Science.gov

Sample records for multileaf collimation quality

  1. Quality assurance of the multileaf collimator with helical tomotherapy: Design and implementation

    SciTech Connect

    Sarkar, Vikren; Lin Lan; Shi Chengyu; Papanikolaou, Niko

    2007-07-15

    Quality assurance (QA) of the multileaf collimator (MLC) is a critical step for the delivery of intensity modulated radiation therapy treatment plan. While QA procedures for motor-driven MLC have been published extensively, those for binary MLCs such as the one used for helical tomotherapy have not been presented in the literature, as this is still a fairly new technology. In this study, seven test patterns for the MLC QA of a helical tomotherapy unit have been designed and implemented. The seven test patterns check the MLC alignment, MLC leakage, MLC timing and MLC leaf position error in detail. Those patterns can be easily implemented in any center with a helical tomotherapy unit as part of the routine QA. The QA procedures can be performed using existing QA resources such as solid water phantom and EDR2 film. A software toolkit called ''Tomo MLC QA'' has been developed to assist in generating the QA procedures and analyzing the results. Our results showed that the helical tomotherapy MLC is very robust, exhibiting interleaf leakage of 0.53%{+-}0.09%. Several issues with the MLC have been found and discussed. The QA results also illustrate the utilization and usefulness of the proposed QA procedures.

  2. Modeling of a multileaf collimator

    NASA Astrophysics Data System (ADS)

    Kim, Siyong

    A comprehensive physics model of a multileaf collimator (MLC) field for treatment planning was developed. Specifically, an MLC user interface module that includes a geometric optimization tool and a general method of in- air output factor calculation were developed. An automatic tool for optimization of MLC conformation is needed to realize the potential benefits of MLC. It is also necessary that a radiation therapy treatment planning (RTTP) system is capable of modeling MLC completely. An MLC geometric optimization and user interface module was developed. The planning time has been reduced significantly by incorporating the MLC module into the main RTTP system, Radiation Oncology Computer System (ROCS). The dosimetric parameter that has the most profound effect on the accuracy of the dose delivered with an MLC is the change in the in-air output factor that occurs with field shaping. It has been reported that the conventional method of calculating an in-air output factor cannot be used for MLC shaped fields accurately. Therefore, it is necessary to develop algorithms that allow accurate calculation of the in-air output factor. A generalized solution for an in-air output factor calculation was developed. Three major contributors of scatter to the in-air output-flattening filter, wedge, and tertiary collimator-were considered separately. By virtue of a field mapping method, in which a source plane field determined by detector's eye view is mapped into a detector plane field, no additional dosimetric data acquisition other than the standard data set for a range of square fields is required for the calculation of head scatter. Comparisons of in-air output factors between calculated and measured values show a good agreement for both open and wedge fields. For rectangular fields, a simple equivalent square formula was derived based on the configuration of a linear accelerator treatment head. This method predicts in-air output to within 1% accuracy. A two

  3. Multileaf collimator performance monitoring and improvement using semiautomated quality control testing and statistical process control

    SciTech Connect

    Létourneau, Daniel McNiven, Andrea; Keller, Harald; Wang, An; Amin, Md Nurul; Pearce, Jim; Norrlinger, Bernhard; Jaffray, David A.

    2014-12-15

    Purpose: High-quality radiation therapy using highly conformal dose distributions and image-guided techniques requires optimum machine delivery performance. In this work, a monitoring system for multileaf collimator (MLC) performance, integrating semiautomated MLC quality control (QC) tests and statistical process control tools, was developed. The MLC performance monitoring system was used for almost a year on two commercially available MLC models. Control charts were used to establish MLC performance and assess test frequency required to achieve a given level of performance. MLC-related interlocks and servicing events were recorded during the monitoring period and were investigated as indicators of MLC performance variations. Methods: The QC test developed as part of the MLC performance monitoring system uses 2D megavoltage images (acquired using an electronic portal imaging device) of 23 fields to determine the location of the leaves with respect to the radiation isocenter. The precision of the MLC performance monitoring QC test and the MLC itself was assessed by detecting the MLC leaf positions on 127 megavoltage images of a static field. After initial calibration, the MLC performance monitoring QC test was performed 3–4 times/week over a period of 10–11 months to monitor positional accuracy of individual leaves for two different MLC models. Analysis of test results was performed using individuals control charts per leaf with control limits computed based on the measurements as well as two sets of specifications of ±0.5 and ±1 mm. Out-of-specification and out-of-control leaves were automatically flagged by the monitoring system and reviewed monthly by physicists. MLC-related interlocks reported by the linear accelerator and servicing events were recorded to help identify potential causes of nonrandom MLC leaf positioning variations. Results: The precision of the MLC performance monitoring QC test and the MLC itself was within ±0.22 mm for most MLC leaves

  4. Evaluation of AutoCAL for electronic portal imaging device-based multi-leaf collimator quality assurance.

    PubMed

    Shameem, Tarafder J

    2016-01-01

    Modern radiotherapy treatment techniques commonly include multi-leaf collimators (MLCs) to shape the treatment fields and to conform the radiation dose to the target volume. MLCs require accurate and frequent quality assurance (QA) to ensure spatial and temporal accuracy of the leaves in order to allow optimal dose delivery to the patient. In this study, the accuracy and efficacy of AutoCAL, a commercial software for MLC QA, were evaluated. The software was found to be reproducible to within 0.2 mm and to correspond with conventional QA methods (within 1.2 and 0.9 mm of film and water tank measurements, respectively.) Thus, AutoCAL was found to be an accurate and efficient tool for routine MLC QA and calibration. PMID:26508357

  5. Characterization of a multileaf collimator system

    SciTech Connect

    Galvin, J.M. ); Smith, A.R. ); Lally, B. )

    1993-01-15

    Commissioning measurements for a multileaf collimator installed on a dual energy accelerator with 6 and 15 MV photons are described. Detailed dosimetric characterization of the multileaf collimator is a requirement for modeling the collimator with treatment planning software. Measurements include a determination of the penumbra width, leaf transmission, between-leaf leakage, and localization of the leaf ends and sides. Standard radiographic film was used for the penumbra measurements, and separate experiments using radiochromic film and thermoluminescent dosimeters were performed to verify that distortions of the dose distribution at an edge due to changing energy sensitivity of silver bromide film are negligible. Films were analyzed with a scanning laser densitometer with a 210 micron spot. Little change in the penumbra edge distribution was noted for different positions of a leaf in the field. Experiments localizing the physical end of the leaves showed less than 1 mm deviation from the 50% decrement line. This small difference is attributed to the shaped end on the leaves. One side of a single leaf corresponded to the 50% decrement line, but the opposite face was aligned with a lower value. This difference is due to the tongue and groove used to decrease between-leaf leakage. For both energies, approximately 2% of photons incident on the multileaf collimator are transmitted and an additional 0.5% leakage occurs between the leaves. Alignment of the leaves to form a straight edge results in a penumbra profile which compares favorably with the standard technique of using alloy blocks. When the edge is stepped, the isodose lines follow the leaf pattern and the boundary is poorly defined compared to divergent blocks. 19 refs., 13 figs.

  6. NOTE: Dosimetric characterization of a new miniature multileaf collimator

    NASA Astrophysics Data System (ADS)

    Hartmann, G. H.; Föhlisch, F.

    2002-06-01

    The dosimetrical characteristics of a new miniature multileaf collimator (ModuLeaf MLC, MRC Systems GmbH, Heidelberg, Germany) attached to the accessory holder of a Siemens accelerator with 6 MV x-rays (PRIMUS, Siemens OCS, Concord, California, USA) have been investigated. In particular, those parameters which are important for the accuracy of the treatment such as output factors, penumbra, field edge precision and transmission/leakage were determined. These data can now be used to implement specific dose calculation procedures for this miniature multileaf collimator in treatment planning systems.

  7. Clinical significance of multi-leaf collimator calibration errors.

    PubMed

    Norvill, Craig; Jenetsky, Guy

    2016-03-01

    This planning study investigates the clinical impact of multi-leaf collimator (MLC) calibration errors on three common treatment sites; head and neck (H&N), prostate and stereotactic body radiotherapy (SBRT) for lung. All plans used using either volumetric modulated adaptive therapy or dynamic MLC techniques. Five patient plans were retrospectively selected from each treatment site, and MLC errors intentionally introduced. MLC errors of 0.7, 0.4 and 0.2 mm were sufficient to cause major violations in the PTV planning criteria for the H&N, prostate and SBRT lung plans. Mean PTV dose followed a linear trend with MLC error, increasing at rates of 3.2-5.9 % per millimeter depending on treatment site. The results indicate that an MLC quality assurance program that provides sub-millimeter accuracy is an important component of intensity modulated radiotherapy delivery techniques. PMID:26819078

  8. Commissioning and quality assurance for intensity modulated radiotherapy with dynamic multileaf collimator: experience of the Pontificia Universidad Católica de Chile.

