Science.gov

Sample records for multilayer printed circuit

  1. Fabrication of Transparent Multilayer Circuits by Inkjet Printing.

    PubMed

    Jiang, Jieke; Bao, Bin; Li, Mingzhu; Sun, Jiazhen; Zhang, Cong; Li, Yang; Li, Fengyu; Yao, Xi; Song, Yanlin

    2016-02-17

    Conductive microcables embedded in a transparent film are fabricated by inkjet printing silver-nanoparticle ink into a liquid poly(dimethylsiloxane) (PDMS) precursor substrate. By controlling the spreading of the ink droplet and the rheological properties of the liquid substrate, transparent multilayer circuits composed of high-resolution embedded cables are achieved using a commercial inkjet printer. This facile strategy provides a new avenue for inkjet printing of highly integrated and transparent electronics. PMID:26643356

  2. Effective electromagnetic shielding in multilayer printed circuit boards

    NASA Astrophysics Data System (ADS)

    Wiles, K. G.; Moe, J. L.

    Multilayer printed circuit boards have proven to be recurrent abettors of electromagnetic coupling problems created by the incessantly faster response times in integrated circuit technologies. Coupling within multilayer boards has not only inhibited meeting certain EMI requirements but has also precipitated 'self-inflicted' malfunctions commonly experienced during development of avionic systems. A recent avionic system, interfacing two asynchronous processors through a fourteen-layer motherboard, permitted coupling through ground plane connector apertures of sufficient amplitude and duration as to cause unintentional intercommunication and system malfunctions. The coupling mechanism and ground plane modifications which reduced this coupling by 40 dB and eliminated the incompatibility are discussed in this paper

  3. Increasing the wiring density of multilayer printed circuit boards for airborne scientific instrumentation

    NASA Astrophysics Data System (ADS)

    Panfilova, G. T.; Sadykov, K. S.

    Design improvements are proposed for multilayer printed circuit boards manufactured by the method of open bonding pads which make it possible to reduce the volume of electronic blocks and the number of layers in the printed circuit board. The proposed improvements include the use of double wells for interlayer connection and overlap soldering of small radioelectronic elements.

  4. New reconstruction method for x-ray testing of multilayer printed circuit board

    NASA Astrophysics Data System (ADS)

    Yang, Min; Wang, Gao; Liu, Yongzhan

    2010-05-01

    For multilayer printed circuit board (PCB) and large-scale integrated circuit (LIC) chips, nondestructive testing of the inner structure and welding defects is very important for circuit diagram reverse design and manufacturing quality control. The traditional nondestructive testing of this kind of plate-like object is digital radiography (DR), which can provide only images with overlapped information, so it is difficult to get a full and accurate circuit image of every layer and the position of the defects using the DR method. At the same time, traditional computed tomography scanning methods are also unable to resolve this problem. A new reconstruction method is proposed for the nondestructive testing of plate-like objects. With this method, x rays irradiate the surface of the reconstructed object at an oblique angle, and a series of projection images are obtained while the object is rotating. Then, through a relevant preprocessing method on the projections and a special reconstructing algorithm, cross sections of the scanning region are finally obtained slice by slice. The experimental results prove that this method satisfactorily addresses the challenges of nondestructive testing of plate-like objects such as PCB or LIC.

  5. Direct-referencing Two-dimensional-array Digital Microfluidics Using Multi-layer Printed Circuit Board

    PubMed Central

    Gong, Jian; Kim, Chang-Jin “CJ”

    2008-01-01

    Digital (i.e. droplet-based) microfluidics, by the electrowetting-on-dielectric (EWOD) mechanism, has shown great potential for a wide range of applications, such as lab-on-a-chip. While most reported EWOD chips use a series of electrode pads essentially in one-dimensional line pattern designed for specific tasks, the desired universal chips allowing user-reconfigurable paths would require the electrode pads in two-dimensional pattern. However, to electrically access the electrode pads independently, conductive lines need to be fabricated underneath the pads in multiple layers, raising a cost issue especially for disposable chip applications. In this article, we report the building of digital microfluidic plates based on a printed-circuit-board (PCB), in which multilayer electrical access lines were created inexpensively using mature PCB technology. However, due to its surface topography and roughness and resulting high resistance against droplet movement, as-fabricated PCB surfaces require unacceptably high (~500 V) voltages unless coated with or immersed in oil. Our goal is EWOD operations of aqueous droplets not only on oil-covered but also on dry surfaces. To meet varying levels of performances, three types of gradually complex post-PCB microfabrication processes are developed and evaluated. By introducing land-grid-array (LGA) sockets in the packaging, a scalable digital microfluidics system with reconfigurable and low-cost chip is also demonstrated. PMID:19234613

  6. Diffractive/refractive hybrid f-theta lens for laser drilling of multilayer printed circuit boards

    NASA Astrophysics Data System (ADS)

    Fuse, Keiji; Okada, Takeshi; Ebata, Keiji

    2003-02-01

    A new type of f-theta lens has recently been developed for microvia laser drilling of multilayer printed circuit boards. It employs a diffractive/refractive hybrid lens which has a blazed surface-relief microstructure on an aspheric surface. By introducing that hybrid lens for CO2 laser system, and by stopping the use of germanium that is optically much sensitive to temperature, the f-theta lens that consists of all zinc selenide lenses is obtained with its optical performance stable on temperature. Achromatic properties against the wavelength fluctuations of actual lasers are also achieved. A prototype is fabricated through the development of single point diamond turning of hybrid surfaces. The performance of the lens is first examined by measuring wavefront error with a tunable infrared interferometer. The results show diffraction-limited performance at all conditions, including different temperatures (up to 50°C) and wavelengths. The temperature dependence of the focal length of the lens is also measured and found to be 5 times as insensitive to temperature as that of a conventional one. Laser drilling experiments are performed for a polymide film on copper foil. The result shows good uniformity of hole size and circularity all over the 50×50 mm2 scan field.

  7. Printed circuit board industry.

    PubMed

    LaDou, Joseph

    2006-05-01

    The printed circuit board is the platform upon which microelectronic components such as semiconductor chips and capacitors are mounted. It provides the electrical interconnections between components and is found in virtually all electronics products. Once considered low technology, the printed circuit board is evolving into a high-technology product. Printed circuit board manufacturing is highly complicated, requiring large equipment investments and over 50 process steps. Many of the high-speed, miniaturized printed circuit boards are now manufactured in cleanrooms with the same health and safety problems posed by other microelectronics manufacturing. Asia produces three-fourths of the world's printed circuit boards. In Asian countries, glycol ethers are the major solvents used in the printed circuit board industry. Large quantities of hazardous chemicals such as formaldehyde, dimethylformamide, and lead are used by the printed circuit board industry. For decades, chemically intensive and often sloppy manufacturing processes exposed tens of thousands of workers to a large number of chemicals that are now known to be reproductive toxicants and carcinogens. The printed circuit board industry has exposed workers to high doses of toxic metals, solvents, acids, and photolithographic chemicals. Only recently has there been any serious effort to diminish the quantity of lead distributed worldwide by the printed circuit board industry. Billions of electronics products have been discarded in every region of the world. This paper summarizes recent regulatory and enforcement efforts. PMID:16580876

  8. Investigation of multilayer printed circuit board (PCB) film warpage using viscoelastic properties measured by a vibration test

    NASA Astrophysics Data System (ADS)

    Joo, Sung-Jun; Park, Buhm; Kim, Do-Hyoung; Kwak, Dong-Ok; Song, In-Sang; Park, Junhong; Kim, Hak-Sung

    2015-03-01

    Woven glass fabric/BT (bismaleimide triazine) composite laminate (BT core), copper (Cu), and photoimageable solder resist (PSR) are the most widely used materials for semiconductors in electronic devices. Among these materials, BT core and PSR contain polymeric materials that exhibit viscoelastic behavior. For this reason, these materials are considered to have time- and temperature-dependent moduli during warpage analysis. However, the thin geometry of multilayer printed circuit board (PCB) film makes it difficult to identify viscoelastic characteristics. In this work, a vibration test method was proposed for measuring the viscoelastic properties of a multilayer PCB film at different temperatures. The beam-shaped specimens, composed of a BT core, Cu laminated on a BT core, and PSR and Cu laminated on a BT core, were used in the vibration test. The frequency-dependent variation of the complex bending stiffness was determined using a transfer function method. The storage modulus (E‧) of the BT core, Cu, and PSR as a function of temperature and frequency were obtained, and their temperature-dependent variation was identified. The obtained properties were fitted using a viscoelastic model for the BT core and the PSR, and a linear elastic model for the Cu. Warpage of a line pattern specimen due to temperature variation was measured using a shadow Moiré analysis and compared to predictions using a finite element model. The results provide information on the mechanism of warpage, especially warpage due to temperature-dependent variation in viscoelastic properties.

  9. Powering an Implantable Minipump with a Multi-layered Printed Circuit Coil for Drug Infusion Applications in Rodents

    PubMed Central

    Givrad, Tina K.; Maarek, Jean-Michel I.; Moore, William H.; Holschneider, Daniel P.

    2014-01-01

    We report the use of a multi-layer printed coil circuit for powering (36–94 mW) an implantable microbolus infusion pump (MIP) that can be activated remotely for use in drug infusion in nontethered, freely moving small animals. This implantable device provides a unique experimental tool with applications in the fields of animal behavior, pharmacology, physiology, and functional brain imaging. Two different designs are described: a battery-less pump usable when the animal is inside a home-cage surrounded by a primary inductive coil and a pump powered by a rechargeable battery that can be used for studies outside the homecage. The use of printed coils for powering of small devices by inductive power transfer presents significant advantages over similar approaches using hand-wound coils in terms of ease of manufacturing and uniformity of design. The high efficiency of a class-E oscillator allowed powering of the minipumps without the need for close physical contact of the primary and secondary coils, as is currently the case for most devices powered by inductive power transfer. PMID:20033778

  10. Development of nondestructive testing techniques for plated-through holes in multilayer printed circuit boards

    NASA Technical Reports Server (NTRS)

    Anthony, P. L.; Mcmurtrey, J. E.

    1971-01-01

    The development of a nondestructive test with the capability to interrogate plated-through holes as small as 0.51 millimeters inside diameter is discussed. The system can detect defects such as holes, voids, cracks, and thin spots that reduce the current carrying capability of plates-through interconnects by 20 percent or more. Efforts were directed toward the design and fabrication of magnetic circuitry mutual coupling probes and to evaluate the effectiveness of these devices for detecting in multilayer board plated-through holes.

  11. Analytical modeling of multi-layered Printed Circuit Board dedicated to electronic component thermal characterization

    NASA Astrophysics Data System (ADS)

    Monier-Vinard, Eric; Laraqi, Najib; Dia, Cheikh-Tidiane; Nguyen, Minh-Nhat; Bissuel, Valentin

    2015-01-01

    Electronic components are continuously getting smaller and embedding more and more powered functions which exacerbate the temperature rise in component/board interconnect areas. For still air conditions, the heat spreading of the component power is mainly done through the surrounding metallic planes of its electronic board. Their design optimization is henceforth mandatory to control the temperature and to preserve component reliability. To allow the electronic designer to early analyze the limits of the power dissipation of miniaturized devices, an analytical model of a multi-layered electronic board was established with the purpose to assess the validity of conventional board modeling approach. For decades, numerous authors have been promoting a homogenous single layer model that summed up the layers of the board using effective orthotropic thermal properties. The derived compact model depends on thermal properties approximation which is commonly based on parallel conduction model given a linear rule of mixture. The work presents the thermal behavior comparison of a detailed multi-layer representation to its deducted compact model for an extensive set of variable parameters, such as heat transfer coefficients, effective thermal conductivities calculation models, number of trace layers, trace coverage or source size. The results highlight the fact that the conventional practices for PCB modeling can dramatically underestimate source temperatures when their size is getting very small.

  12. Anisotropic viscoelastic shell modeling technique of copper patterns/photoimageable solder resist composite for warpage simulation of multi-layer printed circuit boards

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyoung; Joo, Sung-Jun; Kwak, Dong-Ok; Kim, Hak-Sung

    2015-10-01

    In this study, the warpage simulation of a multi-layer printed circuit board (PCB) was performed as a function of various copper (Cu) patterns/photoimageable solder resist (PSR) composite patterns and their anisotropic viscoelastic properties. The thermo-mechanical properties of Cu/PSR patterns were obtained from finite element analysis (virtual test) and homogenized with anisotropic composite shell models that considered the viscoelastic properties. The multi-layer PCB model was simplified based on the unit Cu/PSR patterns and the warpage simulation during the reflow process was performed by using ABAQUS combined with a user-defined subroutine. From these results, it was demonstrated that the proposed anisotropic viscoelastic composite shell simulation technique can be successfully used to predict warpage of multi-layer PCBs during the reflow process.

  13. "Printed-circuit" rectenna

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1977-01-01

    Rectifying antenna is less bulky structure for absorbing transmitted microwave power and converting it into electrical current. Printed-circuit approach, using microstrip technology and circularly polarized antenna, makes polarization orientation unimportant and allows much smaller arrays for given performance. Innovation is particularly useful with proposed electric vehicles powered by beam microwaves.

  14. A 3-D image chamber for the liquid argon TPC based on multi-layer printed circuit board

    NASA Astrophysics Data System (ADS)

    Cennini, P.; Cittolin, S.; Revol, J. P.; Rubbia, C.; Tian, W. H.; Li, X.; Picchi, P.; Cavanna, F.; Piano Mortari, G.; Verdecchia, M.; Cline, D.; Liu, Y.; Muratori, G.; Otwinowski, S.; Wang, H.; Zhou, M.; Bettini, A.; Casagrande, F.; Centro, S.; De Vecchi, C.; Pepato, A.; Pietropaolo, F.; Rossi, P.; Ventura, S.; Benetti, P.; Calligarich, E.; Dolfini, R.; Gigli Berzolari, A.; Mauri, F.; Montanari, C.; Piazzoli, A.; Rappoldi, A.; Raselli, U. L.; Scannicchio, D.; Periale, L.; Suzuki, S.

    1994-08-01

    In our research and development programme for the ICARUS experiment we have developed a novel three-dimensional readout scheme for a liquefied noble gas TPC, where no charge multiplication process takes place. The design avoids completely wire grids and is based on the multilayer circuit technique. As a consequence it is intrinsically safe and suited to be used in large and modular structures as those foreseen for ICARUS. We describe here how the electrodes structure can be simplified leading to the new design principles and we present the results obtained with a small prototype chamber in a 100 GeV μ beam.

  15. Bi-directional homogenization equivalent modeling for the prediction of thermo-mechanical properties of a multi-layered printed circuit board (PCB)

    NASA Astrophysics Data System (ADS)

    Joo, Sung-Jun; Park, Buhm; Kim, Do-Hyoung; Kwak, Dong-Ok; Park, Junhong; Kim, Hak-Sung

    2016-04-01

    Warpage of multi-layered printed circuit boards (PCB) during the reflow process is a serious problem which affects the reliability of solder ball connections between the PCB and the mounted semi-conductor packages in electronic devices. It is essential to predict the warpage of the PCB accurately; however, the complicated copper patterns in multi-layered PCBs render a full modeling analysis impossible due to the excessive computing time required. To overcome this problem, we have developed analytical equations of three Cu patterns (line, square, and grid) for the application of thermo-mechanical properties simply by equivalent modeling of Cu patterns. In the proposed equations, the effect of thermo-viscoelastic properties as well as the influence of surrounding layers such as woven glass fabric/BT (bismaleimide triazine), composite laminate (BT core), and photoimageable solder resist (PSR) were considered. To verify the developed equations, vibration tests based on the wave propagation approach were performed at various temperatures. Good agreement was observed between the equivalent model and the experimental results.

  16. Soldering of complex multilayer printed boards

    NASA Astrophysics Data System (ADS)

    Garrigue, Jean-Marie; Braun, Jean-Francois

    1990-09-01

    The soldering limits of complex multilayer printed boards used for spaceborne electronic equipment are presented. 6400 configurations related to board design, component's lead characteristics and manual and wave soldering parameters, are tested. Choices and recommendations are suggested to overcome these limits. Quality and reliability aspects of the soldered joints are broached, and research topics are proposed. Soldering problems are found to develop beyond 8 to 10 layers of circuits in components with connection conductivities of less than 1 to 2 W per cm over temperature in degrees centigrade.

  17. Gain enhancement methods for printed circuit antennas through multiple superstrates

    NASA Astrophysics Data System (ADS)

    Yang, H. Y.; Alexopoulos, Nicolaos G.

    1987-07-01

    Reciprocity and a transmission line model are used to determine the radiation properties of printed circuit antennas (PCA's) in a multilayered material configuration. It is demonstrated that extremely high directive gain may result at any scan angle, with practical materials, if the thickness of the substrate and multiple superstrate layers is chosen properly. This model is also used to analyze the radiation characteristics of printed circuit antennas in inhomogeneous substrates.

  18. Multi-Layer E-Textile Circuits

    NASA Technical Reports Server (NTRS)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  19. Vacuum multilayer lamination of printed wiring boards

    NASA Astrophysics Data System (ADS)

    Wilkus, J. W.

    1992-11-01

    This experiment investigates vacuum multilayer lamination of rigid/flex, epoxy glass, polyimide glass, and polyimide quartz printed wiring boards. The effectiveness of the vacuum in removing entrapped air during the lamination cycle is demonstrated. The results of the experiment have also shown that vacuum lamination of epoxy glass multilayers improves the delamination resistance. Thus, epoxy glass multilayers that have been vacuum laminated will be able to withstand soldering temperatures longer without delaminating. Also, the experiment shows that vacuum multilayer lamination does not significantly change thickness, layer-to-layer registration, glass transition temperature, dielectric spacing between conductors, electrical resistance following thermal shock test, and other critical printed wiring board properties.

  20. Plasma etchback of multilayer printed wiring boards

    SciTech Connect

    Gentry, F.L.

    1980-06-01

    Removal of epoxy smear and glass fiber protrusions in multilayer printed wiring board holes was investigated. Gas plasma techniques, using a mixture of carbon tetrafluoride and oxygen, removed the eposies; however, the glass fibers were not affected.

  1. Planar Multilayer Circuit Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Minev, Z. K.; Serniak, K.; Pop, I. M.; Leghtas, Z.; Sliwa, K.; Hatridge, M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2016-04-01

    Experimental quantum information processing with superconducting circuits is rapidly advancing, driven by innovation in two classes of devices, one involving planar microfabricated (2D) resonators, and the other involving machined three-dimensional (3D) cavities. We demonstrate that circuit quantum electrodynamics can be implemented in a multilayer superconducting structure that combines 2D and 3D advantages. We employ standard microfabrication techniques to pattern each layer, and rely on a vacuum gap between the layers to store the electromagnetic energy. Planar qubits are lithographically defined as an aperture in a conducting boundary of the resonators. We demonstrate the aperture concept by implementing an integrated, two-cavity-mode, one-transmon-qubit system.

  2. Multi-Layer Inkjet Printed Contacts for Silicon Solar Cells

    SciTech Connect

    Curtis, C. J.; van Hest, M.; Miedaner, A.; Kaydanova, T.; Smith, L.; Ginley, D. S.

    2006-01-01

    Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. The approach developed can be easily extended to other conductors such as Pt, Pd, Au, etc. Thick highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and printed circuit board (PCB) have been printed at 100-200degC in air and N{sub 2} respectively. Ag grids were inkjet-printed on Si solar cells and fired through the silicon nitride AR layer at 850degC, resulting in 8% cells. Next generation inks, including an ink that etches silicon nitride, have now been developed. Multi-layer inkjet printing of the etching ink followed by Ag ink produced contacts under milder conditions and gave solar cells with efficiencies as high as 12%.

  3. Multi-Layer Inkjet Printed Contacts to Si

    SciTech Connect

    Curtis, C. J.; van Hest, M.; Miedaner, A.; Kaydanova, T.; Smith, L.; Ginley, D. S.

    2005-11-01

    Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. The approach developed can be easily extended to other conductors such as Pt, Pd, Au, etc. Thick highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and printed circuit board (PCB) have been printed at 100-200 deg C in air and N2 respectively. Ag grids were inkjet-printed on Si solar cells and fired through the silicon nitride AR layer at 850 deg C, resulting in 8% cells. Next generation inks, including an ink that etches silicon nitride, have now been developed. Multi-layer inkjet printing of the etching ink followed by Ag ink produced contacts under milder conditions and gave solar cells with efficiencies as high as 12%.

  4. Printed circuit dispersive transmission line

    DOEpatents

    Ikezi, H.; Lin-Liu, Y.R.; DeGrassie, J.S.

    1991-08-27

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other. 5 figures.

  5. Printed circuit dispersive transmission line

    DOEpatents

    Ikezi, Hiroyuki; Lin-Liu, Yuh-Ren; DeGrassie, John S.

    1991-01-01

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other.

  6. Multilayer printed wiring board lamination

    SciTech Connect

    Lula, J.W.

    1980-06-01

    The relationship of delamination resistance of multilayer PWBs made from GF material to manufacturing process variables was investigated. A unique quantitative test method developed during this project shows that delamination resistance is highly sensitive to material conditioning, to innerlayer surface treatment, and to post-lamination storage conditions, but is relatively insensitive to cure cycle variations.

  7. Flexible composite film for printed circuit board

    NASA Technical Reports Server (NTRS)

    Yabe, K.; Asakura, M.; Tanaka, H.; Soda, A.

    1982-01-01

    A flexible printed circuit for a printed circuit board in which layers of reaction product composed of a combination of phenoxy resin - polyisocyanate - brominated epoxy resin, and in which the equivalent ratio of those functional groups is hydroxyl group: isocyanate group: epoxy group - 1 : 0.2 to 2 : 0.5 to 3 are laminated on at least one side of saturated polyester film is discussed.

  8. A printed circuit cylindrical array antenna

    NASA Astrophysics Data System (ADS)

    Agrawal, Ashok K.; Powell, Walter E.

    1986-11-01

    The design and performance of a Ku-band cylindrical antenna are described. The antenna is designed to provide a 360-deg azimuth coverage with 20-dB sidelobes and an operating bandwidth of 1 GHz (16.0-17.0 GHz). The antenna consists of 16 facets of 2 x 4 dipole arrays. The 360-deg coverage is obtained with a switch matrix network. The antenna elements and the feeding switch matrix network are printed on a single printed circuit board.

  9. Design of printed circuit coils

    NASA Technical Reports Server (NTRS)

    Higgins, W. T.

    1969-01-01

    Spiral-like coil is printed with several extra turns which increase the realizable coil inductance. Included are shorting connections which not only short the extra turns, but also short out several turns of the main body. Coil tuning is accomplished by removing the shorts until the desired inductance is obtained.

  10. Printed-Circuit Cross-Slot Antenna

    NASA Technical Reports Server (NTRS)

    Foy, Wong; Chung, Hsien-Hsien; Peng, Sheng Y.

    1990-01-01

    Coupling between perpendicular slots suppressed. Balanced feed configuration minimizes coupling between slots of printed-circuit cross-slot antenna unit. Unit and array have conventional cavity-backed-printed-circuit, crossed-slot antenna design. Strip-line feeders behind planar conductive antenna element deliver power to horizontal slot in opposite phase. As result, little or no power propagates into vertical slot. Similar considerations apply to strip lines that feed vertical slot. Units of this type elements of phased-array antennas for radar, mobile/satellite communications, and other applications requiring flush mounting and/or rapid steering of beams with circular polarization.

  11. Automatic inspection system for printed circuit boards.

    PubMed

    Hara, Y; Akiyama, N; Karasaki, K

    1983-06-01

    The purpose of this correspondence is to present problems and methods in automating visual inspection of printed circuit boards (PCB's). Vertical and diagonal illumination are useful in detecting PCB patterns correctly. An algorithm comparing local features of the patterns to be inspected with those of the pattern to be referenced is proposed. An inspection system using developed technologies is also described. PMID:21869150

  12. Improving Heat Transfer Performance of Printed Circuit Boards

    NASA Technical Reports Server (NTRS)

    Schatzel, Donald V.

    2009-01-01

    This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.

  13. Printed circuit board layout by microcomputer

    NASA Astrophysics Data System (ADS)

    Krausman, E. W.

    1983-12-01

    Printed circuit board artwork is usually prepared manually because of the unavailability of computer-aided-design tools. This thesis presents the design of a microcomputer based printed circuit board layout system that is easy to use and cheap. Automatic routing and component placement routines will significantly speed up the process. The design satisfies the following requirements: Microcomputer implementation, portable, algorithm independent, interactive, and user friendly. When it is fully implemented a user will be able to select components and a board outline from an automated catalog, enter a schematic diagram, position the components on the board, and completely route the board from a single graphics terminal. Currently, the user interface and the outer level command processor have been implemented in Pascal. Future versions will be written in C for better portability.

  14. A Docking Casette For Printed Circuit Boards

    DOEpatents

    Barringer, Dennis R.; Seminaro, Edward J.; Toffler, Harold M.

    2003-08-19

    A docking apparatus for printed circuit boards including a cassette housing, having a housing base, a housing cover and a housing wall, wherein the housing base and the housing wall are disposed relative to each other so as to define a housing cavity for containing a printed circuit board and wherein the housing wall includes a cable opening disposed so as to be communicated with the housing cavity, a linkage mechanism, wherein the linkage mechanism includes an engagement configuration and a disengagement configuration and wherein the linkage mechanism is disposed so as to be associated with the cassette housing and a housing bezel, wherein the housing bezel is disposed relative to the cassette housing so as to be associated with the cable opening.

  15. Document Template for Printed Circuit Board Layout

    SciTech Connect

    Anderson, J.T.; /Fermilab

    1998-01-01

    The purpose of this document is to list the information that may be required to properly specify a printed circuit board (PCB) design. You must provide sufficient information to the PCB layout vendor such that they can quote accurately and design the PCB that you need. Use the following information as a guide to write your specification. Include as much of it as is necessary to get the PCB design that you want.

  16. Printed Circuit Board Design with HDL Designer

    NASA Technical Reports Server (NTRS)

    Winkert, Thomas K.; LaFourcade, Teresa

    2004-01-01

    Staying up to date with the latest CAD tools both from a cost and time perspective is difficult. Within a given organization there may be experts in Printed Circuit Board Design tools and experts in FPGA/VHDL tools. Wouldn't it be great to have someone familiar with HDL Designer be able to design PCBs without having to learn another tool? This paper describes a limited experiment to do this.

  17. Dimensional stability of multilayer circuit boards

    NASA Astrophysics Data System (ADS)

    Shrotriya, Pranav

    The present work investigates the time and temperature dependent response of the woven composite substrate used in multilayer circuit board applications and its influence on the residual stress development during processing and post-processing of the circuit boards. The fabric architecture of one commonly used substrate (7628 fabric style) is characterized using optical microscopy. The creep compliance and stress relaxation of the composite substrate and the FR-4 matrix are determined through accelerated viscoelastic characterization. Both finite element analysis (FEA) and theoretical analysis models are developed for prediction of the substrate response from the measured matrix and fabric properties. Comparison of the micromechanical model predictions with the measured response reveals the influence of fabric architecture and boundary conditions on the composite viscoelastic properties. Moire interferometry is utilized to investigate deformation of the composite unit cell and verify the physical basis for kinematic assumptions of the micromechanical models. Numerical and experimental studies are performed to study residual deformation and warpage in a model multilayer circuit board construction of a common composite substrate (7628 fabric style). A numerical procedure based on classical lamination theory with non-isothermal viscoelastic constitutive relations is developed to predict the deformation and residual stress state due to relamination. Experimental values of the substrate stress relaxation modulus and coefficients of thermal expansion (CTE) are used as inputs in the numerical procedure to predict warpage of model circuit boards with a non-symmetric lay-up of 7628 style composite substrate. Boards with the exact same construction as used in the numerical analysis were fabricated according to the prescribed pressing cycle and the time dependent warpage measured using an ultrasonic contour scan technique. Comparison of the experimental warpage data with

  18. CAD-CAM printed circuit board design

    NASA Astrophysics Data System (ADS)

    Agy, W. E.

    A step-by-step procedure for a printed circuit design achieved by CAD is presented. The operator at the interactive CRT station moves a stylus across a graphics tablet and intersperses commands which result in computer-generated pictorial forms on the screen that were drawn on the pad. Standard symbols are used for commands allowing, for instance, connections to be made of specific types in certain locations, which can be automatically edited from a materials list. An entire network of drawn lines can be referenced by a signal name for recall, and a finished circuit schematic can be checked for designs rules compliance, including fault reporting in terms of designator/pin number. A map may be present delineating the boundaries of the circuitry area, and previously completed circuitry segments can be recalled for piece-by-piece assembly of the circuit board.

  19. Development of Flexible Multilayer Circuits and Cables

    NASA Technical Reports Server (NTRS)

    Barnes, Kevin N.; Bryant, Robert; Holloway, Nancy; Draughon, Fred

    2005-01-01

    A continuing program addresses the development of flexible multilayer electronic circuits and associated flexible cables. This development is undertaken to help satisfy aerospace-system-engineering requirements for efficient, lightweight electrical and electronic subsystems that can fit within confined spaces, adhere to complexly shaped surfaces, and can be embedded within composite materials. Heretofore, substrate layers for commercial flexible circuitry have been made from sheets of Kapton (or equivalent) polyimide and have been bonded to copper conductors and to other substrate layers by means of adhesives. The substrates for the present developmental flexible circuitry are made from thin films of a polyimide known as LaRC(TM)-SI. This polyimide is thermoplastic and, therefore, offers the potential to eliminate delamination and the need for adhesives. The development work undertaken thus far includes experiments in the use of several techniques of design and fabrication (including computer-aided design and fabrication) of representative flexible circuits. Anticipated future efforts would focus on multilayer bonding, fabrication of prototypes, and overcoming limitations.

  20. Multi-Layer Inkjet Printed Contacts for Silicon Solar Cells: Preprint

    SciTech Connect

    Curtis, C. J.; van hest, M.; Miedaner, A.; Kaydanova, T.; Smith, L.; Ginley, D. S.

    2006-05-01

    Ag, Cu, and Ni metallizations were inkjet printed with near vacuum deposition quality. The approach developed can be easily extended to other conductors such as Pt, Pd, Au, etc. Thick highly conducting lines of Ag and Cu demonstrating good adhesion to glass, Si, and printed circuit board (PCB) have been printed at 100-200 C in air and N2 respectively. Ag grids were inkjet-printed on Si solar cells and fired through the silicon nitride AR layer at 850 C, resulting in 8% cells. Next generation inks, including an ink that etches silicon nitride, have now been developed. Multi-layer inkjet printing of the etching ink followed by Ag ink produced contacts under milder conditions and gave solar cells with efficiencies as high as 12%.

  1. Laser prototyping of printed circuit boards

    NASA Astrophysics Data System (ADS)

    Nowak, M. R.; Antończak, A. J.; Kozioł, P. E.; Abramski, K. M.

    2013-09-01

    This paper describes the application of laser micromachining to rapid prototyping of printed circuit boards (PCB) using nano-second lasers: the solid-state Nd:YAG (532/1064 nm) laser and the Yb:glass fiber laser (1060 nm). Our investigations included tests for various mask types (synthetic lacquer, light-sensitive emulsion and tin). The purpose of these tests was to determine some of the basic parameters such as the resolution of PCB prototyping, speed of processing and quality of PCB mapping with commonly available laser systems. Optimization of process parameters and the proposed conversion algorithm have allowed us to produce circuit boards with a resolution similar to that of the Laser Direct Imaging (LDI) technology.

  2. Optical interconnections on printed circuit boards

    NASA Astrophysics Data System (ADS)

    Griese, Elmar

    2000-05-01

    In this paper an optical interconnection technology for high-speed printed circuit board application is presented. This technology is widely compatible with the existing design and manufacturing technologies of conventional multi- layer pc boards and it combines electrical and optical interconnects on pc board level. Using this interconnection technology on-board bandwidth of several Gbps can be realized. As conventional pc board technology provides sufficient performance characteristics for the majority of all on-board signals only a hybrid technology which is compatible to the existing printed circuit board design and manufacturing processes is able to lead to a practical solution at reasonable cost. This compatibility demand results in different technological, functional, and economic requirements which also consider potential application for high performance computing and telecommunication hardware. In this paper an overview is given on the requirements, on the basic technologies for manufacturing electrical-optical pc boards as well as on the extended design process with its modeling and simulation methodologies and strategies.

  3. GUIDES TO POLLUTION PREVENTION: THE PRINTED CIRCUIT BOARD MANUFACTURING INDUSTRY

    EPA Science Inventory

    This document reviews the operations of printed circuit board manufacturers, identifies techniques that allow these companies to reduce wastes, and provides a set of self-audit checklists to assist printed circuit board manufacturers in setting up a waste reduction program. his r...

  4. Direct Desktop Printed-Circuits-on-Paper Flexible Electronics

    PubMed Central

    Zheng, Yi; He, Zhizhu; Gao, Yunxia; Liu, Jing

    2013-01-01

    There currently lacks of a way to directly write out electronics, just like printing pictures on paper by an office printer. Here we show a desktop printing of flexible circuits on paper via developing liquid metal ink and related working mechanisms. Through modifying adhesion of the ink, overcoming its high surface tension by dispensing machine and designing a brush like porous pinhead for printing alloy and identifying matched substrate materials among different papers, the slightly oxidized alloy ink was demonstrated to be flexibly printed on coated paper, which could compose various functional electronics and the concept of Printed-Circuits-on-Paper was thus presented. Further, RTV silicone rubber was adopted as isolating inks and packaging material to guarantee the functional stability of the circuit, which suggests an approach for printing 3D hybrid electro-mechanical device. The present work paved the way for a low cost and easygoing method in directly printing paper electronics.

  5. Laser technology in manufacture of printed-circuit boards

    NASA Astrophysics Data System (ADS)

    Machulka, G. A.; Stelmakh, M. F.; Uladinov, A. B.

    1985-09-01

    The complexity of the printed-circuit board manufacturing process, additionally encumbered by the intricacy of topology and layout, especially in multilayer boards, makes application of laser technology a very attractive possibility. Extensive studies have established the feasibility of using laser radiation in polygraphic dry offset printing, despite difficulties created by the high thermal conductivity of metallized surfaces, also in etching of patterns, drilling of holes, and soldering of joints. A gaseous (CO2) laser and a solid-state (garnet) laser have been found to be most suitable, each for specific operations. One of the most critical factors here is selection of oxidation-resistant materials for masks and insulation. The next step is incorporating the laser operations in the production line. The feasibility of this has been established in three versions. The first and simplest version, without computer, is proposed for experimental or pilot production of bilateral boards. The second version is proposed or commercial production, with an automatic work station and a control computer. In the third and most advanced version, for large-scale production, the automatic work station has been replaced by a computer-aided design system.

  6. Hard and flexible optical printed circuit board

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, Hyun Sik; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.

    2007-02-01

    We report on the design and fabrication of hard and flexible optical printed circuit boards (O-PCBs). The objective is to realize generic and application-specific O-PCBs, either in hard form or flexible form, that are compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly, for low-cost and high-volume universal applications. The O-PCBs consist of 2-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate micro/nano-scale photonic devices. The micro/nano-optical functional devices include lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices. For flexible boards, the optical waveguide arrays are fabricated on flexible poly-ethylen terephthalate (PET) substrates by UV embossing. Electrical layer carrying VCSEL and PD array is laminated with the optical layer carrying waveguide arrays. Both hard and flexible electrical lines are replaced with high speed optical interconnection between chips over four waveguide channels up to 10Gbps on each. We discuss uses of hard or flexible O-PCBs for telecommunication systems, computer systems, transportation systems, space/avionic systems, and bio-sensor systems.

  7. Physically separating printed circuit boards with a resilient, conductive contact

    NASA Technical Reports Server (NTRS)

    Baker, John D. (Inventor); Montalvo, Alberto (Inventor)

    1999-01-01

    A multi-board module provides high density electronic packaging in which multiple printed circuit boards are stacked. Electrical power, or signals, are conducted between the boards through a resilient contact. One end of the contact is located at a via in the lower circuit board and soldered to a pad near the via. The top surface of the contact rests against a via of the facing printed circuit board.

  8. Blind Via Hole in Multi-layer AFRP Printed Wiring Boards by Build-Up Process

    NASA Astrophysics Data System (ADS)

    Hirogaki, Toshiki; Nakagawa, Heisaburo; Aoyama, Eiichi; Katayama, Tsutao; Inoue, Hisahiro

    In the printed wiring board manufacturing sector, methods have been developed to improve the circuit packaging density. The multi-layer printed wiring board manufacturing process is receiving particular attention. In the current manufacture of these boards, the method frequently used is to laminate the core with insulating resin, namely a build-up process. Etching is generally used to form the holes connecting the circuits of these boards. However, a problem has emerged in that the strength of the substrate decreases due to the insulating resin part as the multi-layers are progressively formed. Thus, it becomes necessary to use FRP for the insulation layer part. Since it is very difficult to etch composites, lasers have been proposed for a new way to drill holes in such materials. By appropriate adjustment of the laser penetration energy, the holes are drilled only in the insulation part, and a technique is proposed to stop the holes using the copper foil forming the circuit. AFRP has been considered a suitable FRP for such laser processing. In the present study, attempts were made to experimentally produce multi-layer boards using AFRP and GFRP for the build-up insulation layer, and the characteristics of blind via holes drilling with a small power laser were investigated.

  9. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    DOEpatents

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  10. High density printed electrical circuit board card connection system

    DOEpatents

    Baumbaugh, Alan E.

    1997-01-01

    A zero insertion/extraction force printed circuit board card connection system comprises a cam-operated locking mechanism disposed along an edge portion of the printed circuit board. The extrusions along the circuit board mate with an extrusion fixed to the card cage having a plurality of electrical connectors. The card connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned. The card connection system provides a simple solution to the need for a greater number of electrical signal connections.

  11. High density printed electrical circuit board card connection system

    DOEpatents

    Baumbaugh, A.E.

    1997-05-06

    A zero insertion/extraction force printed circuit board card connection system comprises a cam-operated locking mechanism disposed along an edge portion of the printed circuit board. The extrusions along the circuit board mate with an extrusion fixed to the card cage having a plurality of electrical connectors. The card connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned. The card connection system provides a simple solution to the need for a greater number of electrical signal connections. 12 figs.

  12. Printed organic thin-film transistor-based integrated circuits

    NASA Astrophysics Data System (ADS)

    Mandal, Saumen; Noh, Yong-Young

    2015-06-01

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted.

  13. Printed circuits and their applications: Which way forward?

    NASA Astrophysics Data System (ADS)

    Cantatore, E.

    2015-09-01

    The continuous advancements in printed electronics make nowadays feasible the design of printed circuits which enable meaningful applications. Examples include ultra-low cost sensors embedded in food packaging, large-area sensing surfaces and biomedical assays. This paper offers an overview of state-of-the-art digital and analog circuit blocks, manufactured with a printed complementary organic TFT technology. An analog to digital converter and an RFID tag implemented exploiting these building blocks are also described. The main remaining drawbacks of the printed technology described are identified, and new approaches to further improve the state of the art, enabling more innovative applications are discussed.

  14. Low impedance printed circuit radiating element

    NASA Technical Reports Server (NTRS)

    Rahm, James K. (Inventor); Frankievich, Robert H. (Inventor); Martinko, John D. (Inventor)

    1993-01-01

    A printed circuit radiating element comprises a geometrically symmetric planar area of a conducting material separated from a ground plane by a dielectric medium. The driving point of the radiating element is at the base of a notch in one side thereof so that the driving impedance is reduced from that obtained when the element is driven at its edge. Symmetrically disposed on opposite sides of an axis of symmetry of the element along which the driving point lies are two notches which restore the electrical symmetry of the radiating element thereby to suppress higher order modes. The suppression of these higher order modes results in a radiation pattern with minimal cross-polarized energy in the principal planes and high port-to-port isolation which could not be achieved with an asymmetrical element. Two driving points may be employed with the radiating element to produce a dual linearly polarized antenna and a reactive combiner or hybrid may be employed to obtain circularly-polarized radiations. The shape of the radiating element may be square, rectangular or circular, for example, in accordance with the desired characteristics. A plurality of radiating elements may be interconnected via appropriate transmission paths to form an antenna array.

  15. DASLL. Printed Circuit Board Design Automation

    SciTech Connect

    Magnuson, W.G.Jr.; Willett, G.W.

    1983-06-03

    DASLL (Design Automation System at Lawrence Livermore) is a set of computer programs for printed circuit board (PCB) layout. The DASLL system can process a number of PCB trimlines, including: DEC 1, 2, 4, and 6 high configurations, CLI, Augat, Varian, and several rectangular geometries; others can be added. Over 800 components and generic package types are available in DASLLDB, the system reference library. Two-layer boards with non-gridded (structured) power and ground busses are supported, and PCB densities of approximately 1.2 square inches per equivalent IC (or less dense) are best accommodated by DASLL. The system has been used to make etch artwork and drill tapes (starting with a schematic drawing) for a six IC CLI board in less than two working days. Initial processing will produce reports and computer printer-plots which can be used to verify the input. Final output can include silkscreen photo-artwork, PCB etch photo-artwork, punched paper tapes for the SLO-SYN and Pratt-Whitney N/C drill machines, and computer listings of signal strings, parts lists, etc.

  16. Standards for compatibility of printed circuit and component lead materials

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Study of packaging of microminiature electronic components reveals methods of improving compatibility of lead materials, joining techniques, transfer molding concepts, printed circuit board materials, and process and material specifications.

  17. Process produces accurate registry between circuit board prints

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Tapes and quick-mount circles of contrasting colors aid in obtaining precise registry between the two circuits of two-sided printed circuit boards. The tapes and circles are mounted on opposite sides of transparent plastic film to define the conductive path and feed-through hole locations.

  18. Fabrication of Nanoscale Circuits on Inkjet-Printing Patterned Substrates.

    PubMed

    Chen, Shuoran; Su, Meng; Zhang, Cong; Gao, Meng; Bao, Bin; Yang, Qiang; Su, Bin; Song, Yanlin

    2015-07-01

    Nanoscale circuits are fabricated by assembling different conducting materials (e.g., metal nanoparticles, metal nano-wires, graphene, carbon nanotubes, and conducting polymers) on inkjet-printing patterned substrates. This non-litho-graphy strategy opens a new avenue for integrating conducting building blocks into nanoscale devices in a cost-efficient manner. PMID:26011403

  19. Testing of printed circuit board solder joints by optical correlation

    NASA Technical Reports Server (NTRS)

    Espy, P. N.

    1975-01-01

    An optical correlation technique for the nondestructive evaluation of printed circuit board solder joints was evaluated. Reliable indications of induced stress levels in solder joint lead wires are achievable. Definite relations between the inherent strength of a solder joint, with its associated ability to survive stress, are demonstrable.

  20. Printed circuit boards: a review on the perspective of sustainability.

    PubMed

    Canal Marques, André; Cabrera, José-María; Malfatti, Célia de Fraga

    2013-12-15

    Modern life increasingly requires newer equipments and more technology. In addition, the fact that society is highly consumerist makes the amount of discarded equipment as well as the amount of waste from the manufacture of new products increase at an alarming rate. Printed circuit boards, which form the basis of the electronics industry, are technological waste of difficult disposal whose recycling is complex and expensive due to the diversity of materials and components and their difficult separation. Currently, printed circuit boards have a fixing problem, which is migrating from traditional Pb-Sn alloys to lead-free alloys without definite choice. This replacement is an attempt to minimize the problem of Pb toxicity, but it does not change the problem of separation of the components for later reuse and/or recycling and leads to other problems, such as temperature rise, delamination, flaws, risks of mechanical shocks and the formation of "whiskers". This article presents a literature review on printed circuit boards, showing their structure and materials, the environmental problem related to the board, some the different alternatives for recycling, and some solutions that are being studied to reduce and/or replace the solder, in order to minimize the impact of solder on the printed circuit boards. PMID:24189538

  1. Multilayer transfer printing of electroactive thin film composites.

    PubMed

    Cebeci, Fevzi Ç; Schmidt, Daniel J; Hammond, Paula T

    2014-11-26

    We demonstrate the high fidelity transfer printing of an electroactive polymer nanocomposite thin film onto a conductive electrode. Polyelectrolyte multilayer thin films of thickness ∼200 nm containing 68 vol % Prussian Blue nanoparticles are assembled on a UV-curable photopolymer stamp and transferred in their entirety onto ITO-coated glass creating ∼2.5 μm-wide line patterns with ∼1.25 μm spacing. AFM and SEM are used to investigate pattern fidelity and morphology, while cyclic voltammetry confirms the electroactive nature of the film and electrical connectivity with the electrode. The patterning strategy presented here could be used to pattern electroactive thin films containing a high density of nanoparticles onto individually addressable microelectrodes for a variety of applications ranging from biosensor arrays to flexible electronics. PMID:25372508

  2. Stripline/Microstrip Transition in Multilayer Circuit Board

    NASA Technical Reports Server (NTRS)

    Epp, Larry; Khan, Abdur

    2005-01-01

    A stripline-to-microstrip transition has been incorporated into a multilayer circuit board that supports a distributed solid-state microwave power amplifier, for the purpose of coupling the microwave signal from a buried-layer stripline to a top-layer microstrip. The design of the transition could be adapted to multilayer circuit boards in such products as cellular telephones (for connecting between circuit-board signal lines and antennas), transmitters for Earth/satellite communication systems, and computer mother boards (if processor speeds increase into the range of tens of gigahertz). The transition is designed to satisfy the following requirements in addition to the basic coupling requirement described above: (1) The transition must traverse multiple layers, including intermediate layers that contain DC circuitry. (2) The transition must work at a frequency of 32 GHz with low loss and low reflection. (3) The power delivered by the transition to top-layer microstrip must be split equally in opposite directions along the microstrip. Referring to the figure, this amounts to a requirement that when power is supplied to input port 1, equal amounts of power flow through output ports 2 and 3. (4) The signal-line via that is necessarily a part of such a transition must not be what is known in the art as a blind via; that is, it must span the entire thickness of the circuit board.

  3. DASLL: An automatic printed circuit board layout system

    NASA Astrophysics Data System (ADS)

    Magnuson, W. G., Jr.

    1980-07-01

    The design automation system at Lawrence Livermore (DASLL) is a system of computer programs to automatically lay out printed circuit boards. The focus was on two sided PCB fabrication aids; primarily drill tape, documentation, and artwork generation (including etch, silkscreen, and drill schedule artwork). Limited four layer PCBs are also possible with the program. The DASLL can be used in either batch interactive or batch made of operation by technicians, draftsmen, designers, or engineers. Flexibility in being able to accommodate a diversity of trimline geometries and component shapes and placements was a goal in the design of the software. The system is also very flexible in its capability to deal with physical design rules. A principal objective for the system was low volume, quick turnaround response for low and medium density custom printed circuit boards.

  4. Coaxial connector for use with printed circuit board edge connector

    DOEpatents

    Howard, Donald R.; MacGill, Robert A.

    1989-01-01

    A coaxial cable connector for interfacing with an edge connector for a printed circuit board whereby a coaxial cable can be interconnected with a printed circuit board through the edge connector. The coaxial connector includes a body having two leg portions extending from one side for receiving the edge connector therebetween, and a tubular portion extending from an opposing side for receiving a coaxial cable. A cavity within the body receives a lug of the edge connector and the center conductor of the coaxial cable. Adjacent lugs of the edge connector can be bend around the edge connector housing to function as spring-loaded contacts for receiving the coaxial connector. The lugs also function to facilitate shielding of the center conductor where fastened to the edge connector lug.

  5. Organic printed photonics: From microring lasers to integrated circuits.

    PubMed

    Zhang, Chuang; Zou, Chang-Ling; Zhao, Yan; Dong, Chun-Hua; Wei, Cong; Wang, Hanlin; Liu, Yunqi; Guo, Guang-Can; Yao, Jiannian; Zhao, Yong Sheng

    2015-09-01

    A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 10(5), which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices. PMID:26601256

  6. Printed-Circuit Tape Measures For X-Ray Inspections

    NASA Technical Reports Server (NTRS)

    Sullivan, John E., Jr.

    1990-01-01

    Known pattern impressed on x-ray image for reference. Tapes made by flexible-printed-circuit technology provides identification and position references for x-ray images of weld joints. Proposed tapes consist of etched copper patterns on flexible substrates. X-rays record pattern of tape on film beneath butt-welded panels. Pattern becomes convenient reference for analysis and digitization of x-ray image.

  7. Organic printed photonics: From microring lasers to integrated circuits

    PubMed Central

    Zhang, Chuang; Zou, Chang-Ling; Zhao, Yan; Dong, Chun-Hua; Wei, Cong; Wang, Hanlin; Liu, Yunqi; Guo, Guang-Can; Yao, Jiannian; Zhao, Yong Sheng

    2015-01-01

    A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 105, which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices. PMID:26601256

  8. PUZZLE - A program for computer-aided design of printed circuit artwork

    NASA Technical Reports Server (NTRS)

    Harrell, D. A. W.; Zane, R.

    1971-01-01

    Program assists in solving spacing problems encountered in printed circuit /PC/ design. It is intended to have maximum use for two-sided PC boards carrying integrated circuits, and also aids design of discrete component circuits.

  9. High-performance organic transistors for printed circuits

    NASA Astrophysics Data System (ADS)

    Takeya, J.

    2014-10-01

    This presentation focuses on recent development of key technologies for printed LSIs which can provide future low-cost platforms for RFID tags, AD converters, data processors, and sensing circuitries. Such prospect bears increasing reality because of recent research innovations in the field of material chemistry, charge transport physics, and solution processes of printable organic semiconductors. Achieving band transport in state-of-the-art printable organic semiconductors, carrier mobility is elevated above 15 cm2/Vs, so that reasonable speed in moderately integrated logic circuits can be available. With excellent chemical and thermal stability for such compounds, we are developing simple integrated devices based on CMOS using p-type and n-type printed organic FETs. Particularly important are new processing technologies for continuous growth of inch-size organic single-crystalline semiconductor "wafers" from solution and for lithographical patterning of semiconductors and metal electrodes. Successful rectification and identification are demonstrated at 13.56 MHz with printed organic CMOS circuits for the first time.

  10. Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers

    SciTech Connect

    Yamane, Luciana Harue; Tavares de Moraes, Viviane; Crocce Romano Espinosa, Denise; Soares Tenorio, Jorge Alberto

    2011-12-15

    Highlights: > This paper presents new and important data on characterization of wastes of electric and electronic equipments. > Copper concentration is increasing in mobile phones and remaining constant in personal computers. > Printed circuit boards from mobile phones and computers would not be mixed prior treatment. - Abstract: This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineral processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results of

  11. Eddy current gauge for monitoring displacement using printed circuit coil

    DOEpatents

    Visioli, Jr., Armando J.

    1977-01-01

    A proximity detection system for non-contact displacement and proximity measurement of static or dynamic metallic or conductive surfaces is provided wherein the measurement is obtained by monitoring the change in impedance of a flat, generally spiral-wound, printed circuit coil which is excited by a constant current, constant frequency source. The change in impedance, which is detected as a corresponding change in voltage across the coil, is related to the eddy current losses in the distant conductive material target. The arrangement provides for considerable linear displacement range with increased accuracies, stability, and sensitivity over the entire range.

  12. Packaging printed circuit boards: A production application of interactive graphics

    NASA Technical Reports Server (NTRS)

    Perrill, W. A.

    1975-01-01

    The structure and use of an Interactive Graphics Packaging Program (IGPP), conceived to apply computer graphics to the design of packaging electronic circuits onto printed circuit boards (PCB), were described. The intent was to combine the data storage and manipulative power of the computer with the imaginative, intuitive power of a human designer. The hardware includes a CDC 6400 computer and two CDC 777 terminals with CRT screens, light pens, and keyboards. The program is written in FORTRAN 4 extended with the exception of a few functions coded in COMPASS (assembly language). The IGPP performs four major functions for the designer: (1) data input and display, (2) component placement (automatic or manual), (3) conductor path routing (automatic or manual), and (4) data output. The most complex PCB packaged to date measured 16.5 cm by 19 cm and contained 380 components, two layers of ground planes and four layers of conductors mixed with ground planes.

  13. Generation of nearly hemispherical and high gain azimuthally symmetric patterns with printed circuit antennas

    NASA Astrophysics Data System (ADS)

    Yang, Hung Yu; Alexopoulos, Nicolaos G.

    1987-08-01

    Patttern shaping techniques are discussed for printed circuit antennas such as microstrip dipoles and slot elements. Crossed printed circuit dipoles or a combination of a printed circuit dipole and a slot are employed. It is demonstrated that with the proper choice of substrate or substrate-superstrate parameters it is possible to generate: (1) nearly hemispherical patterns, (2) high-gain azimuthally symmetric patterns, and (3) nearly sec theta patterns.

  14. Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers.

    PubMed

    Yamane, Luciana Harue; de Moraes, Viviane Tavares; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares

    2011-12-01

    This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineral processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results of this paper show that copper concentration is increasing in mobile phones and remaining constant in personal computers. PMID:21820883

  15. Inclusions detection using Lamb waves in flexible printed circuits.

    PubMed

    Jenot, F; Ouaftouh, M; Xu, W-J; Duquennoy, M; Ourak, M

    2006-12-22

    The materials used for the manufacture of flexible printed circuits are selected according to various characteristics: thermal and electrical behavior, moisture absorption, flexibility... Those are determined by the basic materials of the three components of the circuit, which are the conducting layer, the adhesive layer and the dielectric film. Such circuits have a typical thickness of about 200 microm and are therefore an interesting solution for a great number of electronic applications. However, these circuits can present various defects like inclusions, delaminations, cracks... In this work, we are interested in the detection of inclusions using guided waves propagation in such structures. These waves also called Lamb waves have the advantage of propagating over long distances while informing us about the totality of the inspected volume. According to the range of frequencies considered and the method used for their generation, it is possible to make profitable use of different propagation modes. To serve this purpose, laser-induced thermoelastic excitation of the first antisymmetric Lamb waves mode is studied. The results obtained are analysed using signal processing methods and then compared in order to clearly highlight the potentialities of these guided waves for the detection of inclusions in such samples. PMID:16808943

  16. Pollution prevention assessment for a printed circuit board plant

    SciTech Connect

    Edwards, H.W.; Kostrzewa, M.F.; Looby, G.P.

    1995-09-01

    The US Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at Colorado State University performed an assessment at a plant that manufacturers printed circuit boards. Templates for the circuit design are generated from customer-supplied circuit information. Copper/epoxy laminates and copper foil are cut into blank boards and layers. Circuit patterns are generated through a series of photolithographic and plating processes. The team`s report, detailing findings and recommendations, indicated that the onsite ion-exchange treatment of metal-containing rinse water generates regenerant solutions that could be further treated by electrowinning to recover metals and to achieve significant cost savings. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  17. Development of superconducting bonding for multilayer microwave integrated quantum circuits

    NASA Astrophysics Data System (ADS)

    Brecht, Teresa; Axline, Christopher; Chu, Yiwen; Pfaff, Wolfgang; Frunzio, Luigi; Devoret, Michel; Schoelkopf, Robert

    Future quantum computers are likely to take the shape of multilayer microwave integrated quantum circuits. The proposed physical architecture retains the superb coherence of 3D structures while achieving superior scalability and compatibility with planar circuitry and integrated readout electronics. This hardware platform utilizes known techniques of bulk etching in silicon wafers and requires metallic bonding of superconducting materials. Superconducting wafer bonding is a crucial tool in need of development. Whether micromachined in wafers or traditionally machined in bulk metal, 3D cavities typically posses a seam where two parts meet. Ideally, this seam consists of a perfect superconducting bond. Pursuing this goal, we have developed a new understanding of seams as a loss mechanism that is applicable to 3D cavities in general. We present quality factor measurements of both 3D cavities and 2D stripline resonators to study the losses of superconducting bonds.

  18. Ion chromatography in the manufacture of multilayer circuit boards

    SciTech Connect

    Smith, R.E.

    1990-09-01

    Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. The manufacturing process is described briefly and previously published IC methods are reviewed. Then, methods are described for determining chlorate and chlorite in a brown oxide solution; salicylic acid in an epoxy cure agent; formate, sulfate, and tartrate in an electroless copper bath; anionic detergents in a tin-lead brightener and in a cleaning solution; and aqueous photoresist and nonionic brightener in a tin-lead bath. Anion exchange, reverse phase HPLC on a poly(styrene/divinylbenzene), PS/DVB, column and two-dimensional liquid chromatography also are described. Chemically suppressed conductivity and photometric detection are used. 13 refs., 10 figs., 1 tab.

  19. Thumbnail Sketches: The Chemistry of Printed Circuit Substrates: Some of the Latest Developments.

    ERIC Educational Resources Information Center

    Freeman, James H.

    1984-01-01

    Discusses some of the latest developments in the chemistry of printed circuit substrates. Topics considered include soldering, dicy (a catalyst), Kevlar (an aramid polymer fiber), maleimide copolymers, and flexible circuits. (JN)

  20. Potential up-scaling of inkjet-printed devices for logical circuits in flexible electronics

    SciTech Connect

    Mitra, Kalyan Yoti E-mail: enrico.sowade@mb.tu-chemnitz.de; Sowade, Enrico E-mail: enrico.sowade@mb.tu-chemnitz.de; Martínez-Domingo, Carme; Ramon, Eloi; Carrabina, Jordi; Gomes, Henrique Leonel; Baumann, Reinhard R.

    2015-02-17

    Inkjet Technology is often mis-believed to be a deposition/patterning technology which is not meant for high fabrication throughput in the field of printed and flexible electronics. In this work, we report on the 1) printing, 2) fabrication yield and 3) characterization of exemplary simple devices e.g. capacitors, organic transistors etc. which are the basic building blocks for logical circuits. For this purpose, printing is performed first with a Proof of concept Inkjet printing system Dimatix Material Printer 2831 (DMP 2831) using 10 pL small print-heads and then with Dimatix Material Printer 3000 (DMP 3000) using 35 pL industrial print-heads (from Fujifilm Dimatix). Printing at DMP 3000 using industrial print-heads (in Sheet-to-sheet) paves the path towards industrialization which can be defined by printing in Roll-to-Roll format using industrial print-heads. This pavement can be termed as 'Bridging Platform'. This transfer to 'Bridging Platform' from 10 pL small print-heads to 35 pL industrial print-heads help the inkjet-printed devices to evolve on the basis of functionality and also in form of up-scaled quantities. The high printed quantities and yield of inkjet-printed devices justify the deposition reliability and potential to print circuits. This reliability is very much desired when it comes to printing of circuits e.g. inverters, ring oscillator and any other planned complex logical circuits which require devices e.g. organic transistors which needs to get connected in different staged levels. Also, the up-scaled inkjet-printed devices are characterized and they reflect a domain under which they can work to their optimal status. This status is much wanted for predicting the real device functionality and integration of them into a planned circuit.

  1. FTIR analysis of printed-circuit board residue

    SciTech Connect

    Myers, S.A.; Cognata, T.D.; Gotts, H.

    1996-12-31

    Logic boards were failing at Enhanced Mac Minus One (EMMO) test or Integrated Circuit Test (ICT) after printed circuit board (PCB) rework. A resistor in the microcontroller circuit was identified on the flip side of the PCB. Several areas on the board, including the resistor R161, were seen to have a slight white haze/low gloss appearance on the surface of the PCB. To test if the residue was electrically conductive, five boards were selected whose sole failure was R161. The resistance of the individual resistors was measured with a digital multimeter (DMM). The resistor was then cleaned with isopropyl alcohol and a cotton swab. Each board was retested at ICT and the individual resistors measured again with a DMM. Cleaning the area surrounding the resistor with isopropyl alcohol, corrected the failure four of the times. Material was removed from the resistor and board surfaces by physically abrading the organic coating and transferring the abraded material to an infrared transparent substrate (single crystal silicon). FTIR spectra were collected in the transmittance mode using a Bio-Rad UMA 500 FTIR microscope using a circular aperture (40 micron diameter).

  2. Colour print workflow and methods for multilayering of colour and decorative inks using UV inkjet for fine art printing

    NASA Astrophysics Data System (ADS)

    Parraman, Carinna

    2012-01-01

    In order to increase density of colour and improve ink coverage when printing onto a range of non standard substrates, this paper will present research into multi-layering of colour and the appearance of colour at 'n' levels of ink coverage. Returning to our original investigation of artist's requirements when making inkjet prints, these observations are based on empirical approaches that address the need to present physical data that is more useful and meaningful to the designer. The study has used multi-pass printed colour charts to measure colour and to provide users with an understanding at a soft-preview level to demonstrate the appearance of printed colour on different substrates. Test results relating to the appearance of print on different surfaces, and a series of case studies will be presented using recent research into the capabilities of UV printing technology, which has widened the opportunities for the designer to print onto non-standard materials. It will also present a study into layering of greys and gloss in order to improve the appearance of printed images onto metal.

  3. Aluminum heat sink enables power transistors to be mounted integrally with printed circuit board

    NASA Technical Reports Server (NTRS)

    Seaward, R. C.

    1967-01-01

    Power transistor is provided with an integral flat plate aluminum heat sink which mounts directly on a printed circuit board containing associated circuitry. Standoff spacers are used to attach the heat sink to the printed circuit board containing the remainder of the circuitry.

  4. Sliding contacts on printed circuit boards and wear behavior

    NASA Astrophysics Data System (ADS)

    Le Solleu, J.-P.

    2010-04-01

    Automotive suppliers use since decades printed circuit boards (PCB) gold plating pads, as direct contact interface for low current sliding contacts. Several gold plating processes are available on the market, providing various wear behaviour. Some specific galvanic hard gold (AuCo or AuNi). plating was developed on PCB's. This specific plating generates extra costs due to the material quantity and also the process complexity. In a cost driven industry, the challenge is to use a standard low cost PCB for systems requesting high reliability performances. After a brief overview of standard PCB manufacturing processes and especially gold plating processes, the global experimental results of wear behaviour of three different gold plating technologies will be exposed and an explanation of the correlation between surface key parameters and wear out will be provided.

  5. Investigation of Solder Cracking Problems on Printed Circuit Boards

    NASA Technical Reports Server (NTRS)

    Berkebile, M. J.

    1967-01-01

    A Solder Committee designated to investigate a solder cracking phenomena occurring on the SATURN electrical/electronic hardware found the cause to be induced stress in the soldered connections rather than faulty soldering techniques. The design of the printed circuit (PC) board assemblies did not allow for thermal expansion of the boards that occurred during normal operation. The difference between the thermal expansion properties of the boards and component lead materials caused stress and cracking in the soldered connections. The failure mechanism and various PC boards component mounting configurations are examined in this report. Effective rework techniques using flanged tubelets, copper tubelets, and soft copper wiring are detailed. Future design considerations to provide adequate strain relief in mounting configurations are included to ensure successful solder terminations.

  6. Printed circuit board metal powder filters for low electron temperatures

    NASA Astrophysics Data System (ADS)

    Mueller, Filipp; Schouten, Raymond N.; Brauns, Matthias; Gang, Tian; Lim, Wee Han; Lai, Nai Shyan; Dzurak, Andrew S.; van der Wiel, Wilfred G.; Zwanenburg, Floris A.

    2013-04-01

    We report the characterisation of printed circuit boards (PCB) metal powder filters and their influence on the effective electron temperature which is as low as 22 mK for a quantum dot in a silicon MOSFET structure in a dilution refrigerator. We investigate the attenuation behaviour (10 MHz-20 GHz) of filter made of four metal powders with a grain size below 50 μm. The room-temperature attenuation of a stainless steel powder filter is more than 80 dB at frequencies above 1.5 GHz. In all metal powder filters, the attenuation increases with temperature. Compared to classical powder filters, the design presented here is much less laborious to fabricate and specifically the copper powder PCB-filters deliver an equal or even better performance than their classical counterparts.

  7. Printed-circuit-board manufacturer maximizes recycling opportunities

    SciTech Connect

    Edelstein, P. )

    1993-02-01

    A major New England printed-circuit-board manufacturer has avoided land disposal of several metallic wastes for more than 15 years by recycling them offsite. For example, the company uses ammoniacal etchant to etch copper. Waste generated by this process is used by an offsite recycler to produce copper compounds for pressure-treated lumber and for use as a catalyst. Sodium persulfate and peroxide-sulfuric micro-etchants are used at the facility, generating a crude copper sulfate solution, and copper sulfate also is the basis for the company's electroplating process. Wastes from all of these processes are used by an offsite recycler to produce copper compounds that are sold for use in wood treatment and as mining reagents. Finally, metal hydroxide sludge generated by the company's wastewater treatment system contains substantial amounts of copper, which is sent for refining at a copper smelter.

  8. Apparatus And Method Of Using Flexible Printed Circuit Board In Optical Transceiver Device

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Peterson, David W.; Peterson, Gary D.; Reysen, Bill H.

    2005-03-15

    This invention relates to a flexible printed circuit board that is used in connection with an optical transmitter, receiver or transceiver module. In one embodiment, the flexible printed circuit board has flexible metal layers in between flexible insulating layers, and the circuit board comprises: (1) a main body region orientated in a first direction having at least one electrical or optoelectronic device; (2) a plurality of electrical contact pads integrated into the main body region, where the electrical contact pads function to connect the flexible printed circuit board to an external environment; (3) a buckle region extending from one end of the main body region; and (4) a head region extending from one end of the buckle region, and where the head region is orientated so that it is at an angle relative to the direction of the main body region. The electrical contact pads may be ball grid arrays, solder balls or land-grid arrays, and they function to connect the circuit board to an external environment. A driver or amplifier chip may be adapted to the head region of the flexible printed circuit board. In another embodiment, a heat spreader passes along a surface of the head region of the flexible printed circuit board, and a window is formed in the head region of the flexible printed circuit board. Optoelectronic devices are adapted to the head spreader in such a manner that they are accessible through the window in the flexible printed circuit board.

  9. Waste Minimization Assessment for Multilayered Printed Circuit Board Manufacturing

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium- size manu facturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at s...

  10. Improving delamination resistance of multilayer printed wiring boards

    SciTech Connect

    Lula, J.W.

    1980-03-01

    Bendix has incorporated black oxide innerlayer surface treatment and dry nitrogen prepreg conditioning into the manufacturing process for multilayer PWBs. Before these changes, interlaminar adhesion was marginal and delaminations regularly occurred during solder dipping and leveling. Since the implementation of these changes, Bendix has not experienced any delaminated multilayer PWBs, and they may be immersed in molten solder for 2 minutes or more without visual damage. Both black oxide and red oxide innerlayer surface treatments have shown the capability to provide acceptable delamination resistance for multilayer PWBs made from FR-4 material. Optimum processing parameters for applying the oxide treatment have been determined. In order to manufacture a multilayer PWB that will withstand solder dipping/leveling as well as subsequent drag soldering, its is necessary to remove absorbed moisture from the prepreg before lamination. Data have been gathered on the rate of moisutre removal from prepreg when dried and on the rate of moisture reabsorption when dried prepreg is exposed to 24/sup 0/C/50% RH environment.

  11. Advances in Current Rating Techniques for Flexible Printed Circuits

    NASA Technical Reports Server (NTRS)

    Hayes, Ron

    2014-01-01

    Twist Capsule Assemblies are power transfer devices commonly used in spacecraft mechanisms that require electrical signals to be passed across a rotating interface. Flexible printed circuits (flex tapes, see Figure 2) are used to carry the electrical signals in these devices. Determining the current rating for a given trace (conductor) size can be challenging. Because of the thermal conditions present in this environment the most appropriate approach is to assume that the only means by which heat is removed from the trace is thru the conductor itself, so that when the flex tape is long the temperature rise in the trace can be extreme. While this technique represents a worst-case thermal situation that yields conservative current ratings, this conservatism may lead to overly cautious designs when not all traces are used at their full rated capacity. A better understanding of how individual traces behave when they are not all in use is the goal of this research. In the testing done in support of this paper, a representative flex tape used for a flight Solar Array Drive Assembly (SADA) application was tested by energizing individual traces (conductors in the tape) in a vacuum chamber and the temperatures of the tape measured using both fine-gauge thermocouples and infrared thermographic imaging. We find that traditional derating schemes used for bundles of wires do not apply for the configuration tested. We also determine that single active traces located in the center of a flex tape operate at lower temperatures than those on the outside edges.

  12. Using multiple sensors for printed circuit board insertion

    NASA Technical Reports Server (NTRS)

    Sood, Deepak; Repko, Michael C.; Kelley, Robert B.

    1989-01-01

    As more and more activities are performed in space, there will be a greater demand placed on the information handling capacity of people who are to direct and accomplish these tasks. A promising alternative to full-time human involvement is the use of semi-autonomous, intelligent robot systems. To automate tasks such as assembly, disassembly, repair and maintenance, the issues presented by environmental uncertainties need to be addressed. These uncertainties are introduced by variations in the computed position of the robot at different locations in its work envelope, variations in part positioning, and tolerances of part dimensions. As a result, the robot system may not be able to accomplish the desired task without the help of sensor feedback. Measurements on the environment allow real time corrections to be made to the process. A design and implementation of an intelligent robot system which inserts printed circuit boards into a card cage are presented. Intelligent behavior is accomplished by coupling the task execution sequence with information derived from three different sensors: an overhead three-dimensional vision system, a fingertip infrared sensor, and a six degree of freedom wrist-mounted force/torque sensor.

  13. Radiological characterization of printed circuit boards for future elimination.

    PubMed

    Zaffora, Biagio; Magistris, Matteo

    2016-07-01

    Electronic components like printed circuit boards (PCBs) are commonly used in CERN's accelerator complex. During their lifetime some of these PCBs are exposed to a radiation field of protons, neutrons and pions and are activated. In view of their disposal towards the appropriate final repository, a radiological characterization must be performed. The present work proposes a general characterization procedure based on the definition of a reference chemical composition, on the calculation of the corresponding radionuclide inventory and on the measurement of a tracer radionuclide. This method has been validated with real-life cases of electronic boards which were exposed to the typical radiation fields in CERN's accelerators. The activation studies demonstrate that silver is the key element with respect to the radiological characterization of electronic waste due to the production of Ag-110m and Ag-108m. A sensitivity analysis shows that the waiting time is the main parameter affecting the radionuclide inventory. Results also indicate that, as is the case of other families of radioactive waste, an accurate assessment of the radiological inventory of PCBs would require the precise knowledge of their chemical composition, as well as the radiation field to which they were exposed. PMID:27129133

  14. Hydrometallurgical Recovery of Metals from Large Printed Circuit Board Pieces

    PubMed Central

    Jadhav, U.; Hocheng, H.

    2015-01-01

    The recovery of precious metals from waste printed circuit boards (PCBs) is an effective recycling process. This paper presents a promising hydrometallurgical process to recover precious metals from waste PCBs. To simplify the metal leaching process, large pieces of PCBs were used instead of a pulverized sample. The chemical coating present on the PCBs was removed by sodium hydroxide (NaOH) treatment prior to the hydrometallurgical treatment. Among the leaching reagents examined, hydrochloric acid (HCl) showed great potential for the recovery of metals. The HCl-mediated leaching of waste PCBs was investigated over a range of conditions. Increasing the acid concentration decreased the time required for complete metal recovery. The shaking speed showed a pronounced positive effect on metal recovery, but the temperature showed an insignificant effect. The results showed that 1 M HCl recovered all of the metals from 4 cm × 4 cm PCBs at room temperature and 150 rpm shaking speed in 22 h. PMID:26415827

  15. Hydrometallurgical Recovery of Metals from Large Printed Circuit Board Pieces

    NASA Astrophysics Data System (ADS)

    Jadhav, U.; Hocheng, H.

    2015-09-01

    The recovery of precious metals from waste printed circuit boards (PCBs) is an effective recycling process. This paper presents a promising hydrometallurgical process to recover precious metals from waste PCBs. To simplify the metal leaching process, large pieces of PCBs were used instead of a pulverized sample. The chemical coating present on the PCBs was removed by sodium hydroxide (NaOH) treatment prior to the hydrometallurgical treatment. Among the leaching reagents examined, hydrochloric acid (HCl) showed great potential for the recovery of metals. The HCl-mediated leaching of waste PCBs was investigated over a range of conditions. Increasing the acid concentration decreased the time required for complete metal recovery. The shaking speed showed a pronounced positive effect on metal recovery, but the temperature showed an insignificant effect. The results showed that 1 M HCl recovered all of the metals from 4 cm × 4 cm PCBs at room temperature and 150 rpm shaking speed in 22 h.

  16. Stability of planar PEMFC in Printed Circuit Board technology

    NASA Astrophysics Data System (ADS)

    Schmitz, A.; Wagner, S.; Hahn, R.; Uzun, H.; Hebling, C.

    The use of planar PEMFCs in printed circuit board (PCB) technology with a thickness of less than 3.5 mm are presented. This planar design consists of an open cathode side which allows a completely passive, self-breathing operation of the fuel cell. Power densities of 100 mW/cm 2 at 500 mV with hydrogen as a fuel were achieved. A steady operation with this type of fuel cell was demonstrated over a week without any cell flooding. Since the electrical conducting elements of PCBs usually are made of copper, corrosion in the wet environment of a PEMFC is expected. Thus, a significant degradation in performance of fuel cells made of plain copper PCBs was seen in long-term operation. In order to avoid corrosion, the copper layer has to be coated. Fuel cells in PCB design with diverse coatings were tested in long-term operations up to 1000 h under load. Moreover, corrosion currents have been determined by the use of potentiodynamic scans. Promising coatings are electroplated Cr and Ni and a combination of Ni/Au.

  17. Elemental analysis of printed circuit boards considering the ROHS regulations.

    PubMed

    Wienold, Julia; Recknagel, Sebastian; Scharf, Holger; Hoppe, Marion; Michaelis, Matthias

    2011-03-01

    The EU RoHS Directive (2002/95/EC of the European Parliament and of the Council) bans the placing of new electrical and electronic equipment containing more than agreed levels of lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyl (PBB) and polybrominated diphenyl ether (PBDE) flame retardants on the EU market. It necessitates methods for the evaluation of RoHS compliance of assembled electronic equipment. In this study mounted printed circuit boards from personal computers were analyzed on their content of the three elements Cd, Pb and Hg which were limited by the EU RoHS directive. Main focus of the investigations was the influence of sample pre-treatment on the precision and reproducibility of the results. The sample preparation steps used were based on the guidelines given in EN 62321. Five different types of dissolution procedures were tested on different subsequent steps of sample treatment like cutting and milling. Elemental analysis was carried out using ICP-OES, XRF and CV-AFS (Hg). The results obtained showed that for decision-making with respect to RoHS compliance a size reduction of the material to be analyzed to particles ≤ 1.5mm can already be sufficient. However, to ensure analytical results with relative standard deviations of less than 20%, as recommended by the EN 62321, a much larger effort for sample processing towards smaller particle sizes might be required which strongly depends on the mass fraction of the element under investigation. PMID:21050740

  18. Sequential computer algorithms for printed circuit board inspection

    NASA Astrophysics Data System (ADS)

    Hernandez, Moises E.; Villalobos, Jesus R.; Johnson, W. Carrol

    1993-08-01

    Surface mounted technology (SMT) in automated assembly facilities requires the use of automatic surface-mount-device (SMD) placement machines. One of the problems involved in the electronic printed circuit board (PCB) assembly process is the verification of the SMD placement operation within tight tolerances. The high throughput of modern manufacturing lines along with the required accuracy demand the use of automatic inspection systems to verify SMD placement. Image complexity of the board makes the use of machine vision for the inspection process a difficult task. This is complicated by the fact that misclassification errors should be kept to a minimum. Additionally, it is desirable that the inspection results provide enough information to be used for statistical process control (SPC). The strategy adopted to solve this problem was to simplify the complexity of the image by means of special illumination devices. The simplified image was then suitable for analysis by simple processing, segmentation, and detection algorithms that, sequentially applied to the image, met the required repeatability and accuracy specifications for the inspection system. The scope of this paper is to describe the techniques explored by the authors to solve the SMD inspection problem in order to develop a working industrial SMD inspection system.

  19. Materials for printed circuit boards: Past usage and future prospects

    SciTech Connect

    Lee Hong Ng; Field, F.R. III )

    1989-01-01

    This paper examines current materials utilization patterns in a major electronic materials market, printed circuit board (PCB) materials. As demands on PCB materials become more stringent, the use of high performance materials will increase. However, development of better materials is no guarantee of market success. New materials must offer an attractive price/performance combination to PCB users. A methodology to assess the competitive position of new PCB materials by combining manufacturing cost models with operations research techniques has been developed and applied to the PCB materials market. The methodology is illustrated using case studies drawn from the computers and communication industries. Results indicate that the computer industry favors high glass transition temperature materials, such as polymide and bismaleimide triazine, while the telecommunications market prefers epoxy glass for its low cost. Among the new materials targeted at high performance applications in the PCB market, cyanate ester (CE) and polytetrafluoroethylene (PTFE) have the greatest potential. PTFE is expected to fill a niche in the extremely high performance market due to its high cost and incompatibility with standard manufacturing requirements. The potential of cyanate ester, however, depends on its pricing policy and manufacturing requirements. Through the use of the PCB cost model and making some assumptions on the processing requirements of CE, it was found that almost all the price-yield combinations would make cyanate ester a viable competitor, especially in the high performance end of the market place.

  20. Application of Principal Component Analysis to EUV multilayer defect printing

    NASA Astrophysics Data System (ADS)

    Xu, Dongbo; Evanschitzky, Peter; Erdmann, Andreas

    2015-09-01

    This paper proposes a new method for the characterization of multilayer defects on EUV masks. To reconstruct the defect geometry parameters from the intensity and phase of a defect, the Principal Component Analysis (PCA) is employed to parametrize the intensity and phase distributions into principal component coefficients. In order to construct the base functions of PCA, a combination of a reference multilayer defect and appropriate pupil filters is introduced to obtain the designed sets of intensity and phase distributions. Finally, an Artificial Neural Network (ANN) is applied to correlate the principal component coefficients of the intensity and the phase of the defect with the defect geometry parameters and to reconstruct the unknown defect geometry parameters.

  1. Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

    SciTech Connect

    Su-Jong Yoon; Piyush Sabharwall; Eung-Soo Kim

    2013-09-01

    The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.

  2. Optical contacts to waveguides in printed circuit boards

    NASA Astrophysics Data System (ADS)

    Rupp, Torsten; Shkarban, Oleksandr; Menschig, Arnd

    2004-09-01

    The development of printed circuit boards (PCB) with integrated layers for optical data transfer was pushed during the last few years. Solutions with optical fibers or planar waveguides fabricated from plastics or glass will soon be available on the market. Nevertheless the low loss coupling of functional optical components as connectors, transmitters and receivers to these new generations of PCBs still is open. The packaging of otical transceivers or connectors actually is based mainly on single device solutions or active coupling concepts. On the other side the connectors of external optical data lines or of daughter cards to the main boards and the coupling of transmitter and receiver modules to optical PCBs do need linear array concepts. And the coupling efficiency should not decrease during reflow process. Actual concepts using mulit-mode connectors or a direct waveguide coupling of receivers suffer under high optical losses. However the use of micro-optical functional elements allows the realization of coupling concepts with teh lowest losses possible. The total losses for optical lines from the transmitter to the waveguide and back to the receiver can be reduced below 4 dB. For cost reduction even symmetric optical set-up can be used. The transmission rate can be as high as 40 Gb/s. With this concept error tolerant systems for the optical interconnection are possible. We report about the modeling, the design and the characterization of micro-optical interconnect modules for high efficient contacts to the optical layer in PCBs. For the assembly of the modules we use the new concept of a desk-top factory with miniaturized tools for handling, assembly, and inspection. This concept increases the flexibility and reduces the manufacturing costs.

  3. Rapid interferometric imaging of printed drug laden multilayer structures.

    PubMed

    Sandler, Niklas; Kassamakov, Ivan; Ehlers, Henrik; Genina, Natalja; Ylitalo, Tuomo; Haeggstrom, Edward

    2014-01-01

    The developments in printing technologies allow fabrication of micron-size nano-layered delivery systems to personal specifications. In this study we fabricated layered polymer structures for drug-delivery into a microfluidic channel and aimed to interferometrically assure their topography and adherence to each other. We present a scanning white light interferometer (SWLI) method for quantitative assurance of the topography of the embedded structure. We determined rapidly in non-destructive manner the thickness and roughness of the structures and whether the printed layers containing polymers or/and active pharmaceutical ingredients (API) adhere to each other. This is crucial in order to have predetermined drug release profiles. We also demonstrate non-invasive measurement of a polymer structure in a microfluidic channel. It shown that traceable interferometric 3D microscopy is a viable technique for detailed structural quality assurance of layered drug-delivery systems. The approach can have impact and find use in a much broader setting within and outside life sciences. PMID:24503863

  4. Rapid interferometric imaging of printed drug laden multilayer structures

    NASA Astrophysics Data System (ADS)

    Sandler, Niklas; Kassamakov, Ivan; Ehlers, Henrik; Genina, Natalja; Ylitalo, Tuomo; Haeggstrom, Edward

    2014-02-01

    The developments in printing technologies allow fabrication of micron-size nano-layered delivery systems to personal specifications. In this study we fabricated layered polymer structures for drug-delivery into a microfluidic channel and aimed to interferometrically assure their topography and adherence to each other. We present a scanning white light interferometer (SWLI) method for quantitative assurance of the topography of the embedded structure. We determined rapidly in non-destructive manner the thickness and roughness of the structures and whether the printed layers containing polymers or/and active pharmaceutical ingredients (API) adhere to each other. This is crucial in order to have predetermined drug release profiles. We also demonstrate non-invasive measurement of a polymer structure in a microfluidic channel. It shown that traceable interferometric 3D microscopy is a viable technique for detailed structural quality assurance of layered drug-delivery systems. The approach can have impact and find use in a much broader setting within and outside life sciences.

  5. Rapid interferometric imaging of printed drug laden multilayer structures

    PubMed Central

    Sandler, Niklas; Kassamakov, Ivan; Ehlers, Henrik; Genina, Natalja; Ylitalo, Tuomo; Haeggstrom, Edward

    2014-01-01

    The developments in printing technologies allow fabrication of micron-size nano-layered delivery systems to personal specifications. In this study we fabricated layered polymer structures for drug-delivery into a microfluidic channel and aimed to interferometrically assure their topography and adherence to each other. We present a scanning white light interferometer (SWLI) method for quantitative assurance of the topography of the embedded structure. We determined rapidly in non-destructive manner the thickness and roughness of the structures and whether the printed layers containing polymers or/and active pharmaceutical ingredients (API) adhere to each other. This is crucial in order to have predetermined drug release profiles. We also demonstrate non-invasive measurement of a polymer structure in a microfluidic channel. It shown that traceable interferometric 3D microscopy is a viable technique for detailed structural quality assurance of layered drug-delivery systems. The approach can have impact and find use in a much broader setting within and outside life sciences. PMID:24503863

  6. Assembling surface mounted components on ink-jet printed double sided paper circuit board.

    PubMed

    Andersson, Henrik A; Manuilskiy, Anatoliy; Haller, Stefan; Hummelgård, Magnus; Sidén, Johan; Hummelgård, Christine; Olin, Håkan; Nilsson, Hans-Erik

    2014-03-01

    Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed. PMID:24521824

  7. Assembling surface mounted components on ink-jet printed double sided paper circuit board

    NASA Astrophysics Data System (ADS)

    Andersson, Henrik A.; Manuilskiy, Anatoliy; Haller, Stefan; Hummelgård, Magnus; Sidén, Johan; Hummelgård, Christine; Olin, Håkan; Nilsson, Hans-Erik

    2014-03-01

    Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed.

  8. Laser structuring of ultra-fine circuit lines in printed circuit boards: Laser structuring, neodymium-doped yttrium aluminium garnet laser, fine circuit lines

    NASA Astrophysics Data System (ADS)

    Zhang, Bin

    Laser structuring technique emerged in recent years for the need of fabricating fine circuit lines and spaces in printed circuit board. Most of the previous work only introduced laser structuring as a new method in the fabrication of fine circuit lines and mentioned that the width of circuit line can be reduced under 50 pin or helox with this technique. Laser structuring technique will have a prosperous future only when the relationship between process parameters and fabrication results are deeply understood. This study focuses on the control, prediction and optimization of circuit geometry by studying relations between the process parameters and fabrication results in laser structuring technology. The effects of laser parameters (Frequency-tripled Nd:YAG laser) on the geometry of circuits were carried out by experiments and analyzed by mathematical method. The geometry of circuit space can efficiently be controlled by investigating the main factors that influence the characteristic parameters of circuit space with Taguchi methodology. ANN was firstly used in the study of laser structuring technique. With ANN models, the optimization of process parameters in laser writing step can be realized and the 2-D cross-sectional profile of circuit space can be calculated with the combination of ANN model and mathematical method. At last, the final circuit lines and circuit spaces fabricated were tested using the quality and reliability tests---electrical open/short test, peel test and surface insulation resistance test (SIR test). The minimum widths of circuit lines and circuit spaces with good quality and reliability fabricated by laser structuring were 25 mum and 45 mum respectively. The project is significant for both applied and academic fields. This study contributes to the understanding of the laser structuring technology and is of benefit in the fabrication of very fine line circuits in advanced printed circuit board industry.

  9. Packaging Of Control Circuits In A Robot Arm

    NASA Technical Reports Server (NTRS)

    Kast, William

    1994-01-01

    Packaging system houses and connects control circuitry mounted on circuit boards within shoulder, upper section, and lower section of seven-degree-of-freedom robot arm. Has modular design that incorporates surface-mount technology, multilayer circuit boards, large-scale integrated circuits, and multi-layer flat cables between sections for compactness. Three sections of robot arm contain circuit modules in form of stardardized circuit boards. Each module contains two printed-circuit cards, one of each face.

  10. Unit: Electric Circuits, Inspection Pack, National Trial Print.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    As a part of the unit materials in the series produced by the Australian Science Education Project, this teacher edition is primarily composed of a core relating to simple circuits, a test form, and options. Options are given under the headings: Your Invention; "How Long Does a Call Last?"; One, Two, Three Wires; Parallel Circuits; More Cells; The…

  11. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment

    SciTech Connect

    Fujita, Toyohisa; Ono, Hiroyuki; Dodbiba, Gjergj; Yamaguchi, Kunihiko

    2014-07-15

    Highlights: • The parts mounted on printed circuit board (PCB) were liberated by underwater explosion and mechanical crushing. • The crushed PCB without surface-mounted parts was carbonized under inert atmosphere at 873 K to recover copper. • The multi-layered ceramic capacitors including nickel was carbonized at 873 K to recover nickel by the magnetic separation. • The tantalum powders were recovered from the molded resins by heat treatment at 723 and 823 K in air atmosphere and screening. • Energy and treatment cost of new process increased, however, the environmental burden decreased comparing conventional one. - Abstract: Printed circuit boards (PCBs) from discarded personal computer (PC) and hard disk drive were crushed by explosion in water or mechanical comminution in order to disintegrate the attached parts. More parts were stripped from PCB of PC, composed of epoxy resin; than from PCB of household appliance, composed of phenol resin. In an attempt to raise the copper grade of PCB by removing other components, a carbonization treatment was investigated. The crushed PCB without surface-mounted parts was carbonized under a nitrogen atmosphere at 873–1073 K. After screening, the char was classified by size into oversized pieces, undersized pieces and powder. The copper foil and glass fiber pieces were liberated and collected in undersized fraction. The copper foil was liberated easily from glass fiber by stamping treatment. As one of the mounted parts, the multi-layered ceramic capacitors (MLCCs), which contain nickel, were carbonized at 873 K. The magnetic separation is carried out at a lower magnetic field strength of 0.1 T and then at 0.8 T. In the +0.5 mm size fraction the nickel grade in magnetic product was increased from 0.16% to 6.7% and the nickel recovery is 74%. The other useful mounted parts are tantalum capacitors. The tantalum capacitors were collected from mounted parts. The tantalum-sintered bodies were separated from molded resins

  12. A generalized solution to a class of printed circuit antennas

    NASA Astrophysics Data System (ADS)

    Katehi-Tseregounis, P. B.

    The theory and design of antennas excited by a microstrip transmission line or by a gap generator are examined. The antennas and the strip transmission line may be embedded inside or printed on the substrate. A theortical approach is implemented which accounts accurately for the physical effects involved including surface waves. The Green's function was obtained by synthesizing the fields of Hertzian dipoles which are oriented in arbitrary directions and which are printed on or embedded in the substrate. The method of solution is based on solving the Pocklington integral equation by employing the method of moments with proper choice of expansion and testing functions. The excitation mechanism is taken into account effectively by considering it as part of the antenna. The current distribution is obtained both on the transmission line and the printed antennas by matrix inversion. The method accounts for conductor thickness and for arbitrary substrate parameters. As an example, printed strip dipoles excited by a transmission line embedded in the substrate or by a voltage gap generator are considered.

  13. Deformation Behavior of Multilayered Ceramic Sheets with Printed Electrodes under Compression

    NASA Astrophysics Data System (ADS)

    Naruse, Fumio; Tada, Naoya

    Deformation behavior of multi-layered ceramic capacitors (MLCCs) during production press process is very important to reduce over all MLCC size and increase the capacity of the MLCC through the enlargement of the electrode area. In this study, compression tests of MLCC blocks, which were composed of stacked ceramic dielectric sheets and printed internal electrodes, were carried out, and the deformation process was clarified based on the results of cross-sectional observation. Deformation of MLCC block was modeled and predicted using the area fraction of dielectric sheets, internal electrodes, and internal space. The prediction agreed well with the experimental results and helps the optimization of MLCC design.

  14. Bendable transparent conductive meshes based on multi-layer inkjet-printed silver patterns

    NASA Astrophysics Data System (ADS)

    Yu, Po-Chin; Hong, Chien-Chong; Liou, Tong-Miin

    2016-03-01

    Many consumer electronics manufacturers have used transparent conductive films in solar cells, LED devices, and touch panels as a medium for simultaneous electric charge transportation and light transmission. The conductivity and transmittance of transparent conductive films greatly affect the efficiency of these optoelectronic devices. This study presents a transparent and conductive mesh based on inkjet-printed silver and conductive polymer. Also, we propose a mathematical model for calculating the optimized mesh pattern. The proposed model precisely calculates an optimized line-width-to-line-spacing ratio. Furthermore, the results of our experiment verify the relationship between the line-width-to-line-spacing ratio and figure of merit. Compared with the equations of past studies, the equation proposed in this study is valid for a broader range of line-width-to-line-spacing ratios. In addition, the theoretical results of our study correlate more strongly with the experimental data of this study than with that of previous studies. To achieve the highest figure of merit, the values of the filling factor and the line-width-to-line-spacing ratio should be 0.05 and 19, respectively. Finally, we reduced the sheet resistance of the inkjet-printed mesh by 97.9% by applying multilayer printing. However, we were able to reduce only the optical transmittance of the mesh by 3.0%. The developed inkjet-printed silver meshes can survive more than 3500 bending tests simultaneous with application of 300 mA current.

  15. An Integer Programming-Based Generalized Vehicle Routing Approach for Printed Circuit Board Assembly Optimization

    ERIC Educational Resources Information Center

    Seth, Anupam

    2009-01-01

    Production planning and scheduling for printed circuit, board assembly has so far defied standard operations research approaches due to the size and complexity of the underlying problems, resulting in unexploited automation flexibility. In this thesis, the increasingly popular collect-and-place machine configuration is studied and the assembly…

  16. Pollution prevention assessment for a printed circuit board plant. Environmental research brief

    SciTech Connect

    Edwards, H.W.; Kostrzewa, M.F.; Looby, G.P.

    1995-09-01

    The WMAC team at Colorado State University performed an assessment at a plant that manufactures printed circuit boards. The team`s report, detailing findings and recommendations, indicated that the onsite ion-exchange treatment of metal-containing rinse water generates regenerant solutions that could be further treated by electrowinning to recover metals and to achieve significant cost savings.

  17. 4H-SiC JFET Multilayer Integrated Circuit Technologies Tested Up to 1000 K

    NASA Technical Reports Server (NTRS)

    Spry, D. J.; Neudeck, P. G.; Chen, L.; Chang, C. W.; Lukco, D.; Beheim, G. M.

    2015-01-01

    Testing of semiconductor electronics at temperatures above their designed operating envelope is recognized as vital to qualification and lifetime prediction of circuits. This work describes the high temperature electrical testing of prototype 4H silicon carbide (SiC) junction field effect transistor (JFET) integrated circuits (ICs) technology implemented with multilayer interconnects; these ICs are intended for prolonged operation at temperatures up to 773K (500 C). A 50 mm diameter sapphire wafer was used in place of the standard NASA packaging for this experiment. Testing was carried out between 300K (27 C) and 1150K (877 C) with successful electrical operation of all devices observed up to 1000K (727 C).

  18. PERSONAL COMPUTER MONITORS: A SCREENING EVALUATION OF VOLATILE ORGANIC EMISSIONS FROM EXISTING PRINTED CIRCUIT BOARD LAMINATES AND POTENTIAL POLLUTION PREVENTION ALTERNATIVES

    EPA Science Inventory

    The report gives results of a screening evaluation of volatile organic emissions from printed circuit board laminates and potential pollution prevention alternatives. In the evaluation, printed circuit board laminates, without circuitry, commonly found in personal computer (PC) m...

  19. Machine vision system for the industrial quality control of printed circuit boards

    NASA Astrophysics Data System (ADS)

    Esteve-Taboada, José J.; Pastor, Begoña; Goñi, Ignacio; García, Ramón; Hervas, Juan; Molina-Jiménez, Teresa; Simón, Santiago; Pérez, Emilio

    2005-09-01

    In this paper we present an automatic system for the on-line quality control of printed circuit boards. A line-scan camera permits the acquisition of a 550 mm wide image with a resolution up to 70 microns/pixel. The system detects the following type of errors: cuts and short circuits in tracks, stains, ink excess or faults, pores, omissions, "bites" and track narrowing. The input for the system are just the Gerber data files corresponding to the circuit to be analyzed. All the tolerances and precision factors can be modified directly from the user-friendly interface. For each analyzed board, the type of error detected and its location inside the circuit are indicated in the interface. For each set of analyzed circuits the system provides information for statistical control of the results.

  20. Chemically programmed ink-jet printed resistive WORM memory array and readout circuit

    NASA Astrophysics Data System (ADS)

    Andersson, H.; Manuilskiy, A.; Sidén, J.; Gao, J.; Hummelgård, M.; Kunninmel, G. V.; Nilsson, H.-E.

    2014-09-01

    In this paper an ink-jet printed write once read many (WORM) resistive memory fabricated on paper substrate is presented. The memory elements are programmed for different resistance states by printing triethylene glycol monoethyl ether on the substrate before the actual memory element is printed using silver nano particle ink. The resistance is thus able to be set to a broad range of values without changing the geometry of the elements. A memory card consisting of 16 elements is manufactured for which the elements are each programmed to one of four defined logic levels, providing a total of 4294 967 296 unique possible combinations. Using a readout circuit, originally developed for resistive sensors to avoid crosstalk between elements, a memory card reader is manufactured that is able to read the values of the memory card and transfer the data to a PC. Such printed memory cards can be used in various applications.

  1. Design and implementation of a high power rf oscillator on a printed circuit board for multipole ion guides

    NASA Astrophysics Data System (ADS)

    Mathur, Raman; O'Connor, Peter B.

    2006-11-01

    Radio frequency (rf) oscillators are commonly used to drive electrodes of ion guides. In this article a rf oscillator circuit design and its implementation is presented. The printed circuit board for the rf oscillator is designed and fabricated. The performance of the circuit was tested to transfer ions through a hexapole in a matrix-assisted laser desorption/ionization Fourier transform mass spectrometer. A comprehensive discussion of several aspects of printed circuit board design for high power and high frequency circuits is presented.

  2. An innovative approach to predict technology evolution for the desoldering of printed circuit boards: A perspective from China and America.

    PubMed

    Wang, Chen; Zhao, Wu; Wang, Jie; Chen, Ling; Luo, Chun-Jing

    2016-06-01

    The printed circuit boards basis of electronic equipment have seen a rapid growth in recent years and played a significant role in modern life. Nowadays, the fact that electronic devices upgrade quickly necessitates a proper management of waste printed circuit boards. Non-destructive desoldering of waste printed circuit boards becomes the first and the most crucial step towards recycling electronic components. Owing to the diversity of materials and components, the separation process is difficult, which results in complex and expensive recovery of precious materials and electronic components from waste printed circuit boards. To cope with this problem, we proposed an innovative approach integrating Theory of Inventive Problem Solving (TRIZ) evolution theory and technology maturity mapping system to forecast the evolution trends of desoldering technology of waste printed circuit boards. This approach can be applied to analyse the technology evolution, as well as desoldering technology evolution, then research and development strategy and evolution laws can be recommended. As an example, the maturity of desoldering technology is analysed with a technology maturity mapping system model. What is more, desoldering methods in different stages are analysed and compared. According to the analysis, the technological evolution trends are predicted to be 'the law of energy conductivity' and 'increasing the degree of idealisation'. And the potential technology and evolutionary state of waste printed circuit boards are predicted, offering reference for future waste printed circuit boards recycling. PMID:27067430

  3. Dielectric nanocomposites for high performance embedded capacitors in organic printed circuit boards

    NASA Astrophysics Data System (ADS)

    Xu, Jianwen

    Conventionally discrete passive components like capacitors, resistors, and inductors are surface-mounted on top of the printed circuit boards (PCBs). To match the ever increasing demands of miniaturization, cost reduction, and high performance in microelectronic industry, a promising approach is to integrate passive components into the board during PCB manufacture. Because they are embedded inside multilayer PCBs, such components are called embedded passives. This work focuses on the materials design, development and processing of polymer-based dielectric nanocomposites for embedded capacitor applications. The methodology of this approach is to combine the advantages of the polymer and the filler to satisfy the electric, dielectric, mechanical, fabrication, and reliability requirements for embedded capacitors. Restrained by poor adhesion and poor thermal stress reliability at high filler loadings, currently polymer-ceramic composites can only achieve a dielectric constant of less than 50. In order to increase the dielectric constant to above 50, effects of high-kappa polymer matrix, bimodal fillers, and dispersing agent are systematically investigated. Surface functionalization of nanofiller particles and modification of epoxy matrix with a secondary rubberized epoxy to form sea-island structure are proposed to enhance the dielectric constant, adhesion and high-temperature thermal stress reliability of high-kappa composites. To obtain photodefinable high-kappa composites, fundamental understanding of the photopolymerization of the novel epoxy-ceramic composite photoresist is addressed. While the properties of high-kappa composites largely depend on the polymer matrix, the fillers can also drastically affect the material properties. Carbon black- and carbon nanotubes-filled ultrahigh-kappa polymer composites are investigated as the candidate materials for embedded capacitors. Dielectric composites based on percolation typically show a high dielectric constant, and a

  4. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment.

    PubMed

    Fujita, Toyohisa; Ono, Hiroyuki; Dodbiba, Gjergj; Yamaguchi, Kunihiko

    2014-07-01

    Printed circuit boards (PCBs) from discarded personal computer (PC) and hard disk drive were crushed by explosion in water or mechanical comminution in order to disintegrate the attached parts. More parts were stripped from PCB of PC, composed of epoxy resin; than from PCB of household appliance, composed of phenol resin. In an attempt to raise the copper grade of PCB by removing other components, a carbonization treatment was investigated. The crushed PCB without surface-mounted parts was carbonized under a nitrogen atmosphere at 873-1073 K. After screening, the char was classified by size into oversized pieces, undersized pieces and powder. The copper foil and glass fiber pieces were liberated and collected in undersized fraction. The copper foil was liberated easily from glass fiber by stamping treatment. As one of the mounted parts, the multi-layered ceramic capacitors (MLCCs), which contain nickel, were carbonized at 873 K. The magnetic separation is carried out at a lower magnetic field strength of 0.1T and then at 0.8 T. In the +0.5mm size fraction the nickel grade in magnetic product was increased from 0.16% to 6.7% and the nickel recovery is 74%. The other useful mounted parts are tantalum capacitors. The tantalum capacitors were collected from mounted parts. The tantalum-sintered bodies were separated from molded resins by heat treatment at 723-773 K in air atmosphere and screening of 0.5mm. Silica was removed and 70% of tantalum grade was obtained after more than 823K heating and separation. Next, the evaluation of Cu recycling in PCB is estimated. Energy consumption of new process increased and the treatment cost becomes 3 times higher comparing the conventional process, while the environmental burden of new process decreased comparing conventional process. The nickel recovery process in fine ground particles increased energy and energy cost comparing those of the conventional process. However, the environmental burden decreased than the conventional

  5. Fabrication of multilayer passive electric components using inkjet printing and low temperature laser processing on polymer

    NASA Astrophysics Data System (ADS)

    Ko, Seung Hwan; Chung, Jaewon; Pan, Heng; Grigoropoulos, Costas P.; Poulikakos, Dimos

    2006-02-01

    The low temperature fabrication of passive electrical components (conductor, capacitor) on the flexible polymer substrate is presented in this paper. A drop-on-demand (DOD) ink-jetting system was used to print gold nano-particles suspended in Alpha-Terpineol solvent and PVP in PGMEA solvent to fabricate passive electrical components on flexible polymer substrate. Short pulsed laser ablation enabled finer electrical components to overcome limitation of inkjet process. Continuous Argon ion laser was irradiated locally to evaporate carrier solvent as well as to sinter gold nano-particles. In addition, a self alignment technique for PVP layer was demonstrated taking advantage of the deliberate modification of surface wetting characteristics. Finally, a new selective ablation of multilayered gold nanoparticle film was demonstrated using the ablation threshold difference for sintered and non sintered gold nanoparticles.

  6. Analog Multilayer Perceptron Circuit with On-chip Learning: Portable Electronic Nose

    NASA Astrophysics Data System (ADS)

    Pan, Chih-Heng; Tang, Kea-Tiong

    2011-09-01

    This article presents an analog multilayer perceptron (MLP) neural network circuit with on-chip back propagation learning. This low power and small area analog MLP circuit is proposed to implement as a classifier in an electronic nose (E-nose). Comparing with the E-nose using microprocessor or FPGA as a classifier, the E-nose applying analog circuit as a classifier can be faster and much smaller, demonstrate greater power efficiency and be capable of developing a portable E-nose [1]. The system contains four inputs, four hidden neurons, and only one output neuron; this simple structure allows the circuit to have a smaller area and less power consumption. The circuit is fabricated using TSMC 0.18 μm 1P6M CMOS process with 1.8 V supply voltage. The area of this chip is 1.353×1.353 mm2 and the power consumption is 0.54 mW. Post-layout simulations show that the proposed analog MLP circuit can be successively trained to identify three kinds of fruit odors.

  7. Development of high-performance printed organic field-effect transistors and integrated circuits.

    PubMed

    Xu, Yong; Liu, Chuan; Khim, Dongyoon; Noh, Yong-Young

    2015-10-28

    Organic electronics is regarded as an important branch of future microelectronics especially suited for large-area, flexible, transparent, and green devices, with their low cost being a key benefit. Organic field-effect transistors (OFETs), the primary building blocks of numerous expected applications, have been intensively studied, and considerable progress has recently been made. However, there are still a number of challenges to the realization of high-performance OFETs and integrated circuits (ICs) using printing technologies. Therefore, in this perspective article, we investigate the main issues concerning developing high-performance printed OFETs and ICs and seek strategies for further improvement. Unlike many other studies in the literature that deal with organic semiconductors (OSCs), printing technology, and device physics, our study commences with a detailed examination of OFET performance parameters (e.g., carrier mobility, threshold voltage, and contact resistance) by which the related challenges and potential solutions to performance development are inspected. While keeping this complete understanding of device performance in mind, we check the printed OFETs' components one by one and explore the possibility of performance improvement regarding device physics, material engineering, processing procedure, and printing technology. Finally, we analyze the performance of various organic ICs and discuss ways to optimize OFET characteristics and thus develop high-performance printed ICs for broad practical applications. PMID:25057765

  8. Detection of Banned and Restricted Ozone-Depleting Chemicals in Printed Circuit Boards

    SciTech Connect

    Lee, Richard N.; Wright, Bob W.

    2008-12-01

    A study directed toward the detection of halogenated solvents in the matrix of circuit boards has recently been completed. This work was undertaken to demonstrate the potential for reliable detection of solvents used during the fabrication of printed circuit boards (PCB). Since many of these solvents are now, or soon will be, restricted under the terms of legislation enacted in response to the Montreal Protocol and other international agreements, the work described here, conducted over a period of more that 4 years, has provided guidance for the development of chromatographic system and analytical protocol to assure compliance with regulations introduced to control, or ban, industrial solvents associated with adverse environmental impact.

  9. A Formal Algorithm for Routing Traces on a Printed Circuit Board

    NASA Technical Reports Server (NTRS)

    Hedgley, David R., Jr.

    1996-01-01

    This paper addresses the classical problem of printed circuit board routing: that is, the problem of automatic routing by a computer other than by brute force that causes the execution time to grow exponentially as a function of the complexity. Most of the present solutions are either inexpensive but not efficient and fast, or efficient and fast but very costly. Many solutions are proprietary, so not much is written or known about the actual algorithms upon which these solutions are based. This paper presents a formal algorithm for routing traces on a print- ed circuit board. The solution presented is very fast and efficient and for the first time speaks to the question eloquently by way of symbolic statements.

  10. [Selective recovery of copper, zinc and nickel from printed circuit boards by ammonia leaching under pressure].

    PubMed

    Wang, Meng; Cao, Hong-Bin; Zhang, Yi

    2011-02-01

    The ammonia/ammonium leaching process using oxygen as oxidant in autoclave was studied to extract copper, zinc and nickel from printed circuit board. Parameters such as leaching time, concentration of leaching reagents, stirring speed, oxygen pressure and temperature were optimized. The best results were achieved when the leaching was carried out at 55 degrees C for 150 minutes, using 4 mol/L NH4OH and 1 mol/L (NH4)2CO3 as leaching solution, with 700 r/min stirring speed and 0.2 MPa oxygen. With this method, Zn, Cu and Ni could be effectively recovered from printed circuit boards by 100%, more than 99% and more than 64%, respectively. The kinetics of Cu leaching behavior was studied and it was found that the shrinking core model described it well. It was a diffusion control process and the apparent activation energy was 14.68 kJ/mol. PMID:21528589

  11. Differential microfluidic sensor on printed circuit board for biological cells analysis.

    PubMed

    Shi, Dongyuan; Guo, Jinhong; Chen, Liang; Xia, Chuncheng; Yu, Zhefeng; Ai, Ye; Li, Chang Ming; Kang, Yuejun; Wang, Zhiming

    2015-08-01

    Coulter principal based resistive pulse sensor has been demonstrated as an important platform in biological cell detection and enumeration since several decades ago. Recently, the miniaturized micro-Coulter counter has attracted much attention due to its advantages in point of care diagnostics for on chip detection and enumeration of rare cells, such as circulating tumor cells. In this paper, we present a microfluidic cytometer with differential amplifier based on Coulter principle on a SU-8 coated printed circuit board substrate. The electrical current changes induced by the blockage of the microparticles in the sensing aperture are calibrated by polystyrene particles of standard size. Finally, HeLa cells are used to evaluate the performance of the proposed device for enumeration of biological samples. The proposed cytometer is built upon the cheap and widely available printed circuit board substrate and shows its great potential as personalized healthcare monitor. PMID:25735615

  12. Thermal verification testing of commercial printed-circuit boards for spaceflight

    NASA Technical Reports Server (NTRS)

    Foster, William M., II

    1992-01-01

    A method developed to verify commercial printed-circuit boards for a Shuttle orbital flight is discussed. The test sequence is based on early fault detection, desire to test the final assembly, and integration with other verification testing. A component thermal screening test is performed first to force flaws in design, workmanship, parts, processes, and materials into observable failures. Temperature definition and vibration tests are performed next. Final assembly testing is performed to simulate the Shuttle flight. An abbreviated thermal screening test is performed as a check after the vibration test, and then a complete thermal operational test is performed. The final assembly test finishes up with a burn-in of 100 h of trouble-free operation. Verification is successful when all components and final assemblies have passed each test. This method was very successful in verifying that commercial printed-circuit boards will survive in the Shuttle environment.

  13. Development of a semi-automated workcell for repair of printed circuit boards

    SciTech Connect

    Bennett, D.W.; Evans, M.S.

    1990-08-01

    Printed circuit boards that comprise US Army electronic systems are repaired at Army depots. An existing automated diagnostic system determines the area of failure; either by identifying failed components or failed board traces. Currently, repairs are performed manually by trained technicians. A system is being developed for repair of through-hole printed circuit boards. It is comprised of many automated and operator-assisted functions to perform the multiple operations related to replacement of failed components. When completed, this system will demonstrate economic payback by reducing skilled labor requirements and decreasing rework. The semi-automated system integrates human operators into the process while maintaining high productivity. After several fully automated systems were conceived and modelled, it was found that the configuration that provided the best return on investment was comprised of a mix of autonomous and operator-assisted functions. 1 ref., 1 fig.

  14. Multilayer Transfer Printing for Pixelated, Multicolor Quantum Dot Light-Emitting Diodes.

    PubMed

    Kim, Bong Hoon; Nam, Sooji; Oh, Nuri; Cho, Seong-Yong; Yu, Ki Jun; Lee, Chi Hwan; Zhang, Jieqian; Deshpande, Kishori; Trefonas, Peter; Kim, Jae-Hwan; Lee, Jungyup; Shin, Jae Ho; Yu, Yongjoon; Lim, Jong Bin; Won, Sang M; Cho, Youn Kyoung; Kim, Nam Heon; Seo, Kyung Jin; Lee, Heenam; Kim, Tae-Il; Shim, Moonsub; Rogers, John A

    2016-05-24

    Here, we report multilayer stacking of films of quantum dots (QDs) for the purpose of tailoring the energy band alignment between charge transport layers and light emitting layers of different color in quantum dot light-emitting diodes (QD LED) for maximum efficiency in full color operation. The performance of QD LEDs formed by transfer printing compares favorably to that of conventional devices fabricated by spin-casting. Results indicate that zinc oxide (ZnO) and titanium dioxide (TiO2) can serve effectively as electron transport layers (ETLs) for red and green/blue QD LEDs, respectively. Optimized selections for each QD layer can be assembled at high yields by transfer printing with sacrificial fluoropolymer thin films to provide low energy surfaces for release, thereby allowing shared common layers for hole injection (HIL) and hole transport (HTL), along with customized ETLs. This strategy allows cointegration of devices with heterogeneous energy band diagrams, in a parallelized scheme that offers potential for high throughput and practical use. PMID:27078621

  15. Highly reliable optical interconnection network on printed circuit board for distributed computer systems

    NASA Astrophysics Data System (ADS)

    Yu, Zhihua; Luo, Fengguang; Di, Xu; Zhou, Weilin; Li, Bin; Wang, Guangjun; Chen, Jun

    2010-11-01

    A highly reliable interchip optical interconnection network on a printed circuit board (PCB) was designed and realized, and experiments confirmed that the data rate in each channel could reach above 3.125 Gbps and the bit error rate (BER) could be up to 1.27×10 -18, which would be a good solution to the problem of communication bottlenecks between high-speed VLSI chips.

  16. Fast Fabrication of Flexible Functional Circuits Based on Liquid Metal Dual-Trans Printing.

    PubMed

    Wang, Qian; Yu, Yang; Yang, Jun; Liu, Jing

    2015-11-25

    A dual-trans method to print the first functional liquid-metal circuit layout on poly(vinyl chloride) film, and then transfer it into a poly(dimethylsiloxane) substrate through freeze phase transition processing for the fabrication of a flexible electronic device. A programmable soft electronic band and a temperature-sensing module wirelessly communicate with a mobile phone, demonstrating the efficiency and capability of the method. PMID:26414428

  17. Design and implementation of a multi-sensor robot system for printed circuit board insertion

    NASA Technical Reports Server (NTRS)

    Sood, Deepak; Repko, Michael C.; Kelley, Robert B.

    1989-01-01

    The design and implementation of a robot system equipped with multiple sensors are described. The robotic assembly system couples the task sequence of the robot with information from different sensors, enabling the system to handle uncertainties encountered during task execution. The target task involves the insertion of a printed circuit board into a card cage. The sensors used are an overhead three-dimensional vision system, a fingertip cross-fire sensor, and a 6-DOF force/torque sensor. The vision system is used to locate the printed circuit boards and the insertion slots. Information provided by the cross-fire sensor is used to complement the information from the vision system in order to obtain a proper grasping location on the printed circuit board. A fuzzy-logic-based system is used to interpret the forces and torques generated by the force/torque sensor during the insertion process. The repeated success of this assembly task over many experimental trials verifies the modeling and controller assumptions.

  18. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill

    SciTech Connect

    Yoo, Jae-Min; Jeong, Jinki; Yoo, Kyoungkeun; Lee, Jae-chun Kim, Wonbaek

    2009-03-15

    Printed circuit boards incorporated in most electrical and electronic equipment contain valuable metals such as Cu, Ni, Au, Ag, Pd, Fe, Sn, and Pb. In order to employ a hydrometallurgical route for the recycling of valuable metals from printed circuit boards, a mechanical pre-treatment step is needed. In this study, the metallic components from waste printed circuit boards have been enriched using a mechanical separation process. Waste printed circuit boards shredded to <10 mm were milled using a stamp mill to liberate the various metallic components, and then the milled printed circuit boards were classified into fractions of <0.6, 0.6-1.2, 1.2-2.5, 2.5-5.0, and >5.0 mm. The fractions of milled printed circuit boards of size <5.0 mm were separated into a light fraction of mostly non-metallic components and a heavy fraction of the metallic components by gravity separation using a zig-zag classifier. The >5.0 mm fraction and the heavy fraction were subjected to two-step magnetic separation. Through the first magnetic separation at 700 Gauss, 83% of the nickel and iron, based on the whole printed circuit boards, was recovered in the magnetic fraction, and 92% of the copper was recovered in the non-magnetic fraction. The cumulative recovery of nickel-iron concentrate was increased by a second magnetic separation at 3000 Gauss, but the grade of the concentrate decreased remarkably from 76% to 56%. The cumulative recovery of copper concentrate decreased, but the grade increased slightly from 71.6% to 75.4%. This study has demonstrated the feasibility of the mechanical separation process consisting of milling/size classification/gravity separation/two-step magnetic separation for enriching metallic components such as Cu, Ni, Al, and Fe from waste printed circuit boards.

  19. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks.

    PubMed

    Ha, Mingjing; Xia, Yu; Green, Alexander A; Zhang, Wei; Renn, Mike J; Kim, Chris H; Hersam, Mark C; Frisbie, C Daniel

    2010-08-24

    Printing electronic components on plastic foils with functional liquid inks is an attractive approach for achieving flexible and low-cost circuitry for applications such as bendable displays and large-area sensors. The challenges for printed electronics, however, include characteristically slow switching frequencies and associated high supply voltages, which together impede widespread application. Combining printable high-capacitance dielectrics with printable high-mobility semiconductors could potentially solve these problems. Here we demonstrate fast, flexible digital circuits based on semiconducting carbon nanotube (CNT) networks and high-capacitance ion gel gate dielectrics, which were patterned by jet printing of liquid inks. Ion gel-gated CNT thin-film transistors (TFTs) with 50 microm channel lengths display ambipolar transport with electron and hole mobilities >20 cm(2)/V.s; these devices form the basis of printed inverters, NAND gates, and ring oscillators on both polyimide and SiO(2) substrates. Five-stage ring oscillators achieve frequencies >2 kHz at supply voltages of 2.5 V, corresponding to stage delay times of 50 micros. This performance represents a substantial improvement for printed circuitry fabricated from functional liquid inks. PMID:20583780

  20. Manufacturing methods and technology for digital fault isolation of printed circuit boards

    NASA Astrophysics Data System (ADS)

    1980-11-01

    This report presents the final recommendations and conclusions, with supporting data, resulting from the contract option phase of contract DAAK40-78-C-0290. It describes the manufacturing technology and test system that will enable detection, identification, and location of digital faults in the advanced missile electronic systems that will be used in the 1980's. Emphasis is placed on the fault diagnosis of large printed circuit boards containing complex hybrid digital microelectronic circuits. The basic effort included an industry survey for digital printed circuit board test requirements and available test system capabilities, the D/PCB testability investigation and resulting design guide, the development of digital fault isolation methodology and the comprehensive selection of the optimum ATE that recommended the DTS-70 system. The contract option phase of this project involved the purchase and installation of the DTS-70 system, the selection of the PN-1635972 and the PN-1646178 D/PCBs for testing, the development of generalized test software and the development of the specific hardware and software needed to test these worst-case boards.

  1. Optical printed circuit board (O-PCB) for VLSI micro/nano-photonic application

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.; Kang, J. K.; Chin, I.; Kwon, Y. K.; Choi, Y. W.

    2005-01-01

    We present, in the form of review, the results of our study on the design, fabrication and assembly of optical printed circuit boards (O-PCBs) for VLSI micro/nano-photonic applications. The O-PCBs are designed to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards, substrates or chips, in a manner similar to the electrical printed circuit boards (E-PCBs). We have assembled and constructed O-PCBs using optical waveguide arrays and circuits made of polymer materials and have examined their information handling performances. We also designed power beam splitters and waveguide filters using nano-scale photonic band-gap crystals. We discuss scientific and technological issues concerning the processes of miniaturization, interconnection and integration of polymer optical waveguide devices and arrays for O-PCB and VLSI micro/nano-photonics as applicable to board-to-board, chip-to-chip, and intra-chip integration for computers, telecommunications, and transportation systems.

  2. Surface Flashover on Epoxy-Resin Printed Circuit Boards in Vacuum under Electron Irradiation

    NASA Astrophysics Data System (ADS)

    Fujii, Haruhisa; Hasegawa, Taketoshi; Osuga, Hiroyuki; Matsui, Katsuaki

    This paper deals with the surface flashover characteristics of dielectric material in vacuum during electron beam irradiation in order to design adequately the conductive patterns on printed circuit boards used inside a spacecraft. The dielectric material, glass-fiber reinforced epoxy resin, and the electrodes printed on it were irradiated with electrons of the energy of 3-10 keV. DC high voltage was applied between the two electrodes during electron irradiation. The voltage was increased stepwise until the surface flashover occurred on the dielectric material. We obtained the results that the surface flashover voltage increased with the insulation distance between the electrodes but electron irradiation made the flashover voltage lower. The flashover voltage characteristics were obtained as parameters of the electrode distance and the energy of the electron beam.

  3. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.

    PubMed

    Baeg, Kang-Jun; Caironi, Mario; Noh, Yong-Young

    2013-08-21

    For at least the past ten years printed electronics has promised to revolutionize our daily life by making cost-effective electronic circuits and sensors available through mass production techniques, for their ubiquitous applications in wearable components, rollable and conformable devices, and point-of-care applications. While passive components, such as conductors, resistors and capacitors, had already been fabricated by printing techniques at industrial scale, printing processes have been struggling to meet the requirements for mass-produced electronics and optoelectronics applications despite their great potential. In the case of logic integrated circuits (ICs), which constitute the focus of this Progress Report, the main limitations have been represented by the need of suitable functional inks, mainly high-mobility printable semiconductors and low sintering temperature conducting inks, and evoluted printing tools capable of higher resolution, registration and uniformity than needed in the conventional graphic arts printing sector. Solution-processable polymeric semiconductors are the best candidates to fulfill the requirements for printed logic ICs on flexible substrates, due to their superior processability, ease of tuning of their rheology parameters, and mechanical properties. One of the strongest limitations has been mainly represented by the low charge carrier mobility (μ) achievable with polymeric, organic field-effect transistors (OFETs). However, recently unprecedented values of μ ∼ 10 cm(2) /Vs have been achieved with solution-processed polymer based OFETs, a value competing with mobilities reported in organic single-crystals and exceeding the performances enabled by amorphous silicon (a-Si). Interestingly these values were achieved thanks to the design and synthesis of donor-acceptor copolymers, showing limited degree of order when processed in thin films and therefore fostering further studies on the reason leading to such improved charge

  4. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy.

    PubMed

    Veit, Hugo Marcelo; Bernardes, Andréa Moura; Ferreira, Jane Zoppas; Tenório, Jorge Alberto Soares; de Fraga Malfatti, Célia

    2006-10-11

    The constant growth in generation of solid wastes stimulates studies of recycling processes. The electronic scrap is part of this universe of obsolete and/or defective materials that need to be disposed of more appropriately, or then recycled. In this work, printed circuit boards, that are part of electronic scrap and are found in almost all electro-electronic equipments, were studied. Printed circuit boards were collected in obsolete or defective personal computers that are the largest source of this kind of waste. Printed circuit boards are composed of different materials such as polymers, ceramics and metals, which makes the process more difficult. However, the presence of metals, such as copper and precious metals encourage recycling studies. Also the presence of heavy metals, as Pb and Cd turns this scrap into dangerous residues. This demonstrates the need to search for solutions of this kind of residue, in order to have it disposed in a proper way, without harming the environment. At the first stage of this work, mechanical processing was used, as comminution followed by size, magnetic and electrostatic separation. By this process it was possible to obtain a concentrated fraction in metals (mainly Cu, Pb and Sn) and another fraction containing polymers and ceramics. The copper content reached more than 50% in mass in most of the conductive fractions and significant content of Pb and Sn. At the second stage, the fraction concentrated in metals was dissolved with acids and treated in an electrochemical process in order to recover the metals separately, especially copper. The results demonstrate the technical viability of recovering copper using mechanical processing followed by an electrometallurgical technique. The copper content in solution decayed quickly in all the experiments and the copper obtained by electrowinning is above 98% in most of the tests. PMID:16757116

  5. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology.

    PubMed

    Estrada-Ruiz, R H; Flores-Campos, R; Gámez-Altamirano, H A; Velarde-Sánchez, E J

    2016-07-01

    The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained. PMID:26963241

  6. Printed dose-recording tag based on organic complementary circuits and ferroelectric nonvolatile memories

    PubMed Central

    Nga Ng, Tse; Schwartz, David E.; Mei, Ping; Krusor, Brent; Kor, Sivkheng; Veres, Janos; Bröms, Per; Eriksson, Torbjörn; Wang, Yong; Hagel, Olle; Karlsson, Christer

    2015-01-01

    We have demonstrated a printed electronic tag that monitors time-integrated sensor signals and writes to nonvolatile memories for later readout. The tag is additively fabricated on flexible plastic foil and comprises a thermistor divider, complementary organic circuits, and two nonvolatile memory cells. With a supply voltage below 30 V, the threshold temperatures can be tuned between 0 °C and 80 °C. The time-temperature dose measurement is calibrated for minute-scale integration. The two memory bits are sequentially written in a thermometer code to provide an accumulated dose record. PMID:26307438

  7. The application of a polypyrrole precoat for the metallization of printed circuit boards

    SciTech Connect

    Gottesfeld, S.; Uribe, F.A.; Armes, P. )

    1992-01-01

    This paper describes a printed circuit board metallization process starting with the formation of a percent of polypyrrole (PPY) on the board, followed by the direct electrodeposition of copper onto the polypyrrole-coated substrate. The polypyrrole film is applied to the insulating substrate by a single chemical polymerization step from an aqueous solution. The sheet resistance of the polypyrrole precoat is typically of the order of a few hundred {Omega}/{open square} which is a sufficiently low resistance to enable direct metal electrodeposition onto the PPY-coated substrate.

  8. Reducing Printed Circuit Board Emissions with Low-Noise Design Practices

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Fowler, Jennifer; Yavoich, Brian J.; Jennings, Stephen A.

    2012-01-01

    This paper presents the results of an experiment designed to determine the effectiveness of adopting several low-noise printed circuit board (PCB) design practices. Two boards were designed and fabricated, each consisting of identical mixed signal circuitry. Several important differences were introduced between the board layouts: one board was constructed using recommended low-noise practices and the other constructed without such attention. The emissions from the two boards were then measured and compared, demonstrating an improvement in radiated emissions of up to 22 dB.

  9. Designing High Speed Printed Circuit Boards Using DxDesigner and Expedition

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2007-01-01

    Mentor's DxDesigner and Expedition schematic capture and printed circuit board tools were chosen to implement a custom high speed signal processing board containing many high pin count Field Programmable Gate Arrays and many high speed serial connections with data rates over 2 Gigasamples/sec. The methodology used to place the parts and route the board involved the interaction of both the DxDesigner and Expedition tools. The basic design philosophy was to specify as much as possible through design constraints at the schematic level. This paper will explore implementing that philosophy in both tools to facilitate part placement and trace routing.

  10. Field analysis and enhancement of multi-pole magnetic components fabricated on printed circuit board

    NASA Astrophysics Data System (ADS)

    Chiu, Kuo-Chi; Chen, Chin-Sen

    2007-09-01

    A multi-pole magnetic component magnetized with a fine magnetic pole pitch of less than 1 mm is very difficult to achieve by using traditional methods. Moreover, it requires a precise mechanical process and a complicated magnetization system. Different fine magnetic pole pitches of 300, 350 and 400 μm have been accomplished on 9-pole magnetic components through the printed circuit board (PCB) manufacturing technology. Additionally, another fine magnetic pole pitch of 500 μm was also fabricated on a dual-layered (DL) wire circuit structure to investigate the field enhancement. After measurements, a gain factor of 1.37 was obtained in the field strength. The field variations among different magnetic pole pitches were analyzed in this paper.

  11. Preparing printed circuit boards for rapid turn-around time on a plotter

    SciTech Connect

    Hawtree, J.

    1998-01-01

    This document describes the use of the LPKF ProtoMat mill/drill unit circuit board Plotter, with the associated CAD/CAM software BoardMaster and CircuitCAM. At present its primarily use here at Fermilab`s Particle Physics Department is for rapid-turnover of prototype PCBs double-sided and single-sided copper clad printed circuit boards (PCBs). (The plotter is also capable of producing gravure films and engraving aluminum or plastic although we have not used it for this.) It has the capability of making traces 0.004 inch wide with 0.004 inch spacings which is appropriate for high density surface mount circuits as well as other through-mounted discrete and integrated components. One of the primary benefits of the plotter is the capability to produce double-sided drilled boards from CAD files in a few hours. However to achieve this rapid turn-around time, some care must be taken in preparing the files. This document describes how to optimize the process of PCB fabrication. With proper preparation, researchers can often have a completed circuit board in a day`s time instead of a week or two wait with usual procedures. It is assumed that the software and hardware are properly installed and that the machinist is acquainted with the Win95 operating system and the basics of the associated software. This paper does not describe its use with pen plotters, lasers or rubouts. The process of creating a PCB (printed circuit board) begins with the CAD (computer-aided design) software, usually PCAD or VeriBest. These files are then moved to CAM (computer-aided machining) where they are edited and converted to put them into the proper format for running on the ProtoMat plotter. The plotter then performs the actual machining of the board. This document concentrates on the LPKF programs CircuitCam BASIS and BoardMaster for the CAM software. These programs run on a Windows 95 platform to run an LPKF ProtoMat 93s plotter.

  12. Kinetic inductance as a microwave circuit design variable by multilayer fabrication

    NASA Astrophysics Data System (ADS)

    Adamyan, A. A.; de Graaf, S. E.; Kubatkin, S. E.; Danilov, A. V.

    2015-08-01

    We report on the development of a reliable NbN/Al/Nb/NbN multilayer fabrication technique for combining design elements with and without kinetic inductance in superconducting microwave circuits. As a proof-of-concept we demonstrate the application of the proposed technique to build a slow microwave propagation line matched to 50 Ω terminals. Fabrication details along with the design and measurements are discussed. At 8 GHz the presented device operates as a dc controllable full-turn phase shifter. We suggest that by exploiting the kinetic inductance as a design variable one can greatly improve operation parameters for a variety of standard microwave designs such as step-impedance filters and resonators.

  13. Selective recovery of palladium from waste printed circuit boards by a novel non-acid process.

    PubMed

    Zhang, Zhiyuan; Zhang, Fu-Shen

    2014-08-30

    An environmental benign, non-acid process was successfully developed for selective recovery of palladium from waste printed circuit boards (PCBs). In the process, palladium was firstly enriched during copper recovery procedure and dissolved in a special solution made of CuSO4 and NaCl. The dissolved palladium was then extracted by diisoamyl sulfide (S201). It was found that 99.4% of Pd(II) could be extracted from the solution under the optimum conditions (10% S201, A/O ratio 5 and 2min extraction). In the whole extraction process, the influence of base metals was negligible due to the relatively weak nucleophilic substitution of S201 with base metal irons and the strong steric hindrance of S201 molecular. Around 99.5% of the extracted Pd(II) could be stripped from S201/dodecane with 0.1mol/L NH3 after a two-stage stripping at A/O ratio of 1. The total recovery percentage of palladium was 96.9% during the dissolution-extraction-stripping process. Therefore, this study established a benign and effective process for selective recovery of palladium from waste printed circuit boards. PMID:25037000

  14. Mineralogical analysis of dust collected from typical recycling line of waste printed circuit boards.

    PubMed

    Wang, Fangfang; Zhao, Yuemin; Zhang, Tao; Duan, Chenlong; Wang, Lizhang

    2015-09-01

    As dust is one of the byproducts originating in the mechanical recycling process of waste printed circuit boards such as crushing and separating, from the viewpoints of resource reuse and environmental protection, an effective recycling method to recover valuable materials from this kind of dust is in urgent need. In this paper, detailed mineralogical analysis on the dust collected from a typical recycling line of waste printed circuit boards is investigated by coupling several analytical techniques. The results demonstrate that there are 73.1wt.% organic matters, 4.65wt.% Al, 4.55wt.% Fe, 2.67wt.% Cu and 1.06wt.% Pb in the dust, which reveals the dust is worthy of reuse and harmful to environment. The concentration ratios of Fe, Mn and Zn can reach 12.35, 12.33 and 6.67 respectively by magnetic separation. The yield of dust in each size fraction is nonuniform, while the yield of -0.75mm size fraction is up to 51.15wt.%; as the particle size decreases, the content of liberated metals and magnetic materials increase, and metals are mainly in elemental forms. The F, Cl and Br elements combing to C in the dust would make thermal treatment dangerous to the environment. Based on these results, a flowsheet to recycle the dust is proposed. PMID:26117419

  15. Microwave assisted leaching and electrochemical recovery of copper from printed circuit boards of computer waste

    NASA Astrophysics Data System (ADS)

    Ivǎnuş, R. C.; ǎnuş, D., IV; Cǎlmuc, F.

    2010-06-01

    Due to the rapid technological progress, the replacement of electronic equipment is very often necessary, leading to huge amounts that end up as waste. In addition, waste electrical and electronic equipment (WEEE) contains metals of high commercial value and others that are supposed to be hazardous for the environment. Consequently, WEEE could be considered as a significant source for recovery of nonferrous metals. Among these wastes, computers appear to be distinctive, as far as further exploitation is concerned. The most ″useful″ parts of the computers are the printed circuit boards that contain many metals of interest. A study on microwave assisted electronic scrap (printed circuit boards of computer waste - PCBs) leaching was carried out with a microwave hydrothermal reactor. The leaching was conducted with thick slurries (50-100 g/L). The leaching media is a mixed solution of CuCl2 and NaCl. Preliminary electrolysis from leaching solution has investigated the feasibility of electrodeposition of copper. The results were discussed and compared with the conventional leaching method and demonstrated the potential for selective extraction of copper from PCBs.

  16. Immobilization of Acidithiobacillus ferrooxidans on Cotton Gauze for the Bioleaching of Waste Printed Circuit Boards.

    PubMed

    Nie, Hongyan; Zhu, Nengwu; Cao, Yanlan; Xu, Zhiguo; Wu, Pingxiao

    2015-10-01

    The bioleaching parameters of metal concentrates from waste printed circuit boards by Acidithiobacillus ferrooxidans immobilized on cotton gauze in a two-step reactor were investigated in this study. The results indicated that an average ferrous iron oxidation rate of 0.54 g/(L·h) and a ferrous iron oxidation ratio of 96.90 % were obtained after 12 h at aeration rate of 1 L/min in bio-oxidation reactor. After 96 h, the highest leaching efficiency of copper reached 91.68 % under the conditions of the content of the metal powder 12 g/L, the retention time 6 h, and the aeration rate 1 L/min. The bioleaching efficiency of copper could be above 91.12 % under repeated continuous batch operation. Meanwhile, 95.32 % of zinc, 90.32 % of magnesium, 86.31 % of aluminum, and 59.07 % of nickel were extracted after 96 h. All the findings suggested that the recovery of metal concentrates from waste printed circuit boards via immobilization of A. ferrooxidans on cotton gauze was feasible. PMID:26239442

  17. Radiation-tolerant, low-mass, high bandwidth, flexible printed circuit cables for particle physics experiments

    NASA Astrophysics Data System (ADS)

    McFadden, N. C.; Hoeferkamp, M. R.; Seidel, S.

    2016-09-01

    The design of meter long flexible printed circuit cables required for low-mass ultra-high speed signal transmission in the high radiation environment of the High Luminosity Large Hadron Collider is described. The design geometry is a differential embedded microstrip with 100 Ω nominal impedance. Minimal mass and maximal radiation hardness are pre-eminent considerations. Several dielectric materials are compared. To reduce mass, a cross hatched ground plane is applied. The long flexible printed circuit cables are characterized in bit error rate tests, attenuation versus frequency, mechanical response to temperature induced stress, and dimensional implications on radiation length. These tests are performed before and after irradiation with 1 MeV neutrons to 2×1016/cm2 and 800 MeV protons to 2×1016 1-MeV neutron equivalent/cm2. A 1.0 m Kapton cable with cross hatched ground plane, effective bandwidth of 4.976 gigabits per second, 0.0160% of a radiation length, and no detectable radiation-induced mechanical or electrical degradation is obtained.

  18. Thermal verification testing of commercial printed-circuit boards for spaceflight

    NASA Technical Reports Server (NTRS)

    Foster, William M., II

    1991-01-01

    A method is discussed developed to verify commercial printed-circuit boards for a shuttle orbital flight. The Space Acceleration Measurement System Project used this method first with great success. The test sequence is based on early fault detection, desire to test the final assembly, and integration with other verification testing. A component thermal screening test is performed first to force flaws in design, workmanship, parts, processes, and materials into observable failures. Then temperature definition tests are performed that consist of infrared scanning, thermal vacuum testing, and preliminary thermal operational testing. Only the engineering unit is used for temperature definition testing, but the preliminary thermal operational testing is performed on the flight unit after the temperature range has been defined. In the sequence of testing, vibration testing is performed next, but most vibration failures cannot be detected without subsequent temperature cycling. Finally, final assembly testing is performed to simulate the shuttle flight. An abbreviated thermal screening test is performed as a check after the vibration test, and then a complete thermal operational test is performed. The final assembly test finishes up with a burn-in of 100 hours of trouble-free operation. Verification is successful when all components and final assemblies have passed each test satisfactory. This method was very successful in verifying that commercial printed-circuit boards will survive in the shuttle environment.

  19. Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor

    SciTech Connect

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi; Xu, Meng; Lin, Carol S.K.; McKay, Gordon

    2015-01-15

    Highlights: • Environmental impacts of electronic waste and specifically waste printed circuit boards. • Review of the recycling techniques of waste printed circuit boards. • Advantages of physico-mechanical recycling techniques over chemical methods. • Utilization of nonmetallic fraction of waste printed circuit boards as modifier/filler. • Recent advances in the use of nonmetallic fraction of waste printed circuit boards as precursor. - Abstract: Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced.

  20. Polyvinylphenol (PVP) microcapacitors printed by laser-induced forward transfer (LIFT): multilayered pixel design and thermal analysis investigations

    NASA Astrophysics Data System (ADS)

    Constantinescu, C.; Rapp, L.; Rotaru, P.; Delaporte, P.; Alloncle, A. P.

    2016-04-01

    Highlights • Laser-induced transfer is used for the printing of multilayered microcapacitors • The dielectric film is made of PVP, and the electrodes are made of Ag • Thermal behaviour of the polymer is discussed with respect to the laser processing • The structure and electrical properties of the capacitors are discussed Ag/polyvinylphenol (PVP) multilayered pixels are printed by laser-induced forward transfer (LIFT) technique for thin film microcapacitor applications. The third harmonic (3ω/355 nm, τ  =  50 ps) of a solid state neodymium-doped yttrium aluminium garnet (Nd:YAG) laser source is employed throughout our LIFT experiments. By selecting adequate printing parameters (e.g. donor thickness, laser fluence, background pressure), we show how functional microcapacitors are fabricated. At ~350 μm in lateral size and 300 nm thickness of the dielectric film, the pixels have capacities in the picofarad range. We discuss the laser influence during the pixel transfer process and highlight the polymer’s thermal behaviour.

  1. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    NASA Astrophysics Data System (ADS)

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-05-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V‑1 sec‑1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.

  2. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.

    PubMed

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  3. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    PubMed Central

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  4. Optical waveguides and structures for short haul optical communication channels within printed circuit boards

    NASA Astrophysics Data System (ADS)

    Riegel, Nicholas J.

    Optical waveguides have shown promising results for use within printed circuit boards. These optical waveguides have higher bandwidth than traditional copper transmission systems and are immune to electromagnetic interference. Design parameters for these optical waveguides are needed to ensure an optimal link budget. Modeling and simulation methods are used to determine the optimal design parameters needed in designing the waveguides. As a result, optical structures necessary for incorporating optical waveguides into printed circuit boards are designed and optimized. Embedded siloxane polymer waveguides are investigated for their use in optical printed circuit boards. This material was chosen because it has low absorption, high temperature stability, and can be deposited using common processing techniques. Two sizes of waveguides are investigated, 50 mum multimode and 4 - 9 mum single mode waveguides. A beam propagation method is developed for simulating the multimode and single mode waveguide parameters. The attenuation of simulated multimode waveguides are able to match the attenuation of fabricated waveguides with a root mean square error of 0.192 dB. Using the same process as the multimode waveguides, parameters needed to ensure a low link loss are found for single mode waveguides including maximum size, minimum cladding thickness, minimum waveguide separation, and minimum bend radius. To couple light out-of-plane to a transmitter or receiver, a structure such as a vertical interconnect assembly (VIA) is required. For multimode waveguides the optimal placement of a total internal reflection mirror can be found without prior knowledge of the waveguide length. The optimal placement is found to be either 60 microm or 150 microm away from the end of the waveguide depending on which metric a designer wants to optimize the average output power, the output power variance, or the maximum possible power loss. For single mode waveguides a volume grating coupler is

  5. Multi-Layer Inkjet Printed Contacts for Si Solar Cells (Poster)

    SciTech Connect

    Curtis, C. J.; van hest, M. F. A. M.; Miedaner, A.; Kaydanova, T.; Smith, L.; Ginley, D. S.

    2006-05-01

    The objective of this report is to develop inkjet printing (including tools, inks, and processing conditions) for high-quality Ag contacts for Si solar cells. The conclusions are: (1) Tools and inks for the atmospheric inkjet printing of Ag metallization for Si solar cells have been developed. (2) Line widths, conductivities and thicknesses comparable to, or better than, those produced by screen printing. (3) A new fire-through ink and layered printing were found to decrease the processing temperature for contact formation to as low as 650 C and improve printed cell performance.

  6. Environmental friendly automatic line for recovering metal from waste printed circuit boards.

    PubMed

    Li, Jia; Xu, Zhenming

    2010-02-15

    The technology industrialization was the final goal of the research. A set of automatic line without negative impact to environment for recycling waste printed circuit boards (PCB) in industry-scale was investigated in this study. The independent technologies were integrated and many problems in the process of technology industrialization were solved. The whole technology contained four parts: multiple scarping, material screening, multiple-roll corona electrostatic separator, and dust precipitation. The output of this automatic line reached 600 kg/h and the recovery rate of copper reached 95%. After separation, the metal and nonmetal products were totally reused. Compared with other production lines (traditional fluid bed production line and processing from developed countries), the automatic line has lower energy consumption and better technology rationality. The cost of this line was in acceptable level for local processors. PMID:20092305

  7. Vibration suppression of printed circuit boards using an external particle damper

    NASA Astrophysics Data System (ADS)

    Veeramuthuvel, P.; Sairajan, K. K.; Shankar, K.

    2016-03-01

    Particle damping is an effective method of passive vibration control, of recent research interest. The novel use of particle damper capsule on a Printed Circuit Board (PCB) and the development of Radial Basis Function neural network to accurately predict the acceleration response is presented here. The prediction of particle damping using this neural network is studied in comparison with the Back Propagation Neural network. Extensive experiments are carried out on a PCB for different combinations of particle damper parameters such as particle size, particle density, packing ratio, and the input force during the primary modes of vibration and the obtained results are used for training and testing of neural networks. Based on the prediction from the better trained network, useful design guidelines for the particle damper suitable for PCB are arrived at. The effectiveness of particle dampers for vibration suppression of PCB under random vibration environment is demonstrated based on these design guidelines.

  8. An automatic placement tool for rapid prototyping of printed circuit boards

    NASA Astrophysics Data System (ADS)

    Granacki, John; Kazi, Tauseef

    1993-11-01

    This report describes a fully automatic placement tool for PCB's (printed circuit boards), nap (nonhierarchical automatic placement) that combines approaches from different placement heuristics developed both for PCB and VLSI chip placement. Although the problem of placement for a PCB can be abstractly cast into the same formalism as the problem of VLSI cell placement, a practical tool must incorporate many additional features. In this report we describe the impact of incorporating these PCB-specific features as well as other constraints imposed by the CAD environment (that is, the schematic capture system and the automatic routing tools) into an automatic placement tool. Next we discuss the selected heuristics and their associated data structures in detail. Following this discussion, we present the results of using the placement tool on two test cases along with an analysis of the tools performance. Finally, we identify the limitations of the current implementation and we propose some possible solutions and future work.

  9. High-reliability flexible optical printed circuit board for opto-electric interconnections

    NASA Astrophysics Data System (ADS)

    Rho, Byung Sup; Lee, Woo-Jin; Lim, Jung Woon; Kim, Gye Won; Cho, Che Hyun; Hwang, Sung Hwan

    2009-01-01

    A rigid flexible optical electrical printed circuit board (RFOE-PCB) with both electrical layers and an optical layer was fabricated using a conventional PCB manufacture process. The RFOE-PCB is applicable to fold-type mobile devices such as mobile phones and laptop computers. The RFOE-PCB was designed to be embedded with a flexible 45-deg-ended optical waveguide, which was made using a polymeric material. The precise lamination between an electrical layer and an optical layer was achieved by a passive alignment method. We carried out the repetitive folding test and an environment test for physical and optical reliability suitable for mobile devices. Data transmission of 2.5 Gb/s was demonstrated with a clear eye diagram using the fabricated RFOE-PCB.

  10. Waste minimization study for a printed circuit board manufacturing facility in Taiwan

    SciTech Connect

    Chiu, Shen-yann; Huang, Hann S.; Peters, R.W.; Tsai, S.Y. ); Tsai, Wen-Tien; Shieh, Shih-Shien; Hsieh, Te-Yuan; Hwang, Li-Shyong ); Liu, Solo; Peng, Chien-Tang ); Wu, Min H. )

    1990-01-01

    This paper presents a demonstration of industrial waste minimization sponsored by the Environmental Protection Administration, Taiwan, Republic of China. Waste reduction opportunities are identified and evaluated for a printed circuit board manufacturing facility in Taiwan. Plant audits were conducted on various processes, such as deburring, alkaline etching, black oxidation, desmearing, electroless copper, and copper and tin/lead plating. Specific areas in which the wastes could be minimized, such as reducing the amount of dragout and rinse water requirements in the plating and etchant lines, and on-site treatment and reuse of spent bath solutions were identified, assessed, and implemented. Jar tests on the wastewater were performed, and the results were used to improve the efficiency of the wastewater treatment plant for removal of heavy metals and reduction of sludge generation. In addition, administrative controls of hazardous wastes designed to reduce associated health and environmental hazards were recommended. 4 figs., 9 tabs.

  11. Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect.

    PubMed

    Yang, Yuankun; Chen, Shu; Li, Shicheng; Chen, Mengjun; Chen, Haiyan; Liu, Bijun

    2014-03-10

    In this paper, H(+) consumption and metal recovery, during the process of bioleaching waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans (A. ferrooxidans), were discussed in detail. When the WPCBs concentration was 15g/L, Cu (96.8%), Zn (83.8%), and Al (75.4%) were recovered after 72h by A. ferrooxidans. Experimental results indicated that metal recovery rate was significantly influenced by acid. Based on experimental results, the kinetics of the H(+) consumption and metal recovery on bioleaching WPCBs were represented by reaction kinetic equations. The kinetic of H(+) consumption could be described by the second-order kinetic model. The metal recovery belongs to the second-order model with adding acid, which was changed to the shrinking core model with precipitate production. PMID:24445171

  12. Computer-aided interactive structural optimization of printed-circuit-board design

    NASA Astrophysics Data System (ADS)

    Duncan, L. B.; Holman, R. E.; Lagasse, B. K.; Sakamoto, L. W.; Sunada, W. H.

    Electronic equipment operating in severe vibration environments plays a critical role in military and aerospace hardware. A crucial element of most modularized electronic equipment is the printed circuit board (PCB). Structural failures of such boards are almost entirely the result of imposed mechanical vibration. It is desirable to incorporate structural guidelines and analysis techniques at an early stage in board development when deficiencies may easily be corrected. However, there are a number of problems connected with such an approach. A computer program has been developed to address the considered situation. The program is to reduce PCB structural analysis to a level readily understood by the average designer. Another objective of the program is to encourage use of structural analysis at an early stage of PCB design and development. Attention is given to board geometry, program organization, board response computation, and a sample problem.

  13. Application of Printed Circuit Board Technology to FT-ICR MS Analyzer Cell Construction and Prototyping

    SciTech Connect

    Leach, Franklin E.; Norheim, Randolph V.; Anderson, Gordon A.; Pasa-Tolic, Ljiljana

    2014-12-01

    Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) remains themass spectrometry platform that provides the highest levels of performance for mass accuracy and resolving power, there is room for improvement in analyzer cell design as the ideal quadrupolar trapping potential has yet to be generated for a broadband MS experiment. To this end, analyzer cell designs have improved since the field’s inception, yet few research groups participate in this area because of the high cost of instrumentation efforts. As a step towards reducing this barrier to participation and allowing for more designs to be physically tested, we introduce a method of FT-ICR analyzer cell prototyping utilizing printed circuit boards at modest vacuum conditions. This method allows for inexpensive devices to be readily fabricated and tested over short intervals and should open the field to laboratories lacking or unable to access high performance machine shop facilities because of the required financial investment.

  14. Ductile electroless Ni-P coating onto flexible printed circuit board

    NASA Astrophysics Data System (ADS)

    Wang, Wenchang; Zhang, Weiwei; Wang, Yurong; Mitsuzak, Naotoshi; Chen, Zhidong

    2016-03-01

    In this study, a ductile electroless Ni-P coating on the flexible printed circuit board (FPCB) was prepared in an acidic nickel plating bath. The addition of dipropylamine (DPA) in electroless plating not only improves the ductility of the Ni-P coating, but also enhances the corrosion resistance. The further analysis reveals that the ductility improvement and enhancement of corrosion resistance for the Ni-P coating may be due to the fact that the addition of DPA significantly refines the volume of columnar nodule and reduce the porosity, thus leading to the released internal stress. In addition, it was found that the nodule within the Ni-P coating grew into a columnar structure, which may be also contribute to the improvement of ductility.

  15. Application of Printed Circuit Board Technology to FT-ICR MS Analyzer Cell Construction and Prototyping

    NASA Astrophysics Data System (ADS)

    Leach, Franklin E.; Norheim, Randolph; Anderson, Gordon; Pasa-Tolic, Ljiljana

    2014-12-01

    Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) remains the mass spectrometry platform that provides the highest levels of performance for mass accuracy and resolving power, there is room for improvement in analyzer cell design as the ideal quadrupolar trapping potential has yet to be generated for a broadband MS experiment. To this end, analyzer cell designs have improved since the field's inception, yet few research groups participate in this area because of the high cost of instrumentation efforts. As a step towards reducing this barrier to participation and allowing for more designs to be physically tested, we introduce a method of FT-ICR analyzer cell prototyping utilizing printed circuit boards at modest vacuum conditions. This method allows for inexpensive devices to be readily fabricated and tested over short intervals and should open the field to laboratories lacking or unable to access high performance machine shop facilities because of the required financial investment.

  16. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  17. 75 FR 28656 - Amphenol Printed Circuits, Inc., a Subsidiary of Amphenol Corporation, Including On-Site Leased...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Amphenol Printed Circuits, Inc., a Subsidiary of Amphenol Corporation, Including On-Site Leased Workers From Technical Needs, MicoTech, and CoWorx, Nashua, NH; Amended Certification Regarding Eligibility To Apply...

  18. Modular integration of electronics and microfluidic systems using flexible printed circuit boards.

    PubMed

    Wu, Amy; Wang, Lisen; Jensen, Erik; Mathies, Richard; Boser, Bernhard

    2010-02-21

    Microfluidic systems offer an attractive alternative to conventional wet chemical methods with benefits including reduced sample and reagent volumes, shorter reaction times, high-throughput, automation, and low cost. However, most present microfluidic systems rely on external means to analyze reaction products. This substantially adds to the size, complexity, and cost of the overall system. Electronic detection based on sub-millimetre size integrated circuits (ICs) has been demonstrated for a wide range of targets including nucleic and amino acids, but deployment of this technology to date has been limited due to the lack of a flexible process to integrate these chips within microfluidic devices. This paper presents a modular and inexpensive process to integrate ICs with microfluidic systems based on standard printed circuit board (PCB) technology to assemble the independently designed microfluidic and electronic components. The integrated system can accommodate multiple chips of different sizes bonded to glass or PDMS microfluidic systems. Since IC chips and flex PCB manufacturing and assembly are industry standards with low cost, the integrated system is economical for both laboratory and point-of-care settings. PMID:20126694

  19. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen

    PubMed Central

    Wang, Lei; Liu, Jing

    2014-01-01

    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi35In48.6Sn16Zn0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid–solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi35In48.6Sn16Zn0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance–temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future. PMID:25484611

  20. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen.

    PubMed

    Wang, Lei; Liu, Jing

    2014-12-01

    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi35In48.6Sn16Zn0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid-solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi35In48.6Sn16Zn0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance-temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future. PMID:25484611

  1. Generation of copper rich metallic phases from waste printed circuit boards

    SciTech Connect

    Cayumil, R.; Khanna, R.; Ikram-Ul-Haq, M.; Rajarao, R.; Hill, A.; Sahajwalla, V.

    2014-10-15

    Highlights: • Recycling and material recovery from waste printed circuit boards is very complex. • Thermoset polymers, ceramics and metals are present simultaneously in waste PCBs. • Heat treatment of PCBs was carried out at 1150 °C under inert conditions. • Various metallic phases could be segregated out as copper based metallic droplets. • Carbon and ceramics residues can be further recycled in a range of applications. - Abstract: The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150 °C under argon gas flowing at 1 L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ∼30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the

  2. Evaluation of gold and silver leaching from printed circuit board of cellphones

    SciTech Connect

    Petter, P.M.H. Veit, H.M.; Bernardes, A.M.

    2014-02-15

    Highlights: • Printed circuit boards (PCB) of mobile phones have large amounts of metals with high economic value such as gold and silver. • Dissolution of gold was done with a cyanide-based reagent and silver with nitric acid. • Leaching of PCB with Na{sub 2}S{sub 2}O{sub 3} and (NH{sub 4}){sub 2}S{sub 2}O{sub 3} to examine the feasibility of using these reagents was done. - Abstract: Electronic waste has been increasing proportionally with the technology. So, nowadays, it is necessary to consider the useful life, recycling, and final disposal of these equipment. Metals, such as Au, Ag, Cu, Sn and Ni can be found in the printed circuit boards (PCB). According to this, the aims of this work is to characterize the PCBs of mobile phones with aqua regia; obtaining “reference” values of leaching, to gold and silver, with cyanide and nitric acid, respectively; and study the process of leaching of these metals in alternative leaching with sodium thiosulfate and ammonium thiosulfate. The metals were characterized by digesting the sample with aqua regia for 1 and 2 h at 60 °C and 80 °C. The leaching of Au with a commercial reagent (cyanide) and the Ag with HNO{sub 3}were made. The leaching of Au and Ag with alternative reagents: Na{sub 2}S{sub 2}O{sub 3,} and (NH{sub 4}){sub 2}S{sub 2}O{sub 3} in 0.1 M concentration with the addition of CuSO{sub 4}, NH{sub 4}OH, and H{sub 2}O{sub 2}, was also studied. The results show that the digestion with aqua regia was efficient to characterize the metals present in the PCBs of mobile phones. However, the best method to solubilize silver was by digesting the sample with nitric acid. The leaching process using sodium thiosulfate was more efficient when an additional concentration of 0.015 and 0.030 M of the CuSO{sub 4} was added.

  3. Waste-minimization assessment for a manufacturer of printed-circuit boards. Environmental research brief

    SciTech Connect

    Kirsch, F.W.; Looby, G.P.

    1991-07-01

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual (EPA/625/7-88/003, July 1988). The WMAC team at Colorado State University inspected a plant producing printed circuit boards -- a plant that already had taken steps to control its hazardous wastes. Producing a circuit board involves many major processes and subprocesses: preparing the board; depositing copper on the board by electroless plating; applying dry film; electrolytically plating copper; electrolytically plating tin; etching and stripping; applying solder; and, perhaps, plating gold on connectors. Each of these steps produces hazardous wastes, e.g., electrolytic copper plating results in acid soap dumps, copper and tin drag-out, and sulfuric acid. The main sources of metallic contamination (copper (both dissolved and metallic), tin, lead, gold) are the rinses after scrubbing, plating, and etching. Although the greatest amount of waste can be reduced by reusing effluent from the MEMTEK (with some further treatment), the greatest dollar savings can be found by changing the dry film developer. The present brand adheres strongly to the unexposed film and requires an aggressive acid soap; a less aggressive, nonhazardous soap could be used with a less-adhering dry film developer. The Research Brief was developed by the principal investigators and EPA's Risk Reduction Engineering Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from the authors.

  4. Fast copper extraction from printed circuit boards using supercritical carbon dioxide.

    PubMed

    Calgaro, C O; Schlemmer, D F; da Silva, M D C R; Maziero, E V; Tanabe, E H; Bertuol, D A

    2015-11-01

    Technological development and intensive marketing support the growth in demand for electrical and electronic equipment (EEE), for which printed circuit boards (PCBs) are vital components. As these devices become obsolete after short periods, waste PCBs present a problem and require recycling. PCBs are composed of ceramics, polymers, and metals, particularly Cu, which is present in highest percentages. The aim of this study was to develop an innovative method to recover Cu from the PCBs of old mobile phones, obtaining faster reaction kinetics by means of leaching with supercritical CO2 and co-solvents. The PCBs from waste mobile phones were characterized, and evaluation was made of the reaction kinetics during leaching at atmospheric pressure and using supercritical CO2 with H2O2 and H2SO4 as co-solvents. The results showed that the PCBs contained 34.83 wt% of Cu. It was found that the supercritical extraction was 9 times faster, compared to atmospheric pressure extraction. After 20 min of supercritical leaching, approximately 90% of the Cu contained in the PCB was extracted using a 1:20 solid:liquid ratio and 20% of H2O2 and H2SO4 (2.5 M). These results demonstrate the efficiency of the process. Therefore the supercritical CO2 employment in the PCBs recycling is a promising alternative and the CO2 is environmentally acceptable and reusable. PMID:26022338

  5. Liberation characteristics after cryogenic modification and air table separation of discarded printed circuit boards.

    PubMed

    Zhou, Cuihong; Pan, Yongtai; Lu, Maxi; Yang, Changshun

    2016-07-01

    Liberating useful materials from printed circuit boards (PCBs) is challenging because PCBs are flexible and complex in terms of materials and components. In this study, the crushing of PCBs at low-temperature was investigated. The results indicated that when the temperature was decreased to approximately -20 °C, the strength of PCBs decreased and their brittleness increased, making them easier to crush. A double roll crusher was selected to crush the PCBs. The particle size distribution and power consumption were studied under different working conditions. The results showed that the particle size of most of the lumps was in the range 15×20-25×20 mm, and that power consumption was minimal when the frequency of the crusher was 40-50 Hz. A small shredder was used for cryogenic grinding, and it was found that its power consumption strongly depended on the cooling temperature. An orthogonal experiment was conducted, which revealed that a smaller cutter gap and higher rotational speed could achieve higher yield. Furthermore, the results indicated that the air table developed to liberate PCB materials could effectively separate 2.8-0.5mm grade materials. Overall, the results of this study provide an experimental foundation for more effectively recycling discarded PCBs. PMID:26985873

  6. Spectral imaging method for material classification and inspection of printed circuit boards

    NASA Astrophysics Data System (ADS)

    Ibrahim, Abdelhameed; Tominaga, Shoji; Horiuchi, Takahiko

    2010-05-01

    We propose a spectral imaging method for material classification and inspection of raw printed circuit boards (PCBs). The method is composed of two steps (1) estimation the PCB surface-spectral reflectances and (2) unsupervised classification of the reflectance data to make the inspection of PCB easy and efficient. First, we develop a spectral imaging system that captures high dynamic range images of a raw PCB with spatially and spectrally high resolutions in the region of visible wavelength. The surface-spectral reflectance is then estimated at every pixel point from multiple spectral images, based on the reflection characteristics of different materials. Second, the surface-spectral reflectance data are classified into several groups, according to the number of PCB materials. We develop an unsupervised classification algorithm incorporating both spectral information and spatial information, based on the Nyström approximation of the normalized cut method. The initial seeds for the Nyström procedure are effectively chosen using a guidance module based on the K-means algorithm. Low-dimensional spectral features are efficiently extracted from the original high-dimensional spectral reflectance data. The feasibility of the proposed method is examined in experiments using real PCBs in detail.

  7. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans.

    PubMed

    Chen, Shu; Yang, Yuankun; Liu, Congqiang; Dong, Faqin; Liu, Bijun

    2015-12-01

    Application of bioleaching process for metal recovery from electronic waste has received an increasing attention in recent years. In this work, a column bioleaching of copper from waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans has been investigated. After column bioleaching for 28d, the copper recovery reached at 94.8% from the starting materials contained 24.8% copper. Additionally, the concentration of Fe(3+) concentration varied significantly during bioleaching, which inevitably will influence the Cu oxidation, thus bioleaching process. Thus the variation in Fe(3+) concentration should be taken into consideration in the conventional kinetic models of bioleaching process. Experimental results show that the rate of copper dissolution is controlled by external diffusion rather than internal one because of the iron hydrolysis and formation of jarosite precipitates at the surface of the material. The kinetics of column bioleaching WPCBs remains unchanged because the size and morphology of precipitates are unaffected by maintaining the pH of solution at 2.25 level. In bioleaching process, the formation of jarosite precipitate can be prevented by adding dilute sulfuric acid and maintaining an acidic condition of the leaching medium. In such way, the Fe(2)(+)-Fe(3+) cycle process can kept going and create a favorable condition for Cu bioleaching. Our experimental results show that column Cu bioleaching from WPCBs by A. ferrooxidans is promising. PMID:26196406

  8. Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound.

    PubMed

    Guo, Jie; Rao, Qunli; Xu, Zhenming

    2008-05-01

    The aim of this study was to investigate the feasibility of using glass-nonmetals, a byproduct of recycling waste printed circuit boards (PCBs), to replace wood flour in production of phenolic moulding compound (PMC). Glass-nonmetals were attained by two-step crushing and corona electrostatic separating processes. Glass-nonmetals with particle size shorter than 0.07 mm were in the form of single fibers and resin powder, with the biggest portion (up to 34.6 wt%). Properties of PMC with glass-nonmetals (PMCGN) were compared with reference PMC and the national standard of PMC (PF2C3). When the adding content of glass-nonmetals was 40 wt%, PMCGN exhibited flexural strength of 82 MPa, notched impact strength of 2.4 kJ/m(2), heat deflection temperature of 175 degrees C, and dielectric strength of 4.8 MV/m, all of which met the national standard. Scanning electron microscopy (SEM) showed strong interfacial bonding between glass fibers and the phenolic resin. All the results showed that the use of glass-nonmetals as filler in PMC represented a promising method for resolving the environmental pollutions and reducing the cost of PMC, thus attaining both environmental and economic benefits. PMID:17949900

  9. A Novel Designed Bioreactor for Recovering Precious Metals from Waste Printed Circuit Boards

    PubMed Central

    Jujun, Ruan; Jie, Zheng; Jian, Hu; Zhang, Jianwen

    2015-01-01

    For recovering precious metals from waste printed circuit boards (PCBs), a novel hybrid technology including physical and biological methods was developed. It consisted of crushing, corona-electrostatic separation, and bioleaching. Bioleaching process is the focus of this paper. A novel bioreactor for bioleaching was designed. Bioleaching was carried out using Pseudomonas chlororaphis. Bioleaching experiments using mixed particles of Au and Cu were performed and leachate contained 0.006 mg/L, 2823 mg/L Au+ and Cu2+ respectively. It showed when Cu existed, the concentrations of Au were extremely small. This provided the feasibility to separate Cu from Au. The method of orthogonal experimental design was employed in the simulation bioleaching experiments. Experimental results showed the optimized parameters for separating Cu from Au particles were pH 7.0, temperature 22.5 °C, and rotation speed 80 r/min. Based on the optimized parameters obtained, the bioreactor was operated for recovering mixed Au and Cu particles. 88.1 wt.% of Cu and 76.6 wt.% of Au were recovered. The paper contributed important information to recover precious metals from waste PCBs. PMID:26316021

  10. Study on characteristics of printed circuit board liberation and its crushed products.

    PubMed

    Quan, Cui; Li, Aimin; Gao, Ningbo

    2012-11-01

    Recycling printed circuit board waste (PCBW) waste is a hot issue of environmental protection and resource recycling. Mechanical and thermo-chemical methods are two traditional recycling processes for PCBW. In the present research, a two-step crushing process combined with a coarse-crushing step and a fine-pulverizing step was adopted, and then the crushed products were classified into seven different fractions with a standard sieve. The liberation situation and particle shape in different size fractions were observed. Properties of different size fractions, such as heating value, thermogravimetric, proximate, ultimate and chemical analysis were determined. The Rosin-Rammler model was applied to analyze the particle size distribution of crushed material. The results indicated that complete liberation of metals from the PCBW was achieved at a size less than 0.59 mm, but the nonmetal particle in the smaller-than-0.15 mm fraction is liable to aggregate. Copper was the most prominent metal in PCBW and mainly enriched in the 0.42-0.25 mm particle size. The Rosin-Rammler equation adequately fit particle size distribution data of crushed PCBW with a correlation coefficient of 0.9810. The results of heating value and proximate analysis revealed that the PCBW had a low heating value and high ash content. The combustion and pyrolysis process of PCBW was different and there was an obvious oxidation peak of Cu in combustion runs. PMID:22956523

  11. Wideband characterization of printed circuit board materials up to 50 ghz

    NASA Astrophysics Data System (ADS)

    Rakov, Aleksei

    A traveling-wave technique developed a few years ago in the Missouri S&T EMC Laboratory has been employed until now for characterization of PCB materials over a broad frequency range up to 30 GHz. This technique includes measuring S-parameters of the specially designed PCB test vehicles. An extension of the frequency range of printed circuit board laminate dielectric and copper foil characterization is an important problem. In this work, a new PCB test vehicle design for operating up to 50 GHz has been proposed. As the frequency range of measurements increases, the analysis of errors and uncertainties in measuring dielectric properties becomes increasingly important. Formulas for quantification of two major groups of errors, repeatability (manufacturing variability) and reproducibility (systematic) errors, in extracting dielectric constant (DK) and dissipation factor (DK) have been derived, and computations for a number of cases are presented. Conductor (copper foil) surface roughness of PCB interconnects is an important factor, which affects accuracy of DK and DF measurements. This work describes a new algorithm for semi-automatic characterization of copper foil profiles on optical or scanning electron microscopy (SEM) pictures of signal traces. The collected statistics of numerous copper foil roughness profiles allows for introducing a new metric for roughness characterization of PCB interconnects. This is an important step to refining the measured DK and DF parameters from roughness contributions. The collected foil profile data and its analysis allow for developing "design curves", which could be used by SI engineers and electronics developers in their designs.

  12. Effect of High-Humidity Testing on Material Parameters of Flexible Printed Circuit Board Materials

    NASA Astrophysics Data System (ADS)

    Lahokallio, Sanna; Saarinen, Kirsi; Frisk, Laura

    2013-09-01

    The tendency of polymers to absorb moisture impairs especially their electrical and mechanical properties. These are important characteristics for printed circuit board (PCB) materials, which should provide mechanical support as well as electrical insulation in many different environments in order to guarantee safe operation for electrical devices. Moreover, the effects of moisture are accelerated at increased temperatures. In this study, three flexible PCB dielectric materials, namely polyimide (PI), fluorinated ethylene-propylene (FEP), and polyethylene terephthalate (PET), were aged over different periods of time in a high-humidity test, in which the temperature was 85°C and relative humidity 85%. After aging, the changes in the structure of the polymers were studied by determining different material parameters such as modulus of elasticity, glass-transition temperature, melting point, coefficient of thermal expansion, water absorption, and crystallinity, and changes in the chemical structure with several techniques including thermomechanical analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy, moisture analysis, and a precision scale. The results showed that PI was extremely stable under the aging conditions and therefore an excellent choice for electrical applications under harsh conditions. Similarly, FEP proved to be relatively stable under the applied aging conditions. However, its crystallinity increased markedly during aging, and after 6000 h of aging the results indicated oxidation. PET suffered from hydrolysis during the test, leading to its embrittlement after 2000 h of aging.

  13. A new technology for recycling materials from waste printed circuit boards.

    PubMed

    Zhou, Yihui; Qiu, Keqiang

    2010-03-15

    Waste printed circuit boards (WPCBs) contain lots of valuable resources together with plenty of hazardous materials, which are considered both an attractive secondary resource and an environmental contaminant. In this research, a new process of "centrifugal separation+vacuum pyrolysis" for the combined recovery of solder and organic materials from WPCBs was investigated. The results of centrifugal separation indicated that the separation of solder from WPCBs was complete when WPCBs were heated at 240 degrees C, and the rotating drum was rotated at 1400 rpm for 6 min intermittently. The results of vacuum pyrolysis showed that the type-A of WPCBs without solder pyrolysed to form an average of 69.5 wt% residue, 27.8 wt% oil, and 2.7 wt% gas; and pyrolysis of the type-B of WPCBs without solder led to an average mass balance of 75.7 wt% residue, 20.0 wt% oil, and 4.3 wt% gas. The pyrolysis residues contain various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The pyrolysis oils can be used for fuel or chemical feedstock and the pyrolysis gases can be collected and combusted for the pyrolysis self-sustain. This clean and non-polluting technology offers a new way to recycle valuable materials from WPCBs and prevent the environmental pollution of WPCBs effectively. PMID:19939558

  14. Mechanical pre-treatment of mobile phones and its effect on the Printed Circuit Assemblies (PCAs).

    PubMed

    Bachér, J; Mrotzek, A; Wahlström, M

    2015-11-01

    The recycling of Waste Electrical and Electronic Equipment (WEEE) has attracted a notable amount of interest during the last few decades due to the high metal concentrations and substantial increase in the growth rate of WEEE. In addition, higher recovery and recycling rates required by the European Union demand more comprehensive treatment of WEEE. However, complex product design and the presence of harmful substances together with low concentrations of special metals present challenges for processing. This study examines the effect of mechanical treatment of mobile phones on metal concentrations in the printed circuit assembly (PCA) fraction compared to manual dismantling. The designed mechanical treatment process including crushing, sieving, magnetic-, eddy current- and sensor-based separation was able to separate plastics, ferrous metals, PCA and stainless steel for further treatment. The process separated PCA with an efficiency of 85%. However, the quality of the separated PCAs was poor compared with "pure" manually dismantled PCAs. The primary crushing of mobile phones destroys PCAs thus resulting in the loss of especially precious metals used in the connector coatings and in the surface-mounted components. As a result, the theoretical value of the produced PCA fraction is only half compared to using manual dismantling. However, high labour costs in western countries and low capacity may hinder the feasibility of hand dismantling. PMID:26139137

  15. An environmentally friendly technology of disassembling electronic components from waste printed circuit boards.

    PubMed

    Wang, Jianbo; Guo, Jie; Xu, Zhenming

    2016-07-01

    Electronic components (ECs) disassembling from waste printed circuit boards (WPCBs) is the first and essential step in WPCBs recycling chain. Over the past decades, primitive methods like simply heating WPCBs on a coal-heated plate to melt solders are dominated in practice, causing serious environmental pollution and also putting a real threat to the human health. In order to solve this problem, in this article, an automatic system in pilot-scale for ECs disassembling from WPCBs is designed, manufactured, and investigated. This system contains two parts: ECs automatic disassembly and off-gas purification. Meanwhile, WPCBs from television (i.e., TV-WPCBs) and personal computer (i.e., PC-WPCBs) are used for disassembling tests, respectively. When the disassembling temperature, rotating speed, and incubation time are 265±5°C, 10rpm, and 8min, respectively, the solder can be completely removed from both TV-WPCBs and PC-WPCBs. No pollutant is discharged from this system. Finally, the disassembling procedures for ECs from both TV-WPCBs and PC-WPCBs are suggested to promote WPCBs disassembling in an environment-friendly way, without threaten the environment and human health. PMID:27026495

  16. A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid.

    PubMed

    Zeng, Xianlai; Li, Jinhui; Xie, Henghua; Liu, Lili

    2013-10-01

    Recycling processes for waste printed circuit boards (WPCBs) have been well established in terms of scientific research and field pilots. However, current dismantling procedures for WPCBs have restricted the recycling process, due to their low efficiency and negative impacts on environmental and human health. This work aimed to seek an environmental-friendly dismantling process through heating with water-soluble ionic liquid to separate electronic components and tin solder from two main types of WPCBs-cathode ray tubes and computer mainframes. The work systematically investigates the influence factors, heating mechanism, and optimal parameters for opening solder connections on WPCBs during the dismantling process, and addresses its environmental performance and economic assessment. The results obtained demonstrate that the optimal temperature, retention time, and turbulence resulting from impeller rotation during the dismantling process, were 250 °C, 12 min, and 45 rpm, respectively. Nearly 90% of the electronic components were separated from the WPCBs under the optimal experimental conditions. This novel process offers the possibility of large industrial-scale operations for separating electronic components and recovering tin solder, and for a more efficient and environmentally sound process for WPCBs recycling. PMID:23910241

  17. Converting non-metallic printed circuit boards waste into a value added product

    PubMed Central

    2013-01-01

    The aim of this study was to investigate the feasibility of using nonmetallic printed circuit board (PCB) waste as filler in recycled HDPE (rHDPE) in production of rHDPE/PCB composites. Maleic anhydride modified linear low-density polyethylene (MAPE) was used as compatibilizer. In particular, the effects of nonmetallic PCB and MAPE on mechanical properties of the composites were assessed through tensile, flexural and impact testing. Scanning electron microscope (SEM) was used to study the dispersion of nonmetallic PCB and MAPE in the matrix. Nonmetallic PCB was blended with rHDPE from 0–30 wt% and prepared by counter-rotating twin screw extruder followed by molding into test samples via hot press for analysis. A good balance between stiffness, strength and toughness was achieved for the system containing 30 wt% PCB. Thus, this system was chosen in order to investigate the effect of the compatibilizer on the mechanical properties of the composites. The results indicate that MAPE as a compatiblizer can effectively promote the interfacial adhesion between nonmetallic PCB and rHDPE. The addition of 6 phr MAPE increased the flexural strength, tensile strength and impact strength by 71%, 98% and 44% respectively compared to the uncompatibilized composites. PMID:24764542

  18. Dissolution of brominated epoxy resins by dimethyl sulfoxide to separate waste printed circuit boards.

    PubMed

    Zhu, Ping; Chen, Yan; Wang, Liangyou; Qian, Guangren; Zhang, Wei Jie; Zhou, Ming; Zhou, Jin

    2013-03-19

    Improved methods are required for the recycling of waste printed circuit boards (WPCBs). In this study, WPCBs (1-1.5 cm(2)) were separated into their components using dimethyl sulfoxide (DMSO) at 60 °C for 45 min and a metallographic microscope was used to verify their delamination. An increased incubation time of 210 min yielded a complete separation of WPCBs into their components, and copper foils and glass fibers were obtained. The separation time decreased with increasing temperature. When the WPCB size was increased to 2-3 cm(2), the temperature required for complete separation increased to 90 °C. When the temperature was increased to 135 °C, liquid photo solder resists could be removed from the copper foil surfaces. The DMSO was regenerated by rotary decompression evaporation, and residues were obtained. Fourier transform infrared spectroscopy (FT-IR), thermal analysis, nuclear magnetic resonance, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were used to verify that these residues were brominated epoxy resins. From FT-IR analysis after the dissolution of brominated epoxy resins in DMSO it was deduced that hydrogen bonding may play an important role in the dissolution mechanism. This novel technology offers a method for separating valuable materials and preventing environmental pollution from WPCBs. PMID:23398278

  19. Converting non-metallic printed circuit boards waste into a value added product.

    PubMed

    Muniyandi, Shantha Kumari; Sohaili, Johan; Hassan, Azman; Mohamad, Siti Suhaila

    2013-01-01

    The aim of this study was to investigate the feasibility of using nonmetallic printed circuit board (PCB) waste as filler in recycled HDPE (rHDPE) in production of rHDPE/PCB composites. Maleic anhydride modified linear low-density polyethylene (MAPE) was used as compatibilizer. In particular, the effects of nonmetallic PCB and MAPE on mechanical properties of the composites were assessed through tensile, flexural and impact testing. Scanning electron microscope (SEM) was used to study the dispersion of nonmetallic PCB and MAPE in the matrix. Nonmetallic PCB was blended with rHDPE from 0-30 wt% and prepared by counter-rotating twin screw extruder followed by molding into test samples via hot press for analysis. A good balance between stiffness, strength and toughness was achieved for the system containing 30 wt% PCB. Thus, this system was chosen in order to investigate the effect of the compatibilizer on the mechanical properties of the composites. The results indicate that MAPE as a compatiblizer can effectively promote the interfacial adhesion between nonmetallic PCB and rHDPE. The addition of 6 phr MAPE increased the flexural strength, tensile strength and impact strength by 71%, 98% and 44% respectively compared to the uncompatibilized composites. PMID:24764542

  20. Shape optimization of a printed-circuit heat exchanger to enhance thermal-hydraulic performance

    SciTech Connect

    Lee, S. M.; Kim, K. Y.

    2012-07-01

    Printed circuit heat exchanger (PCHE) is recently considered as a recuperator for the high temperature gas cooled reactor. In this work, the zigzag-channels of a PCHE have been optimized by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and response surface approximation (RSA) modeling technique to enhance thermal-hydraulic performance. Shear stress transport turbulence model is used as a turbulence closure. The objective function is defined as a linear combination of the functions related to heat transfer and friction loss of the PCHE, respectively. Three geometric design variables viz., the ratio of the radius of the fillet to hydraulic diameter of the channels, the ratio of wavelength to hydraulic diameter of the channels, and the ratio of wave height to hydraulic diameter of the channels, are used for the optimization. Design points are selected through Latin-hypercube sampling. The optimal design is determined through the RSA model which uses RANS derived calculations at the design points. The results show that the optimum shape enhances considerably the thermal-hydraulic performance than a reference shape. (authors)

  1. Treatment of waste printed circuit board by green solvent using ionic liquid.

    PubMed

    Zhu, P; Chen, Y; Wang, L Y; Zhou, M

    2012-10-01

    Recycling of waste printed circuit boards (WPCBs) is an important subject not only for the protection of environment but also for the recovery of valuable materials. A feasibility study was conducted to dissolve bromine epoxy resins of WPCBs using ionic liquid (IL) of 1-ethyl-3-methylimizadolium tetrafluoroborate [EMIM(+)][BF(4)(-)] (nonaqueous green solvent) for recovering copper foils and glass fibers. Experimental results indicated that the initial delamination had seen from the cross-section of the WPCBs by mean of metallographic microscope and digital camera when WPCBs were heated in [EMIM(+)][BF(4)(-)] at 240°C for a duration of 30 min. When temperature was increased to 260°C for a duration of 10 min, the bromine epoxy resins of WPCBs were throughout dissolved into [EMIM(+)][BF(4)(-)] and the separations of copper foils and glass fibers from WPCBs were completed. This clean and non-polluting technology offers a new way to recycle valuable materials from WPCBs and prevent the environmental pollution of WPCBs effectively. PMID:22683227

  2. Numerical Study on Crossflow Printed Circuit Heat Exchanger for Advanced Small Modular Reactors

    SciTech Connect

    Yoon, Su-Jong; Sabharwall, Piyush; Kim, Eung-Soo

    2014-03-01

    Various fluids such as water, gases (helium), molten salts (FLiNaK, FLiBe) and liquid metal (sodium) are used as a coolant of advanced small modular reactors (SMRs). The printed circuit heat exchanger (PCHE) has been adopted as the intermediate and/or secondary heat exchanger of SMR systems because this heat exchanger is compact and effective. The size and cost of PCHE can be changed by the coolant type of each SMR. In this study, the crossflow PCHE analysis code for advanced small modular reactor has been developed for the thermal design and cost estimation of the heat exchanger. The analytical solution of single pass, both unmixed fluids crossflow heat exchanger model was employed to calculate a two dimensional temperature profile of a crossflow PCHE. The analytical solution of crossflow heat exchanger was simply implemented by using built in function of the MATLAB program. The effect of fluid property uncertainty on the calculation results was evaluated. In addition, the effect of heat transfer correlations on the calculated temperature profile was analyzed by taking into account possible combinations of primary and secondary coolants in the SMR systems. Size and cost of heat exchanger were evaluated for the given temperature requirement of each SMR.

  3. Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids.

    PubMed

    Chen, Mengjun; Huang, Jinxiu; Ogunseitan, Oladele A; Zhu, Nengming; Wang, Yan-min

    2015-07-01

    Waste printed circuit boards (WPCBs) are attracting increasing concerns because the recovery of its content of valuable metallic resources is hampered by the presence of hazardous substances. In this study, we used ionic liquids (IL) to leach copper from WPCBs. [BSO3HPy]OTf, [BSO3HMIm]OTf, [BSO4HPy]HSO4, [BSO4HMim]HSO4 and [MIm]HSO4 were selected. Factors that affect copper leaching rate were investigated in detail and their leaching kinetics were also examined with the comparison of [Bmim]HSO4. The results showed that all six IL acids could successfully leach copper out, with near 100% recovery. WPCB particle size and leaching time had similar influences on copper leaching performance, while IL acid concentration, hydrogen peroxide addition, solid to liquid ratio, temperature, showed different influences. Moreover, IL acid with HSO4(-) was more efficient than IL acid with CF3SO3(-). These six IL acids indicate a similar behavior with common inorganic acids, except temperature since copper leaching rate of some IL acids decreases with its increase. The results of leaching kinetics studies showed that diffusion plays a more important role than surface reaction, whereas copper leaching by inorganic acids is usually controlled by surface reaction. This innovation provides a new option for recovering valuable materials such as copper from WPCBs. PMID:25869844

  4. Electrostatic separation for recovering metals and nonmetals from waste printed circuit board: problems and improvements.

    PubMed

    Wu, Jiang; Li, Jia; Xu, Zhenming

    2008-07-15

    Electrostatic separation is an effective and environmentally friendly method for recycling comminuted waste printed circuit boards (PCB). As a classical separator, the roll-type corona-electrostatic separator (RTS) has some advantages in this field. However, there are still some notable problems, such as the middling products and their further treatment, impurity of nonconductive products because of the aggregation of fine particles, and stability of the separation process and balance between the production capacity and the separation quality. To overcome these problems, a conception of two-step separation is presented, and a new two-roll type corona-electrostatic separator (T-RTS) was built As compared to RTS, the conductive products increase by 8.9%, the middling products decrease by 45%, and the production capacity increases by 50% in treating comminuted PCB wastes by T-RTS. In addition, the separation process in T-RTS is more stable. Therefore, T-RTS is a promising separator for recycling comminuted PCB. PMID:18754380

  5. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal.

    PubMed

    Ortuño, Nuria; Conesa, Juan A; Moltó, Julia; Font, Rafael

    2014-11-15

    The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO2005-TEQ/kg sample, corresponding to the sample with and without metals, respectively. PMID:25173859

  6. A Novel Designed Bioreactor for Recovering Precious Metals from Waste Printed Circuit Boards.

    PubMed

    Jujun, Ruan; Jie, Zheng; Jian, Hu; Zhang, Jianwen

    2015-01-01

    For recovering precious metals from waste printed circuit boards (PCBs), a novel hybrid technology including physical and biological methods was developed. It consisted of crushing, corona-electrostatic separation, and bioleaching. Bioleaching process is the focus of this paper. A novel bioreactor for bioleaching was designed. Bioleaching was carried out using Pseudomonas chlororaphis. Bioleaching experiments using mixed particles of Au and Cu were performed and leachate contained 0.006 mg/L, 2823 mg/L Au(+) and Cu(2+) respectively. It showed when Cu existed, the concentrations of Au were extremely small. This provided the feasibility to separate Cu from Au. The method of orthogonal experimental design was employed in the simulation bioleaching experiments. Experimental results showed the optimized parameters for separating Cu from Au particles were pH 7.0, temperature 22.5 °C, and rotation speed 80 r/min. Based on the optimized parameters obtained, the bioreactor was operated for recovering mixed Au and Cu particles. 88.1 wt.% of Cu and 76.6 wt.% of Au were recovered. The paper contributed important information to recover precious metals from waste PCBs. PMID:26316021

  7. Printed circuit boards as platform for disposable lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Leiterer, Christian; Urban, Matthias; Fritzsche, Wolfgang; Goldys, Ewa; Inglis, David

    2015-12-01

    An increasing demand in performance from electronic devices has resulted in continuous shrinking of electronic components. This shrinkage has demanded that the primary integration platform, the printed circuit board (PCB), follow this same trend. Today, PCB companies offer ~100 micron sized features (depth and width) which mean they are becoming suitable as physical platforms for Lab-on-a-Chip (LOC) and microfluidic applications. Compared to current lithographic based fluidic approaches; PCB technology offers several advantages that are useful for this technology. These include: Being easily designed and changed using free software, robust structures that can often be reused, chip layouts that can be ordered from commercial PCB suppliers at very low cost (1 AUD each in this work), and integration of electrodes at no additional cost. Here we present the application of PCB technology in connection with microfluidics for several biomedical applications. In case of commercialization the costs for each device can be even further decreased to approximately one tenth of its current cost.

  8. Development of a fabrication technology for integrating low cost optical interconnects on a printed circuit board

    NASA Astrophysics Data System (ADS)

    Van Steenberge, Geert; Hendrickx, Nina; Geerinck, Peter; Bosman, Erwin; Van Put, Steven; Van Erps, Jurgen; Thienpont, Hugo; Van Daele, Peter

    2006-02-01

    We present a fabrication technology for integrating polymer waveguides and 45° micromirror couplers into standard electrical printed circuit boards (PCBs). The most critical point that is being addressed is the low-cost manufacturing and the compatibility with current PCB production. The latter refers to the processes as well as material compatibility. Multimode waveguides are patterned by KrF excimer laser ablation in acrylate polymers with 0.13 dB/cm propagation loss at 850 nm. Single mode waveguides using inorganic-organic hybrid polymers show an attenuation loss of 0.62 +/- 0.08 dB/cm at 1.3 μm. A process for embedding metal coated 45° micromirrors in optical waveguiding layers is developed. Mirrors are selectively metallized using a lift-off process. Filling up the angled via without the presence of air bubbles and providing a flat surface above the mirror is only possible by enhancing the cladding deposition process with ultrasound agitation. Initial single mode coupling loss measurements at 1.3 μm show an excess mirror loss of 1.55 dB. Multimode coupling loss measurements will improve this excess loss, because of the lower surface roughness of the mirrors using the acrylate polymers for multimode waveguides.

  9. Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation.

    PubMed

    Fogarasi, Szabolcs; Imre-Lucaci, Florica; Imre-Lucaci, Arpád; Ilea, Petru

    2014-05-30

    The present study aims to develop an eco-friendly chemical-electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75kWh/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples. PMID:24747374

  10. Inkjet-printing- and electroless-plating- based fabrication of RF circuit structures on high-frequency substrates

    NASA Astrophysics Data System (ADS)

    Sridhar, A.; Reiding, J.; Adelaar, H.; Achterhoek, F.; van Dijk, D. J.; Akkerman, R.

    2009-08-01

    In this paper, a method to fabricate radio frequency (RF) circuit structures is described. This method involves inkjet printing of a silver nanoparticle-based ink on a functional substrate material to create the seed track (i.e., the seed layer), onto which copper is subsequently deposited by an electroless plating method, to obtain the desired thickness and conductivity of the RF structures. This process combination was validated by fabricating an S-band filter on a high-frequency substrate and comparing the RF performance of this filter with that of a filter fabricated using the conventional lithography-based method. The adhesion of the circuit structures to the substrate was qualitatively ascertained by the scotch tape test method. The performance of the inkjet-printed-electroless-plated filter was comparable to that of the conventional filter, thus proving the suitability of this novel method for practical RF applications.

  11. Towards Practical Application of Paper based Printed Circuits: Capillarity Effectively Enhances Conductivity of the Thermoplastic Electrically Conductive Adhesives

    NASA Astrophysics Data System (ADS)

    Wu, Haoyi; Chiang, Sum Wai; Lin, Wei; Yang, Cheng; Li, Zhuo; Liu, Jingping; Cui, Xiaoya; Kang, Feiyu; Wong, Ching Ping

    2014-09-01

    Direct printing nanoparticle-based conductive inks onto paper substrates has encountered difficulties e.g. the nanoparticles are prone to penetrate into the pores of the paper and become partially segmented, and the necessary low-temperature-sintering process is harmful to the dimension-stability of paper. Here we prototyped the paper-based circuit substrate in combination with printed thermoplastic electrically conductive adhesives (ECA), which takes the advantage of the capillarity of paper and thus both the conductivity and mechanical robustness of the printed circuitsweredrastically improved without sintering process. For instance, the electrical resistivity of the ECA specimen on a pulp paper (6 × 10-5Ω.cm, with 50 wt% loading of Ag) was only 14% of that on PET film than that on PET film. This improvement has been found directly related to the sizing degree of paper, in agreement with the effective medium approximation simulation results in this work. The thermoplastic nature also enables excellent mechanical strength of the printed ECA to resist repeated folding. Considering the generality of the process and the wide acceptance of ECA technique in the modern electronic packages, this method may find vast applications in e.g. circuit boards, capacitive touch pads, and radio frequency identification antennas, which have been prototyped in the manuscript.

  12. Towards Practical Application of Paper based Printed Circuits: Capillarity Effectively Enhances Conductivity of the Thermoplastic Electrically Conductive Adhesives

    PubMed Central

    Wu, Haoyi; Chiang, Sum Wai; Lin, Wei; Yang, Cheng; Li, Zhuo; Liu, Jingping; Cui, Xiaoya; Kang, Feiyu; Wong, Ching Ping

    2014-01-01

    Direct printing nanoparticle-based conductive inks onto paper substrates has encountered difficulties e.g. the nanoparticles are prone to penetrate into the pores of the paper and become partially segmented, and the necessary low-temperature-sintering process is harmful to the dimension-stability of paper. Here we prototyped the paper-based circuit substrate in combination with printed thermoplastic electrically conductive adhesives (ECA), which takes the advantage of the capillarity of paper and thus both the conductivity and mechanical robustness of the printed circuitsweredrastically improved without sintering process. For instance, the electrical resistivity of the ECA specimen on a pulp paper (6 × 10−5Ω·cm, with 50 wt% loading of Ag) was only 14% of that on PET film than that on PET film. This improvement has been found directly related to the sizing degree of paper, in agreement with the effective medium approximation simulation results in this work. The thermoplastic nature also enables excellent mechanical strength of the printed ECA to resist repeated folding. Considering the generality of the process and the wide acceptance of ECA technique in the modern electronic packages, this method may find vast applications in e.g. circuit boards, capacitive touch pads, and radio frequency identification antennas, which have been prototyped in the manuscript. PMID:25182052

  13. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED)

    NASA Astrophysics Data System (ADS)

    Xu, Wenya; Zhao, Jianwen; Qian, Long; Han, Xianying; Wu, Liangzhuan; Wu, Weichen; Song, Minshun; Zhou, Lu; Su, Wenming; Wang, Chao; Nie, Shuhong; Cui, Zheng

    2014-01-01

    A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10-3 A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 104 and output current up to 3.5 × 10-4 A at Vscan = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving circuit, showing the potential as backplanes for active matrix OLED applications.A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10-3 A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 104 and output current up to 3.5 × 10-4 A at Vscan = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving

  14. New circular polarization selective surface concepts based on the Pierrot cell using printed circuit technology

    NASA Astrophysics Data System (ADS)

    Lopez, Humberto Israel

    This M.A.Sc. thesis focuses on finding an alternative method of constructing a circular polarization selective surface (CPSS) based on the Pierrot cell using the standard printed circuit technology. This technique uses a folded flexible substrate, which enables the implementation of the 3D Pierrot cells on a single metal layer defined with precision printed circuit board techniques, without the need for metalized via holes. Different topologies of the CPSS are analyzed in order to make the CPSS more efficient in terms of bandwidth and independence on the direction of propagation of the incident wave. A left-hand CPSS is designed to illustrate the benefits of the proposed approach. The first approach is a simple Pierrot unit cell CPSS which is optimized to have good reflection and transmission coefficients. A prototype is built and then characterized in a test bench operating in the K-band. For the fabricated prototype, the transmission coefficients of plane waves at normal incidence in the right-hand and the left-hand circular polarizations are --0.48 dB and --24 dB respectively. The bandwidth for which the transmission coefficient of the incident left-handed incident wave is greater than --3 dB was of 17.6%. These results are in good agreement with simulations results obtained with HFSS. A second variant considered is a Pierrot cell with a series load in the middle segment. With this cell it is possible to equalize the frequencies giving a better operation in the right- and left-handed circular polarized waves. There is an improvement for the co-pol to cross-pol ratio for the RHCP waves of 10 dB at 20 GHz. The added load does not affect the performance for the left-hand circular polarization, as expected. The third modification is a Pierrot cell at 90 degrees. This cell is designed to allow the combination of two Pierrot cells working at different frequencies on the same substrate in order to increase the frequency bandwidth of the CPSS. Unfortunately, the axial

  15. Combustion and inorganic bromine emission of waste printed circuit boards in a high temperature furnace

    SciTech Connect

    Ni Mingjiang; Xiao Hanxi; Chi Yong; Yan Jianhua; Buekens, Alfons; Jin Yuqi; Lu Shengyong

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer The combustion efficiency of waste printed circuit boards (PCBs) depends on temperature, excess air factor, and high temperature zone residence time. Temperature has the most significant impact. Under the proposed condition, combustion of waste PCBs alone is quite complete within the furnace. Black-Right-Pointing-Pointer High temperature prompts a more complete bromine release and conversion. When temperature is high enough, 99.9% organobrominated compounds, the potential precursors for brominated dixoins formation, are destroyed efficiently and convert to inorganic bromine in flue gas, as HBr and Br{sub 2}. Black-Right-Pointing-Pointer Temperature has crucial influence over the inhibition of HBr conversion to Br{sub 2}, while the oxygen partial pressure plays a reverse role in the conversion to a very small extent. Increasing temperature will decrease the volume percentage ratio of Br{sub 2}/HBr in flue gas greatly. Black-Right-Pointing-Pointer The thermodynamic equilibrium approach of bromine conversion was investigated. The two forms of inorganic bromine in flue gas substantially reach thermodynamic equilibrium within 0.25 s. Under the proposed operating condition, the reaction of Br transfer and conversion finish. - Abstract: High temperature combustion experiments of waste printed circuit boards (PCBs) were conducted using a lab-scale system featuring a continuously-fed drop tube furnace. Combustion efficiency and the occurrence of inorganic bromine (HBr and Br{sub 2}) were systematically studied by monitoring the main combustion products continuously. The influence of furnace temperature (T) was studied from 800 to 1400 Degree-Sign C, the excess air factor (EAF) was varied from 1.2 to 1.9 and the residence time in the high temperature zone (RT{sub HT}) was set at 0.25, 0.5, or 0.75 s. Combustion efficiency depends on temperature, EAF and RT{sub HT}; temperature has the most significant effect. Conversion of organic

  16. Recovery of metals from waste printed circuit boards by a mechanical method using a water medium.

    PubMed

    Duan, Chenlong; Wen, Xuefeng; Shi, Changsheng; Zhao, Yuemin; Wen, Baofeng; He, Yaqun

    2009-07-15

    Research on the recycling of waste printed circuit boards (PCB) is at the forefront of environmental pollution prevention and resource recycling. To effectively crush waste PCB and to solve the problem of secondary pollution from fugitive odors and dust created during the crushing process, a wet impacting crusher was employed to achieve comminution liberation of the PCB in a water medium. The function of water in the crushing process was analyzed. When using slippery hammerheads, a rotation speed of 1470 rpm, a water flow of 6m(3)/h and a sieve plate aperture of 2.2mm, 95.87% of the crushed product was sized less than 1mm. 94.30% of the metal was in this grade of product. Using smashed material graded -1mm for further research, a Falcon concentrator was used to recover the metal from the waste PCB. Engineering considerations were the liberation degree, the distribution ratio of the metal and a way to simplify the technology. The separation mechanism for fine particles of different densities in a Falcon concentrator was analyzed in detail and the separation process in the segregation and separation zones was deduced. Also, the magnitude of centrifugal acceleration, the back flow water pressure and the feed slurry concentration, any of which might affect separation results, were studied. A recovery model was established using Design-Expert software. Separating waste PCB, crushed to -1mm, with the Falcon separator gave a concentrated product graded 92.36% metal with a recovery of 97.05%. To do this the reverse water pressure was 0.05 MPa, the speed transducer frequency was set at 30 Hz and the feed density was 20 g/l. A flow diagram illustrating the new technique of wet impact crushing followed by separation with a Falcon concentrator is provided. The technique will prevent environmental pollution from waste PCB and allow the effective recovery of resources. Water was used as the medium throughout the whole process. PMID:19121892

  17. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control.

    PubMed

    Chiang, Hung-Lung; Lin, Kuo-Hsiung

    2014-01-15

    The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H2, CH4, CO2, and NOx, were 60-115, 0.4-4.0, 1.1-10, 30-95, and 0-0.7mg/g, corresponding to temperatures ranging from 200 to 500°C. When the pyrolysis temperature was lower than 300°C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400°C. When VOC exhaust was flowed through the bed of Fe-impregnated Al2O3, the emission of ozone precursor VOCs could be reduced by 70-80%. PMID:24239260

  18. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards.

    PubMed

    Long, Laishou; Sun, Shuiyu; Zhong, Sheng; Dai, Wencan; Liu, Jingyong; Song, Weifeng

    2010-05-15

    The constant growth in generation of waste printed circuit boards (WPCB) poses a huge disposal problem because they consist of a heterogeneous mixture of organic and metallic chemicals as well as glass fiber. Also the presence of heavy metals, such as Pb and Cd turns this scrap into hazardous waste. Therefore, recycling of WPCB is an important subject not only from the recovery of valuable materials but also from the treatment of waste. The aim of this study was to present a recycling process without negative impact to the environment as an alternative for recycling WPCB. In this work, a process technology containing vacuum pyrolysis and mechanical processing was employed to recycle WPCB. At the first stage of this work, the WPCB was pyrolyzed under vacuum in a self-made batch pilot-scale fixed bed reactor to recycle organic resins contained in the WPCB. By vacuum pyrolysis the organic matter was decomposed to gases and liquids which could be used as fuels or chemical material resources, however, the inorganic WPCB matter was left unaltered as solid residues. At the second stage, the residues obtained at the first stage were investigated to separate and recover the copper through mechanical processing such as crushing, screening, and gravity separation. The copper grade of 99.50% with recovery of 99.86% based on the whole WPCB was obtained. And the glass fiber could be obtained by calcinations in a muffle furnace at 600 degrees C for 10 min. This study had demonstrated the feasibility of vacuum pyrolysis and mechanical processing for recycling WPCB. PMID:20060640

  19. Rapid prototyping of interfacing microcomponents for printed circuit board-level optical interconnects

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Thienpont, Hugo

    2012-01-01

    One of the important challenges for the deployment of the emerging breed of nanotechnology components is interfacing them with the external world, preferably accomplished with low-cost micro-optical devices. For the fabrication of this kind of micro-optical components, we make use of deep proton writing (DPW) as a generic rapid prototyping technology. DPW consists of bombarding polymer samples with swift protons, which results after chemical processing steps in high quality micro-optical components. The strength of the DPW micro-machining technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we give an overview of the process steps of the technology and we present several examples of micro-optical and micro-mechanical components, fabricated through DPW, targeting applications in printed circuit baordlevel optical interconnections. These include: high-precision 2-D fiber connectors, discrete out-of-plane coupling structures featuring high-quality 45° and curved micro-mirrors, arrays of high aspect ratio micro-pillars and backplane connectors. While DPW is clearly not a mass fabrication technique as such, one of its assets is that once the master component has been prototyped, a metal mould can be generated from the DPW master by applying electroplating. After removal of the plastic master, this metal mould can be used as a shim in a final microinjection moulding or hot embossing step. This way, the master component can be mass-produced at low cost in a wide variety of high-tech plastics.

  20. Prioritizing material recovery for end-of-life printed circuit boards

    SciTech Connect

    Wang Xue; Gaustad, Gabrielle

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Material recovery driven by composition, choice of ranking, and weighting. Black-Right-Pointing-Pointer Economic potential for new recycling technologies quantified for several metrics. Black-Right-Pointing-Pointer Indicators developed for materials incurring high eco-toxicity costs. Black-Right-Pointing-Pointer Methodology useful for a variety of stakeholders, particularly policy-makers. - Abstract: The increasing growth in generation of electronic waste (e-waste) motivates a variety of waste reduction research. Printed circuit boards (PCBs) are an important sub-set of the overall e-waste stream due to the high value of the materials contained within them and potential toxicity. This work explores several environmental and economic metrics for prioritizing the recovery of materials from end-of-life PCBs. A weighted sum model is used to investigate the trade-offs among economic value, energy saving potentials, and eco-toxicity. Results show that given equal weights for these three sustainability criteria gold has the highest recovery priority, followed by copper, palladium, aluminum, tin, lead, platinum, nickel, zinc, and silver. However, recovery priority will change significantly due to variation in the composition of PCBs, choice of ranking metrics, and weighting factors when scoring multiple metrics. These results can be used by waste management decision-makers to quantify the value and environmental savings potential for recycling technology development and infrastructure. They can also be extended by policy-makers to inform possible penalties for land-filling PCBs or exporting to the informal recycling sector. The importance of weighting factors when examining recovery trade-offs, particularly for policies regarding PCB collection and recycling are explored further.

  1. Evaluation of gold and silver leaching from printed circuit board of cellphones.

    PubMed

    Petter, P M H; Veit, H M; Bernardes, A M

    2014-02-01

    Electronic waste has been increasing proportionally with the technology. So, nowadays, it is necessary to consider the useful life, recycling, and final disposal of these equipment. Metals, such as Au, Ag, Cu, Sn and Ni can be found in the printed circuit boards (PCB). According to this, the aims of this work is to characterize the PCBs of mobile phones with aqua regia; obtaining "reference" values of leaching, to gold and silver, with cyanide and nitric acid, respectively; and study the process of leaching of these metals in alternative leaching with sodium thiosulfate and ammonium thiosulfate. The metals were characterized by digesting the sample with aqua regia for 1 and 2h at 60°C and 80°C. The leaching of Au with a commercial reagent (cyanide) and the Ag with HNO3were made. The leaching of Au and Ag with alternative reagents: Na2S2O3, and (NH4)2S2O3 in 0.1M concentration with the addition of CuSO4, NH4OH, and H2O2, was also studied. The results show that the digestion with aqua regia was efficient to characterize the metals present in the PCBs of mobile phones. However, the best method to solubilize silver was by digesting the sample with nitric acid. The leaching process using sodium thiosulfate was more efficient when an additional concentration of 0.015 and 0.030 M of the CuSO4 was added. PMID:24332399

  2. Identification of estrogenic compounds emitted from the combustion of computer printed circuit boards in electronic waste.

    PubMed

    Owens, Clyde V; Lambright, Christy; Bobseine, Kathy; Ryan, Bryce; Gray, L Earl; Gullett, Brian K; Wilson, Vickie S

    2007-12-15

    Rapid changes in technology have brought about a surge in demand for electronic equipment. Many of these products contain brominated flame-retardants (BFRs) as additives to decrease the rate of combustion, raising concerns about their toxicological risk. In our study, emissions from the combustion of computer-printed circuit boards were evaluated in the T47D-KBluc estrogen-responsive cell line at a series of concentrations. There was significant activity from the emission extract when compared to the positive control, 0.1 nM estradiol. After HPLC fractionation, GC/MS identified ten chemicals which included bisphenol A; the brominated derivates mono-, di-, and tribisphenol, triphenyl phosphate, triphenyl phosphine oxide, 4'-bromo-[1,1'-biphenyl]-4-ol,3,5-dibromo-4-hydroxybiphenyl,3,5-dibromo-2-hydroxybiphenyl, and the oxygenated polyaromatic hydrocarbon benzanthrone. Commercially available samples of these ten compounds were tested. The compound 4'-bromo-[1,1'-biphenyl]-4-ol resulted in dose-dependent significant increases for luciferase activity at concentrations ranging from 0.1 to 10 microM in the T47D-KBluc assay. The chemical also demonstrated an affinity for binding to the estrogen receptor (ER) with an IC50 of 2 x 10(-7) M. To determine the uterotrophic activity, three doses (50, 100, and 200 mg/kg/day) of 4'-bromo-[1,1'-biphenyl]-4-ol were administered to adult ovariectomized Long-Evans rats for 3 days. Treatment of the animals with 200 mg/ kg/day showed an increase in uterine weight Hence one new chemical, released by burning of electrical wastes, was identified which displays estrogenic activity both in vitro and in vivo. However, it was about 1000-fold less potent than ethynyl estradiol. PMID:18200886

  3. Liquid oil and residual characteristics of printed circuit board recycle by pyrolysis.

    PubMed

    Lin, Kuo-Hsiung; Chiang, Hung-Lung

    2014-04-30

    Non-metal fractions of waste printed circuit boards (PCBs) were thermally treated (200-500°C) under nitrogen atmosphere. Carbon, hydrogen, and nitrogen were determined by elemental analyzer, bromine by instrumental neutron activation analysis (INAA), phosphorus by energy dispersive X-ray spectrometer (EDX), and 29 trace elements by inductively coupled plasma atomic emission spectrometer (ICP-AES) and mass spectrometry (ICP-MS) for raw material and pyrolysis residues. Organic compositions of liquid oil were identified by GC (gas chromatography)-MS, trace element composition by ICP system, and 12 water-soluble ions by IC (ionic chromatography). Elemental content of carbon was >450 mg/g, oxygen 300 mg/g, bromine and hydrogen 60 mg/g, nitrogen 30 mg/g, and phosphorus 28 mg/g. Sulfur was trace in PCBs. Copper content was 25-28 mg/g, iron 1.3-1.7 mg/g, tin 0.8-1.0mg/g and magnesium 0.4-1.0mg/g; those were the main metals in the raw materials and pyrolytic residues. In the liquid products, carbon content was 68-73%, hydrogen was 10-14%, nitrogen was 4-5%, and sulfur was less than 0.05% at pyrolysis temperatures from 300 to 500°C. Phenol, 3-bromophenol, 2-methylphenol and 4-propan-2-ylphenol were major species in liquid products, accounting for >50% of analyzed organic species. Bromides, ammonium and phosphate were the main species in water sorption samples for PCB pyrolysis exhaust. PMID:24637450

  4. Ion track enabled multiple wire microvia interconnects in printed circuit boards

    NASA Astrophysics Data System (ADS)

    Yousef, H.; Lindeberg, M.; Hjort, K.

    2008-04-01

    As the call for higher wiring density in packaging and vertical microvia interconnections (microvias) rapidly evolves, the need for smaller lateral dimensions in printed circuit boards (PCB) microvias must be met. The ion track lithography described in this paper allows for high throughput micromachining of small, deep, vertical microvias in flexible PCB and all-polymer laminates. Ion track lithography makes use of swift heavy ion irradiation to enhance the selectivity and directionality of chemical etching. Within the areas exposed to the ion irradiation, small sub-micron pores (capillaries) are created, one for every ion. If etching is prolonged, the pores become merged. Electrodeposition from a metallic seed layer is used to fill these structures with metal. The lithography masks define either the areas where the ion tracks are developed or where the tracks are metallized. The smallest achievable size of the microvias is only limited by the resolution of the mask; microvias below 10 μm in diameter can also be achieved also in thick polyimide foils. Since each impinging ion forms one track, the foil's porosity can be controlled by adjusting the irradiation dose, as well as by etching the pores to a suitable size. Depending on the porosity and material, the resultant metallized microvia consists of either individual or interlaced wires (like strands in a bundle wire), or is a solid. As an individual sub-micron wire may have an aspect ratio of several hundreds, this allows for the fabrication of truly vertical microvia structures, allowing ultra-high density microvia batch production. Demonstrator microstructures with highly vertical microvias have been fabricated in foils up to 125 μm thickness. Several components integrated in flexible PCB have been presented by us, e.g. magnetoresistive sensors, thermopile IR-sensors and microwave components like inductor elements.

  5. Micro/nano-scale fabrication of integrated polymer optical wire circuit arrays for optical printed circuit board (O-PCB) application

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, Seung G.; Park, Se G.; Kim, Kyong H.; Kang, Jin K.; Chin, In J.; Kwon, Y. K.; Choi, Young W.

    2005-02-01

    We report on the results of our study on the micro/nano-scale design, fabrication and integration of waveguide arrays for optical printed circuit boards (O-PCBs) and VLSI micro/nano-photonic applications. The O-PCBs are designed to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards or substrates. We have assembled O-PCBs using optical waveguide arrays and circuits made of polymer materials and have examined information handling performances. We also designed power beam splitters and waveguide filters, using nano-scale photonic band-gap crystals, for VLSI photonic integration application. We discuss potential applications of polymer optical waveguide devices and arrays for O-PCB and VLSI micro/nano-photonics for computers, telecommunications, and transportation systems.

  6. Generation of copper rich metallic phases from waste printed circuit boards.

    PubMed

    Cayumil, R; Khanna, R; Ikram-Ul-Haq, M; Rajarao, R; Hill, A; Sahajwalla, V

    2014-10-01

    The rapid consumption and obsolescence of electronics have resulted in e-waste being one of the fastest growing waste streams worldwide. Printed circuit boards (PCBs) are among the most complex e-waste, containing significant quantities of hazardous and toxic materials leading to high levels of pollution if landfilled or processed inappropriately. However, PCBs are also an important resource of metals including copper, tin, lead and precious metals; their recycling is appealing especially as the concentration of these metals in PCBs is considerably higher than in their ores. This article is focused on a novel approach to recover copper rich phases from waste PCBs. Crushed PCBs were heat treated at 1150°C under argon gas flowing at 1L/min into a horizontal tube furnace. Samples were placed into an alumina crucible and positioned in the cold zone of the furnace for 5 min to avoid thermal shock, and then pushed into the hot zone, with specimens exposed to high temperatures for 10 and 20 min. After treatment, residues were pulled back to the cold zone and kept there for 5 min to avoid thermal cracking and re-oxidation. This process resulted in the generation of a metallic phase in the form of droplets and a carbonaceous residue. The metallic phase was formed of copper-rich red droplets and tin-rich white droplets along with the presence of several precious metals. The carbonaceous residue was found to consist of slag and ∼30% carbon. The process conditions led to the segregation of hazardous lead and tin clusters in the metallic phase. The heat treatment temperature was chosen to be above the melting point of copper; molten copper helped to concentrate metallic constituents and their separation from the carbonaceous residue and the slag. Inert atmosphere prevented the re-oxidation of metals and the loss of carbon in the gaseous fraction. Recycling e-waste is expected to lead to enhanced metal recovery, conserving natural resources and providing an environmentally

  7. [Copper recovery from artificial bioleaching lixivium of waste printed circuit boards].

    PubMed

    Cheng, Dan; Zhu, Neng-Wu; Wu, Ping-Xiao; Zou, Ding-Hui; Xing, Yi-Jia

    2014-04-01

    The key step to realize metal recovery from bioleaching solutions is the recovery of copper from bioleaching lixivium of waste printed circuit boards in high-grade form. The influences of cathode material, current density, initial pH and initial copper ion concentration on the efficiency and energy consumption of copper recovery from artificial bioleaching lixivium under condition of constant current were investigated using an electro-deposition approach. The results showed that the larger specific surface area of the cathode material (carbon felt) led to the higher copper recovery efficiency (the recovery efficiencies of the anode and the cathode chambers were 96.56% and 99.25%, respectively) and the smaller the total and unit mass product energy consumption (the total and unit mass product energy consumptions were 0.022 kW x h and 15.71 kW x h x kg(-1), respectively). The copper recovery efficiency and energy consumption increased with the increase of current density. When the current density was 155.56 mA x cm(-2), the highest copper recovery efficiencies in the anode and cathode chambers reached 98.51% and 99.37%, respectively. Accordingly, the highest total and unit mass product energy consumptions were 0.037 kW x h and 24.34 kW x h x kg(-1), respectively. The copper recovery efficiency was also significantly affected by the initial copper ion concentration. The increase of the initial copper ion concentration would lead to faster decrease of copper ion concentration, higher total energy consumption, and lower unit mass product consumption. However, the initial pH had no significant effect on the copper recovery efficiency. Under the optimal conditions (carbon felt for cathode materials, current density of 111.11 mA x cm(-2), initial pH of 2.0, and initial copper ion concentration of 10 g x L(-1)), the copper recovery efficiencies of the anode and cathode chambers were 96.75% and 99.35%, and the total and unit mass product energy consumptions were 0.021 kW x h

  8. Recycling of non-metallic fractions from waste printed circuit boards: a review.

    PubMed

    Guo, Jiuyong; Guo, Jie; Xu, Zhenming

    2009-09-15

    The major economic driving force for recycling of waste printed circuit boards (PCBs) is the value of the metallic fractions (MFs) of PCBs. The non-metallic fractions (NMFs), which take up almost 70wt% of waste PCBs, were treated by combustion or land filling in the past. However, combustion of the NMFs will cause the formation of highly toxic polybrominated dibenzodioxins and dibenzofurans (PBDD/Fs) while land filling of the NMFs will lead to secondary pollution caused by heavy metals and brominated flame retardants (BFRs) leaching to the groundwater. Therefore, recycling of the NMFs from waste PCBs is drawing more and more attention from the public and the governments. Currently, how to recycle the NMFs environmental soundly has become a significant topic in recycling of waste PCBs. In order to fulfill the better resource utilization of the NMFs, the compositions and characteristics of the NMFs, methods and outcomes of recycling the NMFs from waste PCBs and analysis and treatment for the hazardous substances contained in the NMFs were reviewed in this paper. Thermosetting resin matrix composites, thermoplastic matrix composites, concrete and viscoelastic materials are main applications for physical recycling of the NMFs. Chemical recycling methods consisting of pyrolysis, gasification, supercritical fluids depolymerization and hydrogenolytic degradation can be used to convert the NMFs to chemical feedstocks and fuels. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) can be used to determine the toxicity characteristic (TC) of the NMFs and to evaluate the environmental safety of products made from the recycled NMFs. It is believed that physical recycling of the NMFs has been a promising recycling method. Much more work should be done to develop comprehensive and industrialized usage of the NMFs recycled by physical methods. Chemical recycling methods have the advantages in eliminating hazardous substances

  9. New printed circuit boards magnetic coils in the vacuum vessel of J-TEXT tokamak for position measurement

    SciTech Connect

    Qiu, S. S.; Zhuang, G.; Zhang, M.; Xia, D. H.; Rao, B.; Zhang, X. Q.; Pan, Y.; Gentle, K.

    2010-10-15

    Four sets of magnetic diagnostic coils, which are printed on machinable ceramic printed circuit boards (PCB), are designed, fabricated, installed, and tested in the Joint Texas Experimental Tokamak (J-TEXT) vacuum vessel for detecting the plasma radial and vertical displacements relative to the geometric center of the vacuum vessel in Ohmic discharges. Each coordinate is determined by a pair of variable cross-section Rogowski and saddle coils, which measure the tangential and normal magnetic fields (relative to the coil surface). These coils are suitable for mass production and offer advantages in vacuum compatibility and temperature tolerance that are important for J-TEXT. Position measurements using PCB coils are compared with those from soft x-ray image system and match the position well.

  10. New printed circuit boards magnetic coils in the vacuum vessel of J-TEXT tokamak for position measurementa)

    NASA Astrophysics Data System (ADS)

    Qiu, S. S.; Zhuang, G.; Zhang, M.; Xia, D. H.; Rao, B.; Zhang, X. Q.; Pan, Y.; Gentle, K.

    2010-10-01

    Four sets of magnetic diagnostic coils, which are printed on machinable ceramic printed circuit boards (PCB), are designed, fabricated, installed, and tested in the Joint Texas Experimental Tokamak (J-TEXT) vacuum vessel for detecting the plasma radial and vertical displacements relative to the geometric center of the vacuum vessel in Ohmic discharges. Each coordinate is determined by a pair of variable cross-section Rogowski and saddle coils, which measure the tangential and normal magnetic fields (relative to the coil surface). These coils are suitable for mass production and offer advantages in vacuum compatibility and temperature tolerance that are important for J-TEXT. Position measurements using PCB coils are compared with those from soft x-ray image system and match the position well.

  11. Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt†

    PubMed Central

    Gelber, Matthew K.

    2015-01-01

    Here we demonstrate a method for creating multilayer or 3D microfluidics by casting a curable resin around a water-soluble, freestanding sacrificial mold. We use a purpose-built 3D printer to pattern self-supporting filaments of the sugar alcohol isomalt, which we then back-fill with a transparent epoxy resin. Dissolving the sacrificial mold leaves a network of cylindrical channels as well as input and output ports. We use this technique to fabricate a combinatorial mixer capable of producing 8 combinations of two fluids in ratios ranging from 1 : 100 to 100 : 1. This approach allows rapid iteration on microfluidic chip design and enables the use of geometry and materials not accessible using conventional soft lithography. The ability to precisely pattern round channels in all three dimensions in hard and soft media may prove enabling for many organ-on-chip systems. PMID:25671493

  12. Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt.

    PubMed

    Gelber, Matthew K; Bhargava, Rohit

    2015-04-01

    Here we demonstrate a method for creating multilayer or 3D microfluidics by casting a curable resin around a water-soluble, freestanding sacrificial mold. We use a purpose-built 3D printer to pattern self-supporting filaments of the sugar alcohol isomalt, which we then back-fill with a transparent epoxy resin. Dissolving the sacrificial mold leaves a network of cylindrical channels as well as input and output ports. We use this technique to fabricate a combinatorial mixer capable of producing 8 combinations of two fluids in ratios ranging from 1 : 100 to 100 : 1. This approach allows rapid iteration on microfluidic chip design and enables the use of geometry and materials not accessible using conventional soft lithography. The ability to precisely pattern round channels in all three dimensions in hard and soft media may prove enabling for many organ-on-chip systems. PMID:25671493

  13. Defectivity evaluation of EUV reticles with etched multilayer image border by wafer printing analysis

    NASA Astrophysics Data System (ADS)

    Jonckheere, Rik; Verduijn, Erik; Watanabe, Genta; Fukugami, Norihito; Sakata, Yo; Kodera, Yutaka; Gallagher, Emily

    2015-07-01

    This paper discusses defectivity of a black border around the mask pattern of a reticle for extreme EUV lithography. An opaque image border is intended to overcome the limitation of the reticle masking blades of the scanner, in providing sufficiently sharp and accurate image delineation on wafer. The most commonly applied "black border" method for EUV reticles has the multilayer mirror removed in the image border area. A dedicated mask with such etched ML image border has been generated. It includes several modules of patterns, each surrounded by black border, so that each can be imaged separately with minimized background dose caused by its border. The printability of programmed defects within this image border has been assessed on an NXE3100 EUV scanner. Studied defect types include ML pedestals with and without absorber still on top. Especially the former must be totally avoided as such clear defect is very printable and can even erase parts of the pattern in neighboring dies.

  14. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    SciTech Connect

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia

    2014-11-15

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.

  15. Computational algorithms for analysis of data from thin-film thermoresistors on a radio-electronic printed circuit board

    NASA Astrophysics Data System (ADS)

    Korneeva, Anna; Shaydurov, Vladimir

    2016-08-01

    In the paper, the data analysis is considered for thin-film thermoresistors coated on to a radio-electronic printed circuit board to determine possible zones of its overheating. A mathematical model consists in an underdetermined system of linear algebraic equations with an infinite set of solutions. For computing a more real solution, two additional conditions are used: the smoothness of a solution and the positiveness of an increase of temperature during overheating. Computational experiments demonstrate that an overheating zone is determined exactly with a tolerable accuracy of temperature in it.

  16. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones.

    PubMed

    Shah, Monal B; Tipre, Devayani R; Dave, Shailesh R

    2014-11-01

    E-waste printed circuit boards (PCB) of computers, mobile-phones, televisions, LX (LongXiang) PCB in LED lights and bulbs, and tube-lights were crushed to ≥250 µm particle size and 16 different metals were analysed. A comparative study has been carried out to evaluate the extraction of Cu-Zn-Ni from computer printed circuit boards (c-PCB) and mobile-phone printed circuit boards (m-PCB) by chemical and biological methods. Chemical process showed the extraction of Cu-Zn-Ni by ferric sulphate was best among the studied chemical lixiviants. Bioleaching experiments were carried out with the iron oxidising consortium, which showed that when E-waste and inoculum were added simultaneously in the medium (one-step process); 60.33% and 87.50% Cu, 75.67% and 85.67% Zn and 71.09% and 81.87% Ni were extracted from 10 g L(-1) of c-PCB and m-PCB, respectively, within 10-15 days of reaction time. Whereas, E-waste added after the complete oxidation of Fe(2+) to Fe(3+) iron containing medium (two-step process) showed 85.26% and 99.99% Cu, 96.75% and 99.49% Zn and 93.23% and 84.21% Ni extraction from c-PCB and m-PCB, respectively, only in 6-8 days. Influence of varying biogenerated Fe(3+) and c-PCB concentrations showed that 16.5 g L(-1) of Fe(3+) iron was optimum up to 100 g L(-1) of c-PCB. Changes in pH, acid consumed and redox potential during the process were also studied. The present study shows the ability of an eco-friendly process for the recovery of multi-metals from E-waste even at 100 g L(-1) printed circuit boards concentration. PMID:25278513

  17. Influence of polymer aging on reliability indices of a typical printed-circuit assembly of radioelectronic equipment

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. V.; Kravchenko, E. V.

    2007-09-01

    Mathematical modeling of nonlinear nonstationary temperature fields of a typical printed-circuit assembly of radioelectronic equipment has been performed in a three-dimensional formulation with account for the convective and radiative heat exchange with the environment. On the basis of the data of the numerical experiment the “aging” (degradation) indices of polymer materials under prolonged thermal action have been determined. It has been established that the reliability of an object modeled with account for the real temperature fields is five times lower compared to the realization of normalized thermal conditions.

  18. Raised land susceptibility of multifunctional epoxy/glass multilayer printed wiring boards

    NASA Astrophysics Data System (ADS)

    Lula, J. W.

    1992-03-01

    Three multifunctional epoxy/glass printed wiring board (PWB) laminates, along with standard FR4 laminate from production stores, were evaluated for their susceptibility to raised lands around the plated through-holes of PWBs. However, after thermal stress tests, the angles of the lands were measured in relation to the PWB surface, and the results were surprisingly similar. None of the materials that were tested stood out as being far better than the others in regard to reduced raised land susceptibility. Judging from the Z-axis thermal expansion curves, the similar average and angles measured after thermal stress tests, and rework simulation tests, it was not evident that any of these multifunctional epoxy systems would resolve the recurring problem of raised lands on channel-plated PWB product at Allied-Signal Inc., Kansas City Division.

  19. Moisture absorption and bakeout characteristics of rigid-flexible multilayer printed wiring boards

    SciTech Connect

    Lula, J.W.

    1991-01-01

    Moisture absorption and bakeout characteristics of Allied-Signal Inc., Kansas City Division (KCD) rigid-flexible printed wiring boards were determined. It was found that test specimens had absorbed 0.95 weight percent moisture when equilibrated to a 50 percent RH, 25{degree}C environment. Heating those equilibrated specimens in a 120{degree}C static air oven removed 92 percent of this absorbed moisture in 24 h. Heating the samples in a 80{degree}C static air oven removed only 64 percent of the absorbed moisture at the end of 24 h. A 120{degree}C vacuum bake removed moisture at essentially the same rate with parylene slowed the absorption rate by approximately 50 percent but did not appreciably affect the equilibrium moisture content or the drying rate.

  20. Migration from printing inks in multilayer food packaging materials by GC-MS analysis and pattern recognition with chemometrics.

    PubMed

    Clemente, Isabel; Aznar, Margarita; Nerín, Cristina; Bosetti, Osvaldo

    2016-01-01

    Inks and varnishes used in food packaging multilayer materials can contain different substances that are potential migrants when packaging is in contact with food. Although printing inks are applied on the external layer, they can migrate due to set-off phenomena. In order to assess food safety, migration tests were performed from two materials sets: set A based on paper and set B based on PET; both contained inks. Migration was performed to four food simulants (EtOH 50%, isooctane, EtOH 95% and Tenax(®)) and the volatile compounds profile was analysed by GC-MS. The effect of presence/absence of inks and varnishes and also their position in the material was studied. A total of 149 volatile compounds were found in migration from set A and 156 from set B materials, some of them came from inks. Quantitative analysis and a principal component analysis were performed in order to identify patterns among sample groups. PMID:26898370

  1. Development of Radiation-Tolerant, Low Mass, High Bandwidth Flexible Printed Circuit Cables for Particle Detection Applications

    NASA Astrophysics Data System (ADS)

    McFadden, Neil

    2016-03-01

    Design options for meter long flexible printed circuit cables required for low mass ultra-high speed signal transmission in the high radiation environment at the High Luminosity run of the Large Hadron Collider (LHC) are described. Two dielectric materials were considered in this study, Kapton and a Kapton/Teflon mixture. The design geometry is a differential embedded microstrip with nominal 100 Ω impedance. Minimal mass and maximal radiation hardness are pre-eminent considerations. The long flexible printed circuit cables are characterized in bit error rate tests (BERT), attenuation versus frequency, mechanical response to stress and temperature change, and RLC decomposition. These tests are performed before and after irradiation with 1 MeV neutrons to 2x1016/cm 2 and 800 MeV protons to 2x1016 1 MeV-neq/cm2. A 1.0 m Kapton cable, with bandwidth of 6.22 gigabits per second, 0.03% of a radiation length, and no radiation induced mechanical or electrical degradation is obtained.

  2. Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor.

    PubMed

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi; Xu, Meng; Lin, Carol S K; McKay, Gordon

    2015-01-01

    Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced. PMID:25445263

  3. Graphene-based inkjet printing of flexible bioelectronic circuits and sensors

    NASA Astrophysics Data System (ADS)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas

    2013-03-01

    Bioelectronics involves interfacing functional biomolecules or living cells with electronic circuitry. Recent advances in electrically conductive inks and inkjet printing technologies have enabled bioelectronic devices to be fabricated on mechanically flexible polymers, paper and silk. In this research, non-conductive graphene-oxide (GO) inks are synthesized from inexpensive graphite powders. Once printed on the flexible substrate the electrical conductivity of the micro-circuitry can be restored through thermal reduction. Laser irradiation is one method being investigated for transforming the high resistance printed GO film into conductive oxygen reduced graphene-oxide (rGO). Direct laser writing is a precision fabrication process that enables the imprinting of conductive and resistive micro-features on the GO film. The mechanically flexible rGO microcircuits can be further biofunctionalized using molecular self-assembly techniques. Opportunities and challenges in exploiting these emerging technologies for developing biosensors and bioelectronic cicruits are briefly discussed.

  4. Guidelines for waste reduction and recycling: Metal finishing, electroplating, printed circuit board manufacturing

    SciTech Connect

    Not Available

    1989-07-01

    The guidance manual describes waste reduction techniques for metal finishing, metal fabricating, electroplating, and printed circuitboard manufacturing operations. Techniques which can be applied to a wide range of industrial processes and those which are process-specific are discussed. Evaporation, reverse osmosis, ion exchange, electrodialysis, ultrafiltration, and electrolytic recovery are described. The manual also describes waste reduction assessment procedures.

  5. Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator.

    PubMed

    Li, Jia; Xu, Zhenming; Zhou, Yaohe

    2008-05-30

    Traditionally, the mixture metals from waste printed circuit board (PCB) were sent to the smelt factory to refine pure copper. Some valuable metals (aluminum, zinc and tin) with low content in PCB were lost during smelt. A new method which used roll-type electrostatic separator (RES) to recovery low content metals in waste PCB was presented in this study. The theoretic model which was established from computing electric field and the analysis of forces on the particles was used to write a program by MATLAB language. The program was design to simulate the process of separating mixture metal particles. Electrical, material and mechanical factors were analyzed to optimize the operating parameters of separator. The experiment results of separating copper and aluminum particles by RES had a good agreement with computer simulation results. The model could be used to simulate separating other metal (tin, zinc, etc.) particles during the process of recycling waste PCBs by RES. PMID:17981393

  6. Tailored benzoxazines as novel resin systems for printed circuit boards in high temperature e-mobility applications

    SciTech Connect

    Troeger, K. Darka, R. Khanpour Neumeyer, T. Altstaedt, V.

    2014-05-15

    This study focuses on the development of Bisphenol-F-benzoxazine resins blended with different ratios of a trifunctional epoxy resin suitable as matrix for substrates for high temperature printed circuit board (HT-PCB) applications. With the benzoxazine blends glass transition temperatures of more than 190 °C could be achieved in combination with a coefficient of thermal expansion in thickness direction (z-CTE) of less than 60 ppm/K without adding any fillers. This shows the high potential of the benzoxazine-epoxy blend systems as substrate materials for HT-PCBs. To understand the thermal behavior of the different formulations, the apparent crosslink density was calculated based on data from Dynamic Mechanical Analysis. Laminates in laboratory scale were prepared and characterized to demonstrate the transformation of the neat resin properties into real electronic substrate properties. The produced laminates exhibit a z-CTE below 40 ppm/K.

  7. Electrostatic separation for recycling waste printed circuit board: a study on external factor and a robust design for optimization.

    PubMed

    Hou, Shibing; Wu, Jiang; Qin, Yufei; Xu, Zhenming

    2010-07-01

    Electrostatic separation is an effective and environmentally friendly method for recycling waste printed circuit board (PCB) by several kinds of electrostatic separators. However, some notable problems have been detected in its applications and cannot be efficiently resolved by optimizing the separation process. Instead of the separator itself, these problems are mainly caused by some external factors such as the nonconductive powder (NP) and the superficial moisture of feeding granule mixture. These problems finally lead to an inefficient separation. In the present research, the impacts of these external factors were investigated and a robust design was built to optimize the process and to weaken the adverse impact. A most robust parameter setting (25 kv, 80 rpm) was concluded from the experimental design. In addition, some theoretical methods, including cyclone separation, were presented to eliminate these problems substantially. This will contribute to efficient electrostatic separation of waste PCB and make remarkable progress for industrial applications. PMID:20518505

  8. New technology for separating resin powder and fiberglass powder from fiberglass-resin powder of waste printed circuit boards.

    PubMed

    Li, Jia; Gao, Bei; Xu, Zhenming

    2014-05-01

    New recycling technologies have been developed lately to enhance the value of the fiberglass powder-resin powder fraction (FRP) from waste printed circuit boards. The definite aim of the present paper is to present some novel methods that use the image forces for the separation of the resin powder and fiberglass powder generated from FRP during the corona electrostatic separating process. The particle shape charactization and particle trajectory simulation were performed on samples of mixed non-metallic particles. The simulation results pointed out that particles of resin powder and particles of fiberglass powder had different detach trajectories at the conditions of the same size and certain device parameters. An experiment carried out using a corona electrostatic separator validated the possibility of sorting these particles based on the differences in their shape characteristics. The differences in the physical properties of the different types of particles provided the technical basis for the development of electrostatic separation technologies for the recycling industry. PMID:24678800

  9. Eddy current measurement of the thickness of top Cu film of the multilayer interconnects in the integrated circuit (IC) manufacturing process

    NASA Astrophysics Data System (ADS)

    Qu, Zilian; Meng, Yonggang; Zhao, Qian

    2015-03-01

    This paper proposes a new eddy current method, named equivalent unit method (EUM), for the thickness measurement of the top copper film of multilayer interconnects in the chemical mechanical polishing (CMP) process, which is an important step in the integrated circuit (IC) manufacturing. The influence of the underneath circuit layers on the eddy current is modeled and treated as an equivalent film thickness. By subtracting this equivalent film component, the accuracy of the thickness measurement of the top copper layer with an eddy current sensor is improved and the absolute error is 3 nm for sampler measurement.

  10. Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display

    NASA Astrophysics Data System (ADS)

    Tuukkanen, Sampo; Välimäki, Marja; Lehtimäki, Suvi; Vuorinen, Tiina; Lupo, Donald

    2016-03-01

    A printed energy harvesting and storage circuit powered by ambient office lighting and its use to power a printed display is reported. The autonomous device is composed of three printed electronic components: an organic photovoltaic module, a carbon-nanotubes-only supercapacitor and an electrochromic display element. Components are fabricated from safe and environmentally friendly materials, and have been fabricated using solution processing methods, which translate into low-cost and high-throughput manufacturing. A supercapacitor made of spray-coated carbon nanotube based ink and aqueous NaCl electrolyte was charged using a printed organic photovoltaic module exposed to office lighting conditions. The supercapacitor charging rate, self-discharge rate and display operation were studied in detail. The supercapacitor self-discharge rate was found to depend on the charging rate. The fully charged supercapacitor was used as a power source to run the electrochromic display over 50 times.

  11. Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display.

    PubMed

    Tuukkanen, Sampo; Välimäki, Marja; Lehtimäki, Suvi; Vuorinen, Tiina; Lupo, Donald

    2016-01-01

    A printed energy harvesting and storage circuit powered by ambient office lighting and its use to power a printed display is reported. The autonomous device is composed of three printed electronic components: an organic photovoltaic module, a carbon-nanotubes-only supercapacitor and an electrochromic display element. Components are fabricated from safe and environmentally friendly materials, and have been fabricated using solution processing methods, which translate into low-cost and high-throughput manufacturing. A supercapacitor made of spray-coated carbon nanotube based ink and aqueous NaCl electrolyte was charged using a printed organic photovoltaic module exposed to office lighting conditions. The supercapacitor charging rate, self-discharge rate and display operation were studied in detail. The supercapacitor self-discharge rate was found to depend on the charging rate. The fully charged supercapacitor was used as a power source to run the electrochromic display over 50 times. PMID:26957019

  12. Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display

    PubMed Central

    Tuukkanen, Sampo; Välimäki, Marja; Lehtimäki, Suvi; Vuorinen, Tiina; Lupo, Donald

    2016-01-01

    A printed energy harvesting and storage circuit powered by ambient office lighting and its use to power a printed display is reported. The autonomous device is composed of three printed electronic components: an organic photovoltaic module, a carbon-nanotubes-only supercapacitor and an electrochromic display element. Components are fabricated from safe and environmentally friendly materials, and have been fabricated using solution processing methods, which translate into low-cost and high-throughput manufacturing. A supercapacitor made of spray-coated carbon nanotube based ink and aqueous NaCl electrolyte was charged using a printed organic photovoltaic module exposed to office lighting conditions. The supercapacitor charging rate, self-discharge rate and display operation were studied in detail. The supercapacitor self-discharge rate was found to depend on the charging rate. The fully charged supercapacitor was used as a power source to run the electrochromic display over 50 times. PMID:26957019

  13. Evaluation of multilayer printed wiring boards by metallographic techniques: An illustrated guide to the preparation and inspection of plated-through hole test coupons based on the requirements of Mil-P-55110D

    NASA Technical Reports Server (NTRS)

    Jellison, J.

    1986-01-01

    This work is an illustrated handbook containing the rationale and procedure for the evaluation of multilayer printed wiring board construction integrity with respect to plated-through holes in accordance with the requirements of MIL-P-55110D, Printed Wiring Boards. It is intended as a practical aid for those concerned with determining the construction integrity of multilayer boards for high reliability applications. Photomicrographs of cross sectioned holes illustrate defect types, acceptable and unacceptable conditions, and methods of measurement. A procedure for specimen preparation is given, and appropriate paragraphs of the military specification are included and explained.

  14. Fluorescence detection test by black printed circuit board based microfluidic channel for polymerase chain reaction.

    PubMed

    Hwang, Ji-Soo; Kim, Yu-Seop; Song, Hye-Jeong; Kim, Jong-Dae; Park, Chan-Young

    2015-01-01

    This paper proposes the optimal structure of a PCB-based micro PCR chip constructed on a PCB substrate using commercial adhesive tapes and plastic covers. The solder mask of the PCB substrate was coated black, and the area where the reaction chamber is attached was legend printed with white silk to minimize the noise during fluorescence detection. The performance of the PCR and fluorescence detection was compared using 6 types of reaction chambers, each made with different double-sided tapes. Three of the chambers were unsuccessful in completing the PCR. The performance of the other three chambers that successfully amplified DNA was compared using Taqman probe for Chlamydia Trachomatis DNA. The amplified product was illuminated diagonally with a blue LED to excite the product just before imaging, and the LED was turned off when the image was captured to prevent quenching of the probe. The images were taken 10 seconds prior to the last extension step for each cycle using a DSLR camera. The experiments were run as a quartet for each three chambers made with different double-sided tape. The results showed that there were significant difference between the three tapes. PMID:26409548

  15. Ultra-sensitive electrical immunoassay biosensors using nanotextured zinc oxide thin films on printed circuit board platforms.

    PubMed

    Jacobs, Michael; Muthukumar, Sriram; Panneer Selvam, Anjan; Engel Craven, Jon; Prasad, Shalini

    2014-05-15

    This study demonstrates the development of nanotextured zinc oxide (ZnO) thin films sputter deposited on printed circuit boards (PCB) to enhance the capability in detecting low concentrations of the protein troponin-T. The presence of this particular biomarker in the bloodstream is a direct indicator of current and/or future risk of various forms of cardiovascular diseases. Electrical transduction through impedance spectroscopy was used to detect troponin-T functionalized immunoassays on nanotextured ZnO surfaces. Calibration of the immunoassay was performed by measuring the impedance changes resulting from the binding of increasing concentrations of troponin-T to the immobilized antibodies on the ZnO surface in (i) phosphate buffered saline (PBS) and (ii) human serum. The limit of detection achieved using this platform was 10 fg/mL and 100 fg/mL in PBS and human serum, respectively. Enhanced detection of troponin-T was found to correlate to the oxygen vacancies in the ZnO thin film. PCB was chosen as the substrate for ease of integration with microelectronic device manufacturing. PMID:24355459

  16. Chemical inertness of UV-cured optical elastomers within the printed circuit board manufacturing process for embedded waveguide applications

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Walczak, Karl; Thomas, Nicholas; Swatowski, Brandon; Demars, Casey; Middlebrook, Christopher

    2014-03-01

    Embedding polymer optical waveguides (WGs) into printed circuit boards (PCBs) for intra-board or board-to-board high speed data communications requires polymer materials that are compatible and inert when exposed to common PCB manufacturing processes. Ensuring both WG functionality after chemical exposure and maintaining PCB manufacturing integrities within the production process is crucial for successful implementation. The PCB manufacturing flow is analyzed to expose major requirements that would be required for the successful implementation of polymer materials for embedded WG development. Chemical testing and analysis were performed on Dow Corning ® OE-4140 UV-Cured Optical Elastomer Core and Dow Corning® OE-4141 UV-Cured Optical Elastomer Cladding which are designed for low loss embedded optical WGs. Contamination testing was conducted to demonstrate polymer compatibility in both cured and uncured form. Various PCB chemicals were treated with uncured polymer material and tested for effective contamination. Fully polymerized multimode WGs were fabricated and exposed to PCB chemicals at temperatures and durations comparable to PCB manufacturing conditions. Chemical analysis shows that the chosen polymer is compatible and inert with most common PCB manufacturing processes.

  17. Novel application of the nonmetallic fraction of the recycled printed circuit boards as a toxic heavy metal adsorbent.

    PubMed

    Hadi, Pejman; Gao, Ping; Barford, John P; McKay, Gordon

    2013-05-15

    Printed circuit boards (PCBs) constitute one of the major sources of toxicity in landfill areas throughout the world. Hence, PCB recycling and separation of its metallic and nonmetallic components has been considered a major ecological breakthrough. Many studies focus on the metallic fraction of the PCBs due to its economic benefits whereas the nonmetallic powder (NMP) has been left isolated. In this work, the feasibility of using NMP as an adsorbent to remove charged toxic heavy metal ions have been studied and its efficiency has been compared with two widely-used commercial adsorbents. The results indicated that the virgin NMP material has no adsorption capacity, while the application of an activation stage to modify the NMP process has a significant effect on its porosity and thus adsorption capacity. The Cu and Pb removal capacity of the activated sample (A-NMP) at a pH level of 4 was 3 mmol and 3.4 mmol per gram of the adsorbent, respectively, which was considerably higher than the commercial ones. PMID:23523907

  18. Performance of the heavy fraction of pyrolysis oil derived from waste printed circuit boards in modifying asphalt.

    PubMed

    Yang, Fan; Sun, Shuiyu; Zhong, Sheng; Li, Shenyong; Wang, Yi; Wu, Jiaqi

    2013-09-15

    The focus of this research was the development of efficient and affordable asphalt modifiers. Pyrolysis oil was produced as a byproduct from the pyrolysis of waste printed circuit boards (WPCBs). The high boiling point fraction was separated from the pyrolysis oil through distillation and is referred to as the heavy fraction of pyrolysis oil (HFPO). The HFPO was tested as an asphalt modifier. Three asphalt modifiers were tested: HFPO; styrene-butadiene rubber (SBR); and HFPO + SBR (1:1). The physical properties and road performance of the three modified asphalts were measured and evaluated. The results have shown that when the amount of modifier was less than 10%, the HFPO modified asphalt had the highest softening point of the three. The dynamic stability (DS) and water resistance of the asphalt mixture with the HFPO modified asphalt was 10,161 cycles/mm and 87.2%, respectively. The DS was much larger than for the HFPO + SBR and SBR modified asphalt mixtures. These results indicate that using HFPO as an asphalt modifier has significant benefits not only for road engineering but also for resource recycling. PMID:23644664

  19. An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals.

    PubMed

    Birloaga, Ionela; Coman, Vasile; Kopacek, Bernd; Vegliò, Francesco

    2014-12-01

    This study refers to two chemical leaching systems for the base and precious metals extraction from waste printed circuit boards (WPCBs); sulfuric acid with hydrogen peroxide have been used for the first group of metals, meantime thiourea with the ferric ion in sulfuric acid medium were employed for the second one. The cementation process with zinc, copper and iron metal powders was attempted for solutions purification. The effects of hydrogen peroxide volume in rapport with sulfuric acid concentration and temperature were evaluated for oxidative leaching process. 2M H2SO4 (98% w/v), 5% H2O2, 25 °C, 1/10 S/L ratio and 200 rpm were founded as optimal conditions for Cu extraction. Thiourea acid leaching process, performed on the solid filtrate obtained after three oxidative leaching steps, was carried out with 20 g/L of CS(NH2)2, 6g/L of Fe(3+), 0.5M H2SO4, The cross-leaching method was applied by reusing of thiourea liquid suspension and immersing 5 g/L of this reagent for each other experiment material of leaching. This procedure has lead to the doubling and, respectively, tripling, of gold and silver concentrations into solution. These results reveal a very efficient, promising and environmental friendly method for WPCBs processing. PMID:25242605

  20. Occurrences and inventories of heavy metals and brominated flame retardants in wastes from printed circuit board production.

    PubMed

    Zhou, Xiaoyu; Guo, Jie; Zhang, Wei; Zhou, Peng; Deng, Jingjing; Lin, Kuangfei

    2014-09-01

    Pollutants including heavy metals and brominated flame retardant were detected in 10 types of production wastes from a typical printed circuit board manufacturing plant, and their inventories were estimated. Rinsing water from etching process had the highest concentrations of copper (665.51 mg/L), lead (1.02 mg/L), nickel (3.60 mg/L), chromium (0.97 mg/L), and tin (1.79 mg/L). Powdered solid waste (SW) from the cut lamination process contained the highest tetrabromobisphenol-A (TBBPA) levels (49.86 mg/kg). Polybrominated diphenyl ethers (PBDEs) were absent in this plant, in agreement with the international regulations of PBDE phase out. The pollutant inventories in the wastes exhibited in the order of copper > > zinc > tin ≈ nickel > lead > chromium > > TBBPA. The potential environmental impact of pollutants in SW during production and disposal were further investigated. A high partitioning of pollutant concentration between the total suspended particle and SW (-0.10 < log K TS < 2.12) was observed for most pollutants, indicating the emission pathway from SW to the airborne atmosphere in the workshop. Although SW met the toxicity characteristic leaching procedure, drilling powder with the smallest particle diameter still showed high leachabilities of lead and tin which may lead to a negative environmental impact during disposal. PMID:24777328

  1. Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor.

    PubMed

    Rodrigues, Michael L M; Leão, Versiane A; Gomes, Otavio; Lambert, Fanny; Bastin, David; Gaydardzhiev, Stoyan

    2015-07-01

    The current work reports on a new approach for copper bioleaching from Printed Circuit Board (PCB) by moderate thermophiles in a rotating-drum reactor. Initially leaching of PCB was carried out in shake flasks to assess the effects of particle size (-208μm+147μm), ferrous iron concentration (1.25-10.0g/L) and pH (1.5-2.5) on copper leaching using mesophile and moderate thermophile microorganisms. Only at a relatively low solid content (10.0g/L) complete copper extraction was achieved from the particle size investigated. Conversely, high copper extractions were possible from coarse-ground PCB (20mm-long) working with increased solids concentration (up to 25.0g/L). Because there was as the faster leaching kinetics at 50°C Sulfobacillus thermosulfidooxidans was selected for experiments in a rotating-drum reactor with the coarser-sized PCB sheets. Under optimal conditions, copper extraction reached 85%, in 8days and microscopic observations by SEM-EDS of the on non-leached and leached material suggested that metal dissolution from the internal layers was restricted by the fact that metal surface was not entirely available and accessible for the solution in the case of the 20mm-size sheets. PMID:25899037

  2. The Dynamic Characteristic of Printed Circuit Board with the Use of the Concept of Simplified Representative Volume Elements

    NASA Astrophysics Data System (ADS)

    Oh, Taek Yul; Seo, Hyun Suk; Kwon, Young-Ha; Kim, Yoon Hyuk

    PCB (Printed Circuit Board)s are designed in various sizes and shapes, use variety of processes and materials, and perform a variety of electrical, structural, and some times thermal functions. The major elements of PCBs are the fabric, the resin, and the metal foil (usually copper). The auxiliary elements are the adhesion promoters or treatments that are applied to the fabric and to the copper to assure maximum adhesion of the resin to the fabric and to the copper. Each copper layer has complicated and different pattern to correctly operate for its mission. In that case, the stiffness of PCBs are affected by the copper layers. By reasoning of this complicated copper layer pattern, it is difficult to determine the PCB stiffness. SAR (Solar Array Regulator) for Korea Leo Earth Observation & Science Satellites Program uses two PCBs of different types and sizes. These PCBs are composed of the resin system and copper layers, and not used the fabric. For this study, arm converter board applied to the SAR components is considered. In this study, the methodology of calculation of the PCB stiffness for SAR component is suggested considering the concept of simplified representative volume element and this property will be correlated with the vibration test results.

  3. New architecture of optical interconnection using 45-deg.-ended connection rods in waveguide-embedded printed circuit boards

    NASA Astrophysics Data System (ADS)

    Rho, Byung S.; Cho, Han S.; Eo, Ji-Young; Kang, Saekyoung; Park, Hyo-Hoon; Kim, Young W.; Joe, Young S.; Yang, Dok J.

    2003-06-01

    We demonstrated a new architecture of the optical interconnection system which can be applied in the waveguide-embedded optical printed circuit board (PCB). We used 45° ended optical connection rods as a medium to guide light paths perpendicularly between surface-emitting lasers (or photodiode) and waveguides. A polymer film of multimode waveguides with cores of 100μm x 65μm was sandwiched between conventional PCBs. We made through-holes with a diameter of ~140μm on the PCB, passing through the waveguide cores, using Ti-sapphire laser drill. The optical rods were made of the segment of multimode silica fiber ribbon. One end of the fiber segment was cut with 45° and the other end with 90° by using the high power laser cutting technique. These fiber rods were inserted into the through-holes formed in the PCB, adjusting the insertion depth to locate the 45°-end of rods near the waveguide core. From this interconnection system, we achieved 12channels optical transmission link through a waveguide with a channel pitch of 250μm in the optical PCB. This new interconnection structure using the optical connection rods is well compatible with the fabrication processes of conventional electronic PCB which is employing the through-hole formation by laser drill and the lamination of plastic films by compression.

  4. Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid.

    PubMed

    Huang, Jinxiu; Chen, Mengjun; Chen, Haiyan; Chen, Shu; Sun, Quan

    2014-02-01

    In this work, a Brønsted acidic ionic liquid, 1-butyl-3-methyl-imidazolium hydrogen sulfate ([bmim]HSO4), was used to leach copper from waste printed circuit boards (WPCBs, mounted with electronic components) for the first time, and the leaching behavior of copper was discussed in detail. The results showed that after the pre-treatment, the metal distributions were different with the particle size: Cu, Zn and Al increased with the increasing particle size; while Ni, Sn and Pb were in the contrary. And the particle size has significant influence on copper leaching rate. Copper leaching rate was higher than 99%, almost 100%, when 1g WPCBs powder was leached under the optimum conditions: particle size of 0.1-0.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% hydrogen peroxide, solid/liquid ratio of 1/25, 70°C and 2h. Copper leaching by [bmim]HSO4 can be modeled with the shrinking core model, controlled by diffusion through a solid product layer, and the kinetic apparent activation energy has been calculated to be 25.36 kJ/mol. PMID:24246577

  5. A long-term static immersion experiment on the leaching behavior of heavy metals from waste printed circuit boards.

    PubMed

    Zhao, Guo-Hua; Luo, Xing-Zhang; Chen, Gui; Zhao, Yong-Jun

    2014-08-01

    Printed circuit boards (PCBs) are the main components of electrical and electronic equipment (EEE). Waste PCBs contain several kinds of heavy metals, including Cu, Pb and Zn. We characterize the leaching of heavy metals (Cu, Pb, Zn and Ni) from waste PCBs in a pH range of 3.0 to 5.6 using a novel approach based on batch pH-static leaching experiments in this work. The results indicate that the leaching behavior of Cu, Pb, Zn and Ni is strongly dependent on pH. Leaching behavior also varies with different pH values and leaching times. The maximum concentrations of Cu, Pb, Zn and Ni in leachate from waste PCBs were 335.00, 17.57, 2.40 and 2.33 mg L(-1), respectively. The highest Pb, Ni, and Cu concentrations leached significantly exceeded the European Union waste-acceptance limit values with respect to inert waste landfills. The leaching of metals follows the shrinking core model with surface reaction control. PMID:24934650

  6. A novel reutilization method for waste printed circuit boards as flame retardant and smoke suppressant for poly (vinyl chloride).

    PubMed

    Xiu, Fu-Rong; Weng, Huiwei; Qi, Yingying; Yu, Gending; Zhang, Zhigang; Zhang, Fu-Shen

    2016-09-01

    In this study, a novel reutilization method for waste printed circuit boards (PCBs) as flame retardant and smoke suppressant for poly (vinyl chloride) (PVC) was successfully testified. A supercritical water oxidation (SCWO) process was applied to treat waste PCBs before they could be used as flame retardants of PVC. The results indicated that SCWO conditions had a significant effect on the flame retarding and smoke suppressing properties of waste PCBs for PVC. Cu2O, CuO, and SnO2 were the main active ingredients in waste PCBs-derived flame retardants. A conversion of Cu elements (Cu(0)→Cu(+)→Cu(2+)) during SCWO process with the increase of reaction temperature was found to be the key influence factor for the flame retarding properties of SCWO-treated PCBs. The experiment results also showed that there was a synergistic effect of flame retardancy between Cu(+) and Cu(2+). After the optimized SCWO treatment, SCWO-treated PCBs significantly improved the flame retardancy and smoke suppression of PVC. Limiting oxygen index (LOI) and char yield (CY) increased with increasing SCWO-treated PCBs content in PVC, while smoke density rating (SDR) and maximum smoke density (MSD) decreased markedly. The mechanical properties of PVC samples were influenced in different degree by adding different content SCWO-treated PCBs. PMID:27179704

  7. Preparation of hierarchical porous carbon from waste printed circuit boards for high performance electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Du, Xuan; Wang, Li; Zhao, Wei; Wang, Yi; Qi, Tao; Li, Chang Ming

    2016-08-01

    Renewable clean energy and resources recycling have become inevitable choices to solve worldwide energy shortages and environmental pollution problems. It is a great challenge to recycle tons of waste printed circuit boards (PCB) produced every year for clean environment while creating values. In this work, low cost, high quality activated carbons (ACs) were synthesized from non-metallic fractions (NMF) of waste PCB to offer a great potential for applications of electrochemical double-layer capacitors (EDLCs). After recovering metal from waste PCB, hierarchical porous carbons were produced from NMF by carbonization and activation processes. The experimental results exhibit that some pores were formed after carbonization due to the escape of impurity atoms introduced by additives in NMF. Then the pore structure was further tailored by adjusting the activation parameters. Roles of micropores and non-micropores in charge storage were investigated when the hierarchical porous carbons were applied as electrode of EDLCs. The highest specific capacitance of 210 F g-1 (at 50 mA g-1) and excellent rate capability were achieved when the ACs possessing a proper micropores/non-micropores ratio. This work not only provides a promising method to recycle PCB, but also investigates the structure tailoring arts for a rational hierarchical porous structure in energy storage/conversion.

  8. A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board.

    PubMed

    Jiang, Wu; Jia, Li; Zhen-Ming, Xu

    2009-01-15

    The electrostatic separation is an effective method for recycling waste electrical and electronic equipment (WEEE). The efficiency of electrostatic separation processes depends on the ability of the separator. As a classical one, the roll-type corona-electrostatic separator has some advantages in recycling metals and plastics from waste printed circuit board (PCB). However, its industry application still faces some problems, such as: the further disposal of the middling products of the separation process; the balance of the production capacity and the good separation efficiency; the separation of the fine granular mixture and the stability of the separation process. A new "two-roll-type corona-electrostatic separator" was built to overcome the limitation of the classical one. The experimental data were discussed and the results showed that the outcome of the separation process was improved by using the new separator. Compared with the classical machine, the mass of conductive products increases 8.9% (groups 2 and 3) and10.2% (group 4) while the mass of the middling products decreases 45% (groups 2 and 3) and 31.7% (group 4), respectively. The production capacity of the new machine increases, and the stability of the separation process is enhanced. PMID:18554788

  9. Critical rotational speed model of the rotating roll electrode in corona electrostatic separation for recycling waste printed circuit boards.

    PubMed

    Li, Jia; Lu, Hongzhou; Xu, Zhenming; Zhou, Yaohe

    2008-06-15

    Waste printed circuit board (PCB) is increasing worldwide. The corona electrostatic separation (CES) was an effective and environmental protection way to recycle resource from waste PCBs. The aim of this paper is to analyze the main factor (rotational speed) that affects the efficiency of CES from the point of view of electrostatics and mechanics. A quantitative method for analyzing the affection of rotational speed was studied and the model for separating flat nonmetal particles in waste PCBs was established. The conception of "charging critical rotational speed" and "detaching critical rotational speed" were presented. Experiments with the waste PCBs verified the theoretical model, and the experimental results were in good agreement with the theoretical model. The results indicated that the purity and recycle percentage of materials got a good level when the rotational speed was about 70 rpm and the critical rotational speed of small particles was higher than big particles. The model can guide the definition of operator parameter and the design of CES, which are needed for the development of any new application of the electrostatic separation method. PMID:18037234

  10. High-resolution Mapping of In Vivo Gastrointestinal Slow Wave Activity Using Flexible Printed Circuit Board Electrodes: Methodology and Validation

    PubMed Central

    DU, PENG; O'GRADY, G.; EGBUJI, J. U.; LAMMERS, W. J.; BUDGETT, D.; NIELSEN, P.; WINDSOR, J. A.; PULLAN, A. J.; CHENG, L. K.

    2014-01-01

    High-resolution, multi-electrode mapping is providing valuable new insights into the origin, propagation, and abnormalities of gastrointestinal (GI) slow wave activity. Construction of high-resolution mapping arrays has previously been a costly and time-consuming endeavor, and existing arrays are not well suited for human research as they cannot be reliably and repeatedly sterilized. The design and fabrication of a new flexible printed circuit board (PCB) multi-electrode array that is suitable for GI mapping is presented, together with its in vivo validation in a porcine model. A modified methodology for characterizing slow waves and forming spatiotemporal activation maps showing slow waves propagation is also demonstrated. The validation study found that flexible PCB electrode arrays are able to reliably record gastric slow wave activity with signal quality near that achieved by traditional epoxy resin-embedded silver electrode arrays. Flexible PCB electrode arrays provide a clinically viable alternative to previously published devices for the high-resolution mapping of GI slow wave activity. PCBs may be mass-produced at low cost, and are easily sterilized and potentially disposable, making them ideally suited to intra-operative human use. PMID:19224368

  11. Production and characterization of polypropylene composites filled with glass fibre recycled from pyrolysed waste printed circuit boards.

    PubMed

    Li, Shenyong; Sun, Shuiyu; Liang, Haifeng; Zhong, Sheng; Yang, Fan

    2014-01-01

    Waste printed circuit boards (WPCBs) are composed of nearly 70% non-metals, which are generally recycled as low-value filling materials or even directly dumped in landfills. In this study, polypropylene (PP) composites reinforced by recycled pure glass fibres (RGF) from pyrolysed WPCBs were successfully produced. The manufacturing process, mechanical properties and thermal behaviour of the composites were investigated. The results showed that the appropriate addition of RGF in the composites can significantly improve the mechanical properties and thermal behaviour. When the added content of RGF was 30%, the maximum increment of tensile strength, impact strength, flexural strength and flexural modulus of the glass fibre (GF)/PP composites are 25.93%, 41.38%, 31.16% and 68.42%, respectively, and the vicat softening temperature could rise by 4.6°C. Furthermore, leaching of the GF/PP composites was also investigated. The GF/PP composites exhibited high performance and non-toxicity, offering a promising method to recycle RGF from pyrolysed WPCBs with high-value applications. PMID:25176309

  12. Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: statistical evaluation and optimization.

    PubMed

    Arshadi, M; Mousavi, S M

    2014-12-01

    Computer printed circuit boards (CPCBs) have a rich metal content and are produced in high volume, making them an important component of electronic waste. The present study used a pure culture of Acidithiobacillus ferrooxidans to leach Cu and Ni from CPCBs waste. The adaptation phase began at 1g/l CPCBs powder with 10% inoculation and final pulp density was reached at 20g/l after about 80d. Four effective factors including initial pH, particle size, pulp density, and initial Fe(3+) concentration were optimized to achieve maximum simultaneous recovery of Cu and Ni. Their interactions were also identified using central composite design in response surface methodology. The suggested optimal conditions were initial pH 3, initial Fe(3+) 8.4g/l, pulp density 20g/l and particle size 95μm. Nearly 100% of Cu and Ni were simultaneously recovered under optimum conditions. Finally, bacterial growth characteristics versus time at optimum conditions were plotted. PMID:25463804

  13. Modeling a Printed Circuit Heat Exchanger with RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect

    Not Available

    2010-12-01

    The main purpose of this report is to design a printed circuit heat exchanger (PCHE) for the Next Generation Nuclear Plant and carry out Loss of Coolant Accident (LOCA) simulation using RELAP5-3D. Helium was chosen as the coolant in the primary and secondary sides of the heat exchanger. The design of PCHE is critical for the LOCA simulations. For purposes of simplicity, a straight channel configuration was assumed. A parallel intermediate heat exchanger configuration was assumed for the RELAP5 model design. The RELAP5 modeling also required the semicircular channels in the heat exchanger to be mapped to rectangular channels. The initial RELAP5 run outputs steady state conditions which were then compared to the heat exchanger performance theory to ensure accurate design is being simulated. An exponential loss of pressure transient was simulated. This LOCA describes a loss of coolant pressure in the primary side over a 20 second time period. The results for the simulation indicate that heat is initially transferred from the primary loop to the secondary loop, but after the loss of pressure occurs, heat transfers from the secondary loop to the primary loop.

  14. Recycling of organic materials and solder from waste printed circuit boards by vacuum pyrolysis-centrifugation coupling technology.

    PubMed

    Zhou, Yihui; Wu, WenBiao; Qiu, Keqiang

    2011-12-01

    Here, we focused on the recycling of waste printed circuit boards (WPCBs) using vacuum pyrolysis-centrifugation coupling technology (VPCT) aiming to obtain valuable feedstock and resolve environmental pollution. The two types of WPCBs were pyrolysed at 600°C for 30 min under vacuum condition. During the pyrolysis process, the solder of WPCBs was separated and recovered when the temperature range was 400-600°C, and the rotating drum was rotated at 1000 rpm for 10 min. The type-A of WPCBs pyrolysed to form an average of 67.91 wt.% residue, 27.84 wt.% oil, and 4.25 wt.% gas; and pyrolysis of the type-B of WPCBs led to an average mass balance of 72.22 wt.% residue, 21.57 wt.% oil, and 6.21 wt.% gas. The GC-MS and FT-IR analyses showed that the two pyrolysis oils consisted mainly of phenols and substituted phenols. The pyrolysis oil can be used for fuel or chemical feedstock for further processing. The recovered solder can be recycled directly and it can also be a good resource of lead and tin for refining. The pyrolysis residues contained various metals, glass fibers and other inorganic materials, which could be recovered after further treatment. The pyrolysis gases consisted mainly of CO, CO(2), CH(4), and H(2), which could be collected and recycled. PMID:21840196

  15. A 5 Giga Samples Per Second 8-Bit Analog to Digital Printed Circuit Board for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Jiang, Homin; Liu, Howard; Guzzino, Kim; Kubo, Derek; Li, Chao-Te; Chang, Ray; Chen, Ming-Tang

    2014-08-01

    We have designed, manufactured, and characterized an 8-bit 5 Giga samples per second (Gsps) ADC printed circuit board assembly (PCBA). An e2v EV8AQ160 ADC chip was used in the design and the board is plug compatible with the field programmable gate array (FPGA) board developed by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) community. Astronomical interference fringes were demonstrated across a single baseline pair of antennas using two ADC boards on the Yuan Tseh Lee Array for Microwave Background Anisotropy (AMiBA) telescope. Several radio interferometers are using this board for bandwidth expansion, such as Submillimeter Array; also, several experimental telescopes are building new spectrometers using the same board. The ADC boards were attached directly to the Reconfigurable Open Architecture Computing Hardware (ROACH-2) FPGA board for processing of the digital output signals. This ADC board provides the capability of digitizing radio frequency signals from DC to 2 GHz (3 dB bandwidth), and to an extended bandwidth of 2.5 GHz (5 dB) with derated performance. The following worst-case performance parameters were obtained over 2 GHz: spur free dynamic range (SFDR) of 44 dB, signal-to-noise and distortion (SINAD) of 35 dB, and effective number of bits (ENOB) of 5.5.

  16. Inhibition of polybrominated dibenzo-p-dioxin and dibenzofuran formation from the pyrolysis of printed circuit boards.

    PubMed

    Lai, Yi-Chieh; Lee, Wen-Jhy; Li, Hsing-Wang; Wang, Lin-Chi; Chang-Chien, Guo-Ping

    2007-02-01

    Waste printed circuit boards containing brominated flame retardants were pyrolyzed in a high-temperature melting system to observe the formation behaviors of polybrominated dibenzo-p-dioxins (PBDDs) and dibenzofurans (PBDFs). In this study, the results showed that the formation of PBDD/ Fs during pyrolysis can be destroyed under controlled primary combustion conditions. There were two significant factors that influenced the extent of PBDD/F formation. The first factor was temperature. The results showed that, both the total PBDD/F content in the bottom ash and the total PBDD/F emission factor from the flue gas decrease by approximately 50% with an increase of the pyrolysis temperature from 850 to 1200 degrees C. The second factor was the addition of CaO. The possible mechanism involves the reaction between CaO and HBr to form the solid-phase product CaBr2. Thus, the addition of CaO is effective in adsorbing HBr and results in the inhibition of PBDD/F synthesis by more than 90% and further prevents the acid gases (HCl and HBr) that corrode the equipment. In conclusion, due to the persistence and toxicity of PBDD/Fs, a combined regulation for controlling both PCDD/Fs and PBDD/Fs is of great importance for environmental protection issues. PMID:17328209

  17. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    NASA Astrophysics Data System (ADS)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  18. Identification and chemical characterization of particulate matter from wave soldering processes at a printed circuit board manufacturing company.

    PubMed

    Szoboszlai, Z; Kertész, Zs; Szikszai, Z; Angyal, A; Furu, E; Török, Zs; Daróczi, L; Kiss, A Z

    2012-02-15

    In this case study, the elemental composition and mass size distribution of indoor aerosol particles were determined in a working environment where soldering of printed circuit boards (PCB) took place. Single particle analysis using ion and electron microscopy was carried out to obtain more detailed and reliable data about the origin of these particles. As a result, outdoor and indoor aerosol sources such as wave soldering, fluxing processes, workers' activity, mineral dust, biomass burning, fertilizing and other anthropogenic sources could be separated. With the help of scanning electron microscopy, characteristic particle types were identified. On the basis of the mass size distribution data, a stochastic lung deposition model was used to calculate the total and regional deposition efficiencies of the different types of particles within the human respiratory system. The information presented in this study aims to give insights into the detailed characteristics and the health impact of aerosol particles in a working environment where different kinds of soldering activity take place. PMID:22226723

  19. Direct extraction of palladium and silver from waste printed circuit boards powder by supercritical fluids oxidation-extraction process.

    PubMed

    Liu, Kang; Zhang, Zhiyuan; Zhang, Fu-Shen

    2016-11-15

    The current study was carried out to develop an environmental benign process for direct recovery of palladium (Pd) and silver (Ag) from waste printed circuit boards (PCBs) powder. The process ingeniously combined supercritical water oxidation (SCWO) and supercritical carbon dioxide (Sc-CO2) extraction techniques. SCWO treatment could effectively enrich Pd and Ag by degrading non-metallic component, and a precious metal concentrate (PMC) could be obtained, in which the enrichment factors of Pd and Ag reached 5.3 and 4.8, respectively. In the second stage, more than 93.7% Pd and 96.4% Ag could be extracted from PMC by Sc-CO2 modified with acetone and KI-I2 under optimum conditions. Mechanism study indicated that Pd and Ag extraction by Sc-CO2 was a complicated physiochemical process, involving oxidation, complexation, anion exchange, mass transfer and migration approaches. Accordingly, this study established a benign and effective process for selective recovery of dispersal precious metals from waste materials. PMID:27427888

  20. Electrokinetic recovery of Cd, Cr, As, Ni, Zn and Mn from waste printed circuit boards: effect of assisting agents.

    PubMed

    Xiu, Fu-Rong; Zhang, Fu-Shen

    2009-10-15

    The printed circuit boards (PCBs) contains large number of heavy metal such as Cd, Cr, As, Ni, Zn and Mn. In this study, the use of electrokinetic (EK) treatment with different assisting agents has been investigated to recover the heavy metals from waste PCBs, and the effectiveness of different assisting agents (HNO(3), HCl, citric acid) was evaluated. The PCBs were first pre-treated by supercritical water oxidation (SCWO) process, then subjected to EK process. The heavy metal speciation, migration and recovery efficiency in the presence of different assisting agents during EK process were discussed. The mass loss of Cd, Cr, As and Zn during the SCWO process was negligible, but approximately 52% of Ni and 56% of Mn were lost in such a process. Experimental results showed that different assisting agents have significant effect on the behavior and recovery efficiency of different heavy metals. HCl was highly efficient for the recovery of Cd in waste PCBs due to the low pH and the stable complexation of Cl(-). Citric acid was highly efficient for the recovery of Cr, Zn and Mn. HNO(3) was low efficient for recovery of most heavy metals except for Ni. PMID:19481346

  1. Determination of the potential gold electrowinning from an ammoniacal thiosulphate solution applied to recycling of printed circuit board scraps.

    PubMed

    Kasper, Angela C; Carrillo Abad, Jordi; García Gabaldón, Montserrat; Veit, Hugo M; Pérez Herranz, Valentín

    2016-01-01

    The use of electrochemical techniques in the selective recovery of gold from a solution containing thiosulphate, ammonia, and copper, obtained from the leaching of printed circuit boards from mobile phones using ammoniacal thiosulphate, are shown in this work. First, cyclic voltammetry tests were performed to determine the potential of electrodeposition of gold and copper, and then, electrowinning tests at different potentials for checking the rates of recovery of these metals were performed. The results of the cyclic voltammetry show that copper deposition occurs at potentials more negative than -600 mV (Ag/AgCl), whereas the gold deposition can be performed at potentials more positives than -600 mV (Ag/AgCl). The results of electrowinning show that 99% of the gold present in solutions containing thiosulphate and copper can be selectively recovered in a potential range between -400 mV (vs Ag/AgCl) and -500 mV (vs Ag/AgCl). Furthermore, 99% of copper can be recovered in potentials more negative than -700 mV (vs Ag/AgCl). PMID:26437680

  2. Interface between a printed circuit board computer aided design tool (Tektronix 4051 based) and a numerical paper tape controlled drill press (Slo-Syn 530: 100 w/ Dumore Automatic Head Number 8391)

    SciTech Connect

    Heckman, B.K.; Chinn, V.K.

    1981-01-01

    The development and use of computer programs written to produce the paper tape needed for the automation, or numeric control, of drill presses employed to fabricate computed-designed printed circuit boards are described. (LCL)

  3. An Investigation into the Package and Printed Circuit Board Assembly Solutions of an Ultrathin Coreless Flip-Chip Substrate

    NASA Astrophysics Data System (ADS)

    Chang, Jing-Yao; Chaung, Tung-Han; Chang, Tao-Chih

    2015-10-01

    Flip-chip technology has been widely accepted as a solution for electronic packaging of high-pin-count devices. Due to the demand for smaller and thinner package dimensions, coreless build-up substrates will be used in industry to carry the die by solder bumps due to the advantages of shorter transmission route and lower inductance and thermal resistance. However, coefficient of thermal expansion (CTE) mismatch between the Cu trace and the laminate often causes the coreless substrate to warp, which leads to failures such as nonwetted solder bumps and interfacial cracking during assembly and reliability tests. In a previous study, assembly of a six-layer polyimide-based coreless flip-chip package was achieved by a 17 mm × 17 mm die with 4355 Sn-37Pb solder bumps, an amide-based underfill, and 1521 Sn-3.0Ag-0.5Cu solder balls. For determination of its board-level reliability characteristics, the component was mounted on a printed circuit board (PCB) using a conventional surface mount technology, and 10 test vehicles were assembled for assessment of their reliability under a temperature cycling environment. The experimental results show that the characteristic life of the PCB assembly exceeded 1500 cycles and that failure resulted from fracture of the outermost solder balls on the substrate side. This was different from the failure mode of die cracking when the package experienced hundreds of temperature cycles at the component level because the rigid PCB, through solder balls, moderated the deformation of the coreless flip-chip package. Hence, the concentrated bending stress at the die edge region was lowered. Finally, the local CTE mismatch between the stiffener and the PCB dominated the fatigue fracture of the outermost solder balls to become the main failure mode.

  4. Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods.

    PubMed

    Sarvar, Mojtaba; Salarirad, Mohammad Mehdi; Shabani, Mohammad Amin

    2015-11-01

    In this paper, a novel mechanical process is proposed for enriching metal content of computer Printed Circuit Boards (PCBs). The PCBs are crushed and divided into three different size fractions namely: -0.59, +0.59 to 1.68 and +1.68 mm. Wet jigging and froth flotation methods are selected for metal enrichment. The coarse size fraction (+1.68 mm) is processed by jigging. The plastic free product is grinded and screened. The oversized product is separated as the first concentrate. It was rich of metal because the grinding process was selective. The undersized product is processed by froth flotation. Based on the obtained results, the middle size fraction (+0.59 to 1.68 mm) and the small size fraction (-0.59 mm) are processed by wet jigging and froth flotation respectively. The wet jigging process is optimized by investigating the effect of pulsation frequency and water flow rate. The results of examining the effect of particle size, solid to liquid ratio, conditioning time and using apolar collector showed that collectorless flotation is a promising method for separating nonmetals of PCBs. 95.6%, 97.5% and 85% of metal content of coarse size, middle size and small size fraction are recovered. The grades of obtained concentrates were 63.3%, 92.5% and 75% respectively. The total recovery is calculated as 95.64% and the grade of the final concentrate was 71.26%. Determining the grade of copper and gold in the final product reveals that 4.95% of copper and 24.46% of gold are lost during the concentration. The major part of the lost gold is accumulated in froth flotation tail. PMID:26143534

  5. Copper sludge from printed circuit board production/recycling for ceramic materials: a quantitative analysis of copper transformation and immobilization.

    PubMed

    Tang, Yuanyuan; Lee, Po-Heng; Shih, Kaimin

    2013-08-01

    The fast development of electronic industries and stringent requirement of recycling waste electronics have produced a large amount of metal-containing waste sludge. This study developed a waste-to-resource strategy to beneficially use such metal-containing sludge from the production and recycling processes of printed circuit board (PCBs). To observe the metal incorporation mechanisms and phase transformation processes, mixtures of copper industrial waste sludge and kaolinite-based materials (kaolinite and mullite) were fired between 650 and 1250 °C for 3 h. The different copper-hosting phases were identified by powder X-ray diffraction (XRD) in the sintered products, and CuAl2O4 was found to be the predominant hosting phase throughout the reactions, regardless of the strong reduction potential of copper expected at high temperatures. The experimental results indicated that CuAl2O4 was generated more easily and in larger quantities at low-temperature processing when using the kaolinite precursor. Maximum copper transformations reached 86% and 97% for kaolinite and mullite systems, respectively, when sintering at 1000 °C. To monitor the stabilization effect after thermal process, prolonged leaching tests were carried out using acetic acid with an initial pH value of 2.9 to leach the sintered products for 20 days. The results demonstrated the decrease of copper leachability with the formation of CuAl2O4, despite different sintering behavior in kaolinite and mullite systems. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering copper sludge with aluminosilicate materials, and suggests a promising and reliable technique for reusing metal-containing sludge as ceramic materials. PMID:23796110

  6. Volatile organic compounds and metal leaching from composite products made from fiberglass-resin portion of printed circuit board waste.

    PubMed

    Guo, Jie; Jiang, Ying; Hu, Xiaofang; Xu, Zhenming

    2012-01-17

    This study focused on the volatile organic compounds (VOCs) and metal leaching from three kinds of composite products made from fiberglass-resin portion (FRP) of crushed printed circuit board (PCB) waste, including phenolic molding compound (PMC), wood plastic composite (WPC), and nonmetallic plate (NMP). Released VOCs from the composite products were quantified by air sampling on adsorbent followed by thermal desorption and GC-MS analysis. The results showed that VOCs emitted from composite products originated from the added organic components during manufacturing process. Phenol in PMC panels came primarily from phenolic resin, and the airborne concentration of phenol emitted from PMC product was 59.4 ± 6.1 μg/m(3), which was lower than odor threshold of 100% response for phenol (180 μg/m(3)). VOCs from WPC product mainly originated from wood flour, e.g., benzaldehyde, octanal, and d-limonene were emitted in relatively low concentrations. For VOCs emitted from NMP product, the airborne concentration of styrene was the highest (633 ± 67 μg/m(3)). Leaching characteristics of metal ions from composite products were tested using acetic acid buffer solution and sulphuric acid and nitric acid solution. Then the metal concentrations in the leachates were tested by ICP-AES. The results showed that only the concentration of Cu (average = 893 mg/L; limit = 100 mg/L) in the leachate solution of the FRP using acetic acid buffer solution exceeded the standard limit. However, concentrations of other metal ions (Pb, Cd, Cr, Ba, and Ni) were within the standard limit. All the results indicated that the FRP in composite products was not a major concern in terms of environmental assessment based upon VOCs tests and leaching characteristics. PMID:22142243

  7. Temporal and spectral analysis of laser induced plasma in the ablation process of flexible printed circuit board

    NASA Astrophysics Data System (ADS)

    Ryoo, Hoon C.; Kim, Seok; Hahn, Jae W.

    2008-02-01

    Flexible printed circuit board (FPCB), consisting of copper sheets laminated onto non conductive film substrates with multiple structures, are core elements in electronics with their flexibility and capability of high density 3 dimensional wiring characteristics. In laser applied FPCB processing, a better understanding of the ablation mechanism leads to precision control of the depth processing especially by monitoring of the material transition layer. For this purpose, here we investigate the temporal and spectral behavior of the plasma plum generated on the single sided structure of FPCB using the technique of laser induced breakdown spectroscopy (LIBS). Using KrF excimer laser, the characteristic spectral emission lines of C II swan band at the wavelength of 516.5 nm and neutral copper at the wavelength range from 510 nm to 522 nm are acquired under ambient pressure in the ablation process of polyimide film and copper coated layer respectively. From a time delay from 50 ns to 4.05 μs from the beginning of the laser pulse, the temporal profiles of the spectral intensity are obtained in steps of 200 ns, which have a tendency of exponential decrease on both C II and neutral copper. In particular, we concentrate our attention on the temporal intensity behavior of the Bremsstrahlung continuum emission that decides the proper set of detection time window, by which the monitoring sensitivity of LIBS is determined. Finally, using the information of the temporal analysis for each molecular, atomic, and continuum emission, the transition layer between polyimide and copper film is distinguished by their characteristic peak information.

  8. Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor

    SciTech Connect

    Rodrigues, Michael L.M.; Leão, Versiane A.; Gomes, Otavio; Lambert, Fanny; Bastin, David; Gaydardzhiev, Stoyan

    2015-07-15

    Highlights: • Copper bioleaching from PCB (20 mm) by moderate thermophiles was demonstrated. • Larger PCB sheets enable a cost reduction due to the elimination of fine grinding. • Crushing generated cracks in PCB increasing the copper extraction. • A pre-treatment step was necessary to remove the lacquer coating. • High copper extractions (85%) were possible with pulp density of up to 25.0 g/L. - Abstract: The current work reports on a new approach for copper bioleaching from Printed Circuit Board (PCB) by moderate thermophiles in a rotating-drum reactor. Initially leaching of PCB was carried out in shake flasks to assess the effects of particle size (−208 μm + 147 μm), ferrous iron concentration (1.25–10.0 g/L) and pH (1.5–2.5) on copper leaching using mesophile and moderate thermophile microorganisms. Only at a relatively low solid content (10.0 g/L) complete copper extraction was achieved from the particle size investigated. Conversely, high copper extractions were possible from coarse-ground PCB (20 mm-long) working with increased solids concentration (up to 25.0 g/L). Because there was as the faster leaching kinetics at 50 °C Sulfobacillus thermosulfidooxidans was selected for experiments in a rotating-drum reactor with the coarser-sized PCB sheets. Under optimal conditions, copper extraction reached 85%, in 8 days and microscopic observations by SEM–EDS of the on non-leached and leached material suggested that metal dissolution from the internal layers was restricted by the fact that metal surface was not entirely available and accessible for the solution in the case of the 20 mm-size sheets.

  9. Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid

    SciTech Connect

    Huang, Jinxiu; Chen, Mengjun Chen, Haiyan; Chen, Shu; Sun, Quan

    2014-02-15

    Highlights: • A Brønsted acidic ILs was used to leach Cu from WPCBs for the first time. • The particle size of WPCBs has significant influence on Cu leaching rate. • Cu leaching rate was higher than 99% under the optimum leaching conditions. • The leaching process can be modeled with shrinking core model, and the E{sub a} was 25.36 kJ/mol. - Abstract: In this work, a Brønsted acidic ionic liquid, 1-butyl-3-methyl-imidazolium hydrogen sulfate ([bmim]HSO{sub 4}), was used to leach copper from waste printed circuit boards (WPCBs, mounted with electronic components) for the first time, and the leaching behavior of copper was discussed in detail. The results showed that after the pre-treatment, the metal distributions were different with the particle size: Cu, Zn and Al increased with the increasing particle size; while Ni, Sn and Pb were in the contrary. And the particle size has significant influence on copper leaching rate. Copper leaching rate was higher than 99%, almost 100%, when 1 g WPCBs powder was leached under the optimum conditions: particle size of 0.1–0.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% hydrogen peroxide, solid/liquid ratio of 1/25, 70 °C and 2 h. Copper leaching by [bmim]HSO{sub 4} can be modeled with the shrinking core model, controlled by diffusion through a solid product layer, and the kinetic apparent activation energy has been calculated to be 25.36 kJ/mol.

  10. Development of two-step process for enhanced biorecovery of Cu-Zn-Ni from computer printed circuit boards.

    PubMed

    Shah, Monal B; Tipre, Devayani R; Purohit, Mamta S; Dave, Shailesh R

    2015-08-01

    Metal pollution due to the huge electronic waste (E-waste) accumulation is widespread across the globe. Extraction of copper, zinc and nickel from computer printed circuit boards (c-PCB) with a two-step bleaching process using ferric sulphate generated by Leptospirillum ferriphilum dominated consortium and the factors influencing the process were investigated in the present study. The studied factors with 10 g/L pulp density showed that pH 2.0 was optimum which resulted in 87.50-97.80% Cu-Zn-Ni extraction. Pre-treatment of PCB powder with acidified distilled water and NaCl solution showed 3.80-7.98% increase in metal extraction corresponding to 94.08% Cu, 99.80% Zn and 97.99% Ni extraction. Particle size of 75 μm for Cu and Zn while 1680 μm for Ni showed 2-folds increase in metal extraction, giving 97.35-99.80% Cu-Zn-Ni extraction in 2-6 days of reaction time. Whereas; 2.76-3.12 folds increase in Cu and Zn extraction was observed with the addition of 0.1% chelating agents. When the studies were carried out with high pulp density, ferric iron concentration of 16.57 g/L was found to be optimum for metal extraction from 75 g/L c-PCB and c-PCB addition in multiple installments resulted in 8.81-26.35% increase in metal extraction compared to single addition. The studied factors can be implemented for the scale-up aimed at faster recovery of multimetals from E-waste and thereby providing a secondary source of metal in an eco-friendly manner. PMID:25636979

  11. Heat transfer and pressure drop of supercritical carbon dioxide flowing in several printed circuit heat exchanger channel patterns

    SciTech Connect

    Carlson, M.; Kruizenga, A.; Anderson, M.; Corradini, M.

    2012-07-01

    Closed-loop Brayton cycles using supercritical carbon dioxide (SCO{sub 2}) show potential for use in high-temperature power generation applications including High Temperature Gas Reactors (HTGR) and Sodium-Cooled Fast Reactors (SFR). Compared to Rankine cycles SCO{sub 2} Brayton cycles offer similar or improved efficiency and the potential for decreased capital costs due to a reduction in equipment size and complexity. Compact printed-circuit heat exchangers (PCHE) are being considered as part of several SCO{sub 2} Brayton designs to further reduce equipment size with increased energy density. Several designs plan to use a gas cooler operating near the pseudo-critical point of carbon dioxide to benefit from large variations in thermophysical properties, but further work is needed to validate correlations for heat transfer and pressure-drop characteristics of SCO{sub 2} flows in candidate PCHE channel designs for a variety of operating conditions. This paper presents work on experimental measurements of the heat transfer and pressure drop behavior of miniature channels using carbon dioxide at supercritical pressure. Results from several plate geometries tested in horizontal cooling-mode flow are presented, including a straight semi-circular channel, zigzag channel with a bend angle of 80 degrees, and a channel with a staggered array of extruded airfoil pillars modeled after a NACA 0020 airfoil with an 8.1 mm chord length facing into the flow. Heat transfer coefficients and bulk temperatures are calculated from measured local wall temperatures and local heat fluxes. The experimental results are compared to several methods for estimating the friction factor and Nusselt number of cooling-mode flows at supercritical pressures in millimeter-scale channels. (authors)

  12. Detection of the position, direction and speed of sliding contact with a multi-layer compliant tactile sensor fabricated using direct-print technology

    NASA Astrophysics Data System (ADS)

    Vatani, Morteza; Engeberg, Erik D.; Choi, Jae-Won

    2014-09-01

    A multi-layer resistance based compliant tactile sensor was fabricated using direct-print (DP) and soft molding processes. The sensor consists of two layers of embedded stretchable sensing elements sandwiched by three layers of a polyurethane rubber material. The sensing elements were created by the DP process using a photopolymer filled with multi-wall carbon nanotubes, which exhibit the property of piezoresistivity. The printed sensing elements were fully cured using ultraviolet light. The sensing elements within each layer of the sensor structure change in electrical resistance when external forces are applied. By processing the measured sensor signals, the fabricated sensor was able to detect the position of contact forces with a 3 mm spatial resolution, as well as their two-dimensional translation directions and speeds. Based on the results, it is concluded that the fabricated sensors are promising in robotic applications and the developed process and material can be a reliable and robust way to build highly stretchable tactile sensors.

  13. A motion- and sound-activated, 3D-printed, chalcogenide-based triboelectric nanogenerator.

    PubMed

    Kanik, Mehmet; Say, Mehmet Girayhan; Daglar, Bihter; Yavuz, Ahmet Faruk; Dolas, Muhammet Halit; El-Ashry, Mostafa M; Bayindir, Mehmet

    2015-04-01

    A multilayered triboelectric nanogenerator (MULTENG) that can be actuated by acoustic waves, vibration of a moving car, and tapping motion is built using a 3D-printing technique. The MULTENG can generate an open-circuit voltage of up to 396 V and a short-circuit current of up to 1.62 mA, and can power 38 LEDs. The layers of the triboelectric generator are made of polyetherimide nanopillars and chalcogenide core-shell nanofibers. PMID:25722118

  14. Printed sectoral horn power combiner

    NASA Astrophysics Data System (ADS)

    Boccia, Luigi; Emanuele, Antonio; Shamsafar, Alireza; Arnieri, Emilio; Amendola, Giandomenico

    2015-02-01

    In this work, it is presented a new configuration of planar power combiner/divider based on an H-plane sectoral horn antenna. This component is proposed to realise the basic building blocks of printed power-combining amplifiers. It will be shown how the sectoral horn elements can be implemented on substrate integrated waveguide and multilayer printed circuit board technologies, thus obtaining a high integration level. In the following, the design procedure will be described reporting an example of an 11-stage power divider/combiner in C-band. A prototype has been fabricated, and the measured results compared with the numerical model. Experimental results are in good agreement with theoretical expectations showing a single-stage efficiency of about 90% and a bandwidth of 40%.

  15. Flexible multilayer inverted polymer light-emitting diodes with a gravure contact printed Cs2CO3 electron injection layer

    NASA Astrophysics Data System (ADS)

    Chung, Dae-Young; Leem, Dong-Seok; Bradley, Donal D. C.; Campbell, Alasdair J.

    2011-03-01

    Here we demonstrate high efficiency, flexible inverted polymer light-emitting diodes in which the bottom-contact cesium carbonate electron injection layer is gravure contact printed. The poly(9,9-dioctylfluorene-alt-benzothiadiazole) emissive/electron transport layer, the poly(9,9-dioctylfluorene-alt-N-(4-butylphenyl)-diphenylamine) hole transport/electron blocking layer and the poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) hole injection layer were sequentially spin-coated from solution using orthogonal solvent formulations with appropriate wetting properties. By switching from indium-tin-oxide (ITO) on glass to ITO on poly(ethylene terephthalate) and using gravure contact printing instead of spin-coating, Cs2CO3 smoothness and morphology was optimized, resulting in an approximately fivefold increase in current efficiency and power efficiency at 100 cd/m2.

  16. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility

    SciTech Connect

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

    2014-04-01

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various

  17. Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition.

    PubMed

    Fuh, Yiin-Kuen; Ho, Hsi-Chun

    2016-03-01

    In this paper, we demonstrate a new integration of printed circuit board (PCB) technology-based self-powered sensors (PSSs) and direct-write, near-field electrospinning (NFES) with polyvinylidene fluoride (PVDF) micro/nano fibers (MNFs) as source materials. Integration with PCB technology is highly desirable for affordable mass production. In addition, we systematically investigate the effects of electrodes with intervals in the range of 0.15 mm to 0.40 mm on the resultant PSS output voltage and current. The results show that at a strain of 0.5% and 5 Hz, a PSS with a gap interval 0.15 mm produces a maximum output voltage of 3 V and a maximum output current of 220 nA. Under the same dimensional constraints, the MNFs are massively connected in series (via accumulation of continuous MNFs across the gaps ) and in parallel (via accumulation of parallel MNFs on the same gap) simultaneously. Finally, encapsulation in a flexible polymer with different interval electrodes demonstrated that electrical superposition can be realized by connecting MNFs collectively and effectively in serial/parallel patterns to achieve a high current and high voltage output, respectively. Further improvement in PSSs based on the effect of cooperativity was experimentally realized by rolling-up the device into a cylindrical shape, resulting in a 130% increase in power output due to the cooperative effect. We assembled the piezoelectric MNF sensors on gloves, bandages and stockings to fabricate devices that can detect different types of human motion, including finger motion and various flexing and extensions of an ankle. The firmly glued PSSs were tested on the glove and ankle respectively to detect and harvest the various movements and the output voltage was recorded as ∼1.5 V under jumping movement (one PSS) and ∼4.5 V for the clenched fist with five fingers bent concurrently (five PSSs). This research shows that piezoelectric MNFs not only have a huge impact on harvesting various external

  18. Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Ho, Hsi-Chun

    2016-03-01

    In this paper, we demonstrate a new integration of printed circuit board (PCB) technology-based self-powered sensors (PSSs) and direct-write, near-field electrospinning (NFES) with polyvinylidene fluoride (PVDF) micro/nano fibers (MNFs) as source materials. Integration with PCB technology is highly desirable for affordable mass production. In addition, we systematically investigate the effects of electrodes with intervals in the range of 0.15 mm to 0.40 mm on the resultant PSS output voltage and current. The results show that at a strain of 0.5% and 5 Hz, a PSS with a gap interval 0.15 mm produces a maximum output voltage of 3 V and a maximum output current of 220 nA. Under the same dimensional constraints, the MNFs are massively connected in series (via accumulation of continuous MNFs across the gaps ) and in parallel (via accumulation of parallel MNFs on the same gap) simultaneously. Finally, encapsulation in a flexible polymer with different interval electrodes demonstrated that electrical superposition can be realized by connecting MNFs collectively and effectively in serial/parallel patterns to achieve a high current and high voltage output, respectively. Further improvement in PSSs based on the effect of cooperativity was experimentally realized by rolling-up the device into a cylindrical shape, resulting in a 130% increase in power output due to the cooperative effect. We assembled the piezoelectric MNF sensors on gloves, bandages and stockings to fabricate devices that can detect different types of human motion, including finger motion and various flexing and extensions of an ankle. The firmly glued PSSs were tested on the glove and ankle respectively to detect and harvest the various movements and the output voltage was recorded as ∼1.5 V under jumping movement (one PSS) and ∼4.5 V for the clenched fist with five fingers bent concurrently (five PSSs). This research shows that piezoelectric MNFs not only have a huge impact on harvesting various external

  19. Design guidelines for advanced LSI microcircuit packaging using thick film multilayer technology

    NASA Technical Reports Server (NTRS)

    Peckinpaugh, C. J.

    1974-01-01

    Ceramic multilayer circuitry results from the sequential build-up of two or more layers of pre-determined conductive interconnections separated by dielectric layers and fired at an elevated temperature to form a solidly fused structure. The resultant ceramic interconnect matrix is used as a base to mount active and passive devices and provide the necessary electrical interconnection to accomplish the desired electrical circuit. Many methods are known for developing multilevel conductor mechanisms such as multilayer printed circuits, welded wire matrices, flexible copper tape conductors, and thin and thick-film ceramic multilayers. Each method can be considered as a specialized field with each possessing its own particular set of benefits and problems. This design guide restricts itself to the art of design, fabrication and assembly of ceramic multilayer circuitry and the reliability of the end product.

  20. Note: Design and construction of a simple and reliable printed circuit board-substrate Bradbury-Nielsen gate for ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Du, Yongzhai; Cang, Huaiwen; Wang, Weiguo; Han, Fenglei; Chen, Chuang; Li, Lin; Hou, Keyong; Li, Haiyang

    2011-08-01

    A less laborious, structure-simple, and performance-reliable printed circuit board (PCB) based Bradbury-Nielsen gate for high-resolution ion mobility spectrometry was introduced and investigated. The gate substrate was manufactured using a PCB etching process with small holes (Φ 0.1 mm) drilled along the gold-plated copper lines. Two interdigitated sets of rigid stainless steel spring wire (Φ 0.1 mm) that stands high temperature and guarantees performance stability were threaded through the holes. Our homebuilt ion mobility spectrometer mounted with the gate gave results of about 40 for resolution while keeping a signal intensity of over 0.5 nano-amperes.

  1. New Approaches for Printed Electronics Manufacturing

    NASA Astrophysics Data System (ADS)

    Mahajan, Ankit

    overlay alignment, which is the most significant challenge of printed electronics manufacturing. Multi-layered electronic devices require alignment of multiple layers of different materials with micron-level tolerances, which is a daunting task to accomplish on deformable, moving substrates in R2R production formats. This thesis describes a novel, self-aligned manufacturing strategy for printed electronics that relies on capillary flow of inkjet-printed inks within open micro-channels. Multi-level trench networks, pre-engineered on the substrate surface, are sequentially filled with different inks which, upon drying, form stacked layers of electronic materials. Using this approach, fully self-aligned fabrication of all the major building blocks of an integrated circuit is demonstrated. Overall, this thesis presents several new manufacturing avenues for realizing high-performing and dense electronics on plastic by R2R processing.

  2. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    NASA Astrophysics Data System (ADS)

    Paddubskaya, A.; Valynets, N.; Kuzhir, P.; Batrakov, K.; Maksimenko, S.; Kotsilkova, R.; Velichkova, H.; Petrova, I.; Biró, I.; Kertész, K.; Márk, G. I.; Horváth, Z. E.; Biró, L. P.

    2016-04-01

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbon layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8-15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.

  3. Integration of polymer-based optical waveguide arrays and micro/nano-photonic devices for optical printed circuit board (O-PCB) application

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, Seung Gol; O, Beom Hoan; Park, Se-Geun; Kim, Kyong Heon; Kang, Jin Ku; Choi, Young Wan

    2005-03-01

    We report, in the form of review, on the results of our study on the fabrication and assembly of polymer-based optical waveguide arrays and micro/nano-photonic devices for optical printed circuit boards (O-PCBs) application. The O-PCBs are designed to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards, substrates or chips. We have assembled and constructed O-PCBs using optical waveguide arrays and circuits made of polymer materials and have examined their information handling performances. We also designed power beam splitters and waveguide filters using nano-scale photonic band-gap crystals. We discuss scientific and technological issues concerning the processes of miniaturization, interconnection and integration of polymer optical waveguide devices and arrays for the O-PCBs as applicable to board-to-board, chip-to-chip, and intra-chip integration for computers, telecommunications, and transportation systems.

  4. Relationship between Work Function of Hole Collection Electrode and Temperature Dependence of Open-Circuit Voltage in Multilayered Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Shirotori, Toshiki

    2012-02-01

    We have investigated the photovoltaic properties of multilayered organic photovoltaic devices consisting of indium tin oxide (ITO)/(NiO)/donor/C60/bathocuproine (BCP)/Al structures. Open circuit voltage (VOC) increases with the decrease in temperature between 40 and 350 K. The VOC was, however, pinned at approximately 0.6 V for the device without NiO, probably owing to the insufficient work-function difference between ITO and Al electrodes. The hole injection was also markedly suppressed at the ITO/donor interface in the device with large IP donor materials without the buffer layer and abnormal S-shaped current density-voltage (J-V) characteristics were observed. On the other hand, the value of VOC increases with the increase in ionization potential (IP) of donor materials in the device with NiO buffer layers owing to the enhanced work-function difference of about 1 eV, and the S-shaped curves disappeared at the high temperatures above 200 K. The VOC is further improved to nearly 1.2 V by the UV-ozone treatment of the NiO surface. We have therefore concluded that the increment of work function of the anode caused by the insertion of an oxide buffer layer and the surface treatment of the electrode by UV-ozone treatment are essentially important for the improvement of VOC and charge transport/injection properties in the multilayered organic solar cell applications.

  5. Design freedom in multilayer thin-film devices.

    PubMed

    Ellinger, Carolyn R; Nelson, Shelby F

    2015-03-01

    In fabricating inorganic thin-film devices, the relative etch rates of materials in a given etch chemistry often limit the obtainable multilayer structures. Alternatively, in fabricating multilayer organic devices by solution processing, the ability to formulate the active organic materials in orthogonal solvent systems is limiting. The pattered-by-printing method uses the combination of selective area deposition (SAD) and atomic layer deposition (ALD) to form high-quality metal oxide thin-film devices. We print an inhibiting polymer ink that patterns the functional inorganic materials that are deposited via spatial ALD (SALD). The process is inherently orthogonal, as the polymer ink does not etch or swell the inorganic functional layers. Each functional layer is additively patterned as deposited, with device isolation and vias defined by the printed inhibitor. The combination of process orthogonality and additive patterning removes processing-related constraints on device design, and readily allows for any combination of bottom- and top-gate thin-film transistor architectures to be formed on the same substrate. The freedom of this approach is further demonstrated by both all-enhancement-mode circuits and enhancement-depletion-mode circuits. In addition, we present a new tool to tune circuit performance by local control of dielectric thickness. PMID:25705845

  6. CADAT Printed-Wiring-Board Designer

    NASA Technical Reports Server (NTRS)

    Brinkerhoff, C. D.

    1982-01-01

    CADAT printed-wiring-board system (PWB) designs printed-circuit and hybrid-circuit boards. It is comprised of four programs: preprocessor, placement program, organizer program, and the router. Component placement and interconnection paths are optimized.

  7. The major components of particles emitted during recycling of waste printed circuit boards in a typical e-waste workshop of South China

    NASA Astrophysics Data System (ADS)

    Bi, Xinhui; Simoneit, Bernd R. T.; Wang, ZhenZhen; Wang, Xinming; Sheng, Guoying; Fu, Jiamo

    2010-11-01

    Electronic waste from across the world is dismantled and disposed of in China. The low-tech recycling methods have caused severe air pollution. Air particle samples from a typical workshop of South China engaged in recycling waste printed circuit boards have been analyzed with respect to chemical constituents. This is the first report on the chemical composition of particulate matter (PM) emitted in an e-waste recycling workshop of South China. The results show that the composition of PM from this recycling process was totally different from other emission sources. Organic matter comprised 46.7-51.6% of the PM. The major organic constituents were organophosphates consisting mainly of triphenyl phosphate (TPP) and its methyl substituted compounds, methyl esters of hexadecanoic and octadecanoic acids, levoglucosan and bisphenol A. TPP and bisphenol A were present at 1-5 orders of magnitude higher than in other indoor and outdoor environments throughout the world, which implies that they might be used as potential markers for e-waste recycling. The elemental carbon, inorganic elements and ions had a minor contribution to the PM (<5% each). The inorganic elements were dominated by phosphorus and followed by crustal elements and metal elements Pb, Zn, Sn, and lesser Cu, Sb, Mn, Ni, Ba and Cd. The recycling of printed circuit boards was demonstrated as an important contributor of heavy metal contamination, particularly Cd, Pb and Ni, to the local environment. These findings suggest that this recycling method represents a strong source of PM associated with pollutants to the ambient atmosphere of an e-waste recycling locale.

  8. Computer simulation of the pneumatic separator in the pneumatic-electrostatic separation system for recycling waste printed circuit boards with electronic components.

    PubMed

    Xue, Mianqiang; Xu, Zhenming

    2013-05-01

    Technologies could be integrated in different ways into automatic recycling lines for a certain kind of electronic waste according to practical requirements. In this study, a new kind of pneumatic separator with openings at the dust hooper was applied combing with electrostatic separation for recycling waste printed circuit boards. However, the flow pattern and the particles' movement behavior could not be obtained by experimental methods. To better control the separation quantity and the material size distribution, computational fluid dynamics was used to model the new pneumatic separator giving a detailed understanding of the mechanisms. Simulated results showed that the tangential velocity direction reversed with a relatively small value. Axial velocity exhibited two sharp decreases at the x axis. It is indicated that the bottom openings at the dust hopper resulted in an enormous change in the velocity profile. A new phenomenon that was named dusting was observed, which would mitigate the effect of particles with small diameter on the following electrostatic separation and avoid materials plugging caused by the waste printed circuit boards special properties effectively. The trapped materials were divided into seven grades. Experimental results showed that the mass fraction of grade 5, grade 6, and grade 7 materials were 27.54%, 15.23%, and 17.38%, respectively. Grade 1 particles' mass fraction was reduced by 80.30% compared with a traditional separator. Furthermore, the monocrystalline silicon content in silicon element in particles with a diameter of -0.091 mm was 18.9%, higher than that in the mixed materials. This study could serve as guidance for the future material flow control, automation control, waste recycling, and semiconductor storage medium destruction. PMID:23560940

  9. Fabrication and integration of micro/nano-scale polymer optical waveguides and devices for optical printed circuit board (O-PCB) application

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, Seung Gol; O, Beom Hoan; Park, Se Geun; Kim, Kyong Heon; Kang, Jin Ku; Chin, I.; Kwon, Y. K.; Choi, Young Wan

    2005-04-01

    We report on the results of our study on the design, fabrication and integration of micro/nano-scale waveguide arrays and devices for applications for a modular system that we newly proposed and call "optical printed circuit board (O-PCB)," which we envision to use as a platform for VLSI micro/nano-photonic applications. The O-PCBs are designed to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards or substrates. We have designed and assembled O-PCBs using polymer-based optical waveguide arrays and circuits. We describe the procedures for the synthesis of polymers, procedures of forming masters and stamps, and procedures of forming waveguides using embossing techniques. We also describe the procedures of design, fabrication and construction of O-PCBs and describe the procedures for light coupling between light sources, detectors, waveguides and other functional devices. We also describe design of power beam splitters and waveguide filters using photonic band-gap crystals for VLSI photonic integration application. We also discuss the characteristics of the assembled O-PCBs and discuss their potential applications.

  10. Fabrication and integration of micro/nano-scale optical wire circuit arrays and devices for high-speed and compact optical printed circuit board (O-PCB) and VLSI photonic applications

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.; Kang, J. K.; Choi, Y. W.; Song, S. H.

    2005-09-01

    We report on the design, fabrication and integration of micro/nano-scale optical wire circuit arrays and devices for high-speed, compact, light-weight, low power optical printed circuit boards (O-PCBs) and VLSI photonic applications. The optical wires are formed in the form of waveguides by thermal embossing and ultraviolet (UV) radiated embossing of polymer materials. The photonic devices include vertically coupled surface emitting laser (VCSEL) microlasers, microlenses, 45-degree reflection couplers, directional couplers, arrayed waveguide grating structures, multimode interference (MMI) devices and photodetectors. These devices are optically interconnected and integrated for O-PCB assembly and VLSI micro/nano-photonics. The O-PCBs are to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards or substrates. We report on the result of the optical transmission performances of these assembled O-PCBs. For the design, fabrication, and VLSI integration of nano-scale photonic devices, we used photonic crystal structures and plasmonic metallic waveguide structures. We examined the bandwidth, power dissipation, thermal stability, weight, and the miniaturization and density of optical wires and the O-PCB module. Characteristics of these devices are also described.

  11. Graded-index core polymer optical waveguide for high-bandwidth-density optical printed circuit boards: fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Ishigure, Takaaki

    2014-03-01

    We demonstrate that graded-index (GI) core polymer optical waveguides are a promising component realizing highbandwidth- density on-board interconnects. As a method for fabricating GI-circular-core polymer optical waveguides, we introduce the Mosquito method utilizing a microdispenser. The Mosquito method is capable of accurately controlling the core diameter and the inter-core pitch. We also demonstrate that the GI-core polymer waveguides enable remarkably low loss waveguide circuits involving waveguide crossings in a mono layer. We show an alternative technique to realize the low-loss GI-core crossed waveguide: the photo-addressing method which was developed by Sumitomo Bakelite Co., Ltd.

  12. Computer circuit card puller

    NASA Technical Reports Server (NTRS)

    Sawyer, R. V.; Szuwalski, B. (Inventor)

    1981-01-01

    The invention generally relates to hand tools, and more particularly to an improved device for facilitating removal of printed circuit cards from a card rack characterized by longitudinal side rails arranged in a mutually spaced parallelism and a plurality of printed circuit cards extended between the rails of the rack.

  13. An Overview of Surface Finishes and Their Role in Printed Circuit Board Solderability and Solder Joint Performance

    SciTech Connect

    Vianco, P.T.

    1998-10-15

    A overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability were described for the following coatings: baseline hot-dipped, plated, and plated-and-fused 100Sn and Sn-Pb coatings; Ni/Au; Pd, Ni/Pd, and Ni/Pd/Au finishes; and the recently marketed immersion Ag coatings. The Ni/Au coatings appear to provide the all-around best option in terms of solderability protection and wire bondability. Nickel/Pal ftishes offer a slightly reduced level of performance in these areas that is most likely due to variable Pd surface conditions. It is necessmy to minimize dissolved Au or Pd contents in the solder material to prevent solder joint embrittlement. Ancillary aspects that included thickness measurement techniques; the importance of finish compatibility with conformal coatings and conductive adhesives; and the need for alternative finishes for the processing of non-Pb bearing solders were discussed.

  14. Design, fabrication, and integration of micro/nano-scale optical waveguide arrays and devices for optical printed circuit board (O-PCB) and VLSI micro/nano-photonic application

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, S. G.; O, B. H.; Kim, K. H.; Kang, J. K.; Kwon, Y. K.; Chin, I.-J.; Choi, Y. W.; Song, S. H.

    2005-09-01

    We present a review of our work on the micro/nano-scale design, fabrication and integration of optical waveguide arrays and devices for applications in a newly-conceived optical module system that we call "optical printed circuit board" (O-PCBs) and VLSI micro/nano-photonic integrated circuit. The O-PCBs consist of planar circuits and arrays of waveguides and devices of various dimensions and characteristics to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards. The VLSI micro/nano-photonic integrated circuits perform similar functions on a chip scale. O-PCBs consist of planar circuits and arrays of waveguides and devices of various dimensions and characteristics to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards. Fundamentally it contrasts with the electrical printed circuit board (E-PCB), which is designed to perform transporting, processing and distributing electrical signals. We have assembled O-PCBs using optical waveguide arrays and circuits made of polymer materials and have examined information handling performances when they are interconnected with the micro-laser arrays, detector arrays and optoelectronic devices. For VLSI nano-scale photonic inte-gration and applications, we designed power splitters and waveguide filters using photonic band-gap crystals and plasmonic waveguide structures. We discuss scientific issues and technological issues concerning the minia-turization, interconnection, and integration of micro/nano-photonic devices and circuits and discuss potential utilities of O-PCBs and VLSI micro/nano-photonics for applications in computers, telecommunication systems, transportation systems, and bio-sensing microsystems.

  15. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution.

    PubMed

    Stuhlpfarrer, Philipp; Luidold, Stefan; Antrekowitsch, Helmut

    2016-04-15

    The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400°C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200°C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones. PMID:26775099

  16. Eco-friendly copper recovery process from waste printed circuit boards using Fe{sup 3+}/Fe{sup 2+} redox system

    SciTech Connect

    Fogarasi, Szabolcs; Imre-Lucaci, Florica; Egedy, Attila; Imre-Lucaci, Árpád; Ilea, Petru

    2015-06-15

    Highlights: • We developed an ecofriendly mediated electrochemical process for copper recovery. • The recovery of copper was achieved without mechanical pretreatment of the samples. • We identified the optimal flow rate for the leaching and electrowinning of copper. • The copper content of the obtained cathodic deposits was over 99.9%. - Abstract: The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe{sup 3+} combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in an original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%.

  17. Use of large pieces of printed circuit boards for bioleaching to avoid 'precipitate contamination problem' and to simplify overall metal recovery.

    PubMed

    Adhapure, N N; Dhakephalkar, P K; Dhakephalkar, A P; Tembhurkar, V R; Rajgure, A V; Deshmukh, A M

    2014-01-01

    Very recently bioleaching has been used for removing metals from electronic waste. Most of the research has been targeted to using pulverized PCBs for bioleaching where precipitate formed during bioleaching contaminates the pulverized PCB sample and making the overall metal recovery process more complicated. In addition to that, such mixing of pulverized sample with precipitate also creates problems for the final separation of non metallic fraction of PCB sample. In the present investigation we attempted the use of large pieces of printed circuit boards instead of pulverized sample for removal of metals. Use of large pieces of PCBs for bioleaching was restricted due to the chemical coating present on PCBs, the problem has been solved by chemical treatment of PCBs prior to bioleaching. In short,•Large pieces of PCB can be used for bioleaching instead of pulverized PCB sample.•Metallic portion on PCBs can be made accessible to bacteria with prior chemical treatment of PCBs.•Complete metal removal obtained on PCB pieces of size 4 cm × 2.5 cm with the exception of solder traces. The final metal free PCBs (non metallic) can be easily recycled and in this way the overall recycling process (metallic and non metallic part) of PCBs becomes simple. PMID:26150951

  18. Use of large pieces of printed circuit boards for bioleaching to avoid ‘precipitate contamination problem’ and to simplify overall metal recovery

    PubMed Central

    Adhapure, N.N.; Dhakephalkar, P.K.; Dhakephalkar, A.P.; Tembhurkar, V.R.; Rajgure, A.V.; Deshmukh, A.M.

    2014-01-01

    Very recently bioleaching has been used for removing metals from electronic waste. Most of the research has been targeted to using pulverized PCBs for bioleaching where precipitate formed during bioleaching contaminates the pulverized PCB sample and making the overall metal recovery process more complicated. In addition to that, such mixing of pulverized sample with precipitate also creates problems for the final separation of non metallic fraction of PCB sample. In the present investigation we attempted the use of large pieces of printed circuit boards instead of pulverized sample for removal of metals. Use of large pieces of PCBs for bioleaching was restricted due to the chemical coating present on PCBs, the problem has been solved by chemical treatment of PCBs prior to bioleaching. In short,•Large pieces of PCB can be used for bioleaching instead of pulverized PCB sample.•Metallic portion on PCBs can be made accessible to bacteria with prior chemical treatment of PCBs.•Complete metal removal obtained on PCB pieces of size 4 cm × 2.5 cm with the exception of solder traces. The final metal free PCBs (non metallic) can be easily recycled and in this way the overall recycling process (metallic and non metallic part) of PCBs becomes simple. PMID:26150951

  19. A new technology for separation and recovery of materials from waste printed circuit boards by dissolving bromine epoxy resins using ionic liquid.

    PubMed

    Zhu, P; Chen, Y; Wang, L Y; Qian, G Y; Zhou, M; Zhou, J

    2012-11-15

    Recovery of valuable materials from waste printed circuit boards (WPCBs) is quite difficult because WPCBs is a heterogeneous mixture of polymer materials, glass fibers, and metals. In this study, WPCBs was treated using ionic liquid (1-ethyl-3-methylimizadolium tetrafluoroborate [EMIM+][BF4-]). Experimental results showed that the separation of the solders went to completion, and electronic components (ECs) were removed in WPCBs when [EMIM+][BF4-] solution containing WPCBs was heated to 240 °C. Meanwhile, metallographic observations verified that the WPCBs had an initial delamination. When the temperature increased to 260 °C, the separation of the WPCBs went to completion, and coppers and glass fibers were obtained. The used [EMIM+][BF4-] was treated by water to generate a solid-liquid suspension, which was separated completely to obtain solid residues by filtration. Thermal analyses combined with infrared ray spectra (IR) observed that the solid residues were bromine epoxy resins. NMR (nuclear magnetic resonance) showed that hydrogen bond played an important role for [EMIM+][BF4-] dissolving bromine epoxy resins. This clean and non-polluting technology offers a new way to recycle valuable materials from WPCBs and prevent environmental pollution from WPCBs effectively. PMID:22985818

  20. Optimizing the operating parameters of corona electrostatic separation for recycling waste scraped printed circuit boards by computer simulation of electric field.

    PubMed

    Li, Jia; Lu, Hongzhou; Liu, Shushu; Xu, Zhenming

    2008-05-01

    The printed circuit board (PCB) has a metal content of nearly 28% metal, including an abundance of nonferrous metals such as copper, lead, and tin. The purity of precious metals in PCBs is more than 10 times that of rich-content minerals. Therefore, the recycling of PCBs is an important subject, not only from the viewpoint of waste treatment, but also with respect to the recovery of valuable materials. Compared with traditional process the corona electrostatic separation (CES) had no waste water or gas during the process and it had high productivity with a low-energy cost. In this paper, the roll-type corona electrostatic separator was used to separate metals and nonmetals from scraped waste PCBs. The software MATLAB was used to simulate the distribution of electric field in separating space. It was found that, the variations of parameters of electrodes and applied voltages directly influenced the distribution of electric field. Through the correlation of simulated and experimental results, the good separation results were got under the optimized operating parameter: U=20-30 kV, L=L(1)=L(2)=0.21 m, R(1)=0.114, R(2)=0.019 m, theta(1)=20 degrees and theta(2)=60 degrees . PMID:17900802

  1. Co-recycling of acrylonitrile-butadiene-styrene waste plastic and nonmetal particles from waste printed circuit boards to manufacture reproduction composites.

    PubMed

    Sun, Zhixing; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin

    2015-01-01

    This study investigated the feasibility of using acrylonitrile-butadiene-styrene (ABS) waste plastic and nonmetal particles from waste printed circuit boards (WPCB) to manufacture reproduction composites (RC), with the aim of co-recycling these two waste resources. The composites were prepared in a twin-crew extruder and investigated by means of mechanical testing, in situ flexural observation, thermogravimatric analysis, and dimensional stability evaluation. The results showed that the presence of nonmetal particles significantly improved the mechanical properties and the physical performance of the RC. A loading of 30 wt% nonmetal particles could achieve a flexural strength of 72.6 MPa, a flexural modulus of 3.57 GPa, and an impact strength of 15.5 kJ/m2. Moreover, it was found that the application of maleic anhydride-grafted ABS as compatilizer could effectively promote the interfacial adhesion between the ABS plastic and the nonmetal particles. This research provides a novel method to reuse waste ABS and WPCB nonmetals for manufacturing high value-added product, which represents a promising way for waste recycling and resolving the environmental problem. PMID:25413110

  2. Eco-friendly copper recovery process from waste printed circuit boards using Fe³⁺/Fe²⁺ redox system.

    PubMed

    Fogarasi, Szabolcs; Imre-Lucaci, Florica; Egedy, Attila; Imre-Lucaci, Árpád; Ilea, Petru

    2015-06-01

    The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe(3+) combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in an original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%. PMID:25816768

  3. Printed Electronic Devices in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Bacon, John B.

    2004-01-01

    The space environment requires robust sensing, control, and automation, whether in support of human spaceflight or of robotic exploration. Spaceflight embodies the known extremes of temperature, radiation, shock, vibration, and static loads, and demands high reliability at the lowest possible mass. Because printed electronic circuits fulfill all these requirements, printed circuit technology and the exploration of space have been closely coupled throughout their short histories. In this presentation, we will explore the space (and space launch) environments as drivers of printed circuit design, a brief history of NASA's use of printed electronic circuits, and we will examine future requirements for such circuits in our continued exploration of space.

  4. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.

    PubMed

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-07-01

    Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process. PMID:25802060

  5. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    SciTech Connect

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-07-15

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.

  6. Nonlinear dynamic response of a 'flexible-and-heavy' printed circuit board (PCB) to an impact load applied to its support contour

    NASA Astrophysics Data System (ADS)

    Suhir, E.; Vujosevic, M.; Reinikainen, T.

    2009-02-01

    Based on the developed simple and physically meaningful analytical ('mathematical') stress model, we evaluate some major parameters (amplitude, frequency, maximum acceleration, stresses and strains) of the response of a 'flexible-and-heavy' square simply supported printed circuit board (PCB) to an impact drop load applied to its support contour. The analysis is restricted to the first mode of vibrations and is carried out in application to the PCB design employed in an advanced accelerated test setup (test vehicle). This setup is aimed at the assessment of the performance, in accelerated test conditions on the board level, of packaging materials (and, first of all, BGA solder joint interconnections) subjected to dynamic (drop or shock) loading. It is anticipated that heavy masses could be mounted on the PCB to accelerate its dynamic response to an impact load. These masses are expected to be small in size, so that while changing the total mass of the board and generating significant inertia forces, they do not affect the board's flexural rigidity or its stiffness with respect to the in-plane loading. The PCB's contour is considered non-deformable, which is indeed the case in many practical situations. This circumstance, if the drop height and/or the induced inertia forces are significant, leads to elevated in-plane ('membrane') stresses in the PCB and, as a result of that, to the nonlinear response of the board to the impact load: the relationship between the magnitude of the load (determined by the initial impact velocity) and the induced PCB deflections becomes geometrically nonlinear, with a rigid cubic characteristic of the restoring force. The carried out numerical example, although reflects the characteristics of the PCB and loading conditions in an actual experimental setup, is merely an illustration of the general concept and is intended to demonstrate the abilities of the suggested method. Predictions based on this method agree well with the finite element

  7. A laser printing based approach for printed electronics

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Hu, M.; Liu, Y.; Guo, Q.; Wang, X.; Zhang, W.; Lau, W.; Yang, J.

    2016-03-01

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  8. Leaf Printing.

    ERIC Educational Resources Information Center

    Mitchell, Charles W.

    1985-01-01

    Using many different media, students can turn leaves into images which can be used for study, bulletin boards, collections, and identification. The simple techniques described include pastel printing, smoke prints, ink or tempura printing, bleach printing on t-shirts, ditto machine printing using carbon paper, and making cutouts. (DH)

  9. High Q printed helical resonators for oscillators and filters.

    PubMed

    Everard, Jeremy K A; Broomfield, Carl D

    2007-09-01

    High Q compact printed helical resonators which operate from around 1.8 to 2 GHz are described. These consist of a multilayer printed circuit board (PCB) incorporating a printed helical transmission line. Loss in the via hole is reduced by ensuring that the standing wave current at this point is near zero. This ensures a significant increase in Q. Further increased energy storage per unit volume is achieved due to the 3-D helical nature of the resonator. Unloaded Qs of 235 and 195 have been obtained on low loss PCBs with dielectric constants of 2.2 and 10.5, respectively. Two applications for these resonators are described in this paper. The first is the design of a compact low noise oscillator where the ratio of QL/Q0, and hence insertion loss, is adjusted for low noise. The 2-GHz oscillator demonstrates a phase noise of -120 dBc/Hz at 10 kHz which is predicted exactly by the theory. The second is a three-section filter designed to offer the response required by the front end filter of a modern GSM mobile telephone. In the filter design three helical resonators are coupled together to produce a completely printed triplate bandpass filter. PMID:17941381

  10. Printed wiring board system programmer's manual

    NASA Technical Reports Server (NTRS)

    Brinkerhoff, C. D.

    1973-01-01

    The printed wiring board system provides automated techniques for the design of printed circuit boards and hybrid circuit boards. The system consists of four programs: (1) the preprocessor program combines user supplied data and pre-defined library data to produce the detailed circuit description data; (2) the placement program assigns circuit components to specific areas of the board in a manner that optimizes the total interconnection length of the circuit; (3) the organizer program assigns pin interconnections to specific board levels and determines the optimal order in which the router program should attempt to layout the paths connecting the pins; and (4) the router program determines the wire paths which are to be used to connect each input pin pair on the circuit board. This document is intended to serve as a programmer's reference manual for the printed wiring board system. A detailed description of the internal logic and flow of the printed wiring board programs is included.

  11. Heat sinking for printed circuitry

    DOEpatents

    Wilson, S.K.; Richardson, G.; Pinkerton, A.L.

    1984-09-11

    A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.

  12. Inkjet deposited circuit components

    NASA Astrophysics Data System (ADS)

    Bidoki, S. M.; Nouri, J.; Heidari, A. A.

    2010-05-01

    All-printed electronics as a means of achieving ultra-low-cost electronic circuits has attracted great interest in recent years. Inkjet printing is one of the most promising techniques by which the circuit components can be ultimately drawn (i.e. printed) onto the substrate in one step. Here, the inkjet printing technique was used to chemically deposit silver nanoparticles (10-200 nm) simply by ejection of silver nitrate and reducing solutions onto different substrates such as paper, PET plastic film and textile fabrics. The silver patterns were tested for their functionality to work as circuit components like conductor, resistor, capacitor and inductor. Different levels of conductivity were achieved simply by changing the printing sequence, inks ratio and concentration. The highest level of conductivity achieved by an office thermal inkjet printer (300 dpi) was 5.54 × 105 S m-1 on paper. Inkjet deposited capacitors could exhibit a capacitance of more than 1.5 nF (parallel plate 45 × 45 mm2) and induction coils displayed an inductance of around 400 µH (planar coil 10 cm in diameter). Comparison of electronic performance of inkjet deposited components to the performance of conventionally etched items makes the technique highly promising for fabricating different printed electronic devices.

  13. Silver Ink For Jet Printing

    NASA Technical Reports Server (NTRS)

    Vest, R. W.; Singaram, Saraswathi

    1989-01-01

    Metallo-organic ink containing silver (with some bismuth as adhesion agent) applied to printed-circuit boards and pyrolized in air to form electrically conductive patterns. Ink contains no particles of silver, does not have to be mixed during use to maintain homogeneity, and applied to boards by ink-jet printing heads. Consists of silver neodecanoate and bismuth 2-ethylhexanoate dissolved in xylene and/or toluene.

  14. Coating Circuit Boards With Silicone

    NASA Technical Reports Server (NTRS)

    Gaudiano, S.

    1986-01-01

    Techniques appropriate to boards containing CMOS circuits detailed. Document presents procedure for applying thin conformal coating to such electronic assemblies as printed-circuit boards and wire-wrapped boards. Coating is from 1 to 7 mils (25 to 178 micrometers) thick and composed of room-temperature-vulcanizing (RTV) silicone. Specifies materials, equipment, spraying method, and quality requirements. Takes into account special needs of circuits made with complementary metal-oxide/semiconductor (CMOS) devices on circuit boards. Special attention given to preventing damage by electrostatic discharge, to which CMOS circuits especially sensitive.

  15. Printed hybrid systems

    NASA Astrophysics Data System (ADS)

    Karioja, Pentti; Mäkinen, Jukka-Tapani; Keränen, Kimmo; Aikio, Janne; Alajoki, Teemu; Jaakola, Tuomo; Koponen, Matti; Keränen, Antti; Heikkinen, Mikko; Tuomikoski, Markus; Suhonen, Riikka; Hakalahti, Leena; Kopola, Pälvi; Hast, Jukka; Liedert, Ralf; Hiltunen, Jussi; Masuda, Noriyuki; Kemppainen, Antti; Rönkä, Kari; Korhonen, Raimo

    2012-04-01

    This paper presents research activities carried out at VTT Technical Research Centre of Finland in the field of hybrid integration of optics, electronics and mechanics. Main focus area in our research is the manufacturing of electronic modules and product structures with printed electronics, film-over-molding and polymer sheet lamination technologies and the goal is in the next generation of smart systems utilizing monolithic polymer packages. The combination of manufacturing technologies such as roll-to-roll -printing, injection molding and traditional component assembly is called Printed Hybrid Systems (PHS). Several demonstrator structures have been made, which show the potential of polymer packaging technology. One demonstrator example is a laminated structure with embedded LED chips. Element thickness is only 0.3mm and the flexible stack of foils can be bent in two directions after assembly process and was shaped curved using heat and pressure. The combination of printed flexible circuit boards and injection molding has also been demonstrated with several functional modules. The demonstrators illustrate the potential of origami electronics, which can be cut and folded to 3D shapes. It shows that several manufacturing process steps can be eliminated by Printed Hybrid Systems technology. The main benefits of this combination are small size, ruggedness and conformality. The devices are ideally suited for medical applications as the sensitive electronic components are well protected inside the plastic and the structures can be cleaned easily due to the fact that they have no joints or seams that can accumulate dirt or bacteria.

  16. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Crain, John M. (Inventor); Lettow, John S. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2015-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  17. Printed electronics

    NASA Technical Reports Server (NTRS)

    Crain, John M. (Inventor); Lettow, John S. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel A. (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2012-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  18. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Crain, John M. (Inventor); Lettow, John S. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel A. (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2014-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  19. Molecular printing

    PubMed Central

    Braunschweig, Adam B.; Huo, Fengwei; Mirkin, Chad A.

    2014-01-01

    Molecular printing techniques, which involve the direct transfer of molecules to a substrate with submicrometre resolution, have been extensively developed over the past decade and have enabled many applications. Arrays of features on this scale have been used to direct materials assembly, in nanoelectronics, and as tools for genetic analysis and disease detection. The past decade has witnessed the maturation of molecular printing led by two synergistic technologies: dip-pen nanolithography and soft lithography. Both are characterized by material and substrate flexibility, but dip-pen nanolithography has unlimited pattern design whereas soft lithography has limited pattern flexibility but is low in cost and has high throughput. Advances in DPN tip arrays and inking methods have increased the throughput and enabled applications such as multiplexed arrays. A new approach to molecular printing, polymer-pen lithography, achieves low-cost, high-throughput and pattern flexibility. This Perspective discusses the evolution and future directions of molecular printing. PMID:21378889

  20. Electronics. Module 4: Circuit Construction Techniques. Instructor's Guide.

    ERIC Educational Resources Information Center

    Slack, Don

    This guide contains instructor's materials for a three-unit secondary school course on circuit construction techniques. The units are breadboarding circuits, solder/desolder circuits, and printed circuit board repair. The document begins with advice on its use and a cross-referenced table of instructional materials that show which materials in the…

  1. Printed photodetectors

    NASA Astrophysics Data System (ADS)

    Pace, Giuseppina; Grimoldi, Andrea; Sampietro, Marco; Natali, Dario; Caironi, Mario

    2015-10-01

    Photodetectors convert light pulses into electrical signals and are fundamental building blocks for any opto-electronic system adopting light as a probe or information carrier. They have widespread technological applications, from telecommunications to sensors in industrial, medical and civil environments. Further opportunities are plastic short-range communications systems, interactive large-area surfaces and light-weight, flexible, digital imagers. These applications would greatly benefit from the cost-effective fabrication processes enabled by printing technology. While organic semiconductors are the most investigated materials for printed photodetectors, and are the main focus of the present review, there are notable examples of other inorganic or hybrid printable semiconductors for opto-electronic systems, such as quantum-dots and nanowires. Here we propose an overview on printed photodetectors, including three-terminal phototransistors. We first give a brief account of the working mechanism of these light sensitive devices, and then we review the recent progress achieved with scalable printing techniques such as screen-printing, inkjet and other non-contact technologies in the development of all-printed or hybrid systems.

  2. 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.

    PubMed

    Hong, Sungmin; Sycks, Dalton; Chan, Hon Fai; Lin, Shaoting; Lopez, Gabriel P; Guilak, Farshid; Leong, Kam W; Zhao, Xuanhe

    2015-07-15

    X. Zhao and co-workers develop on page 4035 a new biocompatible hydrogel system that is extremely tough and stretchable and can be 3D printed into complex structures, such as the multilayer mesh shown. Cells encapsulated in the tough and printable hydrogel maintain high viability. 3D-printed structures of the tough hydrogel can sustain high mechanical loads and deformations. PMID:26172844

  3. Large Area Printing of Organic Transistors

    NASA Astrophysics Data System (ADS)

    Blanchet, Graciela B.; Rogers, J. A.; Lefenfeld, M.; Fincher, C. R.; Loo, Jueh-Lin

    2003-03-01

    Organic electronic systems offer the advantage of lightweight, mechanical flexibility and large area coverage at potentially lower manufacturing cost. Although the production of functioning plastic transistors using approaches such as ink jet, screen printing and stamping, has been described in the literature, no one-transistor layer has yet been fabricated using a technique appropriate for their commercial ization. The solution processability of many organics may ultimately allow for the printing of electronic devices in a printing press at high speeds and in a reel to reel configuration. However, designing chemically compatible solutions to be printed sequentially represents a significant technical barrier to achieving all-printed plastic electronic systems. The work presented here represents a step change in the fabrication of organic electronic devices. We introduce thermal transfer, a non-lithographic technique that enables printing multi-layer electronics devices via a dry (i.e. solvent-less) additive process. This high-speed method is capable of patterning a range of organic materials over large areas ( 1 m2 ) with micron dimensions and excellent electrical performance. The 0.5 m2 transistor array backplane printed via thermal transfer represent the most advanced demonstration of a novel printing technology applied to the fabrication of large area integrated electronic devices. Dry transfer printing may provide a practical route to realizing the benefits of plastic materials for electronics.

  4. Measuring circuit

    DOEpatents

    Sun, Shan C.; Chaprnka, Anthony G.

    1977-01-11

    An automatic gain control circuit functions to adjust the magnitude of an input signal supplied to a measuring circuit to a level within the dynamic range of the measuring circuit while a log-ratio circuit adjusts the magnitude of the output signal from the measuring circuit to the level of the input signal and optimizes the signal-to-noise ratio performance of the measuring circuit.

  5. AQUEOUS CLEANING OF PRINTED CIRCUIT BOARD STENCILS

    EPA Science Inventory

    The USEPA through NRMRL has partnered with the California Dept. of Toxic Substance Control under an ETV Pilot Project to verigy polllution prevention, recycling and waste treatment technologies. One of the projects selected for verification was the ultrasonic aqueous cleaning tec...

  6. Reconsidering Print.

    ERIC Educational Resources Information Center

    Development Communication Report, 1978

    1978-01-01

    The role of print in serving the poor majority populations in the developing world is explored through discussions of (1) a rural Ghanian newspaper, the "Densu Times," (2) a popular French language magazine entitled "Famille et Developpement," published in Senegal, West Africa for change agents, (3) a series of cloth posters for classroom use in…

  7. Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication

    NASA Technical Reports Server (NTRS)

    Subbaraman, Harish; Hen, Ray T.; Lu, Xuejun; Chen, Maggie Yihong

    2013-01-01

    wet the CNT thin-film area and enable good contact with the source and drain contact after annealing. A passivation layer to protect the device channel is developed by bonding a thin Kapton film on top of the device channel. This film is also used as the media for transferring the aligned CNT thin-film on the device substrate. A simple and cost-effective technique to form multilayer metal interconnections on flexible substrate is developed and demonstrated. Contact vias are formed on the second substrate prior to bonding on the first substrate. Inkjet printing is used to fill the silver ink into the via structure. The printed silver ink penetrates through the vias to contact with the contact pads on the bottom layer. It is then annealed to form a good connection. One-dimensional and two-dimensional PAAs were fabricated and characterized. In these circuits, multilayer metal interconnects were used to make a complete PAA system.

  8. 3D-Printed Microfluidic Automation

    PubMed Central

    Au, Anthony K.; Bhattacharjee, Nirveek; Horowitz, Lisa F.; Chang, Tim C.; Folch, Albert

    2015-01-01

    Microfluidic automation – the automated routing, dispensing, mixing, and/or separation of fluids through microchannels – generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology’s use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer. PMID:25738695

  9. Magnetic multilayer structure

    DOEpatents

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  10. ADDER CIRCUIT

    DOEpatents

    Jacobsohn, D.H.; Merrill, L.C.

    1959-01-20

    An improved parallel addition unit is described which is especially adapted for use in electronic digital computers and characterized by propagation of the carry signal through each of a plurality of denominationally ordered stages within a minimum time interval. In its broadest aspects, the invention incorporates a fast multistage parallel digital adder including a plurality of adder circuits, carry-propagation circuit means in all but the most significant digit stage, means for conditioning each carry-propagation circuit during the time period in which information is placed into the adder circuits, and means coupling carry-generation portions of thc adder circuit to the carry propagating means.

  11. Characterization of DuPont 9015, aqueous processable dry film photoresist for printed wiring boards. Topical report

    SciTech Connect

    Goldammer, S.

    1995-04-01

    This report describes the evaluation of DuPont`s Riston 9015, fully aqueous processable dry film photoresist as a mask for gold plating, tin/lead plating, and print and etch patterning for printed circuit board products.

  12. Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory

    PubMed Central

    Ng, Tse Nga; Schwartz, David E.; Lavery, Leah L.; Whiting, Gregory L.; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer

    2012-01-01

    Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic. PMID:22900143

  13. Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory.

    PubMed

    Ng, Tse Nga; Schwartz, David E; Lavery, Leah L; Whiting, Gregory L; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer

    2012-01-01

    Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic. PMID:22900143

  14. Microcontact printing.

    PubMed

    Xie, Yunyan; Jiang, Xingyu

    2011-01-01

    Microcontact printing (μCP) is a useful technique for transferring certain molecules onto surfaces with high spatial resolution using elastomeric stamps. The stamp for μCP is fabricated by replica molding from a master made by microlithography. After wetting with a type of material as an "ink," the stamp comes into contact with the substrate. The ink is selectively transferred onto parts of the substrate wherever the stamp makes direct contact, to generate patterns and structures with designated features. Self-assembled monolayers (SAMs) and μCP are useful in many different fields, e.g., in the studies of protein adsorption, cell attachment, and in the construction of sensors. PMID:20967634

  15. Multilayer volume microwave filters

    NASA Astrophysics Data System (ADS)

    Gvozdev, V. I.; Smirnov, S. V.; Chernushenko, A. M.

    1985-09-01

    Multilayer volume microwave filters are particularly suitable for miniaturization of radioelectronic devices by way of circuit integration, the principal advantage over planar filters being the much higher Q-factor; Q sub 0 or = 10 to the 3rd power as compared with Q sub 0 or = 10 to the 2nd power. Their metal-dielectric structure forms an array of coupled half-wavelength resonators electrically symmetric with respect to the center layer, coupling being effected by a magnetic field normal to the plane of resonators. The structure consists of an asymmetric strip line with conductor at the input end, followed by a metal layer with cut out symmetric slot line, a dielectric layer, a symmetric strip line with conductor, a metal layer with cut out symmetric slot line, a dielectric layer, and an asymmetric strip line with conductor at the output end. The size of such a filter depends directly on the number of resonator stages and, without the case, is comparable with the size of conventional filters on symmetric strip lines only but is much smaller than that of conventional filters on asymmetric strip lines only.

  16. Hybrid stretchable circuits on silicone substrate

    SciTech Connect

    Robinson, A. Aziz, A.; Liu, Q.; Suo, Z.; Lacour, S. P.

    2014-04-14

    When rigid and stretchable components are integrated onto a single elastic carrier substrate, large strain heterogeneities appear in the vicinity of the deformable-non-deformable interfaces. In this paper, we report on a generic approach to manufacture hybrid stretchable circuits where commercial electronic components can be mounted on a stretchable circuit board. Similar to printed circuit board development, the components are electrically bonded on the elastic substrate and interconnected with stretchable electrical traces. The substrate—a silicone matrix carrying concentric rigid disks—ensures both the circuit elasticity and the mechanical integrity of the most fragile materials.

  17. SEM-contour shape analysis based on circuit structure for advanced systematic defect inspection

    NASA Astrophysics Data System (ADS)

    Toyoda, Yasutaka; Shindo, Hiroyuki; Hojo, Yutaka; Fuchimoto, Daisuke

    2014-04-01

    We have developed a practicable measurement technique that can help to achieve reliable inspections for systematic defects in advanced semiconductor devices. Systematic defects occurring in the design and mask processes are a dominant component of integrated circuit yield loss in nano-scaled technologies. Therefore, it is essential to ensure systematic defects are detected at an early stage of wafer fabrication. In the past, printed pattern shapes have been evaluated by human eyes or by taking manual critical dimension (CD) measurements. However, these operations are sometimes unstable and inaccurate. Last year, we proposed a new technique for taking measurements by using a SEM contour [1]. This technique enables a highly precise quantification of various complex 2D shaped patterns by comparing a contour extracted from a SEM image using a CD measurement algorithm and an ideal pattern. We improved this technique to enable the carrying out of inspections suitable for every pattern structure required for minimizing the process margin. This technique quantifies a pattern shape of a target-layer pattern using information on a multi-layered circuit structure. This enabled it to confirm the existence of a critical defect in a circuit connecting upper/lower-layers. This paper describes the improved technique and the evaluation results obtained in evaluating it in detail.

  18. All-printed paper memory.

    PubMed

    Lien, Der-Hsien; Kao, Zhen-Kai; Huang, Teng-Han; Liao, Ying-Chih; Lee, Si-Chen; He, Jr-Hau

    2014-08-26

    We report the memory device on paper by means of an all-printing approach. Using a sequence of inkjet and screen-printing techniques, a simple metal–insulator–metal device structure is fabricated on paper as a resistive random access memory with a potential to reach gigabyte capacities on an A4 paper. The printed-paper-based memory devices (PPMDs) exhibit reproducible switching endurance, reliable retention, tunable memory window, and the capability to operate under extreme bending conditions. In addition, the PBMD can be labeled on electronics or living objects for multifunctional, wearable, on-skin, and biocompatible applications. The disposability and the high-security data storage of the paper-based memory are also demonstrated to show the ease of data handling, which are not achievable for regular silicon-based electronic devices. We envision that the PPMDs manufactured by this cost-effective and time-efficient all-printing approach would be a key electronic component to fully activate a paper-based circuit and can be directly implemented in medical biosensors, multifunctional devices, and self-powered systems. PMID:25019420

  19. LC Circuits for Diagnosing Embedded Piezoelectric Devices

    NASA Technical Reports Server (NTRS)

    Chattin, Richard L.; Fox, Robert Lee; Moses, Robert W.; Shams, Qamar A.

    2005-01-01

    A recently invented method of nonintrusively detecting faults in piezoelectric devices involves measurement of the resonance frequencies of inductor capacitor (LC) resonant circuits. The method is intended especially to enable diagnosis of piezoelectric sensors, actuators, and sensor/actuators that are embedded in structures and/or are components of multilayer composite material structures.

  20. Additive Manufacturing of Hybrid Circuits

    NASA Astrophysics Data System (ADS)

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.

    2016-07-01

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  1. Electrohydrodynamic direct—writing of conductor—insulator-conductor multi-layer interconnection

    NASA Astrophysics Data System (ADS)

    Zheng, Gao-Feng; Pei, Yan-Bo; Wang, Xiang; Zheng, Jian-Yi; Sun, Dao-Heng

    2014-06-01

    A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor—insulator—conductor multi-layer interconnection structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is utilized to fabricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained results show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10-7 Ω·m and 1.39 × 10-7 Ω·m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor—insulator—conductor multi-layer interconnections in the electronic industry.

  2. Modular chassis simplifies packaging and interconnecting of circuit boards

    NASA Technical Reports Server (NTRS)

    Arens, W. E.; Boline, K. G.

    1964-01-01

    A system of modular chassis structures has simplified the design for mounting a number of printed circuit boards. This design is structurally adaptable to computer and industrial control system applications.

  3. Superlattices and multilayer structures for high efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1985-01-01

    Possible applications of superlattices to photovoltaic structures are discussed. A new concept based on doping superstructures (NIPI) can be exploited to significantly reduce recombination losses in III-V compound solar cells. A novel multijunction structure with lateral current transport is proposed. A computer simulation has been performed which shows that by optimizing the multilayer structure, short circuit current is substantially increased with minimum drop in open circuit voltage. An additional advantage of the structure is enhanced radiation tolerance. It is anticipated that this multilayer structure can be incorporated in multibandgap cells to achieve high efficiencies.

  4. Magnetic Properties of 3D Printed Toroids

    NASA Astrophysics Data System (ADS)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  5. MULTIPLIER CIRCUIT

    DOEpatents

    Thomas, R.E.

    1959-01-20

    An electronic circuit is presented for automatically computing the product of two selected variables by multiplying the voltage pulses proportional to the variables. The multiplier circuit has a plurality of parallel resistors of predetermined values connected through separate gate circults between a first input and the output terminal. One voltage pulse is applied to thc flrst input while the second voltage pulse is applied to control circuitry for the respective gate circuits. Thc magnitude of the second voltage pulse selects the resistors upon which the first voltage pulse is imprcssed, whereby the resultant output voltage is proportional to the product of the input voltage pulses

  6. GATING CIRCUITS

    DOEpatents

    Merrill, L.C.

    1958-10-14

    Control circuits for vacuum tubes are described, and a binary counter having an improved trigger circuit is reported. The salient feature of the binary counter is the application of the input signal to the cathode of each of two vacuum tubes through separate capacitors and the connection of each cathode to ground through separate diodes. The control of the binary counter is achieved in this manner without special pulse shaping of the input signal. A further advantage of the circuit is the simplicity and minimum nuruber of components required, making its use particularly desirable in computer machines.

  7. TRIPPING CIRCUIT

    DOEpatents

    Lees, G.W.; McCormick, E.D.

    1962-05-22

    A tripping circuit employing a magnetic amplifier for tripping a reactor in response to power level, period, or instrument failure is described. A reference winding and signal winding are wound in opposite directions on the core. Current from an ion chamber passes through both windings. If the current increases at too fast a rate, a shunt circuit bypasses one or the windings and the amplifier output reverses polarity. (AEC)

  8. Multilayer Insulation Material Guidelines

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Dooling, D.

    1999-01-01

    Multilayer Insulation Material Guidelines provides data on multilayer insulation materials used by previous spacecraft such as Spacelab and the Long-Duration Exposure Facility and outlines other concerns. The data presented in the document are presented for information only. They can be used as guidelines for multilayer insulation design for future spacecraft provided the thermal requirements of each new design and the environmental effects on these materials are taken into account.

  9. Fabrication of multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-05-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  10. Optical and structural characterization of CeO2/B4C multilayers near boron K-edge energy

    NASA Astrophysics Data System (ADS)

    Sertsu, M. G.; Giglia, A.; Brose, S.; Comisso, A.; Wang, Z. S.; Juschkin, L.; Nicolosi, P.

    2015-05-01

    A search for novel materials for making multilayers of high reflectivity has been driven by the vigorous demand towards miniaturizing photonics. A typical consumer of high performance multilayers (MLs) is the extreme ultraviolet lithography (EUVL) based on the 13.5 nm laser produced plasma (LPP) source. To sustain "Moore's law" and print fine features below 10 nm on integrated circuits (IC), source of radiation for the EUVL has to shift towards even shorter wavelengths where 6.x nm wavelength seems to be immediate successor. However, the 6.x nm EUV lithography needs MLs of reflectivity performance above 70 % to support high volume manufacturing (HVM). It is clear that more work is required particularly on the development of MLs with high reflectance, stable to thermal heat and sufficient lifetime. In this work new MLs of B4C/CeO2 are deposited, analyzed and characterized for the first time. Combinations of X-ray reflectometry (XRR) and EUV reflectance measurements near resonance edge of boron are analyzed to derive structural and optical parameters of MLs. ML coatings of B4C/CeO2 MLs have shown similar reflectance performance with the leading candidate MLs around 6.x nm wavelength. Analysis shows that interlayer diffusion is a major reason for low reflectivity performance. Cross-sectional scanning electron microscopy (SEM) images of the MLs have proved formation of interlayer diffusion.

  11. Digital biomagnetism: Electrodeposited multilayer magnetic barcodes

    NASA Astrophysics Data System (ADS)

    Palfreyman, Justin J.; Cooper, Joshaniel F. K.; van Belle, Frieda; Hong, Bingyan; Hayward, Tom J.; Lopalco, Maria; Bradley, Mark; Mitrelias, Thanos; Bland, J. Anthony C.

    2009-05-01

    A novel magnetic encoding technique for performing high-throughput biological assays is presented. Electrodeposited Ni/Cu and Co/Cu multilayer pillar structures with a diameter of 15 μm and a thickness up to 10 μm are presented as "magnetic barcodes", where the number of unique codes possible increases exponentially with a linear increase in length. A gold cap facilitates the growth of self-assembled monolayers (SAMs), while microdrop printing allows efficient generation of large libraries of tagged probes. Coercivity-tuning techniques are used to exploit a non-proximity encoding methodology compatible with microfluidic flow.

  12. Inkjet printing of upconversion nanoparticles for anti-counterfeit applications

    NASA Astrophysics Data System (ADS)

    You, Minli; Zhong, Junjie; Hong, Yuan; Duan, Zhenfeng; Lin, Min; Xu, Feng

    2015-02-01

    Patterning of upconversion luminescent materials has been widely used for anti-counterfeit and security applications, where the preferred method should be easy, fast, multicolor, high-throughput and designable. However, conventional patterning methods are complex and inflexible. Here, we report a digital and flexible inkjet printing based approach for producing high-resolution and high-luminescence anti-counterfeit patterns. We successfully printed different multicolor luminescent patterns by inkjet printing of upconversion nanoparticles with controlled and uniform luminescence intensity through optimizing the inks and substrates. Combined with another downconversion luminescent material, we achieved two different patterns in the same area, which show up separately under excitation by different wavelength laser sources. The developed technology is promising to use one single substrate for carrying abundant information by printing multilayer patterns composed of luminescent materials with different excitation light sources.Patterning of upconversion luminescent materials has been widely used for anti-counterfeit and security applications, where the preferred method should be easy, fast, multicolor, high-throughput and designable. However, conventional patterning methods are complex and inflexible. Here, we report a digital and flexible inkjet printing based approach for producing high-resolution and high-luminescence anti-counterfeit patterns. We successfully printed different multicolor luminescent patterns by inkjet printing of upconversion nanoparticles with controlled and uniform luminescence intensity through optimizing the inks and substrates. Combined with another downconversion luminescent material, we achieved two different patterns in the same area, which show up separately under excitation by different wavelength laser sources. The developed technology is promising to use one single substrate for carrying abundant information by printing multilayer

  13. Stable Polyurethane Coatings for Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1983-01-01

    Alkane-based polyurethanes resist deterioration while maintaining good dielectric properties. Weight loss after prolonged immersion in hot water far less for alkane-based polyurethanes than for more common ether based polyurethanes, at any given oxygen content. Major uses of polyurethanes are as connector potting materials and conformal coatings for printed circuit boards.

  14. Commercial printing and electronic color printing

    NASA Astrophysics Data System (ADS)

    Webb, Joseph W.

    1995-04-01

    Technologies such as Xeikon, Indigo, and the Heidelberg/Presstek GTO-DI can change both the way print buyers may purchase printed material and the way printers and trade services respond to changing demands. Our recent study surveys the graphic arts industry for their current views of these new products and provides forecasts of installations and usage with breakdowns by market segment and size of firm. The acceptance of desktop publishing and electronic prepress have not only paved the way for a totally electronic printing process, but it has broadened the base of people who develop color originals for reproduction. Electronic printing adds the ability to customize jobs on the fly. How print providers will respond to the impact of electronic color printing depends on how each firm perceives the 'threat.' Most printing companies are run by entrepreneurial individuals who have, as their highest priority, their own economic survival. Service bureaus are already looking at electronic color printing as yet another way to differentiate their businesses. The study was based on a mail survey with 682 responses from graphic arts firms, interviews with printers, suppliers, associations and industry executives, and detailed secondary research. Results of a new survey in progress in January 1995 is also presented.

  15. MULTIPLIER CIRCUIT

    DOEpatents

    Chase, R.L.

    1963-05-01

    An electronic fast multiplier circuit utilizing a transistor controlled voltage divider network is presented. The multiplier includes a stepped potentiometer in which solid state or transistor switches are substituted for mechanical wipers in order to obtain electronic switching that is extremely fast as compared to the usual servo-driven mechanical wipers. While this multiplier circuit operates as an approximation and in steps to obtain a voltage that is the product of two input voltages, any desired degree of accuracy can be obtained with the proper number of increments and adjustment of parameters. (AEC)

  16. Fabric circuits and method of manufacturing fabric circuits

    NASA Technical Reports Server (NTRS)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  17. High Relief Block Printing.

    ERIC Educational Resources Information Center

    Foster, Michael

    1989-01-01

    Explains a method of block printing using styrofoam shapes to make high relief. Describes the creation of the block design as well as the actual printing process. Uses a range of paper types for printing so children can see the results of using different media. (LS)

  18. Large Print Bibliography, 1990.

    ERIC Educational Resources Information Center

    South Dakota State Library, Pierre.

    This bibliography lists materials that are available in large print format from the South Dakota State Library. The annotated entries are printed in large print and include the title of the material and its author, call number, publication date, and type of story or subject area covered. Some recorded items are included in the list. The entries…

  19. Circuit Training.

    ERIC Educational Resources Information Center

    Nelson, Jane B.

    1998-01-01

    Describes a research-based activity for high school physics students in which they build an LC circuit and find its resonant frequency of oscillation using an oscilloscope. Includes a diagram of the apparatus and an explanation of the procedures. (DDR)

  20. Reusable vibration resistant integrated circuit mounting socket

    DOEpatents

    Evans, Craig N.

    1995-01-01

    This invention discloses a novel form of socket for integrated circuits to be mounted on printed circuit boards. The socket uses a novel contact which is fabricated out of a bimetallic strip with a shape which makes the end of the strip move laterally as temperature changes. The end of the strip forms a barb which digs into an integrated circuit lead at normal temperatures and holds it firmly in the contact, preventing loosening and open circuits from vibration. By cooling the contact containing the bimetallic strip the barb end can be made to release so that the integrated circuit lead can be removed from the socket without damage either to the lead or to the socket components.

  1. Progress in organic integrated circuit manufacture

    NASA Astrophysics Data System (ADS)

    Taylor, D. Martin

    2016-02-01

    This review article focuses on the development of processes for the manufacture of organic electronic circuits. Beginning with the first report of an organic transistor it highlights the key developments leading to the successful manufacture of microprocessors and other complex circuits incorporating organic transistors. Both batch processing (based on silicon integrated circuit technology) as well as mass-printing, roll-to-roll (R2R) approaches are discussed. Currently, the best circuit performances are achieved using batch processing. It is suggested that an emerging, large mass-market for electronic tags may dictate that R2R manufacture will likely be required to meet the high throughput rates needed. However, significant improvements in resolution and registration are necessary to achieve increased circuit operating speeds.

  2. Compact organic vapor jet printing print head

    DOEpatents

    Forrest, Stephen R; McGraw, Gregory

    2013-12-24

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print header further includes a first layer comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  3. Compact organic vapor jet printing print head

    DOEpatents

    Forrest, Stephen; McGraw, Gregory

    2016-02-02

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print head further includes a first layer further comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  4. Compact organic vapor jet printing print head

    SciTech Connect

    Forrest, Stepehen R; McGraw, Gregory

    2015-01-27

    A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print head further includes a first layer further comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.

  5. Laser printing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  6. Characterization of relief printing

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Chen, Lin; Ortiz-Segovia, Maria-Valezzka; Ferwerda, James; Allebach, Jan

    2014-03-01

    Relief printing technology developed by Océ allows the superposition of several layers of colorant on different types of media which creates a variation of the surface height defined by the input to the printer. Evaluating the reproduction accuracy of distinct surface characteristics is of great importance to the application of the relief printing system. Therefore, it is necessary to develop quality metrics to evaluate the relief process. In this paper, we focus on the third dimension of relief printing, i.e. height information. To achieve this goal, we define metrics and develop models that aim to evaluate relief prints in two aspects: overall fidelity and surface finish. To characterize the overall fidelity, three metrics are calculated: Modulation Transfer Function (MTF), difference and root-mean-squared error (RMSE) between the input height map and scanned height map, and print surface angle accuracy. For the surface finish property, we measure the surface roughness, generate surface normal maps and develop a light reflection model that serves as a simulation of the differences between ideal prints and real prints that may be perceived by human observers. Three sets of test targets are designed and printed by the Océ relief printer prototypes for the calculation of the above metrics: (i) twisted target, (ii) sinusoidal wave target, and (iii) ramp target. The results provide quantitative evaluations of the printing quality in the third dimension, and demonstrate that the height of relief prints is reproduced accurately with respect to the input design. The factors that affect the printing quality include: printing direction, frequency and amplitude of the input signal, shape of relief prints. Besides the above factors, there are two additional aspects that influence the viewing experience of relief prints: lighting condition and viewing angle.

  7. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  8. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  9. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect

    Ababei, Cristinel; Yuvarajan, Subbaraya; Schulz, Douglas L.

    2010-07-15

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  10. Based on line scan CCD print image detection system

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Xie, Kai; Li, Tong

    2015-12-01

    In this paper, a new method based on machine vision is proposed for the defects of the traditional manual inspection of the quality of printed matter. With the aid of on line array CCD camera for image acquisition, using stepper motor as a sampling of drive circuit. Through improvement of driving circuit, to achieve the different size or precision image acquisition. In the terms of image processing, the standard image registration algorithm then, because of the characteristics of CCD-image acquisition, rigid body transformation is usually used in the registration, so as to achieve the detection of printed image.

  11. Thermometry and thermal management of carbon nanotube circuits

    SciTech Connect

    Mayle, Scott; Gupta, Tanuj; Davis, Sam; Chandrasekhar, Venkat; Shafraniuk, Serhii

    2015-05-21

    Monitoring of the intrinsic temperature and the thermal management is discussed for the carbon nanotube nano-circuits. The experimental results concerning fabricating and testing of a thermometer able to monitor the intrinsic temperature on nanoscale are reported. We also suggest a model which describes a bi-metal multilayer system able to filter the heat flow, based on separating the electron and phonon components one from another. The bi-metal multilayer structure minimizes the phonon component of the heat flow, while retaining the electronic part. The method allows one to improve the overall performance of the electronic nano-circuits due to minimizing the energy dissipation.

  12. Computer-aided process preparation for printed wiring boards

    NASA Astrophysics Data System (ADS)

    Foreman, K. D.

    1981-11-01

    A pilot computer project using CAD-CAM software, and a graphics terminal which intergrates design, process preparation, and manufactures printed wiring boards through automation is described. A CAD-CAM data base was used to compare critical design features to statistical process models to predict yield before production begins. The onscreen display of digital design definitions is shown to contribute to greater, more predictable and reliable yields for complex multilayer and double sided designs. It is indicated that use of computer graphics and CAD-CAM software to fabricate printed wiring boards increases accuracy of yield and reduces engineering time required for manual procedures.

  13. Evaluation of photocrosslinked Lutrol hydrogel for tissue printing applications.

    PubMed

    Fedorovich, Natalja E; Swennen, Ives; Girones, Jordi; Moroni, Lorenzo; van Blitterswijk, Clemens A; Schacht, Etienne; Alblas, Jacqueline; Dhert, Wouter J A

    2009-07-13

    Application of hydrogels in tissue engineering and innovative strategies such as organ printing, which is based on layered 3D deposition of cell-laden hydrogels, requires design of novel hydrogel matrices. Hydrogel demands for 3D printing include: 1) preservation of the printed shape after the deposition; 2) maintaining cell viability and cell function and 3) easy handling of the printed construct. In this study we analyze the applicability of a novel, photosensitive hydrogel (Lutrol) for printing of 3D structured bone grafts. We benefit from the fast temperature-responsive gelation ability of thermosensitive Lutrol-F127, ensuring organized 3D extrusion, and the additional stability provided by covalent photocrosslinking allows handling of the printed scaffolds. We studied the cytotoxicity of the hydrogel and osteogenic differentiation of embedded osteogenic progenitor cells. After photopolymerization of the modified Lutrol hydrogel, cells remain viable for up to three weeks and retain the ability to differentiate. Encapsulation of cells does not compromise the mechanical properties of the formed gels and multilayered porous Lutrol structures were successfully printed. PMID:19445533

  14. Color dithering methods for LEGO-like 3D printing

    NASA Astrophysics Data System (ADS)

    Sun, Pei-Li; Sie, Yuping

    2015-01-01

    Color dithering methods for LEGO-like 3D printing are proposed in this study. The first method is work for opaque color brick building. It is a modification of classic error diffusion. Many color primaries can be chosen. However, RGBYKW is recommended as its image quality is good and the number of color primary is limited. For translucent color bricks, multi-layer color building can enhance the image quality significantly. A LUT-based method is proposed to speed the dithering proceeding and make the color distribution even smoother. Simulation results show the proposed multi-layer dithering method can really improve the image quality of LEGO-like 3D printing.

  15. Circuit Connectors

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The U-shaped wire devices in the upper photo are Digi-Klipsm; aids to compact packaging of electrical and electronic devices. They serve as connectors linking the circuitry of one circuit board with another in multi-board systems. Digi-Klips were originally developed for Goddard Space Flight Center to meet a need for lightweight, reliable connectors to replace hand-wired connections formerly used in spacecraft. They are made of beryllium copper wire, noted for its excellent conductivity and its spring-like properties, which assure solid electrical contact over a long period of time.

  16. Engraving Print Classification

    SciTech Connect

    Hoelck, Daniel; Barbe, Joaquim

    2008-04-15

    A print is a mark, or drawing, made in or upon a plate, stone, woodblock or other material which is cover with ink and then is press usually into a paper reproducing the image on the paper. Engraving prints usually are image composed of a group of binary lines, specially those are made with relief and intaglio techniques. Varying the number and the orientation of lines, the drawing of the engraving print is conformed. For this reason we propose an application based on image processing methods to classify engraving prints.

  17. Highly Efficient Multilayer Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Boufelfel, Ali

    2006-01-01

    Multilayer thermoelectric devices now at the prototype stage of development exhibit a combination of desirable characteristics, including high figures of merit and high performance/cost ratios. These devices are capable of producing temperature differences of the order of 50 K in operation at or near room temperature. A solvent-free batch process for mass production of these state-of-the-art thermoelectric devices has also been developed. Like prior thermoelectric devices, the present ones have commercial potential mainly by virtue of their utility as means of controlled cooling (and/or, in some cases, heating) of sensors, integrated circuits, and temperature-critical components of scientific instruments. The advantages of thermoelectric devices for such uses include no need for circulating working fluids through or within the devices, generation of little if any noise, and high reliability. The disadvantages of prior thermoelectric devices include high power consumption and relatively low coefficients of performance. The present development program was undertaken in the hope of reducing the magnitudes of the aforementioned disadvantages and, especially, obtaining higher figures of merit for operation at and near room temperature. Accomplishments of the program thus far include development of an algorithm to estimate the heat extracted by, and the maximum temperature drop produced by, a thermoelectric device; solution of the problem of exchange of heat between a thermoelectric cooler and a water-cooled copper block; retrofitting of a vacuum chamber for depositing materials by sputtering; design of masks; and fabrication of multilayer thermoelectric devices of two different designs, denoted I and II. For both the I and II designs, the thicknesses of layers are of the order of nanometers. In devices of design I, nonconsecutive semiconductor layers are electrically connected in series. Devices of design II contain superlattices comprising alternating electron

  18. LOGIC CIRCUIT

    DOEpatents

    Strong, G.H.; Faught, M.L.

    1963-12-24

    A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)

  19. Capacitive charge generation apparatus and method for testing circuits

    DOEpatents

    Cole, Jr., Edward I.; Peterson, Kenneth A.; Barton, Daniel L.

    1998-01-01

    An electron beam apparatus and method for testing a circuit. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 .mu.m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits.

  20. Capacitive charge generation apparatus and method for testing circuits

    DOEpatents

    Cole, E.I. Jr.; Peterson, K.A.; Barton, D.L.

    1998-07-14

    An electron beam apparatus and method for testing a circuit are disclosed. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 {micro}m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits. 7 figs.

  1. A programmable heater control circuit for spacecraft

    NASA Technical Reports Server (NTRS)

    Nguyen, D. D.; Owen, J. W.; Smith, D. A.; Lewter, W. J.

    1994-01-01

    Spacecraft thermal control is accomplished for many components through use of multilayer insulation systems, electrical heaters, and radiator systems. The heaters are commanded to maintain component temperatures within design specifications. The programmable heater control circuit (PHCC) was designed to obtain an effective and efficient means of spacecraft thermal control. The hybrid circuit provides use of control instrumentation as temperature data, available to the spacecraft central data system, reprogramming capability of the local microprocessor during the spacecraft's mission, and the elimination of significant spacecraft wiring. The hybrid integrated circuit has a temperature sensing and conditioning circuit, a microprocessor, and a heater power and control circuit. The device is miniature and housed in a volume which allows physical integration with the component to be controlled. Applications might include alternate battery-powered logic-circuit configurations. A prototype unit with appropriate physical and functional interfaces was procured for testing. The physical functionality and the feasibility of fabrication of the hybrid integrated circuit were successfully verified. The remaining work to develop a flight-qualified device includes fabrication and testing of a Mil-certified part. An option for completing the PHCC flight qualification testing is to enter into a joint venture with industry.

  2. The Circle Block Print

    ERIC Educational Resources Information Center

    Shaw, Annita

    2011-01-01

    Most students enjoy the printing process. Some may have experimented with printing in the past using found objects or cutouts made of cardboard. In this article, students create a design on a pie-shaped piece and then repeat it to make a radial design.

  3. Printing Ancient Terracotta Warriors

    ERIC Educational Resources Information Center

    Gadecki, Victoria L.

    2010-01-01

    Standing in awe in Xian, China, at the Terra Cotta warrior archaeological site, the author thought of sharing this experience and excitement with her sixth-grade students. She decided to let her students carve patterns of the ancient soldiers to understand their place in Chinese history. They would make block prints and print multiple soldiers on…

  4. Construction Print Reading.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on construction print reading is designed to provide Marines of all ranks and Military Occupation Specialities with the basic information to recognize the terms and symbols used in construction prints; it is adaptable for nonmilitary instruction.…

  5. Circularly polarized printed arrays composed of strip dipoles and slots

    NASA Astrophysics Data System (ADS)

    Ito, Koichi

    1987-04-01

    This paper presents circularly polarized printed arrays composed of strip dipoles and slots (CP-PASS). A design method for CP-PASS is described on the basis of its equivalent circuit model. A linear array with a Chebyshev pattern and a middle-gain planar array are designed and measured at S band.

  6. Additive manufacturing of hybrid circuits

    DOE PAGESBeta

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  7. Control of Multilayer Networks

    PubMed Central

    Menichetti, Giulia; Dall’Asta, Luca; Bianconi, Ginestra

    2016-01-01

    The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable. PMID:26869210

  8. Multilayered Graphene in Microwaves

    NASA Astrophysics Data System (ADS)

    Kuzhir, P.; Volynets, N.; Maksimenko, S.; Kaplas, T.; Svirko, Yu.

    2013-05-01

    We report on the experimental study of electromagnetic (EM) properties of multilayered graphene in Ka-band synthesized by catalytic chemical vapor deposition (CVD) process in between nanometrically thin Cu catalyst film and dielectric (SiO2) substrate. The quality of the produced multilayered graphene samples were monitored by Raman spectroscopy. The thickness of graphene films was controlled by atomic force microscopy (AFM) and was found to be a few nanometers (up to 5 nm). We discovered, that the fabricated graphene provided remarkably high EM shielding efficiency caused by absorption losses at the level of 35-43% of incident power. Being highly conductive at room temperature, multi-layer graphene emerges as a promising material for manufacturing ultrathin microwave coatings to be used in aerospace applications.

  9. Magnetic multilayer interface anisotropy

    SciTech Connect

    Pechan, M.J.

    1992-01-01

    Ni/Mo and Ni/V multilayer magnetic anisotropy has been investigated as a function of Ni layer thickness, frequency and temperature. Variable frequency ferromagnetic resonance (FMR) measurements show, for the first time, significant frequency dependence associated with the multilayer magnetic anisotropy. The thickness dependence allows one to extract the interface contribution from the total anisotropy. Temperature dependent FMR (9 GHz) and room temperature magnetization indicate that strain between Ni and the non-magnetic layers is contributing significantly to the source of the interface anisotropy and the state of the interfacial magnetization. In order to examine the interface properties of other transition metal multilayer systems, investigations on Fe/Cu are underway and CoCr/Ag is being proposed. ESR measurements have been reported on Gd substituted YBaCuO superconductors and a novel quasi-equilibrium method has been developed to determine quickly and precisely the ransition temperature.

  10. Commutation circuit for an HVDC circuit breaker

    DOEpatents

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  11. Commutation circuit for an HVDC circuit breaker

    DOEpatents

    Premerlani, W.J.

    1981-11-10

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components. 13 figs.

  12. Controlling colour-printed gloss by varnish-halftones

    NASA Astrophysics Data System (ADS)

    Samadzadegan, Sepideh; Baar, Teun; Urban, Philipp; Ortiz Segovia, Maria V.; Blahová, Jana

    2015-03-01

    Printing appearance effects beyond colour - such as gloss - is an active research topic in the scope of multi-layer printing (2.5D or 3D printing). Such techniques may enable a perceptually more accurate reproduction of optical material properties and are required to avoid appearance related artefacts sometimes observed in regular colour printing - such as bronzing and differential gloss. In addition to technical challenges of printing such effects, a perceptual space that describes the related visual attributes is crucial; particularly to define perceptually meaningful tolerances and for appearance gamut mapping. In this paper, we focus on spatially-varying gloss created by varnish-halftones. This enables us to print specular gloss effects covering a large portion of the NCS gloss scale from full matte to high gloss. We then conduct a psychophysical experiment to find the relationship between measured specular gloss and a perceptually uniform gloss scale. Our results show that this relationship can be well described by a power function according to Stevens Power Law.

  13. Perspective: Concepts of printing technologies for oral film formulations.

    PubMed

    Preis, Maren; Breitkreutz, Joerg; Sandler, Niklas

    2015-10-30

    Different types of printing methods have recently attracted interest as emerging technologies for fabrication of drug delivery systems. If printing is combined with different oral film manufacturing technologies such as solvent casting and other techniques, multifunctional structures can be created to enable further complexity and high level of sophistication. This review paper intends to provide profound understanding and future perspectives for the potential use of printing technologies in the preparation of oral film formulations as novel drug delivery systems. The described concepts include advanced multi-layer coatings, stacked systems, and integrated bioactive multi-compartments, which comprise of integrated combinations of diverse materials to form sophisticated bio-functional constructs. The advanced systems enable tailored dosing for individual drug therapy, easy and safe manufacturing of high-potent drugs, development and manufacturing of fixed-dose combinations and product tracking for anti-counterfeiting strategies. PMID:25683143

  14. Voltage-clearance recommendations for printed boards

    SciTech Connect

    Jennings, C W; Cave, G; Evans, A; Harrington, D J; Kirchenbaum, J; Martz, R E; Mierendorf, R C; Smith, G A

    1980-01-01

    Present and future trends in printed board designs point to higher circuit densities with narrower lines and closer spacings. Some designers are now laying out boards with 0.13 mm lines and spacings. The reduction of nominal spacing between conductive elements has raised questions concerning the adequacy of present voltage-clearance recommendations. The present recommendations are considered too conservative in that they are weighted with large safety factors, especially for small clearances, and are frequently disregarded by many designers. Published voltage breakdown measurements made on printed boards with comb patterns with their enhanced conductor test lengths show breakdowns occurring at much higher voltages than those specified for the clearances in existing documents. A Task Group was set up to review published breakdown measurements and to make any additional measurements necessary to provide voltage-clearance recommendations. These recommendations are reported.

  15. Techniques for Characterizing Microwave Printed Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee; Lee, Richard Q.

    2003-01-01

    The combination of a de-embedding technique and a direct on-substrate measurement technique has been devised to enable measurement of the electrical characteristics (impedances, scattering parameters, and gains) of microwave printed antennas that may be formed integrally with feed networks that include slot lines, coplanar striplines, and/or coplanar waveguides. The combination of techniques eliminates the need for custom test fixtures, including transitions between (1) coaxial or waveguide feed lines in typical test equipment and (2) the planar waveguide structures of the printed circuits under test. The combination of techniques can be expected to be especially useful for rapid, inexpensive, and accurate characterization of antennas for miniature wireless communication units that operate at frequencies from a few to tens of gigahertz.

  16. A simple tachometer circuit

    NASA Technical Reports Server (NTRS)

    Dimeff, J.

    1972-01-01

    Electric circuit to measure frequency of repetitive sinusoidal or rectangular wave is presented. Components of electric circuit and method of operation are explained. Application of circuit as tachometer for automobile is discussed.

  17. Photomultiplier blanking circuit

    NASA Technical Reports Server (NTRS)

    Mcclenahan, J. O.

    1972-01-01

    Circuit for protecting photomultiplier equipment from current surges which occur when exposed to brilliant illumination is discussed. Components of circuit and details of operation are provided. Circuit diagram to show action of blanking pulse on zener diode is included.

  18. Antimicrobial polypeptide multilayer nanocoatings.

    PubMed

    Rudra, Jai S; Dave, Komal; Haynie, Donald T

    2006-01-01

    A multilayer coating (or film) of nanometer-thick layers can be made by sequential adsorption of oppositely charged polyelectrolytes on a solid support. The method is known as layer-by-layer assembly (LBL). No special apparatus is required for LBL and nanofilms can be prepared under mild, physiological conditions. A multilayer nanofilm in which at least one of the constituent species is a polypeptide is a polypeptide multilayer nanofilm. The present work was aimed at assessing whether polypeptide multilayer nanofilms with specific antimicrobial properties could be prepared by incorporation of a known antimicrobial agent in the film structure, in this case the edible protein hen egg white lysozyme (HEWL). The chicken enzyme is widely employed as a human food preservative. An advantage of LBL in this context is that the nanofilm is fabricated directly on the surface of interest, eliminating the need to incorporate the antimicrobial in other packaging materials. Here, nanofilms were made of poly(L-glutamic acid) (PLGA), which is highly negatively charged in the mildly acidic pH range, and HEWL, which has a high net positive charge at acidic pH. We show that PLGA/HEWL nanofilms inhibit growth of the model microbe Microccocus luteus in the surrounding liquid medium. The amount of HEWL released from PLGA/HEWL films depends on the number of HEWL layers and therefore on the total quantity of HEWL in the films. This initial study provides a sketch of the scope for further development of LBL in the area of antimicrobial polypeptide multilayer films. Potential applications of such films include strategies for food preservation and coatings for implant devices. PMID:17176751

  19. Stop, Look, Listen, Print

    ERIC Educational Resources Information Center

    Schwing, Pauline E.

    1972-01-01

    Article describes the use of audiovisual aids in teaching third-graders how to make brayer, string, Styrofoam and gadget prints. Author advises close cooperation between art and classroom teachers. Printmaking as a means of communication is touched upon. (PD)

  20. Novel waste printed circuit board recycling process with molten salt

    PubMed Central

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  1. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER PRODUCING PRINTED CIRCUIT BOARDS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. aste Minimization Assessment Centers (WMACs) were established at selected u...

  2. Printed Circuit Board Design (PCB) with HDL Designer

    NASA Technical Reports Server (NTRS)

    Winkert, Thomas K.; LaFourcade, Teresa

    2004-01-01

    Contents include the following: PCB design with HDL designer, design process and schematic capture - symbols and diagrams: 1. Motivation: time savings, money savings, simplicity. 2. Approach: use single tool PCB for FPGA design, more FPGA designs than PCB designers. 3. Use HDL designer for schematic capture.

  3. Printed circuit board for a CCD camera head

    DOEpatents

    Conder, Alan D.

    2002-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close (0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  4. Waste printed circuit board recycling techniques and product utilization.

    PubMed

    Hadi, Pejman; Xu, Meng; Lin, Carol S K; Hui, Chi-Wai; McKay, Gordon

    2015-01-01

    E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly "recycling" has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined. PMID:25285997

  5. Novel waste printed circuit board recycling process with molten salt.

    PubMed

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  6. WASTE MINIMIZATION ASSESSMENT FOR A PRINTED CIRCUIT BOARD MANUFACTURER

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected ...

  7. Laser ablated coupling structures for optical printed circuit boards

    NASA Astrophysics Data System (ADS)

    Van Steenberge, Geert; Geerinck, Peter; Riester, Markus; Pongratz, Siegfried; Van Daele, Peter

    2005-09-01

    We report on the cost effective fabrication of 45° micromirror couplers within single-mode polymer waveguides for achieving fully embedded board-level optoelectronic interconnections. Compatibility with existing board manufacturing technology is achieved by making use of polymers with high thermal stability. The sol-gel polymers behave as negative photo resist and waveguides are patterned by UV exposure. Micromirrors are fabricated using excimer laser ablation, a very flexible technology that is particularly well suited for structuring of polymers because of their excellent UV-absorption properties and highly non-thermal ablation behavior. A coupling structure based on total internal reflection (TIR) is enhanced by developing a process for embedding a metal coated 45° mirror in the optical layers. The mirrors are selectively metallized using a lift-off process. Filling up the angled via without the presence of air bubbles and providing a flat surface above the mirror is only possible by enhancing the cladding deposition process with ultrasound agitation. Surface roughness of both the mirrors and the upper cladding surface above the mirrors is investigated using a non-contact optical profiler. Initial loss measurements at 1.3 μm show a propagation loss of 0.62 dB/cm and an excess mirror loss of 1.55 dB. During most recent experiments mirror roughness has been reduced from 160 nm to 20 nm, which will seriously reduce the mirror loss.

  8. Paper-based silver-nanowire electronic circuits with outstanding electrical conductivity and extreme bending stability

    NASA Astrophysics Data System (ADS)

    Huang, Gui-Wen; Xiao, Hong-Mei; Fu, Shao-Yun

    2014-07-01

    Here a facile, green and efficient printing-filtration-press (PFP) technique is reported for room-temperature (RT) mass-production of low-cost, environmentally friendly, high performance paper-based electronic circuits. The as-prepared silver nanowires (Ag-NWs) are uniformly deposited at RT on a pre-printed paper substrate to form high quality circuits via vacuum filtration and pressing. The PFP circuit exhibits more excellent electrical property and bending stability compared with other flexible circuits made by existing techniques. Furthermore, practical applications of the PFP circuits are demonstrated.Here a facile, green and efficient printing-filtration-press (PFP) technique is reported for room-temperature (RT) mass-production of low-cost, environmentally friendly, high performance paper-based electronic circuits. The as-prepared silver nanowires (Ag-NWs) are uniformly deposited at RT on a pre-printed paper substrate to form high quality circuits via vacuum filtration and pressing. The PFP circuit exhibits more excellent electrical property and bending stability compared with other flexible circuits made by existing techniques. Furthermore, practical applications of the PFP circuits are demonstrated. Electronic supplementary information (ESI) available: Video of rolling tests; video of the PFP circuit used as flexible cable in a cell phone; video of the application of the circuit as a RFID tag; a detailed method for synthesizing silver nanowires; details of the PFP technique; folding tests for the circuits; air humidity test for the circuit. See DOI: 10.1039/c4nr00846d

  9. BOK-Printed Electronics

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2013-01-01

    The use of printed electronics technologies (PETs), 2D or 3D printing approaches either by conventional electronic fabrication or by rapid graphic printing of organic or nonorganic electronic devices on various small or large rigid or flexible substrates, is projected to grow exponentially in commercial industry. This has provided an opportunity to determine whether or not PETs could be applicable for low volume and high-reliability applications. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the current status of organic and printed electronics technologies. It reviews three key industry roadmaps- on this subject-OE-A, ITRS, and iNEMI-each with a different name identification for this emerging technology. This followed by a brief review of the status of the industry on standard development for this technology, including IEEE and IPC specifications. The report concludes with key technologies and applications and provides a technology hierarchy similar to those of conventional microelectronics for electronics packaging. Understanding key technology roadmaps, parameters, and applications is important when judicially selecting and narrowing the follow-up of new and emerging applicable technologies for evaluation, as well as the low risk insertion of organic, large area, and printed electronics.

  10. Printed Antennas Made Reconfigurable by Use of MEMS Switches

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2005-01-01

    A class of reconfigurable microwave antennas now undergoing development comprise fairly conventional printed-circuit feed elements and radiating patches integrated with novel switches containing actuators of the microelectromechanical systems (MEMS) type. In comparison with solid-state electronic control devices incorporated into some prior printed microwave antennas, the MEMS-based switches in these antennas impose lower insertion losses and consume less power. Because the radio-frequency responses of the MEMS switches are more nearly linear, they introduce less signal distortion. In addition, construction and operation are simplified because only a single DC bias line is needed to control each MEMS actuator.

  11. Lifetime studies of Mo/Si and Mo/Be multilayer coatings for extreme ultraviolet lithography

    SciTech Connect

    Bajt, S; Clift, W M; Folta, J A; Gullikson, E M; Klebanoff, L E; Kleineberg, U; Malinowski, M E; Wedowski, M

    1999-08-05

    Extreme Ultraviolet Lithography (EUVL) is a candidate for future application by the semiconductor industry in the production of sub-100 nm feature sizes in integrated circuits. Using multilayer reflective coatings optimized at wavelengths ranging from 11 to 14 nm, EUVL represents a potential successor to currently existing optical lithography techniques. In order to assess lifetimes of the multilayer coatings under realistic conditions, a series of radiation stability tests has been performed. In each run a dose of EUV radiation equivalent to several months of lithographic operation was applied to Mo/Si and MO/Be multilayer coatings within a few days. Depending on the residual gas concentration in the vacuum environment, surface deposition of carbon during the exposure lead to losses in the multilayer reflectivity. However, in none of the experimental runs was structural damage within the bulk of the multilayers observed. Mo/Si multilayer coatings recovered their full original reflectivity after removal of the carbon layer by an ozone cleaning method. Auger depth profiling on MO/Be multilayers indicate that carbon penetrated into the Be top layer during illumination with high doses of EUV radiation. Subsequent ozone cleaning fully removed the carbon, but revealed enhanced oxidation of the area illuminated, which led to an irreversible loss in reflectance on the order of 1%. Keywords: Extreme ultraviolet (EUV) lithography, multilayer reflective coatings, radiation stability, surface contamination

  12. Modeling neural circuits in Parkinson's disease.

    PubMed

    Psiha, Maria; Vlamos, Panayiotis

    2015-01-01

    Parkinson's disease (PD) is caused by abnormal neural activity of the basal ganglia which are connected to the cerebral cortex in the brain surface through complex neural circuits. For a better understanding of the pathophysiological mechanisms of PD, it is important to identify the underlying PD neural circuits, and to pinpoint the precise nature of the crucial aberrations in these circuits. In this paper, the general architecture of a hybrid Multilayer Perceptron (MLP) network for modeling the neural circuits in PD is presented. The main idea of the proposed approach is to divide the parkinsonian neural circuitry system into three discrete subsystems: the external stimuli subsystem, the life-threatening events subsystem, and the basal ganglia subsystem. The proposed model, which includes the key roles of brain neural circuit in PD, is based on both feed-back and feed-forward neural networks. Specifically, a three-layer MLP neural network with feedback in the second layer was designed. The feedback in the second layer of this model simulates the dopamine modulatory effect of compacta on striatum. PMID:25416983

  13. Manufacturing process for piezoelectric strain sensor sheet involving transfer printing methods

    NASA Astrophysics Data System (ADS)

    Yamashita, Takahiro; Okada, Hironao; Itoh, Toshihiro; Kobayashi, Takeshi

    2015-10-01

    In this paper, we present a novel sensor sheet manufacturing process that involves transfer printing methods using adhesive rubber stamps. By using these methods, not only ultrathin microsensors but also microcontroller and amplifier chips required for the fabrication of sensor devices can be mounted. We successfully transfer-printed a very fragile 5-mm-long, 1-mm-wide, 5-µm-thick high-aspect-ratio ultrathin strain sensor onto a flexible printed-circuit substrate. Then, we connected the sensor to the wiring by printing a conductive paste using a screen printer. A large ferroelectric polarization-voltage hysteresis curve was obtained even after the transfer printing process. Since an output voltage corresponding to the magnitude of the strain from the developed sensor was generated, it was confirmed that ultrathin sensors could be transfer-printed to the flexible substrate by this transfer technique without damage.

  14. Polyelectrolyte multilayers: An odyssey through interdisciplinary science

    NASA Astrophysics Data System (ADS)

    Jaber, Jad A.

    . Positive polyelectrolytes were investigated as new surface coatings for promoting in vitro actomyosin motility. Two surface arrangements were studied: a monolayer of the polyelectrolyte PAH, and multilayers consisting of 11-41 layers of alternating polypositive PAH/polynegative PSS electrolytes. For in vitro motility assays, rabbit skeletal muscle heavy meromyosin (HMM) was applied to the PAH surface of both polyelectrolyte mono and multilayers. Myosin driven motion of actin filaments labeled with rhodamine-phalloidin was recorded at 30°C using epifluorescence microscopy. Actin filaments were found to have a mean speed of 2.9+/-0.08 mum sec-1 on the multilayer surface compared to 2.5+/-0.06 mum sec-1 on the monolayer surface. Average filament's length and speed increased respectively when nonionic surfactant was added to HMM and ionic strength of the motility buffer increased. Micro-contact printing with a water-insoluble charged block copolymer on PAH produced patterned surfaces that restricted filament motion to PAH tracks.

  15. MANCHESTER MILLS, PRINT WORKS: BLUE DYE AND SOAPING; PRINTING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MANCHESTER MILLS, PRINT WORKS: BLUE DYE AND SOAPING; PRINTING AND BLEACHING BUILDINGS. PHOTOCOPY OF c. 1905 VIEW LOOKING NORTHEAST. From the collection of Mr. George Durette, Photographer, Manchester, N. H. - Amoskeag Millyard, Canal Street, Manchester, Hillsborough County, NH

  16. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    PubMed

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques. PMID:27273436

  17. Inkjet printing of graphene.

    PubMed

    Arapov, Kirill; Abbel, Robert; de With, Gijsbertus; Friedrich, Heiner

    2014-01-01

    The inkjet printing of graphene is a cost-effective, and versatile deposition technique for both transparent and non-transparent conductive films. Printing graphene on paper is aimed at low-end, high-volume applications, i.e., in electromagnetic shielding, photovoltaics or, e.g., as a replacement for the metal in antennas of radio-frequency identification devices, thereby improving their recyclability and biocompatibility. Here, we present a comparison of two graphene inks, one prepared by the solubilization of expanded graphite in the presence of a surface active polymer, and the other by covalent graphene functionalization followed by redispersion in a solvent but without a surfactant. The non-oxidative functionalization of graphite in the form of a donor-type graphite intercalation compound was carried out by a Birch-type alkylation, where graphene can be viewed as a macrocarbanion. To increase the amount of functionalization we employed a graphite precursor with a high edge to bulk carbon ratio, thus, allowing us to achieve up to six weight percent of functional groups. The functionalized graphene can be readily dispersed at concentrations of up to 3 mg ml(-1) in non-toxic organic solvents, and is colloidally stable for more than 2 months. The two inks are readily inkjet printable with good to satisfactory spreading. Analysis of the sheet resistance of the deposited films demonstrated that the inks based on expanded graphite outperform the functionalized graphene inks, possibly due to the significantly larger graphene sheet size in the former, which minimizes the number of sheet-to-sheet contacts along the conductive path. We found that the sheet resistance of printed large-area films decreased with an increase of the number of printed layers. Conductivity levels reached approximately 1-2 kΩ □(-1) for 15 printing passes, which roughly equals a film thickness of 800 nm for expanded graphite based inks, and 2 MΩ □(-1) for 15 printing passes of

  18. Laser printed interconnects for flexible electronics

    NASA Astrophysics Data System (ADS)

    Pique, Alberto; Beniam, Iyoel; Mathews, Scott; Charipar, Nicholas

    Laser-induced forward transfer (LIFT) can be used to generate microscale 3D structures for interconnect applications non-lithographically. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or dispersed metallic nanoparticles. However, the resulting 3D structures do not achieve the bulk conductivity of metal interconnects of the same cross-section and length as those formed by wire bonding or tab welding. It is possible, however, to laser transfer entire structures using a LIFT technique known as lase-and-place. Lase-and-place allows whole components and parts to be transferred from a donor substrate onto a desired location with one single laser pulse. This talk will present the use of LIFT to laser print freestanding solid metal interconnects to connect individual devices into functional circuits. Furthermore, the same laser can bend or fold the thin metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief due to flexing or thermal mismatch. Examples of these laser printed 3D metallic bridges and their role in the development of next generation flexible electronics by additive manufacturing will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  19. Using Environmental Print to Enhance Emergent Literacy and Print Motivation

    ERIC Educational Resources Information Center

    Neumann, Michelle M.; Hood, Michelle; Ford, Ruth M.

    2013-01-01

    Given the ubiquitous and salient nature of environmental print, it has the potential to scaffold emergent literacy in young children. This randomised control study evaluated the effects of using environmental print compared to standard print (the same labels in manuscript form) in an 8-week intervention (30 min per week) to foster 3- to…

  20. Effects of smoke on functional circuits

    SciTech Connect

    Tanaka, T.J.

    1997-10-01

    Nuclear power plants are converting to digital instrumentation and control systems; however, the effects of abnormal environments such as fire and smoke on such systems are not known. There are no standard tests for smoke, but previous smoke exposure tests at Sandia National Laboratories have shown that digital communications can be temporarily interrupted during a smoke exposure. Another concern is the long-term corrosion of metals exposed to the acidic gases produced by a cable fire. This report documents measurements of basic functional circuits during and up to 1 day after exposure to smoke created by burning cable insulation. Printed wiring boards were exposed to the smoke in an enclosed chamber for 1 hour. For high-resistance circuits, the smoke lowered the resistance of the surface of the board and caused the circuits to short during the exposure. These circuits recovered after the smoke was vented. For low-resistance circuits, the smoke caused their resistance to increase slightly. A polyurethane conformal coating substantially reduced the effects of smoke. A high-speed digital circuit was unaffected. A second experiment on different logic chip technologies showed that the critical shunt resistance that would cause failure was dependent on the chip technology and that the components used in the smoke exposures were some of the most smoke tolerant. The smoke densities in these tests were high enough to cause changes in high impedance (resistance) circuits during exposure, but did not affect most of the other circuits. Conformal coatings and the characteristics of chip technologies should be considered when designing circuitry for nuclear power plant safety systems, which must be highly reliable under a variety of operating and accident conditions. 10 refs., 34 figs., 18 tabs.

  1. For the Classroom: Print Shop.

    ERIC Educational Resources Information Center

    Current, 1984

    1984-01-01

    Presents an activity for students (ages 5-6 and 7-14) to identify external characteristics of marine life and plants through printing (using homemade stamp pads). Includes procedures and list of materials, and printing ideas. (JN)

  2. Music Sequencing and Printing Software.

    ERIC Educational Resources Information Center

    Kassner, Kirk

    2000-01-01

    States that sequencing and printing software eliminates the barriers to students composing music. Describes "Master Tracks Pro," a sequencing program, and "Rhapsody," a printing program. Includes a lesson plan for setting pentatonic music to a poem. (CMK)

  3. High-resolution gravure printed lines: proximity effects and design rules

    NASA Astrophysics Data System (ADS)

    Grau, Gerd; Scheideler, William J.; Subramanian, Vivek

    2015-09-01

    Gravure printing is a very promising method for printed electronics because it combines high throughput with high resolution. Recently, printed lines with 2μm resolution have been demonstrated at printing speeds on the order of 1m/s. Here we build on these results to study how more complex patterns can be printed that will ultimately lead to printed circuits. We study how the drag-out effect leads to proximity effects in gravure when multiple lines are printed close to each other. Drag-out occurs as the doctor blade passes over the roll surface to remove excess ink from the land areas in between the cells that make up the pattern. In addition to this desirable removal of excess ink, some ink from the cells also wicks up the doctor blade and is removed from the cells. This ink is subsequently deposited on the land area behind the cells leading to characteristic drag-out tails. If multiple lines, oriented perpendicular to the print direction, are printed close to each other, the ink that has wicked up the doctor blade from the first line will affect the drag-out process for subsequent lines. Here we show how this effect can be used to enhance print quality of lines as well as how it can deteriorate print quality. Important variables that will determine the regime for printing optimization are ink viscosity, printing speed, cell size, cell spacing and relative placement of lines. Considering these factors carefully allows one to determine design rules for optimal printing results.

  4. Serendipitous Stencil Prints

    ERIC Educational Resources Information Center

    Tam, Jeff

    2008-01-01

    Printing, stamping, and rubbings are enjoyed by all ages, and the image-making capabilities of this media are endless and very spontaneous. In printmaking, images can be repeated, overlapped, inked in various colors, cut up, reassembled, and manipulated. Students find these methods to be engaging and serendipitous. This lesson, designed for eighth…

  5. Bloomin' Color Celery Prints.

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2002-01-01

    Describes a second and third grade art activity in which students used celery cores to create pictures in the style of Georgia O'Keefe. Explains that the students learned about O'Keefe's artwork and describes how the students created their prints. (CMK)

  6. Print Advertisements in Malaysia

    ERIC Educational Resources Information Center

    Hashim, Azirah

    2010-01-01

    This paper examines print advertisements in Malaysia to determine how advertisers seek to achieve their primary goal of persuading or influencing an audience by the use of both language and visuals. It describes the main component moves and rhetorical strategies used by writers to articulate the communicative purpose of the genre and the language…

  7. Legibility of Print.

    ERIC Educational Resources Information Center

    Bloodsworth, James Gaston

    Legibility refers to the physical appearance of printed materials: line lengths, type size, style of type face, space between lines and between letters, margins, and physical format are some of the factors that are involved. After the turn of the century, especially after 1925, research became fairly common in this area, but has been meager since…

  8. Just press print

    NASA Astrophysics Data System (ADS)

    Ornes, Stephen

    2013-09-01

    Patients requiring an organ transplant may one day no longer have to wait for a matching donor. As Stephen Ornes explains, researchers are making progress towards creating human organs with techniques such as 3D printing, using the patient's own cells for ink.

  9. Tin Can Textile Printing.

    ERIC Educational Resources Information Center

    Mansfield, Patricia; Sanford, Barbara

    1979-01-01

    Describes the process of "canning"--applying textile pigment or dye to cloth by moving a pigment-filled can across the fabric to create a linear design. This printing process is described as low-cost, easy, and suitable for all age and artistic levels. (Author/SJL)

  10. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism.

    PubMed

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-01-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society. PMID:24699375

  11. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-04-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society.

  12. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism

    PubMed Central

    Zheng, Yi; He, Zhi-Zhu; Yang, Jun; Liu, Jing

    2014-01-01

    Printed electronics is becoming increasingly important in a variety of newly emerging areas. However, restricted to the rather limited conductive inks and available printing strategies, the current electronics manufacture is usually confined to industry level. Here, we show a highly cost-effective and entirely automatic printing way towards personal electronics making, through introducing a tapping-mode composite fluid delivery system. Fundamental mechanisms regarding the reliable printing, transfer and adhesion of the liquid metal inks on the substrate were disclosed through systematic theoretical interpretation and experimental measurements. With this liquid metal printer, a series of representative electronic patterns spanning from single wires to desired complex configurations such as integrated circuit (IC), printed-circuits-on-board (PCB), electronic paintings, or more do-it-yourself (DIY) devices, were demonstrated to be printed out with high precision in a moment. And the total machine cost already reached personally affordable price. This is hard to achieve by a conventional PCB technology which generally takes long time and is material, water and energy consuming, while the existing printed electronics is still far away from the real direct printing goal. The present work opens the way for large scale personal electronics manufacture and is expected to generate important value for the coming society. PMID:24699375

  13. Printing and the Online Catalog.

    ERIC Educational Resources Information Center

    Price, Bennett J.

    1984-01-01

    Discusses issues involved in offering printing for online library catalogs and weighs advantages and disadvantages of screen printing versus remote printing--speed, quality, privacy, convenience, noise, control, costs, accessibility and service. Additional technical issues discussed are buffered versus unbuffered asynchronous printer ports,…

  14. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  15. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  16. Document analysis with neural net circuits

    NASA Technical Reports Server (NTRS)

    Graf, Hans Peter

    1994-01-01

    Document analysis is one of the main applications of machine vision today and offers great opportunities for neural net circuits. Despite more and more data processing with computers, the number of paper documents is still increasing rapidly. A fast translation of data from paper into electronic format is needed almost everywhere, and when done manually, this is a time consuming process. Markets range from small scanners for personal use to high-volume document analysis systems, such as address readers for the postal service or check processing systems for banks. A major concern with present systems is the accuracy of the automatic interpretation. Today's algorithms fail miserably when noise is present, when print quality is poor, or when the layout is complex. A common approach to circumvent these problems is to restrict the variations of the documents handled by a system. In our laboratory, we had the best luck with circuits implementing basic functions, such as convolutions, that can be used in many different algorithms. To illustrate the flexibility of this approach, three applications of the NET32K circuit are described in this short viewgraph presentation: locating address blocks, cleaning document images by removing noise, and locating areas of interest in personal checks to improve image compression. Several of the ideas realized in this circuit that were inspired by neural nets, such as analog computation with a low resolution, resulted in a chip that is well suited for real-world document analysis applications and that compares favorably with alternative, 'conventional' circuits.

  17. 48 CFR 952.208-70 - Printing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., acquisition, and dissemination of printed matter. Such printing must be obtained from the Government Printing Office (GPO), a contract source designated by GPO or a Joint Committee on Printing authorized federal... subcontract for, any printing (as that term is defined in Title I of the U.S. Government Printing and...

  18. 48 CFR 952.208-70 - Printing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., acquisition, and dissemination of printed matter. Such printing must be obtained from the Government Printing Office (GPO), a contract source designated by GPO or a Joint Committee on Printing authorized federal... subcontract for, any printing (as that term is defined in Title I of the U.S. Government Printing and...

  19. 48 CFR 952.208-70 - Printing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., acquisition, and dissemination of printed matter. Such printing must be obtained from the Government Printing Office (GPO), a contract source designated by GPO or a Joint Committee on Printing authorized federal... subcontract for, any printing (as that term is defined in Title I of the U.S. Government Printing and...

  20. 48 CFR 952.208-70 - Printing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., acquisition, and dissemination of printed matter. Such printing must be obtained from the Government Printing Office (GPO), a contract source designated by GPO or a Joint Committee on Printing authorized federal... subcontract for, any printing (as that term is defined in Title I of the U.S. Government Printing and...

  1. Charge regulation circuit

    DOEpatents

    Ball, Don G.

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply in the range of 0.01%. The charge regulation circuit is utilized in a preferred embodiment in providing regulated voltage for controlling the operation of a laser.

  2. Linear integrated circuits

    NASA Astrophysics Data System (ADS)

    Young, T.

    This book is intended to be used as a textbook in a one-semester course at a variety of levels. Because of self-study features incorporated, it may also be used by practicing electronic engineers as a formal and thorough introduction to the subject. The distinction between linear and digital integrated circuits is discussed, taking into account digital and linear signal characteristics, linear and digital integrated circuit characteristics, the definitions for linear and digital circuits, applications of digital and linear integrated circuits, aspects of fabrication, packaging, and classification and numbering. Operational amplifiers are considered along with linear integrated circuit (LIC) power requirements and power supplies, voltage and current regulators, linear amplifiers, linear integrated circuit oscillators, wave-shaping circuits, active filters, DA and AD converters, demodulators, comparators, instrument amplifiers, current difference amplifiers, analog circuits and devices, and aspects of troubleshooting.

  3. Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.

    PubMed

    Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2016-06-28

    In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials. PMID:27223050

  4. Wrapped Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/sq m, or 27 percent of the heat leak of conventional MLI (26.7 W/sq m). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  5. Wrapped Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  6. Magnetic metallic multilayers

    SciTech Connect

    Hood, R.Q.

    1994-04-01

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons.

  7. Ultrahard Multilayer Coatings

    SciTech Connect

    Chrzan, D.C.; Dugger, M.; Follstaedt, D.M.; Friedman, Lawrence H.; Friedmann, T.A.; Knapp, J.A.; McCarty, K.F.; Medlin, D.L.; Mirkarimi, P.B.; Missert, N.; Newcomer, P.P.; Sullivan, J.P.; Tallant, D.R.

    1999-05-01

    We have developed a new multilayer a-tC material that is thick stress-free, adherent, low friction, and with hardness and stiffness near that of diamond. The new a-tC material is deposited by J pulsed-laser deposition (PLD) at room temperature, and fully stress-relieved by a short thermal anneal at 600°C. A thick multilayer is built up by repeated deposition and annealing steps. We measured 88 GPa hardness, 1100 GPa Young's modulus, and 0.1 friction coefficient (under high load). Significantly, these results are all well within the range reported for crystalline diamond. In fact, this material, if considered separate from crystalline diamond, is the 2nd hardest material known to man. Stress-free a-tC also has important advantages over thin film diamond; namely, it is smooth, processed at lower temperature, and can be grown on a much broader range of substrates. This breakthrough will enable a host of applications that we are actively pursuing in MEMs, sensors, LIGA, etc.

  8. Magneto-optic multilayers

    NASA Astrophysics Data System (ADS)

    Bader, Samuel D.

    1992-08-01

    Magneto-optical multilayers are of interest to the optical data storage community as a possible second-generation medium of the future. The important Co/Pt-superlattice system is introduced in this respect, and an extensive reference listing is provided to previous research. Magneto-optical modeling studies of Co/Pt are presented, and it is concluded that the interfacial Pt is magnetized and is magneto-optically active at the short wavelengths of interest (approximately 4 eV) for applications. Magneto-optics in the ultrathin limit are discussed, and an additivity law is presented and verified experimentally utilizing data for epitaxial Fe/Ag(111) superlattices. Finally, the surface magnetic anisotropy that provides the vertical easy axes of magnetization in candidate superlattice systems is discussed and illustrated experimentally using ultrathin epitaxial films of Fe grown on a variety of substrates. It is concluded that magneto-optic multilayers will provide many stimulating basic and applied challenges in the years ahead.

  9. Electrical Circuits and Water Analogies

    ERIC Educational Resources Information Center

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  10. Sense circuit arrangement

    NASA Technical Reports Server (NTRS)

    Bohning, Oliver D. (Inventor)

    1976-01-01

    A unique, two-node sense circuit is disclosed. The circuit includes a bridge comprised of resistance elements and a differential amplifier. The two-node circuit is suitably adapted to be arranged in an array comprised of a plurality of discrete bridge-amplifiers which can be selectively energized. The circuit is arranged so as to form a configuration with minimum power utilization and a reduced number of components and interconnections therebetween.

  11. Capillary flow solderability test for printed wiring boards

    SciTech Connect

    Hosking, F.M.; Yost, F.G.; Hernandez, C.L.; Sackinger, S.J.

    1994-04-01

    This report describes a new technique for evaluating capillary flow solderability on printed circuit boards. The test involves the flow of molten solder from a pad onto different-sized conductor lines. It simulates the spreading dynamics of either plated-through-hole (PTH) or surface mount technology (SMT) soldering. A standard procedure has been developed for the test. Preliminary experiments were conducted and the results demonstrate test feasibility. Test procedures and results are presented in this report.

  12. Electrical Circuit Simulation Code

    Energy Science and Technology Software Center (ESTSC)

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  13. Piezoelectric drive circuit

    DOEpatents

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  14. Piezoelectric drive circuit

    DOEpatents

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  15. 3D Printing: 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles (Adv. Mater. 19/2016).

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    On page 3712, E. Fantino, A. Chiappone, and co-workers fabricate conductive 3D hybrid structures by coupling the photo-reduction of metal precursors with 3D printing technology. The generated structures consist of metal nanoparticles embedded in a polymer matrix shaped into complex multilayered architectures. 3D conductive structures are fabricated with a digital light-processing printer incorporating silver salt into photocurable formulations. PMID:27167030

  16. Control of Evaporation Behavior of an Inkjet-Printed Dielectric Layer Using a Mixed-Solvent System

    NASA Astrophysics Data System (ADS)

    Yang, Hak Soon; Kang, Byung Ju; Oh, Je Hoon

    2016-01-01

    In this study, the evaporation behavior and the resulting morphology of inkjet-printed dielectric layers were controlled using a mixed-solvent system to fabricate uniform poly-4-vinylphenol (PVP) dielectric layers without any pinholes. The mixed-solvent system consisted of two different organic solvents: 1-hexanol and ethanol. The effects of inkjet-printing variables such as overlap condition, substrate temperature, and different printing sequences (continuous and interlacing printing methods) on the inkjet-printed dielectric layer were also investigated. Increasing volume fraction of ethanol (VFE) is likely to reduce the evaporation rate gradient and the drying time of the inkjet-printed dielectric layer; this diminishes the coffee stain effect and thereby improves the uniformity of the inkjet-printed dielectric layer. However, the coffee stain effect becomes more severe with an increase in the substrate temperature due to the enhanced outward convective flow. The overlap condition has little effect on the evaporation behavior of the printed dielectric layer. In addition, the interlacing printing method results in either a stronger coffee stain effect or wavy structures of the dielectric layers depending on the VFE of the PVP solution. All-inkjet-printed capacitors without electrical short circuiting can be successfully fabricated using the optimized PVP solution (VFE = 0.6); this indicates that the mixed-solvent system is expected to play an important role in the fabrication of high-quality inkjet-printed dielectric layers in various printed electronics applications.

  17. Screen printed passive components for flexible power electronics

    PubMed Central

    Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.

    2015-01-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application. PMID:26514331

  18. Screen printed passive components for flexible power electronics

    NASA Astrophysics Data System (ADS)

    Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.

    2015-10-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.

  19. Screen printed passive components for flexible power electronics.

    PubMed

    Ostfeld, Aminy E; Deckman, Igal; Gaikwad, Abhinav M; Lochner, Claire M; Arias, Ana C

    2015-01-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application. PMID:26514331

  20. A neural command circuit for grooming movement control.

    PubMed

    Hampel, Stefanie; Franconville, Romain; Simpson, Julie H; Seeds, Andrew M

    2015-01-01

    Animals perform many stereotyped movements, but how nervous systems are organized for controlling specific movements remains unclear. Here we use anatomical, optogenetic, behavioral, and physiological techniques to identify a circuit in Drosophila melanogaster that can elicit stereotyped leg movements that groom the antennae. Mechanosensory chordotonal neurons detect displacements of the antennae and excite three different classes of functionally connected interneurons, which include two classes of brain interneurons and different parallel descending neurons. This multilayered circuit is organized such that neurons within each layer are sufficient to specifically elicit antennal grooming. However, we find differences in the durations of antennal grooming elicited by neurons in the different layers, suggesting that the circuit is organized to both command antennal grooming and control its duration. As similar features underlie stimulus-induced movements in other animals, we infer the possibility of a common circuit organization for movement control that can be dissected in Drosophila. PMID:26344548

  1. CIRCUITS FOR CURRENT MEASUREMENTS

    DOEpatents

    Cox, R.J.

    1958-11-01

    Circuits are presented for measurement of a logarithmic scale of current flowing in a high impedance. In one form of the invention the disclosed circuit is in combination with an ionization chamber to measure lonization current. The particular circuit arrangement lncludes a vacuum tube having at least one grid, an ionization chamber connected in series with a high voltage source and the grid of the vacuum tube, and a d-c amplifier feedback circuit. As the ionization chamber current passes between the grid and cathode of the tube, the feedback circuit acts to stabilize the anode current, and the feedback voltage is a measure of the logaritbm of the ionization current.

  2. Biomimetic 4D printing.

    PubMed

    Gladman, A Sydney; Matsumoto, Elisabetta A; Nuzzo, Ralph G; Mahadevan, L; Lewis, Jennifer A

    2016-04-01

    Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls. Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies. PMID:26808461

  3. Biomimetic 4D printing

    NASA Astrophysics Data System (ADS)

    Sydney Gladman, A.; Matsumoto, Elisabetta A.; Nuzzo, Ralph G.; Mahadevan, L.; Lewis, Jennifer A.

    2016-04-01

    Shape-morphing systems can be found in many areas, including smart textiles, autonomous robotics, biomedical devices, drug delivery and tissue engineering. The natural analogues of such systems are exemplified by nastic plant motions, where a variety of organs such as tendrils, bracts, leaves and flowers respond to environmental stimuli (such as humidity, light or touch) by varying internal turgor, which leads to dynamic conformations governed by the tissue composition and microstructural anisotropy of cell walls. Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies.

  4. Ultrasonic NDE of Multilayered Structures

    SciTech Connect

    Quarry, M J; Fisher, K A; Lehman, S K

    2005-02-14

    This project developed ultrasonic nondestructive evaluation techniques based on guided and bulk waves in multilayered structures using arrays. First, a guided wave technique was developed by preferentially exciting dominant modes with energy in the layer of interest via an ultrasonic array. Second, a bulk wave technique uses Fermat's principle of least time as well as wave-based properties to reconstruct array data and image the multilayered structure. The guided wave technique enables the inspection of inaccessible areas of a multilayered structure without disassembling it. Guided waves propagate using the multilayer as a waveguide into the inaccessible areas from an accessible position. Inspecting multi-layered structures with a guided wave relies on exciting modes with sufficient energy in the layer of interest. Multilayered structures are modeled to determine the possible modes and their distribution of energy across the thickness. Suitable modes were determined and excited by designing arrays with the proper element spacing and frequency. Bulk wave imaging algorithms were developed to overcome the difficulties of multiple reflections and refractions at interfaces. Reconstruction algorithms were developed to detect and localize flaws. A bent-ray algorithm incorporates Fermat's principle to correct time delays in the ultrasonic data that result from the difference in wave speeds in each layer and refractions at the interfaces. A planar wave-based algorithm was developed using the Green function for the multilayer structure to enhance focusing on reception for improved imaging.

  5. Electrohydrodynamic Printing and Manufacturing

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor); Poon, Hak Fei (Inventor); Korkut, Sibel (Inventor); Chen, Chuan-hua (Inventor)

    2014-01-01

    An stable electrohydrodynamic filament is obtained by causing a straight electrohydrodynamic filament formed from a liquid to emerge from a Taylor cone, the filament having a diameter of from 10 nm to 100.mu.m. Such filaments are useful in electrohydrodynamic printing and manufacturing techniques and their application in liquid drop/particle and fiber production, colloidal deployment and assembly, and composite materials processing.

  6. Organic reprogrammable circuits based on electrochemically formed diodes.

    PubMed

    Liu, Jiang; Engquist, Isak; Berggren, Magnus

    2014-08-13

    We report a method to construct reprogrammable circuits based on organic electrochemical (EC) p-n junction diodes. The diodes are built up from the combination of the organic conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and a polymer electrolyte. The p-n diodes are defined by EC doping performed at 70 °C, and then stabilized at -30 °C. The reversible EC reaction allows for in situ reprogramming of the polarity of the organic p-n junction, thus enabling us to reconfigure diode circuits. By combining diodes of specific polarities dedicated circuits have been created, such as various logic gates, a voltage limiter and an AC/DC converter. Reversing the EC reaction allows in situ reprogramming of the p-n junction polarity, thus enabling reconfiguration of diode circuits, for example, from an AND gate to an OR gate. The reprogrammable circuits are based on p-n diodes defined from only two layers, the electrodes and then the active semiconductor:electrolyte composite material. Such simple device structures are promising for large-area and fully printed reconfigurable circuits manufactured using common printing tools. The structure of the reported p-n diodes mimics the architecture of and is based on identical materials used to construct light-emitting electrochemical cells (LEC). Our findings thus provide a robust signal routing technology that is easily integrated with traditional LECs. PMID:24998703

  7. Plasmonic colour laser printing

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil; Mortensen, N. Asger; Kristensen, Anders

    2016-04-01

    Colour generation by plasmonic nanostructures and metasurfaces has several advantages over dye technology: reduced pixel area, sub-wavelength resolution and the production of bright and non-fading colours. However, plasmonic colour patterns need to be pre-designed and printed either by e-beam lithography (EBL) or focused ion beam (FIB), both expensive and not scalable processes that are not suitable for post-processing customization. Here we show a method of colour printing on nanoimprinted plasmonic metasurfaces using laser post-writing. Laser pulses induce transient local heat generation that leads to melting and reshaping of the imprinted nanostructures. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different colour appearances can be created. Using this technique we can print all primary colours with a speed of 1 ns per pixel, resolution up to 127,000 dots per inch (DPI) and power consumption down to 0.3 nJ per pixel.

  8. A multilayer sonic film

    NASA Astrophysics Data System (ADS)

    Munteanu, L.; Chiroiu, V.; Sireteanu, T.; Dumitriu, D.

    2015-10-01

    A non-periodic multilayer film was analyzed to show that, despite its non-periodicity, the film exhibits full band-gaps and localized modes at its interfaces, as well as in the sonic composites. The film consists of alternating layers of two different materials that follow a triadic Cantor sequence. The Cantor structure shows extremely low thresholds for subharmonic generation of ultrasonic waves, compared with homogeneous and periodic structures. The coupling between the extended-mode (phonon) and the localized-mode (fracton) vibration regimes explains the generation of full band-gaps, for which there are no propagating Lamb waves. The large enhancement of the nonlinear interaction results from a more favorable frequency and spatial matching of coupled modes. A full band-gap that excludes Love waves is also analyzed.

  9. Multilayer graphene condenser microphone

    NASA Astrophysics Data System (ADS)

    Todorović, Dejan; Matković, Aleksandar; Milićević, Marijana; Jovanović, Djordje; Gajić, Radoš; Salom, Iva; Spasenović, Marko

    2015-12-01

    Vibrating membranes are the cornerstone of acoustic technology, forming the backbone of modern loudspeakers and microphones. Acoustic performance of a condenser microphone is derived mainly from the membrane’s size, surface mass and achievable static tension. The widely studied and available nickel has been a dominant membrane material for professional microphones for several decades. In this paper we introduce multilayer graphene as a membrane material for condenser microphones. The graphene device outperforms a high end commercial nickel-based microphone over a significant part of the audio spectrum, with a larger than 10 dB enhancement of sensitivity. Our experimental results are supported with numerical simulations, which also show that a 300 layer thick graphene membrane under maximum tension would offer excellent extension of the frequency range, up to 1 MHz.

  10. Multilayer optical dielectric coating

    DOEpatents

    Emmett, John L.

    1990-01-01

    A highly damage resistant, multilayer, optical reflective coating includes alternating layers of doped and undoped dielectric material. The doping levels are low enough that there are no distinct interfaces between the doped and undoped layers so that the coating has properties nearly identical to the undoped material. The coating is fabricated at high temperature with plasma-assisted chemical vapor deposition techniques to eliminate defects, reduce energy-absorption sites, and maintain proper chemical stoichiometry. A number of differently-doped layer pairs, each layer having a thickness equal to one-quarter of a predetermined wavelength in the material are combined to form a narrowband reflective coating for a predetermined wavelength. Broadband reflectors are made by using a number of narrowband reflectors, each covering a portion of the broadband.

  11. Multilayer diamond coated WC tools

    SciTech Connect

    Fan, W.D.; Jagannaham, K.; Narayan, J.

    1995-12-31

    To increase adhesion of diamond coatings, a multilayer structure was developed. The multilayer diamond coating consisted of a first discontinuous diamond layer, an interposing layer, and a top continuous diamond layer. The diamond layer was grown on WC substrates by hot filament chemical vapor deposition and the interposing layer was grown by pulsed laser deposition. Machining tests were used to characterize adhesion properties of the multilayer diamond coatings on WC(Co) substrates. Results indicate that diamond coatings exhibit good adhesion on the WC tool substrates. The wear resistance of the WC tool is improved significantly by the diamond coatings.

  12. Rupture testing for the quality control of electrodeposited copper interconnections in high-speed, high-density circuits

    NASA Technical Reports Server (NTRS)

    Zakraysek, Louis

    1987-01-01

    Printed Wiring Multilayer Board (PWMLB) structures for high speed, high density circuits are prone to failure due to the microcracking of electrolytic copper interconnections. The failure can occur in the foil that makes up the inner layer traces or in the plated through holes (PTH) deposit that forms the layer to layer interconnections. It is shown that there are some distinctive differences in the quality of Type E copper and that these differences can be detected before its use in a PWMLB. It is suggested that the strength of some Type E copper can be very low when the material is hot and that it is the use of this poor quality material in a PWMLB that results in PTH and inner layer microcracking. Since the PWMLB failure in question are induced by a thermal stress, and since the poorer grades of Type E materials used in these structures are susceptible to premature failure under thermal stress, the use of elevated temperature rupture and creep rupture testing is proposed as a means for screening copper foil, or its PTH equivalent, in order to eliminate the problem of Type E copper microcracking in advanced PWMLBs.

  13. Integrated Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Dye, Scott

    2009-01-01

    Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.

  14. Piezoelectric multilayer actuator life test.

    PubMed

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud

    2011-04-01

    Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the

  15. Thermal tests of MC3811 rigid/flex printed wiring boards

    SciTech Connect

    Gentry, F.L.

    1990-10-01

    Rigid/flex multilayer printed wiring boards are more sensitive to thermal environmental changes than conventional printed wiring boards. This is manifested because of a composition of dissimilar materials used within the construction of this type of product. During fabrication and assembly, stresses can develop within the plated-through holes from differences in thermal properties of the rigid and flexible materials, primarily thermal coefficient of expansion. Thermal shock and thermal stress tests and rework simulation as defined in MIL-P-50884 have been performed in this study as indicators of processing quality to detect faults and to verify improvements in board reliability. 3 refs., 17 figs., 3 tabs.

  16. Internet of "printed" Things: low-cost fabrication of autonomous sensing nodes by inkjet printing

    NASA Astrophysics Data System (ADS)

    Kawahara, Yoshihiro

    2014-11-01

    "What if electronics devices are printed using an inkjet printer even at home?" "What if those devices no longer need a battery?" I will introduce two enabling technologies for the Internet of Things concept. 1. Instant Inkjet Circuits: A low cost, fast and accessible technology to support the rapid prototyping of electronic devices. We demonstrated that "sintering-free" silver nano particle ink with a commodity inkjet printer can be used to fabricate printed circuit board and high-frequency applications such as antennas and sensors. The technology is now commercialized by AgIC, Inc. 2. Wireless Power: Although large amounts of data can be exchanged over a wireless communication link, mobile devices are still tethered by power cables. We are trying to solve this problem by two different approaches: energy harvesting. A simple circuitry comprised of diodes and capacitor can convert ambient radio signals into DC current. Our research revealed the signals from TV tower located 6.5km apart could be used to feed 100 microwatts to power microcontrollers.

  17. Direct-write fabrication of integrated, multilayer ceramic components

    SciTech Connect

    Dimos, D.; Yang, P.; Garino, T.J.; Raymond, M.V.; Rodriguez, M.A.

    1997-08-01

    The need for advanced (electronic) ceramic components with smaller size, greater functionality, and enhanced reliability requires the ability to integrate electronic ceramics in complex 3-D architectures. For rapid prototyping and small-lot manufacturing, traditional tape casting and screen printing approaches are poorly suited. To address this need, the authors are developing a direct-write approach for fabricating highly integrated, multilayer components using a micropen to deposit slurries in precise patterns. With this technique, components can be constructed layer by layer, simplifying fabrication. It can also be used to produce structures combining several materials in a single layer. The parts are either cofired or sequentially fired, after each layer is deposited. Since differential shrinkage can lead to defects in these multilayer structures, they are characterizing the sintering behavior of individual layers. This technique has been used to fabricate devices such integrated RC filters, multilayer voltage transformers, and other passive components. The direct-write approach provides the ability to fabricate multifunctional, multimaterial integrated ceramic components (MMICCs) in an agile and rapid way.

  18. Testing unpackaged thermal ink-jet printing devices

    NASA Astrophysics Data System (ADS)

    Hermanson, Herman A.; Lorenze, Robert V.

    1993-06-01

    There are stages in the refinement of new imaging processes where the use of unique test equipment and study tools is required to isolate problems related to performance and fabrication steps. A juncture had been reached in the Xerox thermal ink jet program where an evaluation of the printing device for both electrical function and print quality prior to final packaging was required. Nondestructive testing is necessary so that these printing devices can be tested repeatedly and subsequently packaged by mounting them onto a substrate with appropriate circuit boards, wire bonds, and ink manifolds to form finished thermal ink jet printheads. This paper describes test equipment which has been designed to electrically test, print test, and fully evaluate imaging properties of unpackaged thermal ink jet printing devices. The use of this test equipment and related testing procedures has accelerated process development times significantly and is playing a key role in quality control functions in the product manufacturing environment. Test equipment, techniques and results are discussed.

  19. Assembling Multicolor Printing Plates

    NASA Technical Reports Server (NTRS)

    Waters, W. J.

    1982-01-01

    Improved joining method uses wave-soldering techniques developed for integrated-circuit-board assemblies. Thermosetting plastic is replaced by wave soldering, which applies a thin even coat of solder to mating copper surfaces. This is done after ink holes and channels have been protected by water-soluble, high-temperature solder mask which prevents wetting and clogging.

  20. Cell filling in gravure printing for printed electronics.

    PubMed

    Cen, Jialiang; Kitsomboonloha, Rungrot; Subramanian, Vivek

    2014-11-18

    Highly scaled direct gravure is a promising printing technique for printed electronics due to its large throughput, high resolution, and simplicity. Gravure can print features in the single micron range at printing speeds of ∼1 m/s by using an optimized cell geometry and optimized printing conditions. The filling of the cells on the gravure cylinder is a critical process, since the amount of ink in the cells strongly impacts printed feature size and quality. Therefore, an understanding of cell filling is crucial to make highly scaled gravure printed electronics viable. In this work we report a novel experimental setup to investigate the filling process in real time, coupled with numerical simulations to gain insight into the experimental observations. By varying viscosity and filling speed, we ensure that the dimensionless capillary number is a good indicator of filling regime in real gravure printing. In addition, we also examine the effect of cell size on filling as this is important for increasing printing resolution. In the light of experimental and simulation results, we are able to rationalize the dominant failure in the filling process, i.e., air entrapment, which is caused by contact line pinning and interface deformation over the cell opening. PMID:25343219