Science.gov

Sample records for multifunctional particles magnetic

  1. Exploring multifunctional potential of commercial ferrofluids by magnetic particle hyperthermia

    NASA Astrophysics Data System (ADS)

    Sakellari, Despoina; Mathioudaki, Stella; Kalpaxidou, Zoi; Simeonidis, Konstantinos; Angelakeris, Makis

    2015-04-01

    In this work we examine a selection of commercially available magnetic iron oxide nanoparticles as candidates for magnetic particle hyperthermia applications combining their primary modality with additional heat triggered actions. Contrary to lab-made magnetic nanoparticles, commercial ferrofluids may be rapidly pushed through the medical approval processes since their applicability has already been addressed successfully (i.e., formulation, reproducibility, toxicity and quality assurance) in conjunction with the strong companies‧ drive in the fast delivery of the new therapy to the patient. Four samples are under study with variable hydrodynamic diameters from two companies (Micromod and Chemicell) consisting of iron-oxide magnetic nanoparticles. The tunable magnetic heating characteristics of the ferrofluids were correlated with particle, field and colloidal solution features. Our work revealed a size-dependent magnetic heating efficiency together with fast thermal response, features that are crucial for adequate thermal efficiency combined with minimum treatment duration and show the potential of such materials as multifunctional theranostic agents.

  2. Size-Dependent Photodynamic Anticancer Activity of Biocompatible Multifunctional Magnetic Submicron Particles in Prostate Cancer Cells.

    PubMed

    Choi, Kyong-Hoon; Nam, Ki Chang; Malkinski, Leszek; Choi, Eun Ha; Jung, Jin-Seung; Park, Bong Joo

    2016-01-01

    In this study, newly designed biocompatible multifunctional magnetic submicron particles (CoFe₂O₄-HPs-FAs) of well-defined sizes (60, 133, 245, and 335 nm) were fabricated for application as a photosensitizer delivery agent for photodynamic therapy in cancer cells. To provide selective targeting of cancer cells and destruction of cancer cell functionality, basic cobalt ferrite (CoFe₂O₄) particles were covalently bonded with a photosensitizer (PS), which comprises hematoporphyrin (HP), and folic acid (FA) molecules. The magnetic properties of the CoFe₂O₄ particles were finely adjusted by controlling the size of the primary CoFe₂O₄ nanograins, and secondary superstructured composite particles were formed by aggregation of the nanograins. The prepared CoFe₂O₄-HP-FA exhibited high water solubility, good MR-imaging capacity, and biocompatibility without any in vitro cytotoxicity. In particular, our CoFe₂O₄-HP-FA exhibited remarkable photodynamic anticancer efficiency via induction of apoptotic death in PC-3 prostate cancer cells in a particle size- and concentration-dependent manner. This size-dependent effect was determined by the specific surface area of the particles because the number of HP molecules increased with decreasing size and increasing surface area. These results indicate that our CoFe₂O₄-HP-FA may be applicable for photodynamic therapy (PDT) as a PS delivery material and a therapeutic agent for MR-imaging based PDT owing to their high saturation value for magnetization and superparamagnetism. PMID:27607999

  3. Multifunctional Fluorescent-Magnetic Polymeric Colloidal Particles: Preparations and Bioanalytical Applications.

    PubMed

    Kaewsaneha, Chariya; Tangboriboonrat, Pramuan; Polpanich, Duangporn; Elaissari, Abdelhamid

    2015-10-28

    Fluorescent-magnetic particles (FMPs) play important roles in modern materials, especially as nanoscale devices in the biomedical field. The interesting features of FMPs are attributed to their dual detection ability, i.e., fluorescent and magnetic modes. Functionalization of FMPs can be performed using several types of polymers, allowing their use in various applications. The synergistic potentials for unique multifunctional, multilevel targeting nanoscale devices as well as combination therapies make them particularly attractive for biomedical applications. However, the synthesis of FMPs is challenging and must be further developed. In this review article, we summarized the most recent representative works on polymer-based FMP systems that have been applied particularly in the bioanalytical field. PMID:26439897

  4. Multifunctional layered magnetic composites.

    PubMed

    Siglreitmeier, Maria; Wu, Baohu; Kollmann, Tina; Neubauer, Martin; Nagy, Gergely; Schwahn, Dietmar; Pipich, Vitaliy; Faivre, Damien; Zahn, Dirk; Fery, Andreas; Cölfen, Helmut

    2015-01-01

    A fabrication method of a multifunctional hybrid material is achieved by using the insoluble organic nacre matrix of the Haliotis laevigata shell infiltrated with gelatin as a confined reaction environment. Inside this organic scaffold magnetite nanoparticles (MNPs) are synthesized. The amount of MNPs can be controlled through the synthesis protocol therefore mineral loadings starting from 15 wt % up to 65 wt % can be realized. The demineralized organic nacre matrix is characterized by small-angle and very-small-angle neutron scattering (SANS and VSANS) showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers. Successful and homogeneous gelatin infiltration in between the chitin layers can be shown. The hybrid material is characterized by TEM and shows a layered structure filled with MNPs with a size of around 10 nm. Magnetic analysis of the material demonstrates superparamagnetic behavior as characteristic for the particle size. Simulation studies show the potential of collagen and chitin to act as nucleators, where there is a slight preference of chitin over collagen as a nucleator for magnetite. Colloidal-probe AFM measurements demonstrate that introduction of a ferrogel into the chitin matrix leads to a certain increase in the stiffness of the composite material. PMID:25671158

  5. Multifunctional layered magnetic composites

    PubMed Central

    Siglreitmeier, Maria; Wu, Baohu; Kollmann, Tina; Neubauer, Martin; Nagy, Gergely; Schwahn, Dietmar; Pipich, Vitaliy; Faivre, Damien; Zahn, Dirk; Fery, Andreas

    2015-01-01

    Summary A fabrication method of a multifunctional hybrid material is achieved by using the insoluble organic nacre matrix of the Haliotis laevigata shell infiltrated with gelatin as a confined reaction environment. Inside this organic scaffold magnetite nanoparticles (MNPs) are synthesized. The amount of MNPs can be controlled through the synthesis protocol therefore mineral loadings starting from 15 wt % up to 65 wt % can be realized. The demineralized organic nacre matrix is characterized by small-angle and very-small-angle neutron scattering (SANS and VSANS) showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers. Successful and homogeneous gelatin infiltration in between the chitin layers can be shown. The hybrid material is characterized by TEM and shows a layered structure filled with MNPs with a size of around 10 nm. Magnetic analysis of the material demonstrates superparamagnetic behavior as characteristic for the particle size. Simulation studies show the potential of collagen and chitin to act as nucleators, where there is a slight preference of chitin over collagen as a nucleator for magnetite. Colloidal-probe AFM measurements demonstrate that introduction of a ferrogel into the chitin matrix leads to a certain increase in the stiffness of the composite material. PMID:25671158

  6. Multifunctional particles: Magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells

    SciTech Connect

    Heitsch, Andrew T.; Smith, Danielle K.; Patel, Reken N.; Ress, David; Korgel, Brian A.

    2008-07-15

    Multifunctional colloidal core-shell nanoparticles of magnetic nanocrystals (of iron oxide or FePt) or gold nanorods encapsulated in silica shells doped with the fluorescent dye, Tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy) were synthesized. The as-prepared magnetic nanocrystals are initially hydrophobic and were coated with silica using a microemulsion approach, while the as-prepared gold nanorods are hydrophilic and were coated with silica using a Stoeber type of process. Each approach yielded monodisperse nanoparticles with uniform fluorescent dye-doped silica shells. These colloidal heterostructures have the potential to be used as dual-purpose tags-exhibiting a fluorescent signal that could be combined with either dark-field optical contrast (in the case of the gold nanorods), or enhanced contrast in magnetic resonance images (in the case of magnetic nanocrystal cores). The optical and magnetic properties of the fluorescent silica-coated gold nanorods and magnetic nanocrystals are reported. - Graphical abstract: Colloidal gold nanorods and iron platinum and iron oxide nanocrystals were encapsulated with fluorescent dye-doped silica shells using a generic coating strategy. These heterostructures are promising contrast agents for dual-mode medical imaging. Their optical and magnetic properties were studied and are reported here.

  7. Multifunctional Particles: Magnetic Nanocrystals and Gold Nanorods Coated with Fluorescent Dye-Doped Silica Shells

    PubMed Central

    Heitsch, Andrew T.; Smith, Danielle K.; Patel, Reken E.; Ress, David; Korgel, Brian A.

    2008-01-01

    Multifunctional colloidal core-shell nanoparticles of magnetic nanocrystals (of iron oxide or FePt) or gold nanorods encapsulated in silica shells doped with the fluorescent dye, Tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy) were synthesized. The as-prepared magnetic nanocrystals are initially hydrophobic and were coated with silica using a microemulsion approach, while the as-prepared gold nanorods are hydrophilic and were coated with silica using a Stöber-type of process. Each approach yielded monodisperse nanoparticles with uniform fluorescent dye-doped silica shells. These colloidal heterostructures have the potential to be used as dual-purpose tags—exhibiting a fluorescent signal that could be combined with either dark-field optical contrast (in the case of the gold nanorods), or enhanced contrast in magnetic resonance images (in the case of magnetic nanocrystal cores). The optical and magnetic properties of the fluorescent silica-coated gold nanorods and magnetic nanocrystals are reported. PMID:19578476

  8. Magnetically Attached Multifunction Maintenance Rover

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Joffe, Benjamin

    2005-01-01

    A versatile mobile telerobot, denoted the magnetically attached multifunction maintenance rover (MAGMER), has been proposed for use in the inspection and maintenance of the surfaces of ships, tanks containing petrochemicals, and other large ferromagnetic structures. As its name suggests, this robot would utilize magnetic attraction to adhere to a structure. As it moved along the surface of the structure, the MAGMER would perform tasks that could include close-up visual inspection by use of video cameras, various sensors, and/or removal of paint by water-jet blasting, laser heating, or induction heating. The water-jet nozzles would be mounted coaxially within compressed-air-powered venturi nozzles that would collect the paint debris dislodged by the jets. The MAGMER would be deployed, powered, and controlled from a truck, to which it would be connected by hoses for water, compressed air, and collection of debris and by cables for electric power and communication (see Figure 1). The operation of the MAGMER on a typical large structure would necessitate the use of long cables and hoses, which can be heavy. To reduce the load of the hoses and cables on the MAGMER and thereby ensure its ability to adhere to vertical and overhanging surfaces, the hoses and cables would be paid out through telescopic booms that would be parts of a MAGMER support system. The MAGMER would move by use of four motorized, steerable wheels, each of which would be mounted in an assembly that would include permanent magnets and four pole pieces (see Figure 2). The wheels would protrude from between the pole pieces by only about 3 mm, so that the gap between the pole pieces and the ferromagnetic surface would be just large enough to permit motion along the surface but not so large as to reduce the magnetic attraction excessively. In addition to the wheel assemblies, the MAGMER would include magnetic adherence enhancement fixtures, which would comprise arrays of permanent magnets and pole pieces

  9. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor)

    1989-01-01

    Magnetic polymer particles are formed by swelling porous, polymer particles and impregnating the particles with an aqueous solution of precursor magnetic metal salt such as an equimolar mixture of ferrous chloride and ferric chloride. On addition of a basic reagent such as dilute sodium hydroxide, the metal salts are converted to crystals of magnetite which are uniformly contained througout the pores of the polymer particle. The magnetite content can be increased and neutral buoyancy achieved by repetition of the impregnaton and neutralization steps to adjust the magnetite content to a desired level.

  10. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor); Rembaum, Alan (Inventor); Richards, Gil F. (Inventor)

    1987-01-01

    Metal oxide containing polymers and particularly styrene, acrylic or protein polymers containing fine, magnetic iron oxide particles are formed by combining a NO.sub.2 -substituted polymer with an acid such as hydrochloric acid in the presence of metal, particularly iron particles. The iron is oxidized to fine, black Fe.sub.3 O.sub.4 particles which deposit selectively on the polymer particles. Nitrated polymers are formed by reacting functionally substituted, nitrated organic compounds such as trinitrobenzene sulfonate or dinitrofluoro benzene with a functionally coreactive polymer such as an amine modified acrylic polymer or a protein. Other transition metals such as cobalt can also be incorporated into polymers using this method.

  11. Multifunctional clickable and protein-repellent magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Estupiñán, Diego; Bannwarth, Markus B.; Mylon, Steven E.; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-01-01

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the

  12. Novel Fabrication Strategies for Multifunctional Hydrogel Particles

    NASA Astrophysics Data System (ADS)

    Lewis, Chrisitna L.

    2011-12-01

    Three fabrication strategies for poly (ethylene glycol) (PEG) -based microparticles and their utility for exploiting the advantages of viral nanotemplates and DNA oligonucleotides are presented in this dissertation: 1. Nucleic Acid Hybridization Assembly of Viral Nanotemplates on Microparticles A flow lithography technique known as stop-flow lithography (SFL) was used to fabricate microparticles with discrete regions for sample identification and patterned assembly of functionalized tobacco mosaic virus (TMV) nanotemplates. TMV nanotemplates were programmed with linker DNA, complementary to the probe DNA in the assembly region of the microparticles. The hybridization-based assembly yielded specific, programmable, and spatially selective assembly of TMV nanotemplates on encoded hydrogel microparticles and demonstrates a novel high throughput route to create multiplexed and multifunctional viral-synthetic hybrid microentities. 2. Microparticles Containing Functionalized Viral Nanotemplates Functionalized viral assemblies were uniformly distributed throughout hydrogel microparticles by direct embedding with a microfluidic flow-focusing device and UV photopolymerization. Fluorescence and confocal microscopy images showed uniform distribution of the TMV nanotemplates. Microparticles containing TMV-templated palladium (Pd) nanoparticles exhibited catalytic activity for the dichromate reduction reaction. The results reveal that microparticles provide a stable and simple-to-handle carrier for TMV nanotemplates and address a critical challenge of 3D assembly of functionalized viral hybrid nanomaterials. 3. DNA-Conjugated Microparticles via Replica Molding (RM) DNA-conjugated microparticles were fabricated using a soft-lithographic batch processing-based technique, known as RM. A humidity controlled environment was found to minimize the negative effects of rapid evaporation and ensure uniformity across batch fabricated microparticles. It was also found that PEG

  13. Multifunctional Particles for Melanoma-Targeted Drug Delivery

    PubMed Central

    Wadajkar, Aniket S.; Bhavsar, Zarna; Ko, Cheng-Yu; Koppolu, Bhanuprasanth; Cui, Weina; Tang, Liping; Nguyen, Kytai T.

    2012-01-01

    New magnetic-based core-shell particles (MBCSP) were developed to target skin cancer cells while delivering chemotherapeutic drugs in a controlled fashion. MBCSP consist of a thermo-responsive shell of poly(N-isopropylacrylamide-acrylamide-allylamine) and a core of poly(lactic-co-glycolic acid) (PLGA) embedded with magnetite nanoparticles. To target melanoma cancer cells, MBCSP were conjugated with Gly-Arg-Gly-Asp-Ser (GRGDS) peptides that specifically bind to the α5β3+ receptor of melanoma cell. MBCSP consist of unique multifunctional and controlled drug delivery characteristics. Specially, they can provide dual drug release mechanisms (a sustained release of drugs through degradation of PLGA core and a controlled release in response to changes in temperature via thermo-responsive polymer shell), and dual targeting mechanisms (magnetic localization and receptor-mediated targeting). Results from in vitro studies indicate that GRGDS-conjugated MBCSP has an average diameter of 296 nm and exhibit no cytotoxicity towards human dermal fibroblasts up to 500 μg ml−1. Further, a sustained release of curcumin from the core and a temperature-dependent release of doxorubicin from the shell of MBCSP were observed. The particles also produced a dark contrast signal in magnetic resonance imaging. Finally, the particles were accumulated at the tumor site in a B16F10 melanoma orthotopic mouse model, especially in presence of a magnet. Results indicate great potential of MBCSP as a platform technology to target, treat, and monitor melanoma for targeted drug delivery to reduce side effects of chemotherapeutic reagents. PMID:22561668

  14. Biomedical Applications of Advanced Multifunctional Magnetic Nanoparticles.

    PubMed

    Long, Nguyen Viet; Yang, Yong; Teranishi, Toshiharu; Thi, Cao Minh; Cao, Yanqin; Nogami, Masayuki

    2015-12-01

    In this review, we have presented the latest results and highlights on biomedical applications of a class of noble metal nanoparticles, such as gold, silver and platinum, and a class of magnetic nanoparticles, such as cobalt, nickel and iron. Their most important related compounds are also discussed for biomedical applications for treating various diseases, typically as cancers. At present, both physical and chemical methods have been proved very successful to synthesize, shape, control, and produce metal- and oxide-based homogeneous particle systems, e.g., nanoparticles and microparticles. Therefore, we have mainly focused on functional magnetic nanoparticles for nanomedicine because of their high bioadaptability to the organs inside human body. Here, bioconjugation techniques are very crucial to link nanoparticles with conventional drugs, nanodrugs, biomolecules or polymers for biomedical applications. Biofunctionalization of engineered nanoparticles for biomedicine is shown respective to in vitro and in vivo analysis protocols that typically include drug delivery, hyperthermia therapy, magnetic resonance imaging (MRI), and recent outstanding progress in sweep imaging technique with Fourier transformation (SWIFT) MRI. The latter can be especially applied using magnetic nanoparticles, such as Co-, Fe-, Ni-based nanoparticles, α-Fe2O3, and Fe3O4 oxide nanoparticles for analysis and treatment of malignancies. Therefore, this review focuses on recent results of scientists, and related research on diagnosis and treatment methods of common and dangerous diseases by biomedical engineered nanoparticles. Importantly, nanosysems (nanoparticles) or microsystems (microparticles) or hybrid micronano systems are shortly introduced into nanomedicine. Here, Fe oxide nanoparticles ultimately enable potential and applicable technologies for tumor-targeted imaging and therapy. Finally, we have shown the latest aspects of the most important Fe-based particle systems, such as Fe,

  15. Fabrication of Novel Magnetic Nanoparticles of Multifunctionality for Water Decontamination.

    PubMed

    Zhang, Xiaolin; Qian, Jieshu; Pan, Bingcai

    2016-01-19

    Efficient and powerful water purifiers are in increasing need because we are facing a more and more serious problem of water pollution. Here, we demonstrate the design of versatile magnetic nanoadsorbents (M-QAC) that exhibit excellent disinfection and adsorption performances at the same time. The M-QAC is constructed by a Fe3O4 core surrounded by a polyethylenimine-derived corona. When dispersed in water, the M-QAC particles are able to interact simultaneously with multiple contaminants, including pathogens and heavy metallic cations and anions, in minutes. Subsequently, the M-QACs along with those contaminants can be easily removed and recollected by using a magnet. Meanwhile, the mechanisms of disinfection are investigated by using TEM and SEM, and the adsorption mechanisms are analyzed by XPS. In a practical application, M-QACs are applied to polluted river water 8000-fold greater in mass, producing clean water with the concentrations of all major pollutants below the drinking water standard of China. The adsorption ability of M-QAC could be regenerated for continuous use in a facile manner. With more virtues, such as low-cost fabrication and easy scaling up, the M-QAC have been shown to be a very promising multifunctional water purifier with rational design and to have great potential for real water purification applications. PMID:26695341

  16. Theranostics with Multifunctional Magnetic Gold Nanoshells: Photothermal Therapy and T2* Magnetic Resonance Imaging

    PubMed Central

    Melancon, Marites P.; Elliott, Andrew; Ji, Xiaojun; Shetty, Anil; Yang, Zhi; Tian, Mei; Taylor, Brian; Stafford, R. Jason; Li, Chun

    2012-01-01

    Objectives To investigate the multifunctional imaging and therapeutic capabilities of core-shell nanoparticles composed of a superparamagnetic iron oxide (SPIO) core and a gold shell (SPIO@AuNS). Materials and Methods The magnetic/optical properties of SPIO@AuNS were examined both in an agar gel phantom and in vivo by evaluating contrast-enhanced MRI and by measuring near-infrared (NIR) light-induced temperature changes mediated by SPIO@AuNS. In addition, the biodistribution and pharmacokinetics of 111In-labeled SPIO@AuNS after intravenous injection in mice bearing A431 tumors were evaluated in the presence and absence of an external magnet. Results In agar phantoms containing SPIO@AuNS, a significant contrast enhancement in T2-weighted MRI was observed and a linear increase in temperature was observed with increasing concentration and laser output power when irradiated with NIR light centered at an 808-nm. In vivo, T2*-MRI delineated SPIO@AuNS and magnetic resonance temperature imaging of the same tumors revealed significant temperature elevations when intratumorally injected with SPIO@AuNS (1 × 1011 particles/mouse) and irradiated with NIR light (65.70 ± 0.69°C vs. 44.23 ± 0.24°C for saline + laser). Biodistribution studies in mice intravenously injected with 111In-labeled-SPIO@AuNS(1 × 1013 particles/mouse) had an approximately 2-fold increase in SPIO@AuNS delivered into tumors in the presence of an external magnet compared to tumors without the magnet. Conclusions Owing to its ability to mediate efficient photothermal ablation of cancer cells under MRI guidance, as well as the ability to be directed to solid tumors with an external magnetic field gradient, multifunctional SPIO@AuNS is a promising theranostic nano-platform. PMID:21150791

  17. Multifunctional fluorescent and magnetic nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Selvan, Subramanian T.

    2012-03-01

    Hybrid multifunctional nanoparticles (NPs) are emerging as useful probes for magnetic based targeting, delivery, cell separation, magnetic resonance imaging (MRI), and fluorescence-based bio-labeling applications. Assessing from the literature, the development of multifunctional NPs for multimodality imaging is still in its infancy state. This report focuses on our recent work on quantum dots (QDs), magnetic NPs (MNPs) and bi-functional NPs (composed of either QDs or rare-earth NPs, and magnetic NPs - iron oxide or gadolinium oxide) for multimodality imaging based biomedical applications. The combination of MRI and fluorescence would ally each other in improving the sensitivity and resolution, resulting in improved and early diagnosis of the disease. The challenges in this area are discussed.

  18. Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    PubMed Central

    2008-01-01

    Nanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.

  19. Magnetic-encoded fluorescent multifunctional nanospheres for simultaneous multicomponent analysis.

    PubMed

    Song, Erqun; Han, Weiye; Li, Jingrong; Jiang, Yunfei; Cheng, Dan; Song, Yang; Zhang, Pu; Tan, Weihong

    2014-10-01

    In this study, magnetic-encoded fluorescent (CdTe/Fe3O4)@SiO2 multifunctional nanospheres were constructed by adjusting the initial concentration of Fe3O4 in a fabrication process based on reverse microemulsion. The resultant multifunctional nanospheres were characterized by transmission electron microscopy, X-ray diffraction measurements, fluorescence spectrophotometry, and vibrating sample magnetometry. They showed good fluorescence properties, gradient magnetic susceptibility (weak, moderate, and strong), and easy biofunctionalization for biomolecules, such as immunoglobulin G (IgG), protein, and antibody. Then the capture efficiency of the (CdTe/Fe3O4)@SiO2 nanospheres were investigated by using the fluorophore-labeled IgG-conjugated nanospheres as a model. Further studies demonstrated the ability of these (CdTe/Fe3O4)@SiO2 multifunctional nanospheres to accomplish sequentially magnetic separation, capture, and fluorescent detection for each corresponding antigen of CA125, AFP, and CEA with a detection limit of 20 KU/L, 10 ng/mL, and 5 ng/mL, respectively, from a mixed sample under a certain external magnetic field within a few minutes. The strategy of combining magnetic-encoding-based separation and fluorescence-based detection proposed in this study shows great potential to achieve easy, rapid, economical, and near-simultaneous multicomponent separation and analysis for a variety of targets such as drugs, biomarkers, pathogens, and so on. PMID:25197942

  20. A multifunctional stabilizer of magnetic fluids

    NASA Astrophysics Data System (ADS)

    Lebedev, A. V.; Lysenko, S. N.

    2009-07-01

    This study reports the discovery of the universal surfactant-polyoxipropylene, which maximally extends the range of carrier fluids for magnetic colloids. A magnetic fluid on the base of ethyl alcohol has been synthesized and its magnetic and rheological properties have been investigated. It has been found that the magnetic nanoparticles are covered by a monolayer of surfactant molecules. The fluid preserves fluidity at temperatures as low as -100 °C. Coagulation stability, with respect to the added kerosene, has been explored. It is suggested to use this effect for preparing the magnetocontrollable extractors of ethyl alcohol.

  1. Multifunctional biocompatible coatings on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Bychkova, A. V.; Sorokina, O. N.; Rosenfeld, M. A.; Kovarski, A. L.

    2012-11-01

    Methods for coating formation on magnetic nanoparticles used in biology and medicine are considered. Key requirements to the coatings are formulated, namely, biocompatibility, stability, the possibility of attachment of pharmaceutical agents, and the absence of toxicity. The behaviour of nanoparticle/coating nanosystems in the body including penetration through cellular membranes and the excretion rates and routes is analyzed. Parameters characterizing the magnetic properties of these systems and their magnetic controllability are described. Factors limiting the applications of magnetically controlled nanosystems for targeted drug delivery are discussed. The bibliography includes 405 references.

  2. Multifunctional magnetic rotator for micro and nanorheological studies

    PubMed Central

    Tokarev, Alexander; Aprelev, Alexey; Zakharov, Mikhail N.; Korneva, Guzeliya; Gogotsi, Yury; Kornev, Konstantin G.

    2012-01-01

    We report on the development of a multifunctional magnetic rotator that has been built and used during the last five years by two groups from Clemson and Drexel Universities studying the rheological properties of microdroplets. This magnetic rotator allows one to generate rotating magnetic fields in a broad frequency band, from hertz to tens kilohertz. We illustrate its flexibility and robustness by conducting the rheological studies of simple and polymeric fluids at the nano and microscale. First we reproduce a temperature-dependent viscosity of a synthetic oil used as a viscosity standard. Magnetic rotational spectroscopy with suspended nickel nanorods was used in these studies. As a second example, we converted the magnetic rotator into a pump with precise controlled flow modulation. Using multiwalled carbon nanotubes, we were able to estimate the shear modulus of sickle hemoglobin polymer. We believe that this multifunctional magnetic system will be useful not only for micro and nanorheological studies, but it will find much broader applications requiring remote controlled manipulation of micro and nanoobjects. PMID:22755665

  3. Multifunctional magnetic rotator for micro and nanorheological studies

    NASA Astrophysics Data System (ADS)

    Tokarev, Alexander; Aprelev, Alexey; Zakharov, Mikhail N.; Korneva, Guzeliya; Gogotsi, Yury; Kornev, Konstantin G.

    2012-06-01

    We report on the development of a multifunctional magnetic rotator that has been built and used during the last five years by two groups from Clemson and Drexel Universities studying the rheological properties of microdroplets. This magnetic rotator allows one to generate rotating magnetic fields in a broad frequency band, from hertz to tens kilohertz. We illustrate its flexibility and robustness by conducting the rheological studies of simple and polymeric fluids at the nano and microscale. First we reproduce a temperature-dependent viscosity of a synthetic oil used as a viscosity standard. Magnetic rotational spectroscopy with suspended nickel nanorods was used in these studies. As a second example, we converted the magnetic rotator into a pump with precise controlled flow modulation. Using multiwalled carbon nanotubes, we were able to estimate the shear modulus of sickle hemoglobin polymer. We believe that this multifunctional magnetic system will be useful not only for micro and nanorheological studies, but it will find much broader applications requiring remote controlled manipulation of micro and nanoobjects.

  4. Multifunctional magnetic rotator for micro and nanorheological studies.

    PubMed

    Tokarev, Alexander; Aprelev, Alexey; Zakharov, Mikhail N; Korneva, Guzeliya; Gogotsi, Yury; Kornev, Konstantin G

    2012-06-01

    We report on the development of a multifunctional magnetic rotator that has been built and used during the last five years by two groups from Clemson and Drexel Universities studying the rheological properties of microdroplets. This magnetic rotator allows one to generate rotating magnetic fields in a broad frequency band, from hertz to tens kilohertz. We illustrate its flexibility and robustness by conducting the rheological studies of simple and polymeric fluids at the nano and microscale. First we reproduce a temperature-dependent viscosity of a synthetic oil used as a viscosity standard. Magnetic rotational spectroscopy with suspended nickel nanorods was used in these studies. As a second example, we converted the magnetic rotator into a pump with precise controlled flow modulation. Using multiwalled carbon nanotubes, we were able to estimate the shear modulus of sickle hemoglobin polymer. We believe that this multifunctional magnetic system will be useful not only for micro and nanorheological studies, but it will find much broader applications requiring remote controlled manipulation of micro and nanoobjects. PMID:22755665

  5. Multiple emulsions as soft templates for the synthesis of multifunctional silicone porous particles.

    PubMed

    Vilanova, Neus; Kolen'ko, Yury V; Solans, Conxita; Rodríguez-Abreu, Carlos

    2015-01-01

    Multiple emulsion templating is a versatile strategy for the synthesis of porous particles. The present work addresses the synthesis of multifunctional poly(dimethylsiloxane) porous particles using multiple water-in-oil-in-water emulsions as soft templates with an oil phase constituted by a crosslinkable poly(dimethylsiloxane) (PDMS) oil. Herewith, the impact of the viscosity of PDMS oil (i.e., molecular weight) on the properties of both the emulsion templates and the resulting particles was evaluated. The viscosity of PDMS oil has a strong effect on the size and polydispersity of the emulsion templates as well as on the mechanical properties of the derived particles. The elastic modulus can be tuned by mixing PDMS oils of different viscosities to form bimodal crosslinked networks. Iron oxide nanoparticles can be readily incorporated into the emulsion templates to provide additional functionalities to the silicone particles, such as magnetic separation or magnetic hyperthermia. The synthesized composite magnetic particles were found to be useful as recoverable absorbent materials (e.g., for oil spills) by taking advantage of their high buoyancy and high hydrophobicity. PMID:25313489

  6. Multifunctional Upconversion-Magnetic Hybrid Nanostructured Materials: Synthesis and Bioapplications

    PubMed Central

    Li, Xiaomin; Zhao, Dongyuan; Zhang, Fan

    2013-01-01

    The combination of nanotechnology and biology has developed into an emerging research area: nano-biotechnology. Upconversion nanoparticles (UCNPs) have attracted a great deal of attention in bioapplications due to their high chemical stability, low toxicity, and high signal-to-noise ratio. Magnetic nanoparticles (MNPs) are also well-established nanomaterials that offer controlled size, ability to be manipulated externally, and enhancement of contrast in magnetic resonance imaging (MRI). As a result, these nanoparticles could have many applications in biology and medicine, including protein purification, drug delivery, and medical imaging. Because of the potential benefits of multimodal functionality in biomedical applications, researchers would like to design and fabricate multifunctional upconversion-magnetic hybrid nanostructured materials. The hybrid nanostructures, which combine UCNPs with MNPs, exhibit upconversion fluorescence alongside superparamagnetism property. Such structures could provide a platform for enhanced bioimaging and controlled drug delivery. We expect that the combination of unique structural characteristics and integrated functions of multifunctional upconversion-magnetic nanoparticles will attract increasing research interest and could lead to new opportunities in nano-bioapplications. PMID:23650477

  7. Multifunctional nanocrystals

    DOEpatents

    Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak

    2010-06-22

    Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.

  8. Multifunctional nanocrystals

    DOEpatents

    Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak

    2007-08-28

    Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.

  9. Magnetic and optical properties of multifunctional core-shell radioluminescence nanoparticles.

    PubMed

    Chen, Hongyu; Colvin, Daniel C; Qi, Bin; Moore, Thomas; He, Jian; Mefford, O Thompson; Alexis, Frank; Gore, John C; Anker, Jeffrey N

    2012-07-01

    When X-rays irradiate radioluminescence nanoparticles, they generate visible and near infrared light that can penetrate through centimeters of tissue. X-ray luminescence tomography (XLT) maps the location of these radioluminescent contrast agents at high resolution by scanning a narrow X-ray beam through the tissue sample and collecting the luminescence at every position. Adding magnetic functionality to these radioluminescent particles would enable them to be guided, oriented, and heated using external magnetic fields, while their location and spectrum could be imaged with XLT and complementary magnetic resonance imaging. In this work, multifunctional monodispersed magnetic radioluminescent nanoparticles were developed as potential drug delivery carriers and radioluminescence imaging agents. The particles consisted of a spindle-shaped magnetic γ-Fe2O3 core and a radioluminescent europium-doped gadolinium oxide shell. Particles with solid iron oxide cores displayed saturation magnetizations consistent with their ~13% core volume, however, the iron oxide quenched their luminescence. In order to increase the luminescence, we partially etched the iron oxide core in oxalic acid while preserving the radioluminescent shell. The core size was controlled by the etching time which in turn affected the particles' luminescence and magnetic properties. Particles with intermediate core sizes displayed both strong magnetophoresis and luminescence properties. They also served as MRI contrast agents with relaxivities of up to 58 mM(-1)s(-1) (r2) and 120 mM(-1)s(-1) (r2*). These particles offer promising multimodal MRI/fluorescence/X-ray luminescence contrast agents. Our core-shell synthesis technique offers a flexible method to control particle size, shape, and composition for a wide range of biological applications of magnetic/luminescent nanoparticles. PMID:24520183

  10. Encapsulation of particle ensembles in graphene nanosacks as a new route to multifunctional materials.

    PubMed

    Chen, Yantao; Guo, Fei; Qiu, Yang; Hu, Hiroe; Kulaots, Indrek; Walsh, Edward; Hurt, Robert H

    2013-05-28

    Hybrid nanoparticles with multiple functions are of great interest in biomedical diagnostics, therapies, and theranostics but typically require complex multistep chemical synthesis. Here we demonstrate a general physical method to create multifunctional hybrid materials through aerosol-phase graphene encapsulation of ensembles of simple unifunctional nanoparticles. We first develop a general theory of the aerosol encapsulation process based on colloidal interactions within drying microdroplets. We demonstrate that a wide range of cargo particle types can be encapsulated, and that high pH is a favorable operating regime that promotes colloidal stability and limits nanoparticle dissolution. The cargo-filled graphene nanosacks are then shown to be open structures that rapidly release soluble salt cargoes when reintroduced into water, but can be partially sealed by addition of a polymeric filler to achieve slow release profiles of interest in controlled release or theranostic applications. Finally, we demonstrate an example of multifunctional material by fabricating graphene/Au/Fe3O4 hybrids that are magnetically responsive and show excellent contrast enhancement as multimodal bioimaging probes in both magnetic resonance imaging and X-ray computed tomography in full-scale clinical instruments. PMID:23560523

  11. Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation.

    PubMed

    Jin, Xiulong; Li, Haiyan; Wang, Shanshan; Kong, Ni; Xu, Hong; Fu, Qihua; Gu, Hongchen; Ye, Jian

    2014-11-01

    With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we have constructed a novel type of core-shell superparamagnetic nanoshell (Fe₃O₄@SiO₂@Au), composed of a Fe₃O₄ cluster core, a thin Au shell and a SiO₂ layer in between. The obtained multifunctional nanoparticles combine the magnetic properties and plasmonic optical properties effectively, which were well investigated by a number of experimental characterization methods and theoretical simulations. We have demonstrated that Fe₃O₄@SiO₂@Au nanoparticles can be utilized for two-photon luminescence (TPL) imaging, near-infrared surface-enhanced Raman scattering (NIR SERS) and cell collection by magnetic separation. The TPL intensity could be further greatly enhanced through the plasmon coupling effect in the self-assembled nanoparticle chains, which were triggered by an external magnetic field. In addition, Fe₃O₄@SiO₂@Au nanoparticles may have great potential applications such as enhanced magnetic resonance imaging (MRI) and photo-thermotherapy. Successful combination of multifunctions including magnetic response, biosensing and bioimaging in single nanoparticles allows further manipulation, real-time tracking, and intracellular molecule analysis of live cells at a single-cell level. PMID:25329447

  12. Magnetic and optical properties of multifunctional core-shell radioluminescence nanoparticles

    PubMed Central

    Chen, Hongyu; Colvin, Daniel C.; Qi, Bin; Moore, Thomas; He, Jian; Mefford, O. Thompson; Alexis, Frank; Gore, John C.; Anker, Jeffrey N.

    2014-01-01

    When X-rays irradiate radioluminescence nanoparticles, they generate visible and near infrared light that can penetrate through centimeters of tissue. X-ray luminescence tomography (XLT) maps the location of these radioluminescent contrast agents at high resolution by scanning a narrow X-ray beam through the tissue sample and collecting the luminescence at every position. Adding magnetic functionality to these radioluminescent particles would enable them to be guided, oriented, and heated using external magnetic fields, while their location and spectrum could be imaged with XLT and complementary magnetic resonance imaging. In this work, multifunctional monodispersed magnetic radioluminescent nanoparticles were developed as potential drug delivery carriers and radioluminescence imaging agents. The particles consisted of a spindle-shaped magnetic γ-Fe2O3 core and a radioluminescent europium-doped gadolinium oxide shell. Particles with solid iron oxide cores displayed saturation magnetizations consistent with their ~13% core volume, however, the iron oxide quenched their luminescence. In order to increase the luminescence, we partially etched the iron oxide core in oxalic acid while preserving the radioluminescent shell. The core size was controlled by the etching time which in turn affected the particles’ luminescence and magnetic properties. Particles with intermediate core sizes displayed both strong magnetophoresis and luminescence properties. They also served as MRI contrast agents with relaxivities of up to 58 mM−1s−1 (r2) and 120 mM−1s−1 (r2*). These particles offer promising multimodal MRI/fluorescence/X-ray luminescence contrast agents. Our core-shell synthesis technique offers a flexible method to control particle size, shape, and composition for a wide range of biological applications of magnetic/luminescent nanoparticles. PMID:24520183

  13. Magnetic and relaxation properties of multifunctional polymer-based nanostructured bioferrofluids as MRI contrast agents.

    PubMed

    Amiri, Houshang; Bustamante, Rodney; Millán, Angel; Silva, Nuno J O; Piñol, Rafael; Gabilondo, Lierni; Palacio, Fernando; Arosio, Paolo; Corti, Maurizio; Lascialfari, Alessandro

    2011-12-01

    A series of maghemite/polymer composite ferrofluids with variable magnetic core size, which show a good efficiency as MRI contrast agents, are presented. These ferrofluids are biocompatible and can be proposed as possible platforms for multifunctional biomedical applications, as they contain anchoring groups for biofunctionalization, can incorporate fluorescent dyes, and have shown low cellular toxicity. The magnetic properties of the ferrofluids have been determined by means of magnetization and ac susceptibility measurements as a function of temperature and frequency. The NMR dispersion profiles show that the low frequency behavior of the longitudinal relaxivity r(1) is well described by the heuristic model of (1)H nuclear relaxation induced by superparamagnetic nanoparticles proposed by Roch and co-workers. The contrast efficiency parameter, i.e., the nuclear transverse relaxivity r(2), for samples with d > 10 nm assumes values comparable with or better than the ones of commercial samples, the best results obtained in particles with the biggest magnetic core, d = 15 nm. The contrast efficiency results are confirmed by in vitro MRI experiments at ν = 8.5 MHz, thus allowing us to propose a set of optimal microstructural parameters for multifunctional ferrofluids to be used in MRI medical diagnosis. PMID:21574179

  14. Multifunctional carbon nanomaterial hybrids for magnetic manipulation and targeting.

    PubMed

    Quyen Chau, Ngoc Do; Ménard-Moyon, Cécilia; Kostarelos, Kostas; Bianco, Alberto

    2015-12-18

    Nanosized materials and multifunctional nanoscale platforms have attracted in the last years considerable interest in a variety of different fields including biomedicine. Carbon nanotubes and graphene are some of the most widely used carbon nanomaterials (CNMs) due to their unique morphology and structure and their characteristic physicochemical properties. Their high surface area allows efficient drug loading and bioconjugation and makes them the ideal platforms for decoration with magnetic nanoparticles (MNPs). In the biomedical area, MNPs are of particular importance due to their broad range of potential applications in drug delivery, non-invasive tumor imaging and early detection based on their optical and magnetic properties. The remarkable characteristics of CNMs and MNPs can be combined leading to CNM/MNP hybrids which offer numerous promising, desirable and strikingly advantageous properties for improved performance in comparison to the use of either material alone. In this minireview, we attempt to comprehensively report the most recent advances made with CNMs conjugated to different types of MNPs for magnetic targeting, magnetic manipulation, capture and separation of cells towards development of magnetic carbon-based devices. PMID:26129773

  15. Development of Multifunctional Magnetic Nanoparticles for Genetic Engineering and Tracking of Neural Stem Cells.

    PubMed

    Adams, Christopher; Israel, Liron Limor; Ostrovsky, Stella; Taylor, Arthur; Poptani, Harish; Lellouche, Jean-Paul; Chari, Divya

    2016-04-01

    Genetic modification of cell transplant populations and cell tracking ability are key underpinnings for effective cell therapies. Current strategies to achieve these goals utilize methods which are unsuitable for clinical translation because of related safety issues, and multiple protocol steps adding to cost and complexity. Multifunctional magnetic nanoparticles (MNPs) offering dual mode gene delivery and imaging contrast capacity offer a valuable tool in this context. Despite their key benefits, there is a critical lack of neurocompatible and multifunctional particles described for use with transplant populations for neurological applications. Here, a systematic screen of MNPs (using a core shown to cause contrast in magnetic resonance imaging (MRI)) bearing various surface chemistries (polyethylenimine (PEI) and oxidized PEI and hybrids of oxidized PEI/alginic acid, PEI/chitosan and PEI/polyamidoamine) is performed to test their ability to genetically engineer neural stem cells (NSCs; a cell population of high clinical relevance for central nervous system disorders). It is demonstrated that gene delivery to NSCs can be safely achieved using two of the developed formulations (PEI and oxPEI/alginic acid) when used in conjunction with oscillating magnetofection technology. After transfection, intracellular particles can be detected by histological procedures with labeled cells displaying contrast in MRI (for real time cell tracking). PMID:26867130

  16. Photocatalytic/Magnetic Composite Particles

    NASA Technical Reports Server (NTRS)

    Wu, Chang-Yu; Goswami, Yogi; Garretson, Charles; Andino, Jean; Mazyck, David

    2007-01-01

    Photocatalytic/magnetic composite particles have been invented as improved means of exploiting established methods of photocatalysis for removal of chemical and biological pollutants from air and water. The photocatalytic components of the composite particles are formulated for high levels of photocatalytic activity, while the magnetic components make it possible to control the movements of the particles through the application of magnetic fields. The combination of photocatalytic and magnetic properties can be exploited in designing improved air- and water treatment reactors.

  17. [Magnetic particle imaging (MPI)].

    PubMed

    Haegele, J; Sattel, T; Erbe, M; Luedtke-Buzug, K; Taupitz, M; Borgert, J; Buzug, T M; Barkhausen, J; Vogt, F M

    2012-05-01

    Magnetic particle imaging (MPI) displays the spatial distribution and concentration of superparamagnetic iron oxides (SPIOs). It is a quantitative, tomographic imaging method with high temporal and spatial resolution and allows work with high sensitivity yet without ionizing radiation. Thus, it may be a very promising tool for medical imaging. In this review, we describe the physical and technical basics and various concepts for clinical scanners. Furthermore, clinical applications such as cardiovascular imaging, interventional procedures, imaging and therapy of malignancies as well as molecular imaging are presented. PMID:22198836

  18. Multi-function magnetic jack control drive mechanism

    DOEpatents

    Bollinger, Lawrence R.; Crawford, Donald C.

    1986-01-01

    A multi-function magnetic jack control drive mechanism for controlling a nuclear reactor is provided. The mechanism includes an elongate pressure housing in which a plurality of closely spaced drive rods are located. Each drive rod is connected to a rod which is insertable in the reactor core. An electromechanical stationary latch device is provided which is actuatable to hold each drive rod stationary with respect to the pressure housing. An electromechanical movable latch device is also provided for each one of the drive rods. Each movable latch device is provided with a base and is actuatable to hold a respective drive rod stationary with respect to the base. An electromechanical lift device is further provided for each base which is actuatable for moving a respective base longitudinally along the pressure housing. In this manner, one or more drive rods can be moved in the pressure housing by sequentially and repetitively operating the electromechanical devices. Preferably, each latch device includes a pair of opposed latches which grip teeth located on the respective drive rod. Two, three, or four drive rods can be located symmetrically about the longitudinal axis of the pressure housing.

  19. Multi-function magnetic jack control drive mechanism

    DOEpatents

    Bollinger, L.R.; Crawford, D.C.

    1983-10-06

    A multi-function magnetic jack control drive mechanism for controlling a nuclear reactor is provided. The mechanism includes an elongate pressure housing in which a plurality of closely spaced drive rods are located. Each drive rod is connected to a rod which is insertable in the reactor core. An electromechanical stationary latch device is provided which is actuatable to hold each drive rod stationary with respect to the pressure housing. An electromechanical movable latch device is also provided for each one of the drive rods. Each movable latch device is provided with a base and is actuatable to hold a respective drive rod stationary with respect to the base. An electromechanical lift device is further provided for each base which is actuatable for moving a respective base longitudinally along the pressure housing. In this manner, one or more drive rods can be moved in the pressure housing by sequentially and repetitively operating the electromechanical devices. Preferably, each latch device includes a pair of opposed latches which grip teeth located on the respective drive rod. Two, three, or four drive rods can be located symmetrically about the longitudinal axis of the pressure housing.

  20. Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation

    NASA Astrophysics Data System (ADS)

    Jin, Xiulong; Li, Haiyan; Wang, Shanshan; Kong, Ni; Xu, Hong; Fu, Qihua; Gu, Hongchen; Ye, Jian

    2014-11-01

    With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we have constructed a novel type of core-shell superparamagnetic nanoshell (Fe3O4@SiO2@Au), composed of a Fe3O4 cluster core, a thin Au shell and a SiO2 layer in between. The obtained multifunctional nanoparticles combine the magnetic properties and plasmonic optical properties effectively, which were well investigated by a number of experimental characterization methods and theoretical simulations. We have demonstrated that Fe3O4@SiO2@Au nanoparticles can be utilized for two-photon luminescence (TPL) imaging, near-infrared surface-enhanced Raman scattering (NIR SERS) and cell collection by magnetic separation. The TPL intensity could be further greatly enhanced through the plasmon coupling effect in the self-assembled nanoparticle chains, which were triggered by an external magnetic field. In addition, Fe3O4@SiO2@Au nanoparticles may have great potential applications such as enhanced magnetic resonance imaging (MRI) and photo-thermotherapy. Successful combination of multifunctions including magnetic response, biosensing and bioimaging in single nanoparticles allows further manipulation, real-time tracking, and intracellular molecule analysis of live cells at a single-cell level.With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we have

  1. Alternating Magnetic Field Controlled, Multifunctional Nano-Reservoirs: Intracellular Uptake and Improved Biocompatibility

    NASA Astrophysics Data System (ADS)

    Ghosh, Santaneel; Ghoshmitra, Somesree; Cai, Tong; Diercks, David R.; Mills, Nathaniel C.; Hynds, Dianna L.

    2010-01-01

    Biocompatible magnetic nanoparticles hold great therapeutic potential, but conventional particles can be toxic. Here, we report the synthesis and alternating magnetic field dependent actuation of a remotely controllable, multifunctional nano-scale system and its marked biocompatibility with mammalian cells. Monodisperse, magnetic nanospheres based on thermo-sensitive polymer network poly(ethylene glycol) ethyl ether methacrylate- co-poly(ethylene glycol) methyl ether methacrylate were synthesized using free radical polymerization. Synthesized nanospheres have oscillating magnetic field induced thermo-reversible behavior; exhibiting desirable characteristics comparable to the widely used poly- N-isopropylacrylamide-based systems in shrinkage plus a broader volumetric transition range. Remote heating and model drug release were characterized for different field strengths. Nanospheres containing nanoparticles up to an iron concentration of 6 mM were readily taken up by neuron-like PC12 pheochromocytoma cells and had reduced toxicity compared to other surface modified magnetic nanocarriers. Furthermore, nanosphere exposure did not inhibit the extension of cellular processes (neurite outgrowth) even at high iron concentrations (6 mM), indicating minimal negative effects in cellular systems. Excellent intracellular uptake and enhanced biocompatibility coupled with the lack of deleterious effects on neurite outgrowth and prior Food and Drug Administration (FDA) approval of PEG-based carriers suggest increased therapeutic potential of this system for manipulating axon regeneration following nervous system injury.

  2. A general strategy for fabricating flexible magnetic silica nanofibrous membranes with multifunctionality.

    PubMed

    Si, Yang; Yan, Chengcheng; Hong, Feifei; Yu, Jianyong; Ding, Bin

    2015-08-14

    Flexible, magnetic, and hierarchical porous NiFe2O4@SiO2 nanofibrous membranes were prepared by combining the gelatin method with electrospun nanofibers. The membranes exhibited prominent mechanical strength and mesoporosity, as well as multifunctionality of magnetic responsiveness, dye adsorption, and emulsion separation. PMID:26095072

  3. Heparinized magnetic mesoporous silica nanoparticles as multifunctional growth factor delivery carriers

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Liu, Chaoqun; Fan, Luna; Shi, Jiahua; Liu, Zhiqiang; Li, Ruifang; Sun, Liwei

    2012-12-01

    Well-defined magnetic mesoporous silica nanoparticles (MMSNs) with a core/shell structure were prepared via a one pot synthesis. Sphere-like magnetite aggregates were obtained as cores of the final nanoparticles by assembly in the presence of polyvinyl pyrrolidone and cetyltrimethylammonium bromide. The nanoparticles have the property of superparamagnetism with a saturation magnetization value of 20.3 emu g-1. In addition, the combination of heparin and fluorescence-labeled MMSNs endows the resultant particles (denoted as MFMSNs-HP) with magnetism and fluorescence properties, excellent dispersity in the buffer solutions and cell culture media, anticoagulant activity in the blood stream, and the controlled release of basic fibroblast growth factor (bFGF). Furthermore, the bFGF cell viability assays indicate that MFMSNs-HP has nearly no toxicity to human umbilical vein endothelial cells (HUVEC) up to a concentration of 200 μg ml-1, and the proliferation activity of bFGF incorporated into MFMSNs-HP could be retained for at least 6 days. All of these suggest that MFMSNs-HP may serve as a multifunctional carrier for the delivery of growth factors.

  4. Magnetic Particle Technology

    ERIC Educational Resources Information Center

    Oliveira, Luiz C.A.; A. Rios, Rachel V.R.; Fabris, Jose D.; Lago, Rachel M.; Sapag, Karim

    2004-01-01

    An exciting laboratory environment is activated by the preparation and novel use of magnetic materials to decontaminate water through adsorption and magnetic removal of metals and organics. This uncomplicated technique is also adaptable to the possible application of adsorbents to numerous other environmental substances.

  5. Amphiphilic Polymerizable Porphyrins Conjugated to a Polyglycerol Dendron Moiety as Functional Surfactants for Multifunctional Polymer Particles.

    PubMed

    Moriishi, Masako; Kitayama, Yukiya; Ooya, Tooru; Takeuchi, Toshifumi

    2015-12-01

    An amphiphilic polyglycerol dendron (PGD) conjugated porphyrin (PGP) bearing a polymerizable group was successfully synthesized. The PGP was used as an effective surfactant in emulsion and microsuspension polymerization systems to prepare styrene and methacrylate polymer particles, and the use of PGP provided the simple polymer particles with fluorescence derived from the metalloporphyrin and high colloidal stability due to the PGD. Furthermore, based on confocal laser scanning microscopy, we observed that the particles spontaneously formed a core-shell morphology with the PGP localized in the shell region during the polymerization and demonstrated drug loading in the shell region using rhodamine B as a model drug. The results indicate that the use of the functional surfactant PGP led to the preparation of multifunctional polymer particles from simple monomer species, and the resulting particles possessed high colloidal stability, fluorescence, and drug loading capability. PMID:26569154

  6. Magnetic guidance of charged particles

    NASA Astrophysics Data System (ADS)

    Dubbers, Dirk

    2015-09-01

    Many experiments and devices in physics use static magnetic fields to guide charged particles from a source onto a detector, and we ask the innocent question: What is the distribution of particle intensity over the detector surface? One should think that the solution to this seemingly simple problem is well known. We show that, even for uniform guide fields, this is not the case, and we present analytical point spread functions (PSF) for magnetic transport that deviate strongly from previous results. The "magnetic" PSF shows unexpected singularities, which were recently also observed experimentally, and which make detector response very sensitive to minute changes of position, field amplitude, or particle energy. In the field of low-energy particle physics, these singularities may become a source of error in modern high precision experiments, or may be used for instrument tests.

  7. Particles trajectories in magnetic filaments

    SciTech Connect

    Bret, A.

    2015-07-15

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  8. Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation

    PubMed Central

    Wu, Xiao; Hayes, Don; Zwischenberger, Joseph B; Kuhn, Robert J; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design, develop, and optimize respirable tacrolimus microparticles and nanoparticles and multifunctional tacrolimus lung surfactant mimic particles for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced at different pump rates by advanced spray-drying particle engineering design from organic solution in closed mode. In addition, multifunctional tacrolimus lung surfactant mimic dry powder particles were prepared by co-dissolving tacrolimus and lung surfactant mimic phospholipids in methanol, followed by advanced co-spray-drying particle engineering design technology in closed mode. The lung surfactant mimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-1-glycerol]. Laser diffraction particle sizing indicated that the particle size distributions were suitable for pulmonary delivery, whereas scanning electron microscopy imaging indicated that these particles had both optimal particle morphology and surface morphology. Increasing the pump rate percent of tacrolimus solution resulted in a larger particle size. X-ray powder diffraction patterns and differential scanning calorimetry thermograms indicated that spray drying produced particles with higher amounts of amorphous phase. X-ray powder diffraction and differential scanning calorimetry also confirmed the preservation of the phospholipid bilayer structure in the solid state for all engineered respirable particles. Furthermore, it was observed in hot-stage micrographs that raw tacrolimus displayed a liquid crystal transition following the main phase transition, which is consistent with its interfacial properties. Water vapor uptake and lyotropic phase transitions in the solid state at varying levels of relative humidity were determined by gravimetric vapor sorption technique. Water content in the various powders was very low and well within the levels necessary

  9. Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation.

    PubMed

    Wu, Xiao; Hayes, Don; Zwischenberger, Joseph B; Kuhn, Robert J; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design, develop, and optimize respirable tacrolimus microparticles and nanoparticles and multifunctional tacrolimus lung surfactant mimic particles for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced at different pump rates by advanced spray-drying particle engineering design from organic solution in closed mode. In addition, multifunctional tacrolimus lung surfactant mimic dry powder particles were prepared by co-dissolving tacrolimus and lung surfactant mimic phospholipids in methanol, followed by advanced co-spray-drying particle engineering design technology in closed mode. The lung surfactant mimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-1-glycerol]. Laser diffraction particle sizing indicated that the particle size distributions were suitable for pulmonary delivery, whereas scanning electron microscopy imaging indicated that these particles had both optimal particle morphology and surface morphology. Increasing the pump rate percent of tacrolimus solution resulted in a larger particle size. X-ray powder diffraction patterns and differential scanning calorimetry thermograms indicated that spray drying produced particles with higher amounts of amorphous phase. X-ray powder diffraction and differential scanning calorimetry also confirmed the preservation of the phospholipid bilayer structure in the solid state for all engineered respirable particles. Furthermore, it was observed in hot-stage micrographs that raw tacrolimus displayed a liquid crystal transition following the main phase transition, which is consistent with its interfacial properties. Water vapor uptake and lyotropic phase transitions in the solid state at varying levels of relative humidity were determined by gravimetric vapor sorption technique. Water content in the various powders was very low and well within the levels necessary

  10. Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties

    NASA Astrophysics Data System (ADS)

    Gan, Wentao; Gao, Likun; Sun, Qingfeng; Jin, Chunde; Lu, Yun; Li, Jian

    2015-03-01

    Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties were obtained successfully by precipitated CoFe2O4 nanoparticles on the wood surface and then treated with a layer of octadecyltrichlorosilane (OTS). The as-fabricated wood composites exhibited excellent magnetic property and the water contact angle of the OTS-modified magnetic wood surface reached as high as 150°, revealed the superhydrophobic property. Moreover, accelerated aging tests suggested that the treated wood composites also have an excellent anti-ultraviolet property.

  11. Isolation of technogenic magnetic particles.

    PubMed

    Catinon, Mickaël; Ayrault, Sophie; Boudouma, Omar; Bordier, Louise; Agnello, Gregory; Reynaud, Stéphane; Tissut, Michel

    2014-03-15

    Technogenic magnetic particles (TMPs) emitted by various industrial sources, such as smelting plants, end up after atmospheric transfer on the soil surface. In the present study, we characterised the origin and composition of such particles emitted by a large iron smelting plant and deposited on particular substrates, namely tombstones, which act as a very interesting and appropriate matrix when compared to soil, tree bark, lichens or attic dust. The isolation and subsequent description of TMPs require a critical step of separation between different components of the sample and the magnetic particles; here, we described an efficient protocol that fulfils such a requirement: it resorts to water suspension, sonication, repeated magnetic extraction, sedimentation, sieving and organic matter destruction at 550 °C in some instances. The isolated TMPs displayed a noticeable crystalline shape with variable compositions: a) pure iron oxides, b) iron+Cr, Ni or Zn, and c) a complex structure containing Ca, Si, Mg, and Mn. Using Scanning Electron Microscope Energy Dispersive X-ray (SEM-EDX), we obtained profiles of various and distinct magnetic particles, which allowed us to identify the source of the TMPs. PMID:24419285

  12. Contactless magnetic manipulation of magnetic particles in a fluid

    NASA Astrophysics Data System (ADS)

    Tokura, S.; Hara, M.; Kawaguchi, N.; Amemiya, N.

    2016-08-01

    The objective of this study was to demonstrate contactless magnetic manipulation of a magnetic particle along a designated orbit among other magnetic particles suspended in a fluid at rest or in motion, and also to understand the behaviors of those surrounding particles during the contactless magnetic manipulation. In addition, the possibility of breaking up chains of clustered magnetic particles under such conditions was also studied. We first describe contactless magnetic manipulation of magnetic particles by feedback control in which the feedback signal was the measured coordinates of the tracked particle. By the feedback control monitoring the location of the tracked particle using a high-speed image analyzer, the reach of the dipole magnetic field created by the magnetized magnetic particles could be kept relatively small. As a result, the tracked magnetic particle could be dragged along the designated orbit by magnetic force. Second, we describe the breaking up of chains of clustered magnetic particles using an alternating magnetic force. The results showed that chain-clustered magnetic particles that had been aggregated under the condition of contactless magnetic manipulation could be broken up reproducibly by an alternating magnetic field. These results constitute useful information for advancements in the handling of magnetic micro- or nanoparticles.

  13. Traveling wave magnetic particle imaging.

    PubMed

    Vogel, Patrick; Ruckert, Martin A; Klauer, Peter; Kullmann, Walter H; Jakob, Peter M; Behr, Volker C

    2014-02-01

    Most 3-D magnetic particle imaging (MPI) scanners currently use permanent magnets to create the strong gradient field required for high resolution MPI. However, using permanent magnets limits the field of view (FOV) due to the large amount of energy required to move the field free point (FFP) from the center of the scanner. To address this issue, an alternative approach called "Traveling Wave MPI" is here presented. This approach employs a novel gradient system, the dynamic linear gradient array, to cover a large FOV while dynamically creating a strong magnetic gradient. The proposed design also enables the use of a so-called line-scanning mode, which simplifies the FFP trajectory to a linear path through the 3-D volume. This results in simplified mathematics, which facilitates the image reconstruction. PMID:24132006

  14. Multifunctional magnetic nanoparticles for targeted imaging and therapy

    PubMed Central

    McCarthy, Jason R.; Weissleder, Ralph

    2008-01-01

    Magnetic nanoparticles have become important tools for the imaging of prevalent diseases, such as cancer, atherosclerosis, diabetes, and others. While first generation nanoparticles were fairly nonspecific, newer generations have been targeted to specific cell types and molecular targets via affinity ligands. Commonly, these ligands emerge from phage or small molecule screens, or are based on antibodies or aptamers. Secondary reporters and combined therapeutic molecules have further opened potential clinical applications of these materials. This review summarizes some of the recent biomedical applications of these newer magnetic nanomaterials. PMID:18508157

  15. Fabrication of Magnetic-Antimicrobial-Fluorescent Multifunctional Hybrid Microspheres and Their Properties

    PubMed Central

    Xiao, Ling-Han; Wang, Tao; Zhao, Tian-Yi; Zheng, Xin; Sun, Li-Ying; Li, Ping; Liu, Feng-Qi; Gao, Ge; Dong, Alideertu

    2013-01-01

    Novel magnetic-antimicrobial-fluorescent multifunctional hybrid microspheres with well-defined nanostructure were synthesized by the aid of a poly(glycidyl methacrylate) (PGMA) template. The hybrid microspheres were fully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD) and digital fluorescence microscope. The as-synthesized microspheres PGMA, amino-modified PGMA (NH2-PGMA) and magnetic PGMA (M-PGMA) have a spherical shape with a smooth surface and fine monodispersity. M-PGMA microspheres are super-paramagnetic, and their saturated magnetic field is 4.608 emu·g−1, which made M-PGMA efficiently separable from aqueous solution by an external magnetic field. After poly(haxemethylene guanidine hydrochloride) (PHGH) functionalization, the resultant microspheres exhibit excellent antibacterial performance against both Gram-positive and Gram-negative bacteria. The fluorescence feature originating from the quantum dot CdTe endowed the hybrid microspheres with biological functions, such as targeted localization and biological monitoring functions. Combination of magnetism, antibiosis and fluorescence into one single hybrid microsphere opens up the possibility of the extensive study of multifunctional materials and widens the potential applications. PMID:23549271

  16. The synthesis, characterization, and application of multifunctional magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tackett, Ronald J.