    PubMed

    Venencia, Carlos Daniel; Besa, Pelayo

    2004-01-01

    The objective of this paper is to present our experience in the commissioning and quality assurance (QA) for intensity modulated radiotherapy (IMRT) using dynamic multileaf collimator (dMLC), sliding window technique. Using Varian equipment solution, the connectivity and operation between all IMRT chain components was checked. Then the following test were done: stability of leaf positioning and leaf speed, sensitivity to treatment interruptions (acceleration and deceleration), evaluation of standard field patterns, stability of dMLC output, segmental dose accuracy check, average leaf transmission, dosimetric leaf separation, effects of lateral disequilibrium between adjacent leaves in dose profiles and multiple carriage field verification. Standard patterns were generated for verification: uniform field, pyramid, hole, wedge, peaks and chair. Weekly QA Protocol include: sweeping gap output, Garden Fence Test (narrow bands, 2 mm wide, of exposure spaced at 2-cm intervals) and segmental dose accuracy check. Monthly QA include: sweeping gap output at multiple gantry and collimator angle, sweeping gap output off-axis, Picket Fence Test (eight consecutive movements of a 5-cm wide rectangular field spaced at 5-cm intervals), stability of leaf speed and leaf motor current test (PWM test). Patient QA procedure consists of an absolute dose measurement for all treatments fields in the treatment condition, analysis of actual leaf position versus planned leaf position (dynalog files) for each treatment field, film relative dose determination for each field, film relative dose determination for the plan (all treatment fields) in two axial planes and patient positioning verification with orthogonal films. The tests performed showed acceptable result. After more than one year of IMRT treatment the routine QA machine checks confirm the precision and stability of the IMRT system. PMID:15753938

  9. Scattered electron beams shaped by a multileaf collimator

    NASA Astrophysics Data System (ADS)

    Moran, Jean Marie

    Recent developments in conformal radiation therapy have focused primarily on applying computer-controlled equipment and techniques to photon beams. Despite favorable characteristics of the dose fall-off with depth for electron beams, their application to conformal therapy has been limited. Factors such as geometrically limiting applicator systems, lack of automatic field shaping, and dose calculation model limitations must be addressed before routine clinical use of electron beams for conformal radiotherapy becomes common. This work evaluates dose characteristics and modeling of dose distributions and output factors for a system specifically designed for computer-controlled collimation of dual-foil scattered and scanned electron beams. Dose characteristics determined from measured depth dose curves and profiles were evaluated for multileaf- collimated and applicator-collimated beams produced by the dual-foil scattered gantry of a two-gantry racetrack microtron system. The resulting dose distributions and characteristics were used to evaluate and modify the existing 3-D electron pencil beam algorithm in UMPlan, the University of Michigan treatment planning system, to predict relative dose distributions for MLC-shaped fields. Output factors (dose of a field relative to that of a reference field) were measured, analyzed, and modeled for MLC-collimated rectangular and shaped fields. For output factor calculations, two models were evaluated: a pencil beam-derived model and an empirical edge model originally developed for photon dose calculations. The current work shows that the dosimetric characteristics of MLC and applicator-collimated beams of the racetrack microtron are similar once the collimation geometry is accounted for. The dosimetric characteristics are also consistent with those for other dual-foil scattered machines with applicator systems and earlier generation scanned beams collimated with trimmer bars. By accounting for collimation geometry, electron

  10. The performance of multileaf collimators evaluated by the stripe test.

    PubMed

    Sastre-Padro, Maria; Lervåg, Christoffer; Eilertsen, Karsten; Malinen, Eirik

    2009-01-01

    The performance of 3 multileaf collimator (MLC) systems (Varian Medical Systems, Elekta, and Siemens Medical Solutions) mounted on 7 different radiotherapy linear accelerators was investigated by a stripe test. The stripe test consisted of 8 adjacent multileaf segments of 2.5 x 40 cm(2), enclosed by all leaf pairs. With 6-MV photons, the segments were used to irradiate Agfa CR films. The optical density profile of the irradiated film in the travel direction of the MLC was used to estimate the short- and long-term leaf positioning reproducibility. The short-term reproducibility was found by analyzing 6 consecutive stripe tests. The long-term reproducibility was obtained by performing 3 to 5 stripe tests over 2 months. The short-term reproducibility was mainly within 0.3 mm for all systems. For the long-term reproducibility, the Varian and Elekta MLCs were within 0.4 to 0.5 mm, while the Siemens MLC showed a wider distribution, with values up to 1 mm for some leaf pairs. The inferior long-term reproducibility of the Siemens MLCs was mainly due to a decrease of the segment size with time. In conclusion, the stripe test is a useful method for evaluating MLC performance. Furthermore, the long-term reproducibility varied among the MLC systems investigated. PMID:19647629

  11. High-resolution field shaping utilizing a masked multileaf collimator.

    PubMed

    Williams, P C; Cooper, P

    2000-08-01

    Multileaf collimators (MLCs) have become an important tool in the modern radiotherapy department. However, the current limit of resolution (1 cm at isocentre) can be too coarse for acceptable shielding of all fields. A number of mini- and micro-MLCs have been developed, with thinner leaves to achieve approved resolution. Currently however, such devices are limited to modest field sizes and stereotactic applications. This paper proposes a new method of high-resolution beam collimation by use of a tertiary grid collimator situated below the conventional MLC. The width of each slit in the grid is a submultiple of the MLC width. A composite shaped field is thus built up from a series of subfields, with the main MLC defining the length of each strip within each subfield. Presented here are initial findings using a prototype device. The beam uniformity achievable with such a device was examined by measuring transmission profiles through the grid using a diode. Profiles thus measured were then copied and superposed to generate composite beams, from which the uniformity achievable could be assessed. With the average dose across the profile normalized to 100%, hot spots up to 5.0% and troughs of 3% were identified for a composite beam of 2 x 5.0 mm grids, as measured at Dmax for a 6 MV beam. For a beam composed from 4 x 2.5 mm grids, the maximum across the profile was 3.0% above the average, and the minimum 2.5% below. Actual composite profiles were also formed using the integrating properties of film, with the subfield indexing performed using an engineering positioning stage. The beam uniformity for these fields compared well with that achieved in theory using the diode measurements. Finally sine wave patterns were generated to demonstrate the potential improvements in field shaping and conformity using this device as opposed to the conventional MLC alone. The scalloping effect on the field edge commonly seen on MLC fields was appreciably reduced by use of 2 x 5.0 mm

  12. Dynamic positioning accuracy of a novel multileaf collimator for volumetric modulated arc therapy.

    PubMed

    Nakaguchi, Yuji; Ono, Takeshi; Onizuka, Ryota; Maruyama, Masato; Shimohigashi, Yoshinobu; Kai, Yudai

    2016-01-01

    We investigated the dynamic positioning accuracy of Agility (Elekta) for volumetric modulated arc therapy (VMAT). The accuracy of the multileaf collimator (MLC) leaf position during VMAT was evaluated using three different tests: (1) a dynamic multileaf collimator (DMLC) output test with various leaf speeds, and gantry angles; (2) a slit-fence test with and without gantry rotation; and (3) a complicated VMAT plans test with dose distributions compared with measurements using gamma analysis. The DMLC output was within 1.5 % under all test conditions. The agreement between the static and VMAT in the slit-fence test was within 0.5 mm. The pass rate of each complicated VMAT test plan was more than 93.9 % ± 0.36 for gamma analysis. We confirmed the dynamic positioning accuracy of Agility, which during VMAT delivery is within VMAT tolerances. The fastest MLC was found to have the potential to offer clinical advantages, such as high-quality rapid VMAT. PMID:26612534

  13. Pitfalls of tungsten multileaf collimator in proton beam therapy

    SciTech Connect

    Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J.

    2011-12-15

    Purpose: Particle beam therapy is associated with significant startup and operational cost. Multileaf collimator (MLC) provides an attractive option to improve the efficiency and reduce the treatment cost. A direct transfer of the MLC technology from external beam radiation therapy is intuitively straightforward to proton therapy. However, activation, neutron production, and the associated secondary cancer risk in proton beam should be an important consideration which is evaluated. Methods: Monte Carlo simulation with FLUKA particle transport code was applied in this study for a number of treatment models. The authors have performed a detailed study of the neutron generation, ambient dose equivalent [H*(10)], and activation of a typical tungsten MLC and compared with those obtained from a brass aperture used in a typical proton therapy system. Brass aperture and tungsten MLC were modeled by absorber blocks in this study, representing worst-case scenario of a fully closed collimator. Results: With a tungsten MLC, the secondary neutron dose to the patient is at least 1.5 times higher than that from a brass aperture. The H*(10) from a tungsten MLC at 10 cm downstream is about 22.3 mSv/Gy delivered to water phantom by noncollimated 200 MeV beam of 20 cm diameter compared to 14 mSv/Gy for the brass aperture. For a 30-fraction treatment course, the activity per unit volume in brass aperture reaches 5.3 x 10{sup 4} Bq cm{sup -3} at the end of the last treatment. The activity in brass decreases by a factor of 380 after 24 h, additional 6.2 times after 40 days of cooling, and is reduced to background level after 1 yr. Initial activity in tungsten after 30 days of treating 30 patients per day is about 3.4 times higher than in brass that decreases only by a factor of 2 after 40 days and accumulates to 1.2 x 10{sup 6} Bq cm{sup -3} after a full year of operation. The daily utilization of the MLC leads to buildup of activity with time. The overall activity continues to increase

  14. Development and validation of a BEAMnrc component module for a miniature multileaf collimator

    NASA Astrophysics Data System (ADS)

    Doerner, E.; Hartmann, G. H.

    2012-05-01

    A new component module (CM) named mini multileaf collimator (mMLC) was developed for the Monte Carlo code BEAMnrc. It models the geometry of the add-on miniature multileaf collimator ModuLeaf (MRC Systems GmbH, Heidelberg, Germany, now part of Siemens, Erlangen, Germany). The new CM is partly based on the existing CM called DYNVMLC. The development was performed using a modified EGSnrc platform which enables us to work in the Microsoft Visual Studio environment. In order to validate the new CM, the PRIMUS linac with 6 MV x-rays (Siemens OCS, Concord, CA, USA) equipped with the ModuLeaf mMLC was modelled. Validation was performed by two methods: (a) a ray-tracing method to check the correct geometry of the multileaf collimator (MLC) and (b) a comparison of calculated and measured results of the following dosimetrical parameters: output factors, dose profiles, field edge position penumbra, MLC interleaf leakage and transmission values. Excellent agreement was found for all parameters. It was, in particular, found that the relationship between leaf position and field edge depending on the shape of the leaf ends can be investigated with a higher accuracy by this new CM than by measurements demonstrating the usefulness of the new CM.

  15. Lateral Penumbra Modelling Based Leaf End Shape Optimization for Multileaf Collimator in Radiotherapy

    PubMed Central

    Zhou, Dong; Zhang, Hui; Ye, Peiqing

    2016-01-01

    Lateral penumbra of multileaf collimator plays an important role in radiotherapy treatment planning. Growing evidence has revealed that, for a single-focused multileaf collimator, lateral penumbra width is leaf position dependent and largely attributed to the leaf end shape. In our study, an analytical method for leaf end induced lateral penumbra modelling is formulated using Tangent Secant Theory. Compared with Monte Carlo simulation and ray tracing algorithm, our model serves well the purpose of cost-efficient penumbra evaluation. Leaf ends represented in parametric forms of circular arc, elliptical arc, Bézier curve, and B-spline are implemented. With biobjective function of penumbra mean and variance introduced, genetic algorithm is carried out for approximating the Pareto frontier. Results show that for circular arc leaf end objective function is convex and convergence to optimal solution is guaranteed using gradient based iterative method. It is found that optimal leaf end in the shape of Bézier curve achieves minimal standard deviation, while using B-spline minimum of penumbra mean is obtained. For treatment modalities in clinical application, optimized leaf ends are in close agreement with actual shapes. Taken together, the method that we propose can provide insight into leaf end shape design of multileaf collimator. PMID:27110274

  16. Development and validation of a BEAMnrc component module for a miniature multileaf collimator.

    PubMed

    Doerner, E; Hartmann, G H

    2012-05-21

    A new component module (CM) named mini multileaf collimator (mMLC) was developed for the Monte Carlo code BEAMnrc. It models the geometry of the add-on miniature multileaf collimator ModuLeaf (MRC Systems GmbH, Heidelberg, Germany, now part of Siemens, Erlangen, Germany). The new CM is partly based on the existing CM called DYNVMLC. The development was performed using a modified EGSnrc platform which enables us to work in the Microsoft Visual Studio environment. In order to validate the new CM, the PRIMUS linac with 6 MV x-rays (Siemens OCS, Concord, CA, USA) equipped with the ModuLeaf mMLC was modelled. Validation was performed by two methods: (a) a ray-tracing method to check the correct geometry of the multileaf collimator (MLC) and (b) a comparison of calculated and measured results of the following dosimetrical parameters: output factors, dose profiles, field edge position penumbra, MLC interleaf leakage and transmission values. Excellent agreement was found for all parameters. It was, in particular, found that the relationship between leaf position and field edge depending on the shape of the leaf ends can be investigated with a higher accuracy by this new CM than by measurements demonstrating the usefulness of the new CM. PMID:22538509

  17. Comparative efficiency of the multi-leaf collimator and variable-aperture collimator in intensity-modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Anderson, J. W.; Symonds-Tayler, R.; Hartmann, G.; Echner, G.; Lang, C.; Schlegel, W.; Webb, S.

    2006-04-01

    The potential of the variable-aperture collimator (VAC) in intensity-modulated radiation therapy (IMRT) has been evaluated by comparing its performance with that of the multi-leaf collimator (MLC). This comparison used a decomposition algorithm to find the series of collimator segments that would treat a given intensity-modulated beam (IMB). Collimator performance was measured using both the number of segments required to complete the IMB and the monitor-unit efficiency of the treatment. The VAC was modelled with aperture sizes from 4 × 4 cm to 20 × 20 cm, and these apertures were allowed to be located anywhere within the IMB. To enable a direct comparison, a similar scanning MLC was modelled at the same range of aperture sizes. Using both collimators, decompositions were run on 10 × 10 and 20 × 20 random IMBs with integer bixel values ranging from 1 to 10. Clinical IMBs from lung, head and neck, and pelvic patients were taken from a Pinnacle treatment-planning system and tested in the same manner. It was found that for all treatment sites, a small, scanning MLC performs as well or better than an equivalent sized VAC in both number of segments and monitor-unit efficiency, and would be an efficient choice for centres looking for a simple collimator for IMRT.

  18. Technical Note: Modeling a complex micro-multileaf collimator using the standard BEAMnrc distribution

    SciTech Connect

    Kairn, T.; Kenny, J.; Crowe, S. B.; Fielding, A. L.; Franich, R. D.; Johnston, P. N.; Knight, R. T.; Langton, C. M.; Schlect, D.; Trapp, J. V.

    2010-04-15

    Purpose: The component modules in the standard BEAMnrc distribution may appear to be insufficient to model micro-multileaf collimators that have trifaceted leaf ends and complex leaf profiles. This note indicates, however, that accurate Monte Carlo simulations of radiotherapy beams defined by a complex collimation device can be completed using BEAMnrc's standard VARMLC component module. Methods: That this simple collimator model can produce spatially and dosimetrically accurate microcollimated fields is illustrated using comparisons with ion chamber and film measurements of the dose deposited by square and irregular fields incident on planar, homogeneous water phantoms. Results: Monte Carlo dose calculations for on-axis and off-axis fields are shown to produce good agreement with experimental values, even on close examination of the penumbrae. Conclusions: The use of a VARMLC model of the micro-multileaf collimator, along with a commissioned model of the associated linear accelerator, is therefore recommended as an alternative to the development or use of in-house or third-party component modules for simulating stereotactic radiotherapy and radiosurgery treatments. Simulation parameters for the VARMLC model are provided which should allow other researchers to adapt and use this model to study clinical stereotactic radiotherapy treatments.

  19. Variable Circular Collimator in Robotic Radiosurgery: A Time-Efficient Alternative to a Mini-Multileaf Collimator?

    SciTech Connect

    Water, Steven van de; Hoogeman, Mischa S.; Breedveld, Sebastiaan; Nuyttens, Joost J.M.E.; Schaart, Dennis R.; Heijmen, Ben J.M.

    2011-11-01

    Purpose: Compared with many small circular beams used in CyberKnife treatments, beam's eye view-shaped fields are generally more time-efficient for dose delivery. However, beam's eye view-shaping devices, such as a mini-multileaf collimator (mMLC), are not presently available for CyberKnife, although a variable-aperture collimator (Iris, 12 field diameters; 5-60 mm) is available. We investigated whether the Iris can mimic noncoplanar mMLC treatments using a limited set of principal beam orientations (nodes) to produce time-efficient treatment plans. Methods and Materials: The data from 10 lung cancer patients and the beam-orientation optimization algorithm 'Cycle' were used to generate stereotactic treatment plans (3 x 20 Gy) for a CyberKnife virtually equipped with a mMLC. Typically, 10-16 favorable beam orientations were selected from 117 available robot node positions using beam's eye view-shaped fields with uniform fluence. Second, intensity-modulated Iris plans were generated by inverse optimization of nonisocentric circular candidate beams targeted from the same nodes selected in the mMLC plans. The plans were evaluated using the mean lung dose, lung volume receiving {>=}20 Gy, conformality index, number of nodes, beams, and monitor units, and estimated treatment time. Results: The mMLC plans contained an average of 12 nodes and 11,690 monitor units. For a comparable mean lung dose, the Iris plans contained 12 nodes, 64 beams, and 21,990 monitor units. The estimated fraction duration was 12.2 min (range, 10.8-13.5) for the mMLC plans and 18.4 min (range, 12.9-28.5) for the Iris plans. In contrast to the mMLC plans, the treatment time for the Iris plans increased with an increasing target volume. The Iris plans were, on average, 40% longer than the corresponding mMLC plans for small targets (<80 cm{sup 3}) and {<=}121% longer for larger targets. For a comparable conformality index, similar results were obtained. Conclusion: For stereotactic lung irradiation

  20. Feasibility of replacing patient specific cutouts with a computer-controlled electron multileaf collimator

    NASA Astrophysics Data System (ADS)

    Eldib, Ahmed; Jin, Lihui; Li, Jinsheng; Ma, C.-M. Charlie

    2013-08-01

    A motorized electron multileaf collimator (eMLC) was developed as an add-on device to the Varian linac for delivery of advanced electron beam therapy. It has previously been shown that electron beams collimated by an eMLC have very similar penumbra to those collimated by applicators and cutouts. Thus, manufacturing patient specific cutouts would no longer be necessary, resulting in the reduction of time taken in the cutout fabrication process. Moreover, cutout construction involves handling of toxic materials and exposure to toxic fumes that are usually generated during the process, while the eMLC will be a pollution-free device. However, undulation of the isodose lines is expected due to the finite size of the eMLC. Hence, the provided planned target volume (PTV) shape will not exactly follow the beam's-eye-view of the PTV, but instead will make a stepped approximation to the PTV shape. This may be a problem when the field edge is close to a critical structure. Therefore, in this study the capability of the eMLC to achieve the same clinical outcome as an applicator/cutout combination was investigated based on real patient computed tomographies (CTs). An in-house Monte Carlo based treatment planning system was used for dose calculation using ten patient CTs. For each patient, two plans were generated; one with electron beams collimated using the applicator/cutout combination; and the other plan with beams collimated by the eMLC. Treatment plan quality was compared for each patient based on dose distribution and dose-volume histogram. In order to determine the optimal position of the leaves, the impact of the different leaf positioning strategies was investigated. All plans with both eMLC and cutouts were generated such that 100% of the target volume receives at least 90% of the prescribed dose. Then the percentage difference in dose between both delivery techniques was calculated for all the cases. The difference in the dose received by 10% of the volume of the

  1. Characterization of a dynamic multi-leaf collimator for stereotactic radiotherapy applications.

    PubMed

    Godwin, G A; Simpson, J B; Mugabe, K V

    2012-07-21

    The Apex® dynamic mini-multileaf collimator has recently been released by Elekta and attaches directly to the linear accelerator head. This paper details the work and results obtained in characterizing this mini-MLC for stereotactic usage within our department. A range of mechanical and dosimetric characteristics were investigated which included inter and intra leaf leakage, light/radiation field congruence, leaf position reproducibility, radiation penumbra, total scatter factors and mechanical rotational stability with the additional mini-MLC weight. PMID:22750675

  2. Beam modeling and VMAT performance with the Agility 160-leaf multileaf collimator.

    PubMed

    Bedford, James L; Thomas, Michael D R; Smyth, Gregory

    2013-01-01

    The Agility multileaf collimator (Elekta AB, Stockholm, Sweden) has 160 leaves of projected width 0.5 cm at the isocenter, with maximum leaf speed 3.5 cms-1. These characteristics promise to facilitate fast and accurate delivery of radiotherapy, particularly volumetric-modulated arc therapy (VMAT). The aim of this study is therefore to create a beam model for the Pinnacle3 treatment planning system (Philips Radiation Oncology Systems, Fitchburg, WI), and to use this beam model to explore the performance of the Agility MLC in delivery of VMAT. A 6 MV beam model was created and verified by measuring doses under irregularly shaped fields. VMAT treatment plans for five typical head-and-neck patients were created using the beam model and delivered using both binned and continuously variable dose rate (CVDR). Results were compared with those for an MLCi unit without CVDR. The beam model has similar parameters to those of an MLCi model, with interleaf leakage of only 0.2%. The verification of irregular fields shows a mean agreement between measured and planned dose of 1.3% (planned dose higher). The Agility VMAT head-and-neck plans show equivalent plan quality and delivery accuracy to those for an MLCi unit, with 95% of verification measurements within 3% and 3 mm of planned dose. Mean delivery time is 133 s with the Agility head and CVDR, 171 s without CVDR, and 282 s with an MLCi unit. Pinnacle3 has therefore been shown to model the Agility MLC accurately, and to provide accurate VMAT treatment plans which can be delivered significantly faster with Agility than with an MLCi. PMID:23470941

  3. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors

    NASA Astrophysics Data System (ADS)

    Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon

    2016-03-01

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  4. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors.

    PubMed

    Carlson, Joel N K; Park, Jong Min; Park, So-Yeon; Park, Jong In; Choi, Yunseok; Ye, Sung-Joon

    2016-03-21

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  5. Qualitative analysis of irregular fields delivered with dual electron multileaf collimator: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Inyang, Samuel Okon; Chamberlain, Alan

    2016-03-01

    The use of a dual electron multileaf collimator (eMLC) to collimate therapeutic electron beam without the use of cutouts has been previously shown to be feasible. Further Monte Carlo simulations were performed in this study to verify the nature and appearance of the isodose distribution in water phantom of irregular electron beams delivered by the eMLC. Electron fields used in this study were selected to reflect those used in electron beam therapy. Results of this study show that the isodose distribution in a water phantom obtained from the simulation of irregular electron beams through the eMLC conforms to the pattern of the eMLC used in the delivery of the beam. It is therefore concluded that the dual eMLC could deliver isodose distributions reflecting the pattern of the eMLC field that was used in the delivery of the beam.

  6. Geometrical and dosimetrical characterization of the photon source using a micro-multileaf collimator for stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Treuer, H.; Hoevels, M.; Luyken, K.; Hunsche, S.; Kocher, M.; Müller, R.-P.; Sturm, V.

    2003-08-01

    A micro-multileaf collimator (µMLC) for stereotactic radiosurgery is used for determination of the spatial intensity distribution of the photon source of a linear accelerator. The method is based on grid field dose measurements using film dosimetry and is easy to perform. Since the µMLC does not allow 'direct' imaging of the photon source, special software has been developed to analyse grid field measurements. Besides the source-density function, grid field analysis yields the position of the focal spot in the room laser coordinate system of the linear accelerator and the position of the treatment head rotation axis and the inclination angle of the leaf bank. Thus the method can be used for base dosimetry and for quality assurance in radiosurgery using a µMLC.

  7. Compact multileaf collimator for conformal and intensity modulated fast neutron therapy: electromechanical design and validation.

    PubMed

    Farr, J B; Maughan, R L; Yudelev, M; Blosser, E; Brandon, J; Horste, T; Forman, J D

    2006-09-01

    The electromechanical properties of a 120-leaf, high-resolution, computer-controlled, fast neutron multileaf collimator (MLC) are presented. The MLC replaces an aging, manually operated multirod collimator. The MLC leaves project 5 mm in the isocentric plane perpendicular to the beam axis. A taper is included on the leaves matching beam divergence along one axis. The 5-mm leaf projection width is chosen to give high-resolution conformality across the entire field. The maximum field size provided is 30 x 30 cm2. To reduce the interleaf transmission a 0.254-mm blocking step is included. End-leaf steps totaling 0.762 mm are also provided allowing opposing leaves to close off within the primary radiation beam. The neutron MLC also includes individual 45 degrees and 60 degrees automated universal tungsten wedges. The automated high-resolution neutron collimation provides an increase in patient throughput capacity, enables a new modality, intensity modulated neutron therapy, and limits occupational radiation exposure by providing remote operation from a shielded console area. PMID:17022226

  8. Compact multileaf collimator for conformal and intensity modulated fast neutron therapy: Electromechanical design and validation

    SciTech Connect

    Farr, J. B.; Maughan, R. L.; Yudelev, M.; Blosser, E.; Brandon, J.; Horste, T.; Forman, J. D.

    2006-09-15

    The electromechanical properties of a 120-leaf, high-resolution, computer-controlled, fast neutron multileaf collimator (MLC) are presented. The MLC replaces an aging, manually operated multirod collimator. The MLC leaves project 5 mm in the isocentric plane perpendicular to the beam axis. A taper is included on the leaves matching beam divergence along one axis. The 5-mm leaf projection width is chosen to give high-resolution conformality across the entire field. The maximum field size provided is 30x30 cm{sup 2}. To reduce the interleaf transmission a 0.254-mm blocking step is included. End-leaf steps totaling 0.762 mm are also provided allowing opposing leaves to close off within the primary radiation beam. The neutron MLC also includes individual 45 deg. and 60 deg. automated universal tungsten wedges. The automated high-resolution neutron collimation provides an increase in patient throughput capacity, enables a new modality, intensity modulated neutron therapy, and limits occupational radiation exposure by providing remote operation from a shielded console area.

  9. Measuring output factors of small fields formed by collimator jaws and multileaf collimator using plastic scintillation detectors

    SciTech Connect

    Klein, David M.; Tailor, Ramesh C.; Archambault, Louis; Wang, Lilie; Therriault-Proulx, Francois; Beddar, A. Sam

    2010-10-15

    Purpose: As the practice of using high-energy photon beams to create therapeutic radiation fields of subcentimeter dimensions (as in intensity-modulated radiotherapy or stereotactic radiosurgery) grows, so too does the need for accurate verification of beam output at these small fields in which standard practices of dose verification break down. This study investigates small-field output factors measured using a small plastic scintillation detector (PSD), as well as a 0.01 cm{sup 3} ionization chamber. Specifically, output factors were measured with both detectors using small fields that were defined by either the X-Y collimator jaws or the multileaf collimator (MLC). Methods: A PSD of 0.5 mm diameter and 2 mm length was irradiated with 6 and 18 MV linac beams. The PSD was positioned vertically at a source-to-axis distance of 100 cm, at 10 cm depth in a water phantom, and irradiated with fields ranging in size from 0.5x0.5 to 10x10 cm{sup 2}. The field sizes were defined either by the collimator jaws alone or by a MLC alone. The MLC fields were constructed in two ways: with the closed leaves (i.e., those leaves that were not opened to define the square field) meeting at either the field center line or at a 4 cm offset from the center line. Scintillation light was recorded using a CCD camera and an estimation of error in the median-filtered signals was made using the bootstrapping technique. Measurements were made using a CC01 ionization chamber under conditions identical to those used for the PSD. Results: Output factors measured by the PSD showed close agreement with those measured using the ionization chamber for field sizes of 2.0x2.0 cm{sup 2} and above. At smaller field sizes, the PSD obtained output factors as much as 15% higher than those found using the ionization chamber by 0.6x0.6 cm{sup 2} jaw-defined fields. Output factors measured with no offset of the closed MLC leaves were as much as 20% higher than those measured using a 4 cm leaf offset

  10. Multibeam tomotherapy: a new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy.

    PubMed

    Achterberg, Nils; Müller, Reinhold G

    2007-10-01

    A fully integrated system for treatment planning, application, and verification for automated multileaf collimator (MLC) based, intensity-modulated, image-guided, and adaptive radiation therapy (IMRT, IGRT and ART, respectively) is proposed. Patient comfort, which was the major development goal, will be achieved through a new unit design and short treatment times. Our device for photon beam therapy will consist of a new dual energy linac with five fixed treatment heads positioned evenly along one plane but one electron beam generator only. A minimum of moving parts increases technical reliability and reduces motion times to a minimum. Motion is allowed solely for the MLCs, the robotic patient table, and the small angle gantry rotation of +/- 36 degrees. Besides sophisticated electron beam guidance, this compact setup can be built using existing modules. The flattening-filter-free treatment heads are characterized by reduced beam-on time and contain apertures restricted in one dimension to the area of maximum primary fluence output. In the case of longer targets, this leads to a topographic intensity modulation, thanks to the combination of "step and shoot" MLC delivery and discrete patient couch motion. Owing to the limited number of beam directions, this multislice cone beam serial tomotherapy is referred to as "multibeam tomotherapy." Every patient slice is irradiated by one treatment head at any given moment but for one subfield only. The electron beam is then guided to the next head ready for delivery, while the other heads are preparing their leaves for the next segment. The "Multifocal MLC-positioning" algorithm was programmed to enable treatment planning and optimize treatment time. We developed an overlap strategy for the longitudinally adjacent fields of every beam direction, in doing so minimizing the field match problem and the effects of possible table step errors. Clinical case studies show for the same or better planning target volume coverage, better

  11. Multibeam tomotherapy: A new treatment unit devised for multileaf collimation, intensity-modulated radiation therapy

    SciTech Connect

    Achterberg, Nils; Mueller, Reinhold G.

    2007-10-15

    A fully integrated system for treatment planning, application, and verification for automated multileaf collimator (MLC) based, intensity-modulated, image-guided, and adaptive radiation therapy (IMRT, IGRT and ART, respectively) is proposed. Patient comfort, which was the major development goal, will be achieved through a new unit design and short treatment times. Our device for photon beam therapy will consist of a new dual energy linac with five fixed treatment heads positioned evenly along one plane but one electron beam generator only. A minimum of moving parts increases technical reliability and reduces motion times to a minimum. Motion is allowed solely for the MLCs, the robotic patient table, and the small angle gantry rotation of {+-}36 deg. . Besides sophisticated electron beam guidance, this compact setup can be built using existing modules. The flattening-filter-free treatment heads are characterized by reduced beam-on time and contain apertures restricted in one dimension to the area of maximum primary fluence output. In the case of longer targets, this leads to a topographic intensity modulation, thanks to the combination of 'step and shoot' MLC delivery and discrete patient couch motion. Owing to the limited number of beam directions, this multislice cone beam serial tomotherapy is referred to as 'multibeam tomotherapy.' Every patient slice is irradiated by one treatment head at any given moment but for one subfield only. The electron beam is then guided to the next head ready for delivery, while the other heads are preparing their leaves for the next segment. The 'Multifocal MLC-positioning' algorithm was programmed to enable treatment planning and optimize treatment time. We developed an overlap strategy for the longitudinally adjacent fields of every beam direction, in doing so minimizing the field match problem and the effects of possible table step errors. Clinical case studies show for the same or better planning target volume coverage, better

  12. An independent system for real-time dynamic multileaf collimation trajectory verification using EPID.

    PubMed

    Fuangrod, Todsaporn; Woodruff, Henry C; Rowshanfarzad, Pejman; O'Connor, Daryl J; Middleton, Richard H; Greer, Peter B

    2014-01-01

    A new tool has been developed to verify the trajectory of dynamic multileaf collimators (MLCs) used in advanced radiotherapy techniques using only the information provided by the electronic portal imaging devices (EPID) measured image frames. The prescribed leaf positions are resampled to a higher resolution in a pre-processing stage to improve the verification precision. Measured MLC positions are extracted from the EPID frames using a template matching method. A cosine similarity metric is then applied to synchronise measured and planned leaf positions for comparison. Three additional comparison functions were incorporated to ensure robust synchronisation. The MLC leaf trajectory error detection was simulated for both intensity modulated radiation therapy (IMRT) (prostate) and volumetric modulated arc therapy (VMAT) (head-and-neck) deliveries with anthropomorphic phantoms in the beam. The overall accuracy for MLC positions automatically extracted from EPID image frames was approximately 0.5 mm. The MLC leaf trajectory verification system can detect leaf position errors during IMRT and VMAT with a tolerance of 3.5 mm within 1 s. PMID:24334552

  13. Design and Fabrication of the Control Part of a Prototype Multileaf Collimator System

    PubMed Central

    Hashemian, Abdolreza; Toossi, Mohammad Taghi Bahreyni; Nasseri, Shahrokh

    2014-01-01

    Multileaf collimator (MLC) is among the radiation field shaping systems used for conformal radiotherapy and intensity modulation radiation therapy techniques. The MLC system that has been designed and fabricated in this study includes 52 leaves, 52 stepper motors, 2 DC motors, 16 programmable logic controllers (PLCs) and one human machine interface (HMI). This system can be mounted on conventional linear accelerators (linac) as an add-on accessory. The 52 leaves are mounted on two carriages that are moved independently. The leaves sequence acquired from the image processing of computed tomography images is used to arrange leaves. This sequence is saved in a text file. The leaves are arranged by HMI and labVIEW. Using HMI it is possible to test the operation of PLCs and manually enter the numerical values of the leaves edges. An executable file is developed by labVIEW program, which is graphically user interfaced between the operator and the MLC control system. The projected width of each leaf on the isocenter accelerator (usually at 100 cm from the source) is 10 mm. The positioning accuracy of each leaf is approximately 1.4 mm. PMID:25426434

  14. Analytical model of the binary multileaf collimator of tomotherapy for Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Sterpin, E.; Salvat, F.; Olivera, G. H.; Vynckier, S.

    2008-02-01

    Helical Tomotherapy (HT) delivers intensity-modulated radiotherapy by the means of many configurations of the binary multi-leaf collimator (MLC). The aim of the present study was to devise a method, which we call the 'transfer function' (TF) method, to perform the transport of particles through the MLC much faster than the time consuming Monte Carlo (MC) simulation and with no significant loss of accuracy. The TF method consists of calculating, for each photon in the phase-space file, the attenuation factor for each leaf (up to three) that the photon passes, assuming straight propagation through closed leaves, and storing these factors in a modified phase-space file. To account for the transport through the MLC in a given configuration, the weight of a photon is simply multiplied by the attenuation factors of the leaves that are intersected by the photon ray and are closed. The TF method was combined with the PENELOPE MC code, and validated with measurements for the three static field sizes available (40×5, 40×2.5 and 40×1 cm2) and for some MLC patterns. The TF method allows a large reduction in computation time, without introducing appreciable deviations from the result of full MC simulations.

  15. Design and fabrication of the control part of a prototype multileaf collimator system.

    PubMed

    Hashemian, Abdolreza; Toossi, Mohammad Taghi Bahreyni; Nasseri, Shahrokh

    2014-10-01

    Multileaf collimator (MLC) is among the radiation field shaping systems used for conformal radiotherapy and intensity modulation radiation therapy techniques. The MLC system that has been designed and fabricated in this study includes 52 leaves, 52 stepper motors, 2 DC motors, 16 programmable logic controllers (PLCs) and one human machine interface (HMI). This system can be mounted on conventional linear accelerators (linac) as an add-on accessory. The 52 leaves are mounted on two carriages that are moved independently. The leaves sequence acquired from the image processing of computed tomography images is used to arrange leaves. This sequence is saved in a text file. The leaves are arranged by HMI and labVIEW. Using HMI it is possible to test the operation of PLCs and manually enter the numerical values of the leaves edges. An executable file is developed by labVIEW program, which is graphically user interfaced between the operator and the MLC control system. The projected width of each leaf on the isocenter accelerator (usually at 100 cm from the source) is 10 mm. The positioning accuracy of each leaf is approximately 1.4 mm. PMID:25426434

  16. Monte Carlo simulation of a multi-leaf collimator design for telecobalt machine using BEAMnrc code

    PubMed Central

    Ayyangar, Komanduri M.; Kumar, M. Dinesh; Narayan, Pradush; Jesuraj, Fenedit; Raju, M. R.

    2010-01-01

    This investigation aims to design a practical multi-leaf collimator (MLC) system for the cobalt teletherapy machine and check its radiation properties using the Monte Carlo (MC) method. The cobalt machine was modeled using the BEAMnrc Omega-Beam MC system, which could be freely downloaded from the website of the National Research Council (NRC), Canada. Comparison with standard depth dose data tables and the theoretically modeled beam showed good agreement within 2%. An MLC design with low melting point alloy (LMPA) was tested for leakage properties of leaves. The LMPA leaves with a width of 7 mm and height of 6 cm, with tongue and groove of size 2 mm wide by 4 cm height, produced only 4% extra leakage compared to 10 cm height tungsten leaves. With finite 60Co source size, the interleaf leakage was insignificant. This analysis helped to design a prototype MLC as an accessory mount on a cobalt machine. The complete details of the simulation process and analysis of results are discussed. PMID:20177567

  17. Electromagnetic Real-Time Tumor Position Monitoring and Dynamic Multileaf Collimator Tracking Using a Siemens 160 MLC: Geometric and Dosimetric Accuracy of an Integrated System

    SciTech Connect

    Krauss, Andreas; Nill, Simeon; Tacke, Martin; Oelfke, Uwe

    2011-02-01

    Purpose: Dynamic multileaf collimator tracking represents a promising method for high-precision radiotherapy to moving tumors. In the present study, we report on the integration of electromagnetic real-time tumor position monitoring into a multileaf collimator-based tracking system. Methods and Materials: The integrated system was characterized in terms of its geometric and radiologic accuracy. The former was assessed from portal images acquired during radiation delivery to a phantom in tracking mode. The tracking errors were calculated from the positions of the tracking field and of the phantom as extracted from the portal images. Radiologic accuracy was evaluated from film dosimetry performed for conformal and intensity-modulated radiotherapy applied to different phantoms moving on sinusoidal trajectories. A static radiation delivery to the nonmoving target served as a reference for the delivery to the moving phantom with and without tracking applied. Results: Submillimeter tracking accuracy was observed for two-dimensional target motion despite the relatively large system latency of 500 ms. Film dosimetry yielded almost complete recovery of a circular dose distribution with tracking in two dimensions applied: 2%/2 mm gamma-failure rates could be reduced from 59.7% to 3.3%. For single-beam intensity-modulated radiotherapy delivery, accuracy was limited by the finite leaf width. A 2%/2 mm gamma-failure rate of 15.6% remained with tracking applied. Conclusion: The integrated system we have presented marks a major step toward the clinical implementation of high-precision dynamic multileaf collimator tracking. However, several challenges such as irregular motion traces or a thorough quality assurance still need to be addressed.

  18. Characterization of an add-on multileaf collimator for electron beam therapy

    NASA Astrophysics Data System (ADS)

    Gauer, T.; Sokoll, J.; Cremers, F.; Harmansa, R.; Luzzara, M.; Schmidt, R.

    2008-02-01

    An add-on multileaf collimator for electrons (eMLC) has been developed that provides computer-controlled beam collimation and isocentric dose delivery. The design parameters result from the design study by Gauer et al (2006 Phys. Med. Biol. 51 5987-6003) and were configured such that a compact and light-weight eMLC with motorized leaves can be industrially manufactured and stably mounted on a conventional linear accelerator. In the present study, the efficiency of an initial computer-controlled prototype was examined according to the design goals and the performance of energy- and intensity-modulated treatment techniques. This study concentrates on the attachment and gantry stability as well as the dosimetric characteristics of central-axis and off-axis dose, field size dependence, collimator scatter, field abutment, radiation leakage and the setting of the accelerator jaws. To provide isocentric irradiation, the eMLC can be placed either 16 or 28 cm above the isocentre through interchangeable holders. The mechanical implementation of this feature results in a maximum field displacement of less than 0.6 mm at 90° and 270° gantry angles. Compared to a 10 × 10 cm applicator at 6-14 MeV, the beam penumbra of the eMLC at a 16 cm collimator-to-isocentre distance is 0.8-0.4 cm greater and the depth-dose curves show a larger build-up effect. Due to the loss in energy dependence of the therapeutic range and the much lower dose output at small beam sizes, a minimum beam size of 3 × 3 cm is necessary to avoid suboptimal dose delivery. Dose output and beam symmetry are not affected by collimator scatter when the central axis is blocked. As a consequence of the broader beam penumbra, uniform dose distributions were measured in the junction region of adjacent beams at perpendicular and oblique beam incidence. However, adjacent beams with a high difference in a beam energy of 6 to 14 MeV generate cold and hot spots of approximately 15% in the abutting region. In order to

  19. Dynamic conformal arc cranial stereotactic radiosurgery: implications of multileaf collimator margin on dose–volume metrics

    PubMed Central

    Tanyi, J A; Doss, E J; Kato,, C M; Monaco, D L; ZMeng, L; Chen, Y; Kubicky, C D; Marquez, C M; Fuss, M

    2012-01-01

    Objective The effect of multileaf collimator (MLC) margin on target and normal tissue dose–volume metrics for intracranial stereotactic radiosurgery (SRS) was assessed. Methods 118 intracranial lesions of 83 SRS patients formed the basis of this study. For each planning target volume (PTV), five separate treatment plans were generated with MLC margins of −1, 0, 1, 2 and 3 mm, respectively. Identical treatment planning parameters were employed with a median of five dynamic conformal arcs using the Varian/BrainLab high-definition MLC for beam shaping. Prescription dose (PD) was such that 22 Gy covered at least 95% of the PTV. Dose–volume and dose–response comparative metrics included conformity index, heterogeneity index, dose gradient, tumour control probability (TCP) and normal tissue complication probability (NTCP). Results Target dose heterogeneity decreased with increasing MLC margin (p<0.001); mean heterogeneity index decreased from 70.4±12.7 to 10.4±2.2%. TCP decreased with increasing MLC margin (p<0.001); mean TCP decreased from 81.0±2.3 to 62.2±1.8%. Normal tissue dose fall-off increased with MLC margin (p<0.001); mean gradient increased from 3.1±0.9 mm to 5.3±0.7 mm. NTCP was optimal at 1 mm MLC margin. No unambiguous correlation was observed between NTCP and PTV volume. Plan delivery efficiency generally improved with larger margins (p<0.001); mean monitor unit per centigray of the PD decreased from 3.60±1.30 to 1.56±0.13. Conclusion Use of 1 mm MLC margins for dynamic conformal arc-based cranial radiosurgery resulted in optimal tumour control and normal tissue sparing. Clinical significance of these comparative findings warrants further investigation. PMID:23091293

  20. Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators

    PubMed Central

    Howell, Rebecca M.; Kry, Stephen F.; Burgett, Eric; Hertel, Nolan E.; Followill, David S.

    2009-01-01

    Neutrons are a by-product of high-energy x-ray radiation therapy (threshold for [γ,n] reactions in high-Z material ∼7 MeV). Neutron production varies depending on photon beam energy as well as on the manufacturer of the accelerator. Neutron production from modern linear accelerators (linacs) has not been extensively compared, particularly in terms of the differences in the strategies that various manufacturers have used to implement multileaf collimators (MLCs) into their linac designs. However, such information is necessary to determine neutron dose equivalents for different linacs and to calculate vault shielding requirements. The purpose of the current study, therefore, was to measure the neutron spectra from the most up-to-date linacs from three manufacturers: Varian 21EX operating at 15, 18, and 20 MV, Siemens ONCOR operating at 15 and 18 MV, and Elekta Precise operating at 15 and 18 MV. Neutron production was measured by means of gold foil activation in Bonner spheres. Based on the measurements, the authors determined neutron spectra and calculated the average energy, total neutron fluence, ambient dose equivalent, and neutron source strength. The shapes of the neutron spectra did not change significantly between accelerators or even as a function of treatment energy. However, the neutron fluence, and therefore the ambient dose equivalent, did vary, increasing with increasing treatment energy. For a given nominal treatment energy, these values were always highest for the Varian linac. The current study thus offers medical physicists extensive information about the neutron production of MLC-equipped linacs currently in operation and provides them information vital for accurate comparison and prediction of neutron dose equivalents and calculation of vault shielding requirements. PMID:19810475

  1. Electromagnetic-Guided Dynamic Multileaf Collimator Tracking Enables Motion Management for Intensity-Modulated Arc Therapy

    SciTech Connect

    Keall, Paul J.; Sawant, Amit; Cho, Byungchul; Ruan, Dan; Wu Junqing; Poulsen, Per; Petersen, Jay; Newell, Laurence J.; Cattell, Herbert; Korreman, Stine

    2011-01-01

    Purpose: Intensity-modulated arc therapy (IMAT) is attractive because of high-dose conformality and efficient delivery. However, managing intrafraction motion is challenging for IMAT. The purpose of this research was to develop and investigate electromagnetically guided dynamic multileaf collimator (DMLC) tracking as an enabling technology to treat moving targets during IMAT. Methods and Materials: A real-time three-dimensional DMLC-based target tracking system was developed and integrated with a linear accelerator. The DMLC tracking software inputs a real-time electromagnetically measured target position and the IMAT plan, and dynamically creates new leaf positions directed at the moving target. Low- and high-modulation IMAT plans were created for lung and prostate cancer cases. The IMAT plans were delivered to a three-axis motion platform programmed with measured patient motion. Dosimetric measurements were acquired by placing an ion chamber array on the moving platform. Measurements were acquired with tracking, without tracking (current clinical practice), and with the phantom in a static position (reference). Analysis of dose distribution differences from the static reference used a {gamma}-test. Results: On average, 1.6% of dose points for the lung plans and 1.2% of points for the prostate plans failed the 3-mm/3% {gamma}-test with tracking; without tracking, 34% and 14% (respectively) of points failed the {gamma}-test. The delivery time was the same with and without tracking. Conclusions: Electromagnetic-guided DMLC target tracking with IMAT has been investigated for the first time. Dose distributions to moving targets with DMLC tracking were significantly superior to those without tracking. There was no loss of treatment efficiency with DMLC tracking.

  2. NOTE: Multileaf collimator end leaf leakage: implications for wide-field IMRT

    NASA Astrophysics Data System (ADS)

    Hardcastle, N.; Metcalfe, P.; Ceylan, A.; Williams, M. J.

    2007-11-01

    The multi-leaf collimator (MLC) of a particular linear accelerator vendor (Millennium MLC, Varian Medical Systems, Palo Alto, CA, USA) has a maximum leaf extension of 14.5 cm. To achieve intensity modulated radiotherapy (IMRT) for fields wider than 14.5 cm all closed leaf pairs are restricted to placement inside the field. Due to the rounded leaf end design of the MLC end leaf leakage will occur in the treatment field. The implementation of direct aperture optimization in the IMRT module of a radiotherapy treatment planning system (Pinnacle, Philips Radiation Oncology Systems, Milpitas, CA) has facilitated the delivery of IMRT fields wider than 14.5 cm. The end leaf leakage of the Millennium MLC has been characterized for 6 MV photons using gafchromic and radiographic film, and the accuracy of the planning system verified. The maximum leakage measured for a single field was 0.39 cGy MU-1 for a 0 mm leaf gap and 0.51 cGy MU-1 for a 0.6 mm leaf gap. For a clinical IMRT field leaf end leakage contributed an additional 2-3 Gy over the course of treatment. The planning system underestimated the magnitude of end leaf leakage by 20-40%. The ability to deliver IMRT fields wider than 14.5 cm with the Millennium MLC has improved the efficiency and flexibility of IMRT treatments; however, significant extra dose can be introduced due to end leaf leakage. Caution should be exercised when delivering wide field IMRT as it is not a complete panacea. Any significant occurrences of end leaf leakage predicted by the planning system should be independently verified prior to delivery.

  3. Monte Carlo simulation based study of a proposed multileaf collimator for a telecobalt machine

    SciTech Connect

    Sahani, G.; Dash Sharma, P. K.; Hussain, S. A.; Dutt Sharma, Sunil; Sharma, D. N.

    2013-02-15

    Purpose: The objective of the present work was to propose a design of a secondary multileaf collimator (MLC) for a telecobalt machine and optimize its design features through Monte Carlo simulation. Methods: The proposed MLC design consists of 72 leaves (36 leaf pairs) with additional jaws perpendicular to leaf motion having the capability of shaping a maximum square field size of 35 Multiplication-Sign 35 cm{sup 2}. The projected widths at isocenter of each of the central 34 leaf pairs and 2 peripheral leaf pairs are 10 and 5 mm, respectively. The ends of the leaves and the x-jaws were optimized to obtain acceptable values of dosimetric and leakage parameters. Monte Carlo N-Particle code was used for generating beam profiles and depth dose curves and estimating the leakage radiation through the MLC. A water phantom of dimension 50 Multiplication-Sign 50 Multiplication-Sign 40 cm{sup 3} with an array of voxels (4 Multiplication-Sign 0.3 Multiplication-Sign 0.6 cm{sup 3}= 0.72 cm{sup 3}) was used for the study of dosimetric and leakage characteristics of the MLC. Output files generated for beam profiles were exported to the PTW radiation field analyzer software through locally developed software for analysis of beam profiles in order to evaluate radiation field width, beam flatness, symmetry, and beam penumbra. Results: The optimized version of the MLC can define radiation fields of up to 35 Multiplication-Sign 35 cm{sup 2} within the prescribed tolerance values of 2 mm. The flatness and symmetry were found to be well within the acceptable tolerance value of 3%. The penumbra for a 10 Multiplication-Sign 10 cm{sup 2} field size is 10.7 mm which is less than the generally acceptable value of 12 mm for a telecobalt machine. The maximum and average radiation leakage through the MLC were found to be 0.74% and 0.41% which are well below the International Electrotechnical Commission recommended tolerance values of 2% and 0.75%, respectively. The maximum leakage through the

  4. Multileaf collimator leaf position verification and analysis for adaptive radiation therapy using a video-optical method

    NASA Astrophysics Data System (ADS)

    Sethna, Sohrab B.

    External beam radiation therapy is commonly used to eliminate and control cancerous tumors. High-energy beams are shaped to match the patient's specific tumor volume, whereby maximizing radiation dose to malignant cells and limiting dose to normal tissue. A multileaf collimator (MLC) consisting of multiple pairs of tungsten leaves is used to conform the radiation beam to the desired treatment field. Advanced treatment methods utilize dynamic MLC settings to conform to multiple treatment fields and provide intensity modulated radiation therapy (IMRT). Future methods would further increase conformity by actively tracking tumor motion caused by patient cardiac and respiratory motion. Leaf position quality assurance for a dynamic MLC is critical as variation between the planned and actual leaf positions could induce significant errors in radiation dose. The goal of this research project is to prototype a video-optical quality assurance system for MLC leaf positions. The system captures light-field images of MLC leaf sequences during dynamic therapy. Image acquisition and analysis software was developed to determine leaf edge positions. The mean absolute difference between QA prototype predicted and caliper measured leaf positions was found to be 0.6 mm with an uncertainty of +/- 0.3 mm. Maximum errors in predicted positions were below 1.0 mm for static fields. The prototype served as a proof of concept for quality assurance of future tumor tracking methods. Specifically, a lung tumor phantom was created to mimic a lung tumor's motion from respiration. The lung tumor video images were superimposed on MLC field video images for visualization and analysis. The toolbox is capable of displaying leaf position, leaf velocity, tumor position, and determining errors between planned and actual treatment fields for dynamic radiation therapy.

  5. Characterization of megavoltage electron beams delivered through a photon multi-leaf collimator (pMLC)

    NASA Astrophysics Data System (ADS)

    du Plessis, F. C. P.; Leal, A.; Stathakis, S.; Xiong, W.; Ma, C.-M.

    2006-04-01

    A study is presented that characterizes megavoltage electron beams delivered through an existing double-focused photon multi-leaf collimator (pMLC) using film measurements in a solid water phantom. Machine output stability and linearity were evaluated as well as the effect of source-to-surface distance (SSD) and field size on the penumbra for electron energies between 6 and 18 MeV over an SSD range of 60-100 cm. Penumbra variations as a function of field size, depth of measurement and the influence of the jaws were also studied. Field abutment, field flatness and target coverage for segmented beams were also addressed. The measured field size for electrons transported through the pMLC was the same as that for an x-ray beam up to SSDs of 70 cm. At larger SSD, the lower energy electron fields deviated from the projected field. Penumbra data indicated that 60 cm SSD was the most favourable treatment distance. Backprojection of P20-80 penumbra data yielded a virtual source position located at 98.9 cm from the surface for 18 MeV electrons. For 6 MeV electrons, the virtual source position was at a distance of 82.6 cm. Penumbra values were smaller for small beam slits and reached a near-constant value for field widths larger than 5 cm. The influence of the jaws had a small effect on the penumbra. The R90 values ranged from 1.4 to 4.8 cm between 6 and 21 MeV as measured at 60 cm SSD for a 9 × 9 cm2 field. Uniformity and penumbra improvement could be demonstrated using weighted abutted fields especially useful for small segments. No detectable electron leakage through the pMLC was observed. Bremsstrahlung measurements taken at 60 cm SSD for a 9 × 9 cm2 field as shaped by the pMLC compared within 1% to bremsstrahlung measurements taken at 100 cm SSD for a 10 × 10 cm2 electron applicator field at 100 cm SSD.

  6. Markerless EPID image guided dynamic multi-leaf collimator tracking for lung tumors

    NASA Astrophysics Data System (ADS)

    Rottmann, J.; Keall, P.; Berbeco, R.

    2013-06-01

    Compensation of target motion during the delivery of radiotherapy has the potential to improve treatment accuracy, dose conformity and sparing of healthy tissue. We implement an online image guided therapy system based on soft tissue localization (STiL) of the target from electronic portal images and treatment aperture adaptation with a dynamic multi-leaf collimator (DMLC). The treatment aperture is moved synchronously and in real time with the tumor during the entire breathing cycle. The system is implemented and tested on a Varian TX clinical linear accelerator featuring an AS-1000 electronic portal imaging device (EPID) acquiring images at a frame rate of 12.86 Hz throughout the treatment. A position update cycle for the treatment aperture consists of four steps: in the first step at time t = t0 a frame is grabbed, in the second step the frame is processed with the STiL algorithm to get the tumor position at t = t0, in a third step the tumor position at t = ti + δt is predicted to overcome system latencies and in the fourth step, the DMLC control software calculates the required leaf motions and applies them at time t = ti + δt. The prediction model is trained before the start of the treatment with data representing the tumor motion. We analyze the system latency with a dynamic chest phantom (4D motion phantom, Washington University). We estimate the average planar position deviation between target and treatment aperture in a clinical setting by driving the phantom with several lung tumor trajectories (recorded from fiducial tracking during radiotherapy delivery to the lung). DMLC tracking for lung stereotactic body radiation therapy without fiducial markers was successfully demonstrated. The inherent system latency is found to be δt = (230 ± 11) ms for a MV portal image acquisition frame rate of 12.86 Hz. The root mean square deviation between tumor and aperture position is smaller than 1 mm. We demonstrate the feasibility of real-time markerless DMLC

  7. Markerless EPID image guided dynamic multi-leaf collimator tracking for lung tumors.

    PubMed

    Rottmann, J; Keall, P; Berbeco, R

    2013-06-21

    Compensation of target motion during the delivery of radiotherapy has the potential to improve treatment accuracy, dose conformity and sparing of healthy tissue. We implement an online image guided therapy system based on soft tissue localization (STiL) of the target from electronic portal images and treatment aperture adaptation with a dynamic multi-leaf collimator (DMLC). The treatment aperture is moved synchronously and in real time with the tumor during the entire breathing cycle. The system is implemented and tested on a Varian TX clinical linear accelerator featuring an AS-1000 electronic portal imaging device (EPID) acquiring images at a frame rate of 12.86 Hz throughout the treatment. A position update cycle for the treatment aperture consists of four steps: in the first step at time t = t0 a frame is grabbed, in the second step the frame is processed with the STiL algorithm to get the tumor position at t = t0, in a third step the tumor position at t = ti + δt is predicted to overcome system latencies and in the fourth step, the DMLC control software calculates the required leaf motions and applies them at time t = ti + δt. The prediction model is trained before the start of the treatment with data representing the tumor motion. We analyze the system latency with a dynamic chest phantom (4D motion phantom, Washington University). We estimate the average planar position deviation between target and treatment aperture in a clinical setting by driving the phantom with several lung tumor trajectories (recorded from fiducial tracking during radiotherapy delivery to the lung). DMLC tracking for lung stereotactic body radiation therapy without fiducial markers was successfully demonstrated. The inherent system latency is found to be δt = (230 ± 11) ms for a MV portal image acquisition frame rate of 12.86 Hz. The root mean square deviation between tumor and aperture position is smaller than 1 mm. We demonstrate the feasibility of real-time markerless DMLC

  8. Electron intensity modulation for mixed-beam radiation therapy with an x-ray multi-leaf collimator

    NASA Astrophysics Data System (ADS)

    Weinberg, Rebecca

    The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1

  9. Dosimetric Comparison Between 3DCRT and IMRT Using Different Multileaf Collimators in the Treatment of Brain Tumors

    SciTech Connect

    Ding Meisong Newman, Francis M.S.; Chen Changhu; Stuhr, Kelly; Gaspar, Laurie E.

    2009-04-01

    We investigated the differences between 3-dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT), and the impact of collimator leaf-width on IMRT plans for the treatment of nonspherical brain tumors. Eight patients treated by 3DCRT with Novalis were selected. We developed 3 IMRT plans with different multileaf collimators (Novalis m3, Varian MLC-120, and Varian MLC-80) with the same treatment margins, number of beams, and gantry positions as in the 3DCRT treatment plans. Treatment planning utilized the BrainLAB treatment planning system. For each patient, the dose constraints and optimization parameters remained identical for all plans. The heterogeneity index, the percentage target coverage, critical structures, and normal tissue volumes receiving 50% of the prescription dose were calculated to compare the dosimetric difference. Equivalent uniform dose (EUD) and tumor control probability (TCP) were also introduced to evaluate the radiobiological effect for different plans. We found that IMRT significantly improved the target dose homogeneity compared to the 3DCRT. However, IMRT showed the same radiobiological effect as 3DCRT. For the brain tumors adjacent to (or partially overlapping with) critical structures, IMRT dramatically spared the volume of the critical structures to be irradiated. In IMRT plans, the smaller collimator leaf width could reduce the volume of critical structures irradiated to the 50% level for those partially overlapping with the brain tumors. For relatively large and spherical brain tumors, the smaller collimator leaf widths give no significant benefit.

  10. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    SciTech Connect

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Keall, Paul J.; Booth, Jeremy T.

    2014-06-15

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first

  11. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    PubMed Central

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Booth, Jeremy T.; Keall, Paul J.

    2014-01-01

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first

  12. Evaluation of dosimetric effect caused by slowing with multi-leaf collimator (MLC) leaves for volumetric modulated arc therapy (VMAT)

    PubMed Central

    Wang, Iris Z.; Kumaraswamy, Lalith K.; Podgorsak, Matthew B.

    2016-01-01

    Background This study is to report 1) the sensitivity of intensity modulated radiation therapy (IMRT) QA method for clinical volumetric modulated arc therapy (VMAT) plans with multi-leaf collimator (MLC) leaf errors that will not trigger MLC interlock during beam delivery; 2) the effect of non-beam-hold MLC leaf errors on the quality of VMAT plan dose delivery. Materials and methods. Eleven VMAT plans were selected and modified using an in-house developed software. For each control point of a VMAT arc, MLC leaves with the highest speed (1.87-1.95 cm/s) were set to move at the maximal allowable speed (2.3 cm/s), which resulted in a leaf position difference of less than 2 mm. The modified plans were considered as ‘standard’ plans, and the original plans were treated as the ‘slowing MLC’ plans for simulating ‘standard’ plans with leaves moving at relatively lower speed. The measurement of each ‘slowing MLC’ plan using MapCHECK®2 was compared with calculated planar dose of the ‘standard’ plan with respect to absolute dose Van Dyk distance-to-agreement (DTA) comparisons using 3%/3 mm and 2%/2 mm criteria. Results All ‘slowing MLC’ plans passed the 90% pass rate threshold using 3%/3 mm criteria while one brain and three anal VMAT cases were below 90% with 2%/2 mm criteria. For ten out of eleven cases, DVH comparisons between ‘standard’ and ‘slowing MLC’ plans demonstrated minimal dosimetric changes in targets and organs-at-risk. Conclusions For highly modulated VMAT plans, pass rate threshold (90%) using 3%/3mm criteria is not sensitive in detecting MLC leaf errors that will not trigger the MLC leaf interlock. However, the consequential effects of non-beam hold MLC errors on target and OAR doses are negligible, which supports the reliability of current patient-specific IMRT quality assurance (QA) method for VMAT plans. PMID:27069458

  13. Adapting a generic BEAMnrc model of the BrainLAB m3 micro-multileaf collimator to simulate a local collimation device.

    PubMed

    Kairn, T; Aland, T; Franich, R D; Johnston, P N; Kakakhel, M B; Kenny, J; Knight, R T; Langton, C M; Schlect, D; Taylor, M L; Trapp, J V

    2010-09-01

    This work is focussed on developing a commissioning procedure so that a Monte Carlo model, which uses BEAMnrc's standard VARMLC component module, can be adapted to match a specific BrainLAB m3 micro-multileaf collimator (microMLC). A set of measurements are recommended, for use as a reference against which the model can be tested and optimized. These include radiochromic film measurements of dose from small and offset fields, as well as measurements of microMLC transmission and interleaf leakage. Simulations and measurements to obtain microMLC scatter factors are shown to be insensitive to relevant model parameters and are therefore not recommended, unless the output of the linear accelerator model is in doubt. Ultimately, this note provides detailed instructions for those intending to optimize a VARMLC model to match the dose delivered by their local BrainLAB m3 microMLC device. PMID:20702922

  14. Dosimetric comparison of different multileaf collimator leaves in treatment planning of intensity-modulated radiotherapy for cervical cancer

    SciTech Connect

    Wang, Shichao; Ai, Ping; Xie, Li; Xu, Qingfeng; Bai, Sen; Lu, You; Li, Ping; Chen, Nianyong

    2013-01-01

    To study the effect of multileaf collimator (MLC) leaf widths (standard MLC [sMLC] width of 10 mm and micro-MLC [mMLC] width of 4 mm) on intensity-modulated radiotherapy (IMRT) for cervical cancer. Between January 2010 and August 2010, a retrospective analysis was conducted on 12 patients with cervical cancer. The treatment plans for all patients were generated with the same machine setup parameters and optimization methods in a treatment planning system (TPS) based on 2 commercial Elekta MLC devices. The dose distribution for the planning tumor volume (PTV), the dose sparing for organs at risk (OARs), the monitor units (MUs), and the number of IMRT segments were evaluated. For the delivery efficiency, the MUs were significantly higher in the sMLC-IMRT plan than in the mMLC-IMRT plan (802 ± 56.9 vs 702 ± 56.7; p < 0.05). The number of segments in the plans were 58.75 ± 1.8 and 59 ± 1.04 (p > 0.05). For the planning quality, the conformity index (CI) between the 2 paired IMRT plans with the mMLC and the sMLC did not differ significantly (average: 0.817 ± 0.024 vs 0.810 ± 0.028; p > 0.05). The differences of the homogeneity index (HI) between the 2 paired plans were statistically significant (average: 1.122 ± 0.010 vs 1.132 ± 0.014; p < 0.01). For OARs, the rectum, bladder, small intestine, and bony pelvis were evaluated in terms of V{sub 10}, V{sub 20}, V{sub 30}, and V{sub 40}, percentage of contoured OAR volumes receiving 10, 20, 30, and 40 Gy, respectively, and the mean dose (D{sub mean}) received. The IMRT plans with the mMLC protected the OARs better than the plans with the sMLC. There were significant differences (p < 0.05) in evaluated parameters between the 2 paired IMRT plans, except for V{sub 30} and V{sub 40} of the rectum and V{sub 10}, V{sub 20}, V{sub 40}, and D{sub mean} of the bladder. IMRT plans with the mMLC showed advantages over the plans with the sMLC in dose homogeneity for targets, dose sparing of OARs, and fewer MUs in cervical cancer.

  15. Method for selecting minimum width of leaf in multileaf adjustable collimator while inhibiting passage of particle beams of radiation through sawtooth joints between collimator leaves

    DOEpatents

    Ludewigt, Bernhard; Bercovitz, John; Nyman, Mark; Chu, William

    1995-01-01

    A method is disclosed for selecting the minