Science.gov

Sample records for multilayer coating deposited

  1. WC-Co/Al Multilayer Coatings by Warm Spray Deposition

    NASA Astrophysics Data System (ADS)

    Watanabe, Makoto; Komatsu, Masayuki; Kuroda, Seiji

    2012-06-01

    WC-Co/aluminum multilayer coatings have been developed by using warm spray deposition to improve fracture toughness and damage tolerance of conventional WC-Co coatings and to investigate the effects of ductile layer addition on their fracture properties. Prior to depositing the multilayer coatings, the mechanical properties of three metal coatings of aluminum, copper, and titanium, which were deposited by warm spraying, were evaluated. The aluminum coating showed excellent ductility among them and was selected for use as ductile layers for the multilayer coatings. The fracture behavior of WC-Co/Al coatings was examined by the four-point bending test. The multilayer coatings did not break in a brittle manner after reaching maximum load, but exhibited a plateau as a result of the ductility of the aluminum layers. The fracture behavior was compared with the finite element analysis results, and they showed good agreement in a general trend. It has been concluded that ductile metal reinforcements, by advanced thermal spray techniques such as warm spray deposition, are very effective to enhance the toughness and damage tolerance of sprayed cermet coatings.

  2. Vacuum arc deposition of nanostructured multilayer coatings for biomedical applications.

    PubMed

    Vladescu, A; Kiss, A; Braic, M; Cotrut, C M; Drob, P; Balaceanu, M; Vasilescu, C; Braic, V

    2008-02-01

    In recent years, the smart materials have attracted much attention due to their unusual properties such as shape memory effect and pseudoelasticity, being widely used for biomedical implants. These materials contain certain amounts of nickel, titanium and others which are not adequate for surgical implants and prosthesis. In the work reported here, two types of nonostructured multilayer coatings (TiN/ZrN, ZrN/Zr) used to prevent the ions release from shape memory alloys were investigated. For comparison, the TiN and ZrN monolayers were also examined. The films were deposited onto nickel-titanium based alloy (Ti-Ni-Nb) and Ni substrates by vacuum arc deposition technique under various deposition conditions. The concentrations of dissolved ions in Ringer solution for uncoated and coated Ni samples were determined to examine the benefic barrier effect of these coatings for ions release from shape memory alloys. In order to have a more complete characterization of the investigated coatings, other properties such as elemental and phase composition, morphology, texture, microhardness, and adhesion were studied. For all coatings, the concentrations of dissolved ions were lower that those measured in the case of the uncoated specimens. The nanostructured multilayer films exhibited the best mechanical and anticorrosive properties. PMID:18464399

  3. Surface parameters modification by multilayer coatings deposition for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zykova, A.; Safonov, V.; Virva, O.; Luk'yanchenko, V.; Walkowich, J.; Rogowska, R.; Yakovin, S.

    2008-05-01

    Studies are presented of the surface parameters of various multilayer coatings, namely, TiN, CrN, (Ti, Cr)N, TiN/TiC10N90, TiN/TiC20N80 deposited by means of Arc-PVD on stainless steel (1H18N9), as well as of the same coatings with an additional Al2O3 film deposited by reactive magnetron sputtering (RMS). The surface thickness, roughness and topography are estimated. Other parameters, such as the surface free energy (SFE) and fractional polarity are determined by means of the Wu and the Owens-Wendt-Rabel-Kaelble methods. Experiments are carried out on the in vitro cell/material interaction (in a fibroblasts culture) in order to determine the materials biomedical response. The results show some correlation between the surface properties and cell adhesion. The best biological response parameters (cell number, proliferation function, morphology) are obtained in the case of coatings with the highest values of the polar part component of the SFE and the fractional polarity, such as TiN, TiN/TiC10N90 and oxide coatings.

  4. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  5. Maskless deposition technique for the physical vapor deposition of thin film and multilayer coatings with subnanometer precision and accuracy

    DOEpatents

    Vernon, Stephen P.; Ceglio, Natale M.

    2000-01-01

    The invention is a method for the production of axially symmetric, graded and ungraded thickness thin film and multilayer coatings that avoids the use of apertures or masks to tailor the deposition profile. A motional averaging scheme permits the deposition of uniform thickness coatings independent of the substrate radius. Coating uniformity results from an exact cancellation of substrate radius dependent terms, which occurs when the substrate moves at constant velocity. If the substrate is allowed to accelerate over the source, arbitrary coating profiles can be generated through appropriate selection and control of the substrate center of mass equation of motion. The radial symmetry of the coating profile is an artifact produced by orbiting the substrate about its center of mass; other distributions are obtained by selecting another rotation axis. Consequently there is a direct mapping between the coating thickness and substrate equation of motion which can be used to tailor the coating profile without the use of masks and apertures.

  6. Multilayer diamond coated WC tools

    SciTech Connect

    Fan, W.D.; Jagannaham, K.; Narayan, J.

    1995-12-31

    To increase adhesion of diamond coatings, a multilayer structure was developed. The multilayer diamond coating consisted of a first discontinuous diamond layer, an interposing layer, and a top continuous diamond layer. The diamond layer was grown on WC substrates by hot filament chemical vapor deposition and the interposing layer was grown by pulsed laser deposition. Machining tests were used to characterize adhesion properties of the multilayer diamond coatings on WC(Co) substrates. Results indicate that diamond coatings exhibit good adhesion on the WC tool substrates. The wear resistance of the WC tool is improved significantly by the diamond coatings.

  7. Mechanical Characterization of CrN/CrAlN Multilayer Coatings Deposited by Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Kaouther, Khlifi; Hafedh, Dhiflaoui; Lassaad, Zoghlami; Ahmed, Ben Cheikh Larbi

    2015-10-01

    Chromium-based coatings are deposited on a 100Cr6 (AISI 52100) substrate by a physical vapor deposition magnetron sputtering system. The coatings have different structures, such as a CrN monolayer and CrAlN multilayer. The structural and morphological compositions of the coatings were evaluated using glow discharge optical emission spectroscopy, atomic force microscopy, and cross-sectional scanning electron microscopy. Nano-indentation tests were performed to investigate the mechanical properties. Domes and craters are shown to be uniformly distributed over the entire surfaces of the two coatings. Additionally, the CrN/CrAlN multilayer coating exhibits a rough surface, attractive mechanical properties, a high compressive stress, and a high plastic and elastic deformation resistance. The improvement of the mechanical properties of the CrN/CrAlN coating is mainly attributed to a reduction in the crystallite size. We found that this reduction was related to three factors: (1) the compositional change resulting from the substitution of aluminum for chromium, which can produce a decrease in the interatomic distance; (2) the structure of CrN/CrAlN, which was characterized by grain size refinement; and (3) the high number of interfaces, which explains the widely accepted concept of dislocation blocking by the layer interfaces.

  8. Hard X-ray multilayer coated astronomical mirrors by e-beam deposition

    NASA Astrophysics Data System (ADS)

    Spiga, Daniele; Pareschi, Giovanni; Grisoni, Gabriele; Valsecchi, Giuseppe

    2004-10-01

    A number of X-ray astronomical missions of near future (Constellation-X, XEUS, Simbol-X) will make use of hard X-rays (10-100 keV) optics with broad-band multilayer coatings. A possible technique under development is based on an extension of the already tested replication of a coated mandrel by e-beam deposition and nickel electroforming already successfully used for the soft (0.1 - 10 keV) X-ray mirrors of the Beppo-SAX, XMM, JET-X/Swift missions. In this case graded multilayers are deposited and replicated from the mandrel replicated instead of a single layer. The roughness reduction in order to improve the coating reflectivity could be achieved by an ion assistance during the e-beam deposition. The e-beam deposition with ion assistance is a technique that allows to reach comparable (if not better) smoothness levels with respect to other methods (e.g. ion sputtering), taking the advantage of a stress mitigation between the layers and of a further improvement in reflectivity due to the low density of the e-beam evaporated Carbon, which is used as bilayer spacer. In this paper we discuss the adopted deposition technique and its implementation: we present topographic (AFM) tests and X-ray reflectivity tests performed on preliminary samples.

  9. Channel cracks in atomic-layer and molecular-layer deposited multilayer thin film coatings

    SciTech Connect

    Long, Rong; Dunn, Martin L.

    2014-06-21

    Metal oxide thin film coatings produced by atomic layer deposition have been shown to be an effective permeation barrier. The primary failure mode of such coatings under tensile loads is the propagation of channel cracks that penetrate vertically into the coating films. Recently, multi-layer structures that combine the metal oxide material with relatively soft polymeric layers produced by molecular layer deposition have been proposed to create composite thin films with desired properties, including potentially enhanced resistance to fracture. In this paper, we study the effects of layer geometry and material properties on the critical strain for channel crack propagation in the multi-layer composite films. Using finite element simulations and a thin-film fracture mechanics formalism, we show that if the fracture energy of the polymeric layer is lower than that of the metal oxide layer, the channel crack tends to penetrate through the entire composite film, and dividing the metal oxide and polymeric materials into thinner layers leads to a smaller critical strain. However, if the fracture energy of the polymeric material is high so that cracks only run through the metal oxide layers, more layers can result in a larger critical strain. For intermediate fracture energy of the polymer material, we developed a design map that identifies the optimal structure for given fracture energies and thicknesses of the metal oxide and polymeric layers. These results can facilitate the design of mechanically robust permeation barriers, an important component for the development of flexible electronics.

  10. Multilayer optical dielectric coating

    DOEpatents

    Emmett, John L.

    1990-01-01

    A highly damage resistant, multilayer, optical reflective coating includes alternating layers of doped and undoped dielectric material. The doping levels are low enough that there are no distinct interfaces between the doped and undoped layers so that the coating has properties nearly identical to the undoped material. The coating is fabricated at high temperature with plasma-assisted chemical vapor deposition techniques to eliminate defects, reduce energy-absorption sites, and maintain proper chemical stoichiometry. A number of differently-doped layer pairs, each layer having a thickness equal to one-quarter of a predetermined wavelength in the material are combined to form a narrowband reflective coating for a predetermined wavelength. Broadband reflectors are made by using a number of narrowband reflectors, each covering a portion of the broadband.

  11. Single-chamber plasma enhanced chemical vapor deposition of transparent organic/inorganic multilayer barrier coating at low temperature

    SciTech Connect

    Park, S. M.; Kim, D. J.; Kim, S. I.; Lee, N.-E.

    2008-07-15

    Deposition of organic/inorganic multilayers is usually carried out by two different process steps by two different deposition methods. A single-chamber process for the deposition of multilayer stacks can make the process and deposition system simpler. In this work, SiOCH and plasma-polymerized methylcyclohexane (pp-MCH) films and their multilayer stacks for application to transparent diffusion barrier coatings were deposited in a single low-temperature plasma enhanced chemical vapor deposition reactor using hexamethyldisilazane/N{sub 2}O/O{sub 2}/Ar and methylcyclohexane/Ar mixtures for SiOCH and pp-MCH layers, respectively. The deposition rates of the SiOCH and pp-MCH layers were increased with increasing the N{sub 2}O:O{sub 2} gas flow ratio and rf plasma power, respectively. Oxygen concentration in the SiOCH films was decreased and carbon and hydrogen incorporation was increased when increasing the N{sub 2}O:O{sub 2} gas flow ratio from 0:1 to 3:1. In this work, the water vapor transmission rate of polyester sulfone substrate could be reduced from a level of 50 (bare substrate) to 0.8 g/m{sup 2} day after deposition of a pp-MCH/SiOCH/pp-MCH multilayer coating.

  12. Soap-film coating: High-speed deposition of multilayer nanofilms

    PubMed Central

    Zhang, Renyun; Andersson, Henrik A.; Andersson, Mattias; Andres, Britta; Edlund, Håkan; Edström, Per; Edvardsson, Sverker; Forsberg, Sven; Hummelgård, Magnus; Johansson, Niklas; Karlsson, Kristoffer; Nilsson, Hans-Erik; Norgren, Magnus; Olsen, Martin; Uesaka, Tetsu; Öhlund, Thomas; Olin, Håkan

    2013-01-01

    The coating of thin films is applied in numerous fields and many methods are employed for the deposition of these films. Some coating techniques may deposit films at high speed; for example, ordinary printing paper is coated with micrometre-thick layers of clay at a speed of tens of meters per second. However, to coat nanometre thin films at high speed, vacuum techniques are typically required, which increases the complexity of the process. Here, we report a simple wet chemical method for the high-speed coating of films with thicknesses at the nanometre level. This soap-film coating technique is based on forcing a substrate through a soap film that contains nanomaterials. Molecules and nanomaterials can be deposited at a thickness ranging from less than a monolayer to several layers at speeds up to meters per second. We believe that the soap-film coating method is potentially important for industrial-scale nanotechnology. PMID:23503102

  13. Inkjet ink spreading on polyelectrolyte multilayers deposited on pigment coated paper.

    PubMed

    Mielonen, Katriina; Geydt, Pavel; Österberg, Monika; Johansson, Leena-Sisko; Backfolk, Kaj

    2015-01-15

    Mechanisms of inkjet ink spreading and absorption on a coated paper have been studied using a polyelectrolyte multilayering technique. By applying alternating sequences of cationic and anionic polyelectrolyte layers on a mineral coated paper, the role of the interfacial chemistry was evaluated. The polyelectrolyte multilayer was created to imitate a thin resin-like liquid-absorptive layer and to clarify the role of the charge of the protruding polyelectrolyte layer on ink spreading and colorant fixation. The formation of a thin polyelectrolyte layer and coating coverage was confirmed by X-ray photoelectron spectroscopy (XPS). A submolecular mechanical imaging of the polyelectrolyte complexes with an atomic force microscope (AFM) revealed differences in modulus and different nanosize agglomerates were identified which were ascribed to polyion complexes. The polyelectrolyte coatings significantly affect the solid-liquid interaction and particularly the ink spreading revealed as intercolor bleeding and wicking. The interfacial interaction between the ink and the applied polyelectrolyte layers showed differences between dye- and pigment-based colorants, which could be emphasized by the polyelectrolyte chemistry. PMID:25454440

  14. Method of depositing multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, J.P.; Friedmann, T.A.

    1999-08-10

    A novel field emitter device is disclosed for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials. 8 figs.

  15. Method of depositing multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, John P.; Friedmann, Thomas A.

    1999-01-01

    A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.

  16. Antibacterial copper-nickel bilayers and multilayer coatings by pulsed laser deposition on titanium.

    PubMed

    Vishwakarma, Vinita; Josephine, J; George, R P; Krishnan, R; Dash, S; Kamruddin, M; Kalavathi, S; Manoharan, N; Tyagi, A K; Dayal, R K

    2009-11-01

    Biofouling, especially microfouling, is a major concern with the use of titanium (Ti) in the marine environment as a condenser material in cooling water systems. Earlier, copper-nickel (Cu/Ni) alloys were extensively used in marine environments due to their high corrosion and biofouling resistance. However, the choice of condenser material for the new fast breeder reactor in Kalpakkam is Ti to avoid steam side corrosion problems, which may pose a threat to steam generator parts having sodium as the secondary coolant. This study evaluates the surface modification of Ti using nano films of copper (Cu) and nickel (Ni) to utilize the antibacterial property of copper ions in reducing microfouling. The surface modification of Ti was carried out by the deposition of a Cu/Ni bilayer and (Cu/Ni)(10) multilayer films using a pulsed laser deposition technique. Various surface characterization studies revealed that the deposited Cu/Ni films were thin and nanocrystalline in nature. The antibacterial properties were evaluated using total viable count and epifluorescence microscopic techniques. The results showed an apparent decrease in bacterial attachment on multilayered and bilayered Cu/Ni thin films on Ti surfaces. Comparative studies between the two types of films showed a bigger reduction in numbers of microorganisms on the multilayers. PMID:20183129

  17. Synthesis, mechanical and tribological properties, and thermal stability of sputter-deposited titanium nickel-based and titanium diboride/titanium carbide multilayer hard coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Hsia

    This thesis is focused on the synthesis of hard and smooth multilayer coatings with low internal stress and equiaxed structure using dual-cathode unbalanced reactive magnetron sputtering system. The studied materials include TiN-based and TiB2/TiC multilayer coatings. These as-deposited coatings and after annealing at elevated temperature were characterized and compared in terms of microstructure, structural, mechanical, and tribological properties. TiN coatings have been widely used in various tribological applications. However, TiN coatings predominantly grow with a columnar grain structure, and these columnar grain boundaries become the sites for crack initiation, resulting in premature failure of TiN coatings. In this research, we report the use of CNx and SiNx to periodically interrupt the growth of TiN in order to suppress the columnar structure. The effect of TiN buffer layer with (111) texture, substrate bias, CNx layer thickness on mechanical properties of TiN/CNx coatings are discussed. The columnar grain structure is partially suppressed in these TiN/CNx coatings. TiN/SiNx multilayer coatings, when deposited under optimum conditions, are smooth and exhibit an equiaxed grain structure with no evidence of columnar growth. These TiN/SiNx multilayer coatings also show better mechanical and tribological properties than those of TiN coatings. Lubricated block-on-ring wear tests show that the wear rate of TiN/SiNx coatings is three times better than that of TiN coatings. The fatigue life of the rod coated with 0.75mum thick TiN/SiNx multilayer coating is more than 10 times better than that of uncoated ones and 5 times better than rods coated with TiN coatings. With proper control of the SiNx thickness, TiN/SiN x multilayer coatings achieved good thermal stability and high hardness ˜37 GPa after annealing at 1000C. Both as-deposited and annealed TiB2/TiC multilayer coatings are examined. These TiB2/TiC coatings exhibit excellent wear resistance under dry block

  18. Repair of high performance multilayer coatings

    SciTech Connect

    Gaines, D.P. . Dept. of Physics and Astronomy); Ceglio, N.M. ); Vernon, S.P. ); Krumrey, M.; Mueller, P. . VUV Radiometric Lab.)

    1991-07-01

    Fabrication and environmental damage issues may require that the multilayer x-ray reflection coatings used in soft x-ray projection lithography be replaced or repaired. Two repair strategies were investigated. The first was to overcoat defective multilayers with a new multilayer. The feasibility of this approach was demonstrated by depositing high reflectivity (61% at 130 {Angstrom}) molybdenum silicon (Mo/Si) multilayers onto fused silica figured optics that had already been coated with a Mo/Si multilayer. Because some types of damage mechanisms and fabrication errors are not repairable by this method, a second method of repair was investigated. The multilayer was stripped from the optical substrate by etching a release layer which was deposited onto the substrate beneath the multilayer. The release layer consisted of a 1000 {Angstrom} aluminum film deposited by ion beam sputtering or by electron beam evaporation, with a 300 {Angstrom} SiO{sub 2} protective overcoat. The substrates were superpolished zerodur optical flats. The normal incidence x-ray reflectivity of multilayers deposited on these aluminized substrates was degraded, presumably due to the roughness of the aluminum films. Multilayers, and the underlying release layers, have been removed without damaging the substrates.

  19. Repair of high-performance multilayer coatings

    NASA Astrophysics Data System (ADS)

    Gaines, David P.; Ceglio, Natale M.; Vernon, Stephen P.; Krumrey, Michael K.; Mueller, Peter

    1992-01-01

    Fabrication and environmental damage issues may require that the multilayer x-ray reflection coatings used in soft x-ray projection lithography be replaced or repaired. Two repair strategies were investigated. The first was to overcoat defective multilayers with a new multilayer. The feasibility of this approach was demonstrated by depositing high reflectivity (61% at 130 A) molybdenum silicon (Mo/Si) multilayers onto fused silica figured optics that had already been coated with a Mo/Si multilayer. Because some types of damage mechanisms and fabrication errors are not repairable by this method, a second method of repair was investigated. The multilayer was stripped from the optical substrate by etching a release layer which was deposited onto the substrate beneath the multilayer. The release layer consisted of a 1000 A aluminum film deposited by ion beam sputtering or by electron beam evaporation, with a 300 A SiO protective overcoat. The substrates were superpolished zerodur optical flats. The normal incidence x-ray reflectivity of multilayers deposited on these aluminized substrates was degraded, presumably due to roughness of the aluminum films. Multilayers, and the underlying release layers, have been removed without damaging the substrates.

  20. Multilayer thermal barrier coating systems

    DOEpatents

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  1. Figure correction of multilayer coated optics

    DOEpatents

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  2. Ultrahard Multilayer Coatings

    SciTech Connect

    Chrzan, D.C.; Dugger, M.; Follstaedt, D.M.; Friedman, Lawrence H.; Friedmann, T.A.; Knapp, J.A.; McCarty, K.F.; Medlin, D.L.; Mirkarimi, P.B.; Missert, N.; Newcomer, P.P.; Sullivan, J.P.; Tallant, D.R.

    1999-05-01

    We have developed a new multilayer a-tC material that is thick stress-free, adherent, low friction, and with hardness and stiffness near that of diamond. The new a-tC material is deposited by J pulsed-laser deposition (PLD) at room temperature, and fully stress-relieved by a short thermal anneal at 600°C. A thick multilayer is built up by repeated deposition and annealing steps. We measured 88 GPa hardness, 1100 GPa Young's modulus, and 0.1 friction coefficient (under high load). Significantly, these results are all well within the range reported for crystalline diamond. In fact, this material, if considered separate from crystalline diamond, is the 2nd hardest material known to man. Stress-free a-tC also has important advantages over thin film diamond; namely, it is smooth, processed at lower temperature, and can be grown on a much broader range of substrates. This breakthrough will enable a host of applications that we are actively pursuing in MEMs, sensors, LIGA, etc.

  3. Comparison in mechanical and tribological properties of CrTiAlMoN and CrTiAlN nano-multilayer coatings deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Guojun; Jiang, Bailing

    2016-02-01

    CrTiAlN and CrTiAlMoN nano-multilayer coatings were deposited by closed field unbalanced magnetron sputtering. TiMoN and CrTiMoN nano-multilayer coatings with same Mo2N layer thickness were also prepared for comparison. The structure of these coatings is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The mechanical and tribological properties were characterized and compared by nano-indentation and ball-on-disc test. It was found that these coatings were structured by fcc metal nitride phases (including CrN, TiN, AlN and Mo2N) and the preferred orientation changed from (1 1 1) to (2 0 0) with the increase of Mo content. The TEM results showed that the coatings exhibited typical columnar structure and nano-multilayer structure with modulation periods ranged from 3.2 nm to 7.6 nm. Among these coatings, CrTiAlMoN coatings presented the highest hardness, lowest coefficient of friction (COF) and wear rate. The hardness of these nano-multilayer coatings were determined by layer interfaces: TiN/Mo2N and AlN/Mo2N layer interface showed benefit on hardness enhancement while CrN/Mo2N layer interface led to a great hardness decrement. In comparison with the other as-deposited coatings, the low COF of CrTiAlMoN coatings was not only affected by Mo addition but also related to its oxidation behaviors.

  4. Corrosion resistance of multilayer hybrid sol-gel coatings deposited on the AISI 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Caballero, Y. T.; Rondón, E. A.; Rueda, L.; Hernández Barrios, C. A.; Coy, A.; Viejo, F.

    2016-02-01

    In the present work multilayer hybrid sol-gel coatings were synthesized on the AISI 316L austenitic stainless steel employed in the fabrication of orthopaedic implants. Hybrid sols were obtained from a mixture of inorganic precursor, TEOS, and organic, GPTMS, using ethanol as solvent, and acetic acid as catalyst. The characterization of the sols was performed using pH measurements, rheological tests and infrared spectroscopy (FTIR) for different ageing times. On the other hand, the coatings were characterized by scanning electron microscopy (SEM), while the corrosion resistance was evaluated using anodic potentiodynamic polarization in SBF solution at 37±2°C. The results confirmed that sol-gel synthesis employing TEOS-GPTMS systems produces uniform and homogeneous coatings, which enhanced the corrosion resistance with regard to the parent alloy. Moreover, corrosion performance was retained after applying more than one layer (multilayer coatings).

  5. Effects of post-deposition annealing on the mechanical and chemical properties of the Si 3N 4/NbN multilayer coatings

    NASA Astrophysics Data System (ADS)

    Jeong, J. J.; Lee, C. M.

    2003-05-01

    Multilayered thin films consisting of alternate layers of silicon nitride (Si 3N 4) and niobium nitride (NbN) have been prepared by a dc reactive sputtering technique in nitrogen and argon atmosphere using high purity Nb and Si targets for various flow ratios of N 2/Ar. It has been found that the hardness of the multilayered system is higher than that of the constituent individual layers of equal thickness. Although a single layer of amorphous Si 3N 4 has higher hardness compared with a single layer of nanocrystalline NbN at all the deposition conditions used in this experiment, the hardness of the multilayer coatings consisting of consecutive Si 3N 4/NbN layers strongly follows the hardness variation of the polycrystalline NbN. When the multilayer coatings are subjected to post-deposition annealing at high temperatures, it has been found that both the hardness and the adhesion strength of the coating decrease with increasing annealing temperature. X-ray photoelectron spectroscopy (XPS) results reveal that oxidation of the coatings during annealing plays a crucial role behind such deterioration in mechanical properties. Further, it has been noted that NbN is a more oxidation resistant material than Si 3N 4. Therefore, it has been proposed that during preparation of multilayers with consecutive thin layers of NbN and Si 3N 4, the topmost layer should be made of NbN, instead of Si 3N 4, to prevent the oxygen diffusion from the top surface layer to the next layer underneath.

  6. Synthesis and Characterization of Multilayered Diamond Coatings for Biomedical Implants

    PubMed Central

    Booth, Leigh; Catledge, Shane A.; Nolen, Dustin; Thompson, Raymond G.; Vohra, Yogesh K.

    2011-01-01

    With incredible hardness and excellent wear-resistance, nanocrystalline diamond (NCD) coatings are gaining interest in the biomedical community as articulating surfaces of structural implant devices. The focus of this study was to deposit multilayered diamond coatings of alternating NCD and microcrystalline diamond (MCD) layers on Ti-6Al-4V alloy surfaces using microwave plasma chemical vapor deposition (MPCVD) and validate the multilayer coating’s effect on toughness and adhesion. Multilayer samples were designed with varying NCD to MCD thickness ratios and layer numbers. The surface morphology and structural characteristics of the coatings were studied with X-ray diffraction (XRD), Raman spectroscopy, and atomic force microscopy (AFM). Coating adhesion was assessed by Rockwell indentation and progressive load scratch adhesion tests. Multilayered coatings shown to exhibit the greatest adhesion, comparable to single-layered NCD coatings, were the multilayer samples having the lowest average grain sizes and the highest titanium carbide to diamond ratios. PMID:21603588

  7. TiO2/SiO2 multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mazur, M.; Wojcieszak, D.; Domaradzki, J.; Kaczmarek, D.; Song, S.; Placido, F.

    2013-06-01

    In this paper designing, preparation and characterization of multifunctional coatings based on TiO2/SiO2 has been described. TiO2 was used as a high index material, whereas SiO2 was used as a low index material. Multilayers were deposited on microscope slide substrates by microwave assisted reactive magnetron sputtering process. Multilayer design was optimized for residual reflection of about 3% in visible spectrum (450-800 nm). As a top layer, TiO2 with a fixed thickness of 10 nm as a protective film was deposited. Based on transmittance and reflectance spectra, refractive indexes of TiO2 and SiO2 single layers were calculated. Ultra high vacuum atomic force microscope was used to characterize the surface properties of TiO2/SiO2 multilayer. Surface morphology revealed densely packed structure with grains of about 30 nm in size. Prepared samples were also investigated by nanoindentation to evaluate their protective performance against external hazards. Therefore, the hardness of the thin films was measured and it was equal to 9.34 GPa. Additionally, contact angle of prepared coatings has been measured to assess the wetting properties of the multilayer surface.

  8. Effect Of The Plasma Deposition Parameters On The Properties Of Ti/TiN Multilayers For Hard Coatings Applications

    SciTech Connect

    Saoula, N.; Henda, K.; Kesri, R.

    2008-09-23

    In this study, we present the effect of the plasma deposition parameters on the mechanical properties of Ti/TiN multilayers. The elaboration of our films has been carried out by RF-Magnetron Sputtering (13.56 MHz) under nitrogen and argon reactive plasma at low pressure. The film depositions have been done on steel substrates. The first step of our study was the optimization of the depositions conditions in order to obtain good quality films. The amount of nitrogen in the sputtering gases being fixed at 10%. The total pressure was set between 2mTorr to 10mTorr. The deposited multilayers were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and micro-indentation.

  9. Multi-layer coatings

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze'ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  10. Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al 2 O 3 double-coating

    NASA Astrophysics Data System (ADS)

    Hirvikorpi, Terhi; Vähä-Nissi, Mika; Harlin, Ali; Salomäki, Mikko; Areva, Sami; Korhonen, Juuso T.; Karppinen, Maarit

    2011-09-01

    Commercial polylactide (PLA) films are coated with a thin (20 nm) non-toxic polyelectrolyte multilayer (PEM) film made from sodium alginate and chitosan and additionally with a 25-nm thick atomic layer deposited (ALD) Al 2O 3 layer. The double-coating of PEM + Al 2O 3 is found to significantly enhance the water vapor barrier properties of the PLA film. The improvement is essentially larger compared with the case the PLA film being just coated with an ALD-grown Al 2O 3 layer. The enhanced water vapor barrier characteristics of the PEM + Al 2O 3 double-coated PLA films are attributed to the increased hydrophobicity of the surface of these films.

  11. Near-infrared radiation curable multilayer coating systems and methods for applying same

    DOEpatents

    Bowman, Mark P; Verdun, Shelley D; Post, Gordon L

    2015-04-28

    Multilayer coating systems, methods of applying and related substrates are disclosed. The coating system may comprise a first coating comprising a near-IR absorber, and a second coating deposited on a least a portion of the first coating. Methods of applying a multilayer coating composition to a substrate may comprise applying a first coating comprising a near-IR absorber, applying a second coating over at least a portion of the first coating and curing the coating with near infrared radiation.

  12. Tribological and mechanical properties of Ti/TiAlN/TiAlCN nanoscale multilayer PVD coatings deposited on AISI H11 hot work tool steel

    NASA Astrophysics Data System (ADS)

    AL-Bukhaiti, M. A.; Al-hatab, K. A.; Tillmann, W.; Hoffmann, F.; Sprute, T.

    2014-11-01

    A new [Ti/TiAlN/TiAlCN]5 multilayer coatings were deposited onto polished substrate AISI H11 (DIN 1.2343) steel by an industrial magnetron sputtering device. The tribological performance of the coated system was investigated by a ball-on-disk tribometer against 100Cr6 steel and Al2O3 balls. The friction coefficients and specific wear rates were measured at various normal loads (2, 5, 8, and 10 N) and sliding velocities (0.2, 0.4, and 0.8 m/s) in ambient air and dry conditions. The phase structure, composition, wear tracks morphologies, hardness, and film/substrate adhesion of the coatings were characterized by light-microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), 3D-surface analyzer, nanoindentation, and scratch tests. Results showed that the deposited coatings showed low wear rates in the scale of 10-15 m3/N m, low friction coefficients against 100Cr6 and Al2O3 balls in the range of 0.25-0.37, and good hardness in the range of 17-20 GPa. Results also revealed that the friction coefficients and disc wear rates decrease and increase, respectively with the increase in normal load and sliding velocity for both coating/Al2O3 and coating/100Cr6 sliding system. Compared with the uncoated-H11 substrate, the deposited coating exhibited superior tribological and mechanical properties. The dominant wear mechanism was abrasive wear for coating/Al2O3 pair, while for coating/100Cr6 pair, a combination of mild adhesive wear, severe adhesive wear, and abrasive wear (extensive plowing) were the dominant wear mechanisms at different applied normal loads.

  13. Influence of ion energies on the structure, composition, and properties of multilayer Ti-Al-Si-N ion-plasma-deposited coatings

    NASA Astrophysics Data System (ADS)

    Blinkov, I. V.; Volkhonskii, A. O.; Belov, D. S.; Sergevnin, V. S.; Chernogor, A. V.

    2016-05-01

    It is established that the energy of deposited particles influences the structure, composition, and properties of multilayer nitride coatings consisting of alternating layers of nanocrystalline TiN and amorphous Si3N4 phases with inclusions of nanocrystalline hexagonal AlN formed at energies of titanium, aluminum, and silicon ions exceeding ~317 × 10-19, 267 × 10-19, and 230 × 10-19 J, respectively. As the energy of titanium ions bombarding the substrate increases above ~512 × 10-19 J, the phase transition from disordered TiN x to Ti3N2 and the appearance of 2- to 3-nm-thick sublayers in 15-nm-thick nanocrystalline TiN x layers take place in the coating. The maximum hardness of such coatings reaches a level of ~54 GPa.

  14. Multilayer Coatings for UV Spectral Range

    NASA Astrophysics Data System (ADS)

    Miloushev, Ilko; Tenev, Tihomir; Peyeva, Rumiana; Panajotov, Krassimir

    2010-01-01

    Optical coatings for the UV spectral range play currently a significant role in the modern optical devices. For reducing of manufacturing cost the reliable design is essential. Therefore, better understanding of the optical properties of the used materials is indispensable for the proper design and manufacturing of the multilayer UV coatings. In this work we present some results on the preparation of reflective UV coatings. The implemented materials are magnesium fluoride and lanthanum fluoride. Their optical constants are determined from spectral characteristics of single layers in the 200-800 nm spectral range, obtained by thermal boat evaporation in high vacuum conditions. These results are subsequently used for the analysis of high reflection (HR) stack made of 40 layers deposited by the same deposition process.

  15. Deposition- controlled uniformity of multilayer mirrors

    NASA Astrophysics Data System (ADS)

    Jankowski, Alan F.; Makowiecki, Daniel M.; McKernan, M. A.; Foreman, R. J.; Patterson, R. G.

    1991-02-01

    The widely used physical vapor deposition techniques to produce multilayer x-ray optics with uniform layer pair spacings (<1% variation) over large areas (> 10cm x 10 cm) have all been limited by the geometry of the vapor source. Magnetron sputtering sources, geometrically a convolution of point sources in a circular or rectangular array, provide uniformly thick regions of coating only within the boundaries of the erosion track. To maximize uniformity over large regins requires target materials equally as large, proving a costly proposition. Electron beam or molecular beam sources are similarly limited by the size of the melt pooi or effusion cell diameter. For ion beam deposition, spatial divergence from typical ion sources results in coating thickness variations of 5%or more for large areas as previously described. To minimize the ultimate expense of designing a necessarily large, single deposition source to provide a small thickness variation (without the use of compensating substrate motion or elaborate shielding over the deposition sources), several small sources arranged in an appropiate array may provide a viable alternative. To this end, the use of a linear array of one-inch magnetron sources has proven effective. Material has been deposited within the limitations of 1.5% thickness variation, along the axis of a linear gun array, over 15cm in length. The feasibility of using two linear arrays of magnetron sources is investigated to prepare large area multilayer mirrors with minimal layer pair spacing variations. Such a deposition system also allows for gradually varying the layer pair spacings across the surface of an optic, in a designed manner, which proves useful for focusing applications.

  16. Spray Deposition of Multilayer Gas Barrier Thin Films

    NASA Astrophysics Data System (ADS)

    Givens, Tara; Xiang, Fangming; Grunlan, Jaime

    2015-03-01

    Dip-assisted assembly is the norm for making multilayer thin films (also known as layer-by-layer [LbL] assembly). Spray-based deposition possesses several advantages over dipping, but has not been studied in great detail, especially for gas barrier layers. In this study, polyethylenimine [PEI]/poly(acylic acid) [PAA] bilayers were deposited with varying spray parameters. Spraying time was found to be the most influential parameter to control the roughness, thickness, and gas barrier of the PEI/PAA assembly. A spray-coated sample was prepared using optimized parameters and compared to a dip-coated sample using the same deposition time (5s). The sprayed sample was better in terms of thickness, roughness, and gas barrier. This study is the first report showing that a sprayed multilayer assembly has better properties than its dipped counterpart. These findings could revolutionize the multilayer deposition process, making it more commercially-friendly.

  17. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1997-01-01

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.

  18. High reflectance-low stress Mo-Si multilayer reflective coatings

    DOEpatents

    Montcalm, Claude; Mirkarimi, Paul B.

    2000-01-01

    A high reflectance-low stress Mo-Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.

  19. Process for fabricating high reflectance-low stress Mo--Si multilayer reflective coatings

    DOEpatents

    Montcalm, Claude; Mirkarimi, Paul B.

    2001-01-01

    A high reflectance-low stress Mo--Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.

  20. Synthesis and characterization of titanium carbide, titanium boron carbonitride, titanium boride/titanium carbide and titanium carbide/chromium carbide multilayer coatings by reactive and ion beam assisted, electron beam-physical vapor deposition (EB-PVD)

    NASA Astrophysics Data System (ADS)

    Wolfe, Douglas Edward

    The purpose of the present work was to investigate the synthesis of titanium carbide, TiBCN, TiB2/TiC and TiC/Cr23C6 multilayer coatings by several methods of electron beam-physical vapor deposition (EB-PVD) and examine the affects of various processing parameters on the properties and microstructures of the coatings. TiC was successfully deposited by reactive ion beam assisted (RIBA), EB-PVD and the results were compared to various titanium carbide coatings deposited by a variety of techniques. The affects of substrate temperature and ion beam current density were correlated with composition, hardness, changes in the lattice parameter, degree of crystallographic texture, residual stress, surface morphology, and microstructure. The average Vicker's hardness number was found to increase with increasing ion beam current density and increase over the substrate temperature range of 250°C to 650°C. The average Vicker's hardness number decreased at a substrate temperature of 750°C as a result of texturing and microstructure. The present investigation shows that the average Vicker's hardness number is not only a function of the composition, but also the microstructure including the degree of crystallographic texture. TiB2/TiC multilayer coatings were deposited by argon ion beam assisted, EB-PVD with varying number of total layers to two different film thicknesses under slightly different deposition conditions. In both cases, the hardness of the coatings increased with increasing number of total layers. The adhesion of the coatings ranged from 30 N to 50 N, with the better adhesion values obtained with the thinner coatings. The crystallographic texture coefficients of both the TiC and TiB2 layers were found to change with increasing number of total layers. The multilayer design was found to significantly affect the microstructure and grain size of the deposited coatings. The fracture toughness was found to decrease with increasing number of total layers and was

  1. The NSLS-II Multilayer Laue Lens Deposition System

    SciTech Connect

    Conley, R.; Bouet, N.; Biancarosa, J.; Shen, Q.; Boas, L.; Feraca, J.; Rosenbaum, L.

    2009-08-02

    The NSLS-II[1] program has a requirement for an unprecedented level of x-ray nanofocusing and has selected the wedged multilayer Laue lens[2,3] (MLL) as the optic of choice to meet this goal. In order to fabricate the MLL a deposition system is required that is capable of depositing depth-graded and laterally-graded multilayers with precise thickness control over many thousands of layers, with total film growth in one run up to 100m thick or greater. This machine design expounds on the positive features of a rotary deposition system[4] constructed previously for MLLs and will contain multiple stationary, horizontally-oriented magnetron sources where a transport will move a substrate back and forth in a linear fashion over shaped apertures at well-defined velocities to affect a multilayer coating.

  2. Influence of high temperatures on optical fibers coated with multilayer protective coatings

    NASA Astrophysics Data System (ADS)

    Stanczyk, T.; Fidelus, J.; Wysokinski, K.; Lipinski, S.; Tenderenda, T.; Kuklińska, M.; Kołakowska, A.; Rodriguez Garcia, J.; Canadas Martinez, I.; Nasiłowski, T.

    2015-12-01

    In this work we present an innovative method of enhancing optical fibers' resistance to extremely high temperatures by deposition of a multilayer metal coating on the fibers' surface. Such multilayer coating is necessary because of the silica degradation at elevated temperatures. Despite the fact that copper coated fibers work well at temperatures up to 400°C, at higher temperatures copper oxidizes and can no longer protect the fiber. To hold back the copper oxidation and silica degradation processes we developed a dedicated multilayer coating which allows fibers to operate at temperatures up to 700°C. The optimal protective layer has been chosen after numerous high-temperature tests, where copper plates coated with different kinds of coatings were evaluated. What is more, we present results of the high-temperature reliability tests of copper coated fibers protected with our multilayer coating. Performed tests proved that our solution significantly improved optical fibers' reliability to both: elevated temperatures and rapid changes of temperature. Furthermore the developed metal coatings allow fibers' to be electrolytically bonded to other metal elements (e.g. sensor transducers) what makes them great candidates for harsh environment fiber optic sensor applications.

  3. Brownian thermal noise in multilayer coated mirrors

    NASA Astrophysics Data System (ADS)

    Hong, Ting; Yang, Huan; Gustafson, Eric K.; Adhikari, Rana X.; Chen, Yanbei

    2013-04-01

    We analyze the Brownian thermal noise of a multilayer dielectric coating used in high-precision optical measurements, including interferometric gravitational-wave detectors. We assume the coating material to be isotropic, and therefore study thermal noises arising from shear and bulk losses of the coating materials. We show that coating noise arises not only from layer thickness fluctuations, but also from fluctuations of the interface between the coating and substrate, driven by fluctuating shear stresses of the coating. Although thickness fluctuations of different layers are statistically independent, there exists a finite coherence between the layers and the substrate-coating interface. In addition, photoelastic coefficients of the thin layers (so far not accurately measured) further influence the thermal noise, although at a relatively low level. Taking into account uncertainties in material parameters, we show that significant uncertainties still exist in estimating coating Brownian noise.

  4. Reactively evaporated multilayer antireflection coatings for Ge optical window

    NASA Astrophysics Data System (ADS)

    Asghar, M. H.; Placido, F.; Naseem, S.

    2007-04-01

    Two multilayer antireflection (AR) coating configurations are designed, prepared and characterized. These AR coatings are designed for a 1 mm thick Ge optical window in the 3.25-5.25 µm band. Ta2O5 and TiO2 are used as high index materials along with SiO2 as low index material. Configuration 1 comprises nine alternating layers of SiO2 and Ta2O5, whereas configuration 2 comprises seven alternating layers of SiO2 and TiO2. Post-deposition annealing is also carried out in the temperature range 150-450 °C for 10 h. The prepared multilayered structures are characterized optically and structurally using a spectrophotometer, an atomic force microscope, x-ray diffraction and a scanning electron microscope. Optical characterization shows that multilayered structures have high absorption for as-deposited samples. A considerable improvement in the transmission profiles for the two multilayered configurations is observed at 350 °C with peak and average transmission for both the configurations exceeding 90%. The as-prepared samples show predominantly amorphous-like structure with pronounced peaks for configuration 2 only. Delamination (for configuration 1) and cracking (for configuration 2) of the multilayered structures are witnessed at an annealing temperature of 450 °C.

  5. Ablation behavior of monolayer and multilayer Ir coatings under carburizing and oxidizing oxyacetylene flames

    NASA Astrophysics Data System (ADS)

    Wu, Wangping; Jiang, Jinjin; Chen, Zhaofeng

    2016-06-01

    Iridium is one of the most promising candidates for protective barrier of refractory materials to endure high service temperature. The multilayer iridium coating was produced by a double glow plasma process on the polished tungsten carbide substrates, compared with monolayer. The ablation behaviors of the monolayer on the unpolished and polished substrates were investigated under carburizing and oxidizing oxyacetylene flames, respectively, at the same time the multilayer coating ablated under oxidizing flames. Multilayer coating was a polycrystalline phase with the preferential (220) orientation. Monolayer on the unpolished substrate had fine coarse grains and some small microcracks were present. Multilayer consisted of columnar grains with some voids between the grains boundaries. The formation of a WIr phase in the as-deposited multilayer was attributed to high deposition temperature. The monolayer could endure high temperature up to 1800 °C in carburizing flame. The substrates could be protected more effectively by multilayer than monolayer at 2000- 2200 °C in oxidizing flame.

  6. Characterization of multilayer nitride coatings by electron microscopy and modulus mapping

    SciTech Connect

    Pemmasani, Sai Pramod; Rajulapati, Koteswararao V.; Ramakrishna, M.; Valleti, Krishna; Gundakaram, Ravi C.; Joshi, Shrikant V.

    2013-07-15

    This paper discusses multi-scale characterization of physical vapour deposited multilayer nitride coatings using a combination of electron microscopy and modulus mapping. Multilayer coatings with a triple layer structure based on TiAlN and nanocomposite nitrides with a nano-multilayered architecture were deposited by Cathodic arc deposition and detailed microstructural studies were carried out employing Energy Dispersive Spectroscopy, Electron Backscattered Diffraction, Focused Ion Beam and Cross sectional Transmission Electron Microscopy in order to identify the different phases and to study microstructural features of the various layers formed as a result of the deposition process. Modulus mapping was also performed to study the effect of varying composition on the moduli of the nano-multilayers within the triple layer coating by using a Scanning Probe Microscopy based technique. To the best of our knowledge, this is the first attempt on modulus mapping of cathodic arc deposited nitride multilayer coatings. This work demonstrates the application of Scanning Probe Microscopy based modulus mapping and electron microscopy for the study of coating properties and their relation to composition and microstructure. - Highlights: • Microstructure of a triple layer nitride coating studied at multiple length scales. • Phases identified by EDS, EBSD and SAED (TEM). • Nanolayered, nanocomposite structure of the coating studied using FIB and TEM. • Modulus mapping identified moduli variation even in a nani-multilayer architecture.

  7. Multilayer coatings for solar energy control applications

    SciTech Connect

    Kivaisi, R.T.; Mbise, G.

    1993-12-31

    This work presents some results for window coatings that are suitable for solar control applications. Selected research results are given for metal/dielectric based coatings optimized for normal incidence. These coatings can be used to improve the performance of windows both for architectural and automobile sectors. Surface coatings which are transparent at 0.3 < {lambda} < 0.7 {micro}m can be used to solar control windows. A thin homogeneous noble metal film (eg Ag) can combine short wavelength transmittance with high long wavelength reflectance. By embedding the metal film between high refractive index dielectric layers one can optimize the transmittance in the desired spectral region. Transmittance data for multilayer stacks designed for normal and non normal incidence to the coating are presented.

  8. Characteristics of multi-layer coating formed on commercially pure titanium for biomedical applications.

    PubMed

    Teker, Dilek; Muhaffel, Faiz; Menekse, Meryem; Karaguler, Nevin Gul; Baydogan, Murat; Cimenoglu, Huseyin

    2015-03-01

    An innovative multi-layer coating comprising a bioactive compound layer (consisting of hydroxyapatite and calcium titanate) with an underlying titanium oxide layer (in the form of anatase and rutile) has been developed on Grade 4 quality commercially pure titanium via a single step micro-arc oxidation process. Deposition of a multi-layer coating on titanium enhanced the bioactivity, while providing antibacterial characteristics as compared its untreated state. Furthermore, introduction of silver (4.6wt.%) into the multi-layer coating during micro-arc oxidation process imposed superior antibacterial efficiency without sacrificing the bioactivity. PMID:25579960

  9. Optics and multilayer coatings for EUVL systems

    SciTech Connect

    Soufli, R; Bajt, S; Hudyma, R M; Taylor, J S

    2008-03-21

    EUV lithography (EUVL) employs illumination wavelengths around 13.5 nm, and in many aspects it is considered an extension of optical lithography, which is used for the high-volume manufacturing (HVM) of today's microprocessors. The EUV wavelength of illumination dictates the use of reflective optical elements (mirrors) as opposed to the refractive lenses used in conventional lithographic systems. Thus, EUVL tools are based on all-reflective concepts: they use multilayer (ML) coated optics for their illumination and projection systems, and they have a ML-coated reflective mask.

  10. Novel Investigation on Nanostructured Multilayer and Functionally Graded Ni-P Electroless Coatings on Stainless Steel

    NASA Astrophysics Data System (ADS)

    Anvari, S. R.; Monirvaghefi, S. M.; Enayati, M. H.

    2015-06-01

    In this study, step-wise multilayer and functionally graded Ni-P coatings were deposited with electroless in which the content of phosphorus and nickel would be changed gradually and step-wise through the thickness of the coatings, respectively. To compare the properties of these coatings with Ni-P single-layer coatings, three types of coatings with different phosphorus contents were deposited. Heat treatment of coatings was performed at 400 °C for 1 h. The microstructure and phase transformation of coatings were characterized by SEM/EDS, TEM, and XRD. The mechanical properties of coatings were studied by nanoindentation test. According to the results of the single-layer coatings, low P coating had the maximum hardness and also the ratio of hardness ( H) to elasticity modulus ( E) for the mentioned coating was maximum. In addition, low and medium P coatings had crystalline and semi-crystalline structure, respectively. The mentioned coatings had <111> texture and after heat treatment their texture didn't change. While high P coating had amorphous structure, after heat treatment it changed to crystalline structure with <100> texture for nickel grains. Furthermore, the results showed that functionally graded and step-wise multilayer coatings were deposited successfully by using the same initial bath and changing the temperature and pH during deposition. Nanoindentation test results showed that the hardness of the mentioned coatings changed from 670 Hv near the substrate to 860 Hv near the top surface of coatings. For functionally graded coating the hardness profile had gradual changes, while step-wise multilayer coating had step-wise hardness profile. After heat treatment trend of hardness profiles was changed, so that near the substrate, hardness was measured 1400 Hv and changed to 1090 Hv at the top coat.

  11. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1997-09-23

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition. 6 figs.

  12. Lifetime studies of Mo/Si and Mo/Be multilayer coatings for extreme ultraviolet lithography

    SciTech Connect

    Bajt, S; Clift, W M; Folta, J A; Gullikson, E M; Klebanoff, L E; Kleineberg, U; Malinowski, M E; Wedowski, M

    1999-08-05

    Extreme Ultraviolet Lithography (EUVL) is a candidate for future application by the semiconductor industry in the production of sub-100 nm feature sizes in integrated circuits. Using multilayer reflective coatings optimized at wavelengths ranging from 11 to 14 nm, EUVL represents a potential successor to currently existing optical lithography techniques. In order to assess lifetimes of the multilayer coatings under realistic conditions, a series of radiation stability tests has been performed. In each run a dose of EUV radiation equivalent to several months of lithographic operation was applied to Mo/Si and MO/Be multilayer coatings within a few days. Depending on the residual gas concentration in the vacuum environment, surface deposition of carbon during the exposure lead to losses in the multilayer reflectivity. However, in none of the experimental runs was structural damage within the bulk of the multilayers observed. Mo/Si multilayer coatings recovered their full original reflectivity after removal of the carbon layer by an ozone cleaning method. Auger depth profiling on MO/Be multilayers indicate that carbon penetrated into the Be top layer during illumination with high doses of EUV radiation. Subsequent ozone cleaning fully removed the carbon, but revealed enhanced oxidation of the area illuminated, which led to an irreversible loss in reflectance on the order of 1%. Keywords: Extreme ultraviolet (EUV) lithography, multilayer reflective coatings, radiation stability, surface contamination

  13. Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy

    DOEpatents

    Montcalm, Claude; Folta, James Allen; Tan, Swie-In; Reiss, Ira

    2002-07-30

    A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  14. Self-forming TiBN Nanocomposite Multilayer Coating Prepared by Pulse Cathode Arc Method.

    PubMed

    Cao, Yongzhi; Hu, Zhenjiang; Yan, Leilei; Yu, Fuli; Tu, Wendi

    2016-12-01

    Novel multilayer structured TiBN coatings were deposited on Si (100) substrate using TiBN complex cathode plasma immersion ion implantation and deposition technique (PIIID). The coatings were characterized by X-ray diffraction (XRD), high-resolution transmission electron microcopy (HRTEM), energy-dispersive spectrometer (EDS) and ball-on-disk test. XRD results reveal that both samples of TiBN coatings have the main diffraction peak of TiN (200) and (220). Cross-section TEM images reveal that these coatings have the character of self-forming multilayer and consists of face-centered cubic TiN and hexagonal BN nanocrystalline embedded in amorphous matrix. Because of the existence of hexagonal BN, the friction coefficient of the new TiBN coating in room temperature is obviously lower than that of the monolithic TiN nanocrystalline coating. PMID:27460597

  15. Self-forming TiBN Nanocomposite Multilayer Coating Prepared by Pulse Cathode Arc Method

    NASA Astrophysics Data System (ADS)

    Cao, Yongzhi; Hu, Zhenjiang; Yan, Leilei; Yu, Fuli; Tu, Wendi

    2016-07-01

    Novel multilayer structured TiBN coatings were deposited on Si (100) substrate using TiBN complex cathode plasma immersion ion implantation and deposition technique (PIIID). The coatings were characterized by X-ray diffraction (XRD), high-resolution transmission electron microcopy (HRTEM), energy-dispersive spectrometer (EDS) and ball-on-disk test. XRD results reveal that both samples of TiBN coatings have the main diffraction peak of TiN (200) and (220). Cross-section TEM images reveal that these coatings have the character of self-forming multilayer and consists of face-centered cubic TiN and hexagonal BN nanocrystalline embedded in amorphous matrix. Because of the existence of hexagonal BN, the friction coefficient of the new TiBN coating in room temperature is obviously lower than that of the monolithic TiN nanocrystalline coating.

  16. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Brinton, John C. (Technical Monitor)

    2003-01-01

    The activities that occurred during the first year of the grant were: a) completed construction of the large multilayer deposition facility; b) Coated a large number of flat substrates and the interiors of cylindrical X-ray telescope shell substrates with uniform period and depth graded periods of tungsten-silicon (W/Is) bi-layers and other coatings; c) studied the influence of various factors affecting the quality of the multilayer coatings by measuring their reflection efficiency at 8 keV and higher energy X-rays.

  17. Transition mode long period grating biosensor with functional multilayer coatings.

    PubMed

    Pilla, Pierluigi; Malachovská, Viera; Borriello, Anna; Buosciolo, Antonietta; Giordano, Michele; Ambrosio, Luigi; Cutolo, Antonello; Cusano, Andrea

    2011-01-17

    We report our latest research results concerning the development of a platform for label-free biosensing based on overlayered Long Period Gratings (LPGs) working in transition mode. The main novelty of this work lies in a multilayer design that allows to decouple the problem of an efficient surface functionalization from that of the tuning in transition region of the cladding modes. An innovative solvent/nonsolvent strategy for the dip-coating technique was developed in order to deposit on the LPG multiple layers of transparent polymers. In particular, a primary coating of atactic polystyrene was used as high refractive index layer to tune the working point of the device in the so-called transition region. In this way, state-of-the-art-competitive sensitivity to surrounding medium refractive index changes was achieved. An extremely thin secondary functional layer of poly(methyl methacrylate-co-methacrylic acid) was deposited onto the primary coating by means of an original identification of selective solvents. This approach allowed to obtain desired functional groups (carboxyls) on the surface of the device for a stable covalent attachment of bioreceptors and minimal perturbation of the optical design. Standard 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide / N-hydrosuccinimide (EDC / NHS) coupling chemistry was used to link streptavidin on the surface of the coated LPG. Highly sensitive real-time monitoring of multiple affinity assays between streptavidin and biotinylated bovine serum albumin was performed by following the shift of the LPGs attenuation bands. PMID:21263591

  18. Effects of a multilayered DNA/protamine coating on titanium implants on bone responses.

    PubMed

    Sakurai, Toshitsugu; Yoshinari, Masao; Toyama, Takeshi; Hayakawa, Tohru; Ohkubo, Chikahiro

    2016-06-01

    DNA coating on dental titanium (Ti) implants is attracting attention due to its osteogenic properties. The aim of the present study was to evaluate in vitro and in vivo bioactivities of a multilayered DNA/protamine (D/P) coating on Ti implant by simulated body fluid (SBF) immersion experiments and implantation experiments into extracted sockets of rat molars. Two types of DNA, 300 base pair (bp) and 7000 bp fragments, were used. Protamine was initially immobilized onto Ti implants using a tresyl chloride-activated method and DNA and protamine were then alternatively deposited after the immobilization of protamine by a layer-by-layer technique. A multilayered D/P-coating was confirmed by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy measurements. The deposition of apatite progressed more on the surfaces of multilayered D/P-coated Ti implants than on those of nontreated Ti implants in SBF immersion experiments. Animal implantation experiments showed that multilayered D/P-coated Ti implants provided a significantly higher bone-to-implant (BIC) contact ratio 3 weeks after implantation. No significant difference was observed in the BIC ratio 9 weeks after implantation. The results of the present study demonstrated that a multilayered D/P-coating promoted new bone formation at the early stages of the bone healing process. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1500-1509, 2016. PMID:26860353

  19. Multilayered Polymer Coated Carbon Nanotubes to Deliver Dasatinib

    PubMed Central

    Moore, Thomas L.; Grimes, Stuart W.; Lewis, Robert L.; Alexis, Frank

    2014-01-01

    Multilayered, multifunctional polymer coatings were grafted onto carbon nanotubes (CNT) using a one-pot, ring-opening polymerization in order to control the release kinetic and therapeutic efficacy of dasatinib. Biocompatible, biodegradable multilayered coatings composed of poly(glycolide) (PGA), and poly(lactide) (PLA) were polymerized directly onto hydroxyl-functionalized CNT surfaces. Sequential addition of monomers into the reaction vessel enabled multilayered coatings of PLA-PGA, or PGA-PLA. Poly(ethylene glycol) capped the polymer chain ends, resulting in a multifunctional amphiphilic coating. Multilayer polymer coatings on CNTs enabled control of anticancer dasatinib’s release kinetics and enhanced the in vitro therapeutic efficacy against U-87 glioblastoma compared to monolayer polymer coatings. PMID:24294824

  20. Stand for coating deposition and coating/materials testing

    NASA Astrophysics Data System (ADS)

    Ayrapetov, A. A.; Begrambekov, L. B.; Dyachenko, M. Yu; Evsin, A. E.; Grunin, A. V.; Kalachev, A. M.; Sadovskiy, Ya A.; Shigin, P. A.

    2016-03-01

    The paper describes a new laboratory stand constructed for film deposition and for testing of deposited films and materials under pulsed and continuous heat load, ion and electron irradiation. The films are formed on substrates by atoms of target materials as a result of their sputtering by ions of argon plasma. The ion energy and ion flux can be varied independently. This enables the deposition of coatings with variable composition over thickness or of multi-layer coatings. Testing of materials is carried out in plasma under ion or electron irradiation by biasing the tested sample negatively or positively, respectively. The energies of ions or electrons can be varied up to 25 keV. The applied power can reach 4000 W (40 MW/m2 power density in the case of a 1-cm2 sample) in both continuous and pulsed regimes. In pulsed regime, pulses of 1 – 99% duty cycle at 0 – 500 Hz can be applied to the sample. The pulsed particle load can be combined with a continuous load. The size of the tested sample must not exceed 100 mm in diameter. The heat flux can irradiate the whole sample or be focused at its center (minimum spot of ~ 4mm2). Heating of the samples up to 2800 K is possible. At the same time, the backside of the tested sample could be actively cooled. This paper presents the results of deposition and testing of a B4C coating on tungsten and tungsten testing.

  1. Multilayer thin film coatings for reduced infrared loss in hollow glass waveguides

    NASA Astrophysics Data System (ADS)

    Bledt, Carlos M.; Kopp, Daniel V.; Harrington, James A.; Kriesel, Jason M.

    2011-09-01

    Hollow glass waveguides (HGWs) are an attractive alternative to traditional solid-core and 2D photonic crystal, infrared transmissive fibers. Applications for HGWs at wavelengths longer than 2 microns include use of the guides for the delivery of laser power and for use as chemical and thermal sensors. To date, the most common HGW is one with an inner coating of Ag followed by a single-dielectric layer of AgI. These single-layer dielectric coated HGWs have losses for a 700-micron bore guide as low as 0.2 dB/m at 10.6 microns. However, if a multilayer stack of alternating high/low index thin films is deposited instead of a single dielectric layer then the loss can be reduced substantially. In the present study, multilayer dielectric thin films have been deposited inside silica tubing using a liquid-phase deposition method. High index coating materials used include metal sulfides such as PbS while the low index materials include polystyrene (PS) and some sulfides. To date it has been possible to deposit two-layer coatings using, for example, CdS and PS but a lower loss is possible if the coating stack is composed of three dielectric layers. In past work CdS/PbS/CdS coatings were deposited and found to have a measured a loss at λ = 10.6 microns that is approximately two times lower than that for a single dielectric layer. In this paper the theory of multilayer coatings will be presented along with the optical loss measurements from λ = 2 to 12 microns for the multilayer dielectric coatings.

  2. Influence of layer type and order on barrier properties of multilayer PECVD barrier coatings

    NASA Astrophysics Data System (ADS)

    Bahroun, K.; Behm, H.; Mitschker, F.; Awakowicz, P.; Dahlmann, R.; Hopmann, Ch

    2014-01-01

    Due to their macromolecular structure, plastics are limited in their scope of application whenever high barrier functionality against oxygen and water vapour permeation is required. One solution is the deposition of thin silicon oxide coatings in plasma-enhanced chemical vapour deposition (PECVD) processes. A way to improve performance of barrier coatings is the use of multilayer structures built from dyad layers, which combine an inorganic barrier layer and an organic intermediate layer. In order to investigate the influence of type and number of dyads on the barrier performance of coated 23 µm PET films, different dyad setups are chosen. The setups include SiOCH interlayers and SiOx-barrier layers deposited using the precursor hexamethyldisiloxane (HMDSO). A single reactor setup driven in pulsed microwave plasma (MW) mode as well as capacitively coupled plasma (CCP) mode is chosen. In this paper the effects of a variation in intermediate layer recipe and stacking order using dyad setups on the oxygen barrier properties of multilayer coatings are discussed with regard to the chemical structure, morphology and activation energy of the permeation process. Changes in surface nano-morphology of intermediate layers have a strong impact on the barrier properties of subsequent glass-like coatings. Even a complete failure of the barrier is observed. Therefore, when depositing multilayer barrier coatings, stacking order has to be considered.

  3. Electrofabrication of multilayer Fe-Ni alloy coatings for better corrosion protection

    NASA Astrophysics Data System (ADS)

    Ullal, Yathish; Hegde, A. Chitharanjan

    2014-09-01

    Electrofabrication of multilayer Fe-Ni alloy coatings were accomplished successfully on mild steel and their corrosion behaviors were studied. Multilayer comprised of alternatively formed `nano-size' layers of Fe-Ni alloy of different composition have been produced from a single bath having Fe2+and Ni2+ ions using modulated (i.e. periodic pulse control) current density (cd). The deposition conditions were optimized for both composition and thickness of individual layers for best performance of the coatings against corrosion. The deposits were analyzed using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), Hardness Tester, electrochemical AC and DC methods respectively. The multi layered deposits showed better corrosion resistances compared to the monolayer Fe-Ni (CR = 3.77 mm year-1) coating deposited using DC from the same bath; the maximum corrosion resistance being shown by the coating having 300 layers, deposited at cyclic cathodic current densities of 2.0 and 4.0 A dm-2 (CR = 0.03 mm year-1). Drastic improvement in the corrosion performance of multilayer coatings were explained in the light of changed kinetics of mass transfer at cathode and increased surface area due to modulation and layering.

  4. REPLY TO COMMENT: Photoacoustic studies on multilayer dielectric coatings

    NASA Astrophysics Data System (ADS)

    Philip, Annieta; Radhakrishnan, P.; Nampoori, V. P.; Vallabhan, C. P. G.

    1996-05-01

    We provide here point by point reply to the comments made on our earlier paper which describes photoacoustic studies on multilayer dielectric films. We clearly establish that the experimental data published by us are indeed correct and the results of simple computations used as the basis for criticism are not applicable in the case of multilayer dielectric coatings.

  5. Large-area sol-gel multilayer laser reflectors applied by meniscus coating

    SciTech Connect

    Britten, J.A.; Thomas, I.M.

    1992-03-19

    A meniscus coating method to produce multilayer laser reflectors on 30+ cm substrates is described. These high-laser damage threshold (LDT) dielectric coatings are deposited from colloidal suspensions of silica and alumina nanometer-scale particles. The deposition process involves forcing a slow suspension flow through a porous applicator tube, forming a falling film on the tube. A substrate contacts this film to form a meniscus, and then moves relative to the applicator to entrain a film upon itself, which thins to optical dimensions upon solvent evaporation. The fluid dynamics of meniscus coating are briefly described, and optically measured dried film thicknesses are compared to theoretical predictions. Deviations from the theory are traced to non-Newtonian rheology of one of the suspensions used. Preliminary multilayer coating results which focus on large-scale uniformity and LDT are presented.

  6. Modeling of thermal stresses in elastic multilayer coating systems

    NASA Astrophysics Data System (ADS)

    Gao, Chunxue; Zhao, Zhiwei; Li, Xuehua

    2015-02-01

    The performance and reliability of multilayer coating systems are strongly influenced by thermal stresses. The present study develops an alternative analytical model to predict the thermal stresses in elastic multilayer coating systems. An exact closed-form solution is obtained which is independent of the number of coating layers. In addition, with the definition of the coordinate system, the closed-form solution is concisely formulated. Specific results are calculated for thermal stresses in HfO2/SiO2 multilayer optical coatings, and a finite element analysis is performed to confirm the analytical results. The two results agree fairly well with each other. Also, when the thicknesses of the coating layers are much less than the substrate thickness, the approximate solution is obtained based on the exact closed-form solution, and its accuracy is examined.

  7. EUV multilayer coatings for solar imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Windt, David L.

    2015-09-01

    This paper describes recent progress in the development of new EUV multilayer coatings for solar physics. In particular, we present results obtained with Pd/B4C/Y, Al/Zr, and Al-Mg/SiC multilayers, designed for normal incidence operation in the 9 - 50 nm wavelength range. We describe the development of both periodic multilayer films designed for narrowband imaging, and non-periodic multilayers designed to have a broad-spectral response for spectroscopy. The higher EUV reflectance provided by these new coatings, relative to older-generation coatings such as Si/Mo, Mo/Y, and others, will facilitate the development of future solar physics instruments for both imaging and spectroscopy having higher spatial and spectral resolution, while supporting the exposure times and cadences necessary to capture the evolution of flares, jets, CMEs and other dynamic processes in the solar atmosphere.

  8. Multilayer reflective coatings for extreme-ultraviolet lithography

    SciTech Connect

    Montcalm, C., LLNL

    1998-03-10

    Multilayer mirror coatings which reflect extreme ultraviolet (EUV) radiation are a key enabling technology for EUV lithography. Mo/Si multilayers with reflectances of 67.5% at 13.4 nm are now routinely achieved and reflectances of 70 2% at 11.4 nm were obtained with MO/Be multilayers. High reflectance is achieved with careful control of substrate quality, layer thicknesses, multilayer materials, interface quality, and surface termination. Reflectance and film stress were found to be stable relative to the requirements for application to EUV lithography. The run-to-run reproducibility of the reflectance peak position was characterized to be better than 0.2%, providing the required wavelength matching among the seven multilayer-coated mirrors used in the present lithography system design. Uniformity of coating was improved to better than 0.5% across 150 mm diameter substrates. These improvements in EUV multilayer mirror technology will enable us to meet the stringent specifications for coating the large optical substrates for our next-generation EUV lithography system.

  9. Thermal barrier coatings via directed vapor deposition

    NASA Astrophysics Data System (ADS)

    Hass, Derek Duane

    A thermal barrier coating (TBC) "system" is used to thermally protect turbine engine blades and vanes from the hot gases in gas turbine engines. TBC systems are multilayer coatings composed of a porous, insulating yttria stabilized zirconia (YSZ) top layer which provides thermal protection, a thermally grown alumina oxide (TGO) layer which provides oxidation and hot corrosion protection and an underlying aluminide (nickel or platinum) bond layer which is used to form the TGO layer. Here, an electron beam-directed vapor deposition (DVD) approach is explored as a method for producing the YSZ top layer of TBC systems. Using this approach, an experimental investigation of the effect of process conditions on the coating morphology was undertaken. The coating morphology was effected by the substrate temperature, the evaporation/deposition rate, the chamber pressure and the carrier gas jet speed and density. In order to link the process parameters to more fundamental growth parameters vapor transport in the DVD process chamber was modeled using a Direct Simulation Monte Carlo (DSMC) approach and the coating assembly was simulated using Kinetic Monte Carlo (KMC). The result of this experimental and simulation based study was the determination that three requirements had to be met to form porous, columnar coatings using DVD: the presence of pore nucleation sites in the form of asperities on the substrate surface, a significant amount of oblique vapor species arrivals onto the substrate resulting in flux shadowing at the asperities and a vapor species surface mobility which is low enough to limit surface diffusion on the substrate during growth. By controlling the angle of incidence distribution and the vapor species surface mobility using changes in the carrier gas properties and the chamber pressure, the nucleation characteristics of the intercolumnar pores could be altered. Using such approaches, along with substrate manipulation, an effort was made to tailor the

  10. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION

    EPA Science Inventory

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...

  11. Residual stress of physical vapor-deposited polycrystalline multilayers

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Zhang, Hui; Zheng, LiLi

    2015-02-01

    An extended one-dimensional stress model for the deposition of multilayer films is built based on the existing stress model by considering the influence of deposition conditions. Both thermal stress and intrinsic stress are considered to constitute the final residual stress in the model. The deposition process conditions such as deposition temperature, oxygen pressure, and film growth rate are correlated to the full stress model to analyze the final residual stress distribution, and thus the deformation of the deposited multilayer system under different process conditions. Also, the model is numerically realized with in-house built code. A deposition of Ag-Cu multilayer system is simulated with the as-built extended stress model, and the final residual stresses under different deposition conditions are discussed with part of the results compared with experiment from other literature.

  12. Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator

    DOEpatents

    Cockeram, Brian Vern

    2004-01-27

    Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.

  13. Cellular response to titanium discs coated with polyelectrolyte multilayer films

    NASA Astrophysics Data System (ADS)

    Zhan, Jing; Luo, Qiao-jie; Huang, Ying; Li, Xiao-dong

    2014-09-01

    The purpose of this study was to investigate the effects of polyelectrolyte multilayer (PEM) coatings on the biological behavior of titanium (Ti) substrates. Collagen type Ι/hyaluronic acid (Col/HA) and chitosan/hyaluronic acid (Chi/HA) multilayer PEM coatings were introduced onto Ti substrates using layer-by-layer assembly. Contact angle instruments and quartz crystal microbalance were used for film characterization. The results obtained showed that both Col/HA and Chi/HA surfaces had high hydrophilicity and promoted cell adhesion in MC3T3-E1 pre-osteoblast and human gingival fibroblast cells. In addition, the synthesis of function-related proteins and gene expression levels in both MC3T3-E1 and fibroblast cells was higher for the Col/HA coating compared with the Chi/HA coating, indicating better cellular response to the Col/HA coating.

  14. Ultra-high efficiency multilayer blazed gratings through deposition kinetic control

    SciTech Connect

    Voronov, D. L.; Anderson, Erik H.; Gullikson, Eric M.; Salmassi, Farhad; Warwick, Tony; Yashchuk, Valeriy V.; Padmore, Howard A.

    2012-05-07

    Diffraction efficiency of multilayer coated blazed gratings (MBG) strongly depends on the perfection of the saw-tooth-shaped layers in the overall composite structure. Growth of multilayers on saw-tooth substrates should be carefully optimized in order to reduce groove profile distortion and at the same time to avoid significant roughening of multilayer interfaces. In this work we report on a new way to optimize growth of sputter-deposited Mo/Si multilayers on saw-tooth substrates through variation of the sputtering gas pressure. Lastly, a new record for diffraction efficiency of 44% was achieved for a optimized MBG with groove density of 5250 lines/mm at the wavelength of 13.1 nm.

  15. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    SciTech Connect

    Hampikian, J.M.; Carter, W.B.

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  16. Pulsed laser deposition of epitaxial YBa2Cu3O7-y / oxide multilayers onto textured NiFe substrates for coated conductor applications

    NASA Astrophysics Data System (ADS)

    Tomov, R. I.; Kursumovic, A.; Majoros, M.; Kang, D.-J.; Glowacki, B. A.; Evetts, J. E.

    2002-04-01

    Pulsed laser depositions of double-buffer and triple-buffer YBa2Cu3O7-y (YBCO)/Y2O3(YSZ)/CeO2 heterostructures have been performed in situ onto commercially available biaxially textured NiFe 50%/50% tape. The deposition in the forming gas (4% H2/Ar) from a CeO2 target and the deposition in vacuum from a CeO2:Pd composite target have been explored as two possible routes for cube-on-cube growth of the first buffer layer. The influence of the critical processing parameters on the texture is investigated and some of the issues involved in the reduction of NiO (111) and the formation of cube-on-cube NiO (200) growth are discussed. X-ray diffraction has been used for texture evaluation of the substrate and subsequent deposited layers. The substrate-buffer interface region has been studied by focused ion beam cross section electron microscopy. Both the buffers and YBCO layers show biaxial alignment with ω and φ scans having optimum YBCO full width at half maximum (FWHM) values of 4.3° and 8.8°, respectively. The morphology has been characterized using atomic force microscopy and scanning electron microscopy. The value of Tc (onset) has been measured at 90 K (ΔTc = 10 K). The critical current density, Jc, has been measured by transport measurements and magnetic measurements performed in a dc SQUID magnetometer.

  17. Tribological behavior and wear mechanisms of TiN/TiCN/TiN multilayer coatings

    SciTech Connect

    Su, Y.L.; Kao, W.H.

    1998-10-01

    This work employs the PVD process to deposit coatings of single layer TiN, binary layer TiN/TiCN, multilayer TiN/Ti/TiN, and sequenced TiN/TiCN/TiN multilayer coatings with variable individual TiN-layer and TiCN-layer thicknesses on tungsten carbide disks and inserts. Also investigated are the fracture mechanisms and the influence of sequence and thickness of these coatings on cylinder-on-disk, line-contact wear mode and ball-on-disk, point-contact wear mode through SRV reciprocating wear tests. Actual milling tests identify wear performance. Experimental results indicate that the coating with a total thickness of 7 {micro}m and layer sequence TiN/TiCN/TiN exhibits good wear resistance on SRV wear test and milling test. The thickest multilayer TiN/Ti/TiN coating, although having the highest hardness, has the worst wear resistance for all tests. Notably zero-wear performance was observed for all coating disks under cutting fluid lubricated condition due to the transferred layers formed between the contact interface.

  18. Repair of localized defects in multilayer-coated reticle blanks for extreme ultraviolet lithography

    DOEpatents

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.

    2004-11-23

    A method is provided for repairing defects in a multilayer coating layered onto a reticle blank used in an extreme ultraviolet lithography (EUVL) system. Using high lateral spatial resolution, energy is deposited in the multilayer coating in the vicinity of the defect. This can be accomplished using a focused electron beam, focused ion beam or a focused electromagnetic radiation. The absorbed energy will cause a structural modification of the film, producing a localized change in the film thickness. The change in film thickness can be controlled with sub-nanometer accuracy by adjusting the energy dose. The lateral spatial resolution of the thickness modification is controlled by the localization of the energy deposition. The film thickness is adjusted locally to correct the perturbation of the reflected field. For example, when the structural modification is a localized film contraction, the repair of a defect consists of flattening a mound or spreading out the sides of a depression.

  19. Short-Pulse Laser Sintering of Multilayer Hard Metal Coatings: Structure and Wear Behavior

    NASA Astrophysics Data System (ADS)

    Kharanzhevskiy, Evgeny; Ipatov, Alexey; Nikolaeva, Irina; Zakirova, Raushaniya

    2015-06-01

    This paper reports on the phase composition and properties of multilayer hard metal coatings deposited on steel by a process variant of Selective laser melting (SLM). The process is based on layer-wise short-pulse laser sintering of high-dispersive WC-Co powder on a steel substrate. High temperature in the molten zone and chemical interaction with the substrate explain high level of adhesion strength between the coating and the substrate. The technique allows obtaining both high quality hard-metal multilayer gradient coatings with thickness up to 200 μm, density near to the theoretical density (TD), hardness up to 21 GPa and complex 3D objects by layer-wise powder based process such as SLM.

  20. Sol-gel multilayers applied by a meniscus coating process

    SciTech Connect

    Britten, J.A.; Thomas, I.M.

    1992-03-19

    We describe a meniscus coating method to produce high-laser damage threshold, silica/alumina sol-gel multilayer reflectors on 30 {plus} cm substrates for laser-fusion applications. This process involves forcing a small suspension flow through a porous applicator tube, forming a falling film on the tube. A substrate contacts this film to form a meniscus. Motion of the substrate relative to the applicator entrains a thin film on the substrate, which leaves behind a porous, optical quality film upon solvent evaporation. We develop a solution for the entrained film thickness as a function of geometry, flow and fluid properties by an analysis similar to that of the classical dip-coating problem. This solution is compared with experimental measurements. Also, preliminary results of multilayer coating experiments with a prototype coater are presented, which focus on coating uniformity and laser damage threshold (LDT).

  1. Tribological performance of hybrid filtered arc-magnetron coatings - Part I: Coating deposition process and basic coating properties characterization

    SciTech Connect

    Gorokhovsky, Vladimir; Bowman, C.; Gannon, Paul E.; VanVorous, D.; Voevodin, A. A.; Rutkowski, A.; Muratore, C.; Smith, Richard J.; Kayani, Asghar N.; Gelles, David S.; Shutthanandan, V.; Trusov, B. G.

    2006-12-04

    Aircraft propulsion applications require low-friction and wear resistant surfaces that operate under high contact loads in severe environments. Recent research on supertough and low friction nanocomposite coatings produced with hybrid plasma deposition processes was demonstrated to have a high potential for such demanding applications. However, industrially scalable hybrid plasma technologies are needed for their commercial realization. The Large area Filtered Arc Deposition (LAFAD) process provides atomically smooth coatings at high deposition rates over large surface areas. The LAFAD technology allows functionally graded, multilayer, super-lattice and nanocomposite architectures of multi-elemental coatings via electro-magnetic mixing of two plasma flows composed of different metal ion vapors. Further advancement can be realized through a combinatorial process using a hybrid filtered arc-magnetron deposition system. In the present study, multilayer and nanostructured TiCrCN/TiCr +TiBC composite cermet coatings were deposited by the hybrid filtered arc-magnetron process. Filtered plasma streams from arc evaporated Ti and Cr targets, and two unbalanced magnetron sputtered B4C targets, were directed to the substrates in the presence of reactive gases. A multiphase nanocomposite coating architecture was designed to provide the optimal combination of corrosion and wear resistance of advanced steels (Pyrowear 675) used in aerospace bearing and gear applications. Coatings were characterized using SEM/EDS, XPS and RBS for morphology and chemistry, XRD and TEM for structural analyses, wafer curvature and nanoindentation for stress and mechanical properties, and Rockwell and scratch indentions for adhesion. Coating properties were evaluated for a variety of coating architectures. Thermodynamic modeling was used for estimation of phase composition of the top TiBC coating segment. Correlations between coating chemistry, structure and mechanical properties are discussed.

  2. Electro-spark deposited coatings for protection of materials

    SciTech Connect

    Johnson, R.N.

    1995-08-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The coating is fused (metallurgically bonded) to the substrate with such a low total heat input that the bulk substrate material remains at or near ambient temperature. Rapid solidification of the deposit typically results in an extremely fine-grained deposit that may be amorphous for some materials. Nearly any electrically conductive metal, alloy or cermet can be applied to metallic substrates. The ESD process allows multi-layer coatings to be built-up using different materials to create graded structures or surface compositions that would be difficult to achieve by other means. A series of iron-aluminide coatings based on Fe{sub 3}Al and FeAl in combination with refractory metal diffusion-barrier coatings and supplementary additions of other elements are in corrosion testing at ANL. The most recent FeAl coatings are showing a factor of three better corrosion performance than the best previous coatings. Technology transfer activities are a significant portion of the ESD program effort. Notable successes now include the start-up of a new business to commercialize the ESD technology, major new applications in gas turbine engines and steam turbine blade coatings, and in military, medical, metal-working, and recreational equipment applications.

  3. Control of surface mobility for conformal deposition of Mo-Si multilayers on saw-tooth substrates

    NASA Astrophysics Data System (ADS)

    Voronov, D. L.; Anderson, E. H.; Gullikson, E. M.; Salmassi, F.; Warwick, T.; Yashchuk, V. V.; Padmore, H. A.

    2013-11-01

    Multilayer-coated blazed gratings (MBG) are the most promising solution for ultra-high resolution soft X-ray spectroscopy, since they can have very high groove density and provide high-order operation and very high diffraction efficiency. The performance of MBGs however depends critically on the conformal deposition of the multilayer (ML) stack on a saw-tooth substrate and the minimization of roughness. We present an analysis of the roughening and smoothing processes during growth of Mo/Si multilayers deposited over a range of pressures of Ar sputtering gas on flat and saw-tooth substrates. A Linear Continuum Model (LCM) of the film growth was used to understand the interplay between smoothing and roughening of the ML films and to predict the optimum conditions for deposition. The MBG coated under the optimal deposition conditions demonstrated high diffraction efficiency in the EUV and soft X-ray wavelength ranges

  4. Chemical vapor deposition of mullite coatings

    DOEpatents

    Sarin, Vinod; Mulpuri, Rao

    1998-01-01

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  5. Plasma deposition of thin film multilayers for surface engineering

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, R.; Kumar, Sushil

    2012-06-01

    Plasma surface Engineering for enhancing optical and tribological behaviour of a surface is discussed. Specifically, it is shown how optimized PECVD processing can produce sophisticated Rugate filters and AR coatings on plastic lenses. It is found that multilayer Diamond Like Carbon coatings (DLC), in a functionally graded geometry, obtained by a combination of plasma intensive processing, not only can impart high value of hardness to a surface but also wear protection at high contact loads.

  6. Two-dimensional inter-layer debonding in deposited multi-layers

    SciTech Connect

    Beuth, J.L.; Narayan, S.H.

    1996-12-31

    Two-dimensional problems of residual stress-driven inter-layer debonding or delamination in successively deposited isotropic multi-layers are studied, with direct applications to the modeling of delamination in multi-layered coatings and films. Planar and axisymmetric configurations of a delamination crack extending from a free edge are considered. The term successively deposited is used to designate that each layer experiences a free thermal contraction relative to the layers below it. Results for energy release rates as a function of crack length are presented from fracture mechanics models of planar and axisymmetric multi-layer geometries. In planar problems, energy release rates reach a constant value for crack lengths greater than one or two debond thicknesses and maintain this value until the multi-layer is almost completely debonded. In axisymmetric problems, energy release rates increase steadily with increasing crack length, reaching a maximum just before the multi-layer separates into two pieces. These observed energy release rate behaviors are explained qualitatively. Methods are outlined for quantitatively predicting the steady-state energy release rate for planar debonding problems. Methods are also outlined for determining a conservative upper bound for the maximum energy release rate for an axisymmetrically extending delamination crack. Both methods are based on potential energy calculations from a residual stress model for an uncracked multi-layer. These easily-calculated energy release rate quantities for planar and axisymmetric delamination problems can be used to guide the specification of layer thicknesses, stacking sequences and other characteristics of multi-layered coatings and films.

  7. Thermal stress prediction in mirror and multilayer coatings.

    PubMed

    Cheng, Xianchao; Zhang, Lin; Morawe, Christian; Sanchez Del Rio, Manuel

    2015-03-01

    Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision. PMID:25723932

  8. Single layer and multilayer tip coatings in magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Casey, S. M.; Lord, D. G.; Grundy, P. J.; Slade, M.; Lambrick, D.

    1999-04-01

    Interactions between the imaging tip and the sample in magnetic force microscopy (MFM) have been investigated by studying the magnetic microstructure of a range of epitaxial garnet films. Etched silicon cantilever probes, coated with CoPt alloy films and Co/Pt multilayers, provided a range of MFM probes for this study. Resonant torque magnetometry was used to characterize their magnetic properties. Phase change images were found to vary considerably in terms of relative "domain volumes" at the surface depending on which probe was used. Decreasing the moment of the alloy coated tips by using thinner layers reduces the "magnetizing" interaction of the tip field but also reduced the signal to noise ratio. By coating the tip with a multilayer a good signal to noise ratio could be obtained with very little interaction. Force-distance curves were used to study the response of the tips at various lift heights. The tips coated with alloy films gave a significant decrease in signal to noise ratio as the lift height increased whereas the multilayer tips maintained a signal which varied little with lift height.

  9. Preparation and properties of DLC/MoS2 multilayer coatings for high humidity tribology

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoyu; Lu, Zhibin; Wu, Guizhi; Zhang, Guangan; Wang, Liping; Xue, Qunji

    2016-06-01

    The DLC/MoS2 multilayer coatings with different modulus ratios were deposited by magnetron sputtering in this study. The morphology, structure, composition, mechanical properties and tribological properties were investigated using several analytical techniques (FESEM, AFM, TEM, AES, XPS, nanoindentation and high humidity tribological test). The results showed that the well-defined multilayer coatings were composed of densely packed particles in which many nanocrystallines with some kinds of defects were distributed in matrix. The incorporation of oxygen into the lattice led to the degraded chemical stability. The coating’s hardness and elastic modulus were almost in the same range. Moderate improvement on the high humidity tribological properties were obtained, which was important for the extension of the service life of MoS2 in humid air.

  10. Multilayer ultra-high-temperature ceramic coatings

    DOEpatents

    Loehman, Ronald E.; Corral, Erica L.

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  11. Bactericidal and biocompatible properties of TiN/Ag multilayered films by ion beam assisted deposition.

    PubMed

    Zhao, J; Cai, X M; Tang, H Q; Liu, T; Gu, H Q; Cui, R Z

    2009-12-01

    Nanoscale TiN/Ag multilayered films of thickness 500 nm were synthesized on AISI317 stainless steel by ion beam assisted deposition (IBAD) with the modulation period of 4, 5, 6, 7.5, and 12 nm. The bactericidal and biocompatible properties of TiN/Ag multilayered films were investigated through Gram negative E. coli bacteria and L929 cells (mice fibroblast) as well as human umbilical vein endothelial cells (HUVEC). The results show that the TiN/Ag multilayered films with the modulation period of 7.5 nm possess the strongest bactericidal property. The cytotoxicity grade of TiN/Ag multilayered coating with the modulation periods of 7.5 nm, 12 nm is in 0-1 scope, which indicates this film has no cytotoxicity to L929. HUVEC on TiN/Ag multilayered film grows well and shows good cellularity. Auger electronic spectroscopy reveals the relationship between the structure of TiN/Ag multilayered film and the biomedical properties. PMID:18553178

  12. Sub-diffraction-limited multilayer coatings for the 0.3-NA Micro-Exposure Tool for extreme ultraviolet lithography

    SciTech Connect

    Soufli, R; Hudyma, R M; Spiller, E; Gullikson, E M; Schmidt, M A; Robinson, J C; Baker, S L; Walton, C C; Taylor, J S

    2007-01-03

    This manuscript discusses the multilayer coating results for the primary and secondary mirrors of the Micro Exposure Tool (MET): a 0.30-numerical aperture (NA) lithographic imaging system with 200 x 600 {micro}m{sup 2} field of view at the wafer plane, operating in the extreme ultraviolet (EUV) wavelength region. Mo/Si multilayers were deposited by DC-magnetron sputtering on large-area, curved MET camera substrates, and a velocity modulation technique was implemented to consistently achieve multilayer thickness profiles with added figure errors below 0.1 nm rms to achieve sub-diffraction-limited performance. This work represents the first experimental demonstration of sub-diffraction-limited multilayer coatings for high-NA EUV imaging systems.

  13. Reactive multilayers fabricated by vapor deposition. A critical review

    DOE PAGESBeta

    Adams, D. P.

    2014-10-02

    The reactive multilayer thin films are a class of energetic materials that continue to attract attention for use in joining applications and as igniters. Generally composed of two reactants, these heterogeneous solids can be stimulated by an external source to promptly release stored chemical energy in a sudden emission of light and heat. In our critical review article, results from recent investigations of these materials are discussed. Discussion begins with a brief description of the vapor deposition techniques that provide accurate control of layer thickness and film composition. More than 50 reactive film compositions have been reported to date, withmore » most multilayers fabricated by magnetron sputter deposition or electron-beam evaporation. In later sections, we review how multilayer ignition threshold, reaction rate, and total heat are tailored via thin film design. For example, planar multilayers with nanometer-scale periodicity exhibit rapid, self-sustained reactions with wavefront velocities up to 100 m/s. Numeric and analytical models have elucidated many of the fundamental processes that underlie propagating exothermic reactions while demonstrating how reaction rates vary with multilayer design. Recent, time-resolved diffraction and imaging studies have further revealed the phase transformations and the wavefront dynamics associated with propagating chemical reactions. Many reactive multilayers (e.g., Co/Al) form product phases that are consistent with published equilibrium phase diagrams, yet a few systems, such as Pt/Al, develop metastable products. The final section highlights current and emerging applications of reactive multilayers. Examples include reactive Ni(V)/Al and Pd/Al multilayers which have been developed for localized soldering of heat-sensitive components.« less

  14. Reactive multilayers fabricated by vapor deposition. A critical review

    SciTech Connect

    Adams, D. P.

    2014-10-02

    The reactive multilayer thin films are a class of energetic materials that continue to attract attention for use in joining applications and as igniters. Generally composed of two reactants, these heterogeneous solids can be stimulated by an external source to promptly release stored chemical energy in a sudden emission of light and heat. In our critical review article, results from recent investigations of these materials are discussed. Discussion begins with a brief description of the vapor deposition techniques that provide accurate control of layer thickness and film composition. More than 50 reactive film compositions have been reported to date, with most multilayers fabricated by magnetron sputter deposition or electron-beam evaporation. In later sections, we review how multilayer ignition threshold, reaction rate, and total heat are tailored via thin film design. For example, planar multilayers with nanometer-scale periodicity exhibit rapid, self-sustained reactions with wavefront velocities up to 100 m/s. Numeric and analytical models have elucidated many of the fundamental processes that underlie propagating exothermic reactions while demonstrating how reaction rates vary with multilayer design. Recent, time-resolved diffraction and imaging studies have further revealed the phase transformations and the wavefront dynamics associated with propagating chemical reactions. Many reactive multilayers (e.g., Co/Al) form product phases that are consistent with published equilibrium phase diagrams, yet a few systems, such as Pt/Al, develop metastable products. The final section highlights current and emerging applications of reactive multilayers. Examples include reactive Ni(V)/Al and Pd/Al multilayers which have been developed for localized soldering of heat-sensitive components.

  15. Biocatalytic material comprising multilayer enzyme coated fiber

    DOEpatents

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  16. Production and performance of multilayer-coated conical x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Ulmer, Melville P.; Altkorn, Robert; Graham, Michael E.; Madan, Anita; Chu, Yong S.

    2003-12-01

    A method of fabricating replica figured x-ray optics with integral multilayer coatings is presented. With the intact electroforming multilayer process (IEMP) technique, we sputter multilayers onto a reusable superpolished mandrel, electroform nickel over the multilayers, and remove the multilayer-coated nickel shell intact from the mandrel. This approach offers advantages over more traditional, original, and segmented-replica fabrication techniques, including low cost; compatibility with a wide range of mirror designs, diameters, and focal lengths; simple integration with multilayer sputtering processes; and the ability to produce complete shells of revolution. The fabrication of W/Si multilayer-coated 10-cm-diameter conical x-ray mirrors is described, as are reflectivity measurements at 10 and 30 keV. The measured reflectivity of the IEMP multilayers at the 10-keV primary Bragg peak was 17%. Measurements of multiple points on the cone showed multilayer uniformity to within a few percent around the mirror.

  17. Modeling of light intensification by conical pits within multilayer coatings

    SciTech Connect

    Qiu, S R; Wolfe, J E; Monterrosa, A; Feit, M D; Pistor, T V; Stolz, C J

    2009-11-02

    Removal of laser-induced damage sites provides a possible mitigation pathway to improve damage resistance of coated multilayer dielectric mirrors. In an effort to determine the optimal mitigation geometry which will not generate secondary damage precursors, the electric field distribution within the coating layers for a variety of mitigation shapes under different irradiation angles has been estimated using the finite difference time domain (FDTD) method. The coating consists of twenty-four alternating layers of hafnia and silica with a quarter-wave reflector design. A conical geometrical shape with different cone angles is investigated in the present study. Beam incident angles range from 0{sup o} to 60{sup o} at 5{sup o} increments. We find that light intensification (square of electric field, |E|{sup 2}) within the multilayers depends strongly on the beam incident direction and the cone angle. By comparing the field intensification for each cone angle under all angles of incidence, we find that a 30{sup o} conical pit generates the least field intensification within the multilayer film. Our results suggest that conical pits with shallow cone angles ({le} 30{sup o}) can be used as potential optimal mitigation structures.

  18. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 2. MODEL EVALUATION

    EPA Science Inventory

    The multilayer biochemical dry deposition model (MLBC) described in the accompanying paper was tested against half-hourly eddy correlation data from six field sites under a wide range of climate conditions with various plant types. Modeled CO2, O3, SO2<...

  19. Microstructure and corrosion behavior of TiC/Ti(CN)/TiN multilayer CVD coatings on high strength steels

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Xue, Qi; Li, Songxia

    2013-09-01

    Titanium carbide/titanium carbonitride/titanium nitride (TiC/Ti(CN)/TiN) multilayer coatings are prepared on the surface of three high-strength steels (35CrMo, 42CrMo, and 40CrNiMo) by chemical vapor deposition method. The fracture morphology, elemental distribution, phase composition, micro-hardness, and adhesion of the multilayer film are analyzed. The hydrogen sulfide stress corrosion resistance of the coating is evaluated by the National Association of Corrosion Engineers saturated hydrogen sulfide solution immersion test. A test simulating the environment of the natural gas wells with high temperature and pressure in Luojiazhai in Sichuan is also performed. The results show that the multilayer coatings have dense structures, ∼11 μm thickness, 24.5 ± 2.0 GPa nano-hardness, and ∼70 N adhesion. The corrosion sample also shows no brittle failure induced by stress corrosion after treatment with the coating. Gravimetric analysis shows that the deposition of TiC/Ti(CN)/TiN multilayer coatings results in a corrosion rate reduction of at least 50 times compared with the high-strength steel substrate. A preliminary analysis on this phenomenon is conducted.

  20. Residual stress analysis of multilayer environmental barrier coatings.

    SciTech Connect

    Harder, B.; Almer, J.; Weyant, C.; Lee, K.; Faber, K.; Northwestern Univ.; Rolls-Royce Corp.

    2009-02-01

    Silicon-based ceramics (SiC, Si{sub 3}N{sub 4}) are promising materials systems for high-temperature structural applications in gas turbine engines. However, the silica layer that forms on these materials is susceptible to attack from water vapor present in combustion environments. To protect against this degradation, environmental barrier coatings (EBCs) have been developed to shield the underlying substrate and prevent degradation. Here we report on elastic and thermal properties, as well as internal stresses of candidate multilayer coatings, as measured in situ using microfocused high-energy X-rays in a transmission diffraction geometry. Doped aluminosilicate coatings were investigated for their stability on a SiC/SiC melt-infiltrated substrate. The coatings consisted of a Ba{sub 1-x}Sr{sub x}Al{sub 2}Si{sub 2}O{sub 8} topcoat with a mullite or mullite+SrAl{sub 2}Si{sub 2}O{sub 8} interlayer, and a silicon bond coat. A numerical model was used to compare the stress results with an ideal coating system. Experiments were carried out on as-sprayed and heat-treated samples in order to analyze the strain and phase evolution as a function of multilayer depth and temperature. The phase transformation of the topcoat promoted healing of cracks in the EBC and reduced stresses in the underlying layers and the addition of SAS to the interlayer reduced stresses in thermally cycled coatings, but did not stop cracks from forming.

  1. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications. PMID:23171130

  2. Multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, John P.; Friedmann, Thomas A.

    1998-01-01

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.

  3. Multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, J.P.; Friedmann, T.A.

    1998-10-13

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications is disclosed. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. 8 figs.

  4. Application of germanium carbide in durable multilayer IR coatings

    NASA Astrophysics Data System (ADS)

    Kelly, Chris J.; Orr, James S.; Gordon, H.; Traub, Leonard T.; Lettington, Alan H.

    1990-08-01

    Infrared transparent amorphous hydrogenated alloys of germanium and carbon (germanium carbide) have been deposited by plasma assisted chemical vapour deposition (PACVD) using germane (GeH4 ) and butane (C 4Hid as the feedstocks and by reactive sputtering of germanium with a CH1g-Ar plasma. The effects of varying various deposition conditions have been assessed on a number of coating properties . Germanium Carbide has good environmental durability and can be deposited in thick layers. Using PACVD it can be deposited with any refractive index in the range 2 to 4 while the sputtering process is limited to indices in the range 3 to 4 . One advantage of the sputtering process is the high deposition rates achievable which can be up to '-lOum/h compared with lum/h for the PACVD process. When used in conjunction with "diamond-like" carbon (a-'C:H) , germanium carbide offers the prospect of rnultilayer antireflection coatings for 8 to 12 urn optics with durabilities which hitherto have been impossible to achieve. Antireflection coatings for zinc sulphide windows which are subject to hostile environmental conditions have been investigated and the performance of the coatings is presented. The factors affecting the practical realisation of these coatings on a production scale are discussed.

  5. Pd/B4C/Y multilayer coatings for extreme ultraviolet applications near 10  nm wavelength.

    PubMed

    Windt, David L; Gullikson, Eric M

    2015-06-20

    A new extreme ultraviolet (EUV) multilayer coating has been developed comprising Pd and Y layers with thin B4C barrier layers at each interface, for normal incidence applications near 10 nm wavelength. Periodic, nonperiodic, and dual-stack coatings have been investigated and compared with similar structures comprising either Mo/Y or Pd/B4C bilayers. We find that Pd/B4C/Y multilayers provide higher reflectance than either Mo/Y or Pd/B4C, with much lower film stress than Pd/B4C. We have also investigated the performance of periodic multilayers comprising repetitions of Pd/Y, Ru/Y, or Ru/B4C/Y, as well as Pd/B4C multilayers deposited using reactive sputtering with an Ar:N2 gas mixture in order to reduce stress: these material combinations were all found to provide poor EUV performance. The temporal stability of a periodic Pd/B4C/Y multilayer stored in air was investigated over a period of 16 months, and a slight reduction in peak reflectance was observed. Periodic Pd/B4C/Y multilayers were also found to be thermally stable up to 100°C; at higher temperatures (200°C and 300°C) we observe a slight reduction in peak reflectance and a slight increase in multilayer period. High-resolution transmission electron microscopy and selected area diffraction of an as-deposited Pd/B4C/Y film indicates a fully amorphous structure, with interfaces that are both smoother and more abrupt than those observed in a comparable Pd/B4C multilayer in which the Pd layers are polycrystalline. The new Pd/B4C/Y multilayers are suitable for normal-incidence imaging and spectroscopy applications, including solar physics, plasma physics, high-brightness EUV light sources, and others. PMID:26193039

  6. Theory and practical considerations of multilayer dielectric thin-film stacks in Ag-coated hollow waveguides.

    PubMed

    Bledt, Carlos M; Melzer, Jeffrey E; Harrington, James A

    2014-02-01

    This analysis explores the theory and design of dielectric multilayer reflection-enhancing thin film stacks based on high and low refractive index alternating layers of cadmium sulfide (CdS) and lead sulfide (PbS) on silver (Ag)-coated hollow glass waveguides (HGWs) for low loss transmission at midinfrared wavelengths. The fundamentals for determining propagation losses in such multilayer thin-film-coated Ag hollow waveguides is thoroughly discussed, and forms the basis for further theoretical analysis presented in this study. The effects on propagation loss resulting from several key parameters of these multilayer thin film stacks is further explored in order to bridge the gap between results predicted through calculation under ideal conditions and deviations from such ideal models that often arise in practice. In particular, the effects on loss due to the number of dielectric thin film layers deposited, deviation from ideal individual layer thicknesses, and surface roughness related scattering losses are presented and thoroughly investigated. Through such extensive theoretical analysis the level of understanding of the underlying loss mechanisms of multilayer thin-film Ag-coated HGWs is greatly advanced, considerably increasing the potential practical development of next-generation ultralow-loss mid-IR Ag/multilayer dielectric-coated HGWs. PMID:24514252

  7. A multilayer innovative solution to improve the adhesion of nanocrystalline diamond coatings

    NASA Astrophysics Data System (ADS)

    Poulon-Quintin, A.; Faure, C.; Teulé-Gay, L.; Manaud, J. P.

    2015-03-01

    Nano-crystalline diamond (NCD) films grown under negative biased substrates by chemical vapor deposition (CVD) are widely used as surface overlay coating onto cermet WC-Co cutting tools to get better performances. To improve the diamond adhesion to the cermet substrate, suitable multi-layer systems have been added. They are composed of a cobalt diffusion barrier close to the substrate (single and sequenced nitrides layers) coated with a nucleation extra layer to improve the nucleus density of diamond during CVD processing. For all systems, before and after diamond deposition, transmission electron microscopy (TEM) has been performed for a better understanding of the diffusion phenomena occurring at the interfaces and to evaluate the presence of graphitic species at the interface with the diamond. Innovative multilayer system dedicated to the regulation of cobalt diffusion coated with a bilayer system optimized for the carbon diffusion control, is shown as an efficient solution to significantly reduce the graphite layer formation at the interface with the diamond down to 10 nm thick and to increase the adhesion of NCD diamond layer as scratch-tests confirm.

  8. Multilayer hydrogel coatings to combine hemocompatibility and antimicrobial activity.

    PubMed

    Fischer, Marion; Vahdatzadeh, Maryam; Konradi, Rupert; Friedrichs, Jens; Maitz, Manfred F; Freudenberg, Uwe; Werner, Carsten

    2015-07-01

    While silver-loaded catheters are widely used to prevent early-onset catheter-related infections [1], long term antimicrobial protection of indwelling catheters remains to be achieved [2] and antiseptic functionalization of coatings often impairs their hemocompatibility characteristics. Therefore, this work aimed to capitalize on the antimicrobial properties of silver nanoparticles, incorporated in anticoagulant poly(ethylene glycol) (PEG)-heparin hydrogel coatings [3] on thermoplastic polyurethane materials. For prolonged antimicrobial activity, the silver-containing starPEG-heparin hydrogel layers were shielded with silver-free hydrogel layers of otherwise similar composition. The resulting multi-layered gel coatings showed long term antiseptic efficacy against Escherichia coli and Staphylococcus epidermidis strains in vitro, and similarly performed well when incubated with freshly drawn human whole blood with respect to hemolysis, platelet activation and plasmatic coagulation. The introduced hydrogel multilayer system thus offers a promising combination of hemocompatibility and long-term antiseptic capacity to meet an important clinical need. PMID:25934292

  9. Hollow glass waveguides with multilayer polystyrene and metal sulfide thin film coatings for improved infrared transmission

    NASA Astrophysics Data System (ADS)

    Johnson, Valencia S.

    2007-12-01

    The overall goal of this project was to improve transmission of infrared radiation in hollow waveguides. First, polystyrene was studied as a new dielectric material for silver-coated hollow glass waveguides. The deposition and performance of polystyrene, as a single dielectric layer, were investigated. The potential of polystyrene as the low index of refraction material in a multilayer coating was also demonstrated. Cadmium sulfide and lead sulfide were each considered as the high index material in the multilayer stack. Multilayer silver coated hollow glass waveguides can be formed using polystyrene and either cadmium sulfide or lead sulfide. These material pairs are interesting because they form a multilayer structure with high index contrast, which can significantly lower the loss of a waveguide. The deposition of lead sulfide was also optimized in this project. Lead sulfide, as a single layer dielectric coating, is an attractive material for transmission of longer wavelength radiation, especially 10.6 mum. It is also of interest for emerging applications such as metals processing by lasers because hollow waveguides with silver and lead sulfide can make a low loss waveguide. Losses as low as 0.1dB/m were achieved. The deposition of zinc sulfide and zinc selenide was also investigated in this project. They are of interest because of their small extinction coefficients at longer wavelengths and potential for use in waveguides used for materials processing. The numerous simultaneous chemical reactions occurring during deposition of these materials makes obtaining pure films difficult. Gold was evaluated as a replacement for silver as the highly reflecting metallic layer. It was considered an attractive alternative because it has greater resistance to degradation in high temperature and corrosive environments. All samples were made using an electroless process. Characterization of the samples was performed using the optical techniques of FTIR and UV

  10. Sol-gel metal oxide and metal oxide/polymer multilayers applied by meniscus coating

    SciTech Connect

    Britten, J.A.; Thomas, I.M.

    1993-10-01

    We are developing a meniscus coating process for manufacturing large-aperture dielectric multilayer high reflectors (HR`s) at ambient conditions from liquid suspensions. Using a lab-scale coater capable of coating 150 mm square substrates, we have produced several HR`s which give 99% + reflection with 24 layers and with edge effects confined to about 10 mm. In calendar 1993 we are taking delivery of an automated meniscus coating machine capable of coating substrates up to 400 mm wide and 600 mm long. The laser-damage threshold and failure stress of sol-gel thin films can be substantially increased through the use of soluble polymers which act as binders for the metal oxide particles comprising the deposited film. Refractive index control of the film is also possible through varying the polymer/oxide ratio. Much of our present effort present is in optimizing oxide particle/binder/solvent formulations for the high-index material. Films from colloidal zirconia strengthened with polyvinylpyrollidone (PVP) have given best results to date. An increase in the laser damage threshold (LDT) for single layers has been shown to significantly increase with increased polymer loading, but as yet the LDT for multilayer stacks remains low.

  11. High-efficiency 5000 lines/mm multilayer-coated blazed grating for EUV wavelengths

    SciTech Connect

    Voronov, Dmitriy; Ahn, Minseung; Anderson, Erik; Cambie, Rossana; Chang, Chih-Hao; Gullikson, Eric; Heilmann, Ralf; Salmassi, Farhad; Schattenburg, Mark; Warwick, Tony; Yashchuk, Valeriy; Zipp, Lucas; Padmore, Howard A.

    2010-04-19

    Volume x-ray gratings consisting of a multilayer coating deposited on a blazed substrate can diffract with very high efficiency even in high orders if diffraction conditions in-plane (grating) and out-of-plane (Bragg multilayer) are met simultaneously. This remarkable property however depends critically on the ability to create a structure with near atomic perfection. In this work we report on a method to produce these structures. We report measurements that show, for a 5000 l/mm grating diffracting in the 3rd order, a diffraction efficiency of 37.6percent at a wavelength of 13.6 nm, close to the theoretical maximum. This work now shows a direct route to achieving high diffraction efficiency in high order at wavelengths throughout the soft x-ray energy range.

  12. Fabrication of Au/Ni Multilayered Nanowires by Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Saidin, N. U.; Kok, K. Y.; Ng, I. K.; Ilias, S. H.

    2013-04-01

    Electrochemical deposition of Au/Ni multilayered nanowires using template-assisted growth technique from electrolyte containing nickel chloride and gold solution was studied in details. 60 μm-thick anodized aluminum oxide (AAO) with pore diameter of 200 nm was used as the template. Chronopotentiometry experiments were first carried out to determine the deposition conditions and the growth rate of individual Au and Ni layers. Scanning electron microscopy results revealed that the pore channels of AAO were completely filled with Au/Ni multisegmented nanowires. By selectively removing the Ni segments in the multilayered nanowires, high-yield of pure gold nanorods were obtained. Detailed studies on the nanostructures obtained were carried out using various microscopy and probe-based techniques for structural, morphological and chemical characterizations.

  13. Reflectance Profile of BaTiO3 on Multilayer Antireflection Coating Systems

    NASA Astrophysics Data System (ADS)

    Karaomerlioglu, Filiz

    2011-05-01

    Antireflection (AR) coating systems are very important technology for optoelectronic devices. The optical characteristics of the system can be regulated by external electric or thermal field, and designed broadband ultra low reflection coating systems. It is investigated optical properties of multilayer AR coatings based on different ferroelectric materials to reduce reflectance in other studies. In this study, reflectance profile of BaTiO3 on multilayer AR coating systems has been developed in the visible region. It has been used ZnSe and ZrO2 as multilayer AR coatings, and BaTiO3 as the substrate. Fortran program has been simulated on Fresnell equations base.

  14. Preparation of a novel adenovirus formulation with artificial envelope of multilayer polymer-coatings: therapeutic effect on metastatic ovarian cancer.

    PubMed

    Yoshihara, Chieko; Hamada, Katsuyuki; Koyama, Yoshiyuki

    2010-03-01

    Layer-by-layer deposition of the ionic polymers onto adenovirus particles afforded the multilayer-coated virus vectors. The infectivity of the virus in the presence of anti-adenovirus antibody increased as the layer number and the viruses with five or six polymer layers allowed relatively high efficiency of reporter gene expression in vitro. Therapeutic effect of the intraperitoneal injection of the oncolytic adenovirus with quintal polymer multilayers on the mice bearing intraperitoneal metastatic ovarian cancer was examined. All the control mice injected with PBS died within 21 days after the tumor inoculation. On the other hand, the mice injected with the multilayer-coated oncolytic virus lived much longer and seven eighths of them lived >60 days without apparent accumulation of ascites. These approaches would open a new way to create a novel, safe and efficient viral gene therapy. PMID:20127013

  15. Using CrAlN multilayer coatings to improve oxidation resistance of steel interconnects for solid oxide fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Tripp, C.; Knospe, A.; Ramana, C. V.; Kayani, A.; Gorokhovsky, Vladimir; Shutthanandan, V.; Gelles, D. S.

    2004-06-01

    The requirements of low-cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. The performance of steel plates with multilayer coatings, consisting of CrN for electrical conductivity and CrAlN for oxidation resistance, was investigated. The coatings were deposited using large area filtered arc deposition technology, and subsequently annealed in air for up to 25 hours at 800 °C. The composition, structure, and morphology of the coated plates were characterized using Rutherford backscattering, nuclear reaction analysis, atomic force microscopy, and transmission electron microscopy techniques. By altering the architecture of the layers within the coatings, the rate of oxidation was reduced by more than an order of magnitude. Electrical resistance was measured at room temperature.

  16. Functional properties of multilayer vacuum-arc TiN/ZrN coatings

    NASA Astrophysics Data System (ADS)

    Plotnikov, S. V.; Pogrebnyak, A. D.; Tleukenov, Y. O.; Erdybaeva, N. K.

    2016-02-01

    Nanostructured multilayer Ti/ZrN coatings were synthesized by vacuum-arc deposition with a number of layers 134-533 and an average thickness 20-125nm of layers. A good planarity was revealed resulting in a range of nanometer layer from plasma streams in a reactive environment. Phase-structural changes mechanisms were established as a model of critical operating coatings’ conditions of in the surface layers under the action of an aggressive oxygen atmosphere at high temperature (700°C). The thickness parameter effect on its hardness of the multilayer system was shown. It was found that the maximum hardness of 42 GPa and the lowest abrasion of coating 1,3×10-5 mm3×H-1×mm-and counterbody 1,9×10-6 mm3×H-1×mm-1 inherent in TiN/ZrN system with the smallest layer thickness of 20 nm in the period. The results are explained by the influence of the size factor interphase boundaries magnified in a multilayer system with a nanometer thick layers.

  17. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding

    NASA Astrophysics Data System (ADS)

    Alat, Ece; Motta, Arthur T.; Comstock, Robert J.; Partezana, Jonna M.; Wolfe, Douglas E.

    2016-09-01

    In an attempt to develop an accident-tolerant fuel (ATF) that can delay the deleterious consequences of loss-of-coolant-accidents (LOCA), multilayer coatings were deposited onto ZIRLO® coupon substrates by cathodic arc physical vapor deposition (CA-PVD). Coatings were composed of alternating TiN (top) and Ti1-xAlxN (2-layer, 4-layer, 8-layer and 16-layer) layers. The minimum TiN top coating thickness and coating architecture were optimized for good corrosion and oxidation resistance. Corrosion tests were performed in static pure water at 360 °C and 18.7 MPa for up to 90 days. The optimized coatings showed no spallation/delamination and had a maximum of 6 mg/dm2 weight gain, which is 6 times smaller than that of a control sample of uncoated ZIRLO® which showed a weight gain of 40.2 mg/dm2. The optimized architecture features a ∼1 μm TiN top layer to prevent boehmite phase formation during corrosion and a TiN/TiAlN 8-layer architecture which provides the best corrosion performance.

  18. Functional multilayer coated long period grating tuned in transition region for life science applications

    NASA Astrophysics Data System (ADS)

    Pilla, P.; Malachovská, V.; Borriello, A.; Giordano, M.; Ambrosio, L.; Cutolo, A.; Cusano, A.

    2010-09-01

    We report preliminary results on the development of multilayer coated long period gratings (LPGs) for life science applications. The dip-coating technique and a solvent/nonsolvent strategy were exploited to deposit double-layer polymeric film onto a LPG. A primary coating of atactic polystyrene was used as high refractive index layer to tune the working point of the device in the so-called transition region thus achieving remarkable surrounding medium refractive index sensitivity. A secondary layer of atactic poly(methyl methacrylate-co-methacrylic acid) containing functional carboxyl groups, characterized by a lower refractive index, was deposited onto the primary coating in order to have the desired functional groups on the surface of the device. Commonly used covalent immobilization procedure, NHS/EDC coupling method, was exploited to link streptavidin on the surface of the functionalized coated device. Finally, real-time detection of biotinylated bovine serum albumin affinity binding on immobilized streptavidin was performed by monitoring the shift of the LPG attenuation bands.

  19. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    NASA Technical Reports Server (NTRS)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (< 10 microns) single layers to be deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  20. Sputter deposition system for controlled fabrication of multilayers

    SciTech Connect

    Di Nardo, R.P.; Takacs, P.Z.; Majkrzak, C.F.; Stefan, P.M.

    1985-06-01

    A detailed description of a sputter deposition system constructed specifically for the fabrication of x-ray and neutron multilayer monochromators and supermirrors is given. One of the principal design criteria is to maintain precise control of film thickness and uniformity over large substrate areas. Regulation of critical system parameters is fully automated so that response to feedback control information is rapid and complicated layer thickness sequences can be deposited accurately and efficiently. The use of either dc or rf magnetron sources makes it possible to satisfy the diverse material requirements of both x-ray and neutron optics.

  1. Multilayer coatings for flexible high-barrier materials

    NASA Astrophysics Data System (ADS)

    Vaško, Karol; Noller, Klaus; Mikula, Milan; Amberg-Schwab, Sabine; Weber, Ulrike

    2009-06-01

    A multilayer, flexible, and transparent high-barrier system based on flexible plastic foils, polyethyleneterephthalate (PET) and ethylene-tetrafluoroethylene-copolymer (ETFE), combined with vacuum-deposited, inorganic SiOx layers and hybrid ORMOCER® varnish layers were prepared in different orders on a semiproduction level. Barrier properties of prepared systems, as water vapour transmission (WVTR) and oxygen transmission (OTR), were measured and studied in connection with surface energy, surface topography, and water vapour adsorption properties. Correlations among layers sequence, barrier properties, and other parameters are presented, including some basic principles of permeation of substances through multilayer barrier systems. A combination of several inorganic and hybrid varnish layers is necessary to achieve the technological demands from a barrier standpoint. It is easier to suppress the oxygen transport than the water transport, due to the additional active penetration of water through hydrogen bonds and silanol creations at oxide interfaces, capillary condensation, and swelling with high internal pressure, leading to new defects.

  2. Multilayer coatings for flexible high-barrier materials

    NASA Astrophysics Data System (ADS)

    Vaško, Karol; Noller, Klaus; Mikula, Milan; Amberg-Schwab, Sabine; Weber, Ulrike

    2009-06-01

    A multilayer, flexible, and transparent high-barrier system based on flexible plastic foils, polyethyleneterephthalate (PET) and ethylene-tetrafluoroethylene-copolymer (ETFE), combined with vacuum-deposited, inorganic SiOx layers and hybrid ORMOCER® varnish layers were prepared in different orders on a semiproduction level. Barrier properties of prepared systems, as water vapour transmission (WVTR) and oxygen transmission (OTR), were measured and studied in connection with surface energy, surface topography, and water vapour adsorption properties. Correlations among layers sequence, barrier properties, and other parameters are presented, including some basic principles of permeation of substances through multilayer barrier systems. A combination of several inorganic and hybrid varnish layers is necessary to achieve the technological demands from a barrier standpoint. It is easier to suppress the oxygen transport than the water transport, due to the additional active penetration of water through hydrogen bonds and silanol creations at oxide interfaces, capillary condensation, and swelling with high internal pressure, leading to new defects.

  3. Characterization of Multilayer Reflective Coatings for Extreme Ultraviolet Lithography

    SciTech Connect

    Wedowski, M.; Gullikson, E.M.; Underwood, J.H.; Spiller, E.A.; Montcalm, C.; Kearney, P.A.; Bajt, S.; Schmidt, M.A.; Folta, J.A.

    1999-11-01

    The synchrotron-based reflectometer at beamline 6.3.2 of the Advanced Light Source (ALS) in Berkeley is an important metrology tool within the current Extreme Ultraviolet Lithography (EUVL) program. This program is a joint activity of three National Laboratories and a consortium of leading semiconductor manufacturers. Its goal is the development of a technology for routine production of sub-100 nm feature sizes for microelectronic circuits. Multilayer-coated normal-incidence optical surfaces reflecting in the Extreme Ultraviolet (EUV) spectral range near 13 nm are the basis for this emerging technology. All optical components of EUV lithographic steppers need to be characterized at-wavelength during their development and manufacturing process. Multilayer coating uniformity and gradient, accurate wavelength matching and high peak reflectances are the main parameters to be optimized. The mechanical and optical properties of the reflectometer at ALS beamline 6.3.2 proved to be well suited for the needs of the current EUVL program. In particular the facility is highly precise in its wavelength calibration and the determination of absolute EUV reflectance. The reproducibility of results of measurements at ALS beamline 6.3.2 is 0.2 % for reflectivity and 0.002 nm for wavelength.

  4. Multilayer-coated micro-grating array for x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Lynch, Susanna K.; Liu, Chian; Assoufid, Lahsen; Morgan, Nicole Y.; Mazilu, Dumitru; Bennett, Eric; Kemble, Camille K.; Wen, Han H.

    2011-05-01

    X-ray imaging techniques based on grating interferometers rely on transmission gratings to detect x-ray refraction and scattering in a sample. Gratings periods below 2 microns are challenging to realize due to the high aspect ratio of the structures. We propose a method to fabricate transmission gratings with sub-micron periods over centimeter areas by multilayer coating of a staircase (echelle) substrate. The advantage of this approach is the high aspect ratio of multilayer coating and the large area of the echelle substrate. The staircase pattern is etched on the surface of a silicon wafer through anisotropic etching. Multiple layers are deposited on the horizontal surfaces of the stairs by magnetron sputtering in a single run. The layers alternate between two materials of different absorption coefficients or refractive indices. The layer thickness d is designed to be (stair height)/2N, where 2N is the total number of layers. The incident xray beam is parallel to the layers and oblique to the wafer surface. Each stair of the echelle substrate forms a micro grating of period 2d, and the array of micro gratings together act as a single grating over a large area given the right continuity conditions. The grating period potentially can be below 100 nm. We present theoretical description of wave diffraction by the grating array, and results of the first fabrication test with magnetron sputtering deposition.

  5. Corrosion resistance and electrical properties of carbon/chromium-titanium-nitride multilayer coatings on stainless steel

    NASA Astrophysics Data System (ADS)

    Feng, Kai; Li, Zhuguo; Lu, Fenggui; Huang, Jian; Cai, Xun; Wu, Yixiong

    2014-03-01

    High electrical conductivity and corrosion resistance are central to advances in wider application of metallic bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). In this study, C/Cr-Ti-N multilayer coatings are deposited by physical vapor deposition and the effect of Cr:Ti ratio on the corrosion resistance and interfacial contact resistance (ICR) are systematically investigated. Scanning electron microscopy (SEM) result shows that the carbon layer is compact and uniform. Excellent corrosion resistance of 0.127 μA cm-2 current density at operating voltage in PEMFC cathode environment and low ICR of 2.03 mΩ-cm2 at compaction force of 150 N cm-2 are achieved when Cr:Ti ratio is 2:4 and 3:3, respectively. The significant enhancement in surface conductivity is probably because that the current comes from carbon paper is homogenized by two electrically conductive layers and flows to the passive film with much more contact area. After polarization, ICR increase to 3.07 mΩ-cm2 and 3.02 mΩ-cm2 in the simulated PEMFC cathode and anode environment, respectively. However, the Raman spectroscopy results disclose that the bonding type of top carbon film before and after polarization shows little difference. The results indicate that C/Cr-Ti-N multilayer coating with Cr:Ti ratio of 2:4 achieves the optimal composition.

  6. 'One-component' ultrathin multilayer films based on poly(vinyl alcohol) as stabilizing coating for phenytoin-loaded liposomes.

    PubMed

    Zasada, Katarzyna; Łukasiewicz-Atanasov, Magdalena; Kłysik, Katarzyna; Lewandowska-Łańcucka, Joanna; Gzyl-Malcher, Barbara; Puciul-Malinowska, Agnieszka; Karewicz, Anna; Nowakowska, Maria

    2015-11-01

    Ultrathin "one-component" multilayer polymeric films for potential biomedical applications were designed based on polyvinyl alcohol,-a non-toxic, fully degradable synthetic polymer. Good uniformity of the obtained film and adequate adsorption properties of the polymeric layers were achieved by functional modification of the polymer, which involved synthesis of cationic and anionic derivatives. Synthesized polymers were characterized by FTIR, NMR spectroscopy, dynamic light scattering measurements and elemental analysis. The layer by layer assembly technique was used to build up a multilayer film and this process was followed using UV-Vis spectroscopy and ellipsometry. The morphology and thickness of the obtained multilayered film material was evaluated by atomic force microscopy (AFM). Preliminary studies on the application of the obtained multilayer film for coating of liposomal nanocarriers containing phenytoin, an antiarrhythmic drug, were performed. The coating effectively stabilizes liposomes and the effect increases with an increasing number of deposited layers until the polymeric film reaches the optimal thickness. The obtained release profiles suggest that bilayer-coated liposomes release phenytoin less rapidly than uncoated ones. The cytotoxicity studies performed for all obtained nanocarriers confirmed that none of them has negative effect on cell viability. All of the performed experiments suggest that liposomes coated with ultrathin film obtained from PVA derivatives can be attractive drug nanocarriers. PMID:26253533

  7. Structural and Morphological Difference Between Ti/TiN/TiCN Coatings Grown in Multilayer and Graded Form

    SciTech Connect

    Restrepo, E.; Baena, A.; Agudelo, C.; Castillo, H.; Devia, A.; Marino, A.

    2006-12-04

    Thin films can be grown in super-lattice, multilayers and graded form, having each one advantages and disadvantages. The difference between multilayer and graded coatings is the interface. In multilayers the interface is abrupt and in graded coatings it is diffuse. The interface influences many chemical and physical properties of the materials, and its choice depends on the application. Graded coatings have the advantage of having gradual properties such as thermal expansion coefficient and lattice parameter, avoiding adherence problems due to good match between their component materials. In this work the comparison between some properties of coatings grown as multilayer and graded is performed. The materials are produced using the sputtering DC technique because of its facility to control the deposition parameters and generate a slow growth. The target is a disc of titanium and the samples are made of stainless steel 304. The working gases are argon, nitrogen and methane, which are mixed according to the material to be produced, i.e. Ti layer is grown with argon, the TiN film is produced with a mixture of argon and nitrogen, and the TiCN material is obtained mixing argon, nitrogen and methane. These materials are characterized with AFM in order to determine grain size and with XPS studying the chemical composition and performing depth profiles.

  8. Vacuum deposited optical coatings experiment

    NASA Technical Reports Server (NTRS)

    Charlier, Jean

    1992-01-01

    The 138-4 Frecopa experiment consisted of 20 sorts of optical components and coatings subjected to space exposure. They covered a large range of use from the UV to IR spectrum: filters, mirrors, dichroics, beam splitters, and antireflection coatings made of several different materials as layers and substrates. By comparing pre- and post-flight spectral performances, it was possible to put into evidence the alterations due to space exposure.

  9. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method.

    PubMed

    Uğur, Sule S; Sarıışık, Merih; Aktaş, A Hakan; Uçar, M Ciğdem; Erden, Emre

    2010-01-01

    ZnO nanoparticle-based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC) by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values) were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL) process on cotton fabrics properties. PMID:20596450

  10. Modifying of Cotton Fabric Surface with Nano-ZnO Multilayer Films by Layer-by-Layer Deposition Method

    PubMed Central

    2010-01-01

    ZnO nanoparticle–based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC) by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values) were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL) process on cotton fabrics properties. PMID:20596450

  11. Pulsed laser deposition of pseudowollastonite coatings.

    PubMed

    Fernández-Pradas, J M; Serra, P; Morenza, J L; De Aza, P N

    2002-05-01

    Pseudowollastonite (alpha-CaSiO3) is a bioactive ceramic material that induces direct bone growth. A process to obtain pseudowollastonite coatings that may be applied to implants is described and evaluated in this work. The coatings were first deposited on titanium alloy by laser ablation with a pulsed Nd:YAG laser tripled in frequency. After deposition, they were submitted to a soft laser treatment with a continuous wave Nd:YAG infrared laser. Coatings were characterised by X-ray diffractometry, Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy before and after the laser treatment. As-deposited coatings are composed of pseudowollastonite and amorphous material. They have a porous structure of gathered grains and poor cohesion. After the laser treatment the coatings crystallinity and cohesion are improved. The laser treatment also makes the coatings dense and well adhered to the substrate. Therefore, this two-step process has been demonstrated as a valuable method to coat titanium implants with pseudowollastonite. PMID:11996047

  12. Tribo-electrochemical characterization of hafnium multilayer systems deposited on nitride/vanadium nitride AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Mora, M.; Vera, E.; Aperador, W.

    2016-02-01

    In this work is presented the synergistic behaviour among corrosion/wear (tribocorrosion) of the multilayer coatings hafnium nitride/vanadium nitride [HfN/VN]n. The multilayers were deposited on AISI 4140 steel using the technique of physical vapor deposition PVD magnetron sputtering, the tests were performed using a pin-on-disk tribometer, which has an adapted potentiostat galvanostat with three-electrode electrochemical cell. Tribocorrosive parameters such as: Friction coefficient between the coating and the counter body (100 Cr6 steel ball); Polarization resistance by means of electrochemical impedance spectroscopy technique and corrosion rate by polarization curves were determined. It was observed an increase in the polarization resistance, a decrease in the corrosion rate and a low coefficient of friction in comparison with the substrate, due to an increase on the number of bilayers.

  13. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    NASA Astrophysics Data System (ADS)

    Ozeki, K.; Hirakuri, K. K.; Masuzawa, T.

    2011-04-01

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO2) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO2 films and DLC/TiO2/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO2-coated and the DLC/TiO2/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO2/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO2/DLC film had a photocatalytic effect even though the TiO2 film was covered with the DLC film.

  14. Effects of voltage on microstructure and oxidation resistance of SiB6-MoSi2 coating deposited by pulse arc discharge deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Liang; Huang, Jian-Feng; Zhu, Kong-Jun; Cao, Li-Yun; Li, Cui-Yan; Zhou, Lei; Zhang, Bo-Ye; Kong, Wei-Hua; Zhang, Bo

    2015-06-01

    To protect carbon/carbon (C/C) composites against oxidation, a SiB6-MoSi2 coating was prepared by pulse arc discharge deposition (PADD). The influence of deposition voltage on arc discharge sintering ability, microstructure and oxidation resistance of the SiB6-MoSi2 coatings was investigated. Results show that the oxidation resistance of the coating is improved when the voltage increases from 350 to 450 V. The dense and good crystallization SiB6-MoSi2 coating was obtained with sufficient arc discharge sintering energy when the voltage is 450 V. And the multilayer coatings can protect C/C composites from oxidation in air at 1773 K for 164 h with a weight loss of 2.04%. The evaporation of the molten glass layer and MoO3 is the main reason for the failure of the multilayer coatings.

  15. Chemical vapor deposition coating for micromachines

    SciTech Connect

    MANI,SEETHAMBAL S.; FLEMING,JAMES G.; SNIEGOWSKI,JEFFRY J.; DE BOER,MAARTEN P.; IRWIN,LAWRENCE W.; WALRAVEN,JEREMY A.; TANNER,DANELLE M.; DUGGER,MICHAEL T.

    2000-04-21

    Two major problems associated with Si-based MEMS devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors will present a process used to selectively coat MEMS devices with tungsten using a CVD (Chemical Vapor Deposition) process. The selective W deposition process results in a very conformal coating and can potentially solve both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through silicon reduction of WF{sub 6}, which results in a self-limiting reaction. The selective deposition of W only on polysilicon surfaces prevents electrical shorts. Further, the self-limiting nature of this selective W deposition process ensures the consistency necessary for process control. Selective tungsten is deposited after the removal of the sacrificial oxides to minimize process integration problems. This tungsten coating adheres well and is hard and conducting, requirements for device performance. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release stuck parts that are contacted over small areas such as dimples. Results from tungsten deposition on MEMS structures with dimples will be presented. The effect of wet and vapor phase cleanings prior to the deposition will be discussed along with other process details. The W coating improved wear by orders of magnitude compared to uncoated parts. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable.

  16. Optimization of multilayer antireflection coating for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sikder, Urmita; Zaman, Mohammad Asif

    2016-05-01

    Multilayer antireflection coating (ARC) for photovoltaics is optimized using Differential Evolution (DE) algorithm. A general transfer-matrix based mathematical formulation is used for evaluating reflection spectra of the system. Exact and complete values of refractive indices are used in the analysis to provide higher accuracy of the results. The proposed optimization method takes into account the solar irradiance spectra, absorption characteristics of semiconductors and angle of incidence to maximize efficiency. This method is found to reduce the average reflectance for a wide range of angles of incidence. The proposed method is used to design ARC for silicon solar cell and a multi-junction AlGaAs/GaAs/Ge solar cell. Finally, comparative analysis of different ARC designs is provided in terms of corresponding solar cell characteristics.

  17. Comparative study of the laser damage threshold and optical characteristics of Ta2O5-SiO2 multilayers deposited using various methods

    NASA Astrophysics Data System (ADS)

    Botha, Roelene; Schwyn Thöny, Silvia; Grössl, Martin; Mourad, Safer; Maissen, Clau; Venter, Jacobus I.; Südmeyer, Thomas; Hoffmann, Martin; Bulkin, Pavel V.; Linz-Dittrich, Sabine; Bischof, David; Michler, Markus; Rinner, Stefan J.; Ettemeyer, Andreas

    2015-11-01

    Manufacturing processes from the private and academic sectors were used to deposit anti-reflective and high-reflective coatings composed of Ta2O5 - SiO2 multilayers. Used deposition techniques included three Ion Assisted Deposition (IAD) systems and an Ion Beam Sputtering (IBS) system. Coatings were performed on fused silica (Corning 7980) substrates polished by two different suppliers. LIDT Measurements were performed using a Q-Switched Nd:YAG laser operating at 1064nm. The paper presents a comparison of the coatings in terms of laser damage threshold values, optical properties and surface quality.

  18. Heparin-mimicking multilayer coating on polymeric membrane via LbL assembly of cyclodextrin-based supramolecules.

    PubMed

    Deng, Jie; Liu, Xinyue; Ma, Lang; Cheng, Chong; Shi, Wenbin; Nie, Chuanxiong; Zhao, Changsheng

    2014-12-10

    In this study, multifunctional and heparin-mimicking star-shaped supramolecules-deposited 3D porous multilayer films with improved biocompatibility were fabricated via a layer-by-layer (LbL) self-assembly method on polymeric membrane substrates. Star-shaped heparin-mimicking polyanions (including poly(styrenesulfonate-co-sodium acrylate; Star-PSS-AANa) and poly(styrenesulfonate-co-poly(ethylene glycol)methyl ether methacrylate; Star-PSS-EGMA)) and polycations (poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate; Star-PMeDMA) were first synthesized by atom transfer radical polymerization (ATRP) from β-cyclodextrin (β-CD) based cores. Then assembly of 3D porous multilayers onto polymeric membrane surfaces was carried out by alternating deposition of the polyanions and polycations via electrostatic interaction. The surface morphology and composition, water contact angle, blood activation, and thrombotic potential as well as cell viability for the coated heparin-mimicking films were systematically investigated. The results of surface ATR-FTIR spectra and XPS spectra verified successful deposition of the star-shaped supramolecules onto the biomedical membrane surfaces; scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations revealed that the modified substrate had 3D porous surface morphology, which might have a great biological influence on the biointerface. Furthermore, systematic in vitro investigation of protein adsorption, platelet adhesion, human platelet factor 4 (PF4, indicates platelet activation), activate partial thromboplastin time (APTT), thrombin time (TT), coagulation activation (thrombin-antithrombin III complex (TAT, indicates blood coagulant)), and blood-related complement activation (C3a and C5a, indicates inflammation potential) confirmed that the heparin-mimicking multilayer coated membranes exhibited ultralow blood component activations and excellent hemocompatibility. Meanwhile, after surface coating

  19. Deposition of various metal, ceramic, and cermet coatings by an industrial-scale large area filtered arc deposition process

    SciTech Connect

    Gorokhovsky, V.; Bowman, C.; VanVorous, D.; Wallace, J.

    2009-07-15

    Nearly defect-free nitride, carbide, and oxiceramic coatings have been deposited by a unidirectional dual large area filtered arc deposition (LAFAD) process. One LAFAD dual arc vapor plasma source was used in both gas ionization and coating deposition modes with and without vertical magnetic rastering of the plasma flow. Substrates made of different metal alloys, as well as carbide and ceramics, were installed at different vertical positions on the 0.5 m diameter turntable of the industrial-scale batch coating system which was rotated at 12 rpm to assess deposition rates and coating thickness uniformity. Targets of the same or different compositions were installed on the primary cathodic arc sources of the LAFAD plasma source to deposit a variety of coating compositions by mixing the metal vapor and reactive gaseous components in a magnetically confined, strongly ionized plasma flow with large kinetic energy. The maximum deposition rate typically ranged from 1.5 {mu}m/h for TiCr/TiCrN to 2.5 {mu}m/h for Ti/TiN multilayer and AlN single layer coatings, and up to 6 {mu}m/h for AlCr-based oxiceramic coatings for primary cathode current ranging from 120 to 140 A. When the arc current was increased to 200 A, the deposition rates of TiN-based coatings were as high as 5 {mu}m/h. The vertical coating thickness uniformity was {+-}15% inside of a 150 mm area without vertical rastering. Vertical rastering increased the uniform coating deposition area up to 250 mm. The coating thickness distribution was well correlated with the output ion current distribution as measured by a multisection ion collector probe. Coatings were characterized for thickness, surface profile, adhesion, hardness, and elemental composition. Estimates of electrical resistivity indicated good dielectric properties for most of the TiCrAlY-based oxiceramic, oxinitride, and nitride coatings. The multielement LAFAD plasma flow consisting of fully ionized metal vapor with a reactive gas ionization rate in

  20. Substrate recovery of Mo-Si multilayer coated optics

    SciTech Connect

    Stearns, D.G.; Baker, S.L.

    1993-06-01

    Imaging optics in a soft x-ray projection lithography (SXPL) system must meet stringent requirements to achieve high throughput and diffraction limited performance. Errors in the surface figure must be kept to less than {approximately}1 nm and the rms surface roughness must be less than 0.1 nm. The ML coatings must provide high reflectivity (> 60%) at wavelengths in the vicinity of 13 nm. The reflectivity bandpasses of the optics must be aligned within 0.05 nm. Each coating must be uniform across the surface of the optic to within 0.5%. These specifications challenge the limits of the current capabilities in optics fabrication and ML deposition. Consequently a set of qualified SXPL imaging optics is expected to be expensive, costing in the range of 100--250 k$. If the lifetime of the imaging optics is short, the replacement cost could significantly impact the economic competitiveness of the technology. The most likely failure modes for the imaging optics are mechanisms that degrade the ML coatings, but which leave the substrates intact. A potentially low cost solution for salvaging the imaging optics could be to strip the damaged ML coating to recover the substrate and then deposit a new coating. In this paper the authors report on the use of reactive ion etching (RIE) to remove Mo-Si ML coatings from precision optical substrates. The goal of this work was to characterize the etching process both in the ML film and at the substrate, and to determine the effects of the etching on the surface figure and finish of the substrate.

  1. Fine tuning of the pH-sensitivity of laponite-doxorubicin nanohybrids by polyelectrolyte multilayer coating.

    PubMed

    Xiao, Shili; Castro, Rita; Maciel, Dina; Gonçalves, Mara; Shi, Xiangyang; Rodrigues, João; Tomás, Helena

    2016-03-01

    Despite the wide research done in the field, the development of advanced drug delivery systems with improved drug delivery properties and effective anticancer capability still remains a great challenge. Based on previous work that showed the potentialities of the nanoclay Laponite as a pH-sensitive doxorubicin (Dox) delivery vehicle, herein we report a simple method to modulate its extent of drug release at different pH values. This was achieved by alternate deposition of cationic poly(allylamine) hydrochloride and anionic poly(sodium styrene sulfonate) (PAH/PSS) polyelectrolytes over the surface of Dox-loaded Laponite nanoparticles using the electrostatic layer-by-layer (LbL) self-assembly approach. The successful formation of polyelectrolyte multilayer-coated Dox/Laponite systems was confirmed by Dynamic Light Scattering and zeta potential measurements. Systematic studies were performed to evaluate their drug release profiles and anticancer efficiency. Our results showed that the presence of the polyelectrolyte multilayers improved the sustained release properties of Laponite and allowed a fine tuning of the extension of drug release at neutral and acidic pH values. The cytotoxicity presented by polyelectrolyte multilayer-coated Dox/Laponite systems towards MCF-7 cells was in accordance with the drug delivery profiles. Furthermore, cellular uptake studies revealed that polyelectrolyte multilayer-coated Dox/Laponite nanoparticles can be effectively internalized by cells conducting to Dox accumulation in cell nucleus. PMID:26706540

  2. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-03-01

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces.

  3. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces

    PubMed Central

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-01-01

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces. PMID:26996815

  4. Testing multilayer-coated polarizing mirrors for the LAMP soft X-ray telescope

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Salmaso, B.; She, R.; Tayabaly, K.; Wen, M.; Banham, R.; Costa, E.; Feng, H.; Giglia, A.; Huang, Q.; Muleri, F.; Pareschi, G.; Soffitta, P.; Tagliaferri, G.; Valsecchi, G.; Wang, Z.

    2015-09-01

    The LAMP (Lightweight Asymmetry and Magnetism Probe) X-ray telescope is a mission concept to measure the polarization of X-ray astronomical sources at 250 eV via imaging mirrors that reflect at incidence angles near the polarization angle, i.e., 45 deg. Hence, it will require the adoption of multilayer coatings with a few nanometers dspacing in order to enhance the reflectivity. The nickel electroforming technology has already been successfully used to fabricate the high angular resolution imaging mirrors of the X-ray telescopes SAX, XMM-Newton, and Swift/XRT. We are investigating this consolidated technology as a possible technique to manufacture focusing mirrors for LAMP. Although the very good reflectivity performances of this kind of mirrors were already demonstrated in grazing incidence, the reflectivity and the scattering properties have not been tested directly at the unusually large angle of 45 deg. Other possible substrates are represented by thin glass foils or silicon wafers. In this paper we present the results of the X-ray reflectivity campaign performed at the BEAR beamline of Elettra - Sincrotrone Trieste on multilayer coatings of various composition (Cr/C, Co/C), deposited with different sputtering parameters on nickel, silicon, and glass substrates, using polarized X-rays in the spectral range 240 - 290 eV.

  5. Nanostructured multilayer polyelectrolyte films with silver nanoparticles as antibacterial coatings.

    PubMed

    Kruk, Tomasz; Szczepanowicz, Krzysztof; Kręgiel, Dorota; Szyk-Warszyńska, L; Warszyński, Piotr

    2016-01-01

    Ultrathin polyelectrolyte films containing silver nanoparticles appear to be a promising material for antimicrobial coatings used in the medical area. The present work is focused on the formation of multilayer polyelectrolyte films using: polyethyleneimine (PEI) as polycation, Poly(sodium 4-styrenesulfonate) (PSS) as polyanions and negatively charged silver nanoparticles (AgNPs), which led to the polyelectrolyte-silver nanocomposite coatings. The film thickness and mass were measured by ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D) and the structure and morphology of films were visualized using scanning electron microscopy (SEM). Systematic increase of the UV-Vis absorption confirmed formation of the consecutive layers of the film. The analysis of bacteria cell adhesion to films surface was done by the luminometry measurement. Three gram-negative bacterial strains with strong adhesive properties were used in this study: Escherichia coli, Aeromonas hydrophila, and Asaia lannenesis. It was found that nanocomposite films have antimicrobial properties, which makes them very interesting for a number of practical applications, e.g. for the prevention of microbial colonization on treated surfaces. PMID:26193773

  6. In-situ stress analysis of multilayer environmental barrier coatings.

    SciTech Connect

    Harder, B. J.; Almer, J.; Lee, K. N.; Faber, K. T.; Northwestern Univ.; Rolls-Royce Corp.

    2009-06-01

    The biaxial stress and thermal expansion of multilayer doped-aluminosilicate environmental barrier coatings were measured in situ during cooling using microfocused high-energy X-rays in transmission. Coating stresses during cooling from 1000 C were measured for as-sprayed and thermally cycled samples. In the as-sprayed state, tensile stresses as high as 75 MPa were measured in the doped-aluminosilicate topcoat at 375 C, after which a drop in the stress occurred accompanied by through-thickness cracking of the two outermost layers. After thermally cycling the samples, the stress in the topcoat was reduced to approximately 50 MPa, and there was no drop in stress upon cooling. This stress reduction was attributed to a crystallographic phase transformation of the topcoat and the accompanying change in thermal expansion coefficient. The addition of a doped aluminosilicate to the mullite layer did not lower the stress in the topcoat, but may offer increased durability due to an increased compressive stress.

  7. Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters.

    PubMed

    Ivanova, Kristina; Fernandes, Margarida M; Mendoza, Ernest; Tzanov, Tzanko

    2015-05-01

    Bacteria use a signaling mechanism called quorum sensing (QS) to form complex communities of surface-attached cells known as biofilms. This protective mode of growth allows them to resist antibiotic treatment and originates the majority of hospital-acquired infections. Emerging alternatives to control biofilm-associated infections and multidrug resistance development interfere with bacterial QS pathways, exerting less selective pressure on bacterial population. In this study, biologically stable coatings comprising the QS disrupting enzyme acylase were built on silicone urinary catheters using a layer-by-layer technique. This was achieved by the alternate deposition of negatively charged enzyme and positively charged polyethylenimine. The acylase-coated catheters efficiently quenched the QS in the biosensor strain Chromobacterium violaceum CECT 5999, demonstrated by approximately 50% inhibition of violacein production. These enzyme multilayer coatings significantly reduced the Pseudomonas aeruginosa ATCC 10145 biofilm formation under static and dynamic conditions in an in vitro catheterized bladder model. The quorum quenching enzyme coatings did not affect the viability of the human fibroblasts (BJ-5ta) over 7 days, corresponding to the extended useful life of urinary catheters. Such enzyme-based approach could be an alternative to the conventional antibiotic treatment for prevention of biofilm-associated urinary tract infections. PMID:25582561

  8. A 10,000 groove/mm multilayer coated grating for EUV spectroscopy

    SciTech Connect

    Voronov, Dmytro; Anderson, Erik; Cambie, Rossana; Cabrini, Stefano; Dhuey, Scott; Goray, Leonid; Gullikson, Eric; Salmassi, Farhad; Warwick, Tony; Yashchuk, Valeriy; Padmore, Howard

    2011-02-07

    Ultra-high spectral resolution in the EUV and soft x-ray energy ranges requires the use of very high line density gratings with optimal design resulting in use of a Blazed Multilayer Grating (BMG) structure. Here we demonstrate the production of near-atomically perfect Si blazed substrates with an ultra-high groove density (10,000 l/mm) together with the measured and theoretical performance of an Al/Zr multilayer coating on the grating. A 1st order absolute efficiency of 13percent and 24.6percent was achieved at incidence angles of 11o and 36o respectively. Cross-sectional TEM shows the effect of smoothing caused by the surface mobility of deposited atoms and we correlate this effect with a reduction in peak diffraction efficiency. This work shows the high performance that can be achieved with BMGs based on small-period anisotropic etched Si substrates, but also the constraints imposed by the surface mobility of deposited species.

  9. Improving the oxidation protection of niobium and tantalum by the use of multilayer coatings

    NASA Astrophysics Data System (ADS)

    Dzyadykevich, Y. V.; Kytskay, L. I.

    1997-01-01

    This article examines how the applicability of the refractory metals niobium and tantalum in high-temperature applications can be improved through the use of high-temperature, multilayer coatings based on molybdenum disilicide for oxidation resistance.

  10. Development of multilayer oxidation resistant coatings on Cr-50Nb alloy

    NASA Astrophysics Data System (ADS)

    Zheng, Haizhong; Xiong, Lingling; Luo, Qinhao; Lu, Shiqiang

    2015-12-01

    To protect Cr-50Nb alloys from high-temperature oxidation, the Al2O3/Si-Al multilayer coatings were produced by pack cementation process, followed by sol-gel process and hot pressing. The results indicate that the multilayer coating is dense and exhibits good adherence to the substrate, which consists of a compact Al2O3 outer layer and an inner layer composed of Si, Al, Cr, Nb. Uncoated Cr-50Nb alloy occurs catastrophic oxidation at the initial oxidation stage at 1200 °C. However, the scale spalling resistance of the multilayer coating is improved significantly, and the multilayer coating exhibits good resistance to oxidation. During cyclic oxidation in air at 1200 °C for 100 h, the weight loss is 0.13 mg/cm2 and the mass gain is 3.38 mg/cm2.

  11. Sputter deposition of SiC coating on silicon wafers

    NASA Technical Reports Server (NTRS)

    Robson, M. T.; Blue, C. A.; Warrier, S. G.; Lin, R. Y.

    1992-01-01

    A study is conducted of the effect of substrate temperature during coating on the properties of coated SiC films on Si wafers, using a scratch test technique. While specimen temperature during coating has little effect on deposition rate, it significantly affects the durability of the coating. Scratch test damage to both film coating and substrate decreased with increasing deposition temperature, perhaps due to the rapid diffusion of the deposited atoms.

  12. Development of multilayer coatings (Ni/C-Pt/C) for hard x-ray telescopes by e-beam evaporation with ion assistance

    NASA Astrophysics Data System (ADS)

    Spiga, Daniele; Pareschi, Giovanni; Citterio, Oberto; Banham, Robert; Basso, Stefano; Cassanelli, Marco; Cotroneo, Vincenzo; Negri, Barbara; Grisoni, Gabriele; Valsecchi, Giuseppe; Vernani, Dervis

    2004-10-01

    A number of X-ray astronomical missions of near future (XEUS, Constellation-X, SIMBOL-X, HEXIT-SAT, NEXT) will make use of hard X-ray (10-100 keV) optics with broad-band multilayer coatings. To this aim we are developing a multilayer deposition technique for large substrates based on the e-beam deposition technique, improved by the implementation of an ion beam assistance device, in order to reduce the interfacial roughness and improve the reflectivity. The e-beam deposition with ion assistance keeps the film smoothness at a good level and takes the advantage of a reduction of the interlayer stresses. This approach is well suited for the manufacturing of high-reflectance multilayer mirrors for hard X-rays space telescopes where, in addition to a high quality of the deposited films, a volume production is also requested. Moreover, we are also up-grading the replication technique by nickel electroforming, already successfully used for the gold coated soft X-ray mirrors of Beppo-SAX, XMM, JET-X/SWIFT missions, to the case of multilayer coated mirrors. In this paper we will present the technique under development and the implemented deposition facility. Some preliminary, very encouraging, results achieved with the X-ray (8.05 and 17.4 keV) and topographic characterization on flat samples will be discussed.

  13. Hemocompatible, pulsed laser deposited coatings on polymers.

    PubMed

    Lackner, Juergen M; Waldhauser, Wolfgang; Major, Roman; Major, Boguslaw; Bruckert, Franz

    2010-02-01

    State-of-the-art non-thrombogenic blood contacting surfaces are based on heparin and struggle with the problem of bleeding. However, appropriate blood flow characteristics are essential for clinical application. Thus, there is increasing demand to develop new coating materials for improved human body acceptance. Materials deposited by vacuum coating techniques would be an excellent alternative if the coating temperatures can be kept low because of the applied substrate materials of low temperature resistance (polymers). Most of the recently used plasma-based deposition techniques cannot fulfill this demand. However, adequate film structure and high adhesion can be reached by the pulsed laser deposition at room temperature, which was developed to an industrial-scaled process at Laser Center Leoben. Here, this process is described in detail and the resulting structural film properties are shown for titanium, titanium nitride, titanium carbonitride, and diamond-like carbon on polyurethane, titanium and silicon substrates. Additionally, we present the biological response of blood cells and the kinetic mechanism of eukaryote cell attachment. In conclusion, high biological acceptance and distinct differences for the critical delamination shear stress were found for the coatings, indicating higher adhesion at higher carbon contents. PMID:20128746

  14. High-Temperature TEM investigation of the phase composition and structure of the Zr-Y-O/Si-Al-N multilayer coatings

    NASA Astrophysics Data System (ADS)

    Fedorischeva, M.; Kalashnikov, M.; Sergeev, V.; Bozhko, I.

    2016-04-01

    Deposition of nanostructured multi-layered coatings on the basis of Zr-Y-0 was implemented by the pulse magnetron methods. Structural-phase states and morphology of the nanostructured coatings were investigated by SEM and the high-temperature TEM method. The high-temperature TEM revealed the presence of reversible phase transition of the tetragonal phase to the monoclinic phase, which can ensure stress relaxation and closure of surface cracks.

  15. Full spin-coated multilayer structure hybrid light-emitting devices

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Mazzeo, Marco; Carallo, Sonia; Wang, Huiping; Ma, Yuguang; Gigli, Giuseppe

    2010-09-01

    We report on a multilayer structure hybrid light-emitting device (HLED) using a water/alcohol-soluble polymer poly(9,9-bis{30-[(N,N-dimethyl)-N-ethylammonium}-propyl]-2,7-fluorene dibromide) as an electron-transporting layer and a close-packed quantum dot-layer (QD-layer) as an emitting layer. The device was realized by full spin-coating technology without thermal evaporation process for the deposition of organic layers. The QD-layer was a mixture of QDs with two different sizes, in which large size QD-emitters were dispersed in small size QDs to weaken the concentration quenching. The device achieved a maximum power efficiency of 0.58 lm/W, which nearly quadrupled that of the HLED with a plain large size QD-EML.

  16. Experimental demonstration of a Fresnel-reflection based optical fiber biosensor coated with polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    Yu, Wenjie; Lang, Tingting

    2014-11-01

    We report that the end facet of an optical fiber can be coated with polyelectrolyte multilayers (PEM) of polycation (diallyldimethyl ammonium chloride) and polyanion (styrenesulfonate sodium salt) (PDDA+PSS)n (n is the number of bilayers), which functions effectively as a Fresnel-reflection based biosensor. The experimental setup includes a broadband light source, a 3dB coupler, and an optical spectrum analyzer. Biotin and streptavidin are deposited onto the multilayers-coated end facet sequentially. The light intensity change due to variation of external refractive index is monitored. When the concentrations of streptavidin changes from 0.1mg/ml to 1mg/ml, a linear relationship between the concentration of streptavidin and the reflected optical power at the wavelength of 1530nm is observed. The sensitivity increases from -1.6262×10-3 dB/ppm to -4.7852 ×10-3 dB/ppm, when the number of PEM increases from 1 to 2. Then we confirm the optimized numbers of bilayers of PEM are 5 through experiment. Selectivity and repeatability of our proposed optical fiber biosensor are verified. When bovine serum albumin (BSA) is added instead of streptavidin, the obtained spectra overlaps with that of biotin's. The final end facet coated with PEM and biotin-streptavidin can be cleaned using microwave vibration or aqua regia. The microwave vibration method is utilized due to security concern. The optical spectra changes back to the initial one of the optical fiber in air. In conclusion, a Fresnel-reflection based optical fiber biosensor with good sensitivity, selectivity and repeatability is proposed. This biosensor has the advantages of simple structure, low cost and reliability.

  17. Electrically driven ion separations and nanofiltration through membranes coated with polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    White, Nicholas

    Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is <2. However, water-splitting at strongly overlimiting current densities may lead to a local pH increase close to the membrane surface and alter film permeability or allow passage of Mg(OH)x species to decrease selectivity. When the source phase contains high salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000

  18. New Approach to Ceramic/Metal-Polymer Multilayered Coatings for High Performance Dry Sliding Applications

    NASA Astrophysics Data System (ADS)

    Rempp, A.; Killinger, A.; Gadow, R.

    2012-06-01

    The combination of thermally sprayed hard coatings with a polymer based top coat leads to multilayered coating systems with tailored functionalities concerning wear resistance, friction, adhesion, wettability or specific electrical properties. The basic concept is to combine the mechanical properties of the hard base coating with the tribological or chemical abilities of the polymer top coat suitable for the respective application. This paper gives an overview of different types of recently developed multilayer coatings and their application in power transmission under dry sliding conditions. State of the art coatings for dry sliding applications in power transmission are mostly based on thin film coatings like diamond-like carbon or solid lubricants, e.g. MoS2. A new approach is the combination of thin film coatings with combined multilayer coatings. To evaluate the capability of these tribological systems, a multi-stage investigation has been carried out. In the first stage the performance of the sliding lacquers and surface topography of the steel substrate has been evaluated. In the following stage thermally sprayed hard coatings were tested in combination with different sliding lacquers. Wear resistance and friction coefficients of combined coatings were determined using a twin disc test-bed.

  19. Innovative methods for optimization and characterization of multilayer coatings

    NASA Astrophysics Data System (ADS)

    Pelizzo, M. G.; Suman, M.; Monaco, G.; Windt, D. L.; Nicolosi, P.

    2009-05-01

    A numerical method to design multilayer coating (ML) is presented. The mathematical tool is based on an "evolutive strategy" algorithm which provides aperiodic solutions by maximizing input merit functions. It allows the optimization of any kind of structures, comprising interlayers and capping layers, and modelling also inter-diffusion and interface roughness. It has been applied to the design of MLs for different applications, as photolithography, space instrumentation and short pulse preservation/compression. The optimization allows the control of the standing wave distribution inside the ML. When the EUV radiation interacts with the structure, the superposition of the incident and reflected electromagnetic wave generates a standing wave field distribution in the ML. An aperiodic design allows the regulation of the distribution of this field, attributing specific properties to the ML. An experimental technique to recover standing wave intensity on top of the ML is also cited. The technique is based on electron photoemission measurements, which allow to determine both reflectivity as well as phase on top of ML. Thanks to this technique, both tests of the ML performances compliance with expected theoretical ones and of degradation through time can be carried on.

  20. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    SciTech Connect

    Hollis, Kendall J; Pena, Maria I

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  1. Measurement of thermal noise in multilayer coatings with optimized layer thickness

    SciTech Connect

    Villar, Akira E.; Black, Eric D.; DeSalvo, Riccardo; Libbrecht, Kenneth G.; Michel, Christophe; Morgado, Nazario; Pinard, Laurent; Pinto, Innocenzo M.; Pierro, Vincenzo; Galdi, Vincenzo; Principe, Maria; Taurasi, Ilaria

    2010-06-15

    A standard quarter-wavelength multilayer optical coating will produce the highest reflectivity for a given number of coating layers, but in general it will not yield the lowest thermal noise for a prescribed reflectivity. Coatings with the layer thicknesses optimized to minimize thermal noise could be useful in future generation interferometric gravitational wave detectors where coating thermal noise is expected to limit the sensitivity of the instrument. We present the results of direct measurements of the thermal noise of a standard quarter-wavelength coating and a low noise optimized coating. The measurements indicate a reduction in thermal noise in line with modeling predictions.

  2. Calculated performance of a Wolter type I X-ray telescope coated by multilayers

    NASA Technical Reports Server (NTRS)

    Catura, R. C.; Brown, W. A.; Joki, E. G.; Nobles, R. A.

    1982-01-01

    Deposition of multilayered diffraction coatings on the reflecting surfaces of a Wolter type I X-ray telescope offers the potential of using Bragg reflection to achieve enhanced effective area in selected high energy bandpasses. The structure of a gold-carbon multilayer has been optimized for study of 1.8 A iron-line emission with an X-ray telescope designed for observations from Spacelab. The response of this mirror assembly has been calculated as a function of X-ray energy and the resulting effective area is enhanced by a factor of 10 and peaks at 160 sq cm with a bandpass of 0.4 keV FWHM. This enhanced response is sufficient to allow study of the angular distribution of iron-line emission from the 20 brightest cluster X-ray sources during a 7 day Spacelab mission. The possibility of achieving X-ray imaging in narrow bandpasses at even higher energies has been investigated. It is concluded that it should be possible to achieve effective areas of approximately 5 sq cm in bandpasses approximately 1 keV wide for energies in the 15-25 keV range, a spectral region of much importance during the impulsive phase of solar flares.

  3. Modeling Multilayer Antireflection Coating Systems Based on LiNbO3

    NASA Astrophysics Data System (ADS)

    Karaomerlioglu, Filiz

    Antireflection coatings have had the greatest impact on optics. The antireflection (AR) coating is the critically important technology in obtaining high performance of optoelectronic devices. In the present paper, characteristics of the ferroelectric based multilayered antireflection coating systems are investigated. Multilayer antireflection coatings consisting of insulator thin films have been modeled in the region between the 400 nm and 800 nm visible bands of electromagnetic spectrum to reduce reflectance from ferroelectric based substrate. In this type of antireflection coating we can regulate the optical properties of a system by external electric (or thermal field) and design a broadband low reflection coating system for optoelectronic devices. In order to design and simulate the normal incidence wideband visible multilayer AR coatings, we have developed a Fortran software program based upon Fresnell equations. Different types of layers which are two-different materials like ZnSe and ZrO2 for even-folded multilayer (two-, four-, six-, eight-, ten-, and twelve-layer) antireflection coatings are used. Ferroelectric material, LiNbO3 is used as the substrate. The optical thicknesses of each layer are equal to a quarter-wave thick at a certain wavelength.

  4. Multilayered nanocrystalline CrN/TiAlN/MoS2 tribological thin film coatings: preparation and characterization

    NASA Astrophysics Data System (ADS)

    Papp, S.; Kelemen, A.; Jakab-Farkas, L.; Vida-Simiti, I.; Biró, D.

    2013-12-01

    Nanocrystalline multilayer thin film coatings, composed of nanometer-scale thick CrN, TiAlN and MoS2 tri-layer systems, were prepared by reactive co-sputtering processes. The self-lubricated multilayer coating structures were deposited by one-fold oscillating movement of substrates in front of the sputter sources. Three independently operated direct current (dc) excited unbalanced magnetrons (UM) with rectangular cathodes of TiAl alloy (50/50%), pure chromium and MoS2 were used as sputter sources. The reactive sputtering process was performed in a mixture of Ar-N2 atmosphere. Hardened high-speed-steel (HSS) and thin oxide covered Si (100) wafers were used as substrates for tribological- and microstructure investigations, respectively. According to results of the chemical composition evaluated by Auger-electron spectroscopy (AES) and microstructure investigation by cross sectional transmission electron microscopy (XTEM), the CrN, TiAlN and the MoS2 phases form practically continuous layers with large gradient transition of composition. The as-deposited CrN/ (Al,Ti)N/MoS2 coatings have shown good friction behaviour, tested at room temperature in dry sliding condition with a ball-on-disk tribometer.

  5. Polyelectrolyte multilayer coatings for the separation of proteins by capillary electrophoresis: Influence of polyelectrolyte nature and multilayer crosslinking.

    PubMed

    Bekri, Samya; Leclercq, Laurent; Cottet, Hervé

    2015-06-19

    The present work aims at studying the influence of the nature of the polyelectrolytes used in successive multiple ionic polymers on the performances of protein separation in acetic acid volatile background electrolyte. A broad library of polyelectrolyte multilayers was compared on the basis of 9 different weak/strong polyanions and 8 different weak/strong polycations. More than 20 couples of different polyelectrolytes were investigated. The separation efficiencies (expressed as the N/l ratio, where N is the plate number and l is the capillary effective length) were systematically compared for the separation of a protein test mixture. The coating stability was evaluated by the relative standard deviation of the migration times. For weak polyelectrolyte multilayers, the influence of the polymer crosslinking on the coating stability and separation efficiency has been studied. Intra-day repeatability of 100 successive runs, and capillary-to-capillary reproducibility were tested on coatings of each category (crosslinked and non crosslinked). The main (not obvious) result rising from this study is that the nature of the polyanion constituting the multilayers is of primary importance for the performance in terms of separation efficiency and stability, even when the mulilayers finish with a polycation. PMID:25976124

  6. Electrophoretic deposition of hydroxyapatite-CaSiO3-chitosan composite coatings.

    PubMed

    Pang, Xin; Casagrande, Travis; Zhitomirsky, Igor

    2009-02-15

    Electrophoretic deposition (EPD) method has been developed for the fabrication of hydroxyapatite (HA)-CaSiO(3) (CS)-chitosan composite coatings for biomedical applications. The use of chitosan enabled the co-deposition of HA and CS particles and offered the advantage of room temperature processing of composite materials. The coating composition was varied by the variation of HA and CS concentrations in the chitosan solutions. Cathodic deposits were obtained as HA-CS-chitosan monolayers, HA-chitosan/chitosan multilayers or functionally graded materials (FGM) containing HA-chitosan and CS-chitosan layers of different composition. The thickness of the individual layers was varied in the range of 0.1-20 microm. The deposition yield was studied at different experimental conditions and compared with the results of modeling. It was shown that the moving boundary model for the two component system can explain the non-linear increase in the deposition yield with increasing HA concentration in chitosan solutions. The obtained coatings were studied by thermogravimetric analysis (TGA), differential thermal analysis (DTA) and scanning electron microscopy (SEM). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies showed that these coatings provided corrosion protection of stainless steel substrates in Ringer's physiological solution. The deposition mechanism and kinetics of deposition have been discussed. PMID:19012892

  7. Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers

    DOE PAGESBeta

    Negres, Raluca A.; Carr, Christopher W.; Laurence, Ted A.; Stanion, Ken; Guss, Gabe; Cross, David A.; Wegner, Paul J.; Stolz, Christopher J.

    2016-08-01

    Here, we describe a damage testing system and its use in investigating laser-induced optical damage initiated by both intrinsic and extrinsic precursors on multilayer dielectric coatings suitable for use in high-energy, large-aperture petawatt-class lasers. We employ small-area damage test methodologies to evaluate the intrinsic damage resistance of various coatings as a function of deposition methods and coating materials under simulated use conditions. In addition, we demonstrate that damage initiation by raster scanning at lower fluences and growth threshold testing are required to probe the density of extrinsic defects, which will limit large-aperture optics performance.

  8. EUV mask multilayer defects and their printability under different multilayer deposition conditions

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Joo; Harris-Jones, Jenah; Cordes, Aaron; Satake, Masaki; Li, Ying; Mochi, Iacopo; Goldberg, Kenneth A.

    2012-03-01

    Extreme ultraviolet (EUV) patterning appears feasible using currently available EUV exposure tools, but some issues must still be resolved for EUV patterning to be used in production. Defects in EUV mask blanks are one such major issue and inspection tools are needed to detect phase defects on EUV mask blanks that could possibly print on the wafer. Currently available inspection tools can capture defects on the mask, but they also need to be able to classify possible printable defects. Defect classification for repair and mitigation of printable defects is very difficult using deep ultraviolet (DUV) inspection tools; however, if the actinic inspection tool (AIT) could gather defect information from more multilayer (ML) stacks, it may be able to separate printable defects from unprintable defects. If unprintable defects could be eliminated, the defect information could be used for mask pattern shifts to reduce printable defects. Fewer defects would need to be repaired if there were a better chance of capturing printable defects using an actinic inspection tool. Being able to detect printable defects on EUV blanks is therefore critical in mask making. In this paper, we describe the characterization of programmed ML phase defects in the manufacturing of EUV mask blanks using the state-of-the-art mask metrology equipment in SEMATECH's Mask Blank Development Center (MBDC). Programmed defects of various dimensions were prepared using e-beam patterning technology and Mo/Si MLs were deposited with SEMATECH's best known method (BKM) and pit smoothing conditions on programmed defects to characterize ML phase defects. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to study ML profile changes, while SEMATECH's AIT was used to image ML phase defects and predict their printability. Multilayer defect reconstruction (MDR) was done using AFM images, which were then compared to TEM images. Defect printability simulation (DPS) was used for

  9. Improving blood-compatibility of titanium by coating collagen-heparin multilayers

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Li, Q. L.; Chen, J. Y.; Chen, C.; Huang, N.

    2009-05-01

    This work deals with improving the blood-compatibility of titanium by coating it with heparin (Hep) and collagen (Col) using a layer-by-layer (LBL) self-assembly technique. In the work described here, LBL-produced Hep-Col film growth is initialized by deposition of a layer of positively charged poly L-Lysine (PLL) on a titanium surface, which is negatively charged after treatment with NaOH, followed by formation of a multilayer thin film formed by alternating deposition of negatively charged heparin and positively charged collagen utilizing electrostatic interaction. The chemical composition, wettability, surface topography, mass and thickness of the film were investigated by Fourier transform infrared spectroscopy, water contact angle measurement, scanning electron microscopy, atomic force microscopy, electronic analytical semi-microbalances, and XP stylus profilometry. The in vitro platelet adhesion and activation were investigated by a static platelet adhesion test probing the lactate dehydrogenase (LDH) release of adherent platelets after lysis and by a P-selectin assay. The clotting time was examined by activated partial thromboplastin time (APTT) and prothrombin time (PT) assays. All obtained data showed that the LBL film can significantly decrease platelet adhesion and activation, and prolong clotting time of APTT and PT compared to untreated titanium. LBL-produced Hep-Col films on titanium display more excellent anticoagulation performance than on the surface of titanium.

  10. Electrochromism and electrocatalysis in viologen polyelectrolyte multilayers

    SciTech Connect

    Stepp, J.; Schlenoff, J.B.

    1997-06-01

    Polyelectrolyte multilayers were constructed from a polyviologen and poly(styrene sulfonate) using an alternating polyion solution deposition technique. In situ absorption spectroscopy showed multilayers to be strongly electrochromic. Oxygen reduction at multilayer-coated conducting glass electrodes was also shown to be facilitated.

  11. Immobilization of Ag-deposited Au nanoprisms by thiol-coupling and oil-coating methods

    NASA Astrophysics Data System (ADS)

    Noda, Yuta; Hayakawa, Tomokatsu

    2016-01-01

    We have demonstrated the immobilization of Ag-deposited Au (Au@Ag) nanoprisms on glass substrates by two different methods: self-assembly on a thiol-modified glass (thiol-coupling method) and evaporation of the Au@Ag nanoprism colloidal solution in silicone oil (oil-coating method). In the thiol-coupling method, the Au@Ag nanoprisms were well dispersed and accumulated on the substrates as single or stacked layers. On the other hand, the oil-coating method allowed Au@Ag nanoprisms to accumulate as multilayers without excessive agglomeration. The multilayers of Au@Ag nanoprisms were subjected to surface-enhanced Raman scattering (SERS), and a very low concentration (2.1 × 10-5 M) of rhodamine 6G molecules was sensitively detected.

  12. Human mesenchymal stem cell osteoblast differentiation, ECM deposition, and biomineralization on PAH/PAA polyelectrolyte multilayers.

    PubMed

    Pattabhi, Sudhakara Rao; Lehaf, Ali M; Schlenoff, Joseph B; Keller, Thomas C S

    2015-05-01

    Polyelectrolyte multilayer (PEMU) coatings built layer by layer with alternating pairs of polyelectrolytes can be tuned to improve cell interactions with surfaces and may be useful as biocompatible coatings to improve fixation between implants and tissues. Here, we show that human mesenchymal stromal cells (hMSCs) induced with bone differentiation medium (BDM) to become osteoblasts biomineralize crosslinked PEMUs built with the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(acrylic acid) (PAA). Degrees of hMSC osteoblast differentiation and surface biomineralization on the smooth PAH-terminated PEMUs (PAH-PEMUs) and microstructured PAA-terminated PEMUs (PAA-PEMUs) reflect differences in cell-deposited extracellular matrix (ECM). BDM-induced hMSCs expressed higher levels of the early osteoblast differentiation marker alkaline phosphatase and collagen 1 (COL1) sooner on PAA-PEMUs than on PAH-PEMUs. Cells on both types of PEMUs proceeded to express the later stage osteoblast differentiation marker bone sialoprotein (BSP), but the BDM-induced cells organized a more amorphous Collagen I and denser BSP localization on PAA-PEMUs than on PAH-PEMUs. These ECM properties correlated with greater biomineralization on the PAA-PEMUs than on PAH-PEMUs. Together, these results confirm the suitability of PAH/PAA PEMUs as a substrate for hMSC osteogenesis and highlight the importance of substrate effects on ECM organization and BSP presentation on biomineralization. PMID:25203301

  13. Passivating overcoat bilayer for multilayer reflective coatings for extreme ultraviolet lithography

    DOEpatents

    Montcalm, Claude; Stearns, Daniel G.; Vernon, Stephen P.

    1999-01-01

    A passivating overcoat bilayer is used for multilayer reflective coatings for extreme ultraviolet (EUV) or soft x-ray applications to prevent oxidation and corrosion of the multilayer coating, thereby improving the EUV optical performance. The overcoat bilayer comprises a layer of silicon or beryllium underneath at least one top layer of an elemental or a compound material that resists oxidation and corrosion. Materials for the top layer include carbon, palladium, carbides, borides, nitrides, and oxides. The thicknesses of the two layers that make up the overcoat bilayer are optimized to produce the highest reflectance at the wavelength range of operation. Protective overcoat systems comprising three or more layers are also possible.

  14. Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate

    NASA Astrophysics Data System (ADS)

    Zarei Moghadam, R.; Ahmadvand, H.; Jannesari, M.

    2016-03-01

    We have designed, fabricated and characterized a multi-layers antireflection coating on multispectral ZnS substrate, suitable for the infrared range of 8-12 μm. The 4-layers coating (Ge/ZnS/Ge/ZnS) with optimized thicknesses was fabricated by PVD technique and studied by FTIR, nanoindentation and AFM. From FTIR spectroscopy it was found that, in the wavelength range of 8-12 μm, the average transmittance of the double-side coated sample increases by about 26% and its maximum reaches about 98%. To improve the mechanical hardness, a bilayer of Y2O3/carbon was deposited on the coating. Nanoindentation test shows that the coating enhances the mechanical properties. The final coating have successfully passed durability and environmental tests.

  15. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  16. A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David; Ramsey, Brian; Gubarev, Mikhail

    2014-01-01

    The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.

  17. Electrochemical deposition of mineralized BSA/collagen coating.

    PubMed

    Zhuang, Junjun; Lin, Jun; Li, Juan; Wang, Huiming; Cheng, Kui; Weng, Wenjian

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170-0.173mg/cm(2), enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). PMID:27207039

  18. MoS 2/Ti multilayer deposited on 2Cr13 substrate by PIIID

    NASA Astrophysics Data System (ADS)

    Wang, Langping; Zhao, Shaowei; Xie, Zhiwen; Huang, Lei; Wang, Xiaofeng

    2008-03-01

    Plasma immersion ion implantation and deposition (PIIID) was used to fabricate the MoS2/Ti multilayer on the 2Cr13 substrate. The Ti layer was deposited by a pulse cathodic arc plasma source and the MoS2 layer was obtained by a radio-frequency (RF) magnetron sputtering system. Scanning electron microscope (SEM), ball-on-disk, electrochemical and water vapour spray tests were used to characterize the as-deposited multilayer. The SEM result shows that the MoS2/Ti multilayer has formed a good layered structure. The friction curves of MoS2/Ti multilayers reveal that the wear resistance and friction coefficient of the multilayer can be improved significantly by a proper structure. The anode polarization curves obtained in 0.5% H2SO4 solution show that the corrosion current density of the MoS2/Ti multilayer can be decreased to 68% of that of the MoS2 single layer. In addition, results of the water vapour spray test for 48 h show that the surface of the MoS2/Ti multilayer is smooth and no erosion can be found, where the MoS2 single layer is partially peeled off from the substrate.

  19. A Study of Deposition Coatings Formed by Electroformed Metallic Materials

    PubMed Central

    Shimura, Kojiro; Tobayama, Go; Togashi, Toshio

    2016-01-01

    Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal. PMID:27326757

  20. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    PubMed

    Hayashi, Shoji; Sugiyama, Shuta; Shimura, Kojiro; Tobayama, Go; Togashi, Toshio

    2016-01-01

    Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal. PMID:27326757

  1. [The electrochemical indices of soldered dentures with titanium nitride-based multilayered coatings].

    PubMed

    Kotliar, A M; Panchokha, V P; Sevidova, E K; Steglik, T V; Zhivkova, L V; Tarasov, Iu A

    1990-01-01

    Development of an optimal design of multilayer dentures has involved studies of the effects of the material used to make the intermediate layer, its thickness and mode of application on the corrosive electrochemical behavior of orthodontic articles. Application of intermediate layers was found to reduce the magnitude of polarization current and improve the corrosion resistance of a soldered structure. The best effect was achieved with the design with a protective coating of Cr-Ti composition of stainless steel, applied by vacuum method, and galvanic Cr. The corrosion protecting characteristics of this sublayer were found to depend on the quality of the soldered junction: if it is defective, the protective effect is poor whatever the type of coating. The study has confirmed the necessity of protective coatings application to soldered half-finished articles and the efficacy of multilayer coatings with the surface layer of titanium nitride. PMID:1980755

  2. Recovery of Mo/Si multilayer coated optical substrates

    DOEpatents

    Baker, S.L.; Vernon, S.P.; Stearns, D.G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO{sub 2} overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates. 5 figs.

  3. Recovery of Mo/Si multilayer coated optical substrates

    DOEpatents

    Baker, Sherry L.; Vernon, Stephen P.; Stearns, Daniel G.

    1997-12-16

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO.sub.2 overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  4. Impact of substrate surface scratches on the laser damage resistance of multilayer coatings

    SciTech Connect

    Qiu, S; Wolfe, J; Monterrosa, A; Teslich, N; Feit, M; Pistor, T; Stolz, C

    2010-11-03

    Substrate scratches can limit the laser resistance of multilayer mirror coatings on high-peak-power laser systems. To date, the mechanism by which substrate surface defects affect the performance of coating layers under high power laser irradiation is not well defined. In this study, we combine experimental approaches with theoretical simulations to delineate the correlation between laser damage resistance of coating layers and the physical properties of the substrate surface defects including scratches. A focused ion beam technique is used to reveal the morphological evolution of coating layers on surface scratches. Preliminary results show that coating layers initially follow the trench morphology on the substrate surface, and as the thickness increases, gradually overcoat voids and planarize the surface. Simulations of the electrical-field distribution of the defective layers using the finite-difference time-domain (FDTD) method show that field intensification exists mostly near the top surface region of the coating near convex focusing structures. The light intensification could be responsible for the reduced damage threshold. Damage testing under 1064 nm, 3 ns laser irradiation over coating layers on substrates with designed scratches show that damage probability and threshold of the multilayer depend on substrate scratch density and width. Our preliminary results show that damage occurs on the region of the coating where substrate scratches reside and etching of the substrate before coating does not seem to improve the laser damage resistance.

  5. Surface Modifications of Titanium Implants by Multilayer Bioactive Coatings with Drug Delivery Potential: Antimicrobial, Biological, and Drug Release Studies

    NASA Astrophysics Data System (ADS)

    Ordikhani, Farideh; Zustiak, Silviya Petrova; Simchi, Abdolreza

    2016-04-01

    Recent strategies to locally deliver antimicrobial agents to combat implant-associated infections—one of the most common complications in orthopedic surgery—are gaining interest. However, achieving a controlled release profile over a desired time frame remains a challenge. In this study, we present an innovative multifactorial approach to combat infections which comprises a multilayer chitosan/bioactive glass/vancomycin nanocomposite coating with an osteoblastic potential and a drug delivery capacity. The bioactive drug-eluting coating was prepared on the surface of titanium foils by a multistep electrophoretic deposition technique. The adopted deposition strategy allowed for a high antibiotic loading of 1038.4 ± 40.2 µg/cm2. The nanocomposite coating exhibited a suppressed burst release with a prolonged sustained vancomycin release for up to 6 weeks. Importantly, the drug release profile was linear with respect to time, indicating a zero-order release kinetics. An in vitro bactericidal assay against Staphylococcus aureus confirmed that releasing the drug reduced the risk of bacterial infection. Excellent biocompatibility of the developed coating was also demonstrated by in vitro cell studies with a model MG-63 osteoblast cell line.

  6. Structure, mechanical, tribological properties, and high temperature stability of titanium diboride/titanium carbide and titanium oxide/aluminum oxide multilayer coatings synthesized by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lee, Kitty W.

    The focus of this research is the synthesis and characterization of TiB 2/TiC multilayer and TiO2/Al2O3 composite coatings for possible elevated-temperature machining applications. Coatings were synthesized using a dual-cathode, unbalanced magnetron sputtering system. They were characterized as deposited and after annealing, in terms of structure, mechanical, and tribological properties. TiB2/TiC multilayer coatings are composed of polycrystalline TiB2(001) and amorphous TiC. Coatings synthesized with stationary substrates have high compressive stress (4--7 GPa), and their hardness is slightly enhanced (˜25%) over the rule-of mixture value. Coatings grown with substrate rotation have much lower compressive stress (<2 GPa) and high hardness (>60 GPa). After annealing in an inert environment at 1273 K, these multilayer coatings retain their layer structure. From dry block-on-ring tribotesting, the 3:0.5 multilayer (i.e., the layer thickness is 3.0 nm for TiB2 and 0.5 nm for TiC) provides 4 times improvement in wear resistance over the uncoated M2 steel substrate. Monolithic TiB2 and 3:1 multilayer have flank wear reduction in dry machining by about a factor of ten compared with the uncoated tool after a cutting distance of 600 m. When machining against aluminum, the 3:1 multilayer tool has negligible buildup on the rake face. TiO2/Al2O3 composite coatings were deposited in the same sputtering chamber with an Ar-O2 (75% argon and 25% oxygen) mixture as the reactive gas. Stoichiometric TiO2/Al 2O3 composites were synthesized in the target-poisoned regime with constant TiO2 volume and decreasing Al2O3 volume. TiO2 has a strong rutile (101) preferred orientation and Al2O3 remains amorphous. Hardness of these TiO 2/Al2O3 coatings approaches 15 GPa, comparing to hardness values of pure TiO2 and Al2O3 of ˜8 GPa and ˜7 GPa, respectively. Films remain intact after annealing in air for 1 hour at 1273 K. Hardness of annealed films remains higher than the monolithic

  7. Deposition Kinetics of Bioinspired Phenolic Coatings on Titanium Surfaces.

    PubMed

    Geißler, Sebastian; Barrantes, Alejandro; Tengvall, Pentti; Messersmith, Phillip B; Tiainen, Hanna

    2016-08-16

    Polyphenols can form functional coatings on a variety of different materials through auto-oxidative surface polymerization in a manner similar to polydopamine coatings. However, the mechanisms behind the coating deposition are poorly understood. We report the coating deposition kinetics of the polyphenol tannic acid (TA) and the simple phenolic compound pyrogallol (PG) on titanium surfaces. The coating deposition was followed in real time over a period of 24 h using a quartz crystal microbalance with dissipation monitoring (QCM-D). TA coatings revealed a multiphasic layer formation: the deposition of an initial rigid layer was followed by the buildup of an increasingly dissipative layer, before mass adsorption stopped after approximately 5 h of coating time. The PG deposition was biphasic, starting with the adsorption of a nonrigid viscoelastic layer which was followed by layer stiffening upon further mass adsorption. Coating evaluation by ellipsometry and AFM confirmed the deposition kinetics determined by QCM-D and revealed maximum coating thicknesses of approximately 50 and 75 nm for TA and PG, respectively. Chemical characterization of the coatings and polymerized polyphenol particles indicated the involvement of both physical and chemical interactions in the auto-oxidation reactions. PMID:27452793

  8. IBA analysis and corrosion resistance of TiAlPtN/TiAlN/TiAl multilayer films deposited over a CoCrMo using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Canto, C. E.; Andrade, E.; de Lucio, O.; Cruz, J.; Solís, C.; Rocha, M. F.; Alemón, B.; Flores, M.; Huegel, J. C.

    2016-03-01

    The corrosion resistance and the elemental profile of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by Physical Vapor Deposition (PVD) reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt to enhance the corrosion resistance of a biomedical alloy of CoCrMo. Corrosion tests were performed using Simulated Body Fluid (SBF) using potentiodynamic polarization tests at typical body temperature. The elemental composition and thickness of the coatings were evaluated with the combination of two ion beam analysis (IBA) techniques: a Rutherford Backscattering Spectroscopy (RBS) with alpha beam and a Nuclear Reaction Analysis with a deuteron beam.

  9. Laser engineered multilayer coating of biphasic calcium phosphate/titanium nanocomposite on metal substrates.

    PubMed

    Zhang, Martin Yi; Ye, Chang; Erasquin, Uriel Joseph; Huynh, Toan; Cai, Chengzhi; Cheng, Gary J

    2011-02-01

    In this work, laser coating of biphasic calcium phosphate/titanium (BCP/Ti) nanocomposite on Ti-6Al-4 V substrates was developed. A continuous wave neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was used to form a robust multilayer of BCP/Ti nanocomposite starting from hydroxyapatite and titanium nanoparticles. In this process, low power coating is realized because of the strong laser-nanoparticle interaction and good sinterability of nanosized titanium. To guide the optimization of laser processing conditions for the coating process, a multiphysics model coupling electromagnetic module with heat transfer module was developed. This model was validated by laser coating experiments. Important features of the coated samples, including microstructures, chemical compositions, and interfacial bonding strength, were characterized. We found that a multilayer of BCP, consisting of 72% hydroxyapatite (HA) and 28% beta-tricalcium phosphate (β-TCP), and titanium nanocomposite was formed on Ti-6Al-4 V substrates. Significantly, the coating/substrate interfacial bonding strength was found to be two times higher than that of the commercial plasma sprayed coatings. Preliminary cell culture studies showed that the resultant BCP/Ti nanocomposite coating supported the adhesion and proliferation of osteoblast-like UMR-106 cells. PMID:21207950

  10. Colloidal spray method for low cost thin coating deposition

    DOEpatents

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2005-01-25

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  11. Colloidal spray method for low cost thin coating deposition

    DOEpatents

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2002-01-01

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  12. Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings

    SciTech Connect

    Genin, F.Y.; Stolz, C.J.

    1996-08-01

    Hafnium-silica multilayer mirrors and polarizers were deposited by e-beam evaporation onto BK7 glass substrates. The mirrors and polarizers were coated for operation at 1053 nm at 45{degree} and at Brewster`s angle (56{degree}), respectively. They were tested with a single 3-ns laser pulse. Morphology of the laser-induced damage was characterized by optical and scanning electron microscopy. Four distinct damage morphologies were found: pits, flatbottom pits, scalds, and delaminates. The pits and flat bottom pits (<30{mu}m dia) were detected at lower fluences (as low as 5 J/cm{sup 2}). The pits seemed to result from ejection of nodular defects by causing local enhancement of the electric field. Scalds and delaminates could be observed at higher fluences (above 13 J/cm{sup 2}) and seemed to result from the formation of plasmas on the surface. These damage types often originated at pits and were less than 300 {mu}m diameter; their size increased almost linearly with fluence. Finally, effects of the damage on the beam (reflectivity degradation and phase modulations) were measured.

  13. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOEpatents

    Chow, R.; Loomis, G.E.; Thomas, I.M.

    1999-03-16

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (ca. 1.10--1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm. 2 figs.

  14. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOEpatents

    Chow, Robert; Loomis, Gary E.; Thomas, Ian M.

    1999-01-01

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (.about.1.10-1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm.

  15. Microstructure of vapor deposited coatings on curved substrates

    SciTech Connect

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G.

    2015-09-15

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness.

  16. Enhancement of biocompatibility of metal implants by nanoscale tiN/NbN multilayer coatings.

    PubMed

    Subramanian, B

    2013-07-01

    Titanium nitride (TiN)/niobium nitride (NbN) nanostructured multilayer coatings were prepared by DC reactive magnetron sputtering method using the combination of a titanium and niobium target and an Ar-N2 mixture discharge gas on to 316L stainless steel substrates. The coatings showed a polycrystalline structure with (111) for TiN and (101) for NbN preferential growth. Raman spectroscopy measurements on the multilayer films exhibited the characteristic peaks at 212, 303, 458 and 578 cm-1. A higher hardness of 38 GPa was observed for TiN/NbN coatings. Electrochemical polarization tests were performed in simulated biological fluid solutions at 37 degreesC in order to determine and compare the corrosion behavior of the coated and uncoated 316L SS substrates. The TiN/NbN multilayer coatings could improve the corrosion resistance of 316L SS substrate. The bacterial culture experiments were performed and the bacteria treated samples were examined by epi fluorescence microscope measurements. PMID:23901475

  17. Apparatus and method for laser deposition of durable coatings

    DOEpatents

    Veligdan, J.T.; Vanier, P.; Barletta, R.E.

    1995-08-15

    Method and apparatus are disclosed for depositing durable coatings onto the surface of a substrate without heating the entire substrate to high temperatures by using lasers to heat the substrate and dissociate a deposition gas. The apparatus comprises a deposition chamber for enclosing the substrate upon which a coating is to be deposited, gas delivery means for directing a flow of deposition gas on the substrate, a first laser for heating the substrate, and a second laser for irradiating the deposition gas to dissociate the gas. The method includes placing a substrate within a vacuum deposition chamber and directing a flow of deposition gas on the substrate. Then the substrate is heated with a first laser while the deposition gas is irradiated with a second laser to dissociate the deposition gas. 1 fig.

  18. Apparatus and method for laser deposition of durable coatings

    SciTech Connect

    Veligdan, J.T.; Vanier, P.; Barletta, R.E.

    1993-12-31

    Disclosed are method and apparatus for depositing durable coatings onto the surface of a substrate without heating the entire substrate to high temperatures by using lasers to heat the substrate and dissociate a deposition gas. The apparatus comprises a deposition chamber for enclosing the substrate upon which a coating is to be deposited, gas delivery means for directing a flow of deposition gas on the substrate, a first laser for heating the substrate, and a second laser for irradiating the deposition gas to dissociate the gas. The method includes placing a substrate within a vacuum deposition chamber and directing a flow of deposition gas on the substrate. Then the substrate is heated with a first laser while the deposition gas is irradiated with a second laser to dissociate the deposition gas.

  19. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Jacques, S.; Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P.

    2013-06-01

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called "interphase" between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC-TiC)n interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC-TiC)n films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  20. Mitigation of substrate defects in reflective reticles using sequential coating and annealing

    DOEpatents

    Mirkanimi, Paul B.

    2002-01-01

    A buffer-layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The buffer-layer is formed by either a multilayer deposited on the substrate or by a plurality of sequentially deposited and annealed coatings deposited on the substrate. The plurality of sequentially deposited and annealed coating may comprise multilayer and single layer coatings. The multilayer deposited and annealed buffer layer coatings may be of the same or different material than the reflecting coating thereafter deposited on the buffer-layer.

  1. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, J.A.

    1999-06-15

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

  2. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, Judith Alison

    1999-01-01

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.

  3. Fabrication and characterization of ultra-high resolution multilayer-coated blazed gratings

    SciTech Connect

    Voronov,, Dmitriy; Anderson, Erik; Cambie, Rossana; Dhuey, Scott; Gullikson, Eric; Salmassi, Farhad; Yashchuk, Tony; Padmore, Howard

    2011-07-26

    Multilayer coated blazed gratings with high groove density are the most promising candidate for ultra-high resolution soft x-ray spectroscopy. They combine the ability of blazed gratings to concentrate almost all diffraction energy in a desired high diffraction order with high reflectance soft x-ray multilayers. However in order to realize this potential, the grating fabrication process should provide a near perfect groove profile with an extremely smooth surface of the blazed facets. Here we report on successful fabrication and testing of ultra-dense saw-tooth substrates with 5,000 and 10,000 lines/mm.

  4. Progress Toward Light Weight High Angular Resolution Multilayer Coated Optics

    NASA Astrophysics Data System (ADS)

    Ulmer, M. P.; Graham, M. E.; Vaynman, S.; Echt, J.; Farber, M.; Ehlert, S.; Varlese, S.

    2005-12-01

    We have been working on 3 separate projects that together will give us the ability to make 1 arc second, light weightWolter I optics that work above 40 keV. The three separate tasks are: (a) plasma spraying of metal-coated micro-balloons; (b) coating of the inside of Wolter I mirrors, (c) actuator designs for improving figure quality.We give a progress report on our work on all three areas.

  5. Advances in the reduction and compensation of film stress in high-reflectance multilayer coatings for extreme ultraviolet lithography applications

    SciTech Connect

    Mirkarimi, P.B., LLNL

    1998-02-20

    Due to the stringent surface figure requirements for the multilayer-coated optics in an extreme ultraviolet (EUV) projection lithography system, it is desirable to minimize deformation due to the multilayer film stress. However, the stress must be reduced or compensated without reducing EUV reflectivity, since the reflectivity has a strong impact on the throughput of a EUV lithography tool. In this work we identify and evaluate several leading techniques for stress reduction and compensation as applied to Mo/Si and Mo/Be multilayer films. The measured film stress for Mo/Si films with EUV reflectances near 67.4% at 13.4 nm is approximately - 420 MPa (compressive), while it is approximately +330 MPa (tensile) for Mo/Be films with EUV reflectances near 69.4% at 11.4 nm. Varying the Mo-to-Si ratio can be used to reduce the stress to near zero levels, but at a large loss in EUV reflectance (> 20%). The technique of varying the base pressure (impurity level) yielded a 10% decrease in stress with a 2% decrease in reflectance for our multilayers. Post-deposition annealing was performed and it was observed that while the cost in reflectance is relatively high (3.5%) to bring the stress to near zero levels (i.e., reduce by 1 00%), the stress can be reduced by 75% with only a 1.3% drop in reflectivity at annealing temperatures near 200{degrees}C. A study of annealing during Mo/Si deposition was also performed; however, no practical advantage was observed by heating during deposition. A new non-thermal (athermal) buffer-layer technique was developed to compensate for the effects of stress. Using this technique with amorphous silicon and Mo/Be buffer-layers it was possible to obtain Mo/Be and Mo/Si multilayer films with a near zero net film stress and less than a 1% loss in reflectivity. For example a Mo/Be film with 68.7% reflectivity at 11.4 nm and a Mo/Si film with 66.5% reflectivity at 13.3 nm were produced with net stress values less than 30 MPa.

  6. Approach to the development of CAD/CAM system for multilayer optical coatings

    NASA Astrophysics Data System (ADS)

    Mohan Rao, G. R.; Nagendra, C. L.; Thutupalli, G. K. M.

    1990-08-01

    CADCAM system is very vital in the development and production of high efficiency optical coatings, in which in-situ analysis and optiniizatfrxi is the nucleus. A new algoritlin for in-situ analysis and optimization of coatings has been proposed, which has provision for precise determination of optical parameters, namely refractive index n, and gearetrical thickness d, of any layer :tt the multilayered configuration and, to account for adverse effect of the deviaticxs in the optical pareters through global re-optimization of the coatings. It has been implemented on 8086/8087 microprocessor systn in which 8086 is a 16 bit microprocessor and 8087, a coprocessor for high speed floating point operatixs. The validity of the algorithn has been established through a wide range of hypothetical case studies and experimental deve1opint of a few coatings such as wideband antireflecticx coatings (ARCs).

  7. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    NASA Technical Reports Server (NTRS)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  8. Electrophoretic deposition of composite hydroxyapatite-silica-chitosan coatings

    SciTech Connect

    Grandfield, K.; Zhitomirsky, I.

    2008-01-15

    Electrophoretic deposition (EPD) method has been developed for the fabrication of nanocomposite silica-chitosan coatings. Cathodic deposits were obtained on various conductive substrates using suspensions of silica nanoparticles in a mixed ethanol-water solvent, containing dissolved chitosan. Co-deposition of silica and hydroxyapatite (HA) nanoparticles resulted in the fabrication of HA-silica-chitosan coatings. The deposition yield has been studied at a constant voltage mode at various deposition durations. The method enabled the formation of coatings of different thickness in the range of up to 100 {mu}m. Deposit composition, microstructure and porosity can be varied by variation of HA and silica concentration in the suspensions. It was demonstrated that EPD can be used for the fabrication of HA-silica-chitosan coatings of graded composition and laminates. The method enabled the deposition of coatings containing layers of silica-chitosan and HA-chitosan nanocomposites using suspensions with different HA and silica content. Obtained coatings were studied by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning electron microscopy and energy dispersive spectroscopy. The mechanism of deposition is discussed.

  9. Microstructure and thermal conductivity of thermal barrier coatings processed by plasma spray and physical vapor deposition techniques

    SciTech Connect

    Ravichandran, K.S.; An, K.; Dutton, R.E.; Semiatin, S.L.

    1996-12-31

    Improvements in the efficiency of gas turbine require the highest operating temperatures possible. Because the Ni-base superalloys used as turbine materials rapidly lose strength and oxidize above 1,000 C, a reduction in service temperature is often accomplished by the use of thermal barrier coatings. The temperature dependence of the thermal conductivity of multilayer coatings made by a plasma spray technique as well as some coatings made by physical vapor deposition (PVD) was investigated. The multilayer coatings consisted of a varying number of layers of Al{sub 2}O{sub 3} and ZrO{sub 2} stabilized by 8% Y{sub 2}O{sub 3}. Plasma sprayed coatings exhibited a large reduction in thermal conductivity at all temperatures when compared to the bulk monolithic materials. This reduction was found to be due to porosity as well as thermal resistance brought about by interfaces in the coatings. A comparable reduction in thermal conductivity was achieved in monolithic ZrO{sub 2} as well as in a composite coating deposited by the PVD technique. Microstructural factors that may be responsible for this reduction are discussed.

  10. Residual stresses in sputter-deposited copper/330 stainless steel multilayers

    SciTech Connect

    Zhang, X.; Misra, A.

    2004-12-15

    The evolution of residual stresses as a function of bilayer period from 10 nm to 1 {mu}m in sputter-deposited Cu/330 stainless-steel (SS) multilayered films is evaluated by the substrate curvature technique. The multilayer stress evolution is compared with residual stresses in single layer Cu films and single layer 330 SS films, also measured by substrate curvature technique, with respective film thicknesses varying from 5 to 500 nm. Both single layer and multilayer films exhibit high tensile residual stresses that increase with decreasing layer thickness, but are found to be lower than the respective yield strengths. The intrinsic tensile residual stress evolution with film thickness is explained using the island coalescence model. The difference between the multilayer residual stress and the average residual stresses in single-layered Cu and 330 SS films is interpreted in terms of interface stress.

  11. Residual stresses in sputter-deposited copper/330 stainless steel multilayers

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Misra, A.

    2004-12-01

    The evolution of residual stresses as a function of bilayer period from 10nmto1μm in sputter-deposited Cu/330 stainless-steel (SS) multilayered films is evaluated by the substrate curvature technique. The multilayer stress evolution is compared with residual stresses in single layer Cu films and single layer 330 SS films, also measured by substrate curvature technique, with respective film thicknesses varying from 5to500nm. Both single layer and multilayer films exhibit high tensile residual stresses that increase with decreasing layer thickness, but are found to be lower than the respective yield strengths. The intrinsic tensile residual stress evolution with film thickness is explained using the island coalescence model. The difference between the multilayer residual stress and the average residual stresses in single-layered Cu and 330 SS films is interpreted in terms of interface stress.

  12. Comparison of optical resistance of ion assisted deposition and standard electron beam deposition methods for high reflectance dielectric coatings

    NASA Astrophysics Data System (ADS)

    Melninkaitis, A.; Maciulevicius, M.; Rakickas, T.; Miksys, D.; Grigonis, R.; Sirutkaitis, V.; Skrebutenas, A.; Buzelis, R.; Drazdys, R.; Abromavicius, G.

    2005-09-01

    The ion assisted thin film deposition (IAD) method has been used extensively for more than two decades, but questions about possibility of improving of the laser-induced damage threshold (LIDT) by this method compared with the conventional electron-beam evaporation (non-IAD) method are still not fully answered. A more complete understanding of different factors that can influence laser-induced damage threshold is necessary for continued development of multilayer dielectric coatings optimized for high-power laser applications. To clarify these factors we performed comparison of LIDT for IAD and non-IAD coatings in nanosecond and femtosecond pulse ranges. High reflectance mirrors at 800 nm and 532 nm were tested. Mirror coatings were made of ZrO2 and SiO2. Automated LIDT measurements were performed according to the requirements of current ISO 11254-2 standard. Two lasers were used for the measurements: Nd:YAG (λ = 532 nm, τ = 5 ns) and Ti:Sapphire (λ = 800 nm, τ = 130 fs). Measurements at 800 nm and 532 nm were performed at 1-kHz and 10 Hz pulse repetition rate respectively (S-on-1 test). The damage morphology of coatings was characterized by Nomarski microscopy and relation of LIDT with coating parameters was analyzed.

  13. Wideband antireflection coatings combining interference multilayers and subwavelength structures prepared by reactive ion etching

    NASA Astrophysics Data System (ADS)

    Bruynooghe, S.; Helgert, M.; Challier, M.; Tonova, D.; Sundermann, M.; Koch, T.; Gatto, A.; Schulze, M.; Kley, E.-B.

    2015-08-01

    To further reduce the intensity of the Fresnel reflections of optical components, subwavelength structures prepared by reactive ion etching of SiO2 thin films are combined as outermost layer with a multilayer system made of conventional thin film materials and prepared by magnetron sputtering. In this approach, a hybrid coating is realized in which the nanoscaled structured outermost layer is expected to further improve the antireflection properties of common interference stacks. The subwavelength structures are examined by spectroscopic ellipsometry, spectral photometry and scanning electron microscopy. The microscopic and optical spectroscopic analysis revealed that pillar-shaped nanostructures are formed during etching which exhibit low-index properties and have a depth-dependent refractive index. To take into account the index gradient in the coating design, the optical properties of the nanostructures are modeled using the effective medium approximation. The calculated average effective refractive index is 1.11 at 500 nm wavelength. A hybrid coating was designed to minimize the residual reflectance in the 400 - 900 nm spectral range for BK7 glass substrate. Experimental results showed that the hybrid coating achieves a low residual reflectance with very good omni-directional properties, owing to the properties of its nanostructured surface. The residual reflection of the hybrid coating is found to be two times smaller than the reflection obtained by applying a common interference multilayer system which demonstrates the benefit of the use of hybrid systems for the realization of broadband antireflective coatings with wide-angle properties.

  14. Polyelectrolyte multilayer coating of 3D scaffolds enhances tissue growth and gene delivery: non-invasive and label-free assessment.

    PubMed

    Holmes, Christina; Daoud, Jamal; Bagnaninchi, Pierre O; Tabrizian, Maryam

    2014-04-01

    Layer-by-layer (LbL) deposition is a versatile technique which is beginning to be be explored for inductive tissue engineering applications. Here, it is demonstrated that a polyelectrolyte multilayer film system composed of glycol-chitosan (Glyc-CHI) and hyaluronic acid (HA) can be used to coat 3D micro-fabricated polymeric tissue engineering scaffolds. In order to overcome many of the limitations associated with conventional techniques for assessing cell growth and viability within 3D scaffolds, two novel, real-time, label-free techniques are introduced: impedance monitoring and optical coherence phase microscopy. Using these methods, it is shown that LbL-coated scaffolds support in vitro cell growth and viability for a period of at least two weeks at levels higher than uncoated controls. These polyelectrolyte multilayer coatings are then further adapted for non-viral gene delivery applications via incorporation of DNA carrier lipoplexes. Scaffold-based delivery of the enhanced green fluorescent protein (EGFP) marker gene from these coatings is successfully demonstrated in vitro, achieving a two-fold increase in transfection efficiency compared with control scaffolds. These results show the great potential of Glyc-CHI/HA polyelectrolyte multilayer films for a variety of gene delivery and inductive tissue engineering applications. PMID:24030932

  15. The role of defects in laser damage of multilayer coatings

    SciTech Connect

    Kozlowski, M.R.; Chow, R.

    1993-12-21

    Laser induced damage to optical coatings is generally a localized phenomenon associated with coating defects. The most common of the defect types are the well-known nodule defect. This paper reviews the use of experiments and modeling to understand the formation of these defects and their interaction with laser light. Of particular interest are efforts to identify which defects are most susceptible to laser damage. Also discussed are possible methods for stabilizing these defects (laser conditioning) or preventing their initiation (source stabilization, spatter particle trapping).

  16. Spontaneously intermixed Al-Mg barriers enable corrosion-resistant Mg/SiC multilayer coatings

    NASA Astrophysics Data System (ADS)

    Soufli, Regina; Fernández-Perea, Mónica; Baker, Sherry L.; Robinson, Jeff C.; Alameda, Jennifer; Walton, Christopher C.

    2012-07-01

    Magnesium/silicon carbide (Mg/SiC) has the potential to be the best-performing reflective multilayer coating in the 25-80 nm wavelength region but suffers from Mg-related corrosion, an insidious problem which completely degrades reflectance. We have elucidated the origins and mechanisms of corrosion propagation within Mg/SiC multilayers. Based on our findings, we have demonstrated an efficient and simple-to-implement corrosion barrier for Mg/SiC multilayers. The barrier consists of nanometer-scale Mg and Al layers that intermix spontaneously to form a partially amorphous Al-Mg layer and is shown to prevent atmospheric corrosion while maintaining the unique combination of favorable Mg/SiC reflective properties.

  17. Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics.

    PubMed

    Zhao, Yan; Xu, Zhiguang; Wang, Xungai; Lin, Tong

    2012-04-17

    In this study, we report the functionalization of silica nanoparticles with highly photoreactive phenyl azido groups and their utility as a negatively charged building block for layer-by-layer (LbL) electrostatic assembly to produce a stable silica nanoparticle coating. Azido-terminated silica nanoparticles were prepared by the functionalization of bare silica nanoparticles with 3-aminopropyltrimethoxysilane followed by the reaction with 4-azidobenzoic acid. The azido functionalization was confirmed by FTIR and XPS. Poly(allylamine hydrochloride) was also grafted with phenyl azido groups and used as photoreactive polycations for LbL assembly. For the photoreactive silica nanoparticle/polycation multilayers, UV irradiation can induce the covalent cross-linking within the multilayers as well as the anchoring of the multilayer film onto the organic substrate, through azido photochemical reactions including C-H insertion/abstraction reactions with surrounding molecules and dimerization of azido groups. Our results show that the stability of the silica nanoparticle/polycation multilayer film was greatly improved after UV irradiation. Combined with a fluoroalkylsilane post-treatment, the photoreactive LbL multilayers were used as a coating for superhydrophobic modification of cotton fabrics. Herein the LbL assembly method enables us to tailor the number of the coated silica nanoparticles through the assembly cycles. The superhydrophobicity of cotton fabrics was durable against acids, bases, and organic solvents, as well as repeated machine wash. Because of the unique azido photochemistry, the approach used here to anchor silica nanoparticles is applicable to almost any organic substrate. PMID:22462539

  18. Absolute reflectivity measurements at 44.79 A of sputter deposited multilayer x-ray mirrors.

    PubMed

    Arbaoui, M; Barchewitz, R; Sella, C; Youn, K B

    1990-02-01

    Multilayer x-ray mirrors have been deposited using a dc triode sputtering system, which incorporates an accurate method of thickness monitoring based on the dependence of the deposition rate on the target current. Thickness can be controlled with an accuracy of better than 0.1 A. High efficiency W-C and Ni-C multilayer mirrors have been synthesized and tested at 1.54-A (CuKoalpha) and 44.79-A (CKalpha). Absolute reflectivity measurements at lambda = 44.79-A (CKalpha) have been carried out. In this case the incident beam is previously polarized by a premonochromator equipped with a pair of parallel-plane multilayer mirrors fixed at an angle close to the Brewster (theta ? 45 degrees ). Thus the measured reflectivities are not affected by a progressive variation of the P-component. PMID:20556133

  19. Use of a TiBN Multilayer Coating for Wear Reduction

    SciTech Connect

    Behrens, Bernd-Arno; Bistron, Marcus; Bach, Friedrich-Wilhelm; Moehwald, Kai; Deisser, Todd Alexander

    2007-05-17

    The near surface area of forging dies is exposed to high mechanical loads. Additionally thermal and chemical stresses occur during the forging process. Depending on the number of forged parts, several kinds of damage develop in the surface area, which lead to failures of forging dies. Die wear is the main reason of failure with a 70% ratio. The abrasion resistance of the surface area of forging dies has to be increased in order to reduce wear. Therefore different methods were examined such as the increase of the abrasion resistance by plasma nitriding and by coating with ceramic layers (TiN, TiCN, TiC, CrN). These layers are applied to the forging die by using PACVD or PAPVD treatment. At the Institute of Metal Forming and Metal-Forming Machines of the University of Hanover a wear reduction by factor 3.5 compared to nitrided forging dies for forging helical gears was achieved. This was possible by using a coating compound of 18 ceramic layers. These excellent results for the multilayer system can be explained through the energy reduction at the inner boundaries and a crack deflection effect at the phase transitions. The layer support of neighboring layers and a stress relaxation through the stacked construction of the layer system are also improving the durability of the coating. This multilayer coating consists of a TiN-TiCN-TiC layer system with an overall thickness of 1.8 {mu}m. This paper presents investigations of this multilayer compound and further research to reduce wear through an additional TiBN coating layer. With this additional top coating an increase of the thermal resistance and the oxidation resistance can be achieved. As a result of this enhancement a further increase of the wear reduction was expected.

  20. Electrical and optical characterization of multilayered thin film based on pulsed laser deposition of metal oxides

    NASA Astrophysics Data System (ADS)

    Marotta, V.; Orlando, S.; Parisi, G. P.; Giardini, A.; Perna, G.; Santoro, A. M.; Capozzi, V.

    2000-12-01

    Thin films of semiconducting oxides such as In2O3, SnO2, and multilayers of these two compounds have been deposited by reactive pulsed laser ablation, with the aim to produce toxic gas sensors. Deposition of these thin films has been carried out by a frequency doubled Nd-YAG laser (λ=532 nm) on silicon (1 0 0) substrates. A comparison, among indium oxide, tin oxide, and multilayers of indium and tin oxides, has been performed. The influence of physical parameters such as substrate temperature, laser fluence and oxygen pressure in the deposition chamber has been investigated. The deposited films have been characterized by X-ray diffraction (XRD), optical and electric resistance measurements.

  1. Deposition of PLA/CDHA composite coating via electrospraying.

    PubMed

    Zhou, Huan; Bhaduri, Sarit B

    2013-01-01

    Composite coatings composed of carbonated calcium deficient hydroxyapatite (CDHA) and polylactic acid (PLA) were deposited on a PLA substrate surface via electrospraying. The operation parameters, structural properties, bioactivity, cell adhesion, and growth capability of as-fabricated PLA/CDHA coatings were investigated. The composite coating showed good biocompatibility and bioactivity. The deposited coating was also applied as a carrier to assist alendronate sodium (AS) local release. AS, an approved bisphosphonate drug used for the treatment of osteoporosis, was incorporated into a composite coating matrix via coelectrospraying. Its release behavior showed a long-term sustained release. This approach can be a potential coating technique for the surface modification of biopolymer implants. PMID:23594068

  2. Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals.

    PubMed

    Wei, M; Ruys, A J; Swain, M V; Kim, S H; Milthorpe, B K; Sorrell, C C

    1999-07-01

    Hydroxyapatite (HAp) coatings were deposited onto substrates of metal biomaterials (Ti, Ti6Al4V, and 316L stainless steel) by electrophoretic deposition (EPD). Only ultra-high surface area HAp powder, prepared by the metathesis method 10Ca(NO3)2 + 6(NH4)2HPO4 + 8NH4OH), could produce dense coatings when sintered at 875-1000degreesC. Single EPD coatings cracked during sintering owing to the 15-18% sintering shrinkage, but the HAp did not decompose. The use of dual coatings (coat, sinter, coat, sinter) resolved the cracking problem. Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) inspection revealed that the second coating filled in the "valleys" in the cracks of the first coating. The interfacial shear strength of the dual coatings was found, by ASTM F1044-87, to be approximately 12 MPa on a titanium substrate and approximately 22 MPa on 316L stainless steel, comparing quite favorably with the 34 MPa benchmark (the shear strength of bovine cortical bone was found to be 34 MPa). Stainless steel gave the better result since -316L (20.5 microm mK(-1)) > alpha-HAp (approximately 14 microm mK(-1)), resulting in residual compressive stresses in the coating, whereas alpha-titanium (approximately 10.3 microm mK(-1)) < alpha-HAp, resulting in residual tensile stresses in the coating. PMID:15348125

  3. Surface roughness and interface width scaling of magnetron sputter deposited Ni/Ti multilayers

    SciTech Connect

    Maidul Haque, S.; Biswas, A.; Tokas, R. B.; Bhattacharyya, D.; Sahoo, N. K.; Bhattacharya, Debarati

    2013-09-14

    Using an indigenously built r.f. magnetron sputtering system, several single layer Ti and Ni films have been deposited at varying deposition conditions. All the samples have been characterized by Grazing Incidence X-ray Reflectivity (GIXR) and Atomic Force Microscopy to estimate their thickness, density, and roughness and a power law dependence of the surface roughness on the film thickness has been established. Subsequently, at optimized deposition condition of Ti and Ni, four Ni/Ti multilayers of 11-layer, 21-layer, 31-layer, and 51-layer having different bilayer thickness have been deposited. The multilayer samples have been characterized by GIXR and neutron reflectivity measurements and the experimental data have been fitted assuming an appropriate sample structure. A power law correlation between the interface width and bilayer thickness has been observed for the multilayer samples, which was explained in the light of alternate roughening/smoothening of multilayers and assuming that at the interface the growth “restarts” every time.

  4. Analysis of Counterfeit Coated Tablets and Multi-Layer Packaging Materials Using Infrared Microspectroscopic Imaging.

    PubMed

    Winner, Taryn L; Lanzarotta, Adam; Sommer, André J

    2016-06-01

    An effective method for detecting and characterizing counterfeit finished dosage forms and packaging materials is described in this study. Using attenuated total internal reflection Fourier transform infrared spectroscopic imaging, suspect tablet coating and core formulations as well as multi-layered foil safety seals, bottle labels, and cigarette tear tapes were analyzed and compared directly with those of a stored authentic product. The approach was effective for obtaining molecular information from structures as small as 6 μm. PMID:27068491

  5. Corrosion-resistant multilayer coatings for the 28-75 nm wavelength region

    SciTech Connect

    Soufli, R; Fernandez-Perea, M; Al, E T

    2011-11-08

    Corrosion has prevented use of SiC/Mg multilayers in applications requiring good lifetime stability. We have developed Al-based barrier layers that dramatically reduce corrosion, while preserving high reflectance and low stress. The aforementioned advances may enable the implementation of corrosion-resistant, high-performance SiC/Mg coatings in the 28-75 nm region in applications such as tabletop EUV/soft x-ray laser sources and solar physics telescopes. Further study and optimization of corrosion barrier structures and coating designs is underway.

  6. Test station development for laser-induced optical damage performance of broadband multilayer dielectric coatings

    NASA Astrophysics Data System (ADS)

    Kafka, K. R. P.; Chowdhury, E. A.; Negres, R. A.; Stolz, C. J.; Bude, J. D.; Bayramian, A. J.; Marshall, C. D.; Spinka, T. M.; Haefner, C. L.

    2015-11-01

    Laser-induced damage threshold (LIDT) testing was performed on commercially-available multilayer dielectric coatings to qualify for use in the High Repetition-Rate Advanced Petawatt Laser System (HAPLS) for Extreme Light Infrastructure Beamlines. Various tests were performed with uncompressed pulses (150 ps) from a 780 nm-centered Ti:Sapphire regenerative ampliflier, and the raster scan method was used to determine the best-performing coatings. Performance varied from 2-8 J/cm2 across samples from 6 different manufacturers.

  7. Influence of polyelectrolyte multilayer coating on the degree and type of biofouling in freshwater environment.

    PubMed

    Frueh, Johannes; Gai, Meiyu; Yang, Zhibo; He, Qiang

    2014-06-01

    Biofouling is one of the biggest problems of water-borne systems. Since not only marine but also freshwater-based structures are affected, the biofouling in this environment is studied. The focus of this study lies on the antifouling properties of novel coating materials like polyelectrolyte multilayers (PEM) compared with currently used silicon rubber (PDMS) based fouling release coatings. The following article contains the results of a systematical screening of the mechanical, surface charge and surface nano-heterogeneous properties of the investigated PEM and PDMS systems. The results show that negatively charged non crosslinked and crosslinked PEM coated PDMS can surpass current PDMS based fouling release coatings. The PEM films are not only able to reduce the biofouling, but are additionally able to control the type of settled bacteria (gram positive or negative). The negative terminated surfaces inhibit the settlement of gram positive bacteria, whereby the positive terminated surfaces inhibit the settlement of gram negative bacteria. PMID:24738394

  8. Optimization of hybrid antireflection structure integrating surface texturing and multi-layer interference coating

    NASA Astrophysics Data System (ADS)

    Kubota, Shigeru; Kanomata, Kensaku; Suzuki, Takahiko; Hirose, Fumihiko

    2014-10-01

    The antireflection structure (ARS) for solar cells is categorized to mainly two different techniques, i.e., the surface texturing and the single or multi-layer antireflection interference coating. In this study, we propose a novel hybrid ARS, which integrates moth eye texturing and multi-layer coat, for application to organic photovoltaics (OPVs). Using optical simulations based on the finite-difference time-domain (FDTD) method, we conduct nearly global optimization of the geometric parameters characterizing the hybrid ARS. The proposed optimization algorithm consists of two steps: in the first step, we optimize the period and height of moth eye array, in the absence of multi-layer coating. In the second step, we optimize the whole structure of hybrid ARS by using the solution obtained by the first step as the starting search point. The methods of the simple grid search and the Hooke and Jeeves pattern search are used for global and local searches, respectively. In addition, we study the effects of deviations in the geometric parameters of hybrid ARS from their optimized values. The design concept of hybrid ARS is highly beneficial for broadband light trapping in OPVs.

  9. Spontaneous changes in contact angle of water and oil on novel flip-flop-type hydrophobic multilayer coatings

    NASA Astrophysics Data System (ADS)

    Kawamura, Go; Ema, Tomoyuki; Sakamoto, Hisatoshi; Wei, Xing; Muto, Hiroyuki; Matsuda, Atsunori

    2014-04-01

    Multilayer structures composed of poly(allylamine hydrochloride) (PAH) and Nafion were fabricated on glass substrates by layer-by-layer assembly. Some of the multilayers demonstrated spontaneous changes in contact angle of water and oil due to flip-flop movements of free sulfo groups in the Nafion layer, and the multilayers eventually possessed water repellency in air and oil repellency in water. The repellencies were enhanced by applying primer layers that were formed using SiO2 fine particles to increase surface roughness. Compared to typical hydrophobic and oleophobic surfaces, the multilayers showed practical levels for a use as soil release coatings.

  10. Biosynthesis of calcium hydroxylapatite coating on sputtered Ti/TiN nano multilayers and their corrosion behavior in simulated body solution.

    PubMed

    Subramanian, Balasubramanian; Dhandapani, Perumal; Maruthamuthu, Sundaram; Jayachandran, Muthirulandi

    2012-02-01

    Titanium/titanium nitride (Ti/TiN) nanoscale multilayered films were deposited onto 316L stainless steel substrates by reactive magnetron sputtering using a Ti target. Coatings characterized by X-ray diffraction showed that the stack possesses centered cubic structure. The X-ray photoelectron spectroscopy survey spectra on the etched surfaces of the stack film on steel exhibited the characteristic Ti2p, N1s, and O1s peaks at the corresponding binding energies 454.5, 397.0, and 530.6 eV, respectively. Platelet adhesion experiments were carried out to examine the interaction between blood and the materials in vitro. The results indicated that the smoothness and lower isoelectric point contribute to better hemocompatibility of the Ti/TiN nanoscale multilayered coating. The biomediated synthesis of calcium hydroxylapatite (HA) was carried out on coated substrates using calcium-depositing bacteria. The observation of low corrosion current density (I(corr)) for the calcium HA-coated Ti/TiN specimens in simulated body fluid confirmed their highly resistive nature under the testing condition. PMID:20819919

  11. Immunomodulation with Self-Crosslinked Polyelectrolyte Multilayer-Based Coatings.

    PubMed

    Knopf-Marques, Helena; Singh, Sonali; Htwe, Su Su; Wolfova, Lucie; Buffa, Radovan; Bacharouche, Jalal; Francius, Grégory; Voegel, Jean-Claude; Schaaf, Pierre; Ghaemmaghami, Amir M; Vrana, Nihal Engin; Lavalle, Philippe

    2016-06-13

    This study aims to design an optimal polyelectrolyte multilayer film of poly-l-lysine (PLL) and hyaluronic acid (HA) as an anti-inflammatory cytokine release system in order to decrease the implant failure due to any immune reactions. The chemical modification of the HA with aldehyde moieties allows self-cross-linking of the film and an improvement in the mechanical properties of the film. The cross-linking of the film and the release of immunomodulatory cytokine (IL-4) stimulate the differentiation of primary human monocytes seeded on the films into pro-healing macrophages phenotype. This induces the production of anti-inflammatory cytokines (IL1-RA and CCL18) and the decrease of pro-inflammatory cytokines secreted (IL-12, TNF-α, and IL-1β). Moreover, we demonstrate that cross-linking PLL/HA film using HA-aldehyde is already effective by itself to limit inflammatory processes. Finally, this functionalized self-cross-linked PLL/HA-aldehyde films constitutes an innovative and efficient candidate for immunomodulation of any kind of implants of various architecture and properties. PMID:27183396

  12. Process for preparing multilayer enzyme coating on a fiber

    DOEpatents

    Kim, Jungbae; Kwak, Ja Hun; Grate, Jay W.

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  13. Quorum-Quenching and Matrix-Degrading Enzymes in Multilayer Coatings Synergistically Prevent Bacterial Biofilm Formation on Urinary Catheters.

    PubMed

    Ivanova, Kristina; Fernandes, Margarida M; Francesko, Antonio; Mendoza, Ernest; Guezguez, Jamil; Burnet, Michael; Tzanov, Tzanko

    2015-12-16

    Bacteria often colonize in-dwelling medical devices and grow as complex biofilm communities of cells embedded in a self-produced extracellular polymeric matrix, which increases their resistance to antibiotics and the host immune system. During biofilm growth, bacterial cells cooperate through specific quorum-sensing (QS) signals. Taking advantage of this mechanism of biofilm formation, we hypothesized that interrupting the communication among bacteria and simultaneously degrading the extracellular matrix would inhibit biofilm growth. To this end, coatings composed of the enzymes acylase and α-amylase, able to degrade bacterial QS molecules and polysaccharides, respectively, were built on silicone urinary catheters using a layer-by-layer deposition technique. Multilayer coatings of either acylase or amylase alone suppressed the biofilm formation of corresponding Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Further assembly of both enzymes in hybrid nanocoatings resulted in stronger biofilm inhibition as a function of acylase or amylase position in the layers. Hybrid coatings, with the QS-signal-degrading acylase as outermost layer, demonstrated 30% higher antibiofilm efficiency against medically relevant Gram-negative bacteria compared to that of the other assemblies. These nanocoatings significantly reduced the occurrence of single-species (P. aeruginosa) and mixed-species (P. aeruginosa and Escherichia coli) biofilms on silicone catheters under both static and dynamic conditions. Moreover, in an in vivo animal model, the quorum quenching and matrix degrading enzyme assemblies delayed the biofilm growth up to 7 days. PMID:26593217

  14. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    NASA Astrophysics Data System (ADS)

    Peters, Katharina; Raupp, Sebastian; Hummel, Helga; Bruns, Michael; Scharfer, Philip; Schabel, Wilhelm

    2016-06-01

    Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.

  15. Extremely high rate deposition of polymer multilayer optical thin film materials

    SciTech Connect

    Affinito, J.D.

    1993-03-01

    This paper highlights a new technique for extremely high rate deposition of optical dielectric films (vacuum deposition of polymer multilayer thin films). This is a way to produce multilayer optical filters comprised of thousands of layers of either linear or nonlinear optical materials. The technique involves the flash evaporation of an acrylic monomer onto a moving substrate; the monomer is then cured. Acrylic polymers deposited to date are very clear for wavelengths between 0.35 and 2.5 {mu}m; they have extinction coefficients of k{approx}10{sup {minus}7}. Application of electric field during cross linking can polarize (``pole``) the film to greatly enhance the nonlinear optical properties. ``Poling`` films with the polymer multilayer technique offers advantages over conventional approaches, in that the polarization should not decay over time. Battelle`s Pacific Northwest Laboratory is well suited for bringing linear and nonlinear polymer multilayer optical filter technology to manufacturing production status for batch and wide area web applications. 10 figs.

  16. Extremely high rate deposition of polymer multilayer optical thin film materials

    SciTech Connect

    Affinito, J.D.

    1993-01-01

    This paper highlights a new technique for extremely high rate deposition of optical dielectric films (vacuum deposition of polymer multilayer thin films). This is a way to produce multilayer optical filters comprised of thousands of layers of either linear or nonlinear optical materials. The technique involves the flash evaporation of an acrylic monomer onto a moving substrate; the monomer is then cured. Acrylic polymers deposited to date are very clear for wavelengths between 0.35 and 2.5 [mu]m; they have extinction coefficients of k[approx]10[sup [minus]7]. Application of electric field during cross linking can polarize (''pole'') the film to greatly enhance the nonlinear optical properties. ''Poling'' films with the polymer multilayer technique offers advantages over conventional approaches, in that the polarization should not decay over time. Battelle's Pacific Northwest Laboratory is well suited for bringing linear and nonlinear polymer multilayer optical filter technology to manufacturing production status for batch and wide area web applications. 10 figs.

  17. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  18. Coating Solar Cells By Microwave Plasma Deposition

    NASA Technical Reports Server (NTRS)

    Minaee, Behrooz; Chitre, Sanjeev R.; Zahedi, Narges

    1991-01-01

    Antireflection films deposited on silicon solar cells at high production rates with microwave-enhanced plasma deposition. Microwave energy at frequency of 2.45 GHz generates plasma in mixture of gases, from which thin film of silicon nitride deposits on silicon substrates. Reaction temperature relatively low (only 250 degrees C), and film deposition rate more than 500 Angstrom/minute - 2 to 5 times faster. Quality of antireflection film similar to that produced by chemical-vapor deposition. Uses less power and consumes smaller quantities of gas. Species formed in plasma longer lived and dissociate reactants in region of chamber well away from plasma-generation region.

  19. MODELING AND THE SPUTTER DEPOSITION OF COATINGS ONTO SPHERICAL CAPSULES

    SciTech Connect

    Jankowski, A F; Hayes, J P

    2006-09-19

    The sputter deposition of coatings onto capsules of polymer and oxide shells as well as solid metal spheres is accomplished using a chambered substrate platform. Oxides and metal coatings are sputter deposited through a screen-aperture array onto a 0.3-1.2 mm diameter, solid spheres and hollow shells. Each shell is contained within its own individual chamber within a larger array. Ultrasonic vibration is the method used to produce a random bounce of each capsule within each chamber, in order to produce a coating with uniform thickness. Characterization of thin aluminum-oxide coated, platinum solid spheres and thicker copper-gold layer coated, hollow capsules (of both glass and polymer) show that uniform coatings can be produced using a screen-aperture chambered, substrate platform. Potential advantages of this approach compared to open-bounce pans include improved sample yield and reduced surface roughness from debris minimization. A process model for the coating growth on the capsules is developed to assess selection of the screen aperture based on the effects of sputter deposition parameters and the coating materials.

  20. Structure of multilayered Cr(Al)N/SiO{sub x} nanocomposite coatings fabricated by differential pumping co-sputtering

    SciTech Connect

    Kawasaki, Masahiro; Nose, Masateru; Onishi, Ichiro; Shiojiri, Makoto

    2013-11-11

    A Cr(Al)N/38 vol. % SiO{sub x} hard coating was prepared on a (001) Si substrate at 250 °C in a differential pumping co-sputtering system, which has two chambers for radio frequency (RF) sputtering and a substrate holder rotating on the chambers. The composite coating was grown by alternate sputter-depositions from CrAl and SiO{sub 2} targets with flows of N{sub 2}+Ar and Ar at RF powers of 200 and 75 W, respectively, on transition layers grown on the substrate. Analytical electron microscopy reveled that the Cr(Al)N/SiO{sub x} coating had a multilayered structure of Cr(Al)N crystal layers ∼1.6 nm thick and two-dimensionally dispersed amorphous silicon oxide (a-SiO{sub x}) particles with sizes of ∼1 nm or less. The a-SiO{sub x} particles were enclosed with the Cr(Al)N layers. The coating had a low indentation hardness of ∼25 GPa at room temperature, due to a high oxide fraction of 38 vol. % and a low substrate rotational speed of 1 rpm. Faster rotation and lower oxide fraction would make a-SiO{sub x} particles smaller, resulting in the formation of Cr(Al)N crystal including the very fine a-SiO{sub x} particles with small number density. They would work as obstacles for the lattice deformation of the Cr(Al)N crystals. We have fabricated a superhard coating of Cr(Al)N/17 vol. % SiO{sub x} with a hardness of 46 GPa prepared at 12 rpm.

  1. Structure of multilayered Cr(Al)N/SiOx nanocomposite coatings fabricated by differential pumping co-sputtering

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Nose, Masateru; Onishi, Ichiro; Shiojiri, Makoto

    2013-11-01

    A Cr(Al)N/38 vol. % SiOx hard coating was prepared on a (001) Si substrate at 250 °C in a differential pumping co-sputtering system, which has two chambers for radio frequency (RF) sputtering and a substrate holder rotating on the chambers. The composite coating was grown by alternate sputter-depositions from CrAl and SiO2 targets with flows of N2+Ar and Ar at RF powers of 200 and 75 W, respectively, on transition layers grown on the substrate. Analytical electron microscopy reveled that the Cr(Al)N/SiOx coating had a multilayered structure of Cr(Al)N crystal layers ˜1.6 nm thick and two-dimensionally dispersed amorphous silicon oxide (a-SiOx) particles with sizes of ˜1 nm or less. The a-SiOx particles were enclosed with the Cr(Al)N layers. The coating had a low indentation hardness of ˜25 GPa at room temperature, due to a high oxide fraction of 38 vol. % and a low substrate rotational speed of 1 rpm. Faster rotation and lower oxide fraction would make a-SiOx particles smaller, resulting in the formation of Cr(Al)N crystal including the very fine a-SiOx particles with small number density. They would work as obstacles for the lattice deformation of the Cr(Al)N crystals. We have fabricated a superhard coating of Cr(Al)N/17 vol. % SiOx with a hardness of 46 GPa prepared at 12 rpm.

  2. Carbon deposition on multi-layer mirrors by extreme ultra violet ray irradiation

    NASA Astrophysics Data System (ADS)

    Matsunari, S.; Aoki, T.; Murakami, K.; Gomei, Y.; Terashima, S.; Takase, H.; Tanabe, M.; Watanabe, Y.; Kakutani, Y.; Niibe, M.; Fukuda, Y.

    2007-03-01

    Organic gases cause carbon depositions on the multi-layer mirrors by Extreme Ultra Violet (EUV) light irradiations in EUV lithography tool. The dependences on organic gas species, organic gas pressure and EUV light intensity in the carbon deposition were researched in order to understand this reaction. EUV light was irradiated on a (Si/Mo) multilayer mirror sample injecting organic gas like buthane, buthanol, methyl propionate, hexane, perfluoro octane, decane, decanol, methyl nonanoate, diethyl benzene, dimethyl phthalate and hexadecane. X-ray photoelectron spectroscopy measurements revealed that organic gases with heavier molecule weight or higher boiling temperature caused faster carbon deposition rates. Carbon deposition rates increased linearly with organic gas pressures. Dependence on EUV light intensity was estimated from comparisons between an EUV light profile and carbon distributions on irradiated samples. Carbon deposition rates increased rapidly, but became saturated at higher EUV light intensities. Three chemical reactions, an adsorption, a desorption and a carbon deposition by EUV light irradiation, were taken into account to explain the behavior of the carbon deposition. Electron irradiation on a mirror sample revealed that photoelectrons emitting from the mirror surface played an important role in carbon deposition.

  3. Biased deposition of nanocrystalline Be1-x Cux coatings

    SciTech Connect

    Jankowski, A

    2000-11-03

    Coatings of Be{sub 1-x}Cu{sub x} are prepared by magnetron sputter deposition onto spherical polymer mandrels. The application of an applied bias during deposition refines the columnar morphology of the coating and surface finish to the nanoscale. A mechanical testing technique is developed to load the thin-walled spherical capsules under uniaxial tension at constant strain to fracture. The bias-deposited material exhibits an increase in strength by a factor of three or more following a Hall-Petch type relationship with surface roughness.

  4. Fiber/matrix interfaces for SiC/SiC composites: Multilayer SiC coatings

    SciTech Connect

    Halverson, H.; Curtin, W.A.

    1996-08-01

    Tensile tests have been performed on composites of CVI SiC matrix reinforced with 2-d Nicalon fiber cloth, with either pyrolitic carbon or multilayer CVD SiC coatings [Hypertherm High-Temperature Composites Inc., Huntington Beach, CA.] on the fibers. To investigate the role played by the different interfaces, several types of measurements are made on each sample: (i) unload-reload hysteresis loops, and (ii) acoustic emission. The pyrolitic carbon and multilayer SiC coated materials are remarkably similar in overall mechanical responses. These results demonstrate that low-modulus, or compliant, interface coatings are not necessary for good composite performance, and that complex, hierarchical coating structures may possibly yield enhanced high-temperature performance. Analysis of the unload/reload hysteresis loops also indicates that the usual {open_quotes}proportional limit{close_quotes} stress is actually slightly below the stress at which the 0{degrees} load-bearing fibers/matrix interfaces slide and are exposed to atmosphere.

  5. pH-responsive drug delivery system based on hollow silicon dioxide micropillars coated with polyelectrolyte multilayers

    PubMed Central

    2014-01-01

    We report on the fabrication of polyelectrolyte multilayer-coated hollow silicon dioxide micropillars as pH-responsive drug delivery systems. Silicon dioxide micropillars are based on macroporous silicon formed by electrochemical etching. Due to their hollow core capable of being loaded with chemically active agents, silicon dioxide micropillars provide additional function such as drug delivery system. The polyelectrolyte multilayer was assembled by the layer-by-layer technique based on the alternative deposition of cationic and anionic polyelectrolytes. The polyelectrolyte pair poly(allylamine hydrochloride) and sodium poly(styrene sulfonate) exhibited pH-responsive properties for the loading and release of a positively charged drug doxorubicin. The drug release rate was observed to be higher at pH 5.2 compared to that at pH 7.4. Furthermore, we assessed the effect of the number of polyelectrolyte bilayers on the drug release loading and release rate. Thus, this hybrid composite could be potentially applicable as a pH-controlled system for localized drug release. PMID:25221455

  6. Mo/Si multilayer-coated amplitude-division beam splitters for XUV radiation sources

    PubMed Central

    Sobierajski, Ryszard; Loch, Rolf Antonie; van de Kruijs, Robbert W. E.; Louis, Eric; von Blanckenhagen, Gisela; Gullikson, Eric M.; Siewert, Frank; Wawro, Andrzej; Bijkerk, Fred

    2013-01-01

    Amplitude-division beam splitters for XUV radiation sources have been developed and extensively characterized. Mo/Si multilayer coatings were deposited on 50 nm-thick SiN membranes. By changing the multilayer structure (periodicity, number of bilayers, etc.) the intensity of the reflected and transmitted beams were optimized for selected incident radiation parameters (wavelength, incident angle). The developed optical elements were characterized by means of XUV reflectometry and transmission measurements, atomic force microscopy and optical interferometry. Special attention was paid to the spatial homogeneity of the optical response and reflected beam wavefront distortions. Here the results of the characterization are presented and improvements required for advanced applications at XUV free-electron lasers are identified. A flatness as low as 4 nm r.m.s. on 3 × 3 mm beam splitters and 22 nm r.m.s. on 10 × 10 mm beam splitters has been obtained. The high-spatial-frequency surface roughness was about 0.7–1 nm r.m.s. The middle-spatial-frequency roughness was in the range 0.2–0.8 nm r.m.s. The reflection and transmission of the beam splitters were found to be very homogeneous, with a deviation of less than 2% across the full optical element. PMID:23412481

  7. Method for depositing an oxide coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1982-01-01

    A metal oxide coating is plated onto a metal substrate at the cathode from an acid solution which contains an oxidizing agent. The process is particularly useful for producing solar panels. Conventional plating at the cathode avoids the presence of oxidizing agents. Coatings made in accordance with the invention are stable both at high temperatures and while under the influence of high photon flux in the visible range.

  8. Deposition of copper coatings in a magnetron with liquid target

    SciTech Connect

    Tumarkin, A. V. Kaziev, A. V.; Kolodko, D. V.; Pisarev, A. A.; Kharkov, M. M.; Khodachenko, G. V.

    2015-12-15

    Copper coatings were deposited on monocrystalline Si substrates using a magnetron discharge with a liquid cathode in the metal vapour plasma. During the deposition, the bias voltage in the range from 0 V to–400 V was applied to the substrate. The prepared films were investigated by a scanning electron microscope, and their adhesive properties were studied using a scratch tester. It was demonstrated that the adhesion of the deposited films strongly depends on the bias voltage and varies in a wide range.

  9. Deposition of copper coatings in a magnetron with liquid target

    NASA Astrophysics Data System (ADS)

    Tumarkin, A. V.; Kaziev, A. V.; Kolodko, D. V.; Pisarev, A. A.; Kharkov, M. M.; Khodachenko, G. V.

    2015-12-01

    Copper coatings were deposited on monocrystalline Si substrates using a magnetron discharge with a liquid cathode in the metal vapour plasma. During the deposition, the bias voltage in the range from 0 V to-400 V was applied to the substrate. The prepared films were investigated by a scanning electron microscope, and their adhesive properties were studied using a scratch tester. It was demonstrated that the adhesion of the deposited films strongly depends on the bias voltage and varies in a wide range.

  10. Nanorods of Co/Pd multilayers fabricated by glancing angle deposition for advanced media

    NASA Astrophysics Data System (ADS)

    Su, Hao; Natarajarathinam, Anusha; Gupta, Subhadra

    2013-05-01

    Perpendicular anisotropy magnetic nanorods composed of Co/Pd multilayers have been successfully fabricated by glancing angle deposition (GLAD) in a planetary sputtering system. Co and Pd layer thickness, ratio, and bilayer number were optimized for both normal and GLAD depositions. Scanning electron micrographs estimated the nanorods to be about 12 nm in diameter. M-H loops showed that the coercivity for the GLAD nanorods increased from 1.3 kOe for the normally deposited continuous films to 2.9 kOe for the GLAD nanorod array, a 123% increase.