions from the Apollo-era in reference to the conductors that are reviewed include: the use of plated conductors, and the use of alloys for stronger wiring. In refernce to insulation, the suggestions from Apollo era include the use of polymer tape-wrap wire insulation due to the light weight, however, other types of modern insulation might be more cost-effective. In reference to wire splices and terminal boards the suggestions from the Apollo Era include the use of crimp splices as superior to solder splices, joining multiple wire to a common point using modular plug-ins might be more reliable, but are heavier than crimp splicing. For connectors, the lessons from the Apollo era indicate that a rear environmental seal that does not require additional potting is preferred, and pins should be crimped or welded to the incoming wires and be removable from the rear of the connector.

  13. Adaptive composites with embedded NiTiCu wires

    NASA Astrophysics Data System (ADS)

    Balta-Neumann, J. Antonio; Michaud, Veronique J.; Parlinska, Magdelena; Gotthardt, Rolf; Manson, Jan-Anders E.

    2001-07-01

    Adaptive composites have been produced by embedding prestrained shape memory alloy (SMA) wires into an epoxy matrix, reinforced with aramid fibers. These materials demonstrate attractive effects such as shape change or a shift in the vibration frequency upon activation. When heated above their transformation temperature, the wires' strain recovery is confined, and recovery stresses are generated. As a result, if the wires are placed along the neutral axis of a composite beam, a shift in resonance vibration frequency can be observed. To optimize the design of such composites, the matrix - SMA wire interfacial shear strength has been analyzed with the pull out testing technique. It is shown that the nature of the wire surface influences the interfacial shear strength, and that satisfactory results are obtained for SMA wires with a thin oxide layer. Composite samples consisting of two different types of pre- strained NiTiCu wires embedded in either pure epoxy matrix or Kevlar-epoxy matrix were produced. The recovery force and vibration response of composites were measured in a clamped-clamped configuration, to assess the effect of wire type and volume fraction. The results are highly reproducible in all cases with a narrow hysteresis loop, which makes NiTiCu wires good candidates for adaptive composites. The recovery forces increase with the volume fraction of the embedded wires, are higher when the wires are embedded in a low CTE matrix and, at a given temperature, are higher when the wire transformation temperature is lower.

  14. Preliminary report on the CTS transient event counter performance through the 1976 spring eclipse season

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Levell, R. R.; Klinect, V. W.

    1976-01-01

    The transient event counter (TEC), senses and counts transients having a voltage rise of greater than five volts in three separate wire harnesses: the attitude control harness, the solar array instrumentation harness and the solar array power harness. The operational characteristics of TEC are defined and the preliminary results obtained through the first 90 days of operation including the spring 1976 eclipse season are presented. The results show that the Communications Technology Satellite was charged to the point where discharges occurred. The discharge induced transients did not cause any anomalous events in spacecraft operation. The data indicate that discharges can occur at any time during the day without preference to any local time quadrant. The number of discharges occurring in the one second sample interval are greater than anticipated. The compilation and review of the data is continuing.

  15. In Situ Electrochemical Deposition of Microscopic Wires

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Myung, Nosang; Vasquez, Richard

    2005-01-01

    A method of fabrication of wires having micron and submicron dimensions is built around electrochemical deposition of the wires in their final positions between electrodes in integrated circuits or other devices in which the wires are to be used. Heretofore, nanowires have been fabricated by a variety of techniques characterized by low degrees of controllability and low throughput rates, and it has been necessary to align and electrically connect the wires in their final positions by use of sophisticated equipment in expensive and tedious post-growth assembly processes. The present method is more economical, offers higher yields, enables control of wire widths, and eliminates the need for post-growth assembly. The wires fabricated by this method could be used as simple electrical conductors or as transducers in sensors. Depending upon electrodeposition conditions and the compositions of the electroplating solutions in specific applications, the wires could be made of metals, alloys, metal oxides, semiconductors, or electrically conductive polymers. In this method, one uses fabrication processes that are standard in the semiconductor industry. These include cleaning, dry etching, low-pressure chemical vapor deposition, lithography, dielectric deposition, electron-beam lithography, and metallization processes as well as the electrochemical deposition process used to form the wires. In a typical case of fabrication of a circuit that includes electrodes between which microscopic wires are to be formed on a silicon substrate, the fabrication processes follow a standard sequence until just before the fabrication of the microscopic wires. Then, by use of a thermal SiO-deposition technique, the electrodes and the substrate surface areas in the gaps between them are covered with SiO. Next, the SiO is electron-beam patterned, then reactive-ion etched to form channels having specified widths (typically about 1 m or less) that define the widths of the wires to be formed. Drops

  16. An Assessment of the Icing Blade and the SEA Multi-Element Sensor for Liquid Water Content Calibration of the NASA GRC Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; Ide, Robert F.; Van Zante, Judith F.

    2016-01-01

    The Icing Research Tunnel at NASA Glenn has recently switched from using the Icing Blade to using the SEA Multi-Element Sensor (also known as the multi-wire) for its calibration of cloud liquid water content. In order to peform this transition, tests were completed to compare the Multi-Element Sensor to the Icing Blade, particularly with respect to liquid water content, airspeed, and drop size. The two instruments were found to compare well for the majority of Appendix C conditions. However, it was discovered that the Icing Blade under-measures when the conditions approach the Ludlam Limit. This paper also describes data processing procedures for the Multi-Element Sensor in the IRT, including collision efficiency corrections, mounting underneath a splitter plate, and correcting for a jump in the compensation wire power. Further data is presented to describe the repeatability of the IRT with the Multi-Element Sensor, health-monitoring checks for the instrument, and a sensing-element configuration comparison. Ultimately these tests showed that in the IRT, the multi-wire is a better instrument for measuring cloud liquid water content than the blade.

  17. A novel data reduction technique for single slanted hot-wire measurements used to study incompressible compressor tip leakage flows

    NASA Astrophysics Data System (ADS)

    Berdanier, Reid A.; Key, Nicole L.

    2016-03-01

    The single slanted hot-wire technique has been used extensively as a method for measuring three velocity components in turbomachinery applications. The cross-flow orientation of probes with respect to the mean flow in rotating machinery results in detrimental prong interference effects when using multi-wire probes. As a result, the single slanted hot-wire technique is often preferred. Typical data reduction techniques solve a set of nonlinear equations determined by curve fits to calibration data. A new method is proposed which utilizes a look-up table method applied to a simulated triple-wire sensor with application to turbomachinery environments having subsonic, incompressible flows. Specific discussion regarding corrections for temperature and density changes present in a multistage compressor application is included, and additional consideration is given to the experimental error which accompanies each data reduction process. Hot-wire data collected from a three-stage research compressor with two rotor tip clearances are used to compare the look-up table technique with the traditional nonlinear equation method. The look-up table approach yields velocity errors of less than 5 % for test conditions deviating by more than 20 °C from calibration conditions (on par with the nonlinear solver method), while requiring less than 10 % of the computational processing time.

  18. Alleviation of mandibular anterior crowding with copper-nickel-titanium vs nickel-titanium wires: a double-blind randomized control trial.

    PubMed

    Pandis, Nikolaos; Polychronopoulou, Argy; Eliades, Theodore

    2009-08-01

    The purpose of this study was to investigate the efficiency of copper-nickel-titanium (CuNiTi) vs nickel-titanium (NiTi) archwires in resolving crowding of the anterior mandibular dentition. Sixty patients were included in this single-center, single-operator, double-blind randomized trial. All patients were bonded with the In Ovation-R self-ligating bracket (GAC, Central Islip, NY) with a 0.022-in slot, and the amount of crowding of the mandibular anterior dentition was assessed by using the irregularity index. The patients were randomly allocated into 2 groups of 30 patients, each receiving a 0.016-in CuNiTi 35 degrees C (Ormco, Glendora, Calif) or a 0.016-in NiTi (ModernArch, Wyomissing, Pa) wire. The type of wire selected for each patient was not disclosed to the provider or the patient. The date that each patient received a wire was recorded, and all patients were followed monthly for a maximum of 6 months. Demographic and clinical characteristics between the 2 wire groups were compared with the t test or the chi-square test and the Fisher exact test. Time to resolve crowding was explored with statistical methods for survival analysis, and alignment rate ratios for wire type and crowding level were calculated with Cox proportional hazards multivariate modeling. The type of wire (CuNiTi vs NiTi) had no significant effect on crowding alleviation (129.4 vs 121.4 days; hazard ratio, 1.3; P >0.05). Severe crowding (>5 on the irregularity index) showed a significantly higher probability of crowding alleviation duration relative to dental arches with a score of <5 (138.5 vs 113.1 days; hazard ratio, 2.2; P=0.02). The difference of the loading pattern of wires in laboratory and clinical conditions might effectively eliminate the laboratory-derived advantage of CuNiTi wires.

  19. 49 CFR 236.723 - Circuit, double wire; line.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, double wire; line. 236.723 Section 236... § 236.723 Circuit, double wire; line. An electric circuit not employing a common return wire; a circuit formed by individual wires throughout. ...

  20. 49 CFR 236.723 - Circuit, double wire; line.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Circuit, double wire; line. 236.723 Section 236... § 236.723 Circuit, double wire; line. An electric circuit not employing a common return wire; a circuit formed by individual wires throughout. ...

  1. The importance of carbon nanotube wire density, structural uniformity, and purity for fabricating homogeneous carbon nanotube-copper wire composites by copper electrodeposition

    NASA Astrophysics Data System (ADS)

    Sundaram, Rajyashree; Yamada, Takeo; Hata, Kenji; Sekiguchi, Atsuko

    2018-04-01

    We present the influence of density, structural regularity, and purity of carbon nanotube wires (CNTWs) used as Cu electrodeposition templates on fabricating homogeneous high-electrical performance CNT-Cu wires lighter than Cu. We show that low-density CNTWs (<0.6 g/cm3 for multiwall nanotube wires) with regular macro- and microstructures and high CNT content (>90 wt %) are essential for making homogeneous CNT-Cu wires. These homogeneous CNT-Cu wires show a continuous Cu matrix with evenly mixed nanotubes of high volume fractions (˜45 vol %) throughout the wire-length. Consequently, the composite wires show densities ˜5.1 g/cm3 (33% lower than Cu) and electrical conductivities ˜6.1 × 104 S/cm (>100 × CNTW conductivity). However, composite wires from templates with higher densities or structural inconsistencies are non-uniform with discontinuous Cu matrices and poor CNT/Cu mixing. These non-uniform CNT-Cu wires show conductivities 2-6 times lower than the homogeneous composite wires.

  2. Requirements for Printed Wiring Boards

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In order to maintain the high standards of the NASA printed wiring programs, this publication: prescribes NASA's requirements for assuring reliable rigid printed wiring boards; describes and incorporates basic considerations necessary to assure reliable rigid printed wiring boards; establishes the supplier's responsibility to train and certify personnel; provides for supplier documentation of the fabrication and inspection procedures to be used for NASA work, including supplier innovations and changes in technology; and provides visual workmanship standards to aid those responsible for determining quality conformance to the established requirements.

  3. Two-year survival analysis of twisted wire fixed retainer versus spiral wire and fiber-reinforced composite retainers: a preliminary explorative single-blind randomized clinical trial.

    PubMed

    Sobouti, Farhad; Rakhshan, Vahid; Saravi, Mahdi Gholamrezaei; Zamanian, Ali; Shariati, Mahsa

    2016-03-01

    Traditional retainers (both metal and fiber-reinforced composite [FRC]) have limitations, and a retainer made from more flexible ligature wires might be advantageous. We aimed to compare an experimental design with two traditional retainers. In this prospective preliminary clinical trial, 150 post-treatment patients were enrolled and randomly divided into three groups of 50 patients each to receive mandibular canine-to-canine retainers made of FRC, flexible spiral wire (FSW), and twisted wire (TW). The patients were monitored monthly. The time at which the first signs of breakage/debonding were detected was recorded. The success rates of the retainers were compared using chi-squared, Kaplan-Meier, and Cox proportional-hazard regression analyses (α = 0.05). In total, 42 patients in the FRC group, 41 in the FSW group, and 45 in the TW group completed the study. The 2-year failure rates were 35.7% in the FRC group, 26.8% in the FSW group, and 17.8% in the TW group. These rates differed insignificantly (chi-squared p = 0.167). According to the Kaplan-Meier analysis, failure occurred at 19.95 months in the FRC group, 21.37 months in the FSW group, and 22.36 months in the TW group. The differences between the survival rates in the three groups were not significant (Cox regression p = 0.146). Although the failure rate of the experimental retainer was two times lower than that of the FRC retainer, the difference was not statistically significant. The experimental TW retainer was successful, and larger studies are warranted to verify these results.

  4. Processing, Structural Characterization and Comparative Studies on Uniaxial Tensile Properties of a New Type of Porous Twisted Wire Material

    PubMed Central

    Wu, Fei; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2015-01-01

    A self-developed rotary multi-cutter device cuts stainless steel wire ropes into segments to fabricate twisted wires. Stainless steel porous twisted wire materials (PTWMs) with a spatial composite intertexture structure are produced by the compaction and subsequent vacuum solid-phase sintering of twisted wires. The stainless steel PTWMs show two types of typical uniaxial tensile failure modes, i.e., a 45° angle fracture mode and an auxetic failure mode (the PTWMs expand along the direction perpendicular to the tension). The effects of the sintering parameters, porosities, wire diameters, and sampling direction on the tensile properties of the PTWMs are carefully investigated. By increasing the sintering temperature from 1130 °C to 1330 °C, the tensile strength of the PTWMs with 70% target porosity increased from 7.7 MPa to 28.6 MPa and the total failure goes down to 50%. When increasing the sintering time from 90 min to 150 min, the tensile strength increases from 12.4 MPa to 19.1 MPa and the total failure elongation drops to 78.6%. The tensile strength of the PTWMs increases from 28.9 MPa to 112.7 MPa with decreasing porosity from 69.5% to 46.0%, and the total failure elongation also increases from 14.8% to 40.7%. The tensile strength and the failure strain of the PTWMs with fine wires are higher than those of the PTWMs with coarse wires under the same porosity. Sampling direction has a small influence on the tensile properties of the PTWMs. PMID:28793526

  5. Processing, Structural Characterization and Comparative Studies on Uniaxial Tensile Properties of a New Type of Porous Twisted Wire Material.

    PubMed

    Wu, Fei; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2015-08-27

    A self-developed rotary multi-cutter device cuts stainless steel wire ropes into segments to fabricate twisted wires. Stainless steel porous twisted wire materials (PTWMs) with a spatial composite intertexture structure are produced by the compaction and subsequent vacuum solid-phase sintering of twisted wires. The stainless steel PTWMs show two types of typical uniaxial tensile failure modes, i.e. , a 45° angle fracture mode and an auxetic failure mode (the PTWMs expand along the direction perpendicular to the tension). The effects of the sintering parameters, porosities, wire diameters, and sampling direction on the tensile properties of the PTWMs are carefully investigated. By increasing the sintering temperature from 1130 °C to 1330 °C, the tensile strength of the PTWMs with 70% target porosity increased from 7.7 MPa to 28.6 MPa and the total failure goes down to 50%. When increasing the sintering time from 90 min to 150 min, the tensile strength increases from 12.4 MPa to 19.1 MPa and the total failure elongation drops to 78.6%. The tensile strength of the PTWMs increases from 28.9 MPa to 112.7 MPa with decreasing porosity from 69.5% to 46.0%, and the total failure elongation also increases from 14.8% to 40.7%. The tensile strength and the failure strain of the PTWMs with fine wires are higher than those of the PTWMs with coarse wires under the same porosity. Sampling direction has a small influence on the tensile properties of the PTWMs.

  6. NEMA wire and cable standards development programs

    NASA Astrophysics Data System (ADS)

    Baird, Robert W.

    1994-01-01

    The National Electrical Manufacturers Association (NEMA) is the nation's largest trade association for manufacturers of electrical equipment. Its member companies produce components, end-use equipment and systems for the generation, transmission, distribution, control and use of electricity. The wire and cable division is presented in 6 sections: building wire and cable, fabricated conductors, flexible cords, high performance wire and cable, magnet wire, and power and control cable. Participating companies are listed.

  7. [A multi-measure analysis of the similarity, attraction, and compromise effects in multi-attribute decision making].

    PubMed

    Tsuzuki, Takashi; Matsui, Hiroshi; Kikuchi, Manabu

    2012-12-01

    In multi-attribute decision making, the similarity, attraction, and compromise effects warrant specific investigation as they cause violations of principles in rational choice. In order to investigate these three effects simultaneously, we assigned 145 undergraduates to three context effect conditions. We requested them to solve the same 20 hypothetical purchase problems, each of which had three alternatives described along two attributes. We measured their choices, confidence ratings, and response times. We found that manipulating the third alternative had significant context effects for choice proportions and confidence ratings in all three conditions. Furthermore, the attraction effect was the most prominent with regard to choice proportions. In the compromise effect condition, although the choice proportion of the third alternative was high, the confidence rating was low and the response time was long. These results indicate that the relationship between choice proportions and confidence ratings requires further theoretical investigation. They also suggest that a combination of experimental and modeling studies is imperative to reveal the mechanisms underlying the context effects in multi-attribute, multi-alternative decision making.

  8. Wiring harnesses documented by punched-card technique

    NASA Technical Reports Server (NTRS)

    Hicks, W. W.; Kloezeman, W. G.

    1970-01-01

    Cards representing a connector are punched, sorted, and then used to printout wiring documentation for that connector. When wiring changes are made, new cards are punched and the wiring documentation is reprinted to reflect the latest configuration.

  9. Optimization of simultaneous tritium–radiocarbon internal gas proportional counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonicalzi, R. M.; Aalseth, C. E.; Day, A. R.

    Specific environmental applications can benefit from dual tritium and radiocarbon measurements in a single compound. Assuming typical environmental levels, it is often the low tritium activity relative to the higher radiocarbon activity that limits the dual measurement. In this paper, we explore the parameter space for a combined tritium and radiocarbon measurement using a methane sample mixed with an argon fill gas in low-background proportional counters of a specific design. We present an optimized methane percentage, detector fill pressure, and analysis energy windows to maximize measurement sensitivity while minimizing count time. The final optimized method uses a 9-atm fill ofmore » P35 (35% methane, 65% argon), and a tritium analysis window from 1.5 to 10.3 keV, which stops short of the tritium beta decay endpoint energy of 18.6 keV. This method optimizes tritium counting efficiency while minimizing radiocarbon beta decay interference.« less

  10. Pre-wired systems prove their worth.

    PubMed

    2012-03-01

    The 'new generation' of modular wiring systems from Apex Wiring Solutions have been specified for two of the world's foremost teaching hospitals - the Royal London and St Bartholomew's Hospital, as part of a pounds sterling 1 billion redevelopment project, to cut electrical installation times, reduce on-site waste, and provide a pre-wired, factory-tested, power and lighting system. HEJ reports.

  11. One hundred angstrom niobium wire

    NASA Technical Reports Server (NTRS)

    Cline, H. E.; Rose, R. M.; Wulff, J.

    1968-01-01

    Composite of fine niobium wires in copper is used to study the size and proximity effects of a superconductor in a normal matrix. The niobium rod was drawn to a 100 angstrom diameter wire on a copper tubing.

  12. Counter-diabatic driving for Dirac dynamics

    NASA Astrophysics Data System (ADS)

    Fan, Qi-Zhen; Cheng, Xiao-Hang; Chen, Xi

    2018-03-01

    In this paper, we investigate the fast quantum control of Dirac equation dynamics by counter-diabatic driving, sharing the concept of shortcut to adiabaticity. We systematically calculate the counter-diabatic terms in different Dirac systems, like graphene and trapped ions. Specially, the fast and robust population inversion processes are achieved in Dirac system, taking into account the quantum simulation with trapped ions. In addition, the population transfer between two bands can be suppressed by counter-diabatic driving in graphene system, which might have potential applications in opt-electric devices.

  13. Three-Wire Thermocouple: Frequency Response in Constant Flow

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Fralick, G. C.

    1995-01-01

    Theory and experimental measurements are compared with a novel three-wire thermocouple. Signals from three wires of unequal diameters are recorded from the thermocouple suspended in constant flow with a periodic temperature fluctuation. It is demonstrated that the reconstructed signal from the three-wire thermocouple requires no compensation for omega less than or equal to 5(omega(sub 1)), where omega(sub 1) is the natural frequency of the smaller wire. The latter result represents a significant improvement compared to previous work with two-wire thermocouples. A correction factor has also been derived to account for wires of arbitrary diameter.

  14. Three-wire Thermocouple: Frequency Response in Constant Flow

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Fralick, G. C.

    1995-01-01

    Theory and experimental measurements are compared with a novel three-wire thermocouple. Signals from three wires of unequal diameters arc recorded from the thermocouple suspended in constant flow with a periodic temperature fluctuation. It is demonstrated that the reconstructed signal from the three-wire thermocouple requires no compensation for omega less than or equal to 5(sub omega1), where omega, is the natural frequency of the smaller wire. The latter result represents a significant improvement compared to previous work with two-wire thermocouples. A correction factor has also been derived to account for wires of arbitrary diameter.

  15. Counter traction makes endoscopic submucosal dissection easier.

    PubMed

    Oyama, Tsuneo

    2012-11-01

    Poor counter traction and poor field of vision make endoscopic submucosal dissection (ESD) difficult. Good counter traction allows dissections to be performed more quickly and safely. Position change, which utilizes gravity, is the simplest method to create a clear field of vision. It is useful especially for esophageal and colon ESD. The second easiest method is clip with line method. Counter traction made by clip with line accomplishes the creation of a clear field of vision and suitable counter traction thereby making ESD more efficient and safe. The author published this method in 2002. The name ESD was not established in those days; the name cutting endoscopic mucosal resection (EMR) or EMR with hook knife was used. The other traction methods such as external grasping forceps, internal traction, double channel scope, and double scopes method are introduced in this paper. A good strategy for creating counter traction makes ESD easier.

  16. Electron transport in stretched monoatomic gold wires.

    PubMed

    Grigoriev, A; Skorodumova, N V; Simak, S I; Wendin, G; Johansson, B; Ahuja, R

    2006-12-08

    The conductance of monoatomic gold wires containing 3-7 gold atoms has been obtained from ab initio calculations. The transmission is found to vary significantly depending on the wire stretching and the number of incorporated atoms. Such oscillations are determined by the electronic structure of the one-dimensional (1D) part of the wire between the contacts. Our results indicate that the conductivity of 1D wires can be suppressed without breaking the contact.

  17. Analysis of Precursor Properties of mixed Al/Alumel Cylindrical Wire Arrays*

    NASA Astrophysics Data System (ADS)

    Stafford, A.; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Osborne, G. C.; Shlyaptseva, V. V.; Keim, S. F.; Coverdale, C. A.; Chuvatin, A. S.

    2012-10-01

    Previous studies of mid-Z (Cu and Ni) cylindrical wire arrays (CWAs) on Zebra have found precursors with high electron temperatures of >300 eV. However, past experiments with Al CWAs did not find the same high temperature precursors. New precursor experiments using mixed Al/Alumel (Ni 95%, Si 2%, and Al 2%) cylindrical wire arrays have been performed to understand how the properties of L-shell Ni precursor will change and whether Al precursor will be observed. Time gated spectra and pinholes are used to determine precursor plasma conditions for comparison with previous Alumel precursor experiments. A full diagnostic set which included more than ten different beam-lines was implemented. Future work in this direction is discussed. [4pt] *This work was supported by NNSA under DOE Cooperative Agreements DE-FC52-06NA27588, and in part by DE-FC52-06NA27586, and DE-FC52-06NA27616. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  18. Method of preparing composite superconducting wire

    DOEpatents

    Verhoeven, John D.; Gibson, Edwin D.; Finnemore, Douglas K.; Ostenson, Jerome E.; Schmidt, Frederick A.; Owen, Charles V.

    1985-08-06

    An improved method of preparing composite multifilament superconducting wire of Nb.sub.3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb.sub.3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

  19. 47 CFR 32.6431 - Aerial wire expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire expense. 32.6431 Section 32.6431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6431 Aerial wire expense. This account shall include expenses associated with aerial wire. ...

  20. 47 CFR 32.6431 - Aerial wire expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire expense. 32.6431 Section 32.6431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Expense Accounts § 32.6431 Aerial wire expense. This account shall include expenses associated with aerial wire. ...

  1. Magnetic properties of permalloy wires in vycor capillaries

    NASA Astrophysics Data System (ADS)

    Lubitz, P.; Ayers, J. D.; Davis, A.

    1991-11-01

    Thin wires of NiFe alloys with compositions near 80% Ni were prepared by melting the alloy in vycor tubes and drawing fibers from the softened glass. The resulting fibers consist of relatively thick-walled vycor capillaries containing permalloy wires filling a few percent of the volume. The wires are continuous over considerable lengths, uniform in circular cross section, nearly free of contact with the walls and can be drawn to have diameters less than 1 μm. Their magnetic properties are generally similar to bulk permalloy, but show a variety of magnetic switching behaviors for fields along the wire axis, depending on composition, wire diameter, and thermal history. As pulled, the wires can show sharp switching, reversible rotation or mixed behavior. This method can produce NiFe alloy wires suitable for use in applications as sensor, memory or inductive elements; other alloys, such as supermalloy and sendust, also can be fabricated as fine wires by this method.

  2. Synthesis of vertical MnO2 wire arrays on hemp-derived carbon for efficient and robust green catalysts

    NASA Astrophysics Data System (ADS)

    Yang, MinHo; Kim, Dong Seok; Sim, Jae-Wook; Jeong, Jae-Min; Kim, Do Hyun; Choi, Jae Hyung; Kim, Jinsoo; Kim, Seung-Soo; Choi, Bong Gill

    2017-06-01

    Three-dimensional (3D) carbon materials derived from waste biomass have been attracted increasing attention in catalysis and materials science because of their great potential of catalyst supports with respect to multi-functionality, unique structures, high surface area, and low cost. Here, we present a facile and efficient way for preparing 3D heterogeneous catalysts based on vertical MnO2 wires deposited on hemp-derived 3D porous carbon. The 3D porous carbon materials are fabricated by carbonization and activation processes using hemp (Cannabis Sttiva L.). These 3D porous carbon materials are employed as catalyst supports for direct deposition of vertical MnO2 wires using a one-step hydrothermal method. The XRD and XPS results reveal the crystalline structure of α-MnO2 wires. The resultant composites are further employed as a catalyst for glycolysis of poly(ethylene terephthalate) (PET) with high conversion yield of 98%, which is expected to be expressly profitable for plastics recycling industry.

  3. SpaceFibre: The Standard and the Multi-Lane Layer

    NASA Astrophysics Data System (ADS)

    Parkes, Steve; McClements, Chris; McLaren, David; Florit, Albert Ferrer; Gonzalez Villafranca, Alberto

    2016-08-01

    SpaceFibre is a new standard for spacecraft on-board data-handling networks, initially designed to deliver multi-Gbit/s data rates for synthetic aperture radar and high-resolution, multi-spectral imaging instruments, The addition of quality of service (QoS) and fault detection, isolation and recovery (FDIR) capabilities to SpaceFibre has resulted in a unified network technology. SpaceFibre provides high bandwidth, low latency, fault isolation and recovery suitable for space applications, and novel QoS that combines priority, bandwidth reservation and scheduling and which provides babbling node protection. SpaceFibre is backwards compatible with the widely used SpaceWire standard at the network level allowing simple interconnection of existing SpaceWire equipment to a SpaceFibre link or network.Developed by STAR-Dundee and the University of Dundee for the European Space Agency (ESA) SpaceFibre is able to operate over fibre-optic and electrical cable. A single lane of SpaceFibre comprises four signals (TX+/- and RX+/-) and supports data rates of 2 Gbits/s (2.5 Gbits/s data signalling rate) with data rates up to 5 Gbits/s already planned.Several lanes can operate together to provide a multi- lane link. Multi-laning increases the data-rate to well over 20 Gbits/s.This paper details the current state of SpaceFibre which is now in the process of formal standardisation by the European Cooperation for Space Standardization (ECSS). The multi-lane layer of SpaceFibre is then described.

  4. Periconceptional Over-the-Counter Nonsteroidal Anti-inflammatory Drug Exposure and Risk for Spontaneous Abortion

    PubMed Central

    Velez Edwards, Digna R.; Aldridge, Tiara; Baird, Donna D.; Funk, Michele Jonsson; Savitz, David A.; Hartmann, Katherine E.

    2012-01-01

    Objective To estimate the association between over-the-counter nonsteroidal anti-inflammatory drug (NSAID) exposure during the early first-trimester and risk for spontaneous abortion (gestation prior to 20 weeks) in a prospective cohort. Methods Women were enrolled in the Right from the Start study (2004–2010). Exposure data regarding over-the-counter NSAID use from the last menstrual period through the 6th week of pregnancy were obtained from intake and first-trimester interviews. Pregnancy outcomes were self-reported and verified by medical records. Gestational age was determined from last menstrual period. Stage of development prior to loss was determined from study ultrasound. Cox proportional hazards regression models were used to estimate the association between NSAID exposure and pregnancy outcome, taking into account candidate confounders. Results Among 2,780 pregnancies, 367 women (13%) experienced an spontaneous abortion. NSAID exposure was reported by 1,185 (43%) women. NSAID exposure was not associated with spontaneous abortion risk in unadjusted models (hazard ratio [HR] = 1.01, 95% confidence interval [CI] 0.82, 1.24) or models adjusted for maternal age (adjusted [aHR] = 1.00, 95% CI 0.81, 1.23). Conclusions Our findings suggest that use of non-prescription over-the-counter NSAIDs in early pregnancy does not put women at increased risk of spontaneous abortion. PMID:22914399

  5. Counter-Punishment, Communication, and Cooperation among Partners

    PubMed Central

    Andrighetto, Giulia; Brandts, Jordi; Conte, Rosaria; Sabater-Mir, Jordi; Solaz, Hector; Székely, Áron; Villatoro, Daniel

    2016-01-01

    We study how communication affects cooperation in an experimental public goods environment with punishment and counter-punishment opportunities. Participants interacted over 30 rounds in fixed groups with fixed identifiers that allowed them to trace other group members' behavior over time. The two dimensions of communication we study are asking for a specific contribution level and having to express oneself when choosing to counter-punish. We conduct four experimental treatments, all involving a contribution stage, a punishment stage, and a counter-punishment stage in each round. In the first treatment communication is not possible at any of the stages. The second treatment allows participants to ask for a contribution level at the punishment stage and in the third treatment participants are required to send a message if they decide to counter-punish. The fourth combines the two communication channels of the second and third treatments. We find that the three treatments involving communication at any of the two relevant stages lead to significantly higher contributions than the baseline treatment. We find no difference between the three treatments with communication. We also relate our results to previous results from treatments without counter-punishment opportunities and do not find that the presence of counter-punishment leads to lower cooperation level. The overall pattern of results shows that given fixed identifiers the key factor is the presence of communication. Whenever communication is possible contributions and earnings are higher than when it is not, regardless of counter-punishment opportunities. PMID:27092065

  6. 47 CFR 76.802 - Disposition of cable home wiring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.802 Disposition of cable home wiring... alternative video programming service provider connects its wiring to the home wiring before the incumbent... alternative video programming service provider shall be responsible for ensuring that the incumbent's wiring...

  7. Monitoring and evaluation of wire mesh forming life

    NASA Astrophysics Data System (ADS)

    Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec

    2018-03-01

    Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.

  8. Wire Detection Algorithms for Navigation

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia I.

    2002-01-01

    In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. Two approaches were explored for this purpose. The first approach involved a technique for sub-pixel edge detection and subsequent post processing, in order to reduce the false alarms. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter. The second approach involved the use of an example-based learning scheme namely, Support Vector Machines. The purpose of this approach was to explore the feasibility of an example-based learning based approach for the task of detecting wires from their images. Support Vector Machines (SVMs) have emerged as a promising pattern classification tool and have been used in various applications. It was found that this approach is not suitable for very thin wires and of course, not suitable at all for sub-pixel thick wires. High dimensionality of the data as such does not present a major problem for SVMs. However it is desirable to have a large number of training examples especially for high dimensional data. The main difficulty in using SVMs (or any other example-based learning

  9. 30 CFR 57.12086 - Location of trolley wire.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Location of trolley wire. 57.12086 Section 57... Underground Only § 57.12086 Location of trolley wire. Trolley and trolley feeder wire shall be installed... limitations would prevent the safe installation or use of such trolley and trolley feeder wire. ...

  10. 30 CFR 77.701-3 - Grounding wires; capacity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding wires; capacity. 77.701-3 Section 77... MINES Grounding § 77.701-3 Grounding wires; capacity. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames, casings, and other metallic enclosures, such grounding wires will be...

  11. 30 CFR 77.701-3 - Grounding wires; capacity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding wires; capacity. 77.701-3 Section 77... MINES Grounding § 77.701-3 Grounding wires; capacity. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames, casings, and other metallic enclosures, such grounding wires will be...

  12. 30 CFR 57.12086 - Location of trolley wire.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Location of trolley wire. 57.12086 Section 57... Underground Only § 57.12086 Location of trolley wire. Trolley and trolley feeder wire shall be installed... limitations would prevent the safe installation or use of such trolley and trolley feeder wire. ...

  13. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords

    PubMed Central

    Kim, Taegyo; Branner, Almut; Gulati, Tanuj

    2013-01-01

    Objective To test a novel braided multi-electrode probe design with compliance exceeding that of a 50-micron microwire, thus reducing micromotion and macromotion induced tissue stress. Approach We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50μm Nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results Mechanical bending tests on braids comprising 9.6μm or 12.7μm Nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50μm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals’ spinal cords throughout cord motions. Significance Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress. PMID:23723128

  14. 49 CFR 236.754 - Line, open wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Line, open wire. 236.754 Section 236.754 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Line, open wire. An overhead wire line consisting of single conductors as opposed to multiple-conductor...

  15. 49 CFR 236.754 - Line, open wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Line, open wire. 236.754 Section 236.754 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Line, open wire. An overhead wire line consisting of single conductors as opposed to multiple-conductor...

  16. 49 CFR 236.754 - Line, open wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Line, open wire. 236.754 Section 236.754 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Line, open wire. An overhead wire line consisting of single conductors as opposed to multiple-conductor...

  17. 49 CFR 236.754 - Line, open wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Line, open wire. 236.754 Section 236.754 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Line, open wire. An overhead wire line consisting of single conductors as opposed to multiple-conductor...

  18. 49 CFR 236.754 - Line, open wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Line, open wire. 236.754 Section 236.754 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Line, open wire. An overhead wire line consisting of single conductors as opposed to multiple-conductor...

  19. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  20. 49 CFR 236.57 - Shunt and fouling wires.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Shunt and fouling wires. 236.57 Section 236.57...: All Systems Track Circuits § 236.57 Shunt and fouling wires. (a) Except as provided in paragraph (b) of this section, shunt wires and fouling wires hereafter installed or replaced shall consist of at...

  1. 49 CFR 236.57 - Shunt and fouling wires.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Shunt and fouling wires. 236.57 Section 236.57...: All Systems Track Circuits § 236.57 Shunt and fouling wires. (a) Except as provided in paragraph (b) of this section, shunt wires and fouling wires hereafter installed or replaced shall consist of at...

  2. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied

    NASA Astrophysics Data System (ADS)

    Antoniadis, Konstantinos D.; Tertsinidou, Georgia J.; Assael, Marc J.; Wakeham, William A.

    2016-08-01

    The paper considers the conditions that are necessary to secure accurate measurement of the apparent thermal conductivity of two-phase systems comprising nanoscale particles of one material suspended in a fluid phase of a different material. It is shown that instruments operating according to the transient hot-wire technique can, indeed, produce excellent measurements when a finite element method (FEM) is employed to describe the instrument for the exact geometry of the hot wire. Furthermore, it is shown that an approximate analytic solution can be employed with equal success, over the time range of 0.1 s to 1 s, provided that (a) two wires are employed, so that end effects are canceled, (b) each wire is very thin, less than 30 \\upmu m diameter, so that the line source model and the corresponding corrections are valid, (c) low values of the temperature rise, less than 4 K, are employed in order to minimize the effect of convection on the heat transfer in the time of measurement of 1 s, and (d) insulated wires are employed for measurements in electrically conducting or polar liquids to avoid current leakage or other electrical distortions. According to these criteria, a transient hot-wire instrument has been designed, constructed, and employed for the measurement of the enhancement of the thermal conductivity of water when TiO2 or multi-wall carbon nanotubes (MWCNT) are added. These new results, together with a critical evaluation of other measurements, demonstrate the importance of proper implementation of the technique.

  3. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  4. Adjustable Bracket For Entry Of Welding Wire

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.

    1993-01-01

    Wire-entry bracket on welding torch in robotic welding system provides for adjustment of angle of entry of welding wire over range of plus or minus 30 degrees from nominal entry angle. Wire positioned so it does not hide weld joint in view of through-the-torch computer-vision system part of robot-controlling and -monitoring system. Swiveling bracket also used on nonvision torch on which wire-feed-through tube interferes with workpiece. Angle simply changed to one giving sufficient clearance.

  5. Computer-assisted design of flux-cored wires

    NASA Astrophysics Data System (ADS)

    Dubtsov, Yu N.; Zorin, I. V.; Sokolov, G. N.; Antonov, A. A.; Artem'ev, A. A.; Lysak, V. I.

    2017-02-01

    The algorithm and description of the AlMe-WireLaB software for the computer-assisted design of flux-cored wires are introduced. The software functionality is illustrated with the selection of the components for the flux-cored wire, ensuring the acquisition of the deposited metal of the Fe-Cr-C-Mo-Ni-Ti-B system. It is demonstrated that the developed software enables the technologically reliable flux-cored wire to be designed for surfacing, resulting in a metal of an ordered composition.

  6. Multi-channel temperature measurement system for automotive battery stack

    NASA Astrophysics Data System (ADS)

    Lewczuk, Radoslaw; Wojtkowski, Wojciech

    2017-08-01

    A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.

  7. Superconducting wires and methods of making thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current densitymore » (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.« less

  8. Summary of the CTS Transient Event Counter data after one year of operation. [Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Klinect, V. W.; Gore, J. V.

    1977-01-01

    The environmental charging of satellite surfaces during geomagnetic substorms is the apparent cause of a significant number of anomalous events occurring on geosynchronous satellites since the early 1970's. Electromagnetic pulses produced in connection with the differential charging of insulators can couple into the spacecraft harness and cause electronic switching anomalies. An investigation conducted to determine the response of the spacecraft surfaces to substorm particle fluxes makes use of a harness transient detector. The harness transient detector, called the Transient Event Counter (TEC) was built and integrated into the Canadian-American Communications Technology Satellite (CTS). A description of the TEC and its operational characteristics is given and the obtained data are discussed. The data show that the satellite surfaces appear to be charged to the point that discharges occur and that the discharge-induced transients couple into the wire harnesses.

  9. System and method for evaluating a wire conductor

    DOEpatents

    Panozzo, Edward; Parish, Harold

    2013-10-22

    A method of evaluating an electrically conductive wire segment having an insulated intermediate portion and non-insulated ends includes passing the insulated portion of the wire segment through an electrically conductive brush. According to the method, an electrical potential is established on the brush by a power source. The method also includes determining a value of electrical current that is conducted through the wire segment by the brush when the potential is established on the brush. The method additionally includes comparing the value of electrical current conducted through the wire segment with a predetermined current value to thereby evaluate the wire segment. A system for evaluating an electrically conductive wire segment is also disclosed.

  10. Body of Knowledge (BOK) for Copper Wire Bonds

    NASA Technical Reports Server (NTRS)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  11. Kirschner wire pin tract infection rates between percutaneous and buried wires in treating metacarpal and phalangeal fractures.

    PubMed

    Rafique, Atif; Ghani, Shahab; Sadiq, Moiz; Siddiqui, Intisar Ahmed

    2006-08-01

    To compare pin tract infection rate between percutaneous and buried placement of Kirschner (K-) wiring for hand fractures. Quasi--experimental study. Plastic, Reconstructive, Hand and Burn Surgery Unit, Liaquat National Hospital, Karachi, from September 2005--February 2006. Patients with fractures of metacarpals and phalanges of hand were selected by non-probability purposive method. Assessment of pin tract infection by clinical examination and pin tract scoring was done by modification of Oppenheim classification. Statistical analysis was done using Chi-square test. Ten out of 55 percutaneous and 2 out of 45 buried wires were infected. The difference in infection rates of two groups was statistically significant at p<0.05. Three percutaneous, but not buried Kirschner wires, had to be removed before 4 weeks because of failure to respond to local wound care and oral antibiotics. Percutaneous K- wires had significantly greater infection rate than wires which were buried deep to the skin.

  12. Anisotropic Formation of Quantum Turbulence Generated by a Vibrating Wire in Superfluid {}4{He}

    NASA Astrophysics Data System (ADS)

    Yano, H.; Ogawa, K.; Chiba, Y.; Obara, K.; Ishikawa, O.

    2017-06-01

    To investigate the formation of quantum turbulence in superfluid {}4{He}, we have studied the emission of vortex rings with a ring size of larger than 38 μm in diameter from turbulence generated by a vibrating wire. The emission rate of vortex rings from a turbulent region remains low until the beginning of high-rate emissions, suggesting that some of the vortex lines produced by the wire combine to form a vortex tangle, until an equilibrium is established between the rate of vortex line combination with the tangle and dissociation. The formation times of equilibrium turbulence are proportional to ɛ ^{-1.2} and ɛ ^{-0.6} in the directions perpendicular and parallel to the vibrating direction of the generator, respectively, indicating the anisotropic formation of turbulence. Here, ɛ is the generation power of the turbulence. This power dependence may be associated with the characteristics of quantum turbulence with a constant energy flux.

  13. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    NASA Astrophysics Data System (ADS)

    Wang, Pengxiang; Chen, Junhong

    2009-02-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  14. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable and wiring. 129.340 Section 129.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS ELECTRICAL INSTALLATIONS Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than...

  15. 30 CFR 75.516 - Power wires; support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.516 Power wires; support. [Statutory Provision] All power wires (except trailing cables on mobile equipment, specially designed cables... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Power wires; support. 75.516 Section 75.516...

  16. 30 CFR 75.516 - Power wires; support.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.516 Power wires; support. [Statutory Provision] All power wires (except trailing cables on mobile equipment, specially designed cables... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Power wires; support. 75.516 Section 75.516...

  17. 30 CFR 75.516 - Power wires; support.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.516 Power wires; support. [Statutory Provision] All power wires (except trailing cables on mobile equipment, specially designed cables... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Power wires; support. 75.516 Section 75.516...

  18. 75 FR 4584 - Wire Decking From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-466 and 731-TA-1162 (Final)] Wire... subsidized and less-than-fair-value imports from China of wire decking, provided for in subheadings 9403.90... subject merchandise as ``welded-wire rack decking, which is also known as, among other things, ``pallet...

  19. 30 CFR 75.516 - Power wires; support.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Power wires; support. 75.516 Section 75.516... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.516 Power wires; support. [Statutory Provision] All power wires (except trailing cables on mobile equipment, specially designed cables...

  20. 30 CFR 75.516 - Power wires; support.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Power wires; support. 75.516 Section 75.516... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.516 Power wires; support. [Statutory Provision] All power wires (except trailing cables on mobile equipment, specially designed cables...