    In recent years, the field of nanotechnology has been one of extreme activity. Among other things, this activity is driven by the push for consumer technologies that are lighter, stronger, and most importantly smaller. With this push from the everyday consumer, the need for a basic understanding of the underlying physics of nanoscale materials has never been more evident. In this dissertation, the author investigates the many physical differences, in particular the differences in the magnetic properties, between nanoscale materials and their bulk counterparts. Starting out with a brief overview of magnetism, the author sets out to explore the fantastic changes in the magnetic properties of materials that occur when the physical dimensions of the materials become smaller than typical magnetic length scales. Among the first differences noticed arises when nanoscale ferromagnets are investigated. While the magnetic properties of bulk ferromagnets are governed by magnetic domain dynamics, when a material becomes small enough that only one domain is possible, a new type of magnetic behavior known as superparamagnetism arises. While this superparamagnetic behavior is well understood in terms of thermally activated spin reversal through an energy barrier, many factors, such as interactions between separate nanoparticles, cause deviations from this simple picture. The effects of these factors are investigated. In addition to the effects of interactions, the relation of nanoscale magnetics and its coupling to the dielectric properties of nanoparticles is investigated. This investigation, motivated by recent research focusing on the search for materials whose magnetic and electronic properties are influenced by each other, shows that nanomaterials can show a coupling between these properties that isn't necessarily the intrinsic coupling of the two properties, but an effect from the surface layers of nanoparticles, which are generally ignored in bulk systems due to the fact

  17. In Situ Reductive Synthesis of Structural Supported Gold Nanorods in Porous Silicon Particles for Multifunctional Nanovectors.

    PubMed

    Zhu, Guixian; Liu, Jen-Tsai; Wang, Yuzhen; Zhang, Dechen; Guo, Yi; Tasciotti, Ennio; Hu, Zhongbo; Liu, Xuewu

    2016-05-11

    Porous silicon nanodisks (PSD) were fabricated by the combination of photolithography and electrochemical etching of silicon. By using PSD as a reducing agent, gold nanorods (AuNR) were in situ synthesized in the nanopores of PSD, forming PSD-supported-AuNR (PSD/AuNR) hybrid particles. The formation mechanism of AuNR in porous silicon (pSi) was revealed by exploring the role of pSi reducibility and each chemical in the reaction. With the PSD support, AuNR exhibited a stable morphology without toxic surface ligands (CTAB). The PSD/AuNR hybrid particles showed enhanced plasmonic property compared to free AuNR. Because high-density "hot spots" can be generated by controlling the distribution of AuNR supported in PSD, surface-enhanced raman scattering (SERS) using PSD/AuNR as particle substrates was demonstrated. A multifunctional vector, PSD/AuNR/DOX, composed of doxorubicin (DOX)-loaded PSD/AuNR capped with agarose (agar), was developed for highly efficient, combinatorial cancer treatment. Their therapeutic efficacy was examined using two pancreatic cancer cell lines, PANC-1 and MIA PaCa-2. PSD/AuNR/DOX (20 μg Au and 1.25 μg DOX/mL) effectively destroyed these cells under near-IR laser irradiation (810 nm, 15 J·cm(-2) power, 90 s). Overall, we envision that PSD/AuNR may be a promising injectable, multifunctional nanovector for biomedical application. PMID:27123698

  18. Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers

    NASA Astrophysics Data System (ADS)

    Hwang, G.; Decanini, D.; Leroy, L.; Haghiri-Gosnet, A. M.

    2016-03-01

    Microswimmers integrated into microfluidic devices that are capable of self-illumination through fluorescence could revolutionize many aspects of technology, especially for biological applications. Few illumination and propulsion techniques of helical microswimmers inside microfluidic channels have been demonstrated. This paper presents the fabrication, detachment, and magnetic propulsions of multifunctional fluorescent-magnetic helical microswimmers integrated inside microfluidics. The fabrication process is based on two-photon laser lithography to pattern 3-D nanostructures from fluorescent photoresist coupled with conventional microfabrication techniques for magnetic thin film deposition by shadowing. After direct integration inside a microfluidic device, injected gas bubble allows gentle detachment of the integrated helical microswimmers whose magnetic propulsion can then be directly applied inside the microfluidic channel using external electromagnetic coil setup. With their small scale, fluorescence, excellent resistance to liquid/gas surface tension, and robust propulsion capability inside the microfluidic channel, the microswimmers can be used as high-resolution and large-range mobile micromanipulators inside microfluidic channels.

  19. Effective particle magnetic moment of multi-core particles

    NASA Astrophysics Data System (ADS)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; van IJzendoorn, Leo J.; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-04-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems - BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  20. Investigations on the magnetization behavior of magnetic composite particles

    NASA Astrophysics Data System (ADS)

    Eichholz, Christian; Knoll, Johannes; Lerche, Dietmar; Nirschl, Hermann

    2014-11-01

    In life sciences the application of surface functionalized magnetic composite particles is establishing in diagnostics and in downstream processing of modern biotechnology. These magnetic composite particles consist of non-magnetic material, e.g. polystyrene, which serves as a matrix for the second magnetic component, usually colloidal magnetite. Because of the multitude of magnetic cores these magnetic beads show a complex magnetization behavior which cannot be described with the available approaches for homogeneous magnetic material. Therefore, in this work a new model for the magnetization behavior of magnetic composite particles is developed. By introducing an effective magnetization and considering an overall demagnetization factor the deviation of the demagnetization of homogeneously magnetized particles is taken into account. Calculated and experimental results show a good agreement which allows for the verification of the adapted model of particle magnetization. Besides, a newly developed magnetic analyzing centrifuge is used for the characterization of magnetic composite particle systems. The experimental results, also used for the model verification, give both, information about the magnetic properties and the interaction behavior of particle systems. By adding further components to the particle solution, such as salts or proteins, industrial relevant systems can be reconstructed. The analyzing tool can be used to adapt industrial processes without time-consuming preliminary tests with large samples in the process equipments.

  1. Rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy.

    PubMed

    Chen, Wei-Hai; Luo, Guo-Feng; Lei, Qi; Cao, Feng-Yi; Fan, Jin-Xuan; Qiu, Wen-Xiu; Jia, Hui-Zhen; Hong, Sheng; Fang, Fang; Zeng, Xuan; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2016-01-01

    In this paper, a multifunctional theranostic magnetic mesoporous silica nanoparticle (MMSN) with magnetic core was developed for magnetic-enhanced tumor-targeted MR imaging and precise therapy. The gatekeeper β-cyclodextrin (β-CD) was immobilized on the surface of mesoporous silica shell via platinum(IV) prodrug linking for reduction-triggered intracellular drug release. Then Arg-Gly-Asp (RGD) peptide ligand was further introduced onto the gatekeeper β-CD via host-guest interaction for cancer targeting purpose. After active-targeting endocytosis by cancer cells, platinum(IV) prodrug in MMSNs would be restored to active platinum(II) drug in response to the innative reducing microenvironment in cancer cells, resulting in the detachment of β-CD gatekeeper and thus simultaneously triggering the in situ release of anticancer drug doxorubicin (DOX) entrapped in the MMSNs to kill cancer cells. It was found that with the aid of an external magnetic field, drug loaded MMSNs showed high contrast in MR imaging in vivo and exhibited magnetically enhanced accumulation in the cancer site, leading to significant inhibition of cancer growth with minimal side effects. This multifunctional MMSN will find great potential as a theranostic nanoplatform for cancer treatment. PMID:26519651

  2. Hollow-core photonic crystal fiber based multifunctional optical system for trapping, position sensing, and detection of fluorescent particles.

    PubMed

    Shinoj, V K; Murukeshan, V M

    2012-05-15

    We demonstrate a novel multifunctional optical system that is capable of trapping, imaging, position sensing, and fluorescence detection of micrometer-sized fluorescent test particles using hollow-core photonic crystal fiber (HC-PCF). This multifunctional optical system for trapping, position sensing, and fluorescent detection is designed such that a near-IR laser light is used to create an optical trap across a liquid-filled HC-PCF, and a 473 nm laser is employed as a source for fluorescence excitation. This proposed system and the obtained results are expected to significantly enable an efficient integrated trapping platform employing HC-PCF for diagnostic biomedical applications. PMID:22627511

  3. Multifunctional magnetic reduced graphene oxide dendrites: synthesis, characterization and their applications.

    PubMed

    Roy, Ekta; Patra, Santanu; Kumar, Deepak; Madhuri, Rashmi; Sharma, Prashant K

    2015-06-15

    In this paper, for the first time, we have reported the novel synthesis of reduced graphene oxide (r-GO) dendrite kind of nanomaterial. The proposed r-GO dendrite possesses multifunctional properties in various fields of sensing and separation. The dendrite was synthesized by chemical reaction in different steps. Initially, the r-GO sheet was conjugated with silane group modified magnetic nanoparticle, resulting in nanoparticle decorated r-GO. The above r-GO sheet was further reacted with a new r-GO sheet, resulting in the formation of r-GO dendrite type of structure. Multifunctional behavior of this r-GO dendrite structure was studied by different methods. First, magnetic properties were studied by vibrating sample magnetometer (VSM) and it was found that dendrite structure shows good magnetic susceptibility (180.2 emu/g). The proposed r-GO dendrite also shows a very good antibacterial behavior for Escherichia coli and excellent electrochemical behavior towards ferrocyanide probe molecule. Along with these, it also acts as a substrate for the synthesis of molecularly imprinted polymer for europium metal ion, a lanthanide. The proposed imprinted sensor shows a very high selectivity and sensitivity for europium metal ion (limit of detection= 0.019 μg L(-1)) in aqueous as well as real samples. PMID:25682500

  4. Multifunctional Single-Phase Photocatalysts: Extended Near Infrared Photoactivity and Reliable Magnetic Recyclability.

    PubMed

    Li, Xiaoning; Zhu, Zhu; Li, Feng; Huang, Yan; Hu, Xiang; Huang, Haoliang; Peng, Ranran; Zhai, XiaoFang; Fu, Zhengping; Lu, Yalin

    2015-01-01

    A practical photocatalyst should be able to integrate together various functions including the extended solar conversion, a feasible and economic recyclability, and above the room temperature operation potential, et al., in order to fulfill the spreading application needs in nowadays. In this report, a multifunctional single-phase photocatalyst which possesses a high photoactivity extended into the near infrared region, an easy magnetic recyclability and the high temperature stability was developed by doping Co into a new layer-structured Bi7Fe3Ti3O21 material. Light absorption and photocatalytic activity of the resulted Bi7Fe(3-x)CoxTi3O21 photocatalyst were extended to the long wavelength as far as 800 nm. Its strong ferromagnetism above the room temperature enables the nanopowders fully recyclable in viscous solutions simply with a magnet bar in an experimental demonstration. Furthermore, such photoactivity and magnetic recyclability were heavily tested under high-temperature and high-viscosity conditions, which was intended to simulate the actual industrial environments. This work brings the bright light to a full availability of a new multifunctional photocatalyst, via integrating the much enhanced ferromagnetic, ferroelectric, optoelectronic properties, most importantly, into a single-phase structure. PMID:26503907

  5. Multifunctional Single-Phase Photocatalysts: Extended Near Infrared Photoactivity and Reliable Magnetic Recyclability

    PubMed Central

    Li, Xiaoning; Zhu, Zhu; Li, Feng; Huang, Yan; Hu, Xiang; Huang, Haoliang; Peng, Ranran; Zhai, XiaoFang; Fu, Zhengping; Lu, Yalin

    2015-01-01

    A practical photocatalyst should be able to integrate together various functions including the extended solar conversion, a feasible and economic recyclability, and above the room temperature operation potential, et al., in order to fulfill the spreading application needs in nowadays. In this report, a multifunctional single-phase photocatalyst which possesses a high photoactivity extended into the near infrared region, an easy magnetic recyclability and the high temperature stability was developed by doping Co into a new layer-structured Bi7Fe3Ti3O21 material. Light absorption and photocatalytic activity of the resulted Bi7Fe3-xCoxTi3O21 photocatalyst were extended to the long wavelength as far as 800 nm. Its strong ferromagnetism above the room temperature enables the nanopowders fully recyclable in viscous solutions simply with a magnet bar in an experimental demonstration. Furthermore, such photoactivity and magnetic recyclability were heavily tested under high-temperature and high-viscosity conditions, which was intended to simulate the actual industrial environments. This work brings the bright light to a full availability of a new multifunctional photocatalyst, via integrating the much enhanced ferromagnetic, ferroelectric, optoelectronic properties, most importantly, into a single-phase structure. PMID:26503907

  6. Synthesis and characterization of monodisperse, mesoporous, and magnetic sub-micron particles doped with a near-infrared fluorescent dye

    SciTech Connect

    Le Guevel, Xavier; Nooney, Robert; McDonagh, Colette; MacCraith, Brian D.

    2011-06-15

    Recently, multifunctional silica nanoparticles have been investigated extensively for their potential use in biomedical applications. We have prepared sub-micron monodisperse and stable multifunctional mesoporous silica particles with a high level of magnetization and fluorescence in the near infrared region using an one-pot synthesis technique. Commercial magnetite nanocrystals and a conjugated-NIR-dye were incorporated inside the particles during the silica condensation reaction. The particles were then coated with polyethyleneglycol to stop aggregation. X-ray diffraction, N{sub 2} adsorption analysis, TEM, fluorescence and absorbance measurements were used to structurally characterize the particles. These mesoporous silica spheres have a large surface area (1978 m{sup 2}/g) with 3.40 nm pore diameter and a high fluorescence in the near infrared region at {lambda}=700 nm. To explore the potential of these particles for drug delivery applications, the pore accessibility to hydrophobic drugs was simulated by successfully trapping a hydrophobic ruthenium dye complex inside the particle with an estimated concentration of 3 wt%. Fluorescence imaging confirmed the presence of both NIR dye and the post-grafted ruthenium dye complex inside the particles. These particles moved at approximately 150 {mu}m/s under the influence of a magnetic field, hence demonstrating the multifunctionality and potential for biomedical applications in targeting and imaging. - Graphical Abstract: Hydrophobic fluorescent Ruthenium complex has been loaded into the mesopores as a surrogate drug to simulate drug delivery and to enhance the multifunctionality of the magnetic NIR emitting particles. Highlights: > Monodisperse magnetic mesoporous silica particles emitting in the near infrared region are obtained in one-pot synthesis. > We prove the capacity of such particles to uptake hydrophobic dye to mimic drug loading. > Loaded fluorescent particles can be moved under a magnetic field in a

  7. Synthesis of magnetic and upconversion nanocapsules as multifunctional drug delivery system

    NASA Astrophysics Data System (ADS)

    Huang, Shanshan; Chen, Yinyin; Liu, Bei; He, Fei; Ma, Ping'an; Deng, Xiaoran; Cheng, Ziyong; Lin, Jun

    2015-09-01

    Multifunctional hollow nanocapsules with magnetic and upconversion luminescence properties were synthesized. Hollow Fe3O4@SiO2 was firstly prepared by using rodlike β-FeOOH as the template followed by silica coating, calcinations and reduction. Then Fe3O4@SiO2@α-NaYF4:Yb3+,Er3+ nanocapsules (FeSiUCNP) were synthesized by the hydrothermal transformation of the Y(Yb3+, Er3+)(OH)CO3 (YOC) deposited onto the surface of nanocapsules through a urea-assisted homogeneous precipitation method. The hollow nanocapsules with porous structure provide space and entrance for the drug molecules. Due to the outside shell of α-NaYF4:Yb3+, Er3+, the nanomaterial shows upconverting red emission upon 980 nm NIR-light excitation. Moreover, the nanocomposites with hollow magnetite core exhibit a high relaxivity with r2 value of 183 mM-1 s-1, which reveal the potential as T2-weighted contrast agents for magnetic resonance imaging (MRI). The as-prepared nanocapsules can be performed as anti-cancer drug carriers for investigation of drug loading/release properties, which demonstrated a sustained drug release pattern and a comparable cytotoxicity with free doxorubicin (DOX). The multifunctional nanocapsules incorporated upconverting luminescence, T2-weighted MRI imaging and drug targeting delivery modalities have great potential for theranostic applications in cancer treatment.

  8. Magnetic Janus Particles and Their Applications

    NASA Astrophysics Data System (ADS)

    Ren, Bin

    Magnetic properties are important since they enable the manipulation of particle behavior remotely and therefore provide the means to direct a particle's orientation and translation. Magnetic Janus particles combine magnetic properties with anisotropy and thus are potential building blocks for complex structures that can be assembled from a particle suspension and can be directed through external fields. In this thesis, a method for the fabrication of three types of magnetic Janus particles with distinct magnetic properties is introduced, the assembly behavior of magnetic Janus particles in external magnetic and electric fields is systematically studied, and two potential applications of magnetic Janus particles are successfully tested. Janus particles with different magnetic properties are fabricated by varying the deposition rate of iron in an Ar/O2 atmosphere using physical vapor deposition (PVD). The extent of oxidation for each type of iron oxide is precisely controlled by the time it is exposed to the Ar/O 2 atmosphere during deposition. Two of the three magnetic Janus particles produced show distinct assembly behavior into staggered and double chain structures, whereas the third shows no assembly behavior under an external magnetic field. The effect of the iron oxide cap thickness (≤ 50 nm) on the Janus particle assembly behavior is studied resulting in a deposition rate diagram that shows the relationship between the assembly behavior and the deposition rate. The cap materials for staggered chain, double chain, and no assembly behavior are assigned as Fe1-xO, Fe3O 4, and Fe2O3, respectively, based on optical appearance and physical properties. The assignment is further confirmed by in-depth material characterization with scanning and transmission electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The magnetic hardness of the iron oxides is tested using the magneto-optic Kerr effect

  9. Multifunctional magnetic-hollow gold nanospheres for bimodal cancer cell imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Bai, Ling-Yu; Yang, Xiao-Quan; An, Jie; Zhang, Lin; Zhao, Kai; Qin, Meng-Yao; Fang, Bi-Yun; Li, Cheng; Xuan, Yang; Zhang, Xiao-Shuai; Zhao, Yuan-Di; Ma, Zhi-Ya

    2015-08-01

    Multifunctional nanocomposites combining imaging and therapeutic functions have great potential for cancer diagnosis and therapy. In this work, we developed a novel theranostic agent based on hollow gold nanospheres (HGNs) and superparamagnetic iron oxide nanoparticles (SPIO). Taking advantage of the excellent magnetic properties of SPIO and strong near-infrared (NIR) absorption property of HGNs, such nanocomposites were applied to targeted magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) of cancer cells. In vitro results demonstrated they displayed significant contrast enhancement for T2-weighted MRI and strong PAI signal enhancement. Simultaneously, the nanocomposites exhibited a high photothermal effect under the irradiation of the near-infrared laser and can be used as efficient photothermal therapy (PTT) agents for selective killing of cancer cells. All these results indicated that such nanocomposites combined with MRI-PAI and PTT functionality can have great potential for effective cancer diagnosis and therapy.

  10. Water-Dispersible, Multifunctional, Magnetic, Luminescent Silica-Encapsulated Composite Nanotubes

    SciTech Connect

    Sutter, E.; Wong, S.; Zhou, H.; Chen, J.; Sutter, E.; Feygenson, M.; Aronson, M.C.

    2010-02-05

    A multifunctional one-dimensional nanostructure incorporating both CdSe quantum dots (QDs) and Fe{sub 3}O{sub 4} nanoparticles (NPs) within a SiO{sub 2}-nanotube matrix is successfully synthesized based on the self-assembly of preformed functional NPs, allowing for control over the size and amount of NPs contained within the composite nanostructures. This specific nanostructure is distinctive because both the favorable photoluminescent and magnetic properties of QD and NP building blocks are incorporated and retained within the final silica-based composite, thus rendering it susceptible to both magnetic guidance and optical tracking. Moreover, the resulting hydrophilic nanocomposites are found to easily enter into the interiors of HeLa cells without damage, thereby highlighting their capability not only as fluorescent probes but also as possible drug-delivery vehicles of interest in nanobiotechnology.

  11. Multifunctional magnetic-hollow gold nanospheres for bimodal cancer cell imaging and photothermal therapy.

    PubMed

    Bai, Ling-Yu; Yang, Xiao-Quan; An, Jie; Zhang, Lin; Zhao, Kai; Qin, Meng-Yao; Fang, Bi-Yun; Li, Cheng; Xuan, Yang; Zhang, Xiao-Shuai; Zhao, Yuan-Di; Ma, Zhi-Ya

    2015-08-01

    Multifunctional nanocomposites combining imaging and therapeutic functions have great potential for cancer diagnosis and therapy. In this work, we developed a novel theranostic agent based on hollow gold nanospheres (HGNs) and superparamagnetic iron oxide nanoparticles (SPIO). Taking advantage of the excellent magnetic properties of SPIO and strong near-infrared (NIR) absorption property of HGNs, such nanocomposites were applied to targeted magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) of cancer cells. In vitro results demonstrated they displayed significant contrast enhancement for T2-weighted MRI and strong PAI signal enhancement. Simultaneously, the nanocomposites exhibited a high photothermal effect under the irradiation of the near-infrared laser and can be used as efficient photothermal therapy (PTT) agents for selective killing of cancer cells. All these results indicated that such nanocomposites combined with MRI-PAI and PTT functionality can have great potential for effective cancer diagnosis and therapy. PMID:26177713

  12. Synthesis of magnetic and upconversion nanocapsules as multifunctional drug delivery system

    SciTech Connect

    Huang, Shanshan; Chen, Yinyin; Liu, Bei; He, Fei; Ma, Ping’an; Deng, Xiaoran; Cheng, Ziyong Lin, Jun

    2015-09-15

    Multifunctional hollow nanocapsules with magnetic and upconversion luminescence properties were synthesized. Hollow Fe{sub 3}O{sub 4}@SiO{sub 2} was firstly prepared by using rodlike β-FeOOH as the template followed by silica coating, calcinations and reduction. Then Fe{sub 3}O{sub 4}@SiO{sub 2}@α-NaYF{sub 4}:Yb{sup 3+},Er{sup 3+} nanocapsules (FeSiUCNP) were synthesized by the hydrothermal transformation of the Y(Yb{sup 3+}, Er{sup 3+})(OH)CO{sub 3} (YOC) deposited onto the surface of nanocapsules through a urea-assisted homogeneous precipitation method. The hollow nanocapsules with porous structure provide space and entrance for the drug molecules. Due to the outside shell of α-NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+}, the nanomaterial shows upconverting red emission upon 980 nm NIR-light excitation. Moreover, the nanocomposites with hollow magnetite core exhibit a high relaxivity with r{sub 2} value of 183 mM{sup −1} s{sup −1}, which reveal the potential as T{sub 2}-weighted contrast agents for magnetic resonance imaging (MRI). The as-prepared nanocapsules can be performed as anti-cancer drug carriers for investigation of drug loading/release properties, which demonstrated a sustained drug release pattern and a comparable cytotoxicity with free doxorubicin (DOX). The multifunctional nanocapsules incorporated upconverting luminescence, T{sub 2}-weighted MRI imaging and drug targeting delivery modalities have great potential for theranostic applications in cancer treatment. - Graphical abstract: Multifunctional hollow nanocapsules with upconverting luminescence, T{sub 2}-weighted MRI imaging and drug targeting delivery modalities were synthesized for cancer treatment. - Highlights: • Multifunctional porous Fe{sub 3}O{sub 4}@SiO{sub 2}@α-NaYF{sub 4}:Yb{sup 3+},Er{sup 3+} nanocapsules were synthesized. • The nanocapsules show upconverting red emission upon 980 nm NIR-light excitation. • The nanocapsules exihibit potential as T{sub 2}-weighted contrast agents

  13. Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing.

    PubMed

    Kumar, Shailabh; Johnson, Timothy W; Wood, Christopher K; Qu, Tao; Wittenberg, Nathan J; Otto, Lauren M; Shaver, Jonah; Long, Nicholas J; Victora, Randall H; Edel, Joshua B; Oh, Sang-Hyun

    2016-04-13

    We present large-scale reproducible fabrication of multifunctional ultrasharp metallic structures on planar substrates with capabilities including magnetic field nanofocusing and plasmonic sensing. Objects with sharp tips such as wedges and pyramids made with noble metals have been extensively used for enhancing local electric fields via the lightning-rod effect or plasmonic nanofocusing. However, analogous nanofocusing of magnetic fields using sharp tips made with magnetic materials has not been widely realized. Reproducible fabrication of sharp tips with magnetic as well as noble metal layers on planar substrates can enable straightforward application of their material and shape-derived functionalities. We use a template-stripping method to produce plasmonic-shell-coated nickel wedge and pyramid arrays at the wafer-scale with tip radius of curvature close to 10 nm. We further explore the magnetic nanofocusing capabilities of these ultrasharp substrates, deriving analytical formulas and comparing the results with computer simulations. These structures exhibit nanoscale spatial control over the trapping of magnetic microbeads and nanoparticles in solution. Additionally, enhanced optical sensing of analytes by these plasmonic-shell-coated substrates is demonstrated using surface-enhanced Raman spectroscopy. These methods can guide the design and fabrication of novel devices with applications including nanoparticle manipulation, biosensing, and magnetoplasmonics. PMID:26837912

  14. Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing

    PubMed Central

    2016-01-01

    We present large-scale reproducible fabrication of multifunctional ultrasharp metallic structures on planar substrates with capabilities including magnetic field nanofocusing and plasmonic sensing. Objects with sharp tips such as wedges and pyramids made with noble metals have been extensively used for enhancing local electric fields via the lightning-rod effect or plasmonic nanofocusing. However, analogous nanofocusing of magnetic fields using sharp tips made with magnetic materials has not been widely realized. Reproducible fabrication of sharp tips with magnetic as well as noble metal layers on planar substrates can enable straightforward application of their material and shape-derived functionalities. We use a template-stripping method to produce plasmonic-shell-coated nickel wedge and pyramid arrays at the wafer-scale with tip radius of curvature close to 10 nm. We further explore the magnetic nanofocusing capabilities of these ultrasharp substrates, deriving analytical formulas and comparing the results with computer simulations. These structures exhibit nanoscale spatial control over the trapping of magnetic microbeads and nanoparticles in solution. Additionally, enhanced optical sensing of analytes by these plasmonic-shell-coated substrates is demonstrated using surface-enhanced Raman spectroscopy. These methods can guide the design and fabrication of novel devices with applications including nanoparticle manipulation, biosensing, and magnetoplasmonics. PMID:26837912

  15. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4 nanocrystals.

    PubMed

    Yang, L W; Zhang, Y Y; Li, J J; Li, Y; Zhong, J X; Chu, Paul K

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln=Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X=0.352, CIE-Y=0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4 nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4 nanocrystals. The multifunctional Ln3+ doped KGdF4 nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging. PMID:20877853

  16. A multi-functional testing instrument for heat assisted magnetic recording media

    SciTech Connect

    Yang, H. Z. Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.; Yin, M. J.

    2014-05-07

    With recent developments in heat assisted magnetic recording (HAMR), characterization of HAMR media is becoming very important. We present a multi-functional instrument for testing HAMR media, which integrates HAMR writing, reading, and a micro-magneto-optic Kerr effect (μ-MOKE) testing function. A potential application of the present instrument is to make temperature dependent magnetic property measurement using a pump-probe configuration. In the measurement, the media is heated up by a heating (intense) beam while a testing (weak) beam is overlapped with the heating beam for MOKE measurement. By heating the media with different heating beam power, magnetic measurements by MOKE at different temperatures can be performed. Compared to traditional existing tools such as the vibrating sample magnetometer, the present instrument provides localized and efficient heating at the measurement spot. The integration of HAMR writing and μ-MOKE system can also facilitate a localized full investigation of the magnetic media by potential correlation of HAMR head independent write/read performance to localized magnetic properties.

  17. Fuzzy, copper-based multi-functional composite particles serving simultaneous catalytic and signal-enhancing roles.

    PubMed

    Li, Xiangming; Hu, Yingmo; An, Qi; Luan, Xinglong; Zhang, Qian; Zhang, Yihe

    2016-04-28

    Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high-performance dual-functional copper-based composite particles that catalyze reactions and simultaneously serve as a SERS (surface enhanced Raman spectra) active, label-free reporting agent. Polyelectrolyte-modified reduced graphene oxide particles are used as the reactive precursors in the fabrication method. Upon adding Cu(NO3)2 solutions into the precursor dispersions, composite particles comprised by copper/copper oxide core and polyelectrolyte-graphene shell were facilely obtained under sonication. The as-prepared composite particles efficiently catalyzed the conversion of 4-nitrophenol to 4-aminophenol and simultaneously acted as the SERS-active substrate to give enhanced Raman spectra of the produced 4-aminophenol. Taking advantage of the assembling capabilities of polyelectrolyte shells, the composite particles could be further assembled onto a planar substrate to catalyze organic reactions, facilitating their application in various conditions. We expect this report to promote the fabrication and application of copper-based multifunctional particles. PMID:27091497

  18. Relativistic Shocks: Particle Acceleration and Magnetization

    NASA Astrophysics Data System (ADS)

    Sironi, L.; Keshet, U.; Lemoine, M.

    2015-10-01

    We review the physics of relativistic shocks, which are often invoked as the sources of non-thermal particles in pulsar wind nebulae (PWNe), gamma-ray bursts (GRBs), and active galactic nuclei (AGN) jets, and as possible sources of ultra-high energy cosmic-rays. We focus on particle acceleration and magnetic field generation, and describe the recent progress in the field driven by theory advances and by the rapid development of particle-in-cell (PIC) simulations. In weakly magnetized or quasi parallel-shocks (i.e. where the magnetic field is nearly aligned with the flow), particle acceleration is efficient. The accelerated particles stream ahead of the shock, where they generate strong magnetic waves which in turn scatter the particles back and forth across the shock, mediating their acceleration. In contrast, in strongly magnetized quasi-perpendicular shocks, the efficiencies of both particle acceleration and magnetic field generation are suppressed. Particle acceleration, when efficient, modifies the turbulence around the shock on a long time scale, and the accelerated particles have a characteristic energy spectral index of s_{γ}˜eq2.2 in the ultra-relativistic limit. We discuss how this novel understanding of particle acceleration and magnetic field generation in relativistic shocks can be applied to high-energy astrophysical phenomena, with an emphasis on PWNe and GRB afterglows.

  19. Multifunctional nanoprobe for cancer cell targeting and simultaneous fluorescence/magnetic resonance imaging.

    PubMed

    Wei, Zhenzhen; Wu, Yafeng; Zhao, Yuewu; Mi, Li; Wang, Jintao; Wang, Jimin; Zhao, Jinjin; Wang, Lixin; Liu, Anran; Li, Ying; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2016-09-28

    Multifunctional nanoprobes with distinctive magnetic and fluorescent properties are highly useful in accurate and early cancer diagnosis. In this study, nanoparticles of Fe3O4 core with fluorescent SiO2 shell (MFS) are synthesized by a facile improved Stöber method. These nanoparticles owning a significant core-shell structure exhibit good dispersion, stable fluorescence, low cytotoxicity and excellent biocompatibility. TLS11a aptamer (Apt1), a specific membrane protein for human liver cancer cells which could be internalized into cells, is conjugated to the MFS nanoparticles through the formation of amide bond working as a target-specific moiety. The attached TLS11a aptamers on nanoparticles are very stable and can't be hydrolyzed by DNA hydrolytic enzyme in vivo. Both fluorescence and magnetic resonance imaging show significant uptake of aptamer conjugated nanoprobe by HepG2 cells compared to 4T1, SGC-7901 and MCF-7 cells. In addition, with the increasing concentration of the nanoprobe, T2-weighted MRI images of the as-treated HepG2 cells are significantly negatively enhanced, indicating that a high magnetic field gradient is generated by MFS-Apt1 which has been specifically captured by HepG2 cells. The relaxivity of nanoprobe is calculated to be 11.5 mg(-1)s(-1). The MR imaging of tumor-bearing nude mouse is also confirmed. The proposed multifunctional nanoprobe with the size of sub-100 nm has the potential to provide real-time imaging in early liver cancer cell diagnosis. PMID:27619098

  20. Novel Fe3O4@YPO4:Re (Re = Tb, Eu) multifunctional magnetic-fluorescent hybrid spheres for biomedical applications.

    PubMed

    Wang, Wei; Zou, Min; Chen, Kezheng

    2010-07-28

    Novel Fe(3)O(4)@YPO(4):Re (Re = Tb, Eu) magnetic-fluorescent hybrid spheres are prepared and present a sustained release behavior for the anticancer drug doxorubicin (DOX) and successful labeling of human cervical carcinoma Hela cells, suggesting promising potential as multifunctional biosensors for biomedical applications. PMID:20549006

  1. The Rocketdyne Multifunction Tester. Part 2: Operation of a Radial Magnetic Bearing as an Excitation Source

    NASA Technical Reports Server (NTRS)

    Hawkins, L. A.; Murphy, Brian T.; Lang, K. W.

    1991-01-01

    The operation of the magnetic bearing used as an excitation source in the Rocketdyne Multifunction Tester is described. The tester is scheduled for operation during the summer of 1990. The magnetic bearing can be used in two control modes: (1) open loop mode, in which the magnetic bearing operates as a force actuator; and (2) closed loop mode, in which the magnetic bearing provides shaft support. Either control mode can be used to excite the shaft; however, response of the shaft in the two control modes is different due to the alteration of the eigenvalues by closed loop mode operation. A rotordynamic model is developed to predict the frequency response of the tester due to excitation in either control mode. Closed loop mode excitation is shown to be similar to the excitation produced by a rotating eccentricity in a conventional bearing. Predicted frequency response of the tester in the two control modes is compared, and the maximum response is shown to be the same for the two control modes when synchronous unbalance loading is not considered. The analysis shows that the response of this tester is adequate for the extraction of rotordynamic stiffness, damping, and inertia coefficients over a wide range of test article stiffnesses.

  2. Multifunctional magneto-metasurface for terahertz one-way transmission and magnetic field sensing.

    PubMed

    Chen, Sai; Fan, Fei; He, Xiaotong; Chen, Meng; Chang, Shengjiang

    2015-11-01

    A magneto-metasurface is demonstrated for one-way transmission of terahertz (THz) waves and magnetic field sensing. Due to the magneto-optical effect and the asymmetric structure of the transmission system, magnetoplasmon mode splitting for forward and backward THz waves and one-way transmission has been observed in this magneto-metasurface. Significantly, the resonance of the magneto-metasurface has been found that can remain at 0.750 THz at a temperature of 218 K, performing as a stable isolator with an isolation of larger than 30 dB within a magnetic field disturbance from 0.23 to 0.35 T. Also, since the resonance of the magneto-metasurface can be tuned by the different external magnetic fields at a temperature that is higher or lower than 218 K, the magneto-metasurface can work as a highly sensitive magnetic field sensor. The sensitivity of this device reaches S=513.05  GHz·T(-1) when T=230  K. This multifunctional magneto-metasurface has broad potential in THz application systems. PMID:26560571

  3. Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers.

    PubMed

    Hwang, G; Decanini, D; Leroy, L; Haghiri-Gosnet, A M

    2016-03-01

    Microswimmers integrated into microfluidic devices that are capable of self-illumination through fluorescence could revolutionize many aspects of technology, especially for biological applications. Few illumination and propulsion techniques of helical microswimmers inside microfluidic channels have been demonstrated. This paper presents the fabrication, detachment, and magnetic propulsions of multifunctional fluorescent-magnetic helical microswimmers integrated inside microfluidics. The fabrication process is based on two-photon laser lithography to pattern 3-D nanostructures from fluorescent photoresist coupled with conventional microfabrication techniques for magnetic thin film deposition by shadowing. After direct integration inside a microfluidic device, injected gas bubble allows gentle detachment of the integrated helical microswimmers whose magnetic propulsion can then be directly applied inside the microfluidic channel using external electromagnetic coil setup. With their small scale, fluorescence, excellent resistance to liquid/gas surface tension, and robust propulsion capability inside the microfluidic channel, the microswimmers can be used as high-resolution and large-range mobile micromanipulators inside microfluidic channels. PMID:27036837

  4. Bat head contains soft magnetic particles: evidence from magnetism.

    PubMed

    Tian, Lanxiang; Lin, Wei; Zhang, Shuyi; Pan, Yongxin

    2010-10-01

    Recent behavioral observations have indicated that bats can sense the Earth's magnetic field. To unravel the magnetoreception mechanism, the present study has utilized magnetic measurements on three migratory species (Miniopterus fuliginosus, Chaerephon plicata, and Nyctalus plancyi) and three non-migratory species (Hipposideros armiger, Myotis ricketti, and Rhinolophus ferrumequinum). Room temperature isothermal remanent magnetization acquisition and alternating-field demagnetization showed that the bats' heads contain soft magnetic particles. Statistical analyses indicated that the saturation isothermal remanent magnetization of brains (SIRM(1T_brain)) of migratory species is higher than those of non-migratory species. Furthermore, the SIRM(1T_brain) of migratory bats is greater than their SIRM(1T_skull). Low-temperature magnetic measurements suggested that the magnetic particles are likely magnetite (Fe3O4). This new evidence supports the assumption that some bats use magnetite particles for sensing and orientation in the Earth's magnetic field. PMID:20607738

  5. Particle Acceleration in 3D Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Dahlin, J.; Drake, J. F.; Swisdak, M.

    2015-12-01

    Magnetic reconnection is an important driver of energetic particles in phenomena such as magnetospheric storms and solar flares. Using kinetic particle-in-cell (PIC) simulations, we show that the stochastic magnetic field structure which develops during 3D reconnection plays a vital role in particle acceleration and transport. In a 2D system, electrons are trapped in magnetic islands which limits their energy gain. In a 3D system, however, the stochastic magnetic field enables the energetic electrons to access volume-filling acceleration regions and therefore gain energy much more efficiently than in the 2D system. We also examine the relative roles of two important acceleration drivers: parallel electric fields and a Fermi mechanism associated with reflection of charged particles from contracting field lines. We find that parallel electric fields are most important for accelerating low energy particles, whereas Fermi reflection dominates energetic particle production. We also find that proton energization is reduced in the 3D system.

  6. Multifunctional poly (lactide-co-glycolide) nanoparticles for luminescence/magnetic resonance imaging and photodynamic therapy.

    PubMed

    Lee, Dong Jin; Park, Ga Young; Oh, Kyung Taek; Oh, Nam Muk; Kwag, Dong Sup; Youn, Yu Seok; Oh, Young Taik; Park, Jin Woo; Lee, Eun Seong

    2012-09-15

    Poly (lactide-co-glycolide) (PLGA) coupled with methoxy poly (ethylene glycol) (mPEG) or chlorin e6 (Ce6) was synthesized using the Steglich esterification method. PLGA-linked mPEG (PLGA-mPEG), PLGA-linked Ce6 (PLGA-Ce6), and Fe(3)O(4) were utilized to constitute multifunctional PLGA nanoparticles (∼160 nm) via the multi-emulsion W(1)/O/W(2) (water-in-oil-in-water) method. The photo-sensitizing properties of Ce6 molecules anchored to PLGA nanoparticles enabled in vivo luminescence imaging and photodynamic therapy for the tumor site. The encapsulation of Fe(3)O(4) allowed high contrast magnetic resonance (MR) imaging of the tumor in vivo. Overall, PLGA nanoparticles resulted in a significant tumor volume regression for the light-illuminated KB tumor in vivo and enhanced the contrast at the tumor region, compared to that of Feridex(®) (commercial contrast agent). PMID:22664459

  7. Ferrohydrodynamic relaxometry for magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Goodwill, P. W.; Tamrazian, A.; Croft, L. R.; Lu, C. D.; Johnson, E. M.; Pidaparthi, R.; Ferguson, R. M.; Khandhar, A. P.; Krishnan, K. M.; Conolly, S. M.

    2011-06-01

    The ferrohydrodynamic properties of magnetic nanoparticles govern resolution and signal strength in magnetic particle imaging (MPI), a medical imaging modality with applications in small animals and humans. Here, we discuss the development and key results of a magnetic particle relaxometer that measures the core diameter and relaxation constant of magnetic nanoparticles. This instrument enables us to directly measure the one-dimensional MPI point spread function. To elucidate our results, we develop a simplified ferrohydrodynamic model that assumes nanoparticles respond to time varying magnetic fields according to a Debeye model of Brownian relaxation, which we verify with experimental data.

  8. Magnetic particle dispersion in polymer solution

    NASA Astrophysics Data System (ADS)

    Jeon, Kwang Seoung

    Magnetic particle dispersions were prepared in order to observe the effect of particle surface properties, concentration and functional group of binder, milling time, and solvent on dispersion properties. Rheology and transverse susceptibility measurements were used to characterize the dispersion quality of the magnetic paints macroscopically and microscopically, respectively. In this study, by applying the acid-base concept, methods to optimize magnetic dispersions were established. Initially, interaction between acid-base sites on particles and binder was investigated by poisoning the sites with chemicals, then quantifying each type of adsorption (hydrogen and chemical adsorption) using thermogravimetric analysis. With this fundamental information, effects of typical dispersion parameters were investigated. The acid base interaction between binder solution and particles was related to the magnetic and rheological properties of magnetic inks. The results have significant implications for high density particulate media where dispersion will become increasingly important.

  9. Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy

    NASA Astrophysics Data System (ADS)

    Du, Bin; Han, Shuping; Li, Hongyan; Zhao, Feifei; Su, Xiangjie; Cao, Xiaohui; Zhang, Zhenzhong

    2015-03-01

    Recently, nanoplatforms with multiple functions, such as tumor-targeting drug carriers, MRI, optical imaging, thermal therapy etc., have become popular in the field of cancer research. The present study reports a novel multi-functional liposome for cancer theranostics. A dual targeted drug delivery with radiofrequency-triggered drug release and imaging based on the magnetic field influence was used advantageously for tumor multi-mechanism therapy. In this system, the surface of fullerene (C60) was decorated with iron oxide nanoparticles, and PEGylation formed a hybrid nanosystem (C60-Fe3O4-PEG2000). Thermosensitive liposomes (dipalmitoylphosphatidylcholine, DPPC) with DSPE-PEG2000-folate wrapped up the hybrid nanosystem and docetaxel (DTX), which were designed to combine features of biological and physical (magnetic) drug targeting for fullerene radiofrequency-triggered drug release. The magnetic liposomes not only served as powerful tumor diagnostic magnetic resonance imaging (MRI) contrast agents, but also as powerful agents for photothermal ablation of tumors. Furthermore, a remarkable thermal therapy combined chemotherapy multi-functional liposome nanoplatform converted radiofrequency energy into thermal energy to release drugs from thermosensitive liposomes, which was also observed during both in vitro and in vivo treatment. The multi-functional liposomes also could selectively kill cancer cells in highly localized regions via their excellent active tumor targeting and magnetic targeted abilities.

  10. Fuzzy, copper-based multi-functional composite particles serving simultaneous catalytic and signal-enhancing roles

    NASA Astrophysics Data System (ADS)

    Li, Xiangming; Hu, Yingmo; An, Qi; Luan, Xinglong; Zhang, Qian; Zhang, Yihe

    2016-04-01

    Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high-performance dual-functional copper-based composite particles that catalyze reactions and simultaneously serve as a SERS (surface enhanced Raman spectra) active, label-free reporting agent. Polyelectrolyte-modified reduced graphene oxide particles are used as the reactive precursors in the fabrication method. Upon adding Cu(NO3)2 solutions into the precursor dispersions, composite particles comprised by copper/copper oxide core and polyelectrolyte-graphene shell were facilely obtained under sonication. The as-prepared composite particles efficiently catalyzed the conversion of 4-nitrophenol to 4-aminophenol and simultaneously acted as the SERS-active substrate to give enhanced Raman spectra of the produced 4-aminophenol. Taking advantage of the assembling capabilities of polyelectrolyte shells, the composite particles could be further assembled onto a planar substrate to catalyze organic reactions, facilitating their application in various conditions. We expect this report to promote the fabrication and application of copper-based multifunctional particles.Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high

  11. Synthesis and characterization of monodisperse, mesoporous, and magnetic sub-micron particles doped with a near-infrared fluorescent dye

    NASA Astrophysics Data System (ADS)

    Le Guével, Xavier; Nooney, Robert; McDonagh, Colette; MacCraith, Brian D.

    2011-06-01

    Recently, multifunctional silica nanoparticles have been investigated extensively for their potential use in biomedical applications. We have prepared sub-micron monodisperse and stable multifunctional mesoporous silica particles with a high level of magnetization and fluorescence in the near infrared region using an one-pot synthesis technique. Commercial magnetite nanocrystals and a conjugated-NIR-dye were incorporated inside the particles during the silica condensation reaction. The particles were then coated with polyethyleneglycol to stop aggregation. X-ray diffraction, N 2 adsorption analysis, TEM, fluorescence and absorbance measurements were used to structurally characterize the particles. These mesoporous silica spheres have a large surface area (1978 m 2/g) with 3.40 nm pore diameter and a high fluorescence in the near infrared region at λ=700 nm. To explore the potential of these particles for drug delivery applications, the pore accessibility to hydrophobic drugs was simulated by successfully trapping a hydrophobic ruthenium dye complex inside the particle with an estimated concentration of 3 wt%. Fluorescence imaging confirmed the presence of both NIR dye and the post-grafted ruthenium dye complex inside the particles. These particles moved at approximately 150 μm/s under the influence of a magnetic field, hence demonstrating the multifunctionality and potential for biomedical applications in targeting and imaging.

  12. Magnetic tweezers for manipulation of magnetic particles in single cells

    NASA Astrophysics Data System (ADS)

    Ebrahimian, H.; Giesguth, M.; Dietz, K.-J.; Reiss, G.; Herth, S.

    2014-02-01

    Magnetic tweezers gain increasing interest for applications in biology. Here, a setup of magnetic tweezers is introduced using micropatterned conducting lines on transparent glass slides. Magnetic particles of 1 μm diameter were injected in barley cell vacuoles using a microinject system under microscopic control. Time dependent tracking of the particles after application of a magnetic field was used to determine the viscosity of vacuolar sap in vivo relative to water and isolated vacuolar fluid. The viscosity of vacuolar sap in cells was about 2-fold higher than that of extracted vacuolar fluid and 5 times higher than that of water.

  13. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability.

    PubMed

    Yu, Xu; Cheng, Gong; Zheng, Si-Yang

    2016-01-01

    In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min(-1) (R(2) = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn't show much decrease of the catalytic capability. PMID:27147586

  14. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability

    NASA Astrophysics Data System (ADS)

    Yu, Xu; Cheng, Gong; Zheng, Si-Yang

    2016-05-01

    In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min‑1 (R2 = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn’t show much decrease of the catalytic capability.

  15. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability

    PubMed Central

    Yu, Xu; Cheng, Gong; Zheng, Si-Yang

    2016-01-01

    In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min−1 (R2 = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn’t show much decrease of the catalytic capability. PMID:27147586

  16. Facile preparation of multifunctional uniform magnetic microspheres for T1-T2 dual modal magnetic resonance and optical imaging.

    PubMed

    Zhang, Li; Liang, Shuang; Liu, Ruiqing; Yuan, Tianmeng; Zhang, Shulai; Xu, Zushun; Xu, Haibo

    2016-08-01

    Molecular imaging is of significant importance for early detection and diagnosis of cancer. Herein, a novel core-shell magnetic microsphere for dual modal magnetic resonance imaging (MRI) and optical imaging was produced by one-pot emulsifier-free emulsion polymerization, which could provide high resolution rate of histologic structure information and realize high sensitive detection at the same time. The synthesized magnetic microspheres composed of cores containing oleic acid (OA) and sodium undecylenate (NaUA) modified Fe3O4 nanoparticles and styrene (St), Glycidyl methacrylate (GMA), and polymerizable lanthanide complexes (Gd(AA)3Phen and Eu(AA)3Phen) polymerized on the surface for outer shells. Fluorescence spectra show characteristic emission peaks from Eu(3+) at 590nm and 615nm and vivid red fluorescence luminescence can be observed by 2-photon confocal scanning laser microscopy (CLSM). In vitro cytotoxicity tests based on the MTT assay demonstrate good cytocompatibility, the composites have longitudinal relaxivity value (r1) of 8.39mM(-1)s(-1) and also have transverse relaxivity value (r2) of 71.18mM(-1)s(-1) at clinical 3.0 T MR scanner. In vitro and in vivo MRI studies exhibit high signal enhancement on both T1- and T2-weighted MR images. These fascinating multifunctional properties suggest that the polymer microspheres have large clinical potential as multi-modal MRI/optical probes. PMID:27110910

  17. Dicopper(II) metallacyclophanes as multifunctional magnetic devices: a joint experimental and computational study.

    PubMed

    Castellano, María; Ruiz-García, Rafael; Cano, Joan; Ferrando-Soria, Jesús; Pardo, Emilio; Fortea-Pérez, Francisco R; Stiriba, Salah-Eddine; Julve, Miguel; Lloret, Francesc

    2015-03-17

    Metallosupramolecular complexes constitute an important advance in the emerging fields of molecular spintronics and quantum computation and a useful platform in the development of active components of spintronic circuits and quantum computers for applications in information processing and storage. The external control of chemical reactivity (electro- and photochemical) and physical properties (electronic and magnetic) in metallosupramolecular complexes is a current challenge in supramolecular coordination chemistry, which lies at the interface of several other supramolecular disciplines, including electro-, photo-, and magnetochemistry. The specific control of current flow or spin delocalization through a molecular assembly in response to one or many input signals leads to the concept of developing a molecule-based spintronics that can be viewed as a potential alternative to the classical molecule-based electronics. A great variety of factors can influence over these electronically or magnetically coupled, metallosupramolecular complexes in a reversible manner, electronic or photonic external stimuli being the most promising ones. The response ability of the metal centers and/or the organic bridging ligands to the application of an electric field or light irradiation, together with the geometrical features that allow the precise positioning in space of substituent groups, make these metal-organic systems particularly suitable to build highly integrated molecular spintronic circuits. In this Account, we describe the chemistry and physics of dinuclear copper(II) metallacyclophanes with oxamato-containing dinucleating ligands featuring redox- and photoactive aromatic spacers. Our recent works on dicopper(II) metallacyclophanes and earlier ones on related organic cyclophanes are now compared in a critical manner. Special focus is placed on the ligand design as well as in the combination of experimental and computational methods to demonstrate the multifunctionality

  18. Development of Multifunctional Fluorescent-Magnetic Nanoprobes for Selective Capturing and Multicolor Imaging of Heterogeneous Circulating Tumor Cells.

    PubMed

    Pramanik, Avijit; Vangara, Aruna; Viraka Nellore, Bhanu Priya; Sinha, Sudarson Sekhar; Chavva, Suhash Reddy; Jones, Stacy; Ray, Paresh Chandra

    2016-06-22

    Circulating tumor cells (CTC) are highly heterogeneous in nature due to epithelial-mesenchymal transition (EMT), which is the major obstacle for CTC analysis via "liquid biopsy". This article reports the development of a new class of multifunctional fluorescent-magnetic multicolor nanoprobes for targeted capturing and accurate identification of heterogeneous CTC. A facile design approach for the synthesis and characterization of bioconjugated multifunctonal nanoprobes that exhibit excellent magnetic properties and emit very bright and photostable multicolor fluorescence at red, green, and blue under 380 nm excitation is reported. Experimental data presented show that the multifunctional multicolor nanoprobes can be used for targeted capture and multicolor fluorescence mapping of heterogeneous CTC and can distinguish targeted CTC from nontargeted cells. PMID:27255574

  19. Self-assembly of smallest magnetic particles

    PubMed Central

    Mehdizadeh Taheri, Sara; Michaelis, Maria; Friedrich, Thomas; Förster, Beate; Drechsler, Markus; Römer, Florian M.; Bösecke, Peter; Narayanan, Theyencheri; Weber, Birgit; Rehberg, Ingo; Rosenfeldt, Sabine; Förster, Stephan

    2015-01-01

    The assembly of tiny magnetic particles in external magnetic fields is important for many applications ranging from data storage to medical technologies. The development of ever smaller magnetic structures is restricted by a size limit, where the particles are just barely magnetic. For such particles we report the discovery of a kind of solution assembly hitherto unobserved, to our knowledge. The fact that the assembly occurs in solution is very relevant for applications, where magnetic nanoparticles are either solution-processed or are used in liquid biological environments. Induced by an external magnetic field, nanocubes spontaneously assemble into 1D chains, 2D monolayer sheets, and large 3D cuboids with almost perfect internal ordering. The self-assembly of the nanocubes can be elucidated considering the dipole–dipole interaction of small superparamagnetic particles. Complex 3D geometrical arrangements of the nanodipoles are obtained under the assumption that the orientation of magnetization is freely adjustable within the superlattice and tends to minimize the binding energy. On that basis the magnetic moment of the cuboids can be explained. PMID:26554000

  20. Probing fine magnetic particles with neutron scattering

    SciTech Connect

    Pynn, R.

    1991-12-31

    Because thermal neutrons are scattered both by nuclei and by unpaired electrons, they provide an ideal probe for studying the atomic and magnetic structures of fine-grained magnetic materials, including nanocrystalline solids, thin epitaxial layers, and colloidal suspensions of magnetic particles, known as ferrofluids. Diffraction, surface reflection, and small angle neutron scattering (SANS) are the techniques used. With the exception of surface reflection, these methods are described in this article. The combination of SANS with refractive-index matching and neutron polarisation analysis is particularly powerful because it allows the magnetic and atomic structures to be determined independently. This technique has been used to study both dilute and concentrated ferrofluid suspensions of relatively monodisperse cobalt particles, subjected to a series of applied magnetic fields. The size of the cobalt particle core and the surrounding surfactant layer were determined. The measured interparticle structure factor agrees well with a recent theory that allows correlations in binary mixtures of magnetic particles to be calculated in the case of complete magnetic alignment. When one of the species in such a binary mixture is a nonmagnetic, cyclindrical macromolecule, application of a magnetic field leads to some degree of alignment of the nonmagnetic species. This result has been demonstrated with tobacco mosaic virus suspended in a water-based ferrofluid.

  1. Probing fine magnetic particles with neutron scattering

    SciTech Connect

    Pynn, R.

    1991-01-01

    Because thermal neutrons are scattered both by nuclei and by unpaired electrons, they provide an ideal probe for studying the atomic and magnetic structures of fine-grained magnetic materials, including nanocrystalline solids, thin epitaxial layers, and colloidal suspensions of magnetic particles, known as ferrofluids. Diffraction, surface reflection, and small angle neutron scattering (SANS) are the techniques used. With the exception of surface reflection, these methods are described in this article. The combination of SANS with refractive-index matching and neutron polarisation analysis is particularly powerful because it allows the magnetic and atomic structures to be determined independently. This technique has been used to study both dilute and concentrated ferrofluid suspensions of relatively monodisperse cobalt particles, subjected to a series of applied magnetic fields. The size of the cobalt particle core and the surrounding surfactant layer were determined. The measured interparticle structure factor agrees well with a recent theory that allows correlations in binary mixtures of magnetic particles to be calculated in the case of complete magnetic alignment. When one of the species in such a binary mixture is a nonmagnetic, cyclindrical macromolecule, application of a magnetic field leads to some degree of alignment of the nonmagnetic species. This result has been demonstrated with tobacco mosaic virus suspended in a water-based ferrofluid.

  2. Magnetic iron particles with high magnetization useful for immunoassay

    NASA Astrophysics Data System (ADS)

    Tokoro, Hisato; Nakabayashi, Takashi; Fujii, Shigeo; Zhao, Hong; Häfeli, Urs O.

    2009-05-01

    TiO 2-encapsulated metallic Fe particles (Ti-O/Fe) were synthesized through a solid phase reaction. The Ti-O/Fe particles were non-toxic to tumor cells in a cell viability assay. After silica coating using a sol-gel method, streptavidin was covalently bound onto the Ti-O/Fe particles. Thus produced HMMI particles showed higher magnetization (114 Am 2/kg) and a larger specific surface area (15 m 2/g) than conventional streptavidin-immobilized magnetite particles. The high magnetization allowed for rapid magnetic separation, while the additional large specific surface area improved the detection of the adiponectin antigen both in terms of extended detection range and higher assay speed.

  3. Mechanical and dynamic characteristics of encapsulated microbubbles coupled by magnetic nanoparticles as multifunctional imaging and drug delivery agents

    NASA Astrophysics Data System (ADS)

    Guo, Gepu; Lu, Lu; Yin, Leilei; Tu, Juan; Guo, Xiasheng; Wu, Junru; Xu, Di; Zhang, Dong

    2014-11-01

    Development of magnetic encapsulated microbubble agents that can integrate multiple diagnostic and therapeutic functions is a key focus in both biomedical engineering and nanotechnology and one which will have far-reaching impact on medical diagnosis and therapies. However, properly designing multifunctional agents that can satisfy particular diagnostic/therapeutic requirements has been recognized as rather challenging, because there is a lack of comprehensive understanding of how the integration of magnetic nanoparticles to microbubble encapsulating shells affects their mechanical properties and dynamic performance in ultrasound imaging and drug delivery. Here, a multifunctional imaging contrast and in-situ gene/drug delivery agent was synthesized by coupling super paramagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles. Systematical studies were performed to investigate the SPIO-concentration-dependence of microbubble mechanical properties, acoustic scattering response, inertial cavitation activity and ultrasound-facilitated gene transfection effect. These demonstrated that, with the increasing SPIO concentration, the microbubble mean diameter and shell stiffness increased and ultrasound scattering response and inertial cavitation activity could be significantly enhanced. However, an optimized ultrasound-facilitated vascular endothelial growth factor transfection outcome would be achieved by adopting magnetic albumin-shelled microbubbles with an appropriate SPIO concentration of 114.7 µg ml-1. The current results would provide helpful guidance for future development of multifunctional agents and further optimization of their diagnostic/therapeutic performance in clinic.

  4. Mechanical and dynamic characteristics of encapsulated microbubbles coupled by magnetic nanoparticles as multifunctional imaging and drug delivery agents.

    PubMed

    Guo, Gepu; Lu, Lu; Yin, Leilei; Tu, Juan; Guo, Xiasheng; Wu, Junru; Xu, Di; Zhang, Dong

    2014-11-21

    Development of magnetic encapsulated microbubble agents that can integrate multiple diagnostic and therapeutic functions is a key focus in both biomedical engineering and nanotechnology and one which will have far-reaching impact on medical diagnosis and therapies. However, properly designing multifunctional agents that can satisfy particular diagnostic/therapeutic requirements has been recognized as rather challenging, because there is a lack of comprehensive understanding of how the integration of magnetic nanoparticles to microbubble encapsulating shells affects their mechanical properties and dynamic performance in ultrasound imaging and drug delivery. Here, a multifunctional imaging contrast and in-situ gene/drug delivery agent was synthesized by coupling super paramagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles. Systematical studies were performed to investigate the SPIO-concentration-dependence of microbubble mechanical properties, acoustic scattering response, inertial cavitation activity and ultrasound-facilitated gene transfection effect. These demonstrated that, with the increasing SPIO concentration, the microbubble mean diameter and shell stiffness increased and ultrasound scattering response and inertial cavitation activity could be significantly enhanced. However, an optimized ultrasound-facilitated vascular endothelial growth factor transfection outcome would be achieved by adopting magnetic albumin-shelled microbubbles with an appropriate SPIO concentration of 114.7 µg ml(-1). The current results would provide helpful guidance for future development of multifunctional agents and further optimization of their diagnostic/therapeutic performance in clinic. PMID:25327566

  5. Chaotic magnetic fields: Particle motion and energization

    SciTech Connect

    Dasgupta, Brahmananda; Ram, Abhay K.; Li, Gang; Li, Xiaocan

    2014-02-11

    Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

  6. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy

    PubMed Central

    He, Yingna; Zhang, Linhua; Zhu, Dunwan; Song, Cunxian

    2014-01-01

    Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone–releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer. PMID:25187709

  7. Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins

    PubMed Central

    Wang, Wei; Cheng, Jiade; Jin, Jing; Zhou, Qing; Ma, Yan; Zhao, Qingqing; Li, Aimin

    2016-01-01

    Background organic matter significantly influences the removal of emerging contaminants in natural water. In this work, the adsorption of ciprofloxacin (CPX) onto a series of magnetic multifunctional resins (GMA10-GMA90) in the presence and absence of humic acid (HA) was conducted to demonstrate the effect of HA. Both hydrophobic and ion exchange interactions contributed to CPX adsorption. Negative charge-assisted hydrogen bonds also participated in the adsorption process, resulting in the high adsorption amount of anionic CPX onto the negatively charged GMA30 under basic solutions. HA could impact CPX adsorption not only as a competitive adsorbate but also as an additional adsorbent. At pH 5.6, the additional adsorption sites provided by adsorbed HA molecules on the resins dominated and thus facilitated the adsorption process. While at pH 10, HA inhibited the adsorption of CPX by directly competing for ion exchange sites and coexisting with CPX in the solution. The ratio of the amount of CPX adsorbed by dissolved HA to that by the resin reached as high as 1.61 for GMA90. The adsorbed HA molecules onto the resins could provide additional adsorption sites for CPX as proven by the enhanced CPX adsorption in HA-preloading systems at pH 5.6. PMID:27464502

  8. Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins.

    PubMed

    Wang, Wei; Cheng, Jiade; Jin, Jing; Zhou, Qing; Ma, Yan; Zhao, Qingqing; Li, Aimin

    2016-01-01

    Background organic matter significantly influences the removal of emerging contaminants in natural water. In this work, the adsorption of ciprofloxacin (CPX) onto a series of magnetic multifunctional resins (GMA10-GMA90) in the presence and absence of humic acid (HA) was conducted to demonstrate the effect of HA. Both hydrophobic and ion exchange interactions contributed to CPX adsorption. Negative charge-assisted hydrogen bonds also participated in the adsorption process, resulting in the high adsorption amount of anionic CPX onto the negatively charged GMA30 under basic solutions. HA could impact CPX adsorption not only as a competitive adsorbate but also as an additional adsorbent. At pH 5.6, the additional adsorption sites provided by adsorbed HA molecules on the resins dominated and thus facilitated the adsorption process. While at pH 10, HA inhibited the adsorption of CPX by directly competing for ion exchange sites and coexisting with CPX in the solution. The ratio of the amount of CPX adsorbed by dissolved HA to that by the resin reached as high as 1.61 for GMA90. The adsorbed HA molecules onto the resins could provide additional adsorption sites for CPX as proven by the enhanced CPX adsorption in HA-preloading systems at pH 5.6. PMID:27464502

  9. Biomolecular environment, quantification, and intracellular interaction of multifunctional magnetic SERS nanoprobes.

    PubMed

    Büchner, Tina; Drescher, Daniela; Merk, Virginia; Traub, Heike; Guttmann, Peter; Werner, Stephan; Jakubowski, Norbert; Schneider, Gerd; Kneipp, Janina

    2016-08-15

    Multifunctional composite nanoprobes consisting of iron oxide nanoparticles linked to silver and gold nanoparticles, Ag-Magnetite and Au-Magnetite, respectively, were introduced by endocytic uptake into cultured fibroblast cells. The cells containing the non-toxic nanoprobes were shown to be displaceable in an external magnetic field and can be manipulated in microfluidic channels. The distribution of the composite nanostructures that are contained in the endosomal system is discussed on the basis of surface-enhanced Raman scattering (SERS) mapping, quantitative laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) micromapping, and cryo soft X-ray tomography (cryo soft-XRT). Cryo soft-XRT of intact, vitrified cells reveals that the composite nanoprobes form intra-endosomal aggregates. The nanoprobes provide SERS signals from the biomolecular composition of their surface in the endosomal environment. The SERS data indicate the high stability of the nanoprobes and of their plasmonic properties in the harsh environment of endosomes and lysosomes. The spectra point at the molecular composition at the surface of the Ag-Magnetite and Au-Magnetite nanostructures that is very similar to that of other composite structures, but different from the composition of pure silver and gold SERS nanoprobes used for intracellular investigations. As shown by the LA-ICP-MS data, the uptake efficiency of the magnetite composites is approximately two to three times higher than that of the pure gold and silver nanoparticles. PMID:27353290

  10. Effect of humic acid on ciprofloxacin removal by magnetic multifunctional resins

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Cheng, Jiade; Jin, Jing; Zhou, Qing; Ma, Yan; Zhao, Qingqing; Li, Aimin

    2016-07-01

    Background organic matter significantly influences the removal of emerging contaminants in natural water. In this work, the adsorption of ciprofloxacin (CPX) onto a series of magnetic multifunctional resins (GMA10-GMA90) in the presence and absence of humic acid (HA) was conducted to demonstrate the effect of HA. Both hydrophobic and ion exchange interactions contributed to CPX adsorption. Negative charge-assisted hydrogen bonds also participated in the adsorption process, resulting in the high adsorption amount of anionic CPX onto the negatively charged GMA30 under basic solutions. HA could impact CPX adsorption not only as a competitive adsorbate but also as an additional adsorbent. At pH 5.6, the additional adsorption sites provided by adsorbed HA molecules on the resins dominated and thus facilitated the adsorption process. While at pH 10, HA inhibited the adsorption of CPX by directly competing for ion exchange sites and coexisting with CPX in the solution. The ratio of the amount of CPX adsorbed by dissolved HA to that by the resin reached as high as 1.61 for GMA90. The adsorbed HA molecules onto the resins could provide additional adsorption sites for CPX as proven by the enhanced CPX adsorption in HA-preloading systems at pH 5.6.

  11. Two novel multi-functional magnetic adsorbents for effective removal of hydrophilic and hydrophobic nitroaromatic compounds.

    PubMed

    Wang, Wei; Ma, Yan; Li, Aimin; Zhou, Qing; Zhou, Weiwei; Jin, Jing

    2015-08-30

    Two novel multi-functional magnetic resins named GMA30-1 and GMA30-2 were fabricated and investigated for the removal of 4-nitrotoluene-2-sulfonic acid (NTS) and 2-nitrotoluene (o-MNT). Strong base resin (GMA30-1) and weak base resin (GMA30-2) possess large surface area of 718m(2)/g and 559m(2)/g, and anion exchange capacity of 1.49mmol/g and 1.81mmol/g, respectively. The adsorption isotherms of o-MNT onto two resins were both well described by Langmuir equation. While the adsorption isotherms of NTS could be separated into two segments at a certain initial concentration and each segment followed different trends. At lower concentrations, the adsorption of NTS was driven by Van der Waal's force, exhibiting an exothermic process. With the increase of concentrations, the electrostatic force dominated and the enthalpy change (ΔH) turned to positive, indicating an endothermic process. In binary systems, the decrease in the uptake of NTS was slighter than that of o-MNT because of the additional anion exchange interaction. The adsorption capacity of NTS decreased as pH increased while the adsorption of o-MNT was not significantly affected by pH. Chloride ions reduced the adsorption of NTS by competitive effect. The desorption efficiency of NTS and o-MNT was close to 100% for 10 cycles. PMID:25867588

  12. Magnetic microswimmers: Controlling particle approach through magnetic and hydrodynamic interaction

    NASA Astrophysics Data System (ADS)

    Meshkati, Farshad; Cheang, U. Kei; Kim, Minjun; Fu, Henry

    2015-11-01

    We investigate magnetic microswimmers actuated by a rotating magnetic field that may be useful for drug delivery, micro-surgery, or diagnostics in human body. For modular swimmers, assembly and disassembly requires understanding the interactions between the swimmer and other modules in the fluid. Here, we discuss possible mechanisms for a frequency-dependent attraction/repulsion between a three-bead, achiral swimmer and other magnetic particles, which represent modular assembly elements. We first investigate the hydrodynamic interaction between a swimmer and nearby particle by studying the Lagrangian trajectories in the vicinity of the swimmer. Then we show that the magnetic forces can be attractive or repulsive depending on the spatial arrangement of the swimmer and particle, with a magnitude that decreases with increasing frequency. Combining magnetic and hydrodynamic effects allows us to understand the overall behavior of magnetic particles near the swimmer. Interestingly, we find that the frequency of rotation can be used to control when the particle can closely approach the swimmer, with potential application to assembly.

  13. Multifunctional two-photon active silica-coated Au@MnO Janus particles for selective dual functionalization and imaging.

    PubMed

    Schick, Isabel; Lorenz, Steffen; Gehrig, Dominik; Schilmann, Anna-Maria; Bauer, Heiko; Panthöfer, Martin; Fischer, Karl; Strand, Dennis; Laquai, Frédéric; Tremel, Wolfgang

    2014-02-12

    Monodisperse multifunctional and nontoxic Au@MnO Janus particles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique with precise control over domain sizes, surface functionalization, and dye labeling. The metal oxide domain could be coated selectively with a thin silica layer, leaving the metal domain untouched. In particular, size and morphology of the individual (metal and metal oxide) domains could be controlled by adjustment of the synthetic parameters. The SiO2 coating of the oxide domain allows biomolecule conjugation (e.g., antibodies, proteins) in a single step for converting the photoluminescent and superparamagnetic Janus nanoparticles into multifunctional efficient vehicles for theranostics. The Au@MnO@SiO2 Janus particles were characterized using high-resolution transmission electron microscopy (HR-)TEM, powder X-ray diffraction (PXRD), optical (UV-vis) spectroscopy, confocal laser fluorescence scanning microscopy (CLSM), and dynamic light scattering (DLS). The functionalized nanoparticles were stable in buffer solution or serum, showing no indication of aggregation. Biocompatibility and potential biomedical applications of the Au@MnO@SiO2 Janus particles were assayed by a cell viability analysis by coincubating the Au@MnO@SiO2 Janus particles with Caki 1 and HeLa cells. Time-resolved fluorescence spectroscopy in combination with CLSM revealed the silica-coated Au@MnO@SiO2 Janus particles to be highly two-photon active; no indication for an electronic interaction between the dye molecules incorporated in the silica shell surrounding the MnO domains and the attached Au domains was found; fluorescence quenching was observed when dye molecules were bound directly to the Au domains. PMID:24460244

  14. Magnetization measurements on fine cobalt particles

    NASA Astrophysics Data System (ADS)

    Respaud, M.; Broto, J. M.; Rakoto, H.; Ousset, J. C.; Osuna, J.; Ould Ely, T.; Amiens, C.; Chaudret, B.; Askenazy, S.

    1998-05-01

    We measure the magnetization of fine cobalt particles by SQUID and pulsed magnetic fields up to 35 T. These measurements have been made on two samples (C1, C2) with nonagglomerated particles. The analysis of the magnetic meaurements evidences very narrow log-normal size distribution centered around 1.5 nm (≅150 atoms) and 1.9 nm (≅310 atoms) for C1 and C2, respectively. Magnetization at 4.2 K seems to saturate in fields up to 5 T leading to an enhanced mean magnetic moment per atom compared to bulk value (1.72 μB). However, magnetization measurements up to 35 T do not permit to reach saturation, and show a continuous increase of μCo reaching 2.1±0.1 μB (C1) and 1.9±0.1 μB (C2). The effective magnetic anisotropies are found to be larger than those of bulk materials and decrease with increasing particle size. These features are associated with the large influence of the surface atoms.

  15. Multifunctional magnetic mesoporous silica nanocomposites with improved sensing performance and effective removal ability toward Hg(II).

    PubMed

    Wang, Yanyan; Li, Bin; Zhang, Liming; Li, Peng; Wang, Lianlian; Zhang, Jin

    2012-01-17

    In the present work, a multifunctional inorganic-organic hybrid nanomaterial (MMS-Py) was prepared by the immobilization of a pyrene-based receptor (Py) within the channels of magnetic mesoporous silica nanocomposites (MMS), and characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, N(2) adsorption/desorption, superconducting quantum interference device, and photoluminescence spectra. This multifunctional nanomaterial exhibits superparamagnetic behavior, ordered mesoporous characteristics, and significantly improved fluorescence sensing properties that allow for highly sensitive and reproducible Hg(2+) detection. The fluorogenical responses of MMS-Py are stable over a broad pH range. A detection limit of 1.72 ppb is obtained, which is 2 orders of magnitude lower than that based on bulk mesoporous materials. Additionally, this nanomaterial shows high performance in convenient magnetic separability and efficient removal of Hg(2+). These results indicate that these multifunctional nanocomposites may find potential applications for simple detection and easy removal of Hg(2+) in biological, toxicological, and environmental areas. PMID:22185678

  16. Synthesis of Multifunctional Magnetic NanoFlakes for Magnetic Resonance Imaging, Hyperthermia, and Targeting.

    PubMed Central

    2015-01-01

    Iron oxide nanoparticles (IOs) are intrinsically theranostic agents that could be used for magnetic resonance imaging (MRI) and local hyperthermia or tissue thermal ablation. Yet, effective hyperthermia and high MR contrast have not been demonstrated within the same nanoparticle configuration. Here, magnetic nanoconstructs are obtained by confining multiple, ∼ 20 nm nanocubes (NCs) within a deoxy-chitosan core. The resulting nanoconstructs—magnetic nanoflakes (MNFs)—exhibit a hydrodynamic diameter of 156 ± 3.6 nm, with a polydispersity index of ∼0.2, and are stable in PBS up to 7 days. Upon exposure to an alternating magnetic field of 512 kHz and 10 kA m–1, MNFs provide a specific absorption rate (SAR) of ∼75 W gFe–1, which is 4–15 times larger than that measured for conventional IOs. Moreover, the same nanoconstructs provide a remarkably high transverse relaxivity of ∼500 (mM s)−1, at 1.41T. MNFs represent a first step toward the realization of nanoconstructs with superior relaxometric and ablation properties for more effective theranostics. PMID:25003520

  17. Synthesis of multifunctional magnetic nanoflakes for magnetic resonance imaging, hyperthermia, and targeting.

    PubMed

    Cervadoro, Antonio; Cho, Minjung; Key, Jaehong; Cooper, Christy; Stigliano, Cinzia; Aryal, Santosh; Brazdeikis, Audrius; Leary, James F; Decuzzi, Paolo

    2014-08-13

    Iron oxide nanoparticles (IOs) are intrinsically theranostic agents that could be used for magnetic resonance imaging (MRI) and local hyperthermia or tissue thermal ablation. Yet, effective hyperthermia and high MR contrast have not been demonstrated within the same nanoparticle configuration. Here, magnetic nanoconstructs are obtained by confining multiple, ∼ 20 nm nanocubes (NCs) within a deoxy-chitosan core. The resulting nanoconstructs-magnetic nanoflakes (MNFs)-exhibit a hydrodynamic diameter of 156 ± 3.6 nm, with a polydispersity index of ∼0.2, and are stable in PBS up to 7 days. Upon exposure to an alternating magnetic field of 512 kHz and 10 kA m(-1), MNFs provide a specific absorption rate (SAR) of ∼75 W gFe(-1), which is 4-15 times larger than that measured for conventional IOs. Moreover, the same nanoconstructs provide a remarkably high transverse relaxivity of ∼500 (mM s)(-1), at 1.41T. MNFs represent a first step toward the realization of nanoconstructs with superior relaxometric and ablation properties for more effective theranostics. PMID:25003520

  18. Bacterial Magnetosome: A Novel Biogenetic Magnetic Targeted Drug Carrier with Potential Multifunctions

    PubMed Central

    Sun, Jianbo; Li, Ying; Liang, Xing-Jie; Wang, Paul C.

    2012-01-01

    Bacterial magnetosomes (BMs) synthesized by magnetotactic bacteria have recently drawn great interest due to their unique features. BMs are used experimentally as carriers for antibodies, enzymes, ligands, nucleic acids, and chemotherapeutic drugs. In addition to the common attractive properties of magnetic carriers, BMs also show superiority as targeting nanoscale drug carriers, which is hardly matched by artificial magnetic particles. We are presenting the potential applications of BMs as drug carriers by introducing the drug-loading methods and strategies and the recent research progress of BMs which has contributed to the application of BMs as drug carriers. PMID:22448162

  19. A multifunctional mesoporous Fe3O4/SiO2/CdTe magnetic-fluorescent composite nanoprobe

    NASA Astrophysics Data System (ADS)

    Yin, Naiqiang; Wu, Ping; Liang, Guo; Cheng, Wenjing

    2016-03-01

    A multifunctional mesoporous, magnetic and fluorescent Fe3O4/SiO2/CdTe nanoprobe with well-defined core-shell nanostructures was prepared. This multifunctional nanoprobe was synthesized through a novel method mainly including two steps. The first step involved the controlled growth of mesoporous silica layer onto the surface of Fe3O4 nanoparticle using tetraethyl orthosilicate as silica source, cationic surfactant cetyltrimethylammonium bromide as template, and 1,3,5-triisopropylbenzene as pore swelling agents. The second step involved the layer-by-layer assembly of 3-aminopropyltrimethoxysilane and fluorescent CdTe quantum dots with the mesoporous Fe3O4/SiO2 nanoparticles. The well-designed nanoprobe exhibits strong excitonic photoluminescence and superparamagnetism at room temperature. In attention, the mesoporous silica layer of the nanoprobe with great loading capacity makes it a promising candidate as targeted drug delivery platform.

  20. A study of multistage multifunction column for fine particle separation: Quarterly technical report, October 1, 1996 - December 31, 1996

    SciTech Connect

    Chiang, Shiao Hung

    1997-01-01

    The overall objective of the research program is to explore the potential application of a new invention involving a multistage column equipped with concentric draft-tubes (hereafter referred to as the multistage column) for fine coal cleaning and other fluid/particle separation processes. The research work will identify the design parameters and their effects on the performance of the separation process. The results of this study will provide an engineering basis for further development of this technology in coal cleaning and in the general areas of fluid/particle separation. In the last quarter, we initiated the wastewater treatment tests program to verify the multifunction features of the multistage column. The set-up of the test equipment and analytic instrument were completed. During this period, we performed a series of oily water cleaning tests.

  1. Interplanetary Magnetic Field Guiding Relativistic Particles

    NASA Technical Reports Server (NTRS)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  2. Flow-controlled magnetic particle manipulation

    DOEpatents

    Grate, Jay W [West Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA; Holman, David A [Las Vegas, NV

    2011-02-22

    Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.

  3. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    PubMed

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance. PMID:26134922

  4. Multi-functional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy

    PubMed Central

    Yallapu, Murali M.; Othman, Shadi F.; Curtis, Evan T.; Gupta, Brij K.; Jaggi, Meena; Chauhan, Subhash C.

    2010-01-01

    We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapuetic agent for cancer therapy. PMID:21167595

  5. Particle Deconfinement in a Bent Magnetic Mirror

    SciTech Connect

    Renaud Gueroult and Nathaniel J. Fisch

    2012-09-06

    Coils misalignment in a magnetic mirror can produce additional particle transport. The magnetic field non axi-symmetry is responsible for radial and longitudinal drifts in a way much similar to the neo-classical transport in a tandem mirror cell distorted by end plugs. Accordingly, a regime exhibiting large radial displacements - similar to the resonant regime in tandem mirrors - can be obtained by confining ions azimuthally, for example by means of a properly tuned radial electric field. Because of the mass dependence of the magnetic field non-homogeneity drift velocities, the azimuthal trapping is mass specific, allowing in principle the filtering of a specific species based on its mass.

  6. Particle deconfinement in a bent magnetic mirror

    SciTech Connect

    Gueroult, Renaud; Fisch, Nathaniel J.

    2012-11-15

    Coils misalignment in a magnetic mirror can produce additional particle transport. The magnetic field non axi-symmetry is responsible for radial and longitudinal drifts in a way much similar to the neo-classical transport in a tandem mirror cell distorted by end plugs. Accordingly, a regime exhibiting large radial displacements--similar to the resonant regime in tandem mirrors--can be obtained by confining ions azimuthally, for example by means of a properly tuned radial electric field. Because of the mass dependence of the magnetic field non-homogeneity drift velocities, the azimuthal trapping is mass specific, allowing, in principle, the filtering of a specific species based on its mass.

  7. Magnetic properties of nano-composite particles

    NASA Astrophysics Data System (ADS)

    Xu, Xia

    Chemical synthesis routes for hollow spherical BaFe12O 19, hollow mesoporous spherical BaFe12O19, worm-shape BaFe12O19 and FeCo particles were developed. These structured particles have great potentials for the applications including magnetic recording medium, catalyst support, and energy storage. Magnetically exchange coupled hard/soft SrFe12O19/FeCo and MnBi/FeCo composites were synthesized through a newly proposed process of magnetic self-assembly. These exchange coupled composites can be potentially used as rare-earth free permanent magnets. Hollow spherical BaFe12O19 particles (shell thickness ˜5 nm) were synthesized from eth-ylene glycol assisted spray pyrolysis. Hollow mesoporous spherical BaFe12O19 particles (shell thickness ˜100 nm) were synthesized from ethanol assisted spray pyrolysis, followed by alkaline ethylene glycol etching at 185 °C. An alpha-Fe2O3 and BaCO3 nanoparticle mixture was synthesized with reverse microemulsion, followed by annealing at 900 °C for 2 hours to get worm-shape BaFe 12O19 particles, which consisted of 3-7 stacked hexagonal plates. FeCo nanoparticles were synthesized by reducing FeCl2 and CoCl2 in diphenyl ether with n-butyllithium at 200 °C in an inert gas environment. The surfactant of oleic acid was used in the synthesis to make particles well dispersed in nonpolar solvents (such as hexane). SrFe12O19/FeCo core/shell particles were prepared through a magnetic self-assembly process. The as-synthesized soft FeCo nanoparticles were magnetically attracted by hard SrFe12O19 parti-cles, forming a SrFe12O19/FeCo core/shell structure. The magnetic self-assembly mechanism was confirmed by applying alternating-current demagnetization to the core/shell particles, which re-sulted in a separation of SrFe 12O19 and FeCo particles. MnBi/FeCo composites were synthesized, and the exchange coupling between MnBi and FeCo phases was demonstrated by smooth magnetic hysteresis loop of MnBi/FeCo composites. The thermal stability of Mn

  8. Magnetic particle-mediated magnetoreception

    PubMed Central

    Shaw, Jeremy; Boyd, Alastair; House, Michael; Woodward, Robert; Mathes, Falko; Cowin, Gary; Saunders, Martin; Baer, Boris

    2015-01-01

    Behavioural studies underpin the weight of experimental evidence for the existence of a magnetic sense in animals. In contrast, studies aimed at understanding the mechanistic basis of magnetoreception by determining the anatomical location, structure and function of sensory cells have been inconclusive. In this review, studies attempting to demonstrate the existence of a magnetoreceptor based on the principles of the magnetite hypothesis are examined. Specific attention is given to the range of techniques, and main animal model systems that have been used in the search for magnetite particulates. Anatomical location/cell rarity and composition are identified as two key obstacles that must be addressed in order to make progress in locating and characterizing a magnetite-based magnetoreceptor cell. Avenues for further study are suggested, including the need for novel experimental, correlative, multimodal and multidisciplinary approaches. The aim of this review is to inspire new efforts towards understanding the cellular basis of magnetoreception in animals, which will in turn inform a new era of behavioural research based on first principles. PMID:26333810

  9. A STUDY OF MULTISTAGE/MULTIFUNCTION COLUMN FOR FINE PARTICLE SEPARATION

    SciTech Connect

    Dr. Shiao-Hung Chiang

    1999-10-01

    A non-agitated multi-stage column was constructed and applied to wastewater treatment. Preliminary oil/water separation tests were performed. Excellent separation results verifies the multi-function feature of the multi-stage column. Hydrodynamic behavior is considered as the underlying cause for the separation performance. Therefore, a series of experiments were carried out to investigate the hydrodynamic parameters, including gas holdups and liquid circulating velocities. The experimental data will be used to create a mathematical model to simulate the multi-stage column process. The model will further shed light on the future scale-up of the MSTLFLO process.

  10. A Study of Multistage/Multifunction Column for Fine Particle Separation.

    SciTech Connect

    Chiang, S.

    1997-09-15

    A non-agitated multi-stage column was constructed and applied to wastewater treatment. Preliminary oil/water separation tests were performed. Excellent separation results verifies the multi-function feature of the multi-stage column. Hydrodynamic behavior is considered as the underlying cause for the separation performance. Therefore, a series of experiments were carried out to investigate the hydrodynamic parameters, including gas holdups and liquid circulating velocities. The experimental data will be used to create a mathematical model to simulate the multi-stage column process. The model will further shed light on the future scale-up of the MSTLFLO process.

  11. Stochastic magnetization dynamics in single domain particles

    NASA Astrophysics Data System (ADS)

    Giordano, Stefano; Dusch, Yannick; Tiercelin, Nicolas; Pernod, Philippe; Preobrazhensky, Vladimir

    2013-06-01

    Magnetic particles are largely utilized in several applications ranging from magnetorheological fluids to bioscience and from nanothechnology to memories or logic devices. The behavior of each single particle at finite temperature (under thermal stochastic fluctuations) plays a central role in determining the response of the whole physical system taken into consideration. Here, the magnetization evolution is studied through the Landau-Lifshitz-Gilbert formalism and the non-equilibrium statistical mechanics is introduced with the Langevin and Fokker-Planck methodologies. As result of the combination of such techniques we analyse the stochastic magnetization dynamics and we numerically determine the convergence time, measuring the velocity of attainment of thermodynamic equilibrium, as function of the system temperature.

  12. Magnetic force on a magnetic particle within a high gradient magnetic separator

    NASA Astrophysics Data System (ADS)

    Baik, S. K.; Ha, D. W.; Kwon, J. M.; Lee, Y. J.; Ko, R. K.

    2013-01-01

    HGMS (High Gradient Magnetic Separator) uses matrix to make high magnetic field gradient so that ferro- or para-magnetic particles can be attracted to them by high magnetic force. The magnetic force generated by the field gradient is several thousand times larger than that by background magnetic field alone. So the HGMS shows excellent performance compared with other magnetic separators. These matrixes are usually composed of stainless steel wires having high magnetization characteristics. This paper deals with superconducting HGMS which is aimed for purifying waste water by using stainless steel matrix. Background magnetic field up to 6 T is generated by a superconducting solenoid and the stainless steel matrixes are arranged inside of the solenoid. Based on magnetic field calculated by FEM (Finite Element Method), we could calculate magnetic force acting on a magnetic particle such as hematite and maghemite consisting of major impurities in the condenser water of a thermal power station.

  13. Apparatus and method for handling magnetic particles in a fluid

    DOEpatents

    Holman, David A.; Grate, Jay W.; Bruckner-Lea, Cynthia J.

    2000-01-01

    The present invention is an apparatus and method for handling magnetic particles suspended in a fluid, relying upon the known features of a magnetic flux conductor that is permeable thereby permitting the magnetic particles and fluid to flow therethrough; and a controllable magnetic field for the handling. The present invention is an improvement wherein the magnetic flux conductor is a monolithic porous foam.

  14. Magnetic-fluorescent-targeting multifunctional aptasensorfor highly sensitive and one-step rapid detection of ochratoxin A.

    PubMed

    Wang, Chengquan; Qian, Jing; Wang, Kan; Wang, Kun; Liu, Qian; Dong, Xiaoya; Wang, Chengke; Huang, Xingyi

    2015-06-15

    A multifunctional aptasensor for highly sensitive and one-step rapid detection of ochratoxin A (OTA), has been developed using aptamer-conjugated magnetic beads (MBs) as the recognition and concentration element and a heavy CdTe quantum dots (QDs) as the label. Initially, the thiolated aptamer was conjugated on the Fe3O4@Au MBs through Au-S covalent binding. Subsequently, multiple CdTe QDs were loaded both in and on a versatile SiO2 nanocarrier to produce a large amplification factor of hybrid fluorescent nanoparticles (HFNPs) labeled complementary DNA (cDNA). The magnetic-fluorescent-targeting multifunctional aptasensor was thus fabricated by immobilizing the HFNPs onto MBs' surface through the hybrid reaction between the aptamer and cDNA. This aptasensor can be produced at large scale in a single run, and then can be conveniently used for rapid detection of OTA through a one-step incubation procedure. The presence of OTA would trigger aptamer-OTA binding, resulting in the partial release of the HFNPs into bulk solution. After a simple magnetic separation, the supernatant liquid of the above solution contained a great number of CdTe QDs produced an intense fluorescence emission. Under the optimal conditions, the fluorescence intensity of the released HFNPs was proportional to the concentration of OTA in a wide range of 15 pg mL(-1) -100 ng mL(-1) with a detection limit of 5.4 pg mL(-1) (S/N=3). This multifunctional aptasensor represents a promising path toward routine quality control of food safety, and also creates the opportunity to develop aptasensors for other targets using this strategy. PMID:25682508

  15. Synthesis and bio-functionalization of multifunctional magnetic Fe3O4@Y2O3:Eu nanocomposites

    PubMed Central

    Ma, Zhi Ya; Dosev, Dosi; Nichkova, Mikaela; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2010-01-01

    A facile homogenous precipitation method has been developed for the synthesis of multifunctional, magnetic, luminescent nanocomposites with Fe3O4 nanoparticles as the core and europium-doped yttrium oxide (Y2O3:Eu) as the shell. The nanocomposites showed both super-paramagnetic behavior and unique europium fluorescence properties with high emission intensity. Their surface has been modified with a bifunctional ligand, p-aminobenzoic acid (PABA), and further biofunctionalized with biotin; the nanocomposites showed specific targeting for avidin-coupled polystyrene beads. PMID:20357905

  16. A Multi-Functional Particle Spectrometer to be Demonstrated on Delfi-C3 Successor Nano Satellite

    NASA Astrophysics Data System (ADS)

    Lampridis, D.; Maddox, E.; Moon, S.; Kraft, S.; Elstak, J.; Rotteveel, J.

    2008-08-01

    In this article, a highly miniaturised Multi-functional Particle Spectrometer (MPS) is proposed for the monitoring of the space environment. The spectrometer separates protons, electrons, ions and gamma-rays, which affect systems differently, over a large energy range (0.1- 400 MeV). The proposed base line design consists of a combination of a solid state pixel tracker and a scintillation detector. Instrument control and data processing are performed with state-of-the-art electronics. Apart from its original focus in planetary exploration missions, the MPS has also been proposed and accepted to be demonstrated on the Delft University Delfi-C3 successor satellite (Delfi-n3Xt) in 2010. We present the design, mission goals and accommodation constraints on such a small satellite.

  17. Biodegradable Magnetic Particles for Cellular MRI

    NASA Astrophysics Data System (ADS)

    Nkansah, Michael Kwasi

    Cell transplantation has the potential to treat numerous diseases and injuries. While magnetic particle-enabled, MRI-based cell tracking has proven useful for visualizing the location of cell transplants in vivo, current formulations of particles are either too weak to enable single cell detection or have non-degradable polymer matrices that preclude clinical translation. Furthermore, the off-label use of commercial agents like Feridex®, Bangs beads and ferumoxytol for cell tracking significantly stunts progress in the field, rendering it needlessly susceptible to market externalities. The recent phasing out of Feridex from the market, for example, heightens the need for a dedicated agent specifically designed for MRI-based cell tracking. To this end, we engineered clinically viable, biodegradable particles of iron oxide made using poly(lactide-co-glycolide) (PLGA) and demonstrated their utility in two MRI-based cell tracking paradigms in vivo. Both micro- and nanoparticles (2.1±1.1 μm and 105±37 nm in size) were highly magnetic (56.7-83.7 wt% magnetite), and possessed excellent relaxometry (r2* relaxivities as high as 614.1 s-1mM-1 and 659.1 s -1mM-1 at 4.7 T respectively). Magnetic PLGA micropartides enabled the in vivo monitoring of neural progenitor cell migration to the olfactory bulb in rat brains over 2 weeks at 11.7 T with ˜2-fold greater contrast-to-noise ratio and ˜4-fold better sensitivity at detecting migrated cells in the olfactory bulb than Bangs beads. Highly magnetic PLGA nanoparticles enabled MRI detection (at 11.7 T) of up to 10 rat mesenchymal cells transplanted into rat brain at 100-μm resolution. Highly magnetic PLGA particles were also shown to degrade by 80% in mice liver over 12 weeks in vivo. Moreover, no adverse effects were observed on cellular viability and function in vitro after labeling a wide range of cells. Magnetically labeled rat mesenchymal and neural stem cells retained their ability to differentiate into multiple

  18. Homogeneous Biosensing Based on Magnetic Particle Labels

    PubMed Central

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824

  19. Homogeneous Biosensing Based on Magnetic Particle Labels.

    PubMed

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824

  20. Magnetic nanosensor particles in luminescence upconversion capability.

    PubMed

    Wilhelm, Stefan; Hirsch, Thomas; Scheucher, Elisabeth; Mayr, Torsten; Wolfbeis, Otto S

    2011-09-01

    Nanoparticles (NPs) exhibit interesting size-dependent electrical, optical, magnetic, and chemical properties that cannot be observed in their bulk counterparts. The synthesis of NPs (i.e., crystalline particles ranging in size from 1 to 100 nm) has been intensely studied in the past decades. Magnetic nanoparticles (MNPs) form a particularly attractive class of NPs and have found numerous applications such as in magnetic resonance imaging to visualize cancer, cardiovascular, neurological and other diseases. Other uses include drug targeting, tissue imaging, magnetic immobilization, hyperthermia, and magnetic resonance imaging. MNPs, due to their magnetic properties, can be easily separated from (often complex) matrices and manipulated by applying external magnetic field. Near-infrared to visible upconversion luminescent nanoparticles (UCLNPs) form another type of unusual nanoparticles. They are capable of emitting visible light upon NIR light excitation. Lanthanide-doped (Yb, Er) hexagonal NaYF₄ UCLNPs are the most efficient upconversion phosphors known up to now. The use of UCLNPs for in vitro imaging of cancer cells and in vivo imaging in tissues has been demonstrated. UCLNPs show great potential as a new class of luminophores for biological, biomedical, and sensor applications. We are reporting here on our first results on the combination of MNP and UCLNP technology within an ongoing project supported by the DFG and the FWF (Austria). PMID:22022719

  1. Magnetic particle imaging of blood coagulation

    SciTech Connect

    Murase, Kenya Song, Ruixiao; Hiratsuka, Samu

    2014-06-23

    We investigated the feasibility of visualizing blood coagulation using a system for magnetic particle imaging (MPI). A magnetic field-free line is generated using two opposing neodymium magnets and transverse images are reconstructed from the third-harmonic signals received by a gradiometer coil, using the maximum likelihood-expectation maximization algorithm. Our MPI system was used to image the blood coagulation induced by adding CaCl{sub 2} to whole sheep blood mixed with magnetic nanoparticles (MNPs). The “MPI value” was defined as the pixel value of the transverse image reconstructed from the third-harmonic signals. MPI values were significantly smaller for coagulated blood samples than those without coagulation. We confirmed the rationale of these results by calculating the third-harmonic signals for the measured viscosities of samples, with an assumption that the magnetization and particle size distribution of MNPs obey the Langevin equation and log-normal distribution, respectively. We concluded that MPI can be useful for visualizing blood coagulation.

  2. Magnetic particle imaging of blood coagulation

    NASA Astrophysics Data System (ADS)

    Murase, Kenya; Song, Ruixiao; Hiratsuka, Samu

    2014-06-01

    We investigated the feasibility of visualizing blood coagulation using a system for magnetic particle imaging (MPI). A magnetic field-free line is generated using two opposing neodymium magnets and transverse images are reconstructed from the third-harmonic signals received by a gradiometer coil, using the maximum likelihood-expectation maximization algorithm. Our MPI system was used to image the blood coagulation induced by adding CaCl2 to whole sheep blood mixed with magnetic nanoparticles (MNPs). The "MPI value" was defined as the pixel value of the transverse image reconstructed from the third-harmonic signals. MPI values were significantly smaller for coagulated blood samples than those without coagulation. We confirmed the rationale of these results by calculating the third-harmonic signals for the measured viscosities of samples, with an assumption that the magnetization and particle size distribution of MNPs obey the Langevin equation and log-normal distribution, respectively. We concluded that MPI can be useful for visualizing blood coagulation.

  3. Multi-functional core-shell hybrid nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery.

    PubMed

    Wu, Weitai; Shen, Jing; Gai, Zheng; Hong, Kunlun; Banerjee, Probal; Zhou, Shuiqin

    2011-12-01

    Remotely optical sensing and drug delivery using an environmentally-guided magnetically-driven hybrid nanogel particle could allow for medical diagnostics and treatment. Such multifunctional hybrid nanogels (<200 nm) were prepared through the first synthesis of magnetic Ni NPs, followed by a moderate growth of fluorescent metallic Ag on the surface of Ni NPs, and then a coverage of a pH-responsive copolymer gel shell of poly(ethylene glycol-co-methacrylic acid) [p(EG-MAA)] onto the Ni-Ag bimetallic NP cores (18 ± 5 nm). The introduction of the pH-responsive p(EG-MAA) gel shell onto the magnetic and fluorescent Ni-Ag NPs makes the polymer-bound Ni-Ag NPs responsive to pH over the physiologically important range 5.0-7.4. The hybrid nanogels can adapt to surrounding pH and regulate the sensitivity in response to external magnetic field (such as a small magnet of 0.1 T), resulting in the accumulation of the hybrid nanogels within the duration from hours to a few seconds as the pH value decreases from 7.4 to 5.0. The pH-dependent magnetic response characteristic of the hybrid nanogels were further integrated with the pH change to fluorescent signal transduction and pH-regulated anticancer drug (a model drug 5-fluorouracil) delivery functions. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells. The multiple responsive hybrid nanogel that can be manipulated in tandem endogenous and exogenous activation should enhance our ability to address the complexity of biological systems. PMID:21944827

  4. Batch extracting process using magnetic particle held solvents

    DOEpatents

    Nunez, L.; Vandergrift, G.F.

    1995-11-21

    A process is described for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents. 5 figs.

  5. Magnetic interaction of Janus magnetic particles suspended in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Seong, Yujin; Kang, Tae Gon; Hulsen, Martien A.; den Toonder, Jaap M. J.; Anderson, Patrick D.

    2016-02-01

    We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic particulate flow in the Stokes flow regime. Upon applying the magnetic field, contrary to isotropic paramagnetic particles, a single Janus particle can rotate due to the magnetic torque created by the magnetic anisotropy of the particle. In a two-particle problem, the orientation of each particle is found to be an additional factor that affects the critical angle separating the nature of magnetic interaction. Using multiparticle problems, we show that the orientation of the particles has a significant influence on the dynamics of the particles, the fluid flow induced by the actuated particles, and the final conformation of the particles. Straight and staggered chain structures observed experimentally can be reproduced numerically in a multiple particle problem.

  6. Multifunctional doxorubicin/superparamagnetic iron oxide-encapsulated Pluronic F127 micelles used for chemotherapy/magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Lai, Jian-Ren; Chang, Yong-Wei; Yen, Hung-Chi; Yuan, Nai-Yi; Liao, Ming-Yuan; Hsu, Chia-Yen; Tsai, Jai-Lin; Lai, Ping-Shan

    2010-05-01

    Polymeric micelles are frequently used to transport and deliver drugs throughout the body because they protect against degradation. Research on functional polymeric micelles for biomedical applications has generally shown that micelles have beneficial properties, such as specific functionality, enhanced specific tumor targeting, and stabilized nanostructures. The particular aim of this study was to synthesize and characterize multifunctional polymeric micelles for use in controlled drug delivery systems and biomedical imaging. In this study, a theranostic agent, doxorubicin/superparamagnetic iron oxide (SPIO)-encapsulated Pluronic F127 (F127) micelles, was developed for dual chemotherapy/magnetic resonance imaging (MRI) purposes, and the structure and composition of the micellar SPIO were characterized by transmission electron microscopy and magnetic measurements. Our results revealed that the micellar SPIO with a diameter of around 100 nm led to a significant advantage in terms of T2 relaxation as compared with a commercial SPIO contrast agent (Resovist®) without cell toxicity. After doxorubicin encapsulation, a dose-dependent darkening of MR images was observed and HeLa cells were killed by this theranostic micelle. These findings demonstrate that F127 micelles containing chemotherapeutic agents and SPIO could be used as a multifunctional nanocarrier for cancer treatment and imaging.

  7. Multifunctional Nanocarpets for Cancer Theranostics: Remotely Controlled Graphene Nanoheaters for Thermo-Chemosensitisation and Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Ramachandra Kurup Sasikala, Arathyram; Thomas, Reju George; Unnithan, Afeesh Rajan; Saravanakumar, Balasubramaniam; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2016-02-01

    A new paradigm in cancer theranostics is enabled by safe multifunctional nanoplatform that can be applied for therapeutic functions together with imaging capabilities. Herein, we develop a multifunctional nanocomposite consisting of Graphene Oxide-Iron Oxide -Doxorubicin (GO-IO-DOX) as a theranostic cancer platform. The smart magnetic nanoplatform acts both as a hyperthermic agent that delivers heat when an alternating magnetic field is applied and a chemotherapeutic agent in a cancer environment by providing a pH-dependent drug release to administer a synergistic anticancer treatment with an enhanced T2 contrast for MRI. The novel GO-IO-DOX nanocomposites were tested in vitro and were observed to exhibit an enhanced tumoricidal effect through both hyperthermia and cancer cell-specific DOX release along with an excellent MRI performance, enabling a versatile theranostic platform for cancer. Moreover the localized antitumor effects of GO-IO-DOX increased substantially as a result of the drug sensitization through repeated application of hyperthermia.

  8. Multifunctional Nanocarpets for Cancer Theranostics: Remotely Controlled Graphene Nanoheaters for Thermo-Chemosensitisation and Magnetic Resonance Imaging

    PubMed Central

    Ramachandra Kurup Sasikala, Arathyram; Thomas, Reju George; Unnithan, Afeesh Rajan; Saravanakumar, Balasubramaniam; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2016-01-01

    A new paradigm in cancer theranostics is enabled by safe multifunctional nanoplatform that can be applied for therapeutic functions together with imaging capabilities. Herein, we develop a multifunctional nanocomposite consisting of Graphene Oxide–Iron Oxide -Doxorubicin (GO-IO-DOX) as a theranostic cancer platform. The smart magnetic nanoplatform acts both as a hyperthermic agent that delivers heat when an alternating magnetic field is applied and a chemotherapeutic agent in a cancer environment by providing a pH-dependent drug release to administer a synergistic anticancer treatment with an enhanced T2 contrast for MRI. The novel GO-IO-DOX nanocomposites were tested in vitro and were observed to exhibit an enhanced tumoricidal effect through both hyperthermia and cancer cell-specific DOX release along with an excellent MRI performance, enabling a versatile theranostic platform for cancer. Moreover the localized antitumor effects of GO-IO-DOX increased substantially as a result of the drug sensitization through repeated application of hyperthermia. PMID:26841709

  9. Magnetic Particle Testing, RQA/M1-5330.16.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on magnetic particle testing. The subject is divided under the following headings: Introduction, Principles of Magnetic Particle Testing, Magnetic Particle Test…

  10. Microfluidic ultralow interfacial tensiometry with magnetic particles.

    PubMed

    Tsai, Scott S H; Wexler, Jason S; Wan, Jiandi; Stone, Howard A

    2013-01-01

    We describe a technique that measures ultralow interfacial tensions using paramagnetic spheres in a co-flow microfluidic device designed with a magnetic section. Our method involves tuning the distance between the co-flowing interface and the magnet's center, and observing the behavior of the spheres as they approach the liquid-liquid interface-the particles either pass through or are trapped by the interface. Using threshold values of the magnet-to-interface distance, we make estimates of the two-fluid interfacial tension. We demonstrate the effectiveness of this technique for measuring very low interfacial tensions, O(10(-6)-10(-5)) N m(-1), by testing solutions of different surfactant concentrations, and we show that our results are comparable with measurements made using a spinning drop tensiometer. PMID:23154819

  11. Particle deconfinement in a bent magnetic mirror

    SciTech Connect

    Gueroult, Renaud; Fisch, Nathaniel J.

    2012-11-06

    Here, coils misalignment in a magnetic mirror can produce additional particle transport. The magnetic field non axi-symmetry is responsible for radial and longitudinal drifts in a way much similar to the neo-classical transport in a tandem mirror cell distorted by end plugs. Accordingly, a regime exhibiting large radial displacements––similar to the resonant regime in tandem mirrors––can be obtained by confining ions azimuthally, for example by means of a properly tuned radial electric field. Because of the mass dependence of the magnetic field non-homogeneity drift velocities, the azimuthal trapping is mass specific, allowing, in principle, the filtering of a specific species based on its mass.

  12. Particle deconfinement in a bent magnetic mirror

    DOE PAGESBeta

    Gueroult, Renaud; Fisch, Nathaniel J.

    2012-11-06

    Here, coils misalignment in a magnetic mirror can produce additional particle transport. The magnetic field non axi-symmetry is responsible for radial and longitudinal drifts in a way much similar to the neo-classical transport in a tandem mirror cell distorted by end plugs. Accordingly, a regime exhibiting large radial displacements––similar to the resonant regime in tandem mirrors––can be obtained by confining ions azimuthally, for example by means of a properly tuned radial electric field. Because of the mass dependence of the magnetic field non-homogeneity drift velocities, the azimuthal trapping is mass specific, allowing, in principle, the filtering of a specific speciesmore » based on its mass.« less

  13. Tracer design for magnetic particle imaging (invited)

    PubMed Central

    Ferguson, R. Matthew; Khandhar, Amit P.; Krishnan, Kannan M.

    2012-01-01

    Magnetic particle imaging (MPI) uses safe iron oxide nanoparticle tracers to offer fundamentally new capabilities for medical imaging, in applications as vascular imaging and ultra-sensitive cancer therapeutics. MPI is perhaps the first medical imaging platform to intrinsically exploit nanoscale material properties. MPI tracers contain magnetic nanoparticles whose tunable, size-dependent magnetic properties can be optimized by selecting a particular particle size and narrow size-distribution. In this paper we present experimental MPI measurements acquired using a homemade MPI magnetometer: a zero-dimensional MPI imaging system designed to characterize tracer performance by measuring the derivative of the time-varying tracer magnetization, M’(H(t)), at a driving frequency of 25 kHz. We show that MPI performance is optimized by selecting phase-pure magnetite tracers of a particular size and narrow size distribution; in this work, tracers with 20 nm median diameter, log-normal distribution shape parameter, σv, equal to 0.26, and hydrodynamic diameter equal to 30 nm showed the best performance. Furthermore, these optimized MPI tracers show 4 × greater signal intensity (measured at the third harmonic) and 20% better spatial resolution compared with commercial nanoparticles developed for MRI. PMID:22434939

  14. Trajectory dependent particle response for anisotropic mono domain particles in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Graeser, M.; Bente, K.; Neumann, A.; Buzug, T. M.

    2016-02-01

    In magnetic particle imaging, scanners use different spatial sampling techniques to cover the field of view (FOV). As spatial encoding is realized by a selective low field region (a field-free-point, or field-free-line), this region has to be moved through the FOV on specific sampling trajectories. To achieve these trajectories complex time dependent magnetic fields are necessary. Due to the superposition of the selection field and the homogeneous time dependent fields, particles at different spatial positions experience different field sequences. As a result, the dynamic behaviour of those particles can be strongly spatially dependent. So far, simulation studies that determined the trajectory quality have used the Langevin function to model the particle response. This however, neglects the dynamic relaxation of the particles, which is highly affected by magnetic anisotropy. More sophisticated models based on stochastic differential equations that include these effects were only used for one dimensional excitation. In this work, a model based on stochastic differential equations is applied to two-dimensional trajectory field sequences, and the effects of these field sequences on the particle response are investigated. The results show that the signal of anisotropic particles is not based on particle parameters such as size and shape alone, but is also determined by the field sequence that a particle ensemble experiences at its spatial position. It is concluded, that the particle parameters can be optimized in terms of the used trajectory.

  15. Torsion Profiling of Proteins Using Magnetic Particles

    PubMed Central

    van Reenen, A.; Gutiérrez-Mejía, F.; van IJzendoorn, L.J.; Prins, M.W.J.

    2013-01-01

    We report a method to profile the torsional spring properties of proteins as a function of the angle of rotation. The torque is applied by superparamagnetic particles and has been calibrated while taking account of the magnetization dynamics of the particles. We record and compare the torsional profiles of single Protein G-Immunoglobulin G (IgG) and IgG-IgG complexes, sandwiched between a substrate and a superparamagnetic particle, for torques in the range between 0.5 × 103 and 5 × 103 pN·nm. Both molecular systems show torsional stiffening for increasing rotation angle, but the elastic and inelastic torsion stiffnesses are remarkably different. We interpret the results in terms of the structural properties of the molecules. The torsion profiling technique opens new dimensions for research on biomolecular characterization and for research on bio-nanomechanical structure-function relationships. PMID:23473490

  16. EDITORIAL: Cluster issue on fine particle magnetism

    NASA Astrophysics Data System (ADS)

    Fiorani, D.

    2008-07-01

    This Cluster issue of Journal of Physics D: Applied Physics arises from the 6th International Conference on Fine Particle Magnetism (ICFPM) held in Rome during 9-12 October 2007 at the headquarters of the National Research Council (NCR). It contains a collection of papers based on both invited and contributed presentations at the meeting. The ICFPM Conferences have previously been held in Rome, Italy (1991), Bangor, UK (1996), Barcelona, Spain (1999), Pittsburgh, USA (2002) and London, UK (2004). The aim of this series of Conferences is to bring together the experts in the field of nanoparticle magnetism at a single forum to discuss recent developments in both theoretical and experimental aspects, and technological applications. The Conference programme included sessions on: new materials, novel synthesis and processing techniques, with special emphasis on self-organized magnetic arrays; theory and modelling; surface and interface properties; transport properties; spin dynamics; magnetization reversal mechanisms; magnetic recording media and permanent magnets; biomedical applications and advanced investigation techniques. I would like to thank the European Physical Society and the Innovative Magnetic and Superconducting Materials and Devices Project of the Materials and Devices Department and the Institute of Structure of Matter (ISM) of CNR for their support. Thanks are also due to the members of the Programme Committee, to the local Organizing Committee, chaired by Elisabetta Agostinelli and to all the Conference participants. I am also indebted to the many scientists who contributed to assuring the high-quality of this Cluster by donating their time to reviewing the manuscripts contained herein. Finally, I'd like to dedicate this issue to the memories of Jean Louis Dormann, a great expert in nanoparticle magnetism, who was one of the promoters and first organizers of this series of Conferences, and of Grazia Ianni, the Conference secretary, who died before her

  17. Method of using triaxial magnetic fields for making particle structures

    DOEpatents

    Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.

    2005-01-18

    A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.

  18. Magnetic Particle Recovery of Serial Numbers

    SciTech Connect

    D. Utrata; M.J. Johnson

    2003-10-01

    One method used by crime labs to recover obliterated serial numbers in steel firearms (ferrous samples) is the magnetic particle technique. The use of this method is predicated on the detection of metal deformation present under stamped serial numbers after the visible stamp has been removed. Equipment specialized for this detection is not used in these attempts; a portable magnetic yoke used typically for flaw detection on large weldments or structures, along with dry visible magnetic powders, have been the tools of criminologists working in this area. Crime labs have reported low success rates using these tools [1, 2]. This is not surprising when one considers that little formal development has apparently evolved for use in such investigations since the publication of seminal work in this area some time ago [3]. The aim of this project is to investigate specific aspects of magnetic particle inspection for serial number recovery. This includes attempts to understand the magnetic characteristics of different steels that affect their performance in the test, such as varying results for carbon steels and alloy steels after different thermal and forming treatments. Also investigated are the effects of the nature of the sample magnetization (AC, rectified DC, and true DC) and the use of various detection media, such as visible powders and fluorescent sprays, on test outcome. Additionally, some aspects of surface preparation of firearm samples prior to number recovery were included in this work. The scope of this report includes a brief overview of the magnetic particle inspection method in general and its applications to forensic serial number recovery. This is followed by a description of how such investigations were simulated on lab samples, including a look at how the microstructure of a given steel will affect its performance in the test. Investigations into the serial number recovery in a series of ferromagnetic firearms (both steel and certain stainless steels

  19. Self organization and shear-jamming in magnetic photoelastic particles

    NASA Astrophysics Data System (ADS)

    Cox, Meredith; Wang, Dong; Bares, Jonathan; Behringer, Bob

    Many experimental studies of simple particles in granular systems have been conducted, but the behavior of complex particles in such systems has not been addressed. There has been a growing interest in functionalized microparticles, and the study of these complex particles may reveal interesting analogues between micro- and macroparticles. We perform experiments to investigate magnetic particles in a 2D granular material close to the jamming transition. We incrementally compress and shear photoelastic particles containing magnets and image the interparticle forces in each compression using a photoelastic technique. To track the orientation of individual particles, we draw UV-visible bars on each particle and image each compression of the system under ultraviolet light. We repeat the experimental procedure using varying ratios of magnetic to nonmagnetic particles from 0% magnetic to 100% magnetic. By using custom software to resolve particle deformations, we extract particle contact and pressure.

  20. Mesoporous Silica Particles as a Multifunctional Delivery System for Pain Relief in Experimental Neuropathy.

    PubMed

    Xie, Junran; Xiao, Dongju; Zhao, Jinning; Hu, Nianqiang; Bao, Qi; Jiang, Li; Yu, Lina

    2016-05-01

    The long-term use of potent analgesics is often needed to treat chronic pain. However, it has been greatly hindered by their side effects such as addiction and withdrawal reactions. The study seeks to circumvent these drawbacks by taking advantage of a multifunctional delivery system based on nanoparticles to target on pathological neuroinflammation. A drug delivery system is designed and generated using mesoporous silica nanoparticles (MSNs) that are loaded with Δ9-THC (Δ9-tetrahydrocannabinol, a cannabinoid) and ARA290 (an erythropoietin-derived polypeptide), both of which possess analgesic and anti-inflammatory functions. The actions of such THC-MSN-ARA290 nanocomplexes depend on the enhanced permeability and retention of THC through nanosized carriers, and a redox-sensitive release of conjugated ARA290 peptide into the local inflammatory milieu. The biosafety and anti-inflammatory effects of the nanocomplexes are first evaluated in primary microglia in vitro, and further in a mouse model of chronic constriction injury. It is found that the nanocomplexes attenuate in vitro and in vivo inflammation, and achieve a sustained relief of neuropathic pain in injured animals induced by both thermal hyperalgesia and mechanical allodynia. Thus, a nanoparticle-based carrier system can be useful for the amelioration of chronic neuropathic pain through combinatorial drug delivery. PMID:27028159

  1. Effect of particle interactions on thermoremanent magnetization

    NASA Astrophysics Data System (ADS)

    Newell, A. J.; Niemerg, M.; Bates, D.

    2013-12-01

    Paleomagnetism has a dizzying array of protocols for determining the strength of the Earth's magnetic field in the past from measurements of the magnetic memory in rocks. Some, such as variants of the Thellier-Thellier method, try to isolate the signal from an "ideal" fraction of magnetic minerals, discarding the contribution of "non-ideal" minerals; others, like the multi-specimen method, try to glean useful information from all of the minerals. The "ideal" remanence carriers behave like single-domain (SD) magnets with uniaxial anisotropy, and their behavior is predicted by Louis Néel's theory of thermoremanent magnetization (TRM). Non-ideal carriers are not at all well understood, but every paleointensity method relies on assumptions about their nature to either remove their signal or make use of it. One way to explore the boundary between ideal and non-ideal is to look at the behavior of SD magnets as they are brought increasingly close together, thus increasing the strength of the magnetostatic coupling between them. Magnetostatic coupling greatly increases the complexity of such a system. Instead of just two stable states, many must be found. Instead of one energy barrier, there is a network of connections between stable states over energy barriers. Instead of one rate for the relaxation of a system towards equilibrium, there are several. It is particularly difficult to find the transition states at the top of the energy barriers. We have developed software that does all of the above. A method from algebraic geometry called homotopy continuation is used to find all stable states and transition states. The software can track changes in these states with magnetic field, temperature, or other external variables. We use it to model TRM acquisition in small systems of interacting particles, and examine its behavior under various paleointensity tests.

  2. Associated Particle Tagging (APT) in Magnetic Spectrometers

    SciTech Connect

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  3. Test particles in a magnetized conformastatic spacetime

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Piñeres, Antonio C.; Capistrano, Abraão J. S.; Quevedo, Hernando

    2016-06-01

    A class of exact conformastatic solutions of the Einstein-Maxwell field equations is presented in which the gravitational and electromagnetic potentials are completely determined by a harmonic function. We derive the equations of motion for neutral and charged particles in a spacetime background characterized by this class of solutions. As an example, we focus on the analysis of a particular harmonic function, which generates a singularity-free and asymptotically flat spacetime that describes the gravitational field of a punctual mass endowed with a magnetic field. In this particular case, we investigate the main physical properties of equatorial circular orbits. We show that due to the electromagnetic interaction, it is possible to have charged test particles which stay at rest with respect to a static observer located at infinity. Additionally, we obtain an analytic expression for the perihelion advance of test particles and the corresponding explicit value in the case of a punctual magnetic mass. We show that the analytical expressions obtained from our analysis are sufficient for being confronted with observations in order to establish whether such objects can exist in nature.

  4. Multifunctional Plasmonic Shell–Magnetic Core Nanoparticles for Targeted Diagnostics, Isolation, and Photothermal Destruction of Tumor Cells

    PubMed Central

    Fan, Zhen; Shelton, Melanie; Singh, Anant Kumar; Senapati, Dulal; Khan, Sadia Afrin; Ray, Paresh Chandra

    2012-01-01

    Cancer is the greatest challenge in human healthcare today. Cancer causes 7.6 million deaths and economic losses of around 1 trillion dollars every year. Early diagnosis and effective treatment of cancer are crucial for saving lives. Driven by these needs, we report the development of a multifunctional plasmonic shell–magnetic core nanotechnology-driven approach for the targeted diagnosis, isolation, and photothermal destruction of cancer cells. Experimental data show that aptamer-conjugated plasmonic/magnetic nanoparticles can be used for targeted imaging and magnetic separation of a particular kind of cell from a mixture of different cancer cells. A targeted photothermal experiment using 670-nm light at 2.5 W/cm2 for 10 minutes resulted selective irreparable cellular damage to most of the cancer cells. We also showed that the aptamer-conjugated magnetic/plasmonic nanoparticle-based photothermal destruction of cancer cells is highly selective. We discuss the possible mechanism and operating principle for the targeted imaging, separation, and photothermal destruction using magnetic/plasmonic nanotechnology. PMID:22276857

  5. Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells.

    PubMed

    Fan, Zhen; Shelton, Melanie; Singh, Anant Kumar; Senapati, Dulal; Khan, Sadia Afrin; Ray, Paresh Chandra

    2012-02-28

    Cancer is the greatest challenge in human healthcare today. Cancer causes 7.6 million deaths and economic losses of around 1 trillion dollars every year. Early diagnosis and effective treatment of cancer are crucial for saving lives. Driven by these needs, we report the development of a multifunctional plasmonic shell-magnetic core nanotechnology-driven approach for the targeted diagnosis, isolation, and photothermal destruction of cancer cells. Experimental data show that aptamer-conjugated plasmonic/magnetic nanoparticles can be used for targeted imaging and magnetic separation of a particular kind of cell from a mixture of different cancer cells. A targeted photothermal experiment using 670 nm light at 2.5 W/cm(2) for 10 min resulted selective irreparable cellular damage to most of the cancer cells. We also showed that the aptamer-conjugated magnetic/plasmonic nanoparticle-based photothermal destruction of cancer cells is highly selective. We discuss the possible mechanism and operating principle for the targeted imaging, separation, and photothermal destruction using magnetic/plasmonic nanotechnology. PMID:22276857

  6. Particle transport due to magnetic fluctuations

    SciTech Connect

    Stoneking, M.R.; Hokin, S.A.; Prager, S.C.; Fiksel, G.; Ji, H.; Den Hartog, D.J.

    1994-01-01

    Electron current fluctuations are measured with an electrostatic energy analyzer at the edge of the MST reversed-field pinch plasma. The radial flux of fast electrons (E>T{sub e}) due to parallel streaming along a fluctuating magnetic field is determined locally by measuring the correlated product <{tilde J}{sub e}{tilde B}{sub r}>. Particle transport is small just inside the last closed flux surface ({Gamma}{sub e,mag} < 0.1 {Gamma}{sub e,total}), but can account for all observed particle losses inside r/a=0.8. Electron diffusion is found to increase with parallel velocity, as expected for diffusion in a region of field stochasticity.

  7. Review of progress in magnetic particle inspection

    NASA Astrophysics Data System (ADS)

    Eisenmann, David J.; Enyart, Darrel; Lo, Chester; Brasche, Lisa

    2014-02-01

    Magnetic particle inspection (MPI) has been widely utilized for decades, and sees considerable use in the aerospace industry with a majority of the steel parts being inspected with MPI at some point in the lifecycle. Typical aircraft locations inspected are landing gear, engine components, attachment hardware, and doors. In spite of its numerous applications the method remains poorly understood, and there are many aspects of that method which would benefit from in-depth study. This shortcoming is due to the fact that MPI combines the complicated nature of electromagnetics, metallurgical material effects, fluid-particle motion dynamics, and physiological human factors into a single inspection. To promote understanding of the intricate method issues that affect sensitivity, or to assist with the revision of industry specifications and standards, research studies will be prioritized through the guidance of a panel of industry experts, using an approach which has worked successfully in the past to guide fluorescent penetrant inspection (FPI) research efforts.

  8. Magnetic-particle-sensing based diagnostic protocols and applications.

    PubMed

    Takamura, Tsukasa; Ko, Pil Ju; Sharma, Jaiyam; Yukino, Ryoji; Ishizawa, Shunji; Sandhu, Adarsh

    2015-01-01

    Magnetic particle-labeled biomaterial detection has attracted much attention in recent years for a number of reasons; easy manipulation by external magnetic fields, easy functionalization of the surface, and large surface-to-volume ratio, to name but a few. In this review, we report on our recent investigations into the detection of nano-sized magnetic particles. First, the detection by Hall magnetic sensor with lock-in amplifier and alternative magnetic field is summarized. Then, our approach to detect sub-200 nm diameter target magnetic particles via relatively large micoro-sized "columnar particles" by optical microscopy is described. Subsequently, we summarize magnetic particle detection based on optical techniques; one method is based on the scattering of the magnetically-assembled nano-sized magnetic bead chain in rotating magnetic fields and the other one is based on the reflection of magnetic target particles and porous silicon. Finally, we report recent works with reference to more familiar industrial products (such as smartphone-based medical diagnosis systems and magnetic removal of unspecific-binded nano-sized particles, or "magnetic washing"). PMID:26053747

  9. Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Banerjee, Shashwat S.; Chen, Dong-Hwang

    2008-12-01

    A novel multifunctional magnetic nanocarrier was fabricated for synchronous cancer therapy and sensing. The nanocarrier, programed to display a response to environmental stimuli (pH value), was synthesized by coupling doxorubicin (DOX) to adipic dihydrazide-grafted gum arabic modified magnetic nanoparticles (ADH-GAMNP) via the hydrolytically degradable pH-sensitive hydrazone bond. The resultant nanocarrier, DOX-ADH-GAMNP, had a mean diameter of 13.8 nm and the amount of DOX coupled was about 6.52 mg g-1. Also, it exhibited pH triggered release of DOX in an acidic environment (pH 5.0) but was relatively stable at physiological pH (pH 7.4). Furthermore, both GAMNP and DOX were found to possess fluorescence properties when excited in the near-infrared region due to the two-photon absorption mechanism. The coupling of DOX to GAMNP resulted in a reversible self-quenching of fluorescence through the fluorescence resonant energy transfer (FRET) between the donor GAMNP and acceptor DOX. The release of DOX from DOX-ADH-GAMNP when exposed to acidic media indicated the recovery of fluorescence from both GAMNP and DOX. The change in the fluorescence intensity of DOX-ADH-GAMNP on the release of DOX can act as a potential sensor to sense the delivery of the drug. The analysis of zeta potential and plasmon absorbance in different pH conditions also confirmed the pH sensitivity of the product. This multifunctional nanocarrier is a significant breakthrough in developing a drug delivery vehicle that combines drug targeting as well as sensing and therapy at the same time.

  10. Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery.

    PubMed

    Banerjee, Shashwat S; Chen, Dong-Hwang

    2008-12-17

    A novel multifunctional magnetic nanocarrier was fabricated for synchronous cancer therapy and sensing. The nanocarrier, programed to display a response to environmental stimuli (pH value), was synthesized by coupling doxorubicin (DOX) to adipic dihydrazide-grafted gum arabic modified magnetic nanoparticles (ADH-GAMNP) via the hydrolytically degradable pH-sensitive hydrazone bond. The resultant nanocarrier, DOX-ADH-GAMNP, had a mean diameter of 13.8 nm and the amount of DOX coupled was about 6.52 mg g(-1). Also, it exhibited pH triggered release of DOX in an acidic environment (pH 5.0) but was relatively stable at physiological pH (pH 7.4). Furthermore, both GAMNP and DOX were found to possess fluorescence properties when excited in the near-infrared region due to the two-photon absorption mechanism. The coupling of DOX to GAMNP resulted in a reversible self-quenching of fluorescence through the fluorescence resonant energy transfer (FRET) between the donor GAMNP and acceptor DOX. The release of DOX from DOX-ADH-GAMNP when exposed to acidic media indicated the recovery of fluorescence from both GAMNP and DOX. The change in the fluorescence intensity of DOX-ADH-GAMNP on the release of DOX can act as a potential sensor to sense the delivery of the drug. The analysis of zeta potential and plasmon absorbance in different pH conditions also confirmed the pH sensitivity of the product. This multifunctional nanocarrier is a significant breakthrough in developing a drug delivery vehicle that combines drug targeting as well as sensing and therapy at the same time. PMID:19942761

  11. Energetic Particles Events inside Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Medina, Jose; Hidalgo, Miguel Angel; Blanco, Juan Jose; Rodriguez-Pacheco, Javier

    The effect of the magnetic topology of the Magnetic Clouds (MCs) over the energetic particle event (EPe) fluxes (0.5-100 MeV) have been simulated. In the data corresponding to the ion and electron fluxes, a depression after a strong maximum is observed when a EPe passes through a MC. Using our cross-section circular and elliptical MC models (Journal of Geophysical Research 107(1), doi:10.1029/2001JA900100 (2002) and Solar Physics 207(1), 187-198 (2002)) we have tried to explain that effect, understanding the importance of the topology of the MC. In sight of the results of the preliminary analysis we conclude that the magnitude of the magnetic field seems not to play a significant role but the helicoidal topology associated with topology of the MCs. This work has been supported by the Spanish Comisín Internacional de o Ciencia y Tecnoloǵ (CICYT), grant ESP2005-07290-C02-01 and ESP2006-08459. This work ıa is performed inside COST Action 724.

  12. EDITORIAL: Energetic particles in magnetic confinement systems

    NASA Astrophysics Data System (ADS)

    Toi, K.

    2006-10-01

    Energetic alpha particle physics plays an obviously crucial role in burning fusion plasmas. Good confinement of them is required to sustain fusion burn and to avoid damage of the first wall. Because of this importance for nuclear fusion research, Y. Kolesnichenko and the late D. Sigmar initiated a series of IAEA technical (committee) meetings (TCM, since the 8th meeting TM) in order to exchange information on the behaviour of energetic particles in magnetic confinement devices. The role of the TMs has become increasingly important since burning plasma projects such as ITER are in preparation. After every TM, invited speakers are encouraged to publish an adapted and extended version of their contributions to the meeting as an article in a special issue of Nuclear Fusion. An exception was the 8th TM the articles of which were published in a special issue of Plasma Physics and Controlled Fusion (2004 46 S1-118). These special issues attract much interest in the subject. The 9th IAEA TM of this series was held in Takayama, Japan, 9-11 November 2005, and 53 papers including 16 invited talks were presented. A total of 11 papers based on these invited talks are included in this special issue of Nuclear Fusion and are preceded by a conference summary. Experimental results of energetic ion driven global instabilities such as Alfvén eigenmodes (AEs), energetic particle modes (EPMs) and fishbone instabilities were presented from several tokamaks (JET, JT-60U, DIII-D and ASDEX Upgrade), helical/stellarator devices (LHD and CHS) and spherical tori (NSTX and MAST). Experimental studies from JET and T-10 tokamaks on the interaction of ion cyclotron waves with energetic ions and runaway electrons were also presented. Theoretical works on AEs, EPMs and nonlinear phenomena induced by energetic particles were presented and compared with experimental data. Extensive numerical codes have been developed and applied to obtain predictions of energetic particle behaviour in future ITER

  13. Remote Control of T Cell Activation Using Magnetic Janus Particles.

    PubMed

    Lee, Kwahun; Yi, Yi; Yu, Yan

    2016-06-20

    We report a strategy for using magnetic Janus microparticles to control the stimulation of T cell signaling with single-cell precision. To achieve this, we designed Janus particles that are magnetically responsive on one hemisphere and stimulatory to T cells on the other side. By manipulating the rotation and locomotion of Janus particles under an external magnetic field, we could control the orientation of the particle-cell recognition and thereby the initiation of T cell activation. This study demonstrates a step towards employing anisotropic material properties of Janus particles to control single-cell activities without the need of complex magnetic manipulation devices. PMID:27144475

  14. Influence of Nanocrystalline Ferrite Particles on Properties of Magnetic Systems

    NASA Astrophysics Data System (ADS)

    Mueller, Robert; Habisreuther, Tobias; Hiergeist, Robert; Steinmetz, Hanna; Zeisberger, Matthias; Gawalek, Wolfgang

    Nanocrystalline mainly superparamagnetic ferrite particles ≈ 10 nm are used for the preparation of magnetic fluids. Barium hexaferrite BaFe12-2xTixCoxO19 powders with mean particle sizes < 30 nm show the transition to single domain Stoner-Wohlfarth behaviour. Hysteresis parameters, losses and the initial susceptibility versus temperature were obtained by VSM. Ba-ferrite ferrofluids have been prepared using Isopar M or dodecane as carrier liquid. Small Angle Neutron Scattering curves lead to a bimodal size distribution consisting of single magnetic particles and aggregated magnetic particles. Particle size investigations were done by TEM.

  15. Fluorescent-magnetic Janus particles prepared via seed emulsion polymerization.

    PubMed

    Kaewsaneha, Chariya; Bitar, Ahmad; Tangboriboonrat, Pramuan; Polpanich, Duangporn; Elaissari, Abdelhamid

    2014-06-15

    Anisotropic polymeric colloidal or Janus particles possessing simultaneous magnetic and fluorescent properties were successfully prepared via the swelling-diffusion or the in situ emulsion polymerization method. In the swelling-diffusion process, magnetic emulsions (an organic ferrofluid dispersed in aqueous medium) were synthesized and used for seeds of submicron magnetic Janus particles. After swelling the anisotropic particles obtained by 1-pyrene-carboxaldehyde fluorescent dye dissolved in tetrahydrofuran, well-defined fluorescent-magnetic Janus particles were produced. In the in situ emulsion polymerization, styrene monomer mixed with fluorescent dye monomers, i.e., 1-pyrenylmethyl methacrylate (PyMMA) or fluorescein dimethacrylate (FDMA), and an oil-soluble initiator (2,2'-azobis(2-isobutyronitrile)) were emulsified in the presence of magnetic seed emulsions. The confocal microscopic images showed the fluorescent-magnetic Janus particles with high fluorescent intensity when a fluorescent crosslinker monomer FDMA was employed. PMID:24767504

  16. Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability.

    PubMed

    Ke, Fei; Wang, Luhuan; Zhu, Junfa

    2015-01-21

    The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional catalysts used in the reduction of 4-nitrophenol, this porous MOF-based magnetic catalyst is green, cheap and promising for industrial applications. PMID:25486865

  17. Multifunctional reduction-responsive SPIO&DOX-loaded PEGylated polymeric lipid vesicles for magnetic resonance imaging-guided drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Yang, Weitao; Du, Hongli; Guo, Fangfang; Wang, Hanjie; Chang, Jin; Gong, Xiaoqun; Zhang, Bingbo

    2016-04-01

    Multifunctional superparamagnetic iron-oxide (SPIO)-based nanoparticles have been emerging as candidate nanosystems for cancer diagnosis and therapy. Here, we report the use of reduction- responsive SPIO/doxorubicin (DOX)-loaded poly(ethylene glycol) monomethyl ether (PEG)ylated polymeric lipid vesicles (SPIO&DOX-PPLVs) as a novel theranostic system for tumor magnetic resonance imaging (MRI) diagnosis and controlled drug delivery. These SPIO&DOX-PPLVs are composed of SPIOs that function as MR contrast agents for tumor enhancement and PPLVs as polymer matrices for encapsulating SPIO and antitumor drugs. The in vitro characterizations show that the SPIO&DOX-PPLVs have nanosized structures (˜80 nm), excellent colloidal stability, good biocompatibility, as well as T 2-weighted MRI capability with a relatively high T 2 relaxivity (r 2 = 213.82 mM-1 s-1). In vitro drug release studies reveal that the release rate of DOX from the SPIO&DOX-PPLVs is accelerated in the reduction environment. An in vitro cellular uptake study and an antitumor study show that the SPIO&DOX-PPLVs have magnetic targeting properties and effective antitumor activity. In vivo studies show the SPIO&DOX-PPLVs have excellent T 2-weighted tumor targeted MRI capability, image-guided drug delivery capability, and high antitumor effects. These results suggest that the SPIO&DOX-PPLVs are promising nanocarriers for MRI diagnosis and cancer therapy applications.

  18. Multifunctional reduction-responsive SPIO&DOX-loaded PEGylated polymeric lipid vesicles for magnetic resonance imaging-guided drug delivery.

    PubMed

    Wang, Sheng; Yang, Weitao; Du, Hongli; Guo, Fangfang; Wang, Hanjie; Chang, Jin; Gong, Xiaoqun; Zhang, Bingbo

    2016-04-22

    Multifunctional superparamagnetic iron-oxide (SPIO)-based nanoparticles have been emerging as candidate nanosystems for cancer diagnosis and therapy. Here, we report the use of reduction- responsive SPIO/doxorubicin (DOX)-loaded poly(ethylene glycol) monomethyl ether (PEG)ylated polymeric lipid vesicles (SPIO&DOX-PPLVs) as a novel theranostic system for tumor magnetic resonance imaging (MRI) diagnosis and controlled drug delivery. These SPIO&DOX-PPLVs are composed of SPIOs that function as MR contrast agents for tumor enhancement and PPLVs as polymer matrices for encapsulating SPIO and antitumor drugs. The in vitro characterizations show that the SPIO&DOX-PPLVs have nanosized structures (∼80 nm), excellent colloidal stability, good biocompatibility, as well as T2-weighted MRI capability with a relatively high T2 relaxivity (r2 = 213.82 mM(-1) s(-1)). In vitro drug release studies reveal that the release rate of DOX from the SPIO&DOX-PPLVs is accelerated in the reduction environment. An in vitro cellular uptake study and an antitumor study show that the SPIO&DOX-PPLVs have magnetic targeting properties and effective antitumor activity. In vivo studies show the SPIO&DOX-PPLVs have excellent T2-weighted tumor targeted MRI capability, image-guided drug delivery capability, and high antitumor effects. These results suggest that the SPIO&DOX-PPLVs are promising nanocarriers for MRI diagnosis and cancer therapy applications. PMID:26941226

  19. Size Effects on the Magnetic Properties of Nanoscale Particles

    NASA Astrophysics Data System (ADS)

    Chen, Jianping

    Finite size effects on the magnetic properties of nanoscale particles have been studied in this work. The first system studied was MnFe_2O _4 prepared by coprecipitation followed by digestion. The particles were single crystals with an average diameter controllable from 5 nm to 25 nm. These particles have a higher inversion degree of metal ion distribution between the tetrahedral sites and octahedral sites of the spinel structure than those synthesized with ceramic methods. This higher inversion leads to a higher Curie temperature. We found that the structure of the particles can be varied by heat treatment. The Curie temperature of the particles decreased after heat treatment in inert gas, however, it increased after heat treatment in air. The size effects show in two aspects on the MnFe_2O _4 particles. First, the Curie temperature decreased as particles size was reduced, which was explained by finite size scaling. Second, the saturation magnetization decreased as particle size decreased because of the existence of a nonmagnetic layer on the surface of MnFe_2 O_4 particles. The second system studied was Co particles synthesized with an inverse micelle technique. The particles were small (1-5 nm) and had a narrow size distribution. The Co particles were superparamagnetic at room temperature and showed a set of consistent magnetic data in magnetic moment per particle, coercivity, and blocking temperature. We found the anisotropy constant and saturation magnetization of Co particles had a strong size dependence. The anisotropy constant was above the bulk value of Co and increased as particle size decreased. The saturation magnetization increased as the particle became smaller. The magnetic properties of Co particles also strongly suggested a core/shell structure in each particle. But no physical inhomogeneity was observed. We have also studied ligand effects on the magnetic properties of Co particles. The magnetization of the Co particles was quenched by 36%, 27

  20. Functionalizable silica-based micron-sized iron oxide particles for cellular magnetic resonance imaging.

    PubMed

    Raschzok, Nathanael; Langer, Carolin M; Schmidt, Christian; Lerche, Karl H; Billecke, Nils; Nehls, Kerstin; Schlüter, Natalie B; Leder, Annekatrin; Rohn, Susanne; Mogl, Martina T; Lüdemann, Lutz; Stelter, Lars; Teichgräber, Ulf K; Neuhaus, Peter; Sauer, Igor M

    2013-01-01

    Cellular therapies require methods for noninvasive visualization of transplanted cells. Micron-sized iron oxide particles (MPIOs) generate a strong contrast in magnetic resonance imaging (MRI) and are therefore ideally suited as an intracellular contrast agent to image cells under clinical conditions. However, MPIOs were previously not applicable for clinical use. Here, we present the development and evaluation of silica-based micron-sized iron oxide particles (sMPIOs) with a functionalizable particle surface. Particles with magnetite content of >40% were composed using the sol-gel process. The particle surfaces were covered with COOH groups. Fluorescein, poly-L-lysine (PLL), and streptavidin (SA) were covalently attached. Monodisperse sMPIOs had an average size of 1.18 µm and an iron content of about 1.0 pg Fe/particle. Particle uptake, toxicity, and imaging studies were performed using HuH7 cells and human and rat hepatocytes. sMPIOs enabled rapid cellular labeling within 4 h of incubation; PLL-modified particles had the highest uptake. In T2*-weighted 3.0 T MRI, the detection threshold in agarose was 1,000 labeled cells, whereas in T1-weighted LAVA sequences, at least 10,000 cells were necessary to induce sufficient contrast. Labeling was stable and had no adverse effects on labeled cells. Silica is a biocompatible material that has been approved for clinical use. sMPIOs could therefore be suitable for future clinical applications in cellular MRI, especially in settings that require strong cellular contrast. Moreover, the particle surface provides the opportunity to create multifunctional particles for targeted delivery and diagnostics. PMID:23294541

  1. Magnetic particle motions within living cells. Physical theory and techniques.

    PubMed Central

    Valberg, P A; Butler, J P

    1987-01-01

    Body tissues are not ferromagnetic, but ferromagnetic particles can be present as contaminants or as probes in the lungs and in other organs. The magnetic domains of these particles can be aligned by momentary application of an external magnetic field; the magnitude and time course of the resultant remanent field depend on the quantity of magnetic material and the degree of particle motion. The interpretation of magnetometric data requires an understanding of particle magnetization, agglomeration, random motion, and both rotation and translation in response to magnetic fields. We present physical principles relevant to magnetometry and suggest models for intracellular particle motion driven by thermal, elastic, or cellular forces. The design principles of instrumentation for magnetizing intracellular particles and for detecting weak remanent magnetic fields are described. Such magnetic measurements can be used for noninvasive studies of particle clearance from the body or of particle motion within body tissues and cells. Assumptions inherent to this experimental approach and possible sources of artifact are considered and evaluated. PMID:3676435

  2. Magnetic particle-scanning for ultrasensitive immunodetection on-chip.

    PubMed

    Cornaglia, Matteo; Trouillon, Raphaël; Tekin, H Cumhur; Lehnert, Thomas; Gijs, Martin A M

    2014-08-19

    We describe the concept of magnetic particle-scanning for on-chip detection of biomolecules: a magnetic particle, carrying a low number of antigens (Ag's) (down to a single molecule), is transported by hydrodynamic forces and is subjected to successive stochastic reorientations in an engineered magnetic energy landscape. The latter consists of a pattern of substrate-bound small magnetic particles that are functionalized with antibodies (Ab's). Subsequationuent counting of the captured Ag-carrying particles provides the detection signal. The magnetic particle-scanning principle is investigated in a custom-built magneto-microfluidic chip and theoretically described by a random walk-based model, in which the trajectory of the contact point between an Ag-carrying particle and the small magnetic particle pattern is described by stochastic moves over the surface of the mobile particle, until this point coincides with the position of an Ag, resulting in the binding of the particle. This model explains the particular behavior of previously reported experimental dose-response curves obtained for two different ligand-receptor systems (biotin/streptavidin and TNF-α) over a wide range of concentrations. Our model shows that magnetic particle-scanning results in a very high probability of immunocomplex formation for very low Ag concentrations, leading to an extremely low limit of detection, down to the single molecule-per-particle level. When compared to other types of magnetic particle-based surface coverage assays, our strategy was found to offer a wider dynamic range (>8 orders of magnitude), as the system does not saturate for concentrations as high as 10(11) Ag molecules in a 5 μL drop. Furthermore, by emphasizing the importance of maximizing the encounter probability between the Ag and the Ab to improve sensitivity, our model also contributes to explaining the behavior of other particle-based heterogeneous immunoassays. PMID:25072276

  3. Optical, magnetic and electrical properties of multifunctional Cr3+: Polyethylene oxide (PEO) + polyvinylpyrrolidone (PVP) polymer composites

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, K.; Rao, J. L.; Ratnakaram, Y. C.

    2015-11-01

    Multifunctional polymer composite films of PEO + PVP and also doped with Cr3+ ions in different concentrations have been synthesized by a solution casting method. The semi-crystalline nature of the polymer films was confirmed by XRD studies. Raman spectral analysis confirms the complex formation of the polymer with dopant ions. The optical absorption spectrum of Cr3+ doped polymer exhibits three absorption bands pertaining to Cr3+ ions in octahedral symmetry. From the absorption spectrum, Racah parameters were evaluated. The red emission at 614 nm (4T2g→4A2g) has been observed for the Cr3+: PEO + PVP polymer under the UV excitation. EPR spectra of Cr3+ ions doped polymers at different concentrations of Cr3+ ions exhibit resonance signals which are characteristic of Cr3+ ions in the octahedral symmetry. Cr3+: PEO + PVP revealed the superparamagnetic nature based on the trends on Vibrational Sample Magnetometer profiles. Cr3+(0.1 wt%): PEO + PVP polymer reveals high ionic conductivity in the order of 1.14 × 10-5 S/cm at 373 K. Dielectric constant behaviour has also been analysed with respect to frequency.

  4. Shock induced magnetic effects in fine particle iron dispersions

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.

    1979-01-01

    Magnetic effects associated with shock induced transformation of fcc antiferromagnetic iron precipitates in polycrystalline copper disks at levels up to 5 GPa in weak magnetic fields (H not greater than 0.5 Oe) were investigated. The demagnetization and anisotropy associated with second order transition, the effects of plastic deformation in imparting magnetic anisotropy and magnetic hardening, and the influence of post shock thermal transients on magnetization associated with recovery, recrystallization and grain growth were studied. It was found that on the microsecond time scale of the shock induced first order transformation, the field sense is recorded in the transformed iron particles. For a given particle size the degree of transformation of fcc iron depends on the level of the shock. For a given shock level the resultant magnetic properties depend on the particle size distribution, with maximum effects noted in specimens with 400 to 600 A particles.

  5. Multifunctional necklace-like Cu@cross-linked poly(vinyl alcohol) microcables with fluorescent property and their manipulation by an external magnet.

    PubMed

    Zhang, Sen; Zhu, Hui-Yuan; Hu, Zhi-Bin; Liu, Lu; Chen, Shao-Feng; Yu, Shu-Hong

    2009-05-01

    Unique magnetite-nanoparticles-attached necklace-like Cu@cross-linked poly(vinyl alcohol) (PVA) microcables with multi-functionalities can be synthesized by in situ loading the magnetite nanoparticles in the network structure of a cross-linked PVA sheath using a modified polyol method; the superparamagnetic and green fluorescent properties of the cables enable this type of magnetic functionalized microcables to be manipulated and detected easily for device fabrication. PMID:19377674

  6. Self organization and jamming in magnetic photoelastic particles

    NASA Astrophysics Data System (ADS)

    Cox, Meredith; Bares, Jonathan; Wang, Dong; Behringer, Robert

    2015-11-01

    Many experimental studies of simple particles in granular systems have been conducted, but the behavior of complex particles in such systems has not been addressed. There has been a growing interest in functionalized microparticles, and the study of these complex particles may reveal interesting analogues between micro- and macroparticles. We perform experiments to investigate magnetic particles in a 2D granular material close to the jamming transition. We incrementally compress photoelastic particles containing magnets and image the interparticle forces in each compression using a photoelastic technique. To track the orientation of individual particles, we draw UV-visible bars on each particle and image each compression of the system under ultraviolet light. We repeat the experimental procedure using varying ratios of magnetic to nonmagnetic particles from 0% magnetic to 100% magnetic. By using custom software to resolve particle deformations, we extract particle contact forces and demonstrate that as the concentration of nonmagnetic particles grows, the rate of increase of pressure with strain also grows. We acknowledge support from NSF DMR1206351, NASA NNX15AD38G and W. M. Keck Foundation.

  7. Full particle orbit effects in regular and stochastic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ogawa, Shun; Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; del Castillo-Negrete, Diego; Dif-Pradalier, Guilhem; Garbet, Xavier

    2016-07-01

    We present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, the particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. We show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the

  8. Prospective of ultradispersic magnetic particles in biological experiments in microgravity

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.; Kuznetsov, Anatoli; Malashin, S.

    All organisms on Earth use gravity for their lifecycles. Microgravity disturbs the lifecycles significantly: orientation ability is damaged, thermo and mass exchange processes are changed, adaptation mechanisms are destroyed. A recovering the normal life cycle of organism in future long-term mission requires an artificial gravity which is complicate and not realistic with present technologies. We propose to use a magnetic properties of the biological objects for recovering of the gravity-dependent biological processes in organism during space flight. Based on result of magnetic properties investigation in gravity-sensitive plant cells, we have prepared and carried out the experiments on space station MIR. For the experiments, Magnitogravistat device was designed and installed on the station. The aim of the experiment was to replace a gravity factor of plant with a magnetic factor. The magnetic effect is based on the fact, that a magnetic particle of V volume is under the force F=ΔæVHgradH in the magnetic gradient gradH, where Δæ is the difference between the magnetic susceptibility of particle and media. When the particles are placed into the cell, the cell can be managed by the magnetic field. In laboratory experiment the iron-carbon particles of 1-2 um with nanostructurised surface and high adsorption properties have been used. The particles can be suspended in water and adsorbed chemicals including cell metabolites. In strong magnetic field, the particles can be agglomerated and the liquid substrate can be replaced. The local magnetic field near the particles can influence on cell processes. The magnetic field causes a cell differentiation and can influence on cell proliferation. A new space experiment with magnetic particles is planned to get a knowledge on cell influence and to improve a cell metabolism.

  9. General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules: a platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery.

    PubMed

    Zhang, Lingyu; Wang, Tingting; Yang, Lei; Liu, Cong; Wang, Chungang; Liu, Haiyan; Wang, Y Andrew; Su, Zhongmin

    2012-09-24

    Hollow mesoporous SiO(2) (mSiO(2)) nanostructures with movable nanoparticles (NPs) as cores, so-called yolk-shell nanocapsules (NCs), have attracted great research interest. However, a highly efficient, simple and general way to produce yolk-mSiO(2) shell NCs with tunable functional cores and shell compositions is still a great challenge. A facile, general and reproducible strategy has been developed for fabricating discrete, monodisperse and highly uniform yolk-shell NCs under mild conditions, composed of mSiO(2) shells and diverse functional NP cores with different compositions and shapes. These NPs can be Fe(3)O(4) NPs, gold nanorods (GNRs), and rare-earth upconversion NRs, endowing the yolk-mSiO(2) shell NCs with magnetic, plasmonic, and upconversion fluorescent properties. In addition, multifunctional yolk-shell NCs with tunable interior hollow spaces and mSiO(2) shell thickness can be precisely controlled. More importantly, fluorescent-magnetic-biotargeting multifunctional polyethyleneimine (PEI)-modified fluorescent Fe(3)O(4)@mSiO(2) yolk-shell nanobioprobes as an example for simultaneous targeted fluorescence imaging and magnetically guided drug delivery to liver cancer cells is also demonstrated. This synthetic approach can be easily extended to the fabrication of multifunctional yolk@mSiO(2) shell nanostructures that encapsulate various functional movable NP cores, which construct a potential platform for the simultaneous targeted delivery of drug/gene/DNA/siRNA and bio-imaging. PMID:22907903

  10. Multi-function ring magnet power supply for rapid-cycling synchrotrons

    SciTech Connect

    Praeg, W.F.

    1985-01-01

    Ring magnet power supply (RMPS) circuits that produce a wide range of magnet current waveshapes for rapid-cycling synchrotrons (RCS) are described. The shapes range from long flat-tops separated by a biased dual frequency cosine wave to those having a flat-bottom (injection), followed by a lower frequency cosine half wave (acceleration), a flat-top (extraction), and a higher frequency cosine half wave (magnet reset). Applications of these circuits for proposed synchrotrons are outlined. Solid-state switching circuits and the results of proof-of-concept tests are shown. 8 refs., 12 figs.

  11. Magnetic interaction of Janus magnetic particles suspended in a viscous fluid.

    PubMed

    Seong, Yujin; Kang, Tae Gon; Hulsen, Martien A; den Toonder, Jaap M J; Anderson, Patrick D

    2016-02-01

    We studied the magnetic interaction between circular Janus magnetic particles suspended in a Newtonian fluid under the influence of an externally applied uniform magnetic field. The particles are equally compartmentalized into paramagnetic and nonmagnetic sides. A direct numerical scheme is employed to solve the magnetic particulate flow in the Stokes flow regime. Upon applying the magnetic field, contrary to isotropic paramagnetic particles, a single Janus particle can rotate due to the magnetic torque created by the magnetic anisotropy of the particle. In a two-particle problem, the orientation of each particle is found to be an additional factor that affects the critical angle separating the nature of magnetic interaction. Using multiparticle problems, we show that the orientation of the particles has a significant influence on the dynamics of the particles, the fluid flow induced by the actuated particles, and the final conformation of the particles. Straight and staggered chain structures observed experimentally can be reproduced numerically in a multiple particle problem. PMID:26986377

  12. A biodetection method using magnetic particles and micro traps

    NASA Astrophysics Data System (ADS)

    Li, Fuquan; Giouroudi, Ioanna; Kosel, Jürgen

    2012-04-01

    The general working principle of magnetoresistive sensors for biological applications is to specifically attach bioanalytesto magnetic particles and then detect the particles that are immobilized on the sensor surface. The immobilization of the particles on the sensor surface commonly uses biomolecular interactions, e.g., antigen-antibody. Thus, the sensor surface needs to be functionalized via biological treatments in order to capture certain bioanalytes. In the presented work, a new method is proposed, which does not rely on functionalization of the sensor surface. Current carrying microstructures in combination with mechanical micro traps are used to immobilize magnetic particles. Analyte detection is based on the difference in size between bare magnetic particles and particles with analyte attached, which causes a different number of particles to be captured in the micro traps.

  13. Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube

    NASA Astrophysics Data System (ADS)

    Sharma, Shashi; Singh, Uaday; Katiyar, V. K.

    2015-03-01

    In this paper, the effect of external uniform magnetic field on flow parameters of both blood and magnetic particles is reported through a mathematical model using magnetohydrodynamics (MHD) approach. The fluid is acted upon by a varying pressure gradient and an external uniform magnetic field is applied perpendicular to the cylindrical tube. The governing nonlinear partial differential equations were solved numerically and found that flow parameters are affected by the influence of magnetic field. Further, artificial blood (75% water+25% Glycerol) along with iron oxide magnetic particles were prepared and transported into a glass tube with help of a peristaltic pump. The velocity of artificial blood along with magnetic particles was experimentally measured at different magnetic fields ranging from 100 to 600 mT. The model results show that the velocity of blood and magnetic particles is appreciably reduced under the influence of magnetic field, which is supported by our experimental results.

  14. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  15. Multifunctional inorganic-organic hybrid nanospheres for rapid and selective luminescence detection of TNT in mixed nitroaromatics via magnetic separation.

    PubMed

    Ma, Yingxin; Huang, Sheng; Wang, Leyu

    2013-11-15

    Rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) in aqueous solution differentiating from other nitroaromatics and independent of complicated instruments is in high demand for public safety and environmental monitoring. Despite of many methods for TNT detection, it is hard to differentiate TNT from 2,4,6-trinitrophenol (TNP) due to their highly similar structures and properties. In this work, via a simple and versatile method, LaF3ːCe(3+)-Tb(3+)and Fe3O4 nanoparticle-codoped multifunctional nanospheres were prepared through self-assembly of the building blocks. The luminescence of these nanocomposites was dramatically quenched via adding nitroaromatics into the aqueous solution. After the magnetic separation, however, the interference of other nitroaromatics including 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT), and nitrobenzene (NB) was effectively overcome due to the removal of these coexisting nitroaromatics from the surface of nanocomposites. Due to the formation of TNT(-)-RCONH3(+), the TNT was attached to the surface of the nanocomposites and was quantitatively detected by the postexposure luminescence quenching. Meanwhile, the luminescence intensity is negatively proportional to the concentration of TNT in the range of 0.01-5.0 μg/mL with the 3σ limit of detection (LOD) of 10.2 ng/mL. Therefore, the as-developed method provides a novel strategy for rapid and selective detection of TNT in the mixture solution of nitroaromatics by postexposure luminescence quenching. PMID:24148441

  16. Multifunctional Setup for Studying Human Motor Control Using Transcranial Magnetic Stimulation, Electromyography, Motion Capture, and Virtual Reality.

    PubMed

    Talkington, William J; Pollard, Bradley S; Olesh, Erienne V; Gritsenko, Valeriya

    2015-01-01

    The study of neuromuscular control of movement in humans is accomplished with numerous technologies. Non-invasive methods for investigating neuromuscular function include transcranial magnetic stimulation, electromyography, and three-dimensional motion capture. The advent of readily available and cost-effective virtual reality solutions has expanded the capabilities of researchers in recreating "real-world" environments and movements in a laboratory setting. Naturalistic movement analysis will not only garner a greater understanding of motor control in healthy individuals, but also permit the design of experiments and rehabilitation strategies that target specific motor impairments (e.g. stroke). The combined use of these tools will lead to increasingly deeper understanding of neural mechanisms of motor control. A key requirement when combining these data acquisition systems is fine temporal correspondence between the various data streams. This protocol describes a multifunctional system's overall connectivity, intersystem signaling, and the temporal synchronization of recorded data. Synchronization of the component systems is primarily accomplished through the use of a customizable circuit, readily made with off the shelf components and minimal electronics assembly skills. PMID:26384034

  17. Adsorption of bovine serum albumin on nanosized magnetic particles.

    PubMed

    Peng, Z G; Hidajat, K; Uddin, M S

    2004-03-15

    Adsorption of bovine serum albumin (BSA) on nanosized magnetic particles (Fe(3)O(4)) was carried out in the presence of carbodiimide. The equilibrium and kinetics of the adsorption process were studied. Nanosized magnetic particles (Fe(3)O(4)) were prepared by the chemical precipitation method using Fe2+, Fe3+ salts, and ammonium hydroxide under a nitrogen atmosphere. Characterizations of magnetic particles were carried out using transmission electron microscopy (TEM) and a vibrating sample magnetometer (VSM). Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to confirm the attachment of BSA on magnetic particles. Effects of pH and salt concentrations were investigated on the adsorption process. The experimental results show that the adsorption of BSA on magnetic particles was affected greatly by the pH, while the effect of salt concentrations was insignificant at a low concentration range. The adsorption equilibrium isotherm was fitted well by the Langmuir model. The maximum adsorption of BSA on magnetic particles occurred at the isoelectric point of BSA. Adsorption kinetics was analyzed by a linear driving force mass-transfer model. BSA was desorbed from magnetic particles under alkaline conditions, which was confirmed by SDS-PAGE electrophoresis and FTIR results. PMID:14972603

  18. Nanostructured magnetic particles with polystyrene and their magnetorheological applications.

    PubMed

    Fang, Fei Fei; Choi, Hyoung Jin

    2011-03-01

    Magnetorheological (MR) fluids are known to be colloidal suspensions of magnetic particles in a non-magnetic fluid, and exposure to a magnetic field transforms the fluid into a plastic-like solid in milliseconds. To improve the stability against sedimentation and uniform dispersion, two different MR candidates, soft magnetic carbonyl iron (CI) microspheres and magnetite (Fe3O4) particles were modified with polystyrene to be applied for MR fluids in this study. After modification, their unique morphology, crystalline structure and magnetic properties were examined in addition to MR performance and sedimentation characteristics. It was found that this embedded morphology not only effectively prevents direct contact of the magnetic species thus improving particle dispersion but also leads to obvious change in their density, compared with the traditional polymer coating method with a core-shell structure. PMID:21449461

  19. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds.

    PubMed

    De Santis, Roberto; D'Amora, Ugo; Russo, Teresa; Ronca, Alfredo; Gloria, Antonio; Ambrosio, Luigi

    2015-10-01

    Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37 °C, and the morphological features were analysed through scanning electron microscopy (SEM) and X-ray micro-computed tomography. The capability of a magnetic scaffold to absorb magnetic nanoparticles (MNPs) in water solution was also assessed. confocal laser scanning microscopy was used to assess the in vitro biological behaviour of human mesenchymal stem cells (hMSCs) seeded on 3D structures. Results showed that a wide range of mechanical properties, covering those spanning hard and soft tissues, can be obtained by 3D FDM and stereolithography techniques. 3D virtual reconstruction and SEM showed the precision with which the scaffolds were fabricated, and a good-quality interface between poly(ε-caprolactone) and poly(ethylene glycol) based scaffolds was observed for bilayer and coaxial scaffolds. Magnetised scaffolds are capable of absorbing water solution of MNPs, and a preliminary information on cell adhesion and spreading of hMSCs was obtained without the application of an external magnetic field. PMID:26420041

  20. Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays.

    PubMed

    Hejazian, Majid; Nguyen, Nam-Trung

    2016-07-01

    The present paper reports the use of diluted ferrofluid and two arrays of permanent magnets for the size-selective concentration of non-magnetic particles. The micro magnetofluidic device consists of a straight channels sandwiched between two arrays of permanent magnets. The permanent magnets create multiple capture zones with minimum magnetic field strength along the channel. The complex interaction between magnetic forces and hydrodynamic force allows the device to operate in different regimes suitable for concentration of non-magnetic particles with small difference in size. Our experimental results show that non-magnetic particles with diameters of 3.1 μm and 4.8 μm can be discriminated and separated with this method. The results from this study could be used as a guide for the design of size-sensitive separation devices for particle and cell based on negative magnetophoresis. PMID:27478527

  1. Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging

    PubMed Central

    Huber, Dale L.; Monson, Todd C.; Ali, Abdul-Mehdi S.; Bisoffi, Marco; Sillerud, Laurel O.

    2011-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s−1 mM−1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s−1 mM−1) and ~3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer. PMID:22121333

  2. Measurement of magnetic fluctuation-induced particle flux (invited)

    SciTech Connect

    Ding, W. X.; Brower, D. L.; Yates, T. Y.

    2008-10-15

    Magnetic field fluctuation-induced particle transport has been directly measured in the high-temperature core of the MST reversed field pinch plasma. Measurement of radial particle transport is achieved by combining various interferometry techniques, including Faraday rotation, conventional interferometry, and differential interferometry. It is observed that electron convective particle flux and its divergence exhibit a significant increase during a sawtooth crash. In this paper, we describe the basic techniques employed to determine the particle flux.

  3. Manipulation of Magnetic Particles for Use in Photonic Biosensor Arrays

    NASA Astrophysics Data System (ADS)

    Siebe, Craig

    Trapping magnetic nanoparticles in wells in a photonic crystal biosensor array using magnetophoresis is desirable because it would allow for covalent bonding of antibodies onto the particles which would lead to an increase in sensitivity of the sensor. It was hypothesized that this could be achieved by engineering a magnetic field at each well by placing a, "magnetic tip," under each well and exposing the array to a uniform magnetic field which would create a magnetic gradient at each well in order to trap magnetic particles. A computational COMSOL model was created to determine the ideal shapes for the magnetic tips, but fabrication factors and the COMSOL model led to the tips being the same shape as the wells. Dip coating, centrifuging, and electrophoresis of iron oxide particles were tried as methods to fabricate magnetic tips. Electroplating the particles was determined to be the best method. Microscale arrays were fabricated and tested with micron scale beads in 3 different well sizes. Then smaller grooves were created by drop casting PMMA groves using PDMS imprints of CDs. Electron beam lithography and stamping into spin coated PMMA were also tried briefly. Trapping of 350 nm magnetic beads was attempted but was unsuccessful. Probably this occurred because the gradient produced by the magnetic tips was not strong enough to overcome the hydrodynamic forces of water that was swept over the array with Couette flows to clean the surface.

  4. Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells

    PubMed Central

    2016-01-01

    Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(−) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells. PMID:25939643

  5. Multifunctional biocompatible graphene oxide quantum dots decorated magnetic nanoplatform for efficient capture and two-photon imaging of rare tumor cells.

    PubMed

    Shi, Yongliang; Pramanik, Avijit; Tchounwou, Christine; Pedraza, Francisco; Crouch, Rebecca A; Chavva, Suhash Reddy; Vangara, Aruna; Sinha, Sudarson Sekhar; Jones, Stacy; Sardar, Dhiraj; Hawker, Craig; Ray, Paresh Chandra

    2015-05-27

    Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(-) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells. PMID:25939643

  6. Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators.

    PubMed

    Sakellari, D; Brintakis, K; Kostopoulou, A; Myrovali, E; Simeonidis, K; Lappas, A; Angelakeris, M

    2016-01-01

    Colloidal nanocrystal assemblies (nanoclusters), consisting of 13 nm iron oxide nanocrystals, were synthesized in various sizes (45-98 nm), and were investigated as heating mediators for magnetic particle hyperthermia. The colloidal nanocrystal clusters show enhanced heating efficiency in comparison with their constituent primary iron oxide nanocrystals due to collective magnetic features. The fine tuning of intra-cluster magnetic interactions results to the domination of the hysteresis losses mechanism over the relaxation loss heating contributions and eventually to a versatile magnetic particle hyperthermia mediator. PMID:26478302

  7. Mr Fluids with Nano-Sized Magnetic Particles

    NASA Astrophysics Data System (ADS)

    Kormann, Cl.; Laun, H. M.; Richter, H. J.

    Recently magnetorheological fluids with nanosized magnetic ferrite particles have become available. Their composition, rheological and magnetic properties are described. A comparison with conventional MR fluids based on micron-sized particles is given. The yield stress of nano-MR fluids can be increased by a moderate magnetic field (0,2 T) by 4000 Pa. It can be modulated by the magnetic field with a response time of less than 5 ms. Details are given on the long term thermal stability at 150 °C, on flow properties at elevated temperatures and at high shear rates. Design principles for MR fluid actuator design are outlined.

  8. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang Y.; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-09-25

    Hysteresis loops and Magnetic Barkhausen Noise in a single crystal α-iron containing a nonmagnetic particle were simulated based on the Laudau-Lifshitz-Gilbert equation. The analyses of domain morphologies and hysteresis loops show that reversal magnetization process is control by nucleation of reversed domains at nonmagnetic particle when the particle size reaches a particle value. In such a situation, the value of nucleation field is determined by the size of nonmagnetic particles, and moreover, coercive field and Magnetic Barkhausen Noise signal are strongly affected by the nucleation field of reversed domains.

  9. Preparation of magnetic polymer particles with nanoparticles of Fe(0).

    PubMed

    Buendía, S; Cabañas, G; Alvarez-Lucio, G; Montiel-Sánchez, H; Navarro-Clemente, M E; Corea, M

    2011-02-01

    Iron nanoparticles (Fe(0)), were encapsulated into polymethyl methacrylate (PMMA), by means of emulsion polymerization techniques in a semicontinuous process. The final average diameter of the composite particle was calculated until three times of average particle of iron particles and were stabilized with a non-ionic surfactant. They were then characterized by scanning electron microscopy and dynamic light scattering. Their magnetic properties were determined by parallel field vibrating-sample magnetometry method. The results indicated that the magnetic properties are a function of polymer concentration in the nanocomposite particle. PMID:21051044

  10. Xylanase Immobilized on Novel Multifunctional Hyperbranched Polyglycerol-Grafted Magnetic Nanoparticles: An Efficient and Robust Biocatalyst.

    PubMed

    Landarani-Isfahani, Amir; Taheri-Kafrani, Asghar; Amini, Mina; Mirkhani, Valiollah; Moghadam, Majid; Soozanipour, Asieh; Razmjou, Amir

    2015-08-25

    Although several strategies are now available for immobilization of enzymes to magnetic nanoparticles for bioapplications, little progresses have been reported on the use of dendritic or hyperbranched polymers for the same purpose. Herein, we demonstrated synthesis of magnetic nanoparticles supported hyperbranched polyglycerol (MNP/HPG) and a derivative conjugated with citric acid (MNP/HPG-CA) as unique and convenient nanoplatforms for immobilization of enzymes. Then, an important industrial enzyme, xylanase, was immobilized on the nanocarriers to produce robust biocatalysts. A variety of analytical tools were used to study the morphological, structural, and chemical properties of the biocatalysts. Additionally, the results of biocatalyst systems exhibited the substantial improvement of reactivity, reusability, and stability of xylanase due to this strategy, which might confer them a wider range of applications. PMID:26258956

  11. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy

    PubMed Central

    Ludwig, Frank; Remmer, Hilke; Kuhlmann, Christian; Wawrzik, Thilo; Arami, Hamed; Ferguson, R. Mathew; Krishnan, Kannan M.

    2015-01-01

    Sensitivity and spatial resolution in Magnetic Particle Imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer’s magnetic core size, hydrodynamic size, and magnetic anisotropy. Our results present a self-consistent set of magnetic and structural parameters for the tracers that is consistent with direct measurements of size using transmission electron microscopy and dynamic light scattering and that can be used to better understand their MPI performance. PMID:25729125

  12. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy

    NASA Astrophysics Data System (ADS)

    Ludwig, Frank; Remmer, Hilke; Kuhlmann, Christian; Wawrzik, Thilo; Arami, Hamed; Ferguson, R. Mathew; Krishnan, Kannan M.

    2014-06-01

    Sensitivity and spatial resolution in magnetic particle imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer's magnetic core size, hydrodynamic size, and magnetic anisotropy. Our results present a self-consistent set of magnetic and structural parameters for the tracers that is consistent with direct measurements of size using transmission electron microscopy and dynamic light scattering and that can be used to better understand their MPI performance.

  13. Particle acceleration in axisymmetric, magnetized neutron stars

    NASA Technical Reports Server (NTRS)

    Baker, K. B.; Sturrock, P. A.

    1977-01-01

    The potential drop in the polar cap region of a rotating, magnetized neutron star is found assuming that the magnetic field is dipolar, with the field aligned (or anti-aligned) with the rotation axis. The curvature of the field lines is of critical importance. Charge flow is assumed to be along magnetic field lines. The electric field has a maximum at radius 1.5 R and the magnitude and functional form of the current is determined.

  14. Magnetic resonance imaging by using nano-magnetic particles

    NASA Astrophysics Data System (ADS)

    Shokrollahi, H.; Khorramdin, A.; Isapour, Gh.

    2014-11-01

    Magnetism and magnetic materials play a major role in various biological applications, such as magnetic bioseparation, magnetic resonance imaging (MRI), hyperthermia treatment of cancer and drug delivery. Among these techniques, MRI is a powerful method not only for diagnostic radiology but also for therapeutic medicine that utilizes a magnetic field and radio waves. Recently, this technique has contributed greatly to the promotion of the human quality life. Thus, this paper presents a short review of the physical principles and recent advances of MRI, as well as providing a summary of the synthesis methods and properties of contrast agents, like different core materials and surfactants.

  15. Reversible assembly of magnetized particles: Application to water-borne pathogen enumeration

    NASA Astrophysics Data System (ADS)

    Ramadan, Qasem

    2009-12-01

    Reversible assembly of magnetized particles and cells has been proposed and implemented. The approach is based on magnetized particles or magnetically labeled cell immobilization in an array of individual particle/cell for optical counting. The device has been tested for few types of magnetic particles and one water-borne pathogen: Giardia Lamblia. An individual particle immobilization efficiency of 92% was achieved.

  16. Optimization of magnetic switches for single particle and cell transport

    NASA Astrophysics Data System (ADS)

    Abedini-Nassab, Roozbeh; Murdoch, David M.; Kim, CheolGi; Yellen, Benjamin B.

    2014-06-01

    The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.

  17. Optimization of magnetic switches for single particle and cell transport

    SciTech Connect

    Abedini-Nassab, Roozbeh; Yellen, Benjamin B.; Murdoch, David M.; Kim, CheolGi

    2014-06-28

    The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.

  18. Magnetic and electrical properties of Martian particles

    NASA Technical Reports Server (NTRS)

    Olhoeft, G. R.

    1991-01-01

    The only determinations of the magnetic properties of Martian materials come from experiments on the two Viking Landers. The results suggest Martian soil containing 1 to 10 percent of a highly magnetic phase. Though the magnetic phase mineral was not conclusively identified, the predominate interpretation is that the magnetic phase is probably maghemite. The electrical properties of the surface of Mars were only measured remotely by observations with Earth based radar, microwave radiometry, and inference from radio-occultation of Mars orbiting spacecraft. No direct measurements of electrical properties on Martian materials have been performed.

  19. Brownian dynamics of charged particles in a constant magnetic field

    SciTech Connect

    Hou, L. J.; Piel, A.; Miskovic, Z. L.; Shukla, P. K.

    2009-05-15

    Numerical algorithms are proposed for simulating the Brownian dynamics of charged particles in an external magnetic field, taking into account the Brownian motion of charged particles, damping effect, and the effect of magnetic field self-consistently. Performance of these algorithms is tested in terms of their accuracy and long-time stability by using a three-dimensional Brownian oscillator model with constant magnetic field. Step-by-step recipes for implementing these algorithms are given in detail. It is expected that these algorithms can be directly used to study particle dynamics in various dispersed systems in the presence of a magnetic field, including polymer solutions, colloidal suspensions, and, particularly, complex (dusty) plasmas. The proposed algorithms can also be used as thermostat in the usual molecular dynamics simulation in the presence of magnetic field.

  20. The comparative study of particle size distribution in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Timko, M.; Kopčanský, P.; Koneracká, M.; Skumiel, A.; Labowski, M.; Jozefczak, A.; Bica, Doina; Bâlâu, Oana; Vékás, L.; Fannin, P. C.; Giannitsis, A. T.

    2002-01-01

    Water- and physiology-solution-based biocompatible magnetic fluids have been studied in order to determine the size of magnetic particles and their colloidal stability. The results of magnetorheological measurements at room temperature and measurements of the frequency-dependent complex magnetic susceptibility indicate that the fluids have good stability and that the particles are finely dispersed without aggregation. The mean particle diameter for physiology-solution-based magnetic fluid, estimated from measurements of anisttropy of the magnetic susceptibility, was found to be 9.4 nm. This value is in good agreement with an estimate of 11.6 nm obtained from transmission electron microscopy (TEM) particularly when allowance is made for the thickness of surfactant layer (approx. 2 nm).

  1. Composite of coated magnetic alloy particle

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  2. Charged Particle Diffusion in Isotropic Random Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Subedi, P.; Sonsrettee, W.; Matthaeus, W. H.; Ruffolo, D. J.; Wan, M.; Montgomery, D.

    2013-12-01

    Study of the transport and diffusion of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider Diffusion of charged particles in fully three dimensional statistically isotropic magnetic field turbulence with no mean field which is pertinent to many astrophysical situations. We classify different regions of particle energy depending upon the ratio of Larmor radius of the charged particle to the characteristic outer length scale of turbulence. We propose three different theoretical models to calculate the diffusion coefficient each applicable to a distinct range of particle energies. The theoretical results are compared with those from computer simulations, showing very good agreement.

  3. Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Le, Anh-Tuan; Duy Giang, Chu; Thi Tam, Le; Tuan, Ta Quoc; Phan, Vu Ngoc; Alonso, Javier; Devkota, Jagannath; Garaio, Eneko; Ángel García, José; Martín-Rodríguez, Rosa; Fdez-Gubieda, Ma Luisa; Srikanth, Hariharan; Phan, Manh-Huong

    2016-04-01

    A promising nanocomposite material composed of MnFe2O4 (MFO) nanoparticles of ˜17 nm diameter deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction confirmed the quality of the synthesized samples. Fourier transform infrared measurements and analysis evidenced that the MFO nanoparticles were attached to the GO surface. Magnetic measurements and analysis using the modified Langevin model evidenced the superparamagnetic characteristic of both the bare MFO nanoparticles and the MFO-GO nanocomposite at room temperature, and an appreciable increase of the effective anisotropy for the MFO-GO sample. Magnetic hyperthermia experiments performed by both calorimetric and ac magnetometry methods indicated that relative to the bare MFO nanoparticles, the heating efficiency of the MFO-GO nanocomposite was similar at low ac fields (0-300 Oe) but became progressively larger with increasing ac fields (>300 Oe). This has been related to the higher effective anisotropy of the MFO-GO nanocomposite. In comparison with the bare MFO nanoparticles, a smaller reduction in the heating efficiency was observed in the MFO-GO composites when embedded in agar or when their concentration was increased, indicating that the GO helped minimize the physical rotation and aggregation of the MFO nanoparticles. These findings can be of practical importance in exploiting this type of nanocomposite for advanced hyperthermia. Magnetoimpedance-based biodetection studies also indicated that the MFO-GO nanocomposite could be used as a promising magnetic biomarker in biosensing applications.

  4. Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures.

    PubMed

    Le, Anh-Tuan; Giang, Chu Duy; Tam, Le Thi; Tuan, Ta Quoc; Phan, Vu Ngoc; Alonso, Javier; Devkota, Jagannath; Garaio, Eneko; García, José Ángel; Martín-Rodríguez, Rosa; Fdez-Gubieda, Ma Luisa; Srikanth, Hariharan; Phan, Manh-Huong

    2016-04-15

    A promising nanocomposite material composed of MnFe2O4 (MFO) nanoparticles of ∼17 nm diameter deposited onto graphene oxide (GO) nanosheets was successfully synthesized using a modified co-precipitation method. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction confirmed the quality of the synthesized samples. Fourier transform infrared measurements and analysis evidenced that the MFO nanoparticles were attached to the GO surface. Magnetic measurements and analysis using the modified Langevin model evidenced the superparamagnetic characteristic of both the bare MFO nanoparticles and the MFO-GO nanocomposite at room temperature, and an appreciable increase of the effective anisotropy for the MFO-GO sample. Magnetic hyperthermia experiments performed by both calorimetric and ac magnetometry methods indicated that relative to the bare MFO nanoparticles, the heating efficiency of the MFO-GO nanocomposite was similar at low ac fields (0-300 Oe) but became progressively larger with increasing ac fields (>300 Oe). This has been related to the higher effective anisotropy of the MFO-GO nanocomposite. In comparison with the bare MFO nanoparticles, a smaller reduction in the heating efficiency was observed in the MFO-GO composites when embedded in agar or when their concentration was increased, indicating that the GO helped minimize the physical rotation and aggregation of the MFO nanoparticles. These findings can be of practical importance in exploiting this type of nanocomposite for advanced hyperthermia. Magnetoimpedance-based biodetection studies also indicated that the MFO-GO nanocomposite could be used as a promising magnetic biomarker in biosensing applications. PMID:26933975

  5. Sensitive detection of Porphyromonas gingivalis based on magnetic capture and upconversion fluorescent identification with multifunctional nanospheres.

    PubMed

    Qin, Wei; Zheng, Bin; Yuan, Yuan; Li, Meng; Bai, Yang; Chang, Jin; Wang, Hanjie; Wang, Yonglan

    2016-08-01

    A specific and sensitive detection system was designed to detect Porphyromonas gingivalis, a major periodontal pathogen, in mixed bacterial fluids. This new detection system was based on the use of fluorescent and magnetic encoding nanospheres that were conjugated with monoclonal antibodies specific to P. gingivalis, thus enabling rapid detection of the target bacterium. This strategy simplifies the detection process and improves the sensitivity compared with conventional methods, with a detection limit of approximately 10 colony-forming units (CFU) ml(-1) . This new method shows strong anti-interference ability and excellent selectivity and specificity to detect P. gingivalis in mixed solutions. PMID:27334431

  6. Conformal coating of non-spherical magnetic particles using microfluidics

    NASA Astrophysics Data System (ADS)

    Moon, Byeong-Ui; Hakimi, Navid; Hwang, Dae Kun; Tsai, Scott; Department of Mechanical; Industrial Engineering Team; Department of Chemical Engineering Collaboration

    2014-11-01

    We present the conformal coating of non-spherical magnetic particles in a microfluidic channel. We first prepare three-dimensional (3D) bullet-shaped magnetic microparticles using stop-flow lithography. We then suspend the bullet-shaped microparticles in an aqueous solution, and flow the particle suspension with a co-flow of a non-aqueous mixture. A magnetic field gradient from a permanent magnet pulls the microparticles in the transverse direction to the fluid flow, until the particles reach the interface between the immiscible fluids. In a physical domain characterized by a low particle Reynolds number and a high magnetic Bond number, we observe that the microparticles cross the oil-water interface, and then become coated by a thin film of the aqueous fluid. When we increase the two-fluid interfacial tension by reducing the surfactant concentration, we observe that the particles become trapped at the interface. We use this observation to approximate the magnetic susceptibility of the manufactured non-spherical microparticles, which are not known a priori. Using fluorescence imaging, we confirm the uniformity of the thin film coating along the surface of the bullet-shaped particles.

  7. Multifunctional semiconductor micro-Hall devices for magnetic, electric, and photo-detection

    SciTech Connect

    Gilbertson, A. M.; Cohen, L. F.; Sadeghi, Hatef; Lambert, C. J.; Panchal, V.; Kazakova, O.; Solin, S. A.

    2015-12-07

    We report the real-space voltage response of InSb/AlInSb micro-Hall devices to local photo-excitation, electric, and magnetic fields at room temperature using scanning probe microscopy. We show that the ultrafast generation of localised photocarriers results in conductance perturbations analogous to those produced by local electric fields. Experimental results are in good agreement with tight-binding transport calculations in the diffusive regime. The magnetic, photo, and charge sensitivity of a 2 μm wide probe are evaluated at a 10 μA bias current in the Johnson noise limit (valid at measurement frequencies > 10 kHz) to be, respectively, 500 nT/√Hz; 20 pW/√Hz (λ = 635 nm) comparable to commercial photoconductive detectors; and 0.05 e/√Hz comparable to that of single electron transistors. These results demonstrate the remarkably versatile sensing attributes of simple semiconductor micro-Hall devices that can be applied to a host of imaging and sensing applications.

  8. The advantages and challenges of superconducting magnets in particle therapy

    NASA Astrophysics Data System (ADS)

    Gerbershagen, Alexander; Calzolaio, Ciro; Meer, David; Sanfilippo, Stéphane; Schippers, Marco

    2016-08-01

    This paper provides an overview of the current developments in superconducting magnets for applications in proton and ion therapy. It summarizes the benefits and challenges regarding the utilization of these magnets in accelerating systems (e.g. superconducting cyclotrons) and gantries. The paper also provides examples of currently used superconducting particle therapy systems and proposed designs.

  9. Microfluidic conformal coating of non-spherical magnetic particles.

    PubMed

    Moon, Byeong-Ui; Hakimi, Navid; Hwang, Dae Kun; Tsai, Scott S H

    2014-09-01

    We present the conformal coating of non-spherical magnetic particles in a co-laminar flow microfluidic system. Whereas in the previous reports spherical particles had been coated with thin films that formed spheres around the particles; in this article, we show the coating of non-spherical particles with coating layers that are approximately uniform in thickness. The novelty of our work is that while liquid-liquid interfacial tension tends to minimize the surface area of interfaces-for example, to form spherical droplets that encapsulate spherical particles-in our experiments, the thin film that coats non-spherical particles has a non-minimal interfacial area. We first make bullet-shaped magnetic microparticles using a stop-flow lithography method that was previously demonstrated. We then suspend the bullet-shaped microparticles in an aqueous solution and flow the particle suspension with a co-flow of a non-aqueous mixture. A magnetic field gradient from a permanent magnet pulls the microparticles in the transverse direction to the fluid flow, until the particles reach the interface between the immiscible fluids. We observe that upon crossing the oil-water interface, the microparticles become coated by a thin film of the aqueous fluid. When we increase the two-fluid interfacial tension by reducing surfactant concentration, we observe that the particles become trapped at the interface, and we use this observation to extract an approximate magnetic susceptibility of the manufactured non-spherical microparticles. Finally, using fluorescence imaging, we confirm the uniformity of the thin film coating along the entire curved surface of the bullet-shaped particles. To the best of our knowledge, this is the first demonstration of conformal coating of non-spherical particles using microfluidics. PMID:25332731

  10. Remanent state studies of truncated conical magnetic particles

    SciTech Connect

    Hwang, M.; Redjdal, M.; Humphrey, F. B.; Ross, C. A.

    2001-06-01

    The remanent state of truncated conical particles is investigated as a function of their size, aspect ratio, and anisotropy, using a micromagnetic model based on the Landau{endash}Lifshitz{endash}Gilbert equation. Particles with a base diameter smaller than three times the exchange length show a {open_quotes}flower{close_quotes} state, while larger particles show a {open_quotes}vortex{close_quotes} magnetization state. The critical size for this transition increases with increasing anisotropy. Small flower-state particles show abrupt reorientation from out-of-plane to in-plane magnetization at a critical aspect ratio of 0.9. For vortex-state particles, the axial remanence gradually increases as the aspect ratio increases, and high aspect ratio particles have significant remanence even at larger diameters. {copyright} 2001 American Institute of Physics.

  11. Colloidal self assembly of non-magnetic particles in magnetic nanofluid

    SciTech Connect

    Jadav, Mudra; Patel, Rajesh E-mail: rpat7@yahoo.co

    2015-06-24

    Here we present a technique using magnetic nanofluid to induce bidispersed suspension of nonmagnetic particles to assemble into colloidal chain, triangle, rectangle, ring-flower configurations. By changing the amplitude and direction of the magnetic field, we could tune the structure of nonmagnetic particles in magnetic nanofluid. The structures are assembled using magneto static interactions between effectively nonmagnetic particles dispersed in magnetizable magnetic nanofluid. The assembly of complex structures out of simple colloidal building blocks is of practical interest in photonic crystals and DNA biosensors.

  12. Proposal to Search for Magnetically Charged Particles with Magnetic Charge 1e

    SciTech Connect

    Sullivan, Michael K.; Fryberger, David

    2015-11-02

    A model for composite elementary Standard Model (SM) particles based upon magnetically bound vorton pairs, we briefly introduce here, predicts the existence of a complete family of magnetically charged particles, as well as their neutral isotopic partners (all counterparts to the SM elementary particles), in which the lowest mass (charged) particle would be an electrically neutral stable lepton, but which carries a magnetic charge equivalent to 1e. This new particle, which we call a magneticon (a counterpart to the electron) would be pair produced at all e+e- colliders at an Ecm above twice its mass. In addition, PP and PPbar colliders should also be able to produce these new particles through the Drell-Yan process. To our knowledge, no monopole search experiment has been sensitive to such a low-charged magnetic monopole above a particle mass of about 5 GeV/c2. Hence, we propose that a search for such a stable particle of magnetic charge 1e should be undertaken. We have taken the ATLAS detector at the LHC as an example in which this search might be done. To this end, we modeled the magnetic fields and muon trigger chambers of this detector. We show results from a simple Monte Carlo simulation program to indicate how these particles might look in the detector and describe how one might search for these new particles in the ATLAS data stream.

  13. Magnetic properties of samples containing small indium particles

    NASA Astrophysics Data System (ADS)

    Perenboom, J. A. A. J.; Wyder, P.; Meier, F.

    1981-01-01

    Earlier measurements of the magnetization of small indium particles embedded in paraffin were extended in order to observe the transition from a regime of quantum size effects to a regime with normal bulk behavior. Static-magnetization data have been collected in applied magnetic fields up to 8 T in the temperature range from 3 to 300 K for samples with a mean particle diameter in the range from 2 to 10 nm. The measured temperature dependence at different values of the applied magnetic field reveals a paramagnetic contribution to the magnetization which can be accurately described with the magnetization of a spin triplet level, S=1. The Curie constant is orders of magnitude in excess of one spin per particle and seems to be strongly correlated with the sample handling procedure. In some of our samples we have found also a contribution to the magnetization highly nonlinear with the magnetic field, essentially temperature independent up to room temperature, and saturating at fields around 0.6 T. This contribution resembles strongly the magnetization behavior of ferromagnets. No quantum size effects have been observed in the present data.

  14. A particle astrophysics magnet spectrometer facility for Space Station

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.; Israel, M. H.; Mewaldt, R.; Wiedenbeck, M.

    1987-01-01

    Planning for and design tradeoff studies related to the particle astrophysics magnet spectrometer known as Astromag are presented. This facility is being planned for the Space Station Freedom and address questions regarding the origin and acceleration of cosmic rays, explore the synthesis of elements by making detailed measurements of cosmic ray isotopic composition, and search for evidence of antimatter and other cosmologically significant particles. This work was supported by an international study team which includes particle physicists and cosmic ray physicists.

  15. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma.

    PubMed

    Cheng, Yu; Muroski, Megan E; Petit, Dorothée C M C; Mansell, Rhodri; Vemulkar, Tarun; Morshed, Ramin A; Han, Yu; Balyasnikova, Irina V; Horbinski, Craig M; Huang, Xinlei; Zhang, Lingjiao; Cowburn, Russell P; Lesniak, Maciej S

    2016-02-10

    Magnetic particles that can be precisely controlled under a magnetic field and transduce energy from the applied field open the way for innovative cancer treatment. Although these particles represent an area of active development for drug delivery and magnetic hyperthermia, the in vivo anti-tumor effect under a low-frequency magnetic field using magnetic particles has not yet been demonstrated. To-date, induced cancer cell death via the oscillation of nanoparticles under a low-frequency magnetic field has only been observed in vitro. In this report, we demonstrate the successful use of spin-vortex, disk-shaped permalloy magnetic particles in a low-frequency, rotating magnetic field for the in vitro and in vivo destruction of glioma cells. The internalized nanomagnets align themselves to the plane of the rotating magnetic field, creating a strong mechanical force which damages the cancer cell structure inducing programmed cell death. In vivo, the magnetic field treatment successfully reduces brain tumor size and increases the survival rate of mice bearing intracranial glioma xenografts, without adverse side effects. This study demonstrates a novel approach of controlling magnetic particles for treating malignant glioma that should be applicable to treat a wide range of cancers. PMID:26708022

  16. On magnetic guidance of charged particles

    NASA Astrophysics Data System (ADS)

    Backe, H.

    2016-04-01

    High precision beta decay experiments with polarized neutrons, employing magnetic guiding fields for the decay electrons in combination with energy dispersive detectors, initiated detailed studies of the point spread function (PSF) for homogeneous magnetic fields. A PSF describes the radial probability distribution of mono-energetic electrons at the detector plane which were emitted from a point-like source. With regard to accuracy considerations for high-precision experiments unwanted singularities occur as function of the radial detector coordinate which have recently been discussed in detail by Dubbers (2015) [3]. In the present article mathematical inconsistencies in the approximations to calculate PSFs have been corrected. In addition, numerical orbit calculations have been performed for inhomogeneous magnetic fields which show that, on the one hand, generalizations on the basis of adiabaticity considerations must be handled with care but indicate, on the other hand, that non-adiabaticity would not prevent a proposed check of magnetic field configurations.

  17. Particle Acceleration by Magnetic Reconnection in a Twisted Coronal Loop

    NASA Astrophysics Data System (ADS)

    Gordovskyy, Mykola; Browning, Philippa K.

    2011-03-01

    Photospheric motions may lead to twisted coronal magnetic fields which contain free energy that can be released by reconnection. Browning & Van der Linden suggested that such a relaxation event may be triggered by the onset of ideal kink instability. In the present work, we study the evolution of a twisted magnetic flux tube with zero net axial current following Hood et al. Based on the obtained magnetic and electric fields, proton and electron trajectories are calculated using the test-particle approach. We discuss resulting particle distributions and possible observational implications, for example, for small solar flares.

  18. Microfluidic conformal coating of non-spherical magnetic particles

    PubMed Central

    Moon, Byeong-Ui; Hakimi, Navid; Hwang, Dae Kun; Tsai, Scott S. H.

    2014-01-01

    We present the conformal coating of non-spherical magnetic particles in a co-laminar flow microfluidic system. Whereas in the previous reports spherical particles had been coated with thin films that formed spheres around the particles; in this article, we show the coating of non-spherical particles with coating layers that are approximately uniform in thickness. The novelty of our work is that while liquid-liquid interfacial tension tends to minimize the surface area of interfaces—for example, to form spherical droplets that encapsulate spherical particles—in our experiments, the thin film that coats non-spherical particles has a non-minimal interfacial area. We first make bullet-shaped magnetic microparticles using a stop-flow lithography method that was previously demonstrated. We then suspend the bullet-shaped microparticles in an aqueous solution and flow the particle suspension with a co-flow of a non-aqueous mixture. A magnetic field gradient from a permanent magnet pulls the microparticles in the transverse direction to the fluid flow, until the particles reach the interface between the immiscible fluids. We observe that upon crossing the oil-water interface, the microparticles become coated by a thin film of the aqueous fluid. When we increase the two-fluid interfacial tension by reducing surfactant concentration, we observe that the particles become trapped at the interface, and we use this observation to extract an approximate magnetic susceptibility of the manufactured non-spherical microparticles. Finally, using fluorescence imaging, we confirm the uniformity of the thin film coating along the entire curved surface of the bullet-shaped particles. To the best of our knowledge, this is the first demonstration of conformal coating of non-spherical particles using microfluidics. PMID:25332731

  19. Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling

    NASA Astrophysics Data System (ADS)

    Bose, Sayan; Banerjee, Moloy

    2015-07-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the basic principle behind the Magnetic Drug Targeting (MDT). It is essential to couple the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) principles when magnetic fields are applied to blood as a biomagnetic fluid. The present study is devoted to study on MDT technique by particle tracking in the presence of a non uniform magnetic field in a stenosed aortic bifurcation. The present numerical model of biomagnetic fluid dynamics (BFD) takes into accounts both magnetization and electrical conductivity of blood. The blood flow in the bifurcation is considered to be incompressible and Newtonian. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT two way particle-fluid coupling. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Results concerning the velocity and temperature field indicate that the presence of the magnetic field influences the flow field considerably and the disturbances increase as the magnetic field strength increases. The insert position is also varied to observe the variation in flow as well as temperature field. Parametric investigation is conducted and the influence of the particle size (dp), flow Reynolds number (Re) and external magnetic field strength (B0) on the "capture efficiency" (CE) is reported. The difference in CE is also studied for different particle loading condition. According to the results, the magnetic field increased the particle concentration in the target region

  20. Magnetic particle separation process for hazardous and radionuclide elements

    SciTech Connect

    Nunez, L.; Pourfarzaneh, M.

    1997-12-31

    The magnetically assisted chemical separation program was initially funded by DOE EM-50 to develop processes for the efficient separation of radionuclides and other hazardous metals. This process has stimulated the partnership between industry and ANL for many applications related to hazardous metal problems in industry. In-tank or near-tank hazardous metals separation using magnetic particles that have selective coating is a new approach to the problems of metal removal and recycling [of industrial (e.g., mining, printing circuit board, plating)] corrosive waste streams. This concept of coated magnetic particles promises simple, compact processing at very low costs and employs mature chemical separations technologies to remove and recover hazardous metals from aqueous solutions. The selective chemical extractants are attached to inexpensive magnetic carrier particles. Surfaces of small particles composed of rare earths or ferromagnetic materials are treated to retain chemical extractants (e.g., TBP, CMPO, quaternary amines, carboxylic acid). After selective partitioning of contaminants to the surface layer, magnets are used to collect the loaded particles from the tank. The particles can be regenerated by stripping the contaminants and the selective metals can be recovered and recycled from the strip solution. This process and its related equipment are simple enough to be used for recovery/recycling and waste minimization activities at many industrial sites. Both the development of the process for hazardous and radioactive waste and the transfer of the technology will be discussed.

  1. PEG-conjugated highly dispersive multifunctional magnetic multi-walled carbon nanotubes for cellular imaging

    NASA Astrophysics Data System (ADS)

    Khandare, Jayant J.; Jalota-Badhwar, Archana; Satavalekar, Sneha D.; Bhansali, Sujit G.; Aher, Naval D.; Kharas, Firuza; Banerjee, Shashwat S.

    2012-01-01

    We report synthesis of a highly versatile multicomponent nanosystem by covalently decorating the surface of multiwalled carbon nanotubes (CNTs) by magnetite nanoparticles (Fe3O4), poly(ethylene glycol) (PEG), and fluorophore fluorescein isothiocyanate (FITC). The resulting Fe3O4-PEG-FITC-CNT nanosystem demonstrates high dispersion ability in an aqueous medium, magnetic responsiveness, and fluorescent capacity. Transmission electron microscopy images revealed that Fe3O4 nanoparticles were well anchored onto the surfaces of the CNT. In vitro time kinetic experiments using confocal microscopy demonstrated a higher uptake of the Fe3O4-PEG-FITC-CNT nanosystem localized at the perinuclear region of MCF7 cells compared to the free FITC. In addition, the CNT nanosystem demonstrated no evidence of toxicity on cell growth. Surface conjugation of multicomponents, combined with in vitro non-toxicity, enhanced cellular uptake for FITC and site specific targeting ability makes this fluorescent Fe3O4-PEG-FITC-CNT nanosystem an ideal candidate for bioimaging, both in vitro and in vivo.

  2. Very high coercivity magnetic stripes produced by particle rotation

    SciTech Connect

    Naylor, R.B.

    1992-12-01

    This paper describes a current research program at Sandia National Laboratories whereby magnetic stripes are produced through the use of a new particle rotation technology. This new process allows the stripes to be produced in bulk and then held in a latent state so that they may be encoded at a later date. Since particle rotation is less dependent on the type of magnetic particle used, very high coercivity particles could provide a way to increase both magnetic tamper-resistance and accidental erasure protection. This research was initially funded by the Department of Energy, Office of Safeguard and Security as a portion of their Science and Technology Base Development, Advanced Security Concepts program. Current program funding is being provided by Sandia National Laboratories as part of their Laboratory Directed Research and Development program.

  3. A General and Facile Strategy to Fabricate Multifunctional Nanoprobes for Simultaneous (19)F Magnetic Resonance Imaging, Optical/Thermal Imaging, and Photothermal Therapy.

    PubMed

    Hu, Gaofei; Li, Nannan; Tang, Juan; Xu, Suying; Wang, Leyu

    2016-09-01

    (19)F magnetic resonance imaging (MRI), due to its high sensitivity and negligible background, is anticipated to be a powerful noninvasive, sensitive, and accurate molecular imaging technique. However, the major challenge of (19)F MRI is to increase the number of (19)F atoms while maintaining the solubility and molecular mobility of the probe. Here, we successfully developed a facile and general strategy to synthesize the multifunctional (19)F MRI nanoprobes by encapsulating the hydrophobic inorganic nanoparticles (NPs) into a hybrid polymer micelle consisting of hydrolysates of 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDTES) and oleylamine-functionalized poly(succinimide) (PSIOAm). Due to their good water dispersibility, excellent molecular mobility resulting from the ultrathin coating, and high (19)F atom numbers, these nanoprobes generate a separate sharp singlet of (19)F nuclear magnetic resonance (NMR) signal (at -82.8 ppm) with half peak width of ∼28 Hz, which is highly applicable for (19)F MRI. Significantly, by varying the inorganic core from metals (Au), oxides (Fe3O4), fluorides (NaYF4:Yb(3+)/Er(3+)), and phosphates (YPO4) to semiconductors (Cu7S4 and Ag2S, ZnS:Mn(2+)) NPs, which renders the nanoprobes' multifunctional properties such as photothermal ability (Au, Cu7S4), magnetism (Fe3O4), fluorescence (ZnS:Mn(2+)), near-infrared (NIR) fluorescence (Ag2S), and upconversion (UC) luminescence. Meanwhile, the as-prepared nanoprobes possess relatively small sizes (about 50 nm), which is beneficial for long-time circulation. The proof-of-concept in vitro (19)F NMR and photothermal ablation of ZnS:Mn(2+)@PDTES/PSIOAm and Cu7S4@PDTES/PSIOAm nanoprobes further suggest that these nanoprobes hold wide potentials for multifunctional applications in biomedical fields. PMID:27534896

  4. Magnetized particle motion around non-Schwarzschild black hole immersed in an external uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Rayimbaev, J. R.

    2016-09-01

    The motion of a magnetized particle orbiting around non-Schwarzschild black hole immersed in an external uniform magnetic field is considered. The influence of deformation parameter h to effective potential of the radial motion of the magnetized particle around non-Schwarzschild black hole using Hamilton-Jacobi formalism is studied. We have obtained numerical values of area Δ ρ where magnetized particles can move which is expanding (narrowing) due to the effect of the negative (positive) deformation. Finally, we have studied the collision of two particles (magnetized-neutral, magnetized-magnetized, magnetized-charged) in non-Schwarzschild spacetime and got the center-of-mass energy (E_{c.m}) for the particles. Moreover, we have found the capture radius (r_{cap}) - the distance from the central object to the point where particles collide and fall down to the central compact object. It is shown that non-Schwarzschild black holes could also act as particle accelerators with arbitrarily high center-of-mass energy.

  5. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

    PubMed Central

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375

  6. Prospects for Fermi Particle Acceleration at Coronal Magnetic Reconnection Sites

    NASA Astrophysics Data System (ADS)

    Provornikova, E.; Laming, J. M.; Lukin, V.

    2015-12-01

    The mechanism of first order Fermi acceleration of particles interacting with the converging magnetized flows at a reconnection site was introduced recently in an attempt to predict the energy distribution of particles resulting from violent reconnection in galactic microquasars. More careful consideration of this mechanism showed that the spectral index of accelerated particles is related to the total plasma compression within a reconnection region, similar to that in the formulation for diffusive shock acceleration. In the solar context, reconnection regions producing strong compression could be the source of suprathermal "seed particles". A hard spectrum of such suprathermal particles is believed to be necessary to initiate the particle acceleration process at low Mach number coronal mass ejection shocks close to the Sun where the gradual solar energetic particle events originate. As a first step to investigate the efficiency of Fermi acceleration, we explore the degree of plasma compression that can be achieved at reconnection sites in the solar corona. This work presents a set of 2D two-temperature resistive MHD simulations of the dynamics of several magnetic configurations within a range of lower corona plasma parameters. Energy transport processes in the MHD model include anisotropic thermal conduction for electrons and ions and radiative cooling. Magnetic configurations considered are a Harris current sheet, a force-free current sheet, a flux rope sitting above an arcade of magnetic loops, and two merging flux ropes. We demonstrate that only for some magnetic topologies, corresponding in particular to 3D magnetic nulls, the compression ratio, sufficient for first order Fermi acceleration in the reconnection region, can be achieved. These represent the potential sites in the solar corona where a hard seed particle energetic spectrum could be produced.

  7. MD Simulation of Particle Orientation in Magnetic Inks

    NASA Astrophysics Data System (ADS)

    Visscher; Günal

    1997-03-01

    We have done molecular-dynamics type simulations of particle re-orientation in a magnetic colloid, by a magnetic field during tape and disk manufacture. The model takes into account switching (in a Stoner- Wohlfarth model) as well as particle translation and rotation in response to magnetic, steric, Brownian, and hydrodynamic drag forces and torques. Magnetic interactions are fully included; hysteresis loops with and without magnetic interaction will be displayed, with corresponding Δ M curves. Images of the network structure at various points of the hysteresis loop will be shown. Further information is available at http:// www.mint.ua.edu/colloids/march.html.

  8. Switchable magnetic bottles and field gradients for particle traps

    NASA Astrophysics Data System (ADS)

    Vogel, Manuel; Birkl, Gerhard; Quint, Wolfgang; von Lindenfels, David; Wiesel, Marco

    2014-01-01

    Versatile methods for the manipulation of individual quantum systems, such as confined particles, have become central elements in current developments in precision spectroscopy, frequency standards, quantum information processing, quantum simulation, and alike. For atomic and some subatomic particles, both neutral and charged, a precise control of magnetic fields is essential. In this paper, we discuss possibilities for the creation of specific magnetic field configurations which find application in these areas. In particular, we pursue the idea of a magnetic bottle which can be switched on and off by transition between the normal and the superconducting phase of a suitable material in cryogenic environments, for example, in trap experiments in moderate magnetic fields. Methods for a fine-tuning of the magnetic field and its linear and quadratic components in a trap are presented together with possible applications.

  9. Magnetic field flow phenomena in a falling particle receiver

    NASA Astrophysics Data System (ADS)

    Armijo, Kenneth M.; Ho, Clifford; Anderson, Ryan; Christian, Joshua; Babiniec, Sean; Ortega, Jesus

    2016-05-01

    Concentrating solar power (CSP) falling particle receivers are being pursued as a desired means for utilizing low-cost, high-absorptance particulate materials that can withstand high concentration ratios (˜1000 suns), operating temperatures above 700 °C, and inherent storage capabilities which can be used to reduce to levelized cost of electricity (LCOE)1. Although previous falling particle receiver designs have proven outlet temperatures above 800 °C, and thermal efficiencies between 80-90%, performance challenges still exist to operate at higher concentration ratios above 1000 suns and greater solar absorptance levels. To increase absorptance, these receivers will require enhanced particle residence time within a concentrated beam of sunlight. Direct absorption solid particle receivers that can enhance this residence time will have the potential to achieve heat-transfer media temperatures2 over 1000 °C. However, depending on particle size and external forces (e.g., external wind and flow due to convective heat losses), optimized particle flow can be severely affected, which can reduce receiver efficiency. To reduce particle flow destabilization and increase particle residence time on the receiver an imposed magnetic field is proposed based on a collimated design for two different methodologies. These include systems with ferromagnetic and charged particle materials. The approaches will be analytically evaluated based on magnetic field strength, geometry, and particle parameters, such as magnetic moment. A model is developed using the computational fluid dynamics (CFD) code ANSYS FLUENT to analyze these approaches for a ˜2 MWth falling particle receiver at Sandia National Laboratories5,6. Here, assessment will be made with respect to ferromagnetic particles such as iron-oxides, as well as charged particles. These materials will be parametrically assessed (e.g., type, size, dipole moment and geometry) over a range of magnetic permeability, μ values. Modeling

  10. In vivo magnetic enrichment, photoacoustic diagnosis, and photothermal purging of infected blood using multifunctional gold and magnetic nanoparticles.

    PubMed

    Galanzha, Ekaterina I; Shashkov, Evgeny; Sarimollaoglu, Mustafa; Beenken, Karen E; Basnakian, Alexei G; Shirtliff, Mark E; Kim, Jin-Woo; Smeltzer, Mark S; Zharov, Vladimir P

    2012-01-01

    Bacterial infections are a primary cause of morbidity and mortality worldwide. Bacteremia is a particular concern owing to the possibility of septic shock and the development of metastatic infections. Treatment of bacteremia is increasingly compromised by the emergence of antibiotic resistant strains, creating an urgent need for alternative therapy. Here, we introduce a method for in vivo photoacoustic (PA) detection and photothermal (PT) eradication of Staphylococcus aureus in tissue and blood. We show that this method could be applicable for label-free diagnosis and treatment of in the bloodstream using intrinsic near-infrared absorption of endogenous carotenoids with nonlinear PA and PT contrast enhancement. To improve sensitivity and specificity for detection of circulating bacteria cells (CBCs), two-color gold and multilayer magnetic nanoparticles with giant amplifications of PA and PT contrasts were functionalized with an antibody cocktail for molecular targeting of S. aureus surface-associated markers such as protein A and lipoprotein. With a murine model, the utility of this approach was demonstrated for ultrasensitive detection of CBCs with threshold sensitivity as low as 0.5 CBCs/mL, in vivo magnetic enrichment of CBCs, PT eradication of CBCs, and real-time monitoring of therapeutic efficacy by CBC counting. Our PA-PT nano-theranostic platform, which integrates in vivo multiplex targeting, magnetic enrichment, signal amplification, multicolor recognition, and feedback control, could be used as a biological tool to gain insights on dissemination pathways of CBCs, infection progression by bacteria re-seeding, and sepsis development and treatment, and could potentially be feasible in humans, especially using bypass schematic. PMID:23049814

  11. In Vivo Magnetic Enrichment, Photoacoustic Diagnosis, and Photothermal Purging of Infected Blood Using Multifunctional Gold and Magnetic Nanoparticles

    PubMed Central

    Galanzha, Ekaterina I.; Shashkov, Evgeny; Sarimollaoglu, Mustafa; Beenken, Karen E.; Basnakian, Alexei G.; Shirtliff, Mark E.; Kim, Jin-Woo; Smeltzer, Mark S.; Zharov, Vladimir P.

    2012-01-01

    Bacterial infections are a primary cause of morbidity and mortality worldwide. Bacteremia is a particular concern owing to the possibility of septic shock and the development of metastatic infections. Treatment of bacteremia is increasingly compromised by the emergence of antibiotic resistant strains, creating an urgent need for alternative therapy. Here, we introduce a method for in vivo photoacoustic (PA) detection and photothermal (PT) eradication of Staphylococcus aureus in tissue and blood. We show that this method could be applicable for label-free diagnosis and treatment of in the bloodstream using intrinsic near-infrared absorption of endogenous carotenoids with nonlinear PA and PT contrast enhancement. To improve sensitivity and specificity for detection of circulating bacteria cells (CBCs), two-color gold and multilayer magnetic nanoparticles with giant amplifications of PA and PT contrasts were functionalized with an antibody cocktail for molecular targeting of S. aureus surface-associated markers such as protein A and lipoprotein. With a murine model, the utility of this approach was demonstrated for ultrasensitive detection of CBCs with threshold sensitivity as low as 0.5 CBCs/mL, in vivo magnetic enrichment of CBCs, PT eradication of CBCs, and real-time monitoring of therapeutic efficacy by CBC counting. Our PA-PT nano-theranostic platform, which integrates in vivo multiplex targeting, magnetic enrichment, signal amplification, multicolor recognition, and feedback control, could be used as a biological tool to gain insights on dissemination pathways of CBCs, infection progression by bacteria re-seeding, and sepsis development and treatment, and could potentially be feasible in humans, especially using bypass schematic. PMID:23049814

  12. Theoretical limit in the magnetization reversal of stoner particles.

    PubMed

    Wang, X R; Sun, Z Z

    2007-02-16

    Magnetization reversal of uniaxial Stoner particles under the Slonczewski spin-transfer torques of polarized electric currents is investigated. Based on the modified Landau-Lifshitz-Gilbert equation of magnetization dynamics, the theoretical limit of critical currents required to reverse a magnetization with an arbitrary polarized current is obtained. Under a constant polarization degree and constant current amplitude, the optimal current pulse for the fastest magnetization reversal is derived. These results can be used as benchmarks to evaluate different reversal strategies besides other possible usages. PMID:17359053

  13. Magnetic particle clutch controls servo system

    NASA Technical Reports Server (NTRS)

    Fow, P. B.

    1973-01-01

    Magnetic clutches provide alternative means of driving low-power rate or positioning servo systems. They may be used over wide variety of input speed ranges and weigh comparatively little. Power drain is good with overall motor/clutch efficiency greater than 50 percent, and gain of clutch is close to linear, following hysteresis curve of core and rotor material.

  14. Transport of Energetic Particles by Microturbulence in Magnetized Plasmas

    SciTech Connect

    Zhang Wenlu; Lin Zhihong; Chen Liu

    2008-08-29

    Transport of energetic particles by the microturbulence in magnetized plasmas is studied in gyrokinetic simulations of the ion temperature gradient turbulence. The probability density function of the ion radial excursion is found to be very close to a Gaussian, indicating a diffusive transport process. The particle diffusivity can thus be calculated from a random walk model. The diffusivity is found to decrease drastically for high energy particles due to the averaging effects of the large gyroradius and orbit width, and the fast decorrelation of the energetic particles with the waves.

  15. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  16. Particle size dependent rheological property in magnetic fluid

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Pei, Lei; Xuan, Shouhu; Yan, Qifan; Gong, Xinglong

    2016-06-01

    The influence of the particle size on the rheological property of magnetic fluid was studied both by the experimental and computer simulation methods. Firstly, the magnetic fluids were prepared by dispersing Fe3O4 nanospheres with size varied from 40 nm to 100 nm and 200 nm in the solution. Then, the rheological properties were investigated and it was found that the relative magnetorheological effects increased with increasing the particle size. Finally, the molecular dynamic simulation was used to analyze the mechanical characteristics of the magnetic fluid and the chain-like model agreed well with the experimental result. The authentic chain-like structure observed by a microscope agreed with the simulation results. The three particles composed of the similar cluster nanostructure, thus they exhibited similar magnetic property. To this end, the unique assembling microstructures was the origination of the mechanical difference. And it was found that the higher MR (magnetorheological) effects of the large particle based magnetic fluid was originated from the stronger assembling microstructure under the applying magnetic field.

  17. Particle acceleration in helical magnetic fields in the corona

    NASA Astrophysics Data System (ADS)

    Gordovskyy, Mykola; Browning, Philippa; Bareford, Michael; Pinto, Rui; Kontar, Eduard; Bian, Nicolas

    2014-05-01

    Twisted magnetic fields should be ubiquitous in the solar corona. Emerging twisted ropes as well as complex photospheric motions provide continuous influx of the magnetic helicity. Twisted coronal fields, in turn, contain excess magnetic energy, which can be released, causing solar flares and other explosive phenomena. It has been shown recently, that reconnection in helical magnetic structures results in particle acceleration distributed within large volume, including the lower corona and chromosphere. Hence, the magnetic reconnection and particle acceleration scenario involving magnetic helicity can be a viable alternative to the standard flare model, where particles are accelerated in a small volume located in the upper corona. We discuss our recent results on the energy release and particle acceleration during magnetic reconnection in twisted coronal loops. Evolution of various helical structures is described in terms of resistive MHD, including heat conduction and radiation. We consider the effects of field topology and photospheric motions on the energy accumulation and release. In particular, we focus on scenarios with continuous helicity injection, leading to recurrent explosive events. Using the obtained MHD models, ion and electron acceleration is investigated, taking into account Coulomb collisions. We derive time-dependent energy spectra and spatial distribution for these species, and calculate resulting non-thermal radiation intensities. Based on the developed numerical models, we investigate observational implications of particle acceleration in helical magnetic structures. Thus, we compare temporal variations of thermal and non-thermal emission in different configurations. Furthermore, we consider spatial distributions of the thermal EUV and X-ray emission and non-thermal X-ray emission and compare them with observational data.

  18. Radiolysis and hydrolysis of magnetically assisted chemical separation particles

    SciTech Connect

    Buchholz, B.A.; Nunez, L.; Vandegrift, G.F.

    1995-05-01

    The magnetically assisted chemical separation (MACS) process is designed to separate transuranic (TRU) elements out of high-level waste (HLW) or TRU waste. Magnetic microparticles (1--25 {mu}m) were coated with octyl (phenyl)N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) dissolved in tributyl phosphate (TBP) and tested for removing TRU elements from acidic nitrate solutions. The particles were contacted with nitric acid solutions and Hanford plutonium finishing plant (PFP) simulant, irradiated with a high intensity {sup 60}Co {gamma}-ray source, and evaluated for effectiveness in removing TRU elements from 2m HNO{sub 3} solutions. The resistance of the coatings and magnetic cores to radiolytic damage and hydrolytic degradation was investigated by irradiating samples of particles suspended in a variety of solutions with doses of up to 5 Mrad. Transmission electron microscopy (TEM), magnetic susceptibility measurements, and physical observations of the particles and suspension solutions were used to assess physical changes to the particles. Processes that affect the surface of the particles dramatically alter the binding sites for TRU in solution. Hydrolysis played a larger role than radiolysis in the degradation of the extraction capacity of the particles.

  19. Optimizing Magnetite Nanoparticles for Mass Sensitivity in Magnetic Particle Imaging

    SciTech Connect

    Ferguson, R Matthew; Minard, Kevin R; Khandhar, Amit P; Krishnan, Kannan M

    2011-03-01

    Purpose: Magnetic particle imaging (MPI), using magnetite nanoparticles (MNPs) as tracer material, shows great promise as a platform for fast tomographic imaging. To date, the magnetic properties of MNPs used in imaging have not been optimized. As nanoparticle magnetism shows strong size dependence, we explore how varying MNP size impacts imaging performance in order to determine optimal MNP characteristics for MPI at any driving field frequency f0. Methods: Monodisperse MNPs of varying size were synthesized and their magnetic properties characterized. Their MPI response was measured experimentally, at an arbitrarily chosen f0 = 250 kHz, using a custom-built MPI transceiver designed to detect the third harmonic of MNP magnetization. Results were interpreted using a model of dynamic MNP magnetization that is based on the Langevin theory of superparamagnetism and accounts for sample size distribution, and size-dependent magnetic relaxation. Results: Our experimental results show clear variation in the MPI signal intensity as a function of MNP size that is in good agreement with modeled results. A maxima in the plot of MPI signal vs. MNP size indicates there is a particular size that is optimal for the chosen frequency of 250 kHz. Conclusions: For MPI at any chosen frequency, there will exist a characteristic particle size that generates maximum signal amplitude. We illustrate this at 250 kHz with particles of 15 nm core diameter.

  20. Dynamics of an active magnetic particle in a rotating magnetic field.

    PubMed

    Cēbers, A; Ozols, M

    2006-02-01

    The motion of an active (self-propelling) particle with a permanent magnetic moment under the action of a rotating magnetic field is considered. We show that below a critical frequency of the external field the trajectory of a particle is a circle. For frequencies slightly above the critical point the particle moves on an approximately circular trajectory and from time to time jumps to another region of space. Symmetry of the particle trajectory depends on the commensurability of the field period and the period of the orientational motion of the particle. We also show how our results can be used to study the properties of naturally occurring active magnetic particles, so-called magnetotactic bacteria. PMID:16605340

  1. Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer.

    PubMed

    Melancon, Marites P; Lu, Wei; Zhong, Meng; Zhou, Min; Liang, Gan; Elliott, Andrew M; Hazle, John D; Myers, Jeffrey N; Li, Chun; Stafford, R Jason

    2011-10-01

    Image-guided thermal ablation of tumors is becoming a more widely accepted minimally invasive alternative to surgery for patients who are not good surgical candidates, such as patients with advanced head and neck cancer. In this study, multifunctional superparamagnetic iron oxide coated with gold nanoshell (SPIO@Au NS) that have both optical and magnetic properties was conjugated with the targeting agent, C225 monoclonal antibody, against epidermal growth factor receptor (EGFR). C225-SPIO@Au NS have an average a diameter of 82 ± 4.4 nm, contain 142 ± 15 antibodies per nanoshell, have an absorption peak in the near infrared (~800 nm), and have transverse relaxivity (r(2)) of 193 and 353 mM(-1) s(-1) versus Feridex™ of 171 and 300 mM(-1) s(-1), using 1.5 T and 7 T MR scanners, respectively. Specific targeting of the synthesized C225-SPIO@Au NS was tested in vitro using A431 cells and oral cancer cells, FaDu, OSC19, and HN5, all of which overexpress EGFR. Selective binding was achieved using C225-SPIO@Au NS but not with the non-targeting PEG-SPIO@Au NS and blocking group (excess of C225 + C225-SPIO@Au NS). In vivo biodistribution on mice bearing A431 tumors also showed selective targeting of C225-SPIO@Au NS compared with the non-targeting and blocking groups. The selective photothermal ablation of the nanoshells shows that without laser treatment there were no cell death and among the groups that were treated with laser at a power of 36 W/cm(2) for 3 min, only the cells treated with C225-SPIO@Au NS had cell killing (p < 0.001). In summary, successful synthesis and characterization of targeted C225-SPIO@Au NS demonstrating both superparamagnetic and optical properties has been achieved. We have shown both in vitro and in vivo that these nanoshells are MR-active and can be selectively heated up for simultaneous imaging and photothermal ablation therapy. PMID:21745689

  2. Particle energization in a chaotic force-free magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Xiaocan; Li, Gang; Dasgupta, Brahmananda

    2015-04-01

    A force-free field (FFF) is believed to be a reasonable description of the solar corona and in general a good approximation for low-beta plasma. The equations describing the magnetic field of FFF is similar to the ABC fluid equations which has been demonstrated to be chaotic. This implies that charged particles will experience chaotic magnetic field in the corona. Here, we study particle energization in a time-dependent FFF using a test particle approach. An inductive electric field is introduced by turbulent motions of plasma parcels. We find efficient particle acceleration with power-law like particle energy spectra. The power-law indices depend on the amplitude of plasma parcel velocity field and the spatial scales of the magnetic field fluctuation. The spectra are similar for different particle species. This model provide a possible mechanism for seed population generation for particle acceleration by, e.g., CME-driven shocks. Generalization of our results to certain non-force-free-field (NFFF) is straightforward as the sum of two or multiple FFFs naturally yield NFFF.

  3. Fe3O4@Graphene Oxide@Ag Particles for Surface Magnet Solid-Phase Extraction Surface-Enhanced Raman Scattering (SMSPE-SERS): From Sample Pretreatment to Detection All-in-One.

    PubMed

    Liu, Zhigang; Wang, Yi; Deng, Rong; Yang, Liyuan; Yu, Shihua; Xu, Shuping; Xu, Weiqing

    2016-06-01

    A multifunctional magnetic graphene surface-enhanced Raman scattering (SERS) substrate was fabricated successfully by the layer-by-layer assembly of silver and graphene oxide (GO) nanoparticles (NPs) on the magnetic ferroferric oxide particles (Fe3O4@GO@Ag). This ternary particle possesses magnetic properties, SERS activity, and adsorption ability simultaneously. Owing to the multifunction of this Fe3O4@GO@Ag ternary complex, we put forward a new method called a surface magnetic solid-phase extraction (SMSPE) technique, for the SERS detections of pesticide residues on the fruit peels. SMSPE integrates many sample pretreatment procedures, such as surface extraction, separation sample, and detection, all-in-one. So this method shows great superiority in simplicity, rapidity, and high efficiency above other standard methods. The whole detection process can be finished within 20 min including the sample pretreatment and SERS detection. Owing to the high density of Ag NPs, the detection sensitivity is high enough that the lowest detectable concentrations are 0.48 and 40 ng/cm(2) for thiram and thiabendazole, which are much lower than the maximal residue limits in fruit prescribed by the U.S. Environmental Protection Agency. This multifunctional ternary particle and its corresponding analytical method have been proven to be applicable for practical samples and also valuable for other surface analysis. PMID:27191584

  4. First-order particle acceleration in magnetically driven flows

    DOE PAGESBeta

    Beresnyak, Andrey; Li, Hui

    2016-03-02

    In this study, we demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution inmore » magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.« less

  5. First-Order Particle Acceleration in Magnetically-driven Flows

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey; Li, Hui

    2016-03-01

    We demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution in magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.

  6. Magnetic-luminescent spherical particles synthesized by ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Michel, Norma L.; Flores, Dora L.; Hirata, Gustavo A.

    2015-07-01

    The combination of magnetic and luminescent properties in a single particle system, opens-up a wide range of potential applications in biotechnology and biomedicine. In this work, we performed the synthesis of magnetic-luminescent Gd2O3:Eu3+@Fe2O3 particles by ultrasonic spray pyrolysis performed in a tubular furnace. In order to achieve the composite formation, commercial superparamagnetic Fe3O4 nanoparticles were coated with a luminescent Eu3+-doped Gd2O3 shell in a low-cost one-step process. The spray pyrolysis method yields deagglomerated spherical shape magneto/luminescent particles. The photoluminescence spectra under UV excitation (λExc = 265 nm) of the magnetic Gd2O3:Eu3+@Fe2O3 compound showed the characteristic red emission of Eu3+ (λEm = 612 nm). This magneto/luminescent system will find applications in biomedicine and biotechnology.

  7. A particle astrophysics magnet facility: ASTROMAG

    NASA Technical Reports Server (NTRS)

    Ormes, Jonathan F. (Editor); Israel, Martin H. (Editor); Mewaldt, Richard A. (Editor); Wiedenbeck, Mark E. (Editor)

    1988-01-01

    The primary scientific objectives of ASTROMAG are to: examine cosmological models by searching for antimatter and dark matter candidates; study the origin and evolution of matter in the galaxy by direct sampling of galactic matter; and study the origin and acceleration of the relativistic particle plasma in the galaxy and its effects on the dynamics and evolution of the galaxy. These general scientific objectives will be met by ASTROMAG with particle detection instruments designed to make the following observations: search, for anti-nuclei of helium and heavier element; measure the spectra of anti-protons and positrons; measure the isotopic composition of cosmic ray nuclei at energies of several GeV/amu; and measure the energy spectra of cosmic ray nuclei to very high energies.

  8. Astromag - Particle astrophysics magnet facility for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Jones, W. Vernon

    1989-01-01

    The Astromag (for astrophysics magnet) superconducting magnet facility to be flown aboard the Space Station in the late 1990s is described together with its scientific objectives. The Astromag facility is basically a magnetic spectrometer capable of determining the momentum per unit charge and the sign of the charge of fully ionized cosmic rays. The Astromag's science goals include investigating the origin and the evolution of matter in the Galaxy by direct sampling of Galactic material, examining cosmological models by searching for antimatter and an evidence of dark matter, and studying the origin of extremely energetic particles and their effects on the dynamics and evolution of the Galaxy. The Astromag's instrumentation will include an array of particle detectors (the WIZard instrument), a large spectrometer (LISA), and a stack of passive high-resolution track detectors in the Astromag's magnetic field (the SCIN/MAGIC instrument).

  9. Particle energization through time-periodic helical magnetic fields.

    PubMed

    Mitra, Dhrubaditya; Brandenburg, Axel; Dasgupta, Brahmananda; Niklasson, Eyvind; Ram, Abhay

    2014-04-01

    We solve for the motion of charged particles in a helical time-periodic ABC (Arnold-Beltrami-Childress) magnetic field. The magnetic field lines of a stationary ABC field with coefficients A=B=C=1 are chaotic, and we show that the motion of a charged particle in such a field is also chaotic at late times with positive Lyapunov exponent. We further show that in time-periodic ABC fields, the kinetic energy of a charged particle can increase indefinitely with time. At late times the mean kinetic energy grows as a power law in time with an exponent that approaches unity. For an initial distribution of particles, whose kinetic energy is uniformly distributed within some interval, the probability density function of kinetic energy is, at late times, close to a Gaussian but with steeper tails. PMID:24827325

  10. Frequency Mixing Magnetic Detection Scanner for Imaging Magnetic Particles in Planar Samples.

    PubMed

    Hong, Hyobong; Lim, Eul-Gyoon; Jeong, Jae-Chan; Chang, Jiho; Shin, Sung-Woong; Krause, Hans-Joachim

    2016-01-01

    The setup of a planar Frequency Mixing Magnetic Detection (p-FMMD) scanner for performing Magnetic Particles Imaging (MPI) of flat samples is presented. It consists of two magnetic measurement heads on both sides of the sample mounted on the legs of a u-shaped support. The sample is locally exposed to a magnetic excitation field consisting of two distinct frequencies, a stronger component at about 77 kHz and a weaker field at 61 Hz. The nonlinear magnetization characteristics of superparamagnetic particles give rise to the generation of intermodulation products. A selected sum-frequency component of the high and low frequency magnetic field incident on the magnetically nonlinear particles is recorded by a demodulation electronics. In contrast to a conventional MPI scanner, p-FMMD does not require the application of a strong magnetic field to the whole sample because mixing of the two frequencies occurs locally. Thus, the lateral dimensions of the sample are just limited by the scanning range and the supports. However, the sample height determines the spatial resolution. In the current setup it is limited to 2 mm. As examples, we present two 20 mm × 25 mm p-FMMD images acquired from samples with 1 µm diameter maghemite particles in silanol matrix and with 50 nm magnetite particles in aminosilane matrix. The results show that the novel MPI scanner can be applied for analysis of thin biological samples and for medical diagnostic purposes. PMID:27341085

  11. Radial distribution of charged particles in a magnetic field.

    PubMed

    Sjue, S K L; Broussard, L J; Makela, M; McGaughey, P L; Young, A R; Zeck, B A

    2015-02-01

    The radial spread of charged particles emitted from a point source in a magnetic field is a potential source of systematic error for any experiment where magnetic fields guide charged particles to detectors with finite size. Assuming uniform probability as a function of the phase along the particle's helical trajectory, an analytic solution for the radial probability distribution function follows which applies to experiments in which particles are generated throughout a volume that spans a sufficient length along the axis of a homogeneous magnetic field. This approach leads to the same result as a different derivation given by Dubbers et al., Nucl. Instrum. Methods Phys. Res., Sect. A 763, 112-119 (2014). But the constant phase approximation does not strictly apply to finite source volumes or fixed positions, which lead to local maxima in the radial distribution of emitted particles at the plane of the detector. A simple method is given to calculate such distributions, then the effect is demonstrated with data from a (207)Bi electron-conversion source in the superconducting solenoid magnet spectrometer of the Ultracold Neutron facility at the Los Alamos Neutron Science Center. Implications for neutron beta decay spectroscopy are discussed. PMID:25725818

  12. Energetic particles and magnetic field measurements at Comet Halley

    NASA Astrophysics Data System (ADS)

    Osullivan, D.; Thompson, A.; McKenna-Lawlor, S.; Kirsch, E.; Wenzel, K.-P.; Neubauer, F. M.

    1986-12-01

    Studies of energetic charged particles in the environment of comet Halley, based on data from the EPA instrument on the Giotto spacecraft, are presented. Investigation of the lowest energy channels (p,e; 26 to 46 keV) of Telescopes 1 and 3 are reported. Investigation of the particle data in relation to magnetic field measurements made during 13 and 14 March 1986 are discussed. Overall flux patterns are similar to those of higher energy channels.

  13. Nanostructures of Sr2+ doped BiFeO3 multifunctional ceramics with tunable photoluminescence and magnetic properties.

    PubMed

    Mandal, S K; Rakshit, T; Ray, S K; Mishra, S K; Krishna, P S R; Chandra, Amreesh

    2013-02-01

    Careful tuning of formation (calcination) temperature of Sr(2+) doped BiFeO(3) multiferroic ceramics results in tailorable particle morphologies ranging from spherical to pillar-like. Based on the minimization of Gibb's free energy approach, the dominant homogeneous mechanism for particle growth is suggested. The chemical substitution of a trivalent ion (Bi(3+)) by a divalent ion (Sr(2+)) causes the transformation of certain fraction of Fe(3+) to Fe(4+) and/or the appearance of oxygen vacancies. This has been respectively proved by the analysis of XPS and refinement of neutron diffraction data. Although significant modification in the particle morphology is observed, the crystal unit cell remains rhombohedral with a R3c space group but interesting variations in physical properties are achieved. O-vacancies induced strong and sharp photoluminescence activity in the IR region, similar to ZnO, is reported for the first time. This observation opens up a new application for multiferroic ceramics. SQUID M-H data confirms the straightening of the canted spin structure of BiFeO(3), which in turn results in magnetism similar to ferromagnetic materials. Findings of the magneto-dielectric effect are also discussed to claim the multiferroic nature of the sample. PMID:23300169

  14. Nanostructures of Sr2+ doped BiFeO3 multifunctional ceramics with tunable photoluminescence and magnetic properties

    NASA Astrophysics Data System (ADS)

    Mandal, S. K.; Rakshit, T.; Ray, S. K.; Mishra, S. K.; Krishna, P. S. R.; Chandra, Amreesh

    2013-02-01

    Careful tuning of formation (calcination) temperature of Sr2+ doped BiFeO3 multiferroic ceramics results in tailorable particle morphologies ranging from spherical to pillar-like. Based on the minimization of Gibb’s free energy approach, the dominant homogeneous mechanism for particle growth is suggested. The chemical substitution of a trivalent ion (Bi3+) by a divalent ion (Sr2+) causes the transformation of certain fraction of Fe3+ to Fe4+ and/or the appearance of oxygen vacancies. This has been respectively proved by the analysis of XPS and refinement of neutron diffraction data. Although significant modification in the particle morphology is observed, the crystal unit cell remains rhombohedral with a R3c space group but interesting variations in physical properties are achieved. O-vacancies induced strong and sharp photoluminescence activity in the IR region, similar to ZnO, is reported for the first time. This observation opens up a new application for multiferroic ceramics. SQUID M-H data confirms the straightening of the canted spin structure of BiFeO3, which in turn results in magnetism similar to ferromagnetic materials. Findings of the magneto-dielectric effect are also discussed to claim the multiferroic nature of the sample.

  15. Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Liu, Bei; Li, Chunxia; Ma, Ping'an; Chen, Yinyin; Zhang, Yuanxin; Hou, Zhiyao; Huang, Shanshan; Lin, Jun

    2015-01-01

    A low toxic multifunctional nanoplatform, integrating both mutimodal diagnosis methods and antitumor therapy, is highly desirable to assure its antitumor efficiency. In this work, we show a convenient and adjustable synthesis of multifunctional nanoparticles NaYF4:Yb, Er@mSiO2@Fe3O4-PEG (MFNPs) based on different sizes of up-conversion nanoparticles (UCNPs). With strong up-conversion fluorescence offered by UCNPs, superparamagnetism properties attributed to Fe3O4 nanoparticles and porous structure coming from the mesoporous SiO2 shell, the as-obtained MFNPs can be utilized not only as a contrast agent for dual modal up-conversion luminescence (UCL)/magnetic resonance (MR) bio-imaging, but can also achieve an effective magnetically targeted antitumor chemotherapy both in vitro and in vivo. Furthermore, the UCL intensity of UCNPs and the magnetic properties of Fe3O4 in the MFNPs were carefully balanced. Silica coating and further PEG modifying can improve the hydrophilicity and biocompatibility of the as-synthesized MFNPs, which was confirmed by the in vitro/in vivo biocompatibility and in vivo long-time bio-distributions tests. Those results revealed that the UCNPs based magnetically targeted drug carrier system we synthesized has great promise in the future for multimodal bio-imaging and targeted cancer therapy.A low toxic multifunctional nanoplatform, integrating both mutimodal diagnosis methods and antitumor therapy, is highly desirable to assure its antitumor efficiency. In this work, we show a convenient and adjustable synthesis of multifunctional nanoparticles NaYF4:Yb, Er@mSiO2@Fe3O4-PEG (MFNPs) based on different sizes of up-conversion nanoparticles (UCNPs). With strong up-conversion fluorescence offered by UCNPs, superparamagnetism properties attributed to Fe3O4 nanoparticles and porous structure coming from the mesoporous SiO2 shell, the as-obtained MFNPs can be utilized not only as a contrast agent for dual modal up-conversion luminescence (UCL)/magnetic

  16. Heating Characteristics of Transformer Oil-Based Magnetic Fluids of Different Magnetic Particle Concentrations

    NASA Astrophysics Data System (ADS)

    Skumiel, A.; Hornowski, T.; Józefczak, A.

    2011-04-01

    The heating ability of mineral oil-based magnetic fluids with different magnetic particle concentrations is studied. The calorimetric measurements were carried out in an alternating magnetic field of 500 A · m-1 to 2500 A · m-1 amplitude and of 1500 kHz frequency. The revealed H n law-type dependence of the temperature increase rate, (d T/d t) t=0, on the amplitude of the magnetic field indicates the presence of superparamagnetic and partially ferromagnetic particles in the tested samples since n > 2. The specific absorption rate (SAR) defined as the rate of energy absorption per unit mass increases with a decrease of the volume fraction of the dispersed phase. This can be explained by the formation of aggregates in the samples with a higher concentration of magnetic particles.

  17. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  18. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    DOE PAGESBeta

    Li, Yi; Xu, Ben; Hu, Shenyang; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domainsmore » on the magnetization reversal behavior and the magnetic properties.« less

  19. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Li, Qiulin; Liu, Wei; Xu, Ben; Hu, Shenyang; Li, Yulan

    2015-07-15

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  20. Nonthermal Particle Acceleration and Radiation in Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Werner, Gregory

    2015-11-01

    Many spectacular and violent phenomena in the high-energy universe exhibit nonthermal radiation spectra, from which we infer power-law energy distributions of the radiating particles. Relativistic magnetic reconnection, recognized as a leading mechanism of nonthermal particle acceleration, can efficiently transfer magnetic energy to energetic particles. We present a comprehensive particle-in-cell study of particle acceleration in 2D relativistic reconnection in both electron-ion and pair plasmas without guide field. We map out the power-law index α and the high-energy cutoff of the electron energy spectrum as functions of three key parameters: the system size (and initial layer length) L, the ambient plasma magnetization σ, and the ion/electron mass ratio (from 1 to 1836). We identify the transition between small- and large-system regimes: for small L, the system size affects the slope and extent of the high-energy spectrum, while for large enough L, α and the cutoff energy are independent of L. We compare high energy particle spectra and radiative (synchrotron and inverse Compton) signatures of the electrons, for pair and electron-ion reconnection. The latter cases maintain highly relativistic electrons, but include a range of different magnetizations yielding sub- to highly-relativistic ions. Finally, we show how nonthermal acceleration and radiative signatures alter when the radiation back-reaction becomes important. These results have important implications for assessing the promise and the limitations of relativistic reconnection as an astrophysically-important particle acceleration mechanism. This work is funded by NSF, DOE, and NASA.

  1. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet

    PubMed Central

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-01-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  2. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet.

    PubMed

    Zhou, Yilong; Kumar, Dhileep Thanjavur; Lu, Xinyu; Kale, Akshay; DuBose, John; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2015-07-01

    Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles. PMID:26221197

  3. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    SciTech Connect

    Panda, Biswajit Goyal, P. S.

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.

  4. Apparatus and method for continuous separation of magnetic particles from non-magnetic fluids

    DOEpatents

    Oder, Robin R.; Jamison, Russell E.

    2010-02-09

    A magnetic separator vessel (1) for separating magnetic particles from non-magnetic fluid includes a separation chamber having an interior and exterior wall, a top and bottom portion; a magnet (3) having first and second poles (2) positioned adjacent to the exterior wall, wherein the first pole is substantially diametrically opposed to the second pole; a inlet port (5) is directed into the top portion of the separation chamber, wherein the inlet port (5) is positioned adjacent to one of the first and second poles (2), wherein the inlet port (5) is adapted to transfer a mixture into the separation chamber; an underflow port (6) in communication with the bottom portion, wherein the underflow port (6) is adapted to receive the magnetic particles; and an overflow port (9) in communication with the separation chamber, wherein the overflow port (9) is adapted to receive the non-magnetic fluid.

  5. Variation of Magnetic Particle Imaging Tracer Performance With Amplitude and Frequency of the Applied Magnetic Field

    PubMed Central

    Khandhar, Amit P.; Kemp, Scott J.; Ota, Satoshi; Nakamura, Kosuke; Takemura, Yasushi; Krishnan, Kannan M.

    2015-01-01

    The magnetic response of magnetic particle imaging (MPI) tracers varies with the slew rate of the applied magnetic field, as well as with the tracer's average magnetic core size. Currently, 25 kHz and 20 mT/μ0 drive fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. We studied how several different sizes of monodisperse MPI tracers behaved under different drive field amplitude and frequency, using magnetic particle spectrometry and ac hysteresis for drive field conditions at 16, 26, and 40 kHz, with field amplitudes from 5 to 40 mT/μ0. We observed that both field amplitude and frequency can influence the tracer behavior, but that the magnetic behavior is consistent when the slew rate (the product of field amplitude and frequency) is consistent. However, smaller amplitudes provide a correspondingly smaller field of view, sometimes resulting in excitation of a minor hysteresis loop. PMID:26023242

  6. Probing the magnetic topologies of magnetic clouds by means of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Reames, D. V.

    1991-01-01

    Solar energetic particles (SEPs) have been used as probes of magnetic cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.

  7. Radial distribution of charged particles in a magnetic field

    SciTech Connect

    Sjue, S. K. L. Broussard, L. J.; Makela, M.; McGaughey, P. L.; Young, A. R.; Zeck, B. A.

    2015-02-15

    The radial spread of charged particles emitted from a point source in a magnetic field is a potential source of systematic error for any experiment where magnetic fields guide charged particles to detectors with finite size. Assuming uniform probability as a function of the phase along the particle’s helical trajectory, an analytic solution for the radial probability distribution function follows which applies to experiments in which particles are generated throughout a volume that spans a sufficient length along the axis of a homogeneous magnetic field. This approach leads to the same result as a different derivation given by Dubbers et al., Nucl. Instrum. Methods Phys. Res., Sect. A 763, 112–119 (2014). But the constant phase approximation does not strictly apply to finite source volumes or fixed positions, which lead to local maxima in the radial distribution of emitted particles at the plane of the detector. A simple method is given to calculate such distributions, then the effect is demonstrated with data from a {sup 207}Bi electron-conversion source in the superconducting solenoid magnet spectrometer of the Ultracold Neutron facility at the Los Alamos Neutron Science Center. Implications for neutron beta decay spectroscopy are discussed.

  8. An x-space magnetic particle imaging scanner

    NASA Astrophysics Data System (ADS)

    Goodwill, Patrick W.; Lu, Kuan; Zheng, Bo; Conolly, Steven M.

    2012-03-01

    Magnetic particle imaging (MPI) is an imaging modality with great promise for high-contrast, high-sensitivity imaging of iron oxide tracers in animals and humans. In this paper, we present the first x-space MPI hardware and reconstruction software; show experimentally measured signals; detail our reconstruction technique; and present images of resolution and "angiography" phantoms.

  9. Structural and magnetic characterization of YIG particles prepared using microemulsions

    NASA Astrophysics Data System (ADS)

    Baldomir, D.; Teijeiro, A. G.; Rivas, J.; Vaqueiro, P.; Paz, S. B.; López Quintela, A.

    1995-02-01

    Yttrium-iron-garnet (YIG) particles have been synthesized using the microemulsion technique. A comparison of ferrite powders obtained by this method and those prepared by sol-gel and solid state reactions is reported. We have studied both the magnetic and structural properties and have found a dependence on annealing temperatures.

  10. Torsion Stiffness of a Protein Pair Determined by Magnetic Particles

    PubMed Central

    Janssen, X.J.A.; van Noorloos, J.M.; Jacob, A.; van IJzendoorn, L.J.; de Jong, A.M.; Prins, M.W.J.

    2011-01-01

    We demonstrate the ability to measure torsion stiffness of a protein complex by applying a controlled torque on a magnetic particle. As a model system we use protein G bound to an IgG antibody. The protein pair is held between a magnetic particle and a polystyrene substrate. The angular orientation of the magnetic particle shows an oscillating behavior upon application of a rotating magnetic field. The amplitude of the oscillation increases with a decreasing surface coverage of antibodies on the substrate and with an increasing magnitude of the applied field. For decreasing antibody coverage, the torsion spring constant converges to a minimum value of 1.5 × 103 pN·nm/rad that corresponds to a torsion modulus of 4.5 × 104 pN·nm2. This torsion stiffness is an upper limit for the molecular bond between the particle and the surface that is tentatively assigned to a single protein G–IgG protein pair. This assignment is supported by interpreting the measured stiffness with a simple mechanical model that predicts a two orders of magnitude larger stiffness for the protein G–IgG complex than values found for micrometer length dsDNA. This we understand from the structural properties of the molecules, i.e., DNA is a long and flexible chain-like molecule, whereas the antibody-antigen couple is orders of magnitude smaller and more globular in shape due to the folding of the molecules. PMID:21539795

  11. Diffusion of charged particles in a random magnetic field

    NASA Technical Reports Server (NTRS)

    Earl, J. A.

    1972-01-01

    When charged particles move in a random magnetic field superimposed upon a relatively large constant field, their pitch angle distribution can be calculated to any desired precision by an iterative approximation procedure. Improved knowledge of the pitch angle distribution and of the characteristic time for relaxation of anisotropy leads to an accurate expression for the coefficient of diffusion parallel to the mean field.

  12. Magnetic particles as affinity matrix for purification of antithrombin

    NASA Astrophysics Data System (ADS)

    Mercês, A. A. D.; Maciel, J. C.; Carvalho Júnior, L. B.

    2015-11-01

    Immobilization of biomolecules onto insoluble supports is an important tool for the fabrication of a diverse range of functional materials. It provides advantages: enhanced stability and easy separation. In this work two different magnetic composites were synthesized (MAG-PANI-HS and mDAC-HS) to human antithrombin purification. The magnetic particles (MAG) were obtained by co-precipitation method of iron salts II and III and subsequently coated with polyaniline (MAG-PANI particles). Dacron (polyethylene terephthalate) suffered a hydrazinolysis reaction to obtain a powder (Dacron hydrazide) which was subsequently magnetized (mDAC particles) also by co-precipitation method. Heparan sulfate (HS) was immobilized to MAG-PANI and mDAC retained respectively 35μg and 38.6μg per of support. The magnetic composite containing HS immobilized (MAG-PANI-HS and mDAC-HS) was incubated with human blood plasma (1mL) and then washed with NaCl gradients. Electrophoresis of proteins present in eluates showed bands of antithrombin (58kDa). A reduction in the antithrombin activity was detected in plasma that were incubated in the composites magnetic with HS immobilized, suggesting that the antithrombin was removed of the human blood plasma and then purified. Therefore, the above results suggest that both preparations: MAG-PANI-HS and mDAC-HS are able to affinity purify antithrombin, an important component of blood coagulation.

  13. Nonadiabatic behavior of the magnetic moment of a charged particle in a dipole magnetic field

    NASA Technical Reports Server (NTRS)

    Murakami, Sadayoshi; Sato, Tetsuya; Hasegawa, Akira

    1990-01-01

    This paper investigates the dynamic behavior of the magnetic moment of a particle confined in a magnetic dipole field in the presence of a low-frequency electrostatic wave. It is shown that there exist two kinds of resonances (the bounce-E x B drift resonance and the wave-drift resonance) by which the adiabaticity of the magnetic moment is broken. The unstable conditions obtained by theoretical considerations showed good agreement with the numerical results.

  14. Study of the structuralization of the magnetic particles in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Tomco, L.; Kopcansky, P.; Koneracka, M.; Kellnerova, V.

    1994-03-01

    A magnetic field induced agglomeration of magnetic particles in magnetic fluids (mineral oil and kerosene based) with several volume concentrations was studied by means of optical microscope equipped with a video camera. Scrutiny of the video revealed that time evolution of the aggregation process results from two processes i.e.: (1) the formation of new (or primary) agglomerations (t less than or equal to 2s); and (2) the coalescence of primary agglomerations (t greater than 2s).

  15. Application of Medical Magnetic Resonance Imaging for Particle Concentration Measurement

    NASA Astrophysics Data System (ADS)

    Borup, Daniel; Elkins, Christopher; Eaton, John

    2014-11-01

    Particle transport and deposition in internal flows is important in a range of applications such as dust aggregation in turbine engines and aerosolized medicine deposition in human airways. Unlike optical techniques, Magnetic Resonance Imaging (MRI) is well suited for complex applications in which optical access is not possible. Here we present efforts to measure 3D particle concentration distribution using MRI. Glass particles dispersed in water flow reduce MRI signal from a spin-echo or gradient-echo scanning sequence by decreasing spin density and dephasing the spins present in the fluid. A preliminary experiment was conducted with a particle streak injected at the centerline of a turbulent round pipe flow with a U bend. Measurements confirmed that signal strength was related to particle concentration and showed the effects of gravitational settling and turbulent dispersion. Next, measurements of samples in a mixing chamber were taken. Particle volume fraction was varied and sensitivity to particle/fluid velocity was investigated. These results give a relationship between MRI signal, particle volume fraction, MRI sequence echo time, and spin relaxation parameters that can be used to measure local particle volume fraction in other turbulent flows of interest.

  16. Magnetic-Fluctuation-Induced Particle Transport and Density Relaxation in a High-Temperature Plasma

    SciTech Connect

    Ding, W. X.; Brower, D. L.; Fiksel, G.; Den Hartog, D. J.; Prager, S. C.; Sarff, J. S.

    2009-07-10

    The first direct measurement of magnetic-fluctuation-induced particle flux in the core of a high-temperature plasma is reported. Transport occurs due to magnetic field fluctuations associated with global tearing instabilities. The electron particle flux, resulting from the correlated product of electron density and radial magnetic fluctuations, accounts for density profile relaxation during a magnetic reconnection event. The measured particle transport is much larger than that expected for ambipolar particle diffusion in a stochastic magnetic field.

  17. Bacterial turbulence reduction by passive magnetic particle chains

    NASA Astrophysics Data System (ADS)

    Liu, Kuo-An; I, Lin

    2013-09-01

    We report the experimental observation of the bacterial turbulence reduction in dense E. coli suspensions by increasing the coupling of passive particle additives (paramagnetic particles). Applying an external magnetic field induces magnetic dipoles for particles and causes the formation of vertical chain bundles, which are hard for bacterial flows to tilt and break. The larger effective drag coefficient of chains causes slow horizontal motion of chains, which in turn form obstacles to suppress bacterial flows through the strong correlation in coherent bacterial clusters and intercluster interaction. The interruption of the upward energy flow from individual self-propelling bacteria to the larger scale in the bacterial turbulence with multiscaled coherent flow by the chain bundle leads to more severe suppression in the low frequency (wave number) regimes of the power spectra.

  18. Bacterial turbulence reduction by passive magnetic particle chains.

    PubMed

    Liu, Kuo-An; I, Lin

    2013-09-01

    We report the experimental observation of the bacterial turbulence reduction in dense E. coli suspensions by increasing the coupling of passive particle additives (paramagnetic particles). Applying an external magnetic field induces magnetic dipoles for particles and causes the formation of vertical chain bundles, which are hard for bacterial flows to tilt and break. The larger effective drag coefficient of chains causes slow horizontal motion of chains, which in turn form obstacles to suppress bacterial flows through the strong correlation in coherent bacterial clusters and intercluster interaction. The interruption of the upward energy flow from individual self-propelling bacteria to the larger scale in the bacterial turbulence with multiscaled coherent flow by the chain bundle leads to more severe suppression in the low frequency (wave number) regimes of the power spectra. PMID:24125341

  19. Mössbauer research of magnetic particles in medicinal ointments

    NASA Astrophysics Data System (ADS)

    Bykov, A. V.; Nikolaev, V. I.; Ruiz, E. Reguera; Kharitonov, Yu. Ya.; Cherkasova, O. G.; Shulgin, V. I.

    1991-11-01

    Stability of the properties of magnetite particles in novel medicinal magnetic ointments of multipurpose application was studied using Mössbauer spectroscopy. Comparative analysis of the results obtained by model fitting of57Fe nuclei spectra with those known for the system Fe3O4-γ-Fe2O3 allowed to identify the phase composition of the particles. This composition, as well as that of the initial pure component in the form of a highly dispersed fraction (˜100 Å), differs noticeably from the stoichiometric one. Despite their small sizes, the particles exhibit no superparamagnetism (in the temperature range from 95 to 300 K). Radiative sterilization of the ointments has no effect on the magnetic component composition.

  20. Multifunctional iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bloemen, M.; Denis, C.; Van Stappen, T.; De Meester, L.; Geukens, N.; Gils, A.; Verbiest, T.

    2015-03-01

    Multifunctional nanoparticles have attracted a lot of attention since they can combine interesting properties like magnetism, fluorescence or plasmonic effects. As a core material, iron oxide nanoparticles have been the subject of intensive research. These cost-effective and non-toxic particles are used nowadays in many applications. We developed a heterobifunctional PEG ligand that can be used to introduce functional groups (carboxylic acids) onto the surface of the NP. Via click chemistry, a siloxane functionality was added to this ligand, for a subsequent covalent ligand exchange reaction. The functionalized nanoparticles have an excellent colloidal stability in complex environments like buffers and serum or plasma. Antibodies were coupled to the introduced carboxylic acids and these NP-antibody bioconjugates were brought into contact with Legionella bacteria for magnetic separation experiments.

  1. Particle acceleration, magnetization and radiation in relativistic shocks

    NASA Astrophysics Data System (ADS)

    Derishev, Evgeny V.; Piran, Tsvi

    2016-08-01

    The mechanisms of particle acceleration and radiation, as well as magnetic field build-up and decay in relativistic collisionless shocks, are open questions with important implications to various phenomena in high-energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build-up and diffusive shock acceleration is a model for acceleration, both have problems and current particle-in-cell simulations show that particles are accelerated only under special conditions and the magnetic field decays on a very short length-scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplification of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the shock-generated magnetic field at large distances from the shock front. The dissipation of this magnetic field results in a continuous particle acceleration within the downstream region. A unique feature of the model is the existence of an `attractor', towards which any shock will evolve. The model is applicable to any relativistic shock, but its distinctive features show up only for sufficiently large compactness. We demonstrate that prompt and afterglow gamma-ray bursts' shocks satisfy the relevant conditions, and we compare their observations with the predictions of the model.

  2. Chaotic motion of charged particles in toroidal magnetic configurations

    SciTech Connect

    Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; Dumont, Rémi; Garbet, Xavier

    2014-09-01

    We study the motion of a charged particle in a tokamak magnetic field and discuss its chaotic nature. Contrary to most of recent studies, we do not make any assumption on any constant of the motion and solve numerically the cyclotron gyration using Hamiltonian formalism. We take advantage of a symplectic integrator allowing us to make long-time simulations. First considering an idealized magnetic configuration, we add a nongeneric perturbation corresponding to a magnetic ripple, breaking one of the invariant of the motion. Chaotic motion is then observed and opens questions about the link between chaos of magnetic field lines and chaos of particle trajectories. Second, we return to an axisymmetric configuration and tune the safety factor (magnetic configuration) in order to recover chaotic motion. In this last setting with two constants of the motion, the presence of chaos implies that no third global constant exists, we highlight this fact by looking at variations of the first order of the magnetic moment in this chaotic setting. We are facing a mixed phase space with both regular and chaotic regions and point out the difficulties in performing a global reduction such as gyrokinetics.

  3. Calculation of ferromagnetic resonance spectra for chains of magnetic particles

    NASA Astrophysics Data System (ADS)

    Newell, A. J.

    2010-12-01

    Magnetotactic bacteria are a taxonomically diverse group of bacteria that have chains of ferromagnetic crystals inside. These bacteria mostly live in the oxic-anoxic interface (OAI) of aquatic environments. The magnetic chains orient the bacteria parallel to the Earth's magnetic field and help them to maintain their position near the OAI. These chains show the fingerprint of natural selection acting to optimize the magnetic moment per unit iron. This is achieved in a number of ways: the alignment in chains, a narrow size range, crystallographic perfection and chemical purity. Because of these distinctive characteristics, the particles can still be identified after the bacteria have died. Such magnetofossils are useful both as records of bacterial evolution and environmental markers. They can most reliably be identified by microscopy, but that is very labor-intensive. A number of magnetic measurements have been developed to identify magnetofossils quickly and non-invasively. However, the only test that can specifically identify the chain structure is ferromagnetic resonance (FMR), which measures the response to a magnetic field oscillating at microwave frequencies. Although the experimental side of ferromagnetic resonance is well developed, the theoretical models for interpreting them have been limited. A new method is presented for calculating resonance frequencies as well as complete power spectra for chains of interacting magnetic particles. Spectra are calculated and compared with data for magnetotactic bacteria.

  4. Accelerated immunoassays based on magnetic particle dynamics in a rotating capillary tube with stationary magnetic field

    PubMed Central

    Lee, Jun-Tae; Sudheendra, L.; Kennedy, Ian M.

    2012-01-01

    A rapid and simple magnetic particle-based immunoassay has been demonstrated in a capillary mixing system. Antibody-coated micrometer size super-paramagnetic polystyrene (SPP) particles were used in an assay for rabbit IgG in a sandwich (non-competitive) format. The kinetics of the assay was compared between a plate – based system and a single capillary tube. The interaction between the antigen (R-IgG) and the antibody (anti-R-IgG) that was carried by the SPP particles in a rotating capillary was tested under a stationary magnetic field. Competing magnetic and viscous drag forces helped to enhance the interaction between the analyte and the capture antibodies on the particles. The dimensionless Mason number (Mn) was employed to characterize the magnetic particle dynamics – a previously determined critical Mason number (Mnc) was employed as a guide to the appropriate experimental conditions of magnetic field strength and rotational speed of the capillary. The advantage of the rotating capillary system included a short assay time and a reduced reactive volume (20μl). The results show that the immunoassay kinetics were improved by the formation of chains of the SPP particles for the conditions that corresponded to the critical Mason number. PMID:22931580

  5. Fractional dynamics of charged particles in magnetic fields

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  6. Nonequilibrium Magnetic Response of Anisotropic Superparamagnetic Nanoparticles and Possible Artifacts in Magnetic Particle Imaging

    PubMed Central

    Mamiya, Hiroaki; Jeyadevan, Balachandran

    2015-01-01

    Magnetic responses of superparamagnetic nanoparticles to high-frequency AC magnetic fields with sufficiently large amplitudes are numerically simulated to exactly clarify the phenomena occurring in magnetic particle imaging. When the magnetic anisotropy energy inevitable in actual nanoparticles is taken into account in considering the magnetic potential, larger nanoparticles exhibit a delayed response to alternations of the magnetic fields. This kind of delay is rather remarkable in the lower-amplitude range of the field, where the assistance by the Zeeman energy to thermally activated magnetization reversal is insufficient. In some cases, a sign inversion of the third-order harmonic response was found to occur at some specific amplitude, despite the lack in DC bias magnetic field strength. Considering the attenuation of the AC magnetic field generated in the human body, it is possible that the phases of the signals from nanoparticles deep inside the body and those near the body surface are completely different. This may lead to artifacts in the reconstructed image. Furthermore, when the magnetic/thermal torque-driven rotation of the anisotropic nanoparticles as well as the magnetic anisotropy energy are taken into account, the simulated results show that, once the easy axes are aligned toward the direction of the DC bias magnetic field, it takes time to randomize them at the field-free point. During this relaxation, the third-order harmonic response depends highly upon the history of the magnetic field. This is because non-linearity of the anhysteretic magnetization curve for the superparamagnetic nanoparticles varies with the orientations of the easy axes. This history dependence may also lead to another artifact in magnetic particle imaging, when the scanning of the field-free point is faster than the Brownian relaxations. PMID:25775017

  7. Beaming of Particles and Synchrotron Radiation in Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2016-08-01

    Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealized analytical models, reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with an isotropic electron velocity distribution in its rest frame, we find that the bulk motion of the particles in X-points is similar to their Lorentz factor γ, and the particles are beamed within ˜ 5/γ . On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropize after completing a full Larmor gyration and their radiation is no longer strongly beamed. The radiation pattern at a given frequency depends on where the corresponding emitting electrons radiate their energy. Lower-energy particles that cool slowly spend most of their time in the islands and their radiation is not highly beamed. Only particles that quickly cool at the edge of the X-points generate a highly beamed fan-like radiation pattern. The radiation emerging from these fast cooling particles is above the burn-off limit (˜100 MeV in the overall rest frame of the reconnecting plasma). This has significant implications for models of gamma-ray bursts and active galactic nuclei that invoke beaming in that frame at much lower energies.

  8. Beaming of Particles and Synchrotron Radiation in Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2016-08-01

    Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealized analytical models, reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with an isotropic electron velocity distribution in its rest frame, we find that the bulk motion of the particles in X-points is similar to their Lorentz factor γ, and the particles are beamed within ∼ 5/γ . On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropize after completing a full Larmor gyration and their radiation is no longer strongly beamed. The radiation pattern at a given frequency depends on where the corresponding emitting electrons radiate their energy. Lower-energy particles that cool slowly spend most of their time in the islands and their radiation is not highly beamed. Only particles that quickly cool at the edge of the X-points generate a highly beamed fan-like radiation pattern. The radiation emerging from these fast cooling particles is above the burn-off limit (∼100 MeV in the overall rest frame of the reconnecting plasma). This has significant implications for models of gamma-ray bursts and active galactic nuclei that invoke beaming in that frame at much lower energies.

  9. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

    PubMed

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-04-13

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument. PMID:26890496

  10. Theory of using magnetic deflections to combine charged particle beams.

    SciTech Connect

    Doyle, Barney Lee; Steckbeck, Mackenzie K.

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass- energy products (MEP), the low MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equations is given by: , 1 2 c s c s r B B r where and are the magnetic fields in the steering and bending magnet and is s B c B c s r r the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high MEP beam will be directed into the sample. (page intentionally left blank)

  11. Multifunctional colloids with optical, magnetic, and superhydrophobic properties derived from nucleophilic substitution-induced layer-by-layer assembly in organic media.

    PubMed

    Yoon, Miseon; Kim, Younghoon; Cho, Jinhan

    2011-07-26

    We demonstrate the successful preparation of multifunctional silica colloids by coating with 2-bromo-2-methylpropionic acid (BMPA)-stabilized quantum dots (BMPA-QDs) and BMPA-stabilized iron oxide particles (BMPA-Fe(3)O(4)), along with amine-functionalized poly(amidoamine) (PAMA) dendrimers, using layer-by-layer (LbL) assembly based on a nucleophilic substitution (NS) reaction between the bromo and amine groups in organic media. The QDs and Fe(3)O(4) nanoparticles used in this study were directly synthesized in a nonpolar solvent (chloroform or toluene), and the oleic acid stabilizers were exchanged with BMPA in the same solvent to minimize chemical and physical damage to the nanoparticles. The direct adsorption of nanoparticles via an NS reaction in organic solvent significantly increased the packing density of the nanoparticles in the lateral dimensions because electrostatic repulsion between neighboring nanoparticles was absent. The multifunctional colloids densely coated with nanoparticles showed excellent characteristics (i.e., superparamagnetism, photoluminescence, and magneto-optical tuning properties) with long-term stability in nonpolar solvents. Furthermore, deposition of the nanocomposite colloids onto flat substrates, followed by coating with a low-surface-energy fluoroalkylsilane polymer, produced a densely packed rugged surface morphology in the colloidal films that displayed superhydrophobic properties with water contact angles greater than 150°. PMID:21688776

  12. Dynamics of magnetic particles near a surface: model and experiments on field-induced disaggregation.

    PubMed

    van Reenen, A; Gao, Y; de Jong, A M; Hulsen, M A; den Toonder, J M J; Prins, M W J

    2014-04-01

    Magnetic particles are widely used in biological research and bioanalytical applications. As the corresponding tools are progressively being miniaturized and integrated, the understanding of particle dynamics and the control of particles down to the level of single particles become important. Here, we describe a numerical model to simulate the dynamic behavior of ensembles of magnetic particles, taking account of magnetic interparticle interactions, interactions with the liquid medium and solid surfaces, as well as thermal diffusive motion of the particles. The model is verified using experimental data of magnetic field-induced disaggregation of magnetic particle clusters near a physical surface, wherein the magnetic field properties, particle size, cluster size, and cluster geometry were varied. Furthermore, the model clarifies how the cluster configuration, cluster alignment, magnitude of the field gradient, and the field repetition rate play a role in the particle disaggregation process. The simulation model will be very useful for further in silico studies on magnetic particle dynamics in biotechnological tools. PMID:24827250

  13. Development of training modules for magnetic particle inspection

    NASA Astrophysics Data System (ADS)

    Kosaka, Daigo; Eisenmann, David J.; Enyart, Darrel; Nakagawa, Norio; Lo, Chester; Orman, David

    2015-03-01

    Magnetic particle inspection (MPI) is a nondestructive evaluation technique used with ferromagnetic materials. Although the application of this method may appear straightforward, MPI combines the complicated nature of electromagnetics, metallurgical material effects, fluid-particle motion dynamics, and physiological human factors into a single inspection. To fully appreciate industry specifications such as ASTM E-1444, users should develop a basic understanding of the many factors that are involved in MPI. We have developed a series of MPI training modules that are aimed at addressing this requirement. The modules not only offer qualitative explanations, but also show quantitative explanations in terms of measurement and numerical simulation data in many instances. There are five modules in all. Module ♯1 shows characteristics of waveforms and magnetizing methods. This allows MPI practitioners to make optimum choice of waveform and magnetizing method. Module ♯2 explains how material properties relate to the magnetic characteristics. Module ♯3 shows the strength of the excitation field or the flux leakage from a crack and how it compares to the detectability of a crack by MPI. Module ♯4 shows how specimen status may influence defect detection. Module ♯5 shows the effects of particle properties on defect detection.

  14. Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    NASA Astrophysics Data System (ADS)

    Brüggen, Marcus; Bykov, Andrei; Ryu, Dongsu; Röttgering, Huub

    2012-05-01

    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and γ-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zel'dovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of μG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.

  15. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  16. Multifunctional Fe3O4@TiO2@Au magnetic microspheres as recyclable substrates for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Zhu, Yihua; Yang, Xiaoling; Zhou, Ying; Yao, Yifan; Li, Chunzhong

    2014-05-01

    Herein, we demonstrate the design and fabrication of multifunctional triplex Fe3O4@TiO2@Au core-shell magnetic microspheres (MSs), which show excellent surface enhanced Raman scattering (SERS) activity with high reproducibility and stability. In addition, due to their excellent catalytic properties, the as-prepared Fe3O4@TiO2@Au magnetic MSs can clean themselves by photocatalytic degradation of target molecules adsorbed onto the substrate under irradiation with visible light, and can be re-used for several cycles with convenient magnetic separability. The influence of the size and distribution of Au nanoparticles (NPs) on the Fe3O4@TiO2 beads is investigated. The optimized samples employing Au NPs of 15 nm size and an areal density of about 2120 Au NPs on every MS show the best SERS activity and recyclable performance. The experimental results show that these magnetic MSs indicate a new route in eliminating the `single-use' problem of traditional SERS substrates and exhibit their applicability as analytical tools for the detection of different molecular species.

  17. Magnetic Particle Detection (MPD) for In-Vitro Dosimetry

    SciTech Connect

    Minard, Kevin R.; Littke, Matthew H.; Wang, Wei; Xiong, Yijia; Teeguarden, Justin G.; Thrall, Brian D.

    2013-05-15

    In-vitro tests intended for evaluating the potential health effects of magnetic nanoparticles generally require an accurate measure of cell dose to promote the consistent use and interpretation of biological response. Here, a simple low-cost inductive sensor is developed for quickly determining the total mass of magnetic nanoparticles that is bound to the plasma membrane and internalized by cultured cells. Sensor operation exploits an oscillating magnetic field (f0 = 250 kHz) together with the nonlinear response of particle magnetization to generate a harmonic signal (f3 = 750 kHz) that varies linearly with particulate mass (R2 > 0.999) and is sufficiently sensitive for detecting ~ 100 ng of carboxyl-coated iron-oxide nanoparticles in under a second. When exploited for measuring receptor-mediated nanoparticle uptake in RAW 264.7 macrophages, results show that achieved dosimetry performance is comparable with relatively expensive analytical techniques that are much more time-consuming and labor-intensive to perform. Described sensing is therefore potentially better suited for low-cost in-vitro assays that require fast and quantitative magnetic particle detection.

  18. Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin-Biotin Interactions.

    PubMed

    Bong, Ki Wan; Kim, Jae Jung; Cho, Hansang; Lim, Eugene; Doyle, Patrick S; Irimia, Daniel

    2015-12-01

    Cell-adhesive particles are of significant interest in biotechnology, the bioengineering of complex tissues, and biomedical research. Their applications range from platforms to increase the efficiency of anchorage-dependent cell culture to building blocks to loading cells in heterogeneous structures to clonal-population growth monitoring to cell sorting. Although useful, currently available cell-adhesive particles can accommodate only homogeneous cell culture. Here, we report the design of anisotropic hydrogel microparticles with tunable cell-adhesive regions as first step toward micropatterned cell cultures on particles. We employed stop flow lithography (SFL), the coupling reaction between amine and N-hydroxysuccinimide (NHS) and streptavidin-biotin chemistry to adjust the localization of conjugated collagen and poly-L-lysine on the surface of microscale particles. Using the new particles, we demonstrate the attachment and formation of tight junctions between brain endothelial cells. We also demonstrate the geometric patterning of breast cancer cells on particles with heterogeneous collagen coatings. This new approach avoids the exposure of cells to potentially toxic photoinitiators and ultraviolet light and decouples in time the microparticle synthesis and the cell culture steps to take advantage of the most recent advances in cell patterning available for traditional culture substrates. PMID:26545155

  19. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy

    NASA Astrophysics Data System (ADS)

    Hergt, Rudolf; Dutz, Silvio; Müller, Robert; Zeisberger, Matthias

    2006-09-01

    Loss processes in magnetic nanoparticles are discussed with respect to optimization of the specific loss power (SLP) for application in tumour hyperthermia. Several types of magnetic iron oxide nanoparticles representative for different preparation methods (wet chemical precipitation, grinding, bacterial synthesis, magnetic size fractionation) are the subject of a comparative study of structural and magnetic properties. Since the specific loss power useful for hyperthermia is restricted by serious limitations of the alternating field amplitude and frequency, the effects of the latter are investigated experimentally in detail. The dependence of the SLP on the mean particle size is studied over a broad size range from superparamagnetic up to multidomain particles, and guidelines for achieving large SLP under the constraints valid for the field parameters are derived. Particles with the mean size of 18 nm having a narrow size distribution proved particularly useful. In particular, very high heating power may be delivered by bacterial magnetosomes, the best sample of which showed nearly 1 kW g-1 at 410 kHz and 10 kA m-1. This value may even be exceeded by metallic magnetic particles, as indicated by measurements on cobalt particles.

  20. Magnetic particle hyperthermia—a promising tumour therapy?

    NASA Astrophysics Data System (ADS)

    Dutz, Silvio; Hergt, Rudolf

    2014-11-01

    We present a critical review of the state of the art of magnetic particle hyperthermia (MPH) as a minimal invasive tumour therapy. Magnetic principles of heating mechanisms are discussed with respect to the optimum choice of nanoparticle properties. In particular, the relation between superparamagnetic and ferrimagnetic single domain nanoparticles is clarified in order to choose the appropriate particle size distribution and the role of particle mobility for the relaxation path is discussed. Knowledge of the effect of particle properties for achieving high specific heating power provides necessary guidelines for development of nanoparticles tailored for tumour therapy. Nanoscale heat transfer processes are discussed with respect to the achievable temperature increase in cancer cells. The need to realize a well-controlled temperature distribution in tumour tissue represents the most serious problem of MPH, at present. Visionary concepts of particle administration, in particular by means of antibody targeting, are far from clinical practice, yet. On the basis of current knowledge of treating cancer by thermal damaging, this article elucidates possibilities, prospects, and challenges for establishment of MPH as a standard medical procedure.

  1. Extracting work from magnetic-field-coupled Brownian particles.

    PubMed

    Chen, Tian; Wang, Xiang-Bin; Yu, Ting

    2014-08-01

    Thermodynamics of the magnetic-field-coupled Brownian particles is studied. We show that in the presence of the magnetic field, work can be extracted from the reservoir even when the measurement operation and the potential change operation are applied in different spatial directions. In particular, we show that more work can be extracted if the measurements are applied in two different directions simultaneously. In all these cases, we show that the generalized second law involving the measurement information and potential change is satisfied. In addition, we show how the continuous potential change and measurement position affect the work extraction. PMID:25215683

  2. Structure organization and magnetic properties of microscale ferrogels: The effect of particle magnetic anisotropy.

    PubMed

    Ryzhkov, Aleksandr V; Melenev, Petr V; Balasoiu, Maria; Raikher, Yuriy L

    2016-08-21

    The equilibrium structure and magnetic properties of a ferrogel object of small size (microferrogel(MFG)) are investigated by coarse-grained molecular dynamics. As a generic model of a microferrogel (MFG), a sample with a lattice-like mesh is taken. The solid phase of the MFG consists of magnetic (e.g., ferrite) nanoparticles which are mechanically linked to the mesh making some part of its nodes. Unlike previous models, the finite uniaxial magnetic anisotropy of the particles, as it is the case for real ferrogels, is taken into account. For comparison, two types of MFGs are considered: MFG-1, which dwells in virtually non-aggregated state independently of the presence of an external magnetic field, and MFG-2, which displays aggregation yet under zero field. The structure states of the samples are analyzed with the aid of angle-resolved radial distribution functions and cluster counts. The results reveal the crucial role of the matrix elasticity on the structure organization as well as on magnetization of both MFGs. The particle anisotropy, which plays insignificant role in MFG-1 (moderate interparticle magnetodipole interaction), becomes an important factor in MFG-2 (strong interaction). There, the restrictions imposed on the particle angular freedom by the elastic matrix result in notable diminution of the particle chain lengths as well as the magnetization of the sample. The approach proposed enables one to investigate a large variety of MFGs, including those of capsule type and to purposefully choose the combination of their magnetoelastic parameters. PMID:27544124

  3. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  4. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  5. Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging.

    PubMed

    Chen, Chuan; Kang, Ning; Xu, Ting; Wang, Dong; Ren, Lei; Guo, Xiangqun

    2015-03-12

    Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron paramagnetic resonance imaging (EPRI). However, their rapid one-electron bioreduction to diamagnetic N-hydroxy species when administered intravenously has limited their use in in vivo applications. In this article, a new approach of silica coating for carrying stable radicals was proposed. A 4-carboxyl-TEMPO nitroxide radical was covalently linked with 3-aminopropyl-trimethoxysilane to produce a silanizing TEMPO radical. Utilizing a facile reaction based on the copolymerization of silanizing TEMPO radicals with tetraethyl orthosilicate in reverse microemulsion, a TEMPO radicals doped SiO2 nanostructure was synthesized and coated on the surface of NaYF4:Yb,Er/NaYF4 upconversion nanoparticles (UCNPs) to generate a novel multifunctional nanoprobe, PEGylated UCNP@TEMPO@SiO2 for upconversion luminescence (UCL) and magnetic resonance dual-modality imaging. The electron spin resonance (ESR) signals generated by the TEMPO@SiO2 show an enhanced reduction resistance property for a period of time of up to 1 h, even in the presence of 5 mM ascorbic acid. The longitudinal relaxivity of PEGylated UCNPs@TEMPO@SiO2 nanocomposites is about 10 times stronger than that for free TEMPO radicals. The core-shell NaYF4:Yb,Er/NaYF4 UCNPs synthesized by this modified user-friendly one-pot solvothermal strategy show a significant enhancement of UCL emission of up to 60 times more than the core NaYF4:Yb,Er. Furthermore, the PEGylated UCNP@TEMPO@SiO2 nanocomposites were further used as multifunctional nanoprobes to explore their performance in the UCL imaging of living cells and T1-weighted MRI in vitro and in vivo. PMID:25716884

  6. Three-dimensional interplanetary stream magnetism and energetic particle motion

    NASA Technical Reports Server (NTRS)

    Barouch, E.; Burlaga, L. F.

    1976-01-01

    Cosmic rays interact with mesoscale configurations of the interplanetary magnetic field. A technique is presented for calculating such configurations in the inner solar system, which are due to streams and source conditions near the sun, and maps of magnetic field are constructed for some plausible stream and source conditions. One effect of these mesoscale configurations on galactic cosmic rays is shown to be an out-of-the-ecliptic gradient drift sufficient to explain Forbush decreases. The effects on solar energetic particles include small polar drifts due to the field gradients and a possibly large modification of the time-intensity profiles and anisotropy characteristics due to the formation of mirror configurations in space. If a diffusion model is applicable to solar particles, the true diffusion coefficient will be masked by the effects of streams. A conceptual model which incorporates these ideas and those of several other models is presented.

  7. Multiplexed detection of foodborne pathogens based on magnetic particles.

    PubMed

    Brandão, Delfina; Liébana, Susana; Pividori, María Isabel

    2015-09-25

    This paper addresses the novel approaches for the multiplex detection of food poisoning bacteria, paying closer attention to three of the most common pathogens involved in food outbreaks: Salmonella enterica, Escherichia coli O157:H7 and Listeria monocytogenes. End-point and real-time PCR, classical immunological techniques, biosensors, microarrays and microfluidic platforms, as well as commercial kits for multiplex detection of food pathogens will be reviewed, with special focus on the role of magnetic particles in these approaches. Although the immunomagnetic separation for capturing single bacteria from contaminating microflora and interfering food components has demonstrated to improve the performance on these approaches, the integration of magnetic particles for multiplex detection of bacteria is still in a preliminary stage and requires further studies. PMID:25858812

  8. Multifunctional Magnetic Gd(3+) -Based Coordination Polymer Nanoparticles: Combination of Magnetic Resonance and Multispectral Optoacoustic Detections for Tumor-Targeted Imaging in vivo.

    PubMed

    An, Qiao; Liu, Jing; Yu, Meng; Wan, Jiaxun; Li, Dian; Wang, Changchun; Chen, Chunying; Guo, Jia

    2015-11-11

    To overcome traditional barriers in optical imaging and microscopy, optoacoustic-imaging has been changed to combine the accuracy of spectroscopy with the depth resolution of ultrasound, achieving a novel modality with powerful in vivo imaging. However, magnetic resonance imaging provides better spatial and anatomical resolution. Thus, a single hybrid nanoprobe that allows for simultaneous multimodal imaging is significant not only for cutting edge research in imaging science, but also for accurate clinical diagnosis. A core-shell-structured coordination polymer composite microsphere has been designed for in vivo multimodality imaging. It consists of a Fe3 O4 nanocluster core, a carbon sandwiched layer, and a carbocyanine-Gd(III) (Cy-Gd(III) ) coordination polymer outer shell (Fe3 O4 @C@Cy-Gd(III) ). Folic acid-conjugated poly(ethylene glycol) chains are embedded within the coordination polymer shell to achieve extended circulation and targeted delivery of probe particles in vivo. Control of Fe3 O4 core grain sizes results in optimal r2 relaxivity (224.5 × 10(-3) m(-1) s(-1) ) for T2 -weighted magnetic resonance imaging. Cy-Gd(III) coordination polymers are also regulated to obtain a maximum 25.1% of Cy ligands and 5.2% of Gd(III) ions for near-infrared fluorescence and T1 -weighted magnetic resonance imaging, respectively. The results demonstrate their impressive abilities for targeted, multimodal, and reliable imaging. PMID:26366746

  9. Visualization of clustering on nonmagnetic and ferromagnetic particles in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Sawada, Tatsuo; Kikura, Hiroshiga; Yamanaka, Gentaro; Matsuzaki, Mitsuo; Aritomi, Masanori; Nakatani, Isao

    1999-10-01

    Micro-cluster formation of the non-magnetic and ferromagnetic particles in a magnetic fluid was investigated. Using an optical microscope system with cardioid condenser lens, real-time visualization of the Brownian motions of both particles were carried out. The chain-like cluster formation of both particles were observed simultaneously under the magnetic field. Two types of magnetic fluid of a water-based and kerosene-based magnetic fluids were used as test liquids.

  10. Radial diffusion of radiation belt particles in nondipolar magnetic fields

    NASA Astrophysics Data System (ADS)

    Cunningham, Gregory S.

    2016-06-01

    The fact that charged particles trapped in Earth's magnetic field can be redistributed along their radial distance from Earth due to drift-resonant interactions with small-amplitude waves has been known since early in the space age. Early theoretical efforts assumed that a dipole background magnetic field was modified by a time-varying electromagnetic perturbation that changed the particle's distance from Earth while preserving the first two invariants of motion. The stochastic nature of the perturbation allowed the effect of the waves on the trapped particles to be represented by a Fokker-Planck equation, which updates the phase space density in time via radial diffusion with diffusion coefficients that depend on the wave characteristics. In this paper, we extend those early theoretical efforts to define radial diffusion coefficients in arbitrary static background fields and define a numerical scheme for their evaluation. The background fields we consider are allowed to have significant deviations from a dipole field. Radial diffusion coefficients are computed using the new scheme for one of the empirical magnetic field models (T89) developed by Tsyganenko and coauthors as the background on top of which the perturbations are added. The new diffusion coefficients are shown to be substantially larger than those computed with a dipole background field model, especially at large radial distances and during geomagnetically active times, and it is suggested that outward radial diffusion may be a more substantial loss process for trapped electrons in the outer radiation belt than previously believed.

  11. Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime

    DOE PAGESBeta

    Guo, Fan; Liu, Yi -Hsin; Daughton, William; Li, Hui

    2015-06-17

    Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional (3D) kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron–positron plasmas starting with a magnetically dominated, force-free current sheet (σ ≡ B2 / (4πnemec2) >> 1). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplished by the curvature driftmore » of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra f α (γ - 1)-p and approaches p = 1 for sufficiently large σ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to nonrelativistic regimes. In the 3D simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This paper suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications for a variety of high-energy astrophysical problems.« less

  12. Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime

    SciTech Connect

    Guo, Fan; Liu, Yi -Hsin; Daughton, William; Li, Hui

    2015-06-17

    Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional (3D) kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron–positron plasmas starting with a magnetically dominated, force-free current sheet (σ ≡ B2 / (4πnemec2) >> 1). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplished by the curvature drift of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra f α (γ - 1)-p and approaches p = 1 for sufficiently large σ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to nonrelativistic regimes. In the 3D simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This paper suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications for a variety of high-energy astrophysical problems.

  13. Particle Acceleration and Plasma Dynamics during Magnetic Reconnection in the Magnetically Dominated Regime

    NASA Astrophysics Data System (ADS)

    Guo, Fan; Liu, Yi-Hsin; Daughton, William; Li, Hui

    2015-06-01

    Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional (3D) kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron-positron plasmas starting with a magnetically dominated, force-free current sheet (σ \\equiv {B}2/(4π {n}e{m}e{c}2)\\gg 1). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplished by the curvature drift of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra f\\propto {(γ -1)}-p and approaches p = 1 for sufficiently large σ and system size. Eventually most of the available magnetic free energy is converted into nonthermal particle kinetic energy. An analytic model is presented to explain the key results and predict a general condition for the formation of power-law distributions. The development of reconnection in these regimes leads to relativistic inflow and outflow speeds and enhanced reconnection rates relative to nonrelativistic regimes. In the 3D simulation, the interplay between secondary kink and tearing instabilities leads to strong magnetic turbulence, but does not significantly change the energy conversion, reconnection rate, or particle acceleration. This study suggests that relativistic reconnection sites are strong sources of nonthermal particles, which may have important implications for a variety of high-energy astrophysical problems.

  14. Ferromagnetic particles as magnetic resonance imaging temperature sensors

    NASA Astrophysics Data System (ADS)

    Hankiewicz, J. H.; Celinski, Z.; Stupic, K. F.; Anderson, N. R.; Camley, R. E.

    2016-08-01

    Magnetic resonance imaging is an important technique for identifying different types of tissues in a body or spatial information about composite materials. Because temperature is a fundamental parameter reflecting the biological status of the body and individual tissues, it would be helpful to have temperature maps superimposed on spatial maps. Here we show that small ferromagnetic particles with a strong temperature-dependent magnetization, can be used to produce temperature-dependent images in magnetic resonance imaging with an accuracy of about 1 °C. This technique, when further developed, could be used to identify inflammation or tumours, or to obtain spatial maps of temperature in various medical interventional procedures such as hyperthermia and thermal ablation. This method could also be used to determine temperature profiles inside nonmetallic composite materials.

  15. Particle acceleration by magnetic reconnection in unstable twisted coronal loop

    NASA Astrophysics Data System (ADS)

    Gordovskyy, Mykola; Browning, Philippa; Vekstein, Grigory

    Photospheric motions may result in twisting of a coronal loop magnetic field. Such a field configuration contains free energy that may be released by reconnection with the magnetic field relaxing to the linear force-free configuration. Browning & Van der Linden (2003) suggested that such a relaxation event may be triggered by onset of ideal kink instability. In the present work we study the evolution of a twisted magnetic fluxtube with zero net ax-ial current following Browning et al. (2008). Further, proton and electron trajectories are investigated using the test-particle approach consistently with the time-dependent reconnec-tion model. We discuss temporal evolution of proton and electron energy spectra and possible observational implications.

  16. Ferromagnetic particles as magnetic resonance imaging temperature sensors

    PubMed Central

    Hankiewicz, J. H.; Celinski, Z.; Stupic, K. F.; Anderson, N. R.; Camley, R. E.

    2016-01-01

    Magnetic resonance imaging is an important technique for identifying different types of tissues in a body or spatial information about composite materials. Because temperature is a fundamental parameter reflecting the biological status of the body and individual tissues, it would be helpful to have temperature maps superimposed on spatial maps. Here we show that small ferromagnetic particles with a strong temperature-dependent magnetization, can be used to produce temperature-dependent images in magnetic resonance imaging with an accuracy of about 1 °C. This technique, when further developed, could be used to identify inflammation or tumours, or to obtain spatial maps of temperature in various medical interventional procedures such as hyperthermia and thermal ablation. This method could also be used to determine temperature profiles inside nonmetallic composite materials. PMID:27503610

  17. Method for using magnetic particles in droplet microfluidics

    NASA Technical Reports Server (NTRS)

    Shah, Gaurav Jitendra (Inventor); Kim, Chang-Jin (Inventor)

    2012-01-01

    Methods of utilizing magnetic particles or beads (MBs) in droplet-based (or digital) microfluidics are disclosed. The methods may be used in enrichment or separation processes. A first method employs the droplet meniscus to assist in the magnetic collection and positioning of MBs during droplet microfluidic operations. The sweeping movement of the meniscus lifts the MBs off the solid surface and frees them from various surface forces acting on the MBs. A second method uses chemical additives to reduce the adhesion of MBs to surfaces. Both methods allow the MBs on a solid surface to be effectively moved by magnetic force. Droplets may be driven by various methods or techniques including, for example, electrowetting, electrostatic, electromechanical, electrophoretic, dielectrophoretic, electroosmotic, thermocapillary, surface acoustic, and pressure.

  18. Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles.

    PubMed

    Liu, Chun-Zhao; Wang, Feng; Ou-Yang, Fan

    2009-01-01

    Ethanol fermentation by immobilized Saccharomyces cerevisiae cells in magnetic particles was successfully carried out in a magnetically stabilized fluidized bed reactor (MSFBR). These immobilized magnetic particles solidified in a 2 % CaCl(2) solution were stable and had high ethanol fermentation activity. The performance of ethanol fermentation of glucose in the MSFBR was affected by initial particle loading rate, feed sugar concentration and dilution rate. The ethanol theoretical yield, productivity and concentration reached 95.3%, 26.7 g/L h and 66 g/L, respectively, at a particle loading rate of 41% and a feed dilution rate of 0.4 h(-1) with a glucose concentration of 150 g/L when the magnetic field intensity was kept in the range of 85-120 Oe. In order to use this developed MSFBR system for ethanol production from cheap raw materials, cane molasses was used as the main fermentation substrate for continuous ethanol fermentation with the immobilized S. cerevisiae cells in the reactor system. Molasses gave comparative ethanol productivity in comparison with glucose in the MSFBR, and the higher ethanol production was observed in the MSFBR than in a fluidized bed reactor (FBR) without a magnetic field. PMID:18760598

  19. Irregular Magnetic Fields and Energetic Particles near the Termination Shock

    SciTech Connect

    Giacalone, J.; Jokipii, J. R.

    2004-09-15

    The physics of magnetic field-line meandering and the associated energetic-particle transport in the outer heliosphere is discussed. We assume that the heliospheric magnetic field, which is frozen into the solar-wind plasma, is composed of both an average and random component. The power in the random component is dominated by spatial scales that are very large (by a few orders of magnitude) compared to the shock thickness. The results from recent numerical simulations are presented. They reveal a number of characteristics which may be related to recent Voyager 1 observations of energetic particles and fields. For instance, low-energy (tens of keV) particles are seen well upstream of the shock that also have large pitch-angle anisotropies. Furthermore, low-energy particles are readily accelerated by the shock, even though their mean-free paths are very large compared to their gyroradii. When averaging over the entire system, the downstream spectra are qualitatively consistent with the theory of diffusive shock acceleration.

  20. Multifunctional magnetic nanowires: A novel breakthrough for ultrasensitive detection and isolation of rare cancer cells from non-metastatic early breast cancer patients using small volumes of blood.

    PubMed

    Hong, Wooyoung; Lee, Sooyeon; Chang, Hee Jin; Lee, Eun Sook; Cho, Youngnam

    2016-11-01

    Circulating tumor cells (CTCs) are recognized as promising biomarkers for diagnosis and indication of the prognosis of several epithelial cancers. However, at present, CTC monitoring is available only for advanced-stage patients rather than for those at an early stage of cancer. This is because of the extraordinary rarity of CTCs and the limited sensitivity of current methods. Herein, we report the development of multifunctional magnetic nanowires for the efficient isolation and detection of CTCs from the blood of patients, especially those with non-metastatic early-stage cancer. The nanowires, which are equipped with a high density of magnetic nanoparticles and five different types of antibodies (Ab mixture_mPpyNWs), offer a significant improvement in cell-isolation efficiency, even from very small amounts of blood (250 μL-1 mL). Notably, CTCs were isolated and identified in 29 out of 29 patients (100%) with non-metastatic early breast cancer, indicating that this procedure allowed detection of CTCs with greater accuracy, sensitivity, and specificity. In addition, we demonstrated in situ "naked eye" identification of the captured cancer cells via a simple colorimetric immunoassay. Our results show that antibody-functionalized magnetic nanowires offer great potential for a broad range of practical clinical applications, including early detection, diagnosis, and treatment of cancer. PMID:27552318

  1. Simulations of Energetic Particles Interacting with Dynamical Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Hussein, M.; Shalchi, A.

    2016-02-01

    We explore the transport of energetic particles in interplanetary space by using test-particle simulations. In previous work such simulations have been performed by using either magnetostatic turbulence or undamped propagating plasma waves. In the current paper we simulate for the first time particle transport in dynamical turbulence. To do so we employ two models, namely the damping model of dynamical turbulence and the random sweeping model. We compute parallel and perpendicular diffusion coefficients and compare our numerical findings with solar wind observations. We show that good agreement can be found between simulations and the Palmer consensus range for both dynamical turbulence models if the ratio of turbulent magnetic field and mean field is δB/B0 = 0.5.

  2. Consistent energy barrier distributions in magnetic particle chains

    NASA Astrophysics Data System (ADS)

    Laslett, O.; Ruta, S.; Chantrell, R. W.; Barker, J.; Friedman, G.; Hovorka, O.

    2016-04-01

    We investigate long-time thermal activation behaviour in magnetic particle chains of variable length. Chains are modelled as Stoner-Wohlfarth particles coupled by dipolar interactions. Thermal activation is described as a hopping process over a multidimensional energy landscape using the discrete orientation model limit of the Landau-Lifshitz-Gilbert dynamics. The underlying master equation is solved by diagonalising the associated transition matrix, which allows the evaluation of distributions of time scales of intrinsic thermal activation modes and their energy representation. It is shown that as a result of the interaction dependence of these distributions, increasing the particle chain length can lead to acceleration or deceleration of the overall relaxation process depending on the initialisation procedure.

  3. Online reconstruction of 3D magnetic particle imaging data

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Hofmann, M.

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s‑1. However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time.

  4. Online reconstruction of 3D magnetic particle imaging data.

    PubMed

    Knopp, T; Hofmann, M

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s(-1). However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time. PMID:27182668

  5. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging

    PubMed Central

    Ferguson, R. Matthew; Minard, Kevin R.; Khandhar, Amit P.; Krishnan, Kannan M.

    2011-01-01

    Purpose: Magnetic particle imaging (MPI), using magnetite nanoparticles (MNPs) as tracer material, shows great promise as a platform for fast tomographic imaging. To date, the magnetic properties of MNPs used in imaging have not been optimized. As nanoparticle magnetism shows strong size dependence, the authors explore how varying MNP size impacts imaging performance in order to determine optimal MNP characteristics for MPI at any driving field frequency f0. Methods: Monodisperse MNPs of varying size were synthesized and their magnetic properties characterized. Their MPI response was measured experimentally using a custom-built MPI transceiver designed to detect the third harmonic of MNP magnetization. The driving field amplitude H0=6 mT μ0−1 and frequency f0=250 kHz were chosen to be suitable for imaging small animals. Experimental results were interpreted using a model of dynamic MNP magnetization that is based on the Langevin theory of superparamagnetism and accounts for sample size distribution and size-dependent magnetic relaxation. Results: The experimental results show a clear variation in the MPI signal intensity as a function of MNP diameter that is in agreement with simulated results. A maximum in the plot of MPI signal vs MNP size indicates there is a particular size that is optimal for the chosen f0. Conclusions: The authors observed that MNPs 15 nm in diameter generate maximum signal amplitude in MPI experiments at 250 kHz. The authors expect the physical basis for this result, the change in magnetic relaxation with MNP size, will impact MPI under other experimental conditions. PMID:21520874

  6. In vitro study of magnetic particle seeding for implant assisted-magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Avilés, Misael O.; Ebner, Armin D.; Ritter, James A.

    The concept of using magnetic particles (seeds) as the implant for implant assisted-magnetic drug targeting (IA-MDT) was analyzed in vitro. Since this MDT system is being explored for use in capillaries, a highly porous ( ɛ˜70%), highly tortuous, cylindrical, polyethylene polymer was prepared to mimic capillary tissue, and the seeds (magnetite nanoparticles) were already fixed within. The well-dispersed seeds were used to enhance the capture of 0.87 μm diameter magnetic drug carrier particles (MDCPs) (polydivinylbenzene embedded with 24.8 wt% magnetite) under flow conditions typically found in capillary networks. The effects of the fluid velocity (0.015-0.15 cm/s), magnetic field strength (0.0-250 mT), porous polymer magnetite content (0-7 wt%) and MDCP concentration ( C=5 and 50 mg/L) on the capture efficiency (CE) of the MDCPs were studied. In all cases, when the magnetic field was applied, compared to when it was not, large increases in CE resulted; the CE increased even further when the magnetite seeds were present. The CE increased with increases in the magnetic field strength, porous polymer magnetite content and MDCP concentration. It decreased only with increases in the fluid velocity. Large magnetic field strengths were not necessary to induce MDCP capture by the seeds. A few hundred mT was sufficient. Overall, this first in vitro study of the magnetic seeding concept for IA-MDT was very encouraging, because it proved that magnetic particle seeds could serve as an effective implant for MDT systems, especially under conditions found in capillaries.

  7. A study of multi-stage/multifunction column for fine particle separation. Quarterly report, October 1 - December 31, 1996

    SciTech Connect

    Chiang, S.H.

    1996-12-31

    The overall objective of the research program is to explore the potential application of a new invention involving a multistage column equipped with concentric draft-tubes (hereafter referred to as the multistage column) for fine coal cleaning and other fluid/particle separation processes. The research work will identify the design parameters and their effects on the performance of the separation process. The results of this study will provide an engineering basis for further development of this technology in coal cleaning and in the general areas of fluid/particle separation. Wastewater treatment tests program was conducted during this quarter. Preliminary tests showed that the multistage column had superior performance to conventional column. In both batch and continuous operations, the oil removal efficiencies were higher than 90%. The results were also compared with data reported in the open literature. 7 refs., 4 figs., 1 tab.

  8. Mixing of nanosize particles by magnetically assisted impaction techniques

    NASA Astrophysics Data System (ADS)

    Scicolone, James V.

    approach based on use of small magnetic particles as mixing media is introduced that achieves a high-degree of mixing at scales of about a micron. The method is tested for binary mixture of alumina/silica and silica/titania. Various parameters such as processing time, size of the magnets, and magnetic particle to powder mixed ratio are considered. Experiments are carried out in batch containers in liquid and dry mediums, as well as a fluidized bed set-up. Homogeneity of Mixing (HoM), defined as the compliment of the Intensity of Segregation, was evaluated at the micron scale through field-emission scanning electron microscopy (FESEM) and the energy dispersive x-ray spectroscopy (EDS). Secondary electron images, along with elemental mappings, were used to visualize the change in agglomerate sizes. Compositional percent data of each element were obtained through an EDS spatial distribution point analysis and used to obtain quantitative analysis on the homogeneity of the mixture. The effect of magnet impaction on mixing quality was examined on the HoM of binary mixtures. The research shows that HoM improved with magnetically assisted impaction mixing techniques indicating that the HoM depends on the product of processing time with the number of magnets. In a fluidized bed set-up, MAIM not only improved dispersion, but it was also found that the magnetic particles served to break down the larger agglomerates, to reduce the minimum fluidization velocity, to delay the onset of bubbling, and to convert the fluidization behavior of ABF powder to APF. Thus MAIM techniques may be used to achieve mixing of nanopowders at a desired HoM through adjusting the number of magnets and processing time; and its inherent advantages are its simplicity, an environmentally benign operation, and reduced cost as compared with wet mixing techniques.

  9. PREFACE: Fifth International Conference on Fine Particle Magnetism

    NASA Astrophysics Data System (ADS)

    Pankhurst, Quentin

    2005-01-01

    In September 2004, the UK Nanomagnetism Network and the London Centre for Nanotechnology hosted the 5th International Conference on Fine Particle Magnetism. The objective of the meeting, as in Rome (1991), Bangor (1996), Barcelona (1999) and Pittsburgh (2002), was to explore latest developments in the fundamentals and applications of nanoscale magnetic clusters, particles and grains. This particular conference had a very broad remit, and encompassed the interdisciplinary breadth of much of today's innovative work on nanoscale magnetic materials. In recognition of this, symposia were organised around the themes of biomagnetism and Earth and the environment, alongside the familiar themes of fundamental properties, applications, and imaging and characterisation. The aim was that this wide-ranging scope would provide the participants with new insights into how researchers from other disciplines approach similar problems to their own, which would help in their own work. This seemed to be borne out by the lively and good-natured discussion that the talks and posters generated. In keeping with this goal of combining cutting edge research with educating ourselves across traditional disciplinary boundaries, we are very pleased to have received such excellent support from the contributing authors for this proceedings volume. The papers contained herein are an accurate reflection of the topics covered, and include several review style papers. We hope that these proceedings will provide the reader with an understanding of the current vibrancy of research into fine particle magnetism. Furthermore, we hope that this volume sets the scene for the continuing cross-border work between physical scientists, life scientists, social scientists, clinicians and engineers that promises to make this field a very lively one in the years to come.

  10. Finite magnetic relaxation in x-space magnetic particle imaging: comparison of measurements and ferrohydrodynamic models

    NASA Astrophysics Data System (ADS)

    Dhavalikar, R.; Hensley, D.; Maldonado-Camargo, L.; Croft, L. R.; Ceron, S.; Goodwill, P. W.; Conolly, S. M.; Rinaldi, C.

    2016-08-01

    Magnetic particle imaging (MPI) is an emerging tomographic imaging technology that detects magnetic nanoparticle tracers by exploiting their non-linear magnetization properties. In order to predict the behavior of nanoparticles in an imager, it is possible to use a non-imaging MPI relaxometer or spectrometer to characterize the behavior of nanoparticles in a controlled setting. In this paper we explore the use of ferrohydrodynamic magnetization equations for predicting the response of particles in an MPI relaxometer. These include a magnetization equation developed by Shliomis (Sh) which has a constant relaxation time and a magnetization equation which uses a field-dependent relaxation time developed by Martsenyuk, Raikher and Shliomis (MRSh). We compare the predictions from these models with measurements and with the predictions based on the Langevin function that assumes instantaneous magnetization response of the nanoparticles. The results show good qualitative and quantitative agreement between the ferrohydrodynamic models and the measurements without the use of fitting parameters and provide further evidence of the potential of ferrohydrodynamic modeling in MPI.

  11. High precision description and new properties of a spin-1 particle in a magnetic field

    NASA Astrophysics Data System (ADS)

    Silenko, Alexander J.

    2014-06-01

    The exact Foldy-Wouthuysen Hamiltonian is derived for a pointlike spin-1 particle with a normal magnetic moment in a nonuniform magnetic field. For a uniform magnetic field, it is exactly separated into terms linear and quadratic in spin. New unexpected properties of a particle with an anomalous magnetic moment are found. Spin projections of a particle moving in a uniform magnetic field are not integer, and the tensor polarization is asymmetric in the plane orthogonal to the field. Previously described spin-tensor effects caused by the tensor magnetic polarizability exist not only for nuclei but also for pointlike particles.

  12. Hydrodynamic modeling of targeted magnetic-particle delivery in a blood vessel.

    PubMed

    Weng, Huei Chu

    2013-03-01

    Since the flow of a magnetic fluid could easily be influenced by an external magnetic field, its hydrodynamic modeling promises to be useful for magnetically controllable delivery systems. It is desirable to understand the flow fields and characteristics before targeted magnetic particles arrive at their destination. In this study, we perform an analysis for the effects of particles and a magnetic field on biomedical magnetic fluid flow to study the targeted magnetic-particle delivery in a blood vessel. The fully developed solutions of velocity, flow rate, and flow drag are derived analytically and presented for blood with magnetite nanoparticles at body temperature. Results reveal that in the presence of magnetic nanoparticles, a minimum magnetic field gradient (yield gradient) is required to initiate the delivery. A magnetic driving force leads to the increase in velocity and has enhancing effects on flow rate and flow drag. Such a magnetic driving effect can be magnified by increasing the particle volume fraction. PMID:24231820

  13. New description of charged particle propagation in random magnetic fields

    NASA Technical Reports Server (NTRS)

    Earl, James A.

    1994-01-01

    When charged particles spiral along a large constant magnetic field, their trajectories are scattered by random components that are superposed on the guiding field. In the simplest analysis of this situation, scattering causes the particles to diffuse parallel to the guiding field. At the next level of approximation, moving pulses that correspond to a coherent mode of propagation are present, but they are represented by delta-functions whose infinitely narrow width makes no sense physically and is inconsistent with the finite duration of coherent pulses observed in solar energetic particle events. To derive a more realistic description, the transport problem is formulated in terms of 4 x 4 matrices, which derive from a representation of the particle distribution function in terms of eigenfunctions of the scattering operator, and which lead to useful approximations that give explicit predictions of the detailed evolution not only of the coherent pulses, but also of the diffusive wake. More specifically, the new description embodies a simple convolution of a narrow Gaussian with the solutions above that involve delta-functions, but with a slightly reduced coherent velocity. The validity of these approximations, which can easily be calculated on a desktop computer, has been exhaustively confirmed by comparison with results of Monte Carlo simulations which kept track of 50 million particles and which were carried out on the Maspar computer at Goddard Space Flight Center.

  14. Employment of a novel magnetically multifunctional purifying material for determination of toxic highly chlorinated polychlorinated biphenyls at trace levels in soil samples.

    PubMed

    Zhang, Jiabin; Pan, Muyun; Gan, Ning; Cao, Yuting; Wu, Dazhen

    2014-10-17

    In this study, we developed a magnetically multifunctional purifying material for efficient removal of matrix interferences, especially certain organochlorine pesticide (DDT, DDE, and DDD), during the determination of toxic highly chlorinated polychlorinated biphenyls (PCBs) at trace levels in soil samples. The multifunctional adsorbent (CMCD-NH2-MNPs) was prepared by grafting carboxymethyl-β-cyclodextrin on the surface of amino-functionalized magnetite (Fe3O4) nanoparticles. CMCD-NH2-MNPs has stronger host-guest complexation with DDT, DDE, and DDD, but the same adsorbent shows weaker adsorption ability toward highly chlorinated PCBs (from tetra- to octa-chlorinated PCBs) owing to their steric hindrance effect. Based on this principle, a simple and rapid gas chromatography-mass spectrometry (GC-MS) method was developed for six indicator PCBs (PCB28, PCB52, PCB101, PCB138, PCB153, and PCB180) in soil. Comparative studies were conducted to determine the clean-up efficiency of the following three techniques: (i) Oasis-HLB, (ii) multi-layer silica column, and (iii) dSPE employing CMCD-NH2-MNPs. The results indicate that CMCD-NH2-MNPs as the purification material can easily and effectively remove DDT, DDE, and DDD in soil samples within a short duration of time. The recoveries for highly chlorinated PCBs were in the range of 85.4-102.2%, with RSDs varying between 1.0 and 6.5%. The proposed method was verified as one of the most effective clean-up procedures for the analysis of highly chlorinated PCBs in real soil samples. PMID:25240650

  15. Rocket observation of soft energetic particles at the magnetic equator

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.

    1974-01-01

    Results from a rocket-borne ion mass spectrometer flown near the magnetic equator at 0108 LMT, March 10, 1970, exhibit an unusual background current above 200 km. This current is observed to increase 3.5 orders of magnitude between 200 and 260 km before maximizing to a fixed value from 260 km to the 295 km apogee of the flight. Properties of the background combined with laboratory measurements have permitted probable identification of the background source as 2-20 keV electrons or protons. Maximum electron fluxes have been estimated to be of the order 10 to the 10th power particles/sq cm-sec-ster in accord with ISIS-1 satellite measurements at higher altitudes. The background was not observed on an earlier flight at 1938 LMT, suggesting the particles to be trapped in a blet which drifted below 300 km between the two flights. The low altitude penetration of these fluxes may have been related to the great magnetic storm of March 8. Simultaneous measurements of the thermal ion distribution are compared with these results and qualitatively suggest that the soft energetic particles are responsible for an observed O2(+) and NO(+) enhancement.

  16. Particle Dynamics Discrimination Between Current Sheet Magnetic Field Reversal and Magnetic Neutral Line Fields

    NASA Astrophysics Data System (ADS)

    Martin, R. F., Jr.; Holland, D. L.; Svetich, J.

    2014-12-01

    We consider dynamical signatures of ion motion that discriminate between a current sheet magnetic field reversal and a magnetic neutral line field. These two related dynamical systems have been studied previously as chaotic scattering systems with application to the Earth's magnetotail. Both systems exhibit chaotic scattering over a wide range of parameter values. The structure and properties of their respective phase spaces have been used to elucidate potential dynamical signatures that affect spacecraft measured ion distributions. In this work we consider the problem of discrimination between these two magnetic structures using charged particle dynamics. For example we show that signatures based on the well known energy resonance in the current sheet field provide good discrimination since the resonance is not present in the neutral line case. While both fields can lead to fractal exit region structuring, their characteristics are different and also may provide some field discrimination. Application to magnetotail field and particle parameters will be presented

  17. Particle distributions in collisionless magnetic reconnection: An implicit Particle-In-Cell (PIC) description

    SciTech Connect

    Hewett, D.W.; Francis, G.E.; Max, C.E.

    1990-06-29

    Evidence from magnetospheric and solar flare research supports the belief that collisionless magnetic reconnection can proceed on the Alfven-wave crossing timescale. Reconnection behavior that occurs this rapidly in collisionless plasmas is not well understood because underlying mechanisms depend on the details of the ion and electron distributions in the vicinity of the emerging X-points. We use the direct implicit Particle-In-Cell (PIC) code AVANTI to study the details of these distributions as they evolve in the self-consistent E and B fields of magnetic reconnection. We first consider a simple neutral sheet model. We observe rapid movement of the current-carrying electrons away from the emerging X-point. Later in time an oscillation of the trapped magnetic flux is found, superimposed upon continued linear growth due to plasma inflow at the ion sound speed. The addition of a current-aligned and a normal B field widen the scope of our studies.

  18. Probing the magnetic topologies of magnetic clouds by means of solar energetic particles

    SciTech Connect

    Kahler, S.W. ); Reames, D.V. )

    1991-06-01

    Magnetic clouds are large (<0.25 AU) interplanetary regions with topologies consistent with those of magnetic loops. They are of interest because they may be an interplanetary signature of coronal mass ejections. Clouds have been identified in solar wind data by their magnetic properties and by the presence of bidirectional particle fluxes. Two possible closed magnetic topologies have been considered for clouds: (1) an elongated bottle with field lines rooted at both ends in the Sun and (2) a detached magnetic bubble or plasmoid consisting of closed field lines. The inferred topologies are also consistent with open field lines that converge beyond 1 AU. The authors have used solar energetic particles (SEPs) as probes of the cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the Sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.

  19. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics

    SciTech Connect

    Johnson, Jeffrey N.

    2009-01-01

    The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.

  20. Symmetries of the 2D magnetic particle imaging system matrix.

    PubMed

    Weber, A; Knopp, T

    2015-05-21

    In magnetic particle imaging (MPI), the relation between the particle distribution and the measurement signal can be described by a linear system of equations. For 1D imaging, it can be shown that the system matrix can be expressed as a product of a convolution matrix and a Chebyshev transformation matrix. For multidimensional imaging, the structure of the MPI system matrix is not yet fully explored as the sampling trajectory complicates the physical model. It has been experimentally found that the MPI system matrix rows have symmetries and look similar to the tensor products of Chebyshev polynomials. In this work we will mathematically prove that the 2D MPI system matrix has symmetries that can be used for matrix compression. PMID:25919400

  1. Magnetic particle detection in unshielded environment using orthogonal fluxgate gradiometer

    NASA Astrophysics Data System (ADS)

    Elrefai, Ahmed L.; Sasada, Ichiro

    2015-05-01

    A new detection system for magnetic particles, which can operate in an unshielded environment, is developed using a fundamental mode orthogonal fluxgate gradiometer. The proposed detection system offers the advantages of cost, size, and weight reduction as compared to contamination detection systems using superconducting quantum interference device sensor. The detection system can be used to detect metallic contamination in foods or lithium ion battery production lines. The system has been investigated numerically to optimize various design parameters of the system. Experimental setup has been developed to evaluate some of the numerically predicted results. Steel balls were successfully detected down to the diameter of 50 μm.

  2. Optimization of nanoparticle core size for magnetic particle imaging

    SciTech Connect

    Ferguson, Matthew R.; Minard, Kevin R.; Krishnan, Kannan M.

    2009-05-01

    Magnetic Particle Imaging (MPI) is a powerful new diagnostic visualization platform designed for measuring the amount and location of superparamagnetic nanoscale molecular probes (NMPs) in biological tissues. Promising initial results indicate that MPI can be extremely sensitive and fast, with good spatial resolution for imaging human patients or live animals. Here, we present modeling results that show how MPI sensitivity and spatial resolution both depend on NMP-core physical properties, and how MPI performance can be effectively optimized through rational core design. Monodisperse magnetite cores are attractive since they are readily produced with a biocompatible coating and controllable size that facilitates quantitative imaging.

  3. Spinless Particle in a Magnetic Field Under Minimal Length Scenario

    NASA Astrophysics Data System (ADS)

    Amirfakhrian, S. M.

    2016-06-01

    In this article, we studied the Klein-Gordon equation in a generalised uncertainty principle (GUP) framework which predicts a minimal uncertainty in position. We considered a spinless particle in this framework in the presence of a magnetic field, applied in the z-direction, which varies as {1 over {{x^2}}}. We found the energy eigenvalues of this system and also obtained the correspounding eigenfunctions, using the numerical method. When GUP parameter tends to zero, our solutions were in agreement with those obtained in the absence of GUP.

  4. Charged particle and magnetic field research in space

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Research completed and in progress is described, related publications and reports are listed, and abstracts of papers and talks on results of the research are given. The charged particle research centered on OGO-5 and OGO-6 electron spectrometer data, and theoretical radiation belt studies. Work on the ATS-1 magnetometer project included development of production data reduction programs, development of spectral analysis procedures, and scientific studies of ULF waves at synchronous orbit. The magnetic fields research also included work on the Mariner project and theoretical studies on the solar wind.

  5. Magnetic particle detection in unshielded environment using orthogonal fluxgate gradiometer

    SciTech Connect

    Elrefai, Ahmed L. Sasada, Ichiro

    2015-05-07

    A new detection system for magnetic particles, which can operate in an unshielded environment, is developed using a fundamental mode orthogonal fluxgate gradiometer. The proposed detection system offers the advantages of cost, size, and weight reduction as compared to contamination detection systems using superconducting quantum interference device sensor. The detection system can be used to detect metallic contamination in foods or lithium ion battery production lines. The system has been investigated numerically to optimize various design parameters of the system. Experimental setup has been developed to evaluate some of the numerically predicted results. Steel balls were successfully detected down to the diameter of 50 μm.

  6. Digital microfluidic magnetic separation for particle-based immunoassays.

    PubMed

    Ng, Alphonsus H C; Choi, Kihwan; Luoma, Robert P; Robinson, John M; Wheeler, Aaron R

    2012-10-16

    We introduce a new format for particle-based immunoassays relying on digital microfluidics (DMF) and magnetic forces to separate and resuspend antibody-coated paramagnetic particles. In DMF, fluids are electrostatically controlled as discrete droplets (picoliters to microliters) on an array of insulated electrodes. By applying appropriate sequences of potentials to these electrodes, multiple droplets can be manipulated simultaneously and various droplet operations can be achieved using the same device design. This flexibility makes DMF well-suited for applications that require complex, multistep protocols such as immunoassays. Here, we report the first particle-based immunoassay on DMF without the aid of oil carrier fluid to enable droplet movement (i.e., droplets are surrounded by air instead of oil). This new format allowed the realization of a novel on-chip particle separation and resuspension method capable of removing greater than 90% of unbound reagents in one step. Using this technique, we developed methods for noncompetitive and competitive immunoassays, using thyroid stimulating hormone (TSH) and 17β-estradiol (E2) as model analytes, respectively. We show that, compared to conventional methods, the new DMF approach reported here reduced reagent volumes and analysis time by 100-fold and 10-fold, respectively, while retaining a level of analytical performance required for clinical screening. Thus, we propose that the new technique has great potential for eventual use in a fast, low-waste, and inexpensive instrument for the quantitative analysis of proteins and small molecules in low sample volumes. PMID:23013543

  7. Voltage-driven spin-transfer torque in a magnetic particle

    SciTech Connect

    Gartland, P. Davidović, D.

    2015-10-26

    We discuss a spin-transfer torque device, where the role of the soft ferromagnetic layer is played by a magnetic particle or a magnetic molecule, in weak tunnel contact with two spin polarized leads. We investigate if the magnetization of the particle can be manipulated electronically, in the regime where the critical current for magnetization switching is negligibly weak, which could be due to the reduced particle dimensions. Using master equation simulations to evaluate the effects of spin-orbit anisotropy energy fluctuations on spin-transfer, we obtain reliable reading and writing of the magnetization state of such magnetic particle, and find that the device relies on a critical voltage rather than a critical current. The critical voltage is governed by the spin-orbit energy shifts of discrete levels in the particle. This finding opens a possibility to significantly reduce the power dissipation involved in spin-transfer torque switching, by using very small magnetic particles or molecules.

  8. Aggregation process of paramagnetic particles in fluid in the magnetic field.

    PubMed

    Pei, Ning; Cheng, Xiaoye; Huang, Zheyong; Wang, Xiang; Yang, Kai; Wang, Ye; Gong, Yongyong

    2016-07-01

    Magnetic targeting is a promising therapeutic strategy for localizing systemically delivered magnetic responsive drugs or cells to target tissue, but excessive aggregation of magnetic particles could result in vascular embolization. To analyze the reason for embolization, the attractive process of magnetic particles in magnetic field (MF) was studied in this paper by analyzing the form of the aggregated paramagnetic particles while the particle suspension flowed through a tube, which served as a model of blood vessels. The effects of magnetic flux density and fluid velocity on the formation of aggregated paramagnetic particles were investigated. The number of large aggregated clusters dramatically increased with increment in the magnetic flux density and decreased with increment in the fluid velocity. The analysis of accumulative process demonstrates the MF around initially attracted particles was focused, which induced the formation of clusters and increased the possibility of embolism. Bioelectromagnetics. 37:323-330, 2016. © 2016 Wiley Periodicals, Inc. PMID:27126920

  9. Many particle magnetic dipole-dipole and hydrodynamic interactions in magnetizable stent assisted magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Cregg, P. J.; Murphy, Kieran; Mardinoglu, Adil; Prina-Mello, Adriele

    2010-08-01

    The implant assisted magnetic targeted drug delivery system of Avilés, Ebner and Ritter is considered both experimentally ( in vitro) and theoretically. The results of a 2D mathematical model are compared with 3D experimental results for a magnetizable wire stent. In this experiment a ferromagnetic, coiled wire stent is implanted to aid collection of particles which consist of single domain magnetic nanoparticles (radius ≈10 nm). In order to model the agglomeration of particles known to occur in this system, the magnetic dipole-dipole and hydrodynamic interactions for multiple particles are included. Simulations based on this mathematical model were performed using open source C++ code. Different initial positions are considered and the system performance is assessed in terms of collection efficiency. The results of this model show closer agreement with the measured in vitro experimental results and with the literature. The implications in nanotechnology and nanomedicine are based on the prediction of the particle efficiency, in conjunction with the magnetizable stent, for targeted drug delivery.

  10. Plasmonic nanoantennas for multipurpose particle manipulation and enhanced optical magnetism

    NASA Astrophysics Data System (ADS)

    Roxworthy, Brian James

    surface, likely by means of fs-augmented near-field gradient forces. Using this particle-fusing behavior as inspiration, a novel class of "capped" nanoantennas is designed, and their plasmonic response is theoretically investigated. The specific example of capped-bowtie nanoantennas (c-BNAs) is chosen, and it is shown that the c-BNAs have the unique ability to simultaneously enhance both magnetic and electric fields by more than three and four orders of magnitude, respectively. This ability improves on currently available designs that enhance magnetic fields at the expense of a mitigated electric response. The spectral response of the c-BNAs is dominated by two distinct resonant peaks: one in the visible (VIS) and one in the near-infrared (NIR), and the spectral behavior of the c-BNAs is examined as a function of cap thickness, bowtie gap spacing, and c-BNA array spacing. Finally, a new pillar-bowtie nanoantenna (p-BNA) design, comprising Au BNA arrays suspended on 500 nm tall SiO2 pillars, is introduced as a candidate system to show, for the first time, that the mechanical degree of freedom (DOF) can be used to create in situ reconfigurable plasmonic nanoantennas. Reconfigurability is achieved using electron-beam manipulation in a scanning electron microscope (SEM), whereby the electron beam induces strong electromagnetic gradient forces in the p-BNA gap that causes the two arms to deform toward the common gap center. In characterizing this behavior as a function of SEM accelerating voltage and magnification, design curves are produced that enable controlled, repeatable fabrication of nanoantennas with gap sizes as small as 5 nm by actuation of the mechanical DOF of the pillars. As a proof of this novel design principle, the optical response of two, 10 x 10 modified p-BNA regions comprising 5- and 15-nm gap antennas is characterized using spatially localized reflection spectroscopy based on a supercontinuum optical source. (Abstract shortened by UMI.).

  11. Slew-rate dependence of tracer magnetization response in magnetic particle imaging.

    PubMed

    Shah, Saqlain A; Ferguson, R M; Krishnan, K M

    2014-10-28

    Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ0 excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (Ho ) and frequency (ω). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ0. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (ωH o) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories. PMID:25422528

  12. Slew-rate dependence of tracer magnetization response in magnetic particle imaging

    PubMed Central

    Shah, Saqlain A.; Ferguson, R. M.

    2014-01-01

    Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ0 excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (Ho) and frequency (ω). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ0. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (ωHo) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories. PMID:25422528

  13. Slew-rate dependence of tracer magnetization response in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Shah, Saqlain A.; Ferguson, R. M.; Krishnan, K. M.

    2014-10-01

    Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ0 excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (Ho) and frequency (ω). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ0. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (ωHo) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.

  14. Particle simulation of a magnetized plasma contacting the wall

    SciTech Connect

    Daube, T.; Riemann, K.; Schmitz, H.

    1998-01-01

    One-dimensional particle simulations are performed to study the influence of a strong magnetic field on the plasma boundary layer in front of a completely absorbing wall. The magnetic field lines are parallel to the wall, and the ion transport is provided by charge exchange collisions with cold neutrals. The Debye length is small compared with the ion gyroradius and the electrons are Boltzmann distributed. A modified Particle-in-Cell Monte-Carlo-Collision (PIC-MCC) code is developed to avoid the problem of different time scales of electrons and ions. The self-consistent steady-state simulation is performed for a system with one spatial coordinate and two velocity components (1d, 2v). The results are compared with corresponding results of a self-consistent stationary solution of the ion Boltzmann equation. Although the potential and density profiles are essentially confirmed, the ion velocity distribution functions disagree with analytic solutions in certain singular regions unless certain pertubations in the electric field are suppressed. It is shown that this is due to a microscopic instability of the stationary solution. {copyright} {ital 1998 American Institute of Physics.}

  15. Magnetic particle imaging: current developments and future directions

    PubMed Central

    Panagiotopoulos, Nikolaos; Duschka, Robert L; Ahlborg, Mandy; Bringout, Gael; Debbeler, Christina; Graeser, Matthias; Kaethner, Christian; Lüdtke-Buzug, Kerstin; Medimagh, Hanne; Stelzner, Jan; Buzug, Thorsten M; Barkhausen, Jörg; Vogt, Florian M; Haegele, Julian

    2015-01-01

    Magnetic particle imaging (MPI) is a novel imaging method that was first proposed by Gleich and Weizenecker in 2005. Applying static and dynamic magnetic fields, MPI exploits the unique characteristics of superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs’ response allows a three-dimensional visualization of their distribution in space with a superb contrast, a very high temporal and good spatial resolution. Essentially, it is the SPIONs’ superparamagnetic characteristics, the fact that they are magnetically saturable, and the harmonic composition of the SPIONs’ response that make MPI possible at all. As SPIONs are the essential element of MPI, the development of customized nanoparticles is pursued with the greatest effort by many groups. Their objective is the creation of a SPION or a conglomerate of particles that will feature a much higher MPI performance than nanoparticles currently available commercially. A particle’s MPI performance and suitability is characterized by parameters such as the strength of its MPI signal, its biocompatibility, or its pharmacokinetics. Some of the most important adjuster bolts to tune them are the particles’ iron core and hydrodynamic diameter, their anisotropy, the composition of the particles’ suspension, and their coating. As a three-dimensional, real-time imaging modality that is free of ionizing radiation, MPI appears ideally suited for applications such as vascular imaging and interventions as well as cellular and targeted imaging. A number of different theories and technical approaches on the way to the actual implementation of the basic concept of MPI have been seen in the last few years. Research groups around the world are working on different scanner geometries, from closed bore systems to single-sided scanners, and use reconstruction methods that are either based on actual calibration measurements or on theoretical models. This review aims at giving an overview of current developments and

  16. Intracellular performance of tailored nanoparticle tracers in magnetic particle imaging

    SciTech Connect

    Arami, Hamed; Krishnan, Kannan M.

    2014-05-07

    Magnetic Particle Imaging (MPI) is a quantitative mass-sensitive, tracer-based imaging technique, with potential applications in various cellular imaging applications. The spatial resolution of MPI, in the first approximation, improves by decreasing the full width at half maximum (FWHM) of the field-derivative of the magnetization, dm/dH of the nanoparticle (NP) tracers. The FWHM of dm/dH depends critically on NPs’ size, size distribution, and their environment. However, there is limited information on the MPI performance of the NPs after their internalization into cells. In this work, 30 to 150 μg of the iron oxide NPs were incubated in a lysosome-like acidic buffer (0.2 ml, 20 mM citric acid, pH 4.7) and investigated by vibrating sample magnetometry, magnetic particle spectroscopy, transmission electron microscopy, and dynamic light scattering (DLS). The FWHM of the dm/dH curves of the NPs increased with incubation time and buffer to NPs ratio, consistent with a decrease in the median core size of the NPs from ∼20.1 ± 0.98 to ∼18.5 ± 3.15 nm. Further, these smaller degraded NPs formed aggregates that responded to the applied field by hysteretic reversal at higher field values and increased the FWHM. The rate of core size decrease and aggregation were inversely proportional to the concentration of the incubated NPs, due to their slower biodegradation kinetics. The results of this model experiment show that the MPI performance of the NPs in the acidic environments of the intracellular organelles (i.e., lysosomes and endosomes) can be highly dependent on their rate of internalization, residence time, and degradation.

  17. Intracellular performance of tailored nanoparticle tracers in magnetic particle imaging.

    PubMed

    Arami, Hamed; Krishnan, Kannan M

    2014-05-01

    Magnetic Particle Imaging (MPI) is a quantitative mass-sensitive, tracer-based imaging technique, with potential applications in various cellular imaging applications. The spatial resolution of MPI, in the first approximation, improves by decreasing the full width at half maximum (FWHM) of the field-derivative of the magnetization, dm/dH of the nanoparticle (NP) tracers. The FWHM of dm/dH depends critically on NPs' size, size distribution, and their environment. However, there is limited information on the MPI performance of the NPs after their internalization into cells. In this work, 30 to 150 μg of the iron oxide NPs were incubated in a lysosome-like acidic buffer (0.2 ml, 20 mM citric acid, pH 4.7) and investigated by vibrating sample magnetometry, magnetic particle spectroscopy, transmission electron microscopy, and dynamic light scattering (DLS). The FWHM of the dm/dH curves of the NPs increased with incubation time and buffer to NPs ratio, consistent with a decrease in the median core size of the NPs from ∼20.1 ± 0.98 to ∼18.5 ± 3.15 nm. Further, these smaller degraded NPs formed aggregates that responded to the applied field by hysteretic reversal at higher field values and increased the FWHM. The rate of core size decrease and aggregation were inversely proportional to the concentration of the incubated NPs, due to their slower biodegradation kinetics. The results of this model experiment show that the MPI performance of the NPs in the acidic environments of the intracellular organelles (i.e., lysosomes and endosomes) can be highly dependent on their rate of internalization, residence time, and degradation. PMID:24753632

  18. Intracellular performance of tailored nanoparticle tracers in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Arami, Hamed; Krishnan, Kannan M.

    2014-05-01

    Magnetic Particle Imaging (MPI) is a quantitative mass-sensitive, tracer-based imaging technique, with potential applications in various cellular imaging applications. The spatial resolution of MPI, in the first approximation, improves by decreasing the full width at half maximum (FWHM) of the field-derivative of the magnetization, dm/dH of the nanoparticle (NP) tracers. The FWHM of dm/dH depends critically on NPs' size, size distribution, and their environment. However, there is limited information on the MPI performance of the NPs after their internalization into cells. In this work, 30 to 150 μg of the iron oxide NPs were incubated in a lysosome-like acidic buffer (0.2 ml, 20 mM citric acid, pH 4.7) and investigated by vibrating sample magnetometry, magnetic particle spectroscopy, transmission electron microscopy, and dynamic light scattering (DLS). The FWHM of the dm/dH curves of the NPs increased with incubation time and buffer to NPs ratio, consistent with a decrease in the median core size of the NPs from ˜20.1 ± 0.98 to ˜18.5 ± 3.15 nm. Further, these smaller degraded NPs formed aggregates that responded to the applied field by hysteretic reversal at higher field values and increased the FWHM. The rate of core size decrease and aggregation were inversely proportional to the concentration of the incubated NPs, due to their slower biodegradation kinetics. The results of this model experiment show that the MPI performance of the NPs in the acidic environments of the intracellular organelles (i.e., lysosomes and endosomes) can be highly dependent on their rate of internalization, residence time, and degradation.

  19. Design of Superparamagnetic Nanoparticles for Magnetic Particle Imaging (MPI)

    PubMed Central

    Du, Yimeng; Lai, Pui To; Leung, Cheung Hoi; Pong, Philip W. T.

    2013-01-01

    Magnetic particle imaging (MPI) is a promising medical imaging technique producing quantitative images of the distribution of tracer materials (superparamagnetic nanoparticles) without interference from the anatomical background of the imaging objects (either phantoms or lab animals). Theoretically, the MPI platform can image with relatively high temporal and spatial resolution and sensitivity. In practice, the quality of the MPI images hinges on both the applied magnetic field and the properties of the tracer nanoparticles. Langevin theory can model the performance of superparamagnetic nanoparticles and predict the crucial influence of nanoparticle core size on the MPI signal. In addition, the core size distribution, anisotropy of the magnetic core and surface modification of the superparamagnetic nanoparticles also determine the spatial resolution and sensitivity of the MPI images. As a result, through rational design of superparamagnetic nanoparticles, the performance of MPI could be effectively optimized. In this review, the performance of superparamagnetic nanoparticles in MPI is investigated. Rational synthesis and modification of superparamagnetic nanoparticles are discussed and summarized. The potential medical application areas for MPI, including cardiovascular system, oncology, stem cell tracking and immune related imaging are also analyzed and forecasted. PMID:24030719

  20. Microscopic observation of behavior of magnetic particle clusters during torque transfer between magnetic poles

    NASA Astrophysics Data System (ADS)

    Nagato, Keisuke; Oshima, Takuya; Kuwayama, Akinori; Okada, Hiroshi; Matsushima, Takashi; Takagi, Shu; Nakao, Masayuki; Hamaguchi, Tetsuya

    2015-05-01

    The behavior of magnetic particles during the formation, fracture, and sliding of clusters was investigated. A setup, in which particles can be visualized and the torque between poles is measured simultaneously, was designed and built. In the case of flat poles, clusters were inclined in both the fracture and sliding mode areas. In the case of textured poles, the torque increased and varied with the cycle corresponding to the pitch of the texture. These clusters inclined by an angle less than that in the case of flat poles. The magnetic field distribution calculated by a finite element method supported this result, in which the field was concentrated at the concaves and their edges. These results will lead to the design of more efficient torque transfer devices using magnetorheological fluids.

  1. Particle capture efficiency in a multi-wire model for high gradient magnetic separation

    NASA Astrophysics Data System (ADS)

    Eisenträger, Almut; Vella, Dominic; Griffiths, Ian M.

    2014-07-01

    High gradient magnetic separation (HGMS) is an efficient way to remove magnetic and paramagnetic particles, such as heavy metals, from waste water. As the suspension flows through a magnetized filter mesh, high magnetic gradients around the wires attract and capture the particles removing them from the fluid. We model such a system by considering the motion of a paramagnetic tracer particle through a periodic array of magnetized cylinders. We show that there is a critical Mason number (ratio of viscous to magnetic forces) below which the particle is captured irrespective of its initial position in the array. Above this threshold, particle capture is only partially successful and depends on the particle's entry position. We determine the relationship between the critical Mason number and the system geometry using numerical and asymptotic calculations. If a capture efficiency below 100% is sufficient, our results demonstrate how operating the HGMS system above the critical Mason number but with multiple separation cycles may increase efficiency.

  2. Preparation of Fe(3)O(4)@C@CNC multifunctional magnetic core/shell nanoparticles and their application in a signal-type flow-injection photoluminescence immunosensor.

    PubMed

    Chu, Chengchao; Li, Meng; Li, Long; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei; Song, Xianrang

    2013-11-01

    We describe here the preparation of carbon-coated Fe3O4 magnetic nanoparticles that were further fabricated into multifunctional core/shell nanoparticles (Fe3O4@C@CNCs) through a layer-by-layer self-assembly process of carbon nanocrystals (CNCs). The nanoparticles were applied in a photoluminescence (PL) immunosensor to detect the carcinoembryonic antigen (CEA), and CEA primary antibody was immobilized onto the surface of the nanoparticles. In addition, CEA secondary antibody and glucose oxidase were covalently bonded to silica nanoparticles. After stepwise immunoreactions, the immunoreagent was injected into the PL cell using a flow-injection PL system. When glucose was injected, hydrogen peroxide was obtained because of glucose oxidase catalysis and quenched the PL of the Fe3O4@C@CNC nanoparticles. The here proposed PL immunosensor allowed us to determine CEA concentrations in the 0.005–50 ng·mL-1 concentration range, with a detection limit of 1.8 pg·mL-1. PMID:24121430

  3. Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Chen, Chuan; Kang, Ning; Xu, Ting; Wang, Dong; Ren, Lei; Guo, Xiangqun

    2015-03-01

    Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron paramagnetic resonance imaging (EPRI). However, their rapid one-electron bioreduction to diamagnetic N-hydroxy species when administered intravenously has limited their use in in vivo applications. In this article, a new approach of silica coating for carrying stable radicals was proposed. A 4-carboxyl-TEMPO nitroxide radical was covalently linked with 3-aminopropyl-trimethoxysilane to produce a silanizing TEMPO radical. Utilizing a facile reaction based on the copolymerization of silanizing TEMPO radicals with tetraethyl orthosilicate in reverse microemulsion, a TEMPO radicals doped SiO2 nanostructure was synthesized and coated on the surface of NaYF4:Yb,Er/NaYF4 upconversion nanoparticles (UCNPs) to generate a novel multifunctional nanoprobe, PEGylated UCNP@TEMPO@SiO2 for upconversion luminescence (UCL) and magnetic resonance dual-modality imaging. The electron spin resonance (ESR) signals generated by the TEMPO@SiO2 show an enhanced reduction resistance property for a period of time of up to 1 h, even in the presence of 5 mM ascorbic acid. The longitudinal relaxivity of PEGylated UCNPs@TEMPO@SiO2 nanocomposites is about 10 times stronger than that for free TEMPO radicals. The core-shell NaYF4:Yb,Er/NaYF4 UCNPs synthesized by this modified user-friendly one-pot solvothermal strategy show a significant enhancement of UCL emission of up to 60 times more than the core NaYF4:Yb,Er. Furthermore, the PEGylated UCNP@TEMPO@SiO2 nanocomposites were further used as multifunctional nanoprobes to explore their performance in the UCL imaging of living cells and T1-weighted MRI in vitro and in vivo.Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron

  4. Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Chen, Chuan; Kang, Ning; Xu, Ting; Wang, Dong; Ren, Lei; Guo, Xiangqun

    2015-03-01

    Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron paramagnetic resonance imaging (EPRI). However, their rapid one-electron bioreduction to diamagnetic N-hydroxy species when administered intravenously has limited their use in in vivo applications. In this article, a new approach of silica coating for carrying stable radicals was proposed. A 4-carboxyl-TEMPO nitroxide radical was covalently linked with 3-aminopropyl-trimethoxysilane to produce a silanizing TEMPO radical. Utilizing a facile reaction based on the copolymerization of silanizing TEMPO radicals with tetraethyl orthosilicate in reverse microemulsion, a TEMPO radicals doped SiO2 nanostructure was synthesized and coated on the surface of NaYF4:Yb,Er/NaYF4 upconversion nanoparticles (UCNPs) to generate a novel multifunctional nanoprobe, PEGylated UCNP@TEMPO@SiO2 for upconversion luminescence (UCL) and magnetic resonance dual-modality imaging. The electron spin resonance (ESR) signals generated by the TEMPO@SiO2 show an enhanced reduction resistance property for a period of time of up to 1 h, even in the presence of 5 mM ascorbic acid. The longitudinal relaxivity of PEGylated UCNPs@TEMPO@SiO2 nanocomposites is about 10 times stronger than that for free TEMPO radicals. The core-shell NaYF4:Yb,Er/NaYF4 UCNPs synthesized by this modified user-friendly one-pot solvothermal strategy show a significant enhancement of UCL emission of up to 60 times more than the core NaYF4:Yb,Er. Furthermore, the PEGylated UCNP@TEMPO@SiO2 nanocomposites were further used as multifunctional nanoprobes to explore their performance in the UCL imaging of living cells and T1-weighted MRI in vitro and in vivo.Nitroxide radicals, such as 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and its derivatives, have recently been used as contrast agents for magnetic resonance imaging (MRI) and electron

  5. Enhancement of iron content in spinach plants stimulated by magnetic nano particles

    NASA Astrophysics Data System (ADS)

    Yulianto, Agus; Astuti, Budi; Amalia, Saptaria Rosa

    2016-04-01

    In our previous study, the iron content in spinach plants could be detected by magnetic susceptibility values. In the present work, magnetic nano particles were found from the iron sand. The magnetic nano particles are synthesis by using co-precipitation process and sol-gel technique. The stimulation of magnetic nano particles in the plant has been done by the provision of magnetic nano particles in growing media. After certain time, plant samples was characterized using susceptibility-meter MS2B and atomic absorption spectroscopy to measure the magnetic susceptibility and the amount of iron content that absorbed of the plant, respectively. The iron content in the spinach plants was increased when the magnetic nano particles was injected in the growing media.

  6. Solar magnetic connections in gradual solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Kahler, S.; Arge, C.

    2003-04-01

    Gradual solar energetic particle (SEP) events are assumed to be produced in coronal and interplanetary shocks driven by fast coronal mass ejections (CMEs). Most of these SEP-associated fast CMEs are large in angular extent and intersect the ecliptic plane. In some cases, however, their angular extents lie completely outside the ecliptic plane. If we assume that the associated coronal shocks share the CME angular extents, the magnetic field lines connecting the Earth with the solar source surface (positioned at 2.5 Rs from Sun center) are confined to the ecliptic plane, and SEPs undergo no cross-field diffusion, then such SEP events should not be observed. One explanation for these observed SEP events is that the solar coronal connection of the field lines at Earth does not lie in the ecliptic plane in the solar coronal regions where shock acceleration takes place, which is thought to occur between ~2-10 Rs. To test this idea, the interplanetary magnetic field must be traced from Earth back to these coronal regions. A simple way to do this is to use the potential source surface and Schatten current sheet models in combination along with the assumption of constant solar wind flow speed along magnetic field lines. This approach allows interplanetary field lines to be traced from 1 AU back to coronal regions and therefore determine whether high latitudinal connections can explain the SEPs from high-latitude CMEs. We select Wind EPACT SEP events and associated narrow or high-latitude Lasco CMEs to test for high-latitude connections using the magnetic field model.

  7. Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles

    NASA Astrophysics Data System (ADS)

    Avilés, Misael O.; Ebner, Armin D.; Chen, Haitao; Rosengart, Axel J.; Kaminski, Michael D.; Ritter, James A.

    2005-05-01

    The use of a ferromagnetic wire implant placed near an artery to assist the collection of magnetic drug carrier particles (MDCPs) using an external magnet is theoretically studied. Three magnetic drug targeting (MDT) systems are evaluated in terms of their MDCP collection efficiency (CE): a permanent magnet and wire is better than a permanent magnet alone, which is better than a homogeneous magnetic field and wire.

  8. Encouragement of Enzyme Reaction Utilizing Heat Generation from Ferromagnetic Particles Subjected to an AC Magnetic Field

    PubMed Central

    Suzuki, Masashi; Aki, Atsushi; Mizuki, Toru; Maekawa, Toru; Usami, Ron; Morimoto, Hisao

    2015-01-01

    We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles. PMID:25993268

  9. High performance wash-free magnetic bioassays through microfluidically enhanced particle specificity.

    PubMed

    Bechstein, Daniel J B; Lee, Jung-Rok; Ooi, Chin Chun; Gani, Adi W; Kim, Kyunglok; Wilson, Robert J; Wang, Shan X

    2015-01-01

    Magnetic biosensors have emerged as a sensitive and versatile platform for high performance medical diagnostics. These magnetic biosensors require well-tailored magnetic particles as detection probes, which need to give rise to a large and specific biological signal while showing very low nonspecific binding. This is especially important in wash-free bioassay protocols, which do not require removal of particles before measurement, often a necessity in point of care diagnostics. Here we show that magnetic interactions between magnetic particles and magnetized sensors dramatically impact particle transport and magnetic adhesion to the sensor surfaces. We investigate the dynamics of magnetic particles' biomolecular binding and magnetic adhesion to the sensor surface using microfluidic experiments. We elucidate how flow forces can inhibit magnetic adhesion, greatly diminishing or even eliminating nonspecific signals in wash-free magnetic bioassays, and enhancing signal to noise ratios by several orders of magnitude. Our method is useful for selecting and optimizing magnetic particles for a wide range of magnetic sensor platforms. PMID:26123868

  10. Nondestructive Testing Magnetic Particle RQA/M1-5330.11.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of programmed instruction handbooks, prepared by the U. S. space program, home study material is presented in this volume concerning familiarization and orientation on magnetic particle properties. The subject is presented under the following headings: Magnetism, Producing a Magnetic Field, Magnetizing Currents, Materials and…

  11. Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation

    NASA Astrophysics Data System (ADS)

    Zhu, Hua-Yue; Jiang, Ru; Fu, Yong-Qian; Li, Rong-Rong; Yao, Jun; Jiang, Sheng-Tao

    2016-04-01

    Novel multifunctional NiFe2O4/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV-vis DRS. The adsorption and photocatalytic performance of NiFe2O4/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe2O4, NiFe2O4/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g-1) of NiFe2O4/ZnO hybrids is higher than those of NiFe2O4, ZnO and mechanically mixed NiFe2O4/ZnO hybrids. The removal of congo red solution (20 mg L-1) by NiFe2O4/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. rad OH and h+ play important roles in the decolorization of congo red solution by NiFe2O4/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe2O4/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO3- and Cl- anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe2O4/ZnO hybrids. Moreover, the magnetic NiFe2O4/ZnO hybrids can be easily separated from the reacted solution by an external magnet.

  12. Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang Y.; Li, Yulan; Li, Qiu-Lin; Liu, Wei

    2015-09-25

    The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz–Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening.

  13. Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy

    NASA Astrophysics Data System (ADS)

    Hergt, Rudolf; Dutz, Silvio

    2007-04-01

    Loss processes being relevant for magnetic particle hyperthermia are analysed with respect to specific loss power under the condition of a limitation of the alternating magnetic field amplitude and frequency. Extrapolations to the maximum specific loss power of magnetic nanoparticles are discussed and conclusions are drawn with respect to the minimum particle concentration being necessary for hyperthermia or thermoablation under intra-tumoural or systemic particle supply. As a result, much efforts are necessary to render magnetic particle hyperthermia a valuable tumour therapy keeping at least part of the promises found in literature.

  14. Hierarchical multifunctional nanocomposites

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.

    2014-03-01

    Nanocomposites; including nano-materials such as nano-particles, nanoclays, nanofibers, nanotubes, and nanosheets; are of significant importance in the rapidly developing field of nanotechnology. Due to the nanometer size of these inclusions, their physicochemical characteristics differ significantly from those of micron size and bulk materials. The field of nanocomposites involves the study of multiphase materials where at least one of the constituent phases has one dimension less than 100 nm. This is the range where the phenomena associated with the atomic and molecular interaction strongly influence the macroscopic properties of materials. Since the building blocks of nanocomposites are at nanoscale, they have an enormous surface area with numerous interfaces between the two intermix phases. The special properties of the nano-composite arise from the interaction of its phases at the interface and/or interphase regions. By contrast, in a conventional composite based on micrometer sized filler such as carbon fibers, the interfaces between the filler and matrix constitutes have a much smaller surface-to-volume fraction of the bulk materials, and hence influence the properties of the host structure to a much smaller extent. The optimum amount of nanomaterials in the nanocomposites depends on the filler size, shape, homogeneity of particles distribution, and the interfacial bonding properties between the fillers and matrix. The promise of nanocomposites lies in their multifunctionality, i.e., the possibility of realizing unique combination of properties unachievable with traditional materials. The challenges in reaching this promise are tremendous. They include control over the distribution in size and dispersion of the nanosize constituents, and tailoring and understanding the role of interfaces between structurally or chemically dissimilar phases on bulk properties. While the properties of the matrix can be improved by the inclusions of nanomaterials, the

  15. Differential magnetic catch and release: Separation, purification, and characterization of magnetic nanoparticles and particle assemblies

    NASA Astrophysics Data System (ADS)

    Beveridge, Jacob S.

    Magnetic nanoparticles uniquely combine superparamagnetic behavior with dimensions that are smaller than or the same size as molecular analytes. The integration of magnetic nanoparticles with analytical methods has opened new avenues for sensing, purification, and quantitative analysis. Applied magnetic fields can be used to control the motion and properties of magnetic nanoparticles; in analytical chemistry, use of magnetic fields provides methods for manipulating and analyzing species at the molecular level. The ability to use applied magnetic fields to control the motion and properties of magnetic nanoparticles is a tool for manipulating and analyzing species at the molecular level, and has led to applications including analyte handing, chemical sensors, and imaging techniques. This is clearly an area where significant growth and impact in separation science and analysis is expected in the future. In Chapter 1, we describe applications of magnetic nanoparticles to analyte handling, chemical sensors, and imaging techniques. Chapter 2 reports the purification and separation of magnetic nanoparticle mixtures using the technique developed in our lab called differential magnetic catch and release (DMCR). This method applies a variable magnetic flux orthogonal to the flow direction in an open tubular capillary to trap and controllably release magnetic nanoparticles. Magnetic moments of 8, 12, and 17 nm diameter CoFe2O4 nanoparticles are calculated using the applied magnetic flux density and experimentally determined force required to trap 50% of the particle sample. Balancing the relative strengths of the drag and magnetic forces enable separation and purification of magnetic CoFe2 O4 nanoparticle samples with < 20 nm diameters. Samples were characterized by transmission electron microscopy to determine the average size and size dispersity of the sample population. DMCR is further demonstrated to be useful for separation of a magnetic nanoparticle mixture, resulting

  16. A FIELD CANCELATION SIGNAL EXTRACTION METHOD FOR MAGNETIC PARTICLE IMAGING

    PubMed Central

    Mahlke, Max; Hubertus, Simon; Lammers, Twan; Kiessling, Fabian

    2014-01-01

    In nowadays Magnetic Particle Imaging (MPI) signal detection and excitation happens at the same time. This concept, however, leads to strong coupling of the drive (excitation) field (DF) with the receive chain. As the induced DF signal is several orders of magnitude higher, special measures have to be taken to suppress this signal portion within the receive signal to keep the required dynamic range of the subsequent analog to digital conversion in a technically feasible range. For “frequency space MPI” high-order band-stop-filters have been successfully used to remove the DF signals, which unfortunately as well removes the fundamental harmonic components of the signal of the magnetic nanoparticles (MNP). According to the Langevin theory the fundamental harmonic component has a large signal contribution and is important for direct reconstruction of the particle concentration. In order to separate the fundamental harmonic component of the MNP from the induced DF signal, different concepts have been proposed using signal cancelation based on additional DF signals, also in combination with additional filtering. In this paper, we propose a field-cancelation (FC) concept in which a receive coil (RC) consists of a series connection of a primary coil in combination with an additional cancelation coil. The geometry of the primary coil was chosen to be sensitive for the MNP signal while the cancelation coil was chosen to minimize the overall inductive coupling of the FC-RC with the DF. Sensitivity plots and mutual coupling coefficients were calculated using a thin-wire approximation. A prototype FC-RC was manufactured and effectiveness of the reduction of the mutual inductive coupling (d) was tested in an existing mouse MPI scanner. The difference between simulations (ds=70 dB) and the measurements (dms=55 dB) indicated the feasibility as well as the need for further investigations. PMID:25892745

  17. Core-shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-05-01

    Core-shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core-shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body.

  18. Multi-color magnetic particle imaging for cardiovascular interventions

    NASA Astrophysics Data System (ADS)

    Haegele, Julian; Vaalma, Sarah; Panagiotopoulos, Nikolaos; Barkhausen, Jörg; Vogt, Florian M.; Borgert, Jörn; Rahmer, Jürgen

    2016-08-01

    Magnetic particle imaging (MPI) uses magnetic fields to visualize the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). Guidance of cardiovascular interventions is seen as one possible application of MPI. To safely guide interventions, the vessel lumen as well as all required interventional devices have to be visualized and be discernible from each other. Until now, different tracer concentrations were used for discerning devices from blood in MPI, because only one type of SPIO could be imaged at a time. Recently, it was shown for 3D MPI that it is possible to separate different signal sources in one volume of interest, i.e. to visualize and discern different SPIOs or different binding states of the same SPIO. The approach was termed multi-color MPI. In this work, the use of multi-color MPI for differentiation of a SPIO coated guide wire (Terumo Radifocus 0.035″) from the lumen of a vessel phantom filled with diluted Resovist is demonstrated. This is achieved by recording dedicated system functions of the coating material containing solid Resovist and of liquid Resovist, which allows separation of their respective signal in the image reconstruction process. Assigning a color to the different signal sources results in a differentiation of guide wire and vessel phantom lumen into colored images.

  19. Multi-color magnetic particle imaging for cardiovascular interventions.

    PubMed

    Haegele, Julian; Vaalma, Sarah; Panagiotopoulos, Nikolaos; Barkhausen, Jörg; Vogt, Florian M; Borgert, Jörn; Rahmer, Jürgen

    2016-08-21

    Magnetic particle imaging (MPI) uses magnetic fields to visualize the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). Guidance of cardiovascular interventions is seen as one possible application of MPI. To safely guide interventions, the vessel lumen as well as all required interventional devices have to be visualized and be discernible from each other. Until now, different tracer concentrations were used for discerning devices from blood in MPI, because only one type of SPIO could be imaged at a time. Recently, it was shown for 3D MPI that it is possible to separate different signal sources in one volume of interest, i.e. to visualize and discern different SPIOs or different binding states of the same SPIO. The approach was termed multi-color MPI. In this work, the use of multi-color MPI for differentiation of a SPIO coated guide wire (Terumo Radifocus 0.035″) from the lumen of a vessel phantom filled with diluted Resovist is demonstrated. This is achieved by recording dedicated system functions of the coating material containing solid Resovist and of liquid Resovist, which allows separation of their respective signal in the image reconstruction process. Assigning a color to the different signal sources results in a differentiation of guide wire and vessel phantom lumen into colored images. PMID:27476675

  20. High performance wash-free magnetic bioassays through microfluidically enhanced particle specificity

    PubMed Central

    Bechstein, Daniel J.B.; Lee, Jung-Rok; Ooi, Chin Chun; Gani, Adi W.; Kim, Kyunglok; Wilson, Robert J.; Wang, Shan X.

    2015-01-01

    Magnetic biosensors have emerged as a sensitive and versatile platform for high performance medical diagnostics. These magnetic biosensors require well-tailored magnetic particles as detection probes, which need to give rise to a large and specific biological signal while showing very low nonspecific binding. This is especially important in wash-free bioassay protocols, which do not require removal of particles before measurement, often a necessity in point of care diagnostics. Here we show that magnetic interactions between magnetic particles and magnetized sensors dramatically impact particle transport and magnetic adhesion to the sensor surfaces. We investigate the dynamics of magnetic particles’ biomolecular binding and magnetic adhesion to the sensor surface using microfluidic experiments. We elucidate how flow forces can inhibit magnetic adhesion, greatly diminishing or even eliminating nonspecific signals in wash-free magnetic bioassays, and enhancing signal to noise ratios by several orders of magnitude. Our method is useful for selecting and optimizing magnetic particles for a wide range of magnetic sensor platforms. PMID:26123868

  1. High performance wash-free magnetic bioassays through microfluidically enhanced particle specificity

    NASA Astrophysics Data System (ADS)

    Bechstein, Daniel J. B.; Lee, Jung-Rok; Ooi, Chin Chun; Gani, Adi W.; Kim, Kyunglok; Wilson, Robert J.; Wang, Shan X.

    2015-06-01

    Magnetic biosensors have emerged as a sensitive and versatile platform for high performance medical diagnostics. These magnetic biosensors require well-tailored magnetic particles as detection probes, which need to give rise to a large and specific biological signal while showing very low nonspecific binding. This is especially important in wash-free bioassay protocols, which do not require removal of particles before measurement, often a necessity in point of care diagnostics. Here we show that magnetic interactions between magnetic particles and magnetized sensors dramatically impact particle transport and magnetic adhesion to the sensor surfaces. We investigate the dynamics of magnetic particles’ biomolecular binding and magnetic adhesion to the sensor surface using microfluidic experiments. We elucidate how flow forces can inhibit magnetic adhesion, greatly diminishing or even eliminating nonspecific signals in wash-free magnetic bioassays, and enhancing signal to noise ratios by several orders of magnitude. Our method is useful for selecting and optimizing magnetic particles for a wide range of magnetic sensor platforms.

  2. Biodegradable and magnetic core-shell composite particle prepared by emulsion solvent diffusion method

    NASA Astrophysics Data System (ADS)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2016-02-01

    The present paper describes optimization of preparation conditions of a core-shell composite particle, and its heat generation by alternating magnetic fields. The composite particles are prepared with a modified emulsion solvent diffusion method, which is combined with Pickering emulsion stabilized by magnetic nanoparticles. In this method, the magnetic nanoparticles act as an emulsifier, and its amount and size are crucial to morphology of the composite particles. The magnetic nanoparticles of 8-9 nm would be strongly adsorbed at a liquid-liquid interface rather than the larger nanoparticles. At the optimized concentration of the magnetic nanoparticle’s suspension for the preparation, small and uniform composite particles are obtained since the amount of the nanoparticles is enough to prevent coalescence of droplets during the formation of the composites. The heat generation by alternating magnetic fields emerged certainly. This result suggests the composite particles have a property as a heat-generating carrier for hyperthermia treatment.

  3. Zero-velocity magnetophoretic method for the determination of particle magnetic susceptibility.

    PubMed

    Watarai, Hitoshi; Duc, Hoang Trong Tien; Lan, Tran Thi Ngoc; Zhang, Tianyi; Tsukahara, Satoshi

    2014-01-01

    A simple zero-velocity method to determine the particle magnetic susceptibility by measuring the magnetophoretic velocity was proposed. The principle is that the magnetophoretic velocity of a particle in a liquid medium must be zero when the magnetic susceptibilities of the medium and the particle are equal, or the gravity force and the magnetophoretic force are balanced. By changing the medium magnetic susceptibility and measuring the magnetophoretic velocity of a particle, the particle magnetic susceptibility was determined from the medium magnetic susceptibility under the zero-velocity condition. The feasibility of the method was demonstrated for polystyrene particles using a Dy(III) solution in the horizontal migration mode and different organic solvents in the vertical migration mode. PMID:25007934

  4. Orientational order and translational dynamics of magnetic particle assemblies in liquid crystals.

    PubMed

    Peroukidis, Stavros D; Klapp, Sabine H L

    2016-08-10

    Implementing extensive molecular dynamics simulations we explore the organization of magnetic particle assemblies (clusters) in a uniaxial liquid crystalline matrix comprised of rodlike particles. The magnetic particles are modelled as soft dipolar spheres with diameter significantly smaller than the width of the rods. Depending on the dipolar strength coupling the magnetic particles arrange into head-to-tail configurations forming various types of clusters including rings (closed loops) and chains. In turn, the liquid crystalline matrix induces long range orientational ordering to these structures and promotes their diffusion along the director of the phase. Different translational dynamics are exhibited as the liquid crystalline matrix transforms either from isotropic to nematic or from nematic to smectic state. This is caused due to different collective motion of the magnetic particles into various clusters in the anisotropic environments. Our results offer a physical insight for understanding both the structure and dynamics of magnetic particle assemblies in liquid crystalline matrices. PMID:27460190

  5. Magnetic relaxation and correlating effective magnetic moment with particle size distribution in maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Pisane, K. L.; Despeaux, E. C.; Seehra, M. S.

    2015-06-01

    The role of particle size distribution inherently present in magnetic nanoparticles (NPs) is examined in considerable detail in relation to the measured magnetic properties of oleic acid-coated maghemite (γ-Fe2O3) NPs. Transmission electron microscopy (TEM) of the sol-gel synthesized γ-Fe2O3 NPs showed a log-normal distribution of sizes with average diameter =7.04 nm and standard deviation σ=0.78 nm. Magnetization, M, vs. temperature (2-350 K) of the NPs was measured in an applied magnetic field H up to 90 kOe along with the temperature dependence of the ac susceptibilities, χ‧ and χ″, at various frequencies, fm, from 10 Hz to 10 kHz. From the shift of the blocking temperature from TB=35 K at 10 Hz to TB=48 K at 10 kHz, the absence of any significant interparticle interaction is inferred and the relaxation frequency fo=2.6×1010 Hz and anisotropy constant Ka=5.48×105 erg/cm3 are determined. For TTB, the data of M vs. H up to 90 kOe at several temperatures are analyzed two different ways: (i) in terms of the modified Langevin function yielding an average magnetic moment per particle μp=7300(500) μB; and (ii) in terms of log-normal distribution of moments yielding <μ>=6670 μB at 150 K decreasing to <μ>=6100 μB at 300 K with standard deviations σ≃<μ>/2. It is argued that the above two approaches yield consistent and physically meaningful results as long as the width parameter, s, of the log-normal distribution is less than 0.83.

  6. Slew-rate dependence of tracer magnetization response in magnetic particle imaging

    SciTech Connect

    Shah, Saqlain A.; Krishnan, K. M.; Ferguson, R. M.

    2014-10-28

    Magnetic Particle Imaging (MPI) is a new biomedical imaging technique that produces real-time, high-resolution tomographic images of superparamagnetic iron oxide nanoparticle tracers. Currently, 25 kHz and 20 mT/μ{sub 0} excitation fields are common in MPI, but lower field amplitudes may be necessary for patient safety in future designs. Here, we address fundamental questions about MPI tracer magnetization dynamics and predict tracer performance in future scanners that employ new combinations of excitation field amplitude (H{sub o}) and frequency (ω). Using an optimized, monodisperse MPI tracer, we studied how several combinations of drive field frequencies and amplitudes affect the tracer's response, using Magnetic Particle Spectrometry and AC hysteresis, for drive field conditions at 15.5, 26, and 40.2 kHz, with field amplitudes ranging from 7 to 52 mT/μ{sub 0}. For both fluid and immobilized nanoparticle samples, we determined that magnetic response was dominated by Néel reversal. Furthermore, we observed that the peak slew-rate (ωH{sub o}) determined the tracer magnetic response. Smaller amplitudes provided correspondingly smaller field of view, sometimes resulting in excitation of minor hysteresis loops. Changing the drive field conditions but keeping the peak slew-rate constant kept the tracer response almost the same. Higher peak slew-rates led to reduced maximum signal intensity and greater coercivity in the tracer response. Our experimental results were in reasonable agreement with Stoner-Wohlfarth model based theories.

  7. Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria.

    PubMed

    Fan, Zhen; Senapati, Dulal; Khan, Sadia Afrin; Singh, Anant Kumar; Hamme, Ashton; Yust, Brian; Sardar, Dhiraj; Ray, Paresh Chandra

    2013-02-18

    Over the last few years, one of the most important and complex problems facing our society is treating infectious diseases caused by multidrug-resistant bacteria (MDRB), by using current market-existing antibiotics. Driven by this need, we report for the first time the development of the multifunctional popcorn-shaped iron magnetic core-gold plasmonic shell nanotechnology-driven approach for targeted magnetic separation and enrichment, label-free surface-enhanced Raman spectroscopy (SERS) detection, and the selective photothermal destruction of MDR Salmonella DT104. Due to the presence of the "lightning-rod effect", the core-shell popcorn-shaped gold-nanoparticle tips provided a huge field of SERS enhancement. The experimental data show that the M3038 antibody-conjugated nanoparticles can be used for targeted separation and SERS imaging of MDR Salmonella DT104. A targeted photothermal-lysis experiment, by using 670 nm light at 1.5 W cm(-2) for 10 min, results in selective and irreparable cellular-damage to MDR Salmonella. We discuss the possible mechanism and operating principle for the targeted separation, label-free SERS imaging, and photothermal destruction of MDRB by using the popcorn-shaped magnetic/plasmonic nanotechnology. PMID:23296491

  8. A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release

    NASA Astrophysics Data System (ADS)

    Banerjee, Shashwat S.; Chen, Dong-Hwang

    2009-05-01

    We report a novel nanoformulation for targeted drug delivery which utilizes nanophotonics through the fusion of nanotechnology with biomedical application. The approach involves an energy-transferring magnetic nanoscopic co-assembly fabricated of rhodamine B (RDB) fluorescent dye grafted gum arabic modified Fe3O4 magnetic nanoparticle and photosensitive linker by which dexamethasone drug is conjugated to the magnetic nano-assembly. The advantage offered by this nanoformulation is the indirect photo-triggered-on-demand drug release by efficient up-converting energy of the near-IR (NIR) light to higher energy and intraparticle energy transfer from the dye grafted magnetic nanoparticle to the linker for drug release by cleavage. The synthesized nanoparticles were found to be of ultra-small size (13.33 nm) and are monodispersed in an aqueous suspension. Dexamethasone (Dexa) drug conjugated to RDB-GAMNP by photosensitive linker showed appreciable release of Dexa by photo-triggered response on exposure to radiation having a wavelength in the NIR region whereas no detectable release was observed in the dark. Photo-triggered response for the nanoformulation not bearing the rhodamine B dye was drastically less as less Dexa was released on exposure to NIR radiation which suggest that the photo-cleavage of linker and release of Dexa mainly originated from the indirect excitation through the uphill energy conversions based on donor-acceptor model FRET. The promising pathway of nanophotonics for the on-demand release of the drug makes this nanocarrier very promising for applications in nanomedicine.

  9. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size.

    PubMed

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-01-01

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process. PMID:27104527

  10. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size

    PubMed Central

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-01-01

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of −0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process. PMID:27104527

  11. Magnetic microgels, a promising candidate for enhanced magnetic adsorbent particles in bioseparation: synthesis, physicochemical characterization, and separation performance.

    PubMed

    Turcu, Rodica; Socoliuc, Vlad; Craciunescu, Izabell; Petran, Anca; Paulus, Anja; Franzreb, Matthias; Vasile, Eugeniu; Vekas, Ladislau

    2015-02-01

    For specific applications in the field of high gradient magnetic separation of biomaterials, magnetic nanoparticle clusters of controlled size and high magnetic moment in an external magnetic field are of particular interest. We report the synthesis and characterization of magnetic microgels designed for magnetic separation purposes, as well as the separation efficiency of the obtained microgel particles. High magnetization magnetic microgels with superparamagnetic behaviour were obtained in a two-step synthesis procedure by a miniemulsion technique using highly stable ferrofluid on a volatile nonpolar carrier. Spherical clusters of closely packed hydrophobic oleic acid-coated magnetite nanoparticles were coated with cross linked polymer shells of polyacrylic acid, poly-N-isopropylacrylamide, and poly-3-acrylamidopropyl trimethylammonium chloride. The morphology, size distribution, chemical surface composition, and magnetic properties of the magnetic microgels were determined using transmission electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. Magnetically induced phase condensation in aqueous suspensions of magnetic microgels was investigated by optical microscopy and static light scattering. The condensed phase consists of elongated oblong structures oriented in the direction of the external magnetic field and may grow up to several microns in thickness and tens or even hundreds of microns in length. The dependence of phase condensation magnetic supersaturation on the magnetic field intensity was determined. The experiments using high gradient magnetic separation show high values of separation efficiency (99.9-99.97%) for the magnetic microgels. PMID:25519891

  12. Novel hybrid multifunctional magnetoelectric porous composite films

    NASA Astrophysics Data System (ADS)

    Martins, P.; Gonçalves, R.; Lopes, A. C.; Venkata Ramana, E.; Mendiratta, S. K.; Lanceros-Mendez, S.

    2015-12-01

    Novel multifunctional porous films have been developed by the integration of magnetic CoFe2O4 (CFO) nanoparticles into poly(vinylidene fluoride)-Trifuoroethylene (P(VDF-TrFE)), taking advantage of the synergies of the magnetostrictive filler and the piezoelectric polymer. The porous films show a piezoelectric response with an effective d33 coefficient of -22 pC/N-1, a maximum magnetization of 12 emu g-1 and a maximum magnetoelectric coefficient of 9 mV cm-1 Oe-1. In this way, a multifunctional membrane has been developed suitable for advanced applications ranging from biomedical to water treatment.

  13. Electric and magnetic polarizabilities of pointlike spin-1/2 particles

    NASA Astrophysics Data System (ADS)

    Silenko, A. J.

    2014-11-01

    The electric and magnetic polarizabilities of pointlike spin-1/2 particles with an anomalous magnetic moment (AMM) are calculated by the transformation of an initial Hamiltonian into the Foldy-Wouthuysen (FW) representation. Corresponding results for spin-1/2 and spin-1 particles are compared.

  14. Biosensing based on magnetically induced self-assembly of particles in magnetic colloids.

    PubMed

    Yang, Ye; Morimoto, Yoshitaka; Takamura, Tsukasa; Sandhu, Adarsh

    2012-03-01

    Superparamagnetic beads and nonmagnetic beads of different sizes were assembled to form a "ring-structure" in a magnetorheological (MR) fluid solution by the application of external magnetic fields. For superparamagnetic beads and non-magnetic beads functionalized with probe and target molecules, respectively, the ring-structure was maintained even after removing the external magnetic field due to biomolecular bonding. Several experiments are described, including the formation process of ring-structures with and without molecular interactions, the accelerating effect of external magnetic fields, and the effect of biotin concentration on the structures of the rings. We define the small nonmagnetic particles as "petals" because the whole structure looks like a flower. The number of remnant ring petals was a function of the concentration of target molecules in the concentration range of 0.0768 ng/ml-3.8419 ng/ml which makes this protocol a promising method for biosensing. Not only was the formation process rapid, but the resulting two-dimensional colloidal system also offers a simple method for reducing reagent consumption and waste generation. PMID:22755024

  15. Evidence for the presence of biogenic magnetic particles in the nocturnal migratory brown planthopper, Nilaparvata lugens

    PubMed Central

    Pan, Weidong; Wan, Guijun; Xu, Jingjing; Li, Xiaoming; Liu, Yuxin; Qi, Liping; Chen, Fajun

    2016-01-01

    Biogenic magnetic particles have been detected in some migratory insects, which implies the basis of magnetoreception mechanism for orientation and navigation. Here, the biogenic magnetic particles in the migratory brown planthopper (BPH), Nilaparvata lugens were qualitatively measured by SQUID magnetometry, and their characteristics were further determined by Prussian Blue staining, electron microscopy and energy dispersive x-ray spectroscopy. The results indicate that there were remarkable magnetic materials in the abdomens and not in the head or thorax of the 3rd–5th instar nymphs, and in macropterous and brachypterous female and male adults of BPH. The size of magnetic particles was shown to be between 50–450 nm with a shape factor estimate of between 0.8–1.0 for all the tested BPHs. Moreover, the amount of magnetic particles was associated with the developmental stage (the 3rd–5th instar), wing form (macropterous vs. brachypterous) and sex. The macropterous female adults had the largest amount of magnetic particles. Although the existence of magnetic particles in the abdomens of BPH provides sound basis for the assumption of magnetic orientation, further behavioral studies and complementary physical characterization experiments should be conducted to determine whether the orientation behavior of BPH is associated with the magnetic particles detected in this study. PMID:26727944

  16. Droplet-based microfluidic washing module for magnetic particle-based assays.

    PubMed

    Lee, Hun; Xu, Linfeng; Oh, Kwang W

    2014-07-01

    In this paper, we propose a continuous flow droplet-based microfluidic platform for magnetic particle-based assays by employing in-droplet washing. The droplet-based washing was implemented by traversing functionalized magnetic particles across a laterally merged droplet from one side (containing sample and reagent) to the other (containing buffer) by an external magnetic field. Consequently, the magnetic particles were extracted to a parallel-synchronized train of washing buffer droplets, and unbound reagents were left in an original train of sample droplets. To realize the droplet-based washing function, the following four procedures were sequentially carried in a droplet-based microfluidic device: parallel synchronization of two trains of droplets by using a ladder-like channel network; lateral electrocoalescence by an electric field; magnetic particle manipulation by a magnetic field; and asymmetrical splitting of merged droplets. For the stable droplet synchronization and electrocoalescence, we optimized droplet generation conditions by varying the flow rate ratio (or droplet size). Image analysis was carried out to determine the fluorescent intensity of reagents before and after the washing step. As a result, the unbound reagents in sample droplets were significantly removed by more than a factor of 25 in the single washing step, while the magnetic particles were successfully extracted into washing buffer droplets. As a proof-of-principle, we demonstrate a magnetic particle-based immunoassay with streptavidin-coated magnetic particles and fluorescently labelled biotin in the proposed continuous flow droplet-based microfluidic platform. PMID:25379098

  17. Evidence for the presence of biogenic magnetic particles in the nocturnal migratory brown planthopper, Nilaparvata lugens.

    PubMed

    Pan, Weidong; Wan, Guijun; Xu, Jingjing; Li, Xiaoming; Liu, Yuxin; Qi, Liping; Chen, Fajun

    2016-01-01

    Biogenic magnetic particles have been detected in some migratory insects, which implies the basis of magnetoreception mechanism for orientation and navigation. Here, the biogenic magnetic particles in the migratory brown planthopper (BPH), Nilaparvata lugens were qualitatively measured by SQUID magnetometry, and their characteristics were further determined by Prussian Blue staining, electron microscopy and energy dispersive x-ray spectroscopy. The results indicate that there were remarkable magnetic materials in the abdomens and not in the head or thorax of the 3(rd)-5(th) instar nymphs, and in macropterous and brachypterous female and male adults of BPH. The size of magnetic particles was shown to be between 50-450 nm with a shape factor estimate of between 0.8-1.0 for all the tested BPHs. Moreover, the amount of magnetic particles was associated with the developmental stage (the 3(rd)-5(th) instar), wing form (macropterous vs. brachypterous) and sex. The macropterous female adults had the largest amount of magnetic particles. Although the existence of magnetic particles in the abdomens of BPH provides sound basis for the assumption of magnetic orientation, further behavioral studies and complementary physical characterization experiments should be conducted to determine whether the orientation behavior of BPH is associated with the magnetic particles detected in this study. PMID:26727944

  18. Droplet-based microfluidic washing module for magnetic particle-based assays

    PubMed Central

    Lee, Hun; Xu, Linfeng; Oh, Kwang W.

    2014-01-01

    In this paper, we propose a continuous flow droplet-based microfluidic platform for magnetic particle-based assays by employing in-droplet washing. The droplet-based washing was implemented by traversing functionalized magnetic particles across a laterally merged droplet from one side (containing sample and reagent) to the other (containing buffer) by an external magnetic field. Consequently, the magnetic particles were extracted to a parallel-synchronized train of washing buffer droplets, and unbound reagents were left in an original train of sample droplets. To realize the droplet-based washing function, the following four procedures were sequentially carried in a droplet-based microfluidic device: parallel synchronization of two trains of droplets by using a ladder-like channel network; lateral electrocoalescence by an electric field; magnetic particle manipulation by a magnetic field; and asymmetrical splitting of merged droplets. For the stable droplet synchronization and electrocoalescence, we optimized droplet generation conditions by varying the flow rate ratio (or droplet size). Image analysis was carried out to determine the fluorescent intensity of reagents before and after the washing step. As a result, the unbound reagents in sample droplets were significantly removed by more than a factor of 25 in the single washing step, while the magnetic particles were successfully extracted into washing buffer droplets. As a proof-of-principle, we demonstrate a magnetic particle-based immunoassay with streptavidin-coated magnetic particles and fluorescently labelled biotin in the proposed continuous flow droplet-based microfluidic platform. PMID:25379098

  19. An ultrasensitive label-free electrochemical immunosensor based on signal amplification strategy of multifunctional magnetic graphene loaded with cadmium ions

    PubMed Central

    Li, Faying; Li, Yueyun; Dong, Yunhui; Jiang, Liping; Wang, Ping; Liu, Qing; Liu, Hui; Wei, Qin

    2016-01-01

    Herein, a novel and ultrasensitive label-free electrochemical immunosensor was proposed for quantitative detection of human Immunoglobulin G (IgG). The amino functionalized magnetic graphenes nanocomposites (NH2-GS-Fe3O4) were prepared to bond gold and silver core-shell nanoparticles (Au@Ag NPs) by constructing stable Au-N and Ag-N bond between Au@Ag NPs and -NH2. Subsequently, the Au@Ag/GS-Fe3O4 was applied to absorb cadmium ion (Cd2+) due to the large surface area, high conductivity and exceptional adsorption capability. The functional nanocomposites of gold and silver core-shell magnetic graphene loaded with cadmium ion (Au@Ag/GS-Fe3O4/Cd2+) can not only increase the electrocatalytic activity towards hydrogen peroxide (H2O2) but also improve the effective immobilization of antibodies because of synergistic effect presented in Au@Ag/GS-Fe3O4/Cd2+, which greatly extended the scope of detection. Under the optimal conditions, the proposed immunosensor was used for the detection of IgG with good linear relation in the range from 5 fg/mL to 50 ng/mL with a low detection limit of 2 fg/mL (S/N = 3). Furthermore, the proposed immunosensor showed high sensitivity, special selectivity and long-term stability, which had promising application in bioassay analysis. PMID:26880596

  20. Fe3O4@Au/polyaniline multifunctional nanocomposites: their preparation and optical, electrical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Yu, Qiaozhen; Shi, Minmin; Cheng, Yunan; Wang, Mang; Chen, Hong-zheng

    2008-07-01

    Fe3O4@Au/polyaniline (PANI) nanocomposites were fabricated by in situ polymerization in the presence of mercaptocarboxylic acid. The mercaptocarboxylic acid was used to introduce hydrogen bonding and/or electrostatic interaction; it acts as a template in the formation of Fe3O4@Au/PANI nanorods. The morphology and structure of the resulting nanocomposites were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, x-ray diffraction and x-ray energy dispersion spectroscopy (EDS). It was found that the nanocomposites were rod-like with an average diameter of 153 nm, and they exhibited a core-shell structure. A UV-visible spectrometer, semiconductor parameter analyzer and vibrating sample magnetometer (VSM) were used to characterize the optical, electrical and magnetic properties of the Fe3O4@Au/PANI nanocomposites. It was interesting to find that these properties are dependent on the molar ratio of Au to Fe3O4 when the molar ratio of Fe3O4@Au to PANI is fixed. The magnetic property of the Fe3O4@Au/PANI nanocomposite is very close to superparamagnetic behavior.

  1. The Behaviors of Ferro-Magnetic Nano-Particles In and Around Blood Vessels under Applied Magnetic Fields.

    PubMed

    Nacev, A; Beni, C; Bruno, O; Shapiro, B

    2011-03-01

    In magnetic drug delivery, therapeutic magnetizable particles are typically injected into the blood stream and magnets are then used to concentrate them to disease locations. The behavior of such particles in-vivo is complex and is governed by blood convection, diffusion (in blood and in tissue), extravasation, and the applied magnetic fields. Using physical first-principles and a sophisticated vessel-membrane-tissue (VMT) numerical solver, we comprehensively analyze in detail the behavior of magnetic particles in blood vessels and surrounding tissue. For any blood vessel (of any size, depth, and blood velocity) and tissue properties, particle size and applied magnetic fields, we consider a Krogh tissue cylinder geometry and solve for the resulting spatial distribution of particles. We find that there are three prototypical behaviors (blood velocity dominated, magnetic force dominated, and boundary-layer formation) and that the type of behavior observed is uniquely determined by three non-dimensional numbers (the magnetic-Richardson number, mass Péclet number, and Renkin reduced diffusion coefficient). Plots and equations are provided to easily read out which behavior is found under which circumstances (Figures 5, 6, 7, and 8). We compare our results to previously published in-vitro and in-vivo magnetic drug delivery experiments. Not only do we find excellent agreement between our predictions and prior experimental observations, but we are also able to qualitatively and quantitatively explain behavior that was previously not understood. PMID:21278859

  2. The Behaviors of Ferro-Magnetic Nano-Particles In and Around Blood Vessels under Applied Magnetic Fields

    PubMed Central

    Nacev, A.; Beni, C.; Bruno, O.; Shapiro, B.

    2010-01-01

    In magnetic drug delivery, therapeutic magnetizable particles are typically injected into the blood stream and magnets are then used to concentrate them to disease locations. The behavior of such particles in-vivo is complex and is governed by blood convection, diffusion (in blood and in tissue), extravasation, and the applied magnetic fields. Using physical first-principles and a sophisticated vessel-membrane-tissue (VMT) numerical solver, we comprehensively analyze in detail the behavior of magnetic particles in blood vessels and surrounding tissue. For any blood vessel (of any size, depth, and blood velocity) and tissue properties, particle size and applied magnetic fields, we consider a Krogh tissue cylinder geometry and solve for the resulting spatial distribution of particles. We find that there are three prototypical behaviors (blood velocity dominated, magnetic force dominated, and boundary-layer formation) and that the type of behavior observed is uniquely determined by three non-dimensional numbers (the magnetic-Richardson number, mass Péclet number, and Renkin reduced diffusion coefficient). Plots and equations are provided to easily read out which behavior is found under which circumstances (Figures 5, 6, 7, and 8). We compare our results to previously published in-vitro and in-vivo magnetic drug delivery experiments. Not only do we find excellent agreement between our predictions and prior experimental observations, but we are also able to qualitatively and quantitatively explain behavior that was previously not understood. PMID:21278859

  3. Magnetically modulated refractive index of a magnetic fluid film based on cigar-shaped ferrite submicron particles

    NASA Astrophysics Data System (ADS)

    Mormile, P.; Petti, L.; Rippa, M.; Guo, J.; Song, W.; Zhou, J.

    2010-10-01

    Light beam propagation at a prism-magnetic fluid film interface is experimentally studied. The magnetic fluid is made through dispersion of synthesized cigar-shaped sub-micron particles of Fe2O3 in an oil solution. This was injected into a glass cell with an active area of 10mm2 and a depth ranging from 10 microns to 30 microns whose base is a glass microscope slide and on the top it was covered with a glass prism. The set up was developed by one of the authors to measure light switching at a prism-liquid crystal interface in a previous publication.1 Polarized Light (TE or TM) from a He-Ne laser impinges at the prism-magnetic film interface. The external reflected light is detected by a photodiode connected to a data acquisition system. Since the properties of the magnetic fluid can be modulated by external magnetic fields, we investigated the effects of the magnetic field on the refractive index of the magnetic fluid. For our magnetic fluid, the reflection of light has been investigated as a function of particles concentration and thickness of the films with a wavelength of 633nm and both TE and TM polarization, and applied magnetic fields up to 25 Oe. It was found that the intensity of reflected light increases with increasing magnetic field up to 4 times the initial value, and saturates at 20 Oe for TE light, while decreases with increasing magnetic field up to 4 times less for TM light with the same saturation value. Moreover, under a given magnetic field, the output light increases with the increasing film thickness in TE polarization, and decreases with the increasing film thickness in TM case. The refractive index of the magnetic fluid depends on the concentration of the dilute oil-based magnetic fluid under zero field. These behaviors are explained in terms of the organization of the submicron particles when the magnetic field is applied.2 The cigar-shaped sub-micron particles are oriented along their long axis to form an organized mesostructure. The

  4. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    USGS Publications Warehouse

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  5. Small-scale Magnetic Islands in the Solar Wind and Their Role in Particle Acceleration. II. Particle Energization inside Magnetically Confined Cavities

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Malandraki, Olga E.; le Roux, Jakobus A.; Webb, Gary M.

    2016-08-01

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.

  6. Small-scale Magnetic Islands in the Solar Wind and Their Role in Particle Acceleration. II. Particle Energization inside Magnetically Confined Cavities

    NASA Astrophysics Data System (ADS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Malandraki, Olga E.; le Roux, Jakobus A.; Webb, Gary M.

    2016-08-01

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ˜0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.

  7. Influence of defects on the structural and magnetic properties of multifunctional La2NiMnO6 thin films

    SciTech Connect

    Guo, HZ; Burgess, J; Ada, E; Street, S; Gupta, A.; Iliev, M N; Kellock, A J; Magen Dominguez, Cesar; Varela del Arco, Maria; Pennycook, Stephen J

    2008-01-01

    Thin films of the double perovskite La2NiMnO6 (LNMO) have been grown on various lattice-matched substrates (SrTiO3, LaAlO3, NdGaO3 and MgO) by pulsed laser deposition under varying oxygen background pressure (25 - 800 mTorr). The out-of-plane lattice constant of the LNMO film initially decreases with increasing pressure, likely caused by a reduction in the defect concentration and improved structural ordering, before leveling off at higher pressures. Scanning transmission electron microscopy results show that the films are epitaxial, and the interface is sharp and coherent. While very few defects are observed by STEM in a film grown at high oxygen pressure (800 mTorr), a film grown at a lower pressure (100 mTorr) shows the formation of defects that extend throughout the thickness except for a very thin layer near the interface. The Raman spectra of the films are dominated by two broad peaks at around 540 cm-1 and 685 cm-1, which are assigned to the antisymmetric stretching (AS) and symmetric stretching (S) modes of MnO6 and NiO6 octahedra, respectively. The Raman peaks of the LNMO thin films grown in 800 mTorr background O2 are blue shifted in comparison to those of LNMO bulk, and the shift increases with decreasing film thickness, indicating the increased influence of strain. The critical thickness for strain relaxation as determined from the Raman spectra is between 40 - 80 nm. The strain is observed to have a negligible influence on the magnetic properties for films grown at high oxygen pressures. However, films grown at low pressures exhibit degraded magnetic properties, which can be attributed to a combination of B-site cation disorder and an increase in the concentration of Mn3+ and Ni3+ Jahn-Teller ions caused by oxygen defects. With increasing oxygen pressure during growth, the paramagnetic-ferromagnetic transition temperature (~280 K) gets sharper and the saturation magnetization at low temperatures is enhanced. Based on electron energy loss spectroscopy

  8. Ba-ferrite particles for magnetic liquids with enhanced Neel relaxation time and loss investigations

    NASA Astrophysics Data System (ADS)

    Muller, R.; Hiergeist, R.; Gawalek, W.; Hoell, A.

    2003-03-01

    Nanometer-scale particles are interesting because of their unique magnetic properties. Barium ferrite with particle sizes ⪉ 10 nm behave superparamagnetically and show at bigger sizes the transition to single domain behaviour. Beside the particle size, the anisotropy energy K_1\\cdot V, and thus the Neel relaxation time, depends also on the amount of doping. The glass crystallisation method was used for preparation of different Ba-ferrites. Ferrofluids have been prepared using Isopar^{circledR} M or dodecane as a carrier liquid. Magnetic parameters were obtained by VSM, hysteresis losses (specific loss power) of ferrite powders by a hysteresometer at 50 Hz. Magnetic core sizes were calculated from hysteresis loops. SANS curves of a ferrofluid reveal single magnetic particles and aggregated magnetic particles with an incomplete organic shell. Figs 3, Refs 9.

  9. Magnetic Particle Imaging (MPI) for NMR and MRI Researchers

    PubMed Central

    Goodwill, Patrick W.; Croft, Laura R.; Konkle, Justin J.; Lu, Kuan; Zheng, Bo; Conolly, Steven M.

    2012-01-01

    Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for chronic kidney disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the “black blood” contrast generated by SPIOs in MRI due to increased T2* dephasing, SPIOs in MPI generate positive, “bright blood” contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. PMID:23305842

  10. Magnetic Particle Imaging (MPI) for NMR and MRI researchers

    NASA Astrophysics Data System (ADS)

    Saritas, Emine U.; Goodwill, Patrick W.; Croft, Laura R.; Konkle, Justin J.; Lu, Kuan; Zheng, Bo; Conolly, Steven M.

    2013-04-01

    Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the “black blood” contrast generated by SPIOs in MRI due to increased T2∗ dephasing, SPIOs in MPI generate positive, “bright blood” contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field.

  11. Non-equilibrium dynamics of magnetically anisotropic particles under oscillating fields.

    PubMed

    Steinbach, Gabi; Gemming, Sibylle; Erbe, Artur

    2016-07-01

    In this article, we demonstrate how magnetic anisotropy of colloidal particles can give rise to unusual dynamics and controllable rearrangements under time-dependent fields. As an example, we study spherical particles with a radially off-centered net magnetic moment in an oscillating field. Based on complementary data from a numerical simulation of spheres with shifted dipole and experimental observations from particles with hemispherical ferromagnetic coating, it is explained on a two particle basis how this magnetic anisotropy causes nontrivial rotational motion and magnetic reorientation. We further present the behavior of larger ensembles of coated particles. It illustrates the potential for controlled reconfiguration based on the presented two-particle dynamics. PMID:27412618

  12. Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity.

    PubMed Central

    Valberg, P A; Feldman, H A

    1987-01-01

    Submicrometer magnetic particles, ingested by cells and monitored via the magnetic fields they generate, provide an alternative to optical microscopy for probing movement and viscosity of living cytoplasm, and can be used for cells both in vitro and in vivo. We present methods for preparing lung macrophages tagged with magnetic particles for magnetometric study. Interpretation of the data involves fitting experimental remanent-field decay curves to nonlinear mechanistic models of intracellular particle motion. The model parameters are sensitive to mobility and apparent cytoplasmic viscosity experienced by particle-containing organelles. We present results of parameter estimation for intracellular particle behavior both within control cells and after (a) variable magnetization duration, (b) incubation with cytochalasin D, and (c) particle twisting by external fields. Magnetometric analysis showed cytoplasmic elasticity, dose-dependent motion inhibition by cytochalasin D, and a shear-thinning apparent viscosity. Images FIGURE 1 FIGURE 2 PMID:3676436

  13. Particle acceleration and magnetic field generation in SNR shocks

    NASA Astrophysics Data System (ADS)

    Suslov, M.; Diamond, P. H.; Malkov, M. A.

    2006-04-01

    We discuss the diffusive acceleration mechanism in SNR shocks in terms of its potential to accelerate CRs to 10^18 eV, as observations imply. One possibility, currently discussed in the literature, is to resonantly generate a turbulent magnetic field via accelerated particles in excess of the background field. We analyze some problems of this scenario and suggest a different mechanism, which is based on the generation of Alfven waves at the gyroradius scale at the background field level, with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven (A) waves. The essential idea is an A->A+S decay instability process, where one of the interacting scatterers (i.e. the sound, or S-waves) are driven by the Drury instability process. This rapidly generates longer wavelength Alfven waves, which in turn resonate with high energy CRs thus binding them to the shock and enabling their further acceleration.

  14. {Interball-1 Plasma, Magnetic Field, and Energetic Particle Observations}

    NASA Technical Reports Server (NTRS)

    Sibeck, David G.

    1998-01-01

    Funding from NASA was received in two installments. The first installment supported research using Russian/Czech/Slovak/French Interball-1 plasma, magnetic field, and energetic particles observations in the vicinity of the magnetopause. The second installment provided salary support to review unsolicited proposals to NASA for data recovery and archiving, and also to survey ISTP data provision efforts. Two papers were published under the auspices of the grant. Sibeck et al. reported Interball-1 observations of a wave on the magnetopause with an amplitude in excess of 5 R(sub E), the largest ever reported to date. They attributed the wave to a hot flow anomaly striking the magnetopause and suggested that the hot flow anomaly itself formed during the interaction of an IMF discontinuity with the bow shock. Nemecek et al. used Interball-1's VDP Faraday cup to identify large transient increases in the magnetosheath density. They noted large variations in simultaneous Wind observations of the IMF cone angle, but were unable to establish any relationship between the cone angle variations at Wind and the density variations at Interball-1. Funds from the second installment were used to review over 20 proposals from various researchers in the scientific community who sought NASA support to restore or archive past observations. It also supported a survey of ISTP data provisions which was used as input to a Senior Review of ongoing NASA ISTP programs.

  15. Controlled capillary assembly of magnetic Janus particles at fluid-fluid interfaces.

    PubMed

    Xie, Qingguang; Davies, Gary B; Harting, Jens

    2016-08-21

    Capillary interactions can be used to direct assembly of particles adsorbed at fluid-fluid interfaces. Precisely controlling the magnitude and direction of capillary interactions to assemble particles into favoured structures for materials science purposes is desirable but challenging. In this paper, we investigate capillary interactions between magnetic Janus particles adsorbed at fluid-fluid interfaces. We develop a pair-interaction model that predicts that these particles should arrange into a side-side configuration, and carry out simulations that confirm the predictions of our model. Finally, we investigate the monolayer structures that form when many magnetic Janus particles adsorb at the interface. We find that the particles arrange into long, straight chains exhibiting little curvature, in contrast with capillary interactions between ellipsoidal particles. We further find a regime in which highly ordered, lattice-like monolayer structures form, which can be tuned dynamically using an external magnetic field. PMID:27383223

  16. Trajectory of Charged Particle in Combined Electric and Magnetic Fields Using Interactive Spreadsheets

    ERIC Educational Resources Information Center

    Tambade, Popat S.

    2011-01-01

    The objective of this article is to graphically illustrate to the students the physical phenomenon of motion of charged particle under the action of simultaneous electric and magnetic fields by simulating particle motion on a computer. Differential equations of motions are solved analytically and path of particle in three-dimensional space are…

  17. Estimation of the Oblongness of Aggregates of Magnetic Particles Formed in Static Magnetic Field Using ESR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sorokina, Olga N.; Kovarski, Alexander L.; Dzheparov, Fridrikh S.

    2010-12-01

    Aggregation process in magnetic fluid has been investigated by electron spin resonance method. A low molecular paramagnet (paramagnetic sensor) has been added to magnetite hydrosol and its ESR spectra have been analyzed. Fraction of aggregated particles and aggregate oblongness have been calculated using new theoretical model for the ESR spectra of paramagnetic sensor in diluted magnetic media containing elongated structures.

  18. Effect of non-Newtonian characteristics of blood on magnetic particle capture in occluded blood vessel

    NASA Astrophysics Data System (ADS)

    Bose, Sayan; Banerjee, Moloy

    2015-01-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Magnetic carrier particles with surface-bound drug molecules are injected into the vascular system upstream from the desired target site, and are captured at the target site via a local applied magnetic field. Herein, a numerical investigation of steady magnetic drug targeting (MDT) using functionalized magnetic micro-spheres in partly occluded blood vessel having a 90° bent is presented considering the effects of non-Newtonian characteristics of blood. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Parametric investigation is conducted and the influence of the insert configuration and its position from the central plane of the artery (zoffset), particle size (dp) and its magnetic property (χ) and the magnitude of current (I) on the "capture efficiency" (CE) is reported. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug carrying magnetic particles in a target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for in vitro set up for the investigation of MDT in stenosed blood vessels.

  19. Magnetic and optical manipulation of spherical metal-coated Janus particles

    NASA Astrophysics Data System (ADS)

    Jenness, Nathan J.; Erb, Randall M.; Yellen, Benjamin B.; Clark, Robert L.

    2010-08-01

    Spherical colloids with asymmetric surface properties, e.g., 'Janus' particles with two unique faces, are an emerging class of materials that can provide mechanisms for controlling colloidal particle dynamics. Several reports in the literature detail the fabrication of Janus particles as well as their behavior under the influence of external electric, magnetic and optical fields. Here we present an in depth study of the magnetic and optical properties of 10 μm spherical metal-coated Janus particles, and we demonstrate new mechanisms to control their assembly, transport, and achieve total positional and orientational control at the single particle level. Through the application of external magnetic fields Janus particles formed kinked-chain assemblies. Janus particles can also be transported in rotating magnetic field via hydrodynamic surface effects. Optical fields can control the rotation and clustering of Janus particles at low laser power, but not at higher powers due to the formation of cavitation bubbles and large scattering forces. The unique magnetic and optical properties of Janus particles were leveraged to engineer 'dot' Janus particles that can be utilized to achieve near holonomic control of a single colloid in an optomagnetic trap.

  20. Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking

    NASA Astrophysics Data System (ADS)

    Pourmehran, O.; Rahimi-Gorji, M.; Gorji-Bandpy, M.; Gorji, T. B.

    2015-11-01

    Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. Herein, a numerical investigation of magnetic drug targeting (MDT) using aerosol drugs named polystyrene particle (PMS40) in human lung is presented considering one-way coupling on the transport and capture of the magnetic particle. A realistic 3D geometry based on CT scan images is provided for CFD simulation. An external non-uniform magnetic field is applied. Parametric investigation is conducted and the influence of particle diameter, magnetic source position, and magnetic number (Mn) on the deposition efficiency and particle behavior is reported. According to the results, the magnetic field increased deposition efficiency of particles in a target region, the efficiency of deposition and MDT technique has a direct relation with increasing the particle diameter for magnetic number of 1 Tesla (T) and lower (Mn≤1(T)). Also it can be seen that there is an inverse relation between the particle diameter and deposition efficiency when Mn is more than 1 (T).

  1. Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization

    NASA Astrophysics Data System (ADS)

    Guo, Zhanhu; Park, Sung; Wei, Suying; Pereira, Tony; Moldovan, Monica; Karki, Amar B.; Young, David P.; Hahn, H. Thomas

    2007-08-01

    Flexible high-loading nanoparticle-reinforced polyurethane magnetic nanocomposites fabricated by the surface-initiated polymerization (SIP) method are reported. Extensive field emission scanning electron microscopic (SEM) and atomic force microscopic (AFM) observations revealed a uniform particle distribution within the polymer matrix. X-ray photoelectron spectrometry (XPS) and differential thermal analysis (DTA) revealed a strong chemical bonding between the nanoparticles and the polymer matrix. The elongation of the SIP nanocomposite under tensile test was about four times greater than that of the composite fabricated by a conventional direct mixing fabrication method. The nanocomposite shows particle-loading-dependent magnetic properties, with an increase of coercive force after the magnetic nanoparticles were embedded into the polymer matrix, arising from the increased interparticle distance and the introduced polymer-particle interactions.

  2. High-gradient permanent magnet apparatus and its use in particle collection

    DOEpatents

    Cheng, Mengdawn; Ludtka, Gerard Michael; Avens, Larry R.

    2016-07-12

    A high-gradient permanent magnet apparatus for capturing paramagnetic particles, the apparatus comprising: (i) at least two permanent magnets positioned with like poles facing each other; (ii) a ferromagnetic spacer separating the like poles; and (iii) a magnetizable porous filling material in close proximity to the at least two permanent magnets. Also described is a method for capturing paramagnetic particles in which a gas or liquid sample containing the paramagnetic particles is contacted with the high-gradient permanent magnet apparatus described above; wherein, during the contacting step, the gas or liquid sample contacts the magnetizable porous filling material of the high-gradient permanent magnet apparatus, and at least a portion of the paramagnetic particles in the gas or liquid sample is captured on the magnetizable porous filling material.

  3. Temperature and magnetic field responsive hyaluronic acid particles with tunable physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Ekici, Sema; Ilgin, Pinar; Yilmaz, Selahattin; Aktas, Nahit; Sahiner, Nurettin

    2011-01-01

    We report the preparation and characterization of thiolated-temperature-responsive hyaluronic acid-cysteamine-N-isopropyl acrylamide (HA-CYs-NIPAm) particles and thiolated-magnetic-responsive hyaluronic acid (HA-Fe-CYs) particles. Linear hyaluronic acid (HA) crosslinked with divinyl sulfone as HA particles was prepared using a water-in-oil micro emulsion system which were then oxidized HA-O with NaIO4 to develop aldehyde groups on the particle surface. HA-O hydrogel particles were then reacted with cysteamine (CYs) which interacted with aldehydes on the HA surface to form HA particles with cysteamine (HA-CYs) functionality on the surface. HA-CYs particles were further exposed to radical polymerization with NIPAm to obtain temperature responsive HA-CYs-NIPAm hydrogel particles. To acquire magnetic field responsive HA composites, magnetic iron particles were included in HA to form HA-Fe during HA particle preparation. HA-Fe hydrogel particles were also chemically modified. The prepared HA-CYs-NIPAm demonstrated temperature dependent size variations and phase transition temperature. HA-CYs-NIPAm and HA-Fe-CYs particles can be used as drug delivery vehicles. Sulfamethoxazole (SMZ), an antibacterial drug, was used as a model drug for temperature-induced release studies from these particles.

  4. Particles deposition induced by the magnetic field in the coronary bypass graft model

    NASA Astrophysics Data System (ADS)

    Bernad, Sandor I.; Totorean, Alin F.; Vekas, Ladislau

    2016-03-01

    Bypass graft failures is a complex process starting with intimal hyperplasia development which involve many hemodynamic and biological factors. This work presents experimental results regarding the possibility to use magnetic drug delivery to prevent the development of the intimal hyperplasia using a simplified but intuitive model. The primary goal is to understand the magnetic particle deposition in the anastomosis region of the bypass graft taking into account the complex flow field created in this area which involves recirculation region, flow mixing and presence of particles with high residence time. The three-dimensional geometry model was used to simulate the motion and accumulation of the particles under the magnetic field influence in anastomotic region of the coronary bypass graft. The flow patterns are evaluated both numerically and experimentally and show a good correlation in term of flow parameters like vortex length and flow stagnation point positions. Particle depositions are strongly dependent on the magnet position and consequently of the magnetic field intensity and field gradient. Increased magnetic field controlled by the magnet position induces increased particle depositions in the bypass graft anastomosis. The result shows that particle depositions depend on the bypass graft angle, and the deposition shape and particle accumulation respectively, depend by the flow pattern in the anastomosis region.

  5. On-Chip Magnetic Platform for Single-Particle Manipulation with Integrated Electrical Feedback.

    PubMed

    Monticelli, Marco; Torti, Andrea; Cantoni, Matteo; Petti, Daniela; Albisetti, Edoardo; Manzin, Alessandra; Guerriero, Erica; Sordan, Roman; Gervasoni, Giacomo; Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco; Bertacco, Riccardo

    2016-02-17

    Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high-throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig-zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1-μm sized beads is demonstrated. PMID:26707363

  6. Temperature-Switchable Agglomeration of Magnetic Particles Designed for Continuous Separation Processes in Biotechnology.

    PubMed

    Paulus, Anja S; Heinzler, Raphael; Ooi, Huey Wen; Franzreb, Matthias

    2015-07-01

    The purpose of this work was the synthesis and characterization of thermally switchable magnetic particles for use in biotechnological applications such as protein purification and enzymatic conversions. Reversible addition-fragmentation chain-transfer polymerization was employed to synthesize poly(N-isopropylacrylamide) brushes via a "graft-from" approach on the surface of magnetic microparticles. The resulting particles were characterized by infrared spectroscopy and thermogravimetric analysis and their temperature-dependent agglomeration behavior was assessed. The influence of several factors on particle agglomeration (pH, temperature, salt type, and particle concentration) was evaluated. The results showed that a low pH value (pH 3-4), a kosmotropic salt (ammonium sulfate), and a high particle concentration (4 g/L) resulted in improved agglomeration at elevated temperature (40 °C). Recycling of particles and reversibility of the temperature-switchable agglomeration were successfully demonstrated for ten heating-cooling cycles. Additionally, enhanced magnetic separation was observed for the modified particles. Ionic monomers were integrated into the polymer chain to create end-group functionalized particles as well as two- and three-block copolymer particles for protein binding. The adsorption of lactoferrin, bovine serum albumin, and lysozyme to these ion exchange particles was evaluated and showed a binding capacity of up to 135 mg/g. The dual-responsive particles combined magnetic and thermoresponsive properties for switchable agglomeration, easy separability, and efficient protein adsorption. PMID:26069936

  7. Simulating net particle production and chiral magnetic current in a C P -odd domain

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji

    2015-09-01

    To address a question of whether the chiral magnetic current is a static polarization or a genuine flow of charged particles, we elucidate the numerical formulation to simulate the net production of right-handed particles and anomalous currents with C P -breaking background fields which cause an imbalance between particles and antiparticles. For a concrete demonstration we numerically impose pulsed electric and magnetic fields to confirm our answer to the question that the produced net particles flow in the dynamical chiral magnetic effect. The rate for the particle production and the chiral magnetic current generation is quantitatively consistent with the axial anomaly, while they appear with a finite response time. We emphasize the importance to quantify the response time that would suppress observable effects of the anomalous current.

  8. The structure and magnetic properties of ultrafine iron particles with oxide layer

    SciTech Connect

    Gavrilyuk, A.G.; Sadykov, R.A.

    1994-12-01

    Ultrafine iron particles (UFIPs) are promising as materials for high-density magnetic recording and ferrofluids because the superparamagnetic state in these particles develops at smaller particle sizes than in conventional magnetic materials. The basic obstacle to producing UFIPs is their high reactivity, which leads to strong oxidation of these particles. Given this, effort is being devoted to extending chemical stabilization to iron particles of the smallest size possible. One possible approach involves the formation of a thin passivating oxide layer on iron particles [1-3], for example, by atmospheric-air oxidation or by oxidation in a special atmosphere. This results in the formation of an interesting structure - an ultrafine particle whose magnetic properties exhibit a marked variation from its center to the surface. The UFIP oxidized at room temperature was shown to consist of an unoxidized {alpha}-Fe core with an average diameter of 110 {Angstrom} and a 45-{Angstrom}-thick oxide layer with a spinel-type structure. The hyperfine magnetic field at the particle core coincides with the field in an infinite sample, whereas in the oxide layer, the average magnetic field was lower. Magnetic interaction between the central region of the UFIP and the oxide layer was found to suppress superparamagnetism and to result in development of a hyperfine structure in the Moessbauer subspectrum of the oxide layer. The observed shape of the Moessbauer spectrum is related to the surface state of the oxide phase and, to some extent, to the presence of defects.

  9. COLLECTION OF AIRBORNE PARTICLES BY A HIGH-GRADIENT PERMANENT MAGNETIC METHOD

    SciTech Connect

    Cheng, Mengdawn; Allman, Steve L; Ludtka, Gerard Michael; Avens, Larry R

    2014-01-01

    We report on the use of magnetic force in collection of airborne particles by a high- gradient permanent magnetic separation (HGPMS) device. Three aerosol particles of different magnetic susceptibility (NaCl, CuO, and Fe2O3) were generated in the electrical mobility size range of 10 to 200 nm and were used to study HGPMS collection. One HGPMS matrix element, made of stainless steel wool, was used in the device configuration. Three flow rates were selected to simulate the environmental wind speeds of interest to the study. Magnetic force was found to exhibit an insignificant effect on the separation of NaCl particles, even in the HGPMS configuration. Diffusion was a major mechanism in the removal of the diamagnetic particles; however, diffusion is insignificant under the influence of a high-gradient magnetic field for paramagnetic or ferromagnetic particles. The HGPMS showed high-performance collection (> 99%) of paramagnetic CuO and ferromagnetic Fe2O3 particles for particle sizes greater than or equal to 60 nm. As the wind speed increases, the influence of the magnetic force weakens, and the capability to remove particles from the gas stream diminishes. The results suggest that the HGPMS principle could be explored for development of an advanced miniaturized passive aerosol collector.

  10. Magnetic properties of biomineral particles produced by bacteria Klebsiella oxytoca

    NASA Astrophysics Data System (ADS)

    Raĭkher, Yu. L.; Stepanov, V. I.; Stolyar, S. V.; Ladygina, V. P.; Balaev, D. A.; Ishchenko, L. A.; Balasoiu, M.

    2010-02-01

    Ferrihydrite nanoparticles (2-5 nm in size) produced by bacteria Klebsiella oxytoca in the course of biomineralization of iron salt solutions from a natural medium exhibit unique magnetic properties: they are characterized by both the antiferromagnetic order inherent in a bulk ferrihydrite and the spontaneous magnetic moment due to the decompensation of spins in sublattices of a nanoparticle. The magnetic susceptibility enhanced by the superantiferromagnetism effect and the magnetic moment independent of the magnetic field provide the possibility of magnetically controlling these natural objects. This has opened up the possibilities for their use in nanomedicine and bioengineering. The results obtained from measurements of the magnetic properties of the ferrihydrite produced by Klebsiella oxytoca in its two main crystalline modifications are reported, and the data obtained are analyzed theoretically. This has made it possible to determine numerical values of the magnetic parameters of real biomineral nanoparticles.

  11. Preparation and characterization of magnetic levan particles as matrix for trypsin immobilization

    NASA Astrophysics Data System (ADS)

    Maciel, J. C.; Andrad, P. L.; Neri, D. F. M.; Carvalho, L. B.; Cardoso, C. A.; Calazans, G. M. T.; Albino Aguiar, J.; Silva, M. P. C.

    2012-04-01

    Magnetic levan was synthesized by co-precipitating D-fructofuranosyl homopolysaccharide with a solution containing Fe2+ and Fe3+ in alkaline conditions at 100 °C. The magnetic levan particles were characterized by scanning electron microscopy (SEM), magnetization measurements, X-ray diffractometry (XRD) and infrared spectroscopy (IR). Afterwards, magnetic levan particles were functionalized by NaIO4 oxidation and used as matrices for trypsin covalent immobilization. Magnetite and magnetic levan particles were both heterogeneous in shape and levan-magnetite presented bigger sizes compared to magnetite according to SEM images. Magnetic levan particles exhibited a magnetization 10 times lower as compared to magnetite ones, probably, due to the coating layer. XRD diffractogram showed that magnetite is the dominant phase in the magnetic levan. Infrared spectroscopy showed characteristics absorption bands of levan and magnetite (O-H, C-O-C and Fe-O bonds). The immobilized trypsin derivative was reused 10 times and lost 16% of its initial specific activity only. Therefore, these magnetic levan particles can be proposed as an alternative matrices for enzyme immobilization.

  12. Highly temperature responsive core-shell magnetic particles: synthesis, characterization and colloidal properties.

    PubMed

    Rahman, Md Mahbubor; Chehimi, Mohamed M; Fessi, Hatem; Elaissari, Abdelhamid

    2011-08-15

    Temperature responsive magnetic polymer submicron particles were prepared by two step seed emulsion polymerization process. First, magnetic seed polymer particles were obtained by emulsion polymerization of styrene using potassium persulfate (KPS) as an initiator and divinylbenzne (DVB) as a cross-linker in the presence of oil-in-water magnetic emulsion (organic ferrofluid droplets). Thereafter, DVB cross-linked magnetic polymer particles were used as seed in the precipitation polymerization of N-isopropylacrylamide (NIPAM) to induce thermosensitive PNIPAM shell onto the hydrophobic polymer surface of the cross-linked magnetic polymer particles. To impart cationic functional groups in the thermosensitive PNIPAM backbone, the functional monomer aminoethylmethacrylate hydrochloride (AEMH) was used to polymerize with NIPAM while N,N'-methylenebisacrylamide (MBA) and 2, 2'-azobis (2-methylpropionamidine) dihydrochloride (V-50) were used as a cross-linker and as an initiator respectively. The effect of seed to monomer (w/w) ratio along with seed nature on the final particle morphology was investigated. Dynamic light scattering (DLS) results demonstrated particles swelling at below volume phase transition temperature (VPTT) and deswelling above the VPTT. The perfect core (magnetic) shell (polymer) structure of the particles prepared was confirmed by Transmission Electron Microscopy (TEM). The chemical composition of the particles were determined by thermogravimetric analysis (TGA). The effect of temperature, pH, ionic strength on the colloidal properties such as size and zeta potential of the micron sized thermo-sensitive magnetic particles were also studied. In addition, a short mechanistic discussion on the formation of core-shell morphology of magnetic polymer particles has also been discussed. PMID:21570083

  13. Magnetic poly(lactide-co-glycolide) and cellulose particles for MRI-based cell tracking.

    PubMed

    Nkansah, Michael K; Thakral, Durga; Shapiro, Erik M

    2011-06-01

    Biodegradable, superparamagnetic microparticles and nanoparticles of poly(lactide-co-glycolide) (PLGA) and cellulose were designed, fabricated, and characterized for magnetic cell labeling. Monodisperse nanocrystals of magnetite were incorporated into microparticles and nanoparticles of PLGA and cellulose with high efficiency using an oil-in-water single emulsion technique. Superparamagnetic cores had high magnetization (72.1 emu/g). The resulting polymeric particles had smooth surface morphology and high magnetite content (43.3 wt % for PLGA and 69.6 wt % for cellulose). While PLGA and cellulose nanoparticles displayed highest r 2* values per millimole of iron (399 sec(-1) mM(-1) for cellulose and 505 sec(-1) mM(-1) for PLGA), micron-sized PLGA particles had a much higher r 2* per particle than either. After incubation for a month in citrate buffer (pH 5.5), magnetic PLGA particles lost close to 50% of their initial r 2* molar relaxivity, while magnetic cellulose particles remained intact, preserving over 85% of their initial r 2* molar relaxivity. Lastly, mesenchymal stem cells and human breast adenocarcinoma cells were magnetically labeled using these particles with no detectable cytotoxicity. These particles are ideally suited for noninvasive cell tracking in vivo via MRI and due to their vastly different degradation properties, offer unique potential for dedicated use for either short (PLGA-based particles) or long-term (cellulose-based particles) experiments. PMID:21404328

  14. EARLY-TIME VELOCITY AUTOCORRELATION FOR CHARGED PARTICLES DIFFUSION AND DRIFT IN STATIC MAGNETIC TURBULENCE

    SciTech Connect

    Fraschetti, F.; Giacalone, J.

    2012-08-20

    Using test-particle simulations, we investigate the temporal dependence of the two-point velocity correlation function for charged particles scattering in a time-independent spatially fluctuating magnetic field derived from a three-dimensional isotropic turbulence power spectrum. Such a correlation function allowed us to compute the spatial coefficients of diffusion both parallel and perpendicular to the average magnetic field. Our simulations confirm the dependence of the perpendicular diffusion coefficient on turbulence energy density and particle energy predicted previously by a model for early-time charged particle transport. Using the computed diffusion coefficients, we exploit the particle velocity autocorrelation to investigate the timescale over which the particles 'decorrelate' from the solution to the unperturbed equation of motion. Decorrelation timescales are evaluated for parallel and perpendicular motions, including the drift of the particles from the local magnetic field line. The regimes of strong and weak magnetic turbulence are compared for various values of the ratio of the particle gyroradius to the correlation length of the magnetic turbulence. Our simulation parameters can be applied to energetic particles in the interplanetary space, cosmic rays at the supernova shocks, and cosmic-rays transport in the intergalactic medium.

  15. Clusters of the charged dust particles in a magnetic trap at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. M.; Petrov, O. F.; Statsenko, K. B.

    2015-11-01

    The formation of cryogenic colloid of charged particles in static magnetic traps was studied for the first time. We presented experimental results of formation of strongly correlated structures consisting of about 103 particles. Ordered structures were formed by particles with a diameter of 30-60 microns with a charge up to 107e. Estimates of mean interparticle distance, dust particle charges, coupling parameter and Lindemann parameter, which turned out to be typical for strongly coupled crystalline or glass-like systems.

  16. Kinetics of aggregation in non-Brownian magnetic particle dispersions in the presence of perturbations

    NASA Astrophysics Data System (ADS)

    Donado, F.; Sandoval, U.; Carrillo, J. L.

    2009-01-01

    An experimental and theoretical study on the kinetics of the aggregation process of magnetic particles dispersed in mineral oils is presented. A static magnetic field and an oscillating magnetic perturbation are applied on the dispersion. In the low-particle concentrations, the effects on the aggregation of the frequency, the concentration of particles and the viscosity of the liquid are analyzed. It was found that the behavior of the cluster length as a function of the main control parameters can be accurately characterized by scaling relations. The physical characteristics of the aggregates are discussed in relation to measurements of viscosity as a function of time.

  17. Self-assembly of graphene oxide coated soft magnetic carbonyl iron particles and their magnetorheology

    SciTech Connect

    Zhang, W. L.; Choi, H. J.

    2014-05-07

    The surface of carbonyl iron (CI) microspheres was modified with graphene oxide (GO) as a coating material using 4-aminobenzoic acid as the grafting agent. The morphology, elemental composition, and magnetic properties of the GO-coated CI (GO/CI) particles were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry, respectively, confirming their composite formation. The magnetorheological (MR) performance of the GO/CI particle-based suspension was examined using a rotational rheometer connected to a magnetic field supply. The GO/CI particles suspension exhibited typical MR properties with increasing shear stress and viscosity depending on the applied magnetic field strength.

  18. Magnetic switching time of a Stoner-Wohlfarth particle in a perpendicular bias field

    NASA Astrophysics Data System (ADS)

    Xue, Dong

    This thesis studies magnetic switching of a Stoner-Wholfarth particle. The particle is characterized by a uniaxial magnetic anisotropy, and the magnetic field driving the switching is applied along the anisotropy axis. In addition, a constant small bias field is applied perpendicular to the easy axis. The dynamics of the magnetic moment are studied numerically by solving the Landau-Lifshitz-Gilbert (LLG) equation. Numeric results obtained without any approximations are then compared to the analytic theory of switching time in a perpendicular bias field. A good correspondence between the approximate analytic and exact numeric values of the switching time is observed in a wide parameter region.

  19. a Study of the Magnetic and Structural Properties of Small Iron and Cobalt Particles

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Sunita Bhardwaj

    The magnetic and structural properties of Fe and Co particles with different surface chemistries have been investigated in the size range of 50-400 A. The particles were prepared by vapor deposition in an inert environment. Particles with different surface chemistries were obtained: passivated with oxygen (Metal(Fe,Co)/FeO), sandwiched between two silver films (Metal(Fe,Co)/Ag), and surrounded by a Mg matrix (Metal(Fe,Co)/Mg). The effect of surface chemistry and particle size on the magnetic properties was studied. An attempt was made to explain the origin of high coercivity and reduced magnetization in small ferromagnetic particles by studying their microstructure, hysteresis, magnetization, exchange coupling and magnetic interactions. Magnetization, Mossbauer and structural data clearly show a "core-shell" morphology, where the core is metallic and the shell is polycrystalline Fe(Co)-oxide. The results indicate that the oxide shell controls both the magnitude and the temperature dependence of coercivity. The exchange coupling at the core-shell interface results in large anisotropy, which not only enhances the coercivity, but also causes larger switching field distributions. The surface oxide shell also contributes towards a reduction in magnetization of the small ferromagnetic particles by inducing strong pinning of the moments at the core-shell interface.

  20. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  1. Particles Sorting in Micro Channel Using Designed Micro Electromagnets of Magnetic Field Gradient

    NASA Astrophysics Data System (ADS)

    Chung, Yung-Chiang; Wu, Chen-Ming; Lin, Shih-Hao

    2016-06-01

    In this study, microelectromagnet, microchannel, syringe pump, and controlling devices were integrated to form a particle sorting system. A simple, two-dimensional, relatively quick fabricating and easily operating microelectromagnet was designed. Polystyrene particles and magnetic beads were pumped into the microchannel with the syringe pump, and it was observed that the magnetic beads were attracted to one of two outlets by the microelectromagnet, which features a gradually changing magnetic field. The polystyrene particles would move to another outlet because of different-width micro channel, and it completed the separation of the particles. Based on experimental results, the magnetic flux density of the microelectromagnet was 2.3 Gauss for a 12.5-μm average distance between electrodes at 1.0-μm increments, and the magnetic force was 0.22 pN for 2.8-μm magnetic beads. The separating rate was greater for larger distance increment and smaller average distance between the electrodes. The separating rate of the magnetic beads increased as the electric current increased and flow velocity decreased. When the flow velocity was 0.333 μm/s and electric current was 1 A, the separating rate was 90%. The separating rate of the polystyrene particles increased as the flow velocity increased and was 85% when the flow velocity was 0.6 μm/s. These results demonstrate that this particle sorting system has potential applications in bio-molecular studies.

  2. High-throughput top-down fabrication of uniform magnetic particles.

    PubMed

    Litvinov, Julia; Nasrullah, Azeem; Sherlock, Timothy; Wang, Yi-Ju; Ruchhoeft, Paul; Willson, Richard C

    2012-01-01

    Ion Beam Aperture Array Lithography was applied to top-down fabrication of large dense (10(8)-10(9) particles/cm(2)) arrays of uniform micron-scale particles at rates hundreds of times faster than electron beam lithography. In this process, a large array of helium ion beamlets is formed when a stencil mask containing an array of circular openings is illuminated by a broad beam of energetic (5-8 keV) ions, and is used to write arrays of specific repetitive patterns. A commercial 5-micrometer metal mesh was used as a stencil mask; the mesh size was adjusted by shrinking the stencil openings using conformal sputter-deposition of copper. Thermal evaporation from multiple sources was utilized to form magnetic particles of varied size and thickness, including alternating layers of gold and permalloy. Evaporation of permalloy layers in the presence of a magnetic field allowed creation of particles with uniform magnetic properties and pre-determined magnetization direction. The magnetic properties of the resulting particles were characterized by Vibrating Sample Magnetometry. Since the orientation of the particles on the substrate before release into suspension is known, the orientation-dependent magnetic properties of the particles could be determined. PMID:22693574

  3. Small-scale gradients of charged particles in the heliospheric magnetic field

    SciTech Connect

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  4. Particle Diffusion in Chaotic Magnetic Fields Generated by Asymmetric Current Configurations

    NASA Astrophysics Data System (ADS)

    Ram, A. K.; Dasgupta, B.

    2008-12-01

    The observed cross-field diffusion of charged particles in cosmic rays is assumed to be due to the chaotic nature of the interplanetary/intergalactic magnetic fields. Among the classic works on this subject have been those of Parker [1] and Jokipii [2]. Parker considered the passage of cosmic ray particles and energetic solar particles in a large scale magnetic field containing small scale irregularities. In the context of cosmic ray propagation, Jokipii considered a small fluctuating component, added on to a uniform magnetic field, to study the spatial transport of particles. In these studies the irregular component of the magnetic field is prescribed in an ad hoc fashion. In contrast, we consider asymmetric, nonlinear, steady-state magnetic fields, in three spatial dimensions, generated by currents flowing in circular loops and straight lines [3]. These magnetic fields are completely deterministic and, for certain range of parameters, chaotic. We will present analytical and numerical studies on the spatial characteristics of these fields. The motion of charged particles in the nonlinear and chaotic magnetic fields is determined using the Lorentz equation. A particle moving in a deterministic chaotic magnetic field superposed on a uniform background magnetic field is found to undergo spatial transport. This shows that chaotic magnetic fields generated by simple current configurations can produce cross-field diffusion. A detailed analysis of particle motion and diffusion along with application to space plasmas will be presented. [1] E.N. Parker, Planet. Space Sci. 13, 9 (1965). [2] J.R. Jokipii, Astrophys. J. 146, 480 (1966), and J.R. Jokipii, Astrophys. J. 149, 405 (1967). [3] A.K. Ram and B. Dasgupta, Eos Trans. AGU 87 (52), Fall Meet. Suppl. Abstract NG31B-1593 (2006); and Eos Trans. AGU 88 (52), Fall Meet. Suppl. Abstract NG21B-0522 (2007).

  5. Bulk particle size distribution and magnetic properties of particle-sized fractions from loess and paleosol samples in Central Asia

    NASA Astrophysics Data System (ADS)

    Zan, Jinbo; Fang, Xiaomin; Yang, Shengli; Yan, Maodu

    2015-01-01

    studies demonstrate that particle size separation based on gravitational settling and detailed rock magnetic measurements of the resulting fractionated samples constitutes an effective approach to evaluating the relative contributions of pedogenic and detrital components in the loess and paleosol sequences on the Chinese Loess Plateau. So far, however, similar work has not been undertaken on the loess deposits in Central Asia. In this paper, 17 loess and paleosol samples from three representative loess sections in Central Asia were separated into four grain size fractions, and then systematic rock magnetic measurements were made on the fractions. Our results demonstrate that the content of the <4 μm fraction in the Central Asian loess deposits is relatively low and that the samples generally have a unimodal particle distribution with a peak in the medium-coarse silt range. We find no significant difference between the particle size distributions obtained by the laser diffraction and the pipette and wet sieving methods. Rock magnetic studies further demonstrate that the medium-coarse silt fraction (e.g., the 20-75 μm fraction) provides the main control on the magnetic properties of the loess and paleosol samples in Central Asia. The contribution of pedogenically produced superparamagnetic (SP) and stable single-domain (SD) magnetic particles to the bulk magnetic properties is very limited. In addition, the coarsest fraction (>75 μm) exhibits the minimum values of χ, χARM, and SIRM, demonstrating that the concentrations of ferrimagnetic grains are not positively correlated with the bulk particle size in the Central Asian loess deposits.

  6. Fine-particle magnetic granulometry in an ash-flow tuff

    NASA Astrophysics Data System (ADS)

    Till, J. L.; Jackson, M. J.; Rosenbaum, J. G.; Solheid, P.

    2012-04-01

    The Tiva Canyon Tuff at Yucca Mountain in the southwestern U.S. is a welded ashflow deposit containing nanoscale Fe-oxide grains that approximate ideal assemblages of narrowly sized non-interacting magnetic particles. The low-impurity magnetite microcrystals exsolved from volcanic glass in the basal 5 m section of the tuff and display a continuous variation in grain size with stratigraphic height due to differential cooling rates in the unit. These rocks can potentially serve as useful reference material for determining fine magnetic particle grain size from size-sensitive magnetic properties in environmental and rock magnetic studies. A detailed magnetic characterization of this section revealed a distinctive magnetic signature at each stratigraphic level in the section corresponding to different grain-size distributions, with salient transitions in room temperature magnetic susceptibility and remanence that denote the spatial limits of stable single domain behavior. The progression in magnetic grain size and domain state from superparamagnetic grains near the base to pseudo-single domain grains near the top of the section, inferred from fundamental magnetic properties, are also indicated by thermal fluctuation tomography as well as previous electron microscope observations. These rocks constitute a unique natural example of weakly interacting fine magnetic particle assemblages that display clear grain-size-dependent magnetic properties over a broad range of grain sizes.

  7. Fundamentals and Application of Magnetic Particles in Cell Isolation and Enrichment

    PubMed Central

    Plouffe, Brian D.; Murthy, Shashi K.; Lewis, Laura H.

    2014-01-01

    Magnetic sorting using magnetic beads has become a routine methodology for the separation of key cell populations from biological suspensions. Due to the inherent ability of magnets to provide forces at a distance, magnetic cell manipulation is now a standardized process step in numerous processes in tissue engineering, medicine, and in fundamental biological research. Herein we review the current status of magnetic particles to enable isolation and separation of cells, with a strong focus on the fundamental governing physical phenomena, properties and syntheses of magnetic particles and on current applications of magnet-based cell separation in laboratory and clinical settings. We highlight the contribution of cell separation to biomedical research and medicine and detail modern cell separation methods (both magnetic and non-magnetic). In addition to a review of the current state-of-the-art in magnet-based cell sorting, we discuss current challenges and available opportunities for further research, development and commercialization of magnetic particle-based cell separation systems. PMID:25471081

  8. Prediction of particle orientation in simple upsetting process of NdFeB magnets

    SciTech Connect

    Chang, Chao-Cheng; Hsiao, Po-Jen; You, Jr-Shiang; Chen, Yen-Ju; Chang, Can-Xun

    2013-12-16

    The magnetic properties of NdFeB magnets are strongly affected by crystallographic texture which is highly associated with particle orientation. This study proposed a method for predicting the particle orientation in the simple upsetting process of NdFeB magnets. The method is based on finite element simulation with flow net analysis. The magnets in a cylindrical form were compressed by two flat dies in a chamber filled with argon at 750°C. Three forming speeds were taken into account in order to obtain flow stress curves used in simulations. The micrographs of the cross sections of the deformed magnets show that the particle deformation significantly increases with the compression. The phenomenon was also predicted by the proposed method. Both simulated and experimental results show that the inhomogeneity of the texture of the NdFeB magnets can be increased by the simple upsetting process. The predicted particle orientations were in a good agreement with those examined in the deformed magnets. The proposed method for predicting particle orientations can also be used in other forming processes of NdFeB magnets.

  9. Asymptotic dependence of the relaxation time of the magnetization of a ferromagnetic particle on the anisotropy of the particle

    NASA Astrophysics Data System (ADS)

    Scully, C. N.; Cregg, P. J.; Crothers, D. S. F.

    1992-01-01

    It is known that the direction of the magnetization vector of very fine single-domain ferromagnetic particles fluctuates under the influence of thermal agitation. Perturbation theory is applied rigorously to a singular integral equation to derive an asymptotic formula for the relaxation time of the magnetization, for the case of uniaxial anisotropy and an applied magnetic field. The result agrees with that of Brown [Phys. Rev. 130, 1677 (1963)] as described succinctly by Aharoni [Phys. Rev. 177, 793 (1969)]. It should be emphasized that both Gilbert's equation and the earlier Landau-Lifshitz equation are merely phenomenological equations, which are used to explain the time decay of the average magnetization. Brown suggested that the Gilbert equation should be augmented by a white-noise driving term in order to explain the effect of thermal fluctuations of the surroundings on the magnetization.

  10. Particle Acceleration in Collapsing Magnetic Traps with a Braking Plasma Jet

    NASA Astrophysics Data System (ADS)

    Borissov, Alexei; Neukirch, Thomas; Threlfall, James

    2016-05-01

    Collapsing magnetic traps (CMTs) are one proposed mechanism for generating non-thermal particle populations in solar flares. CMTs occur if an initially stretched magnetic field structure relaxes rapidly into a lower-energy configuration, which is believed to happen as a by-product of magnetic reconnection. A similar mechanism for energising particles has also been found to operate in the Earth's magnetotail. One particular feature proposed to be of importance for particle acceleration in the magnetotail is that of a braking plasma jet, i.e. a localised region of strong flow encountering stronger magnetic field which causes the jet to slow down and stop. Such a feature has not been included in previously proposed analytical models of CMTs for solar flares. In this work we incorporate a braking plasma jet into a well studied CMT model for the first time. We present results of test particle calculations in this new CMT model. We observe and characterise new types of particle behaviour caused by the magnetic structure of the jet braking region, which allows electrons to be trapped both in the braking jet region and the loop legs. We compare and contrast the behaviour of particle orbits for various parameter regimes of the underlying trap by examining particle trajectories, energy gains and the frequency with which different types of particle orbit are found for each parameter regime.

  11. Particle Acceleration in Collapsing Magnetic Traps with a Braking Plasma Jet

    NASA Astrophysics Data System (ADS)

    Borissov, Alexei; Neukirch, Thomas; Threlfall, James

    2016-06-01

    Collapsing magnetic traps (CMTs) are one proposed mechanism for generating non-thermal particle populations in solar flares. CMTs occur if an initially stretched magnetic field structure relaxes rapidly into a lower-energy configuration, which is believed to happen as a by-product of magnetic reconnection. A similar mechanism for energising particles has also been found to operate in the Earth's magnetotail. One particular feature proposed to be of importance for particle acceleration in the magnetotail is that of a braking plasma jet, i.e. a localised region of strong flow encountering stronger magnetic field which causes the jet to slow down and stop. Such a feature has not been included in previously proposed analytical models of CMTs for solar flares. In this work we incorporate a braking plasma jet into a well studied CMT model for the first time. We present results of test particle calculations in this new CMT model. We observe and characterise new types of particle behaviour caused by the magnetic structure of the jet braking region, which allows electrons to be trapped both in the braking jet region and the loop legs. We compare and contrast the behaviour of particle orbits for various parameter regimes of the underlying trap by examining particle trajectories, energy gains and the frequency with which different types of particle orbit are found for each parameter regime.

  12. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, G.T.; Jackson, J.W.

    1990-03-19

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.

  13. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, Gordon T.; Jackson, John W.

    1991-01-01

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

  14. Development of magnetic luminescent core/shell nanocomplex particles with fluorescence using Rhodamine 6G

    SciTech Connect

    Lee, Hee Uk; Song, Yoon Seok; Park, Chulhwan; Kim, Seung Wook

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► A simple method was developed to synthesize Co-B/SiO{sub 2}/dye/SiO{sub 2} composite particles. ► The magnetic particle shows that highly luminescent and core/shell particles are formed. ► Such core/shell particles can be easily suspended in water. ► The magnetic particles could detect fluorescence for the application of biosensor. -- Abstract: A simple and reproducible method was developed to synthesize a novel class of Co-B/SiO{sub 2}/dye/SiO{sub 2} composite core/shell particles. Using a single cobalt core, Rhodamine 6G of organic dye molecules was entrapped in a silica shell, resulting in core/shell particles of ∼200 nm diameter. Analyses using a variety of techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, vibration sample magnetometry, confocal laser scanning microscopy, and fluorescence intensity demonstrated that dye molecules were trapped inside the core/shell particles. A photoluminescence investigation showed that highly luminescent and photostable core/shell particles were formed. Such core/shell particles can be easily suspended in water. The synthesized magnetic particles could be used to detect fluorescence on glass substrate arrays for bioassay and biosensor applications.

  15. A new strategy for assembling multifunctional nanocomposites with iron oxide and amino-terminated PAMAM dendrimers.

    PubMed

    Zhang, Ying; Liu, Jing-Ying; Yang, Fang; Zhang, Ya-Jing; Yao, Qi; Cui, Tie-Yu; Zhao, Xiang; Zhang, Zhi-Dong

    2009-12-01

    A new strategy for assembling multifunctional nanocomposites with magnetic particles and amino dendrimers was reported. In this strategy, the amino terminated PAMAM G5.0 and Fe(3)O(4) NPs prepared by co-deposition method and further modified by aminosilane by two sol-gel processes were combined with the hydrophilic spacer of PEG dicarboxylate by amidation. The nanocomposites were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atom force microscopy (AFM), superconducting quantum interference device (SQUID) magnetometer, and hydrophilicity analysis. The results showed that the multifunctional nanocomposites were spherical with the mean diameter of 180 nm and exhibited good dispersion and hydrophilicity. The new strategy put forward here provides an effective route to functionalizing Fe(3)O(4) NPs with various amino dendrimers for drug and gene delivery as well as biological detection. PMID:19578982

  16. Statistical optimization of effective parameters on saturation magnetization of nanomagnetite particles

    NASA Astrophysics Data System (ADS)

    Ramimoghadam, Donya; Bagheri, Samira; Yousefi, Amin Termeh; Abd Hamid, Sharifah Bee

    2015-11-01

    In this study, nanomagnetite particles have been successfully prepared via the coprecipitation method. The effect of the key explanatory variables on the saturation magnetization of synthetic nanomagnetite particles was investigated using the response surface methodology (RSM). The correlation of the involved parameters with the growth process was examined by employing the central composite design method through designating set up experiments that will determine the interaction of the variables. The vibrating sample magnetometer (VSM) was used to confirm the statistical analysis. Furthermore, the regression analysis monitors the priority of the variables' influence on the saturation magnetization of nanomagnetite particles by developing the statistical model of the saturation magnetization. According to the investigated model, the highest interaction of variable belongs to the pH and temperature with the optimized condition of 9-11, and 75-85 °C, respectively. The response obtained by VSM suggests that the saturation magnetization of nanomagnetite particles can be controlled by restricting the effective parameters.

  17. On the relativistic classical motion of a radiating spinning particle in a magnetic field

    SciTech Connect

    Kar, Arnab; Rajeev, S.G.

    2011-04-15

    Research Highlights: > We propose classical equations of motion for a charged particle with magnetic moment. > We account for radiation reaction as well. > Unlike previous proposals we do not have runaway solutions. > We find that the particle loses energy even in a constant magnetic field for a particular spin-polarized state. - Abstract: We propose classical equations of motion for a charged particle with magnetic moment, taking radiation reaction into account. This generalizes the Landau-Lifshitz equations for the spinless case. In the special case of spin-polarized motion in a constant magnetic field (synchrotron motion) we verify that the particle does lose energy. Previous proposals did not predict dissipation of energy and also suffered from runaway solutions analogous to those of the Lorentz-Dirac equations of motion.

  18. Use of mucolytics to enhance magnetic particle retention at a model airway surface

    NASA Astrophysics Data System (ADS)

    Ally, Javed; Roa, Wilson; Amirfazli, A.

    A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia.

  19. Particle-Based Microfluidic Device for Providing High Magnetic Field Gradients

    NASA Technical Reports Server (NTRS)

    Lin, Adam Y. (Inventor); Wong, Tak S. (Inventor)

    2013-01-01

    A microfluidic device for manipulating particles in a fluid has a device body that defines a main channel therein, in which the main channel has an inlet and an outlet. The device body further defines a particulate diverting channel therein, the particulate diverting channel being in fluid connection with the main channel between the inlet and the outlet of the main channel and having a particulate outlet. The microfluidic device also has a plurality of microparticles arranged proximate or in the main channel between the inlet of the main channel and the fluid connection of the particulate diverting channel to the main channel. The plurality of microparticles each comprises a material in a composition thereof having a magnetic susceptibility suitable to cause concentration of magnetic field lines of an applied magnetic field while in operation. A microfluidic particle-manipulation system has a microfluidic particle-manipulation device and a magnet disposed proximate the microfluidic particle-manipulation device.

  20. A machine vision assisted system for fluorescent magnetic particle inspection of railway wheelsets

    NASA Astrophysics Data System (ADS)

    Ma, Tao; Sun, Zhenguo; Zhang, Wenzeng; Chen, Qiang

    2016-02-01

    Fluorescent magnetic particle inspection is a conventional non-destructive evaluation process for detecting surface and slightly subsurface cracks of the wheelsets. Using machine vision instead of workers' direct observation could remarkably improve the working condition and repeatability of the inspection. This paper presents a machine vision assisted automatic fluorescent magnetic particle inspection system for surface defect inspection of railway wheelsets. The system setup of it is composed of a semiautomatic fluorescent magnetic particle inspection machine, a vision system and an industrial computer. The detection of magnetic particle indications of quantitative quality indicators and cracks is studied: the detection of quantitative quality indicators is achieved by mathematical morphology, Otsu's thresholding and a RANSAC based ellipse fitting algorithm; the crack detection algorithm is a multiscale algorithm using Gaussian blur, mathematical morphology and several shape and color descriptors. Tests show that the algorithms are able to detect the indications of the quantitative quality indicators and the cracks precisely.

  1. A comprehensive viscosity model for micro magnetic particle dispersed in silicone oil

    NASA Astrophysics Data System (ADS)

    Jung, Im Doo; Kim, Moobum; Park, Seong Jin

    2016-04-01

    Magnetorheological behavior of micro magnetic particle dispersed in silicone oil has been characterized by a multiplied form of phenomenological models taking the effect of shear rate, powder volume fraction, temperature and magnetic flux density. Magnetorheological fluid samples with seven different particle volume fraction were prepared by adding ferrite particles in silicone base oil and their shear viscosity of fluid samples were measured under three different temperatures (40 °C, 70 °C, and 110 °C) and ten different magnetic flux density (0-100 mT). The fluid had an upper limit to the increase of viscosity under the effect of external magnetic field and the saturation values were dependent on the operating temperature, shear rate and volume fraction of magnetic powder. The rheological behaviors have been characterized by our developed model which can be very useful for the precise control of the magnetorheological fluid.

  2. Particle acceleration by combined diffusive shock acceleration and downstream multiple magnetic island acceleration

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.

    2015-09-01

    As a consequence of the evolutionary conditions [28; 29], shock waves can generate high levels of downstream vortical turbulence. Simulations [32-34] and observations [30; 31] support the idea that downstream magnetic islands (also called plasmoids or flux ropes) result from the interaction of shocks with upstream turbulence. Zank et al. [18] speculated that a combination of diffusive shock acceleration (DSA) and downstream reconnection-related effects associated with the dynamical evolution of a “sea of magnetic islands” would result in the energization of charged particles. Here, we utilize the transport theory [18; 19] for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets to investigate a combined DSA and downstream multiple magnetic island charged particle acceleration mechanism. We consider separately the effects of the anti-reconnection electric field that is a consequence of magnetic island merging [17], and magnetic island contraction [14]. For the merging plasmoid reconnection- induced electric field only, we find i) that the particle spectrum is a power law in particle speed, flatter than that derived from conventional DSA theory, and ii) that the solution is constant downstream of the shock. For downstream plasmoid contraction only, we find that i) the accelerated particle spectrum is a power law in particle speed, flatter than that derived from conventional DSA theory; ii) for a given energy, the particle intensity peaks downstream of the shock, and the peak location occurs further downstream of the shock with increasing particle energy, and iii) the particle intensity amplification for a particular particle energy, f(x, c/c0)/f(0, c/c0), is not 1, as predicted by DSA theory, but increases with increasing particle energy. These predictions can be tested against observations of electrons and ions accelerated at interplanetary shocks and the heliospheric

  3. Composite of ceramic-coated magnetic alloy particles

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  4. Synthesis of Co/Co3O4 nanocomposite particles relevant to magnetic field processing.

    PubMed

    Srivastava, A K; Madhavi, S; Menon, M; Ramanujan, R V

    2010-10-01

    Co/Co3O4 nanocomposite particles of various morphologies were synthesized by the reverse micelle technique. Equiaxed, rod and faceted crystals with rectangular, pentagonal and hexagonal cross sections were observed. Annealing resulted in the formation of a composite of cobalt oxide (Co3O4) and fcc cobalt (Co). Removal of boron residues from the final product was established by surface characterization. Magnetic moment of these nanocomposite particles is relevant to magnetic field processing. PMID:21137765

  5. Methods to determine biotin-binding capacity of streptavidin-coated magnetic particles

    NASA Astrophysics Data System (ADS)

    Dorgan, Lonnie; Magnotti, Ralph; Hou, Janming; Engle, Terri; Ruley, Kevin; Shull, Bruce

    1999-04-01

    Two assays to determine the biotin-binding capacity of streptavidin magnetic particles are described and compared. The two assays are based on the use of biotinylated alkaline phosphatase and biotinylated fluorescein, respectively. Also, an assay for bound protein is presented. When the biotin-binding methods are combined with the protein assay, the specific activity can be determined. The fluorescent version is used to compare the streptavidin magnetic particles from several manufacturers.

  6. Apoferritin Modified Magnetic Particles as Doxorubicin Carriers for Anticancer Drug Delivery

    PubMed Central

    Blazkova, Iva; Nguyen, Hoai Viet; Dostalova, Simona; Kopel, Pavel; Stanisavljevic, Maja; Vaculovicova, Marketa; Stiborova, Marie; Eckschlager, Tomas; Kizek, Rene; Adam, Vojtech

    2013-01-01

    Magnetic particle mediated transport in combination with nanomaterial based drug carrier has a great potential for targeted cancer therapy. In this study, doxorubicin encapsulation into the apoferritin and its conjugation with magnetic particles was investigated by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). The quantification of encapsulated doxorubicin was performed by fluorescence spectroscopy and compared to CE-LIF. Moreover, the significant enhancement of the doxorubicin signal was observed by addition of methanol into the sample solution. PMID:23807501

  7. ORBXYZ: a 3D single-particle orbit code for following charged-particle trajectories in equilibrium magnetic fields

    SciTech Connect

    Anderson, D.V.; Cohen, R.H.; Ferguson, J.R.; Johnston, B.M.; Sharp, C.B.; Willmann, P.A.

    1981-06-30

    The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report.

  8. How to Magnetically Generate Flows in Dead-Ends with Dilute Suspensions of Iron Particles

    NASA Astrophysics Data System (ADS)

    Bonnecaze, Roger; Clements, Michael

    2015-11-01

    Dilute suspensions of iron particles in the presence of a magnetic field can create flows in dead-ends of pores, channels and even blocked arteries to help dissolve clots. Observations show that added iron particles in a rotating magnetic field form rotating rods along the wall of the blocked channel, creating a convective flow. We present a proposed mechanism for this magnetically driven flow in the form of coupled particle-scale and channel-scale flow models. At the particle-scale, particles chain up to lengths balancing magnetic and hydrodynamic forces on the resulting rods. The weak gradient of the magnetic field causes the rods to accumulate on one side of the channel. The rods rotate due to the rotating magnetic field, provided the field strength is high enough, which creates a localized body couple in the flow that drives a macroscopic convective flow in the channel. Coupled transport equations for the particles and the suspension as a whole are presented. The model equations are solved asymptotically and numerically and compared to experimental observations. Design rules for implementation of this technique are presented to optimize the flow.

  9. Magnetic properties of 3D nanocomposites consisting of an opal matrix with embedded spinel ferrite particles

    NASA Astrophysics Data System (ADS)

    Rinkevich, A. B.; Korolev, A. V.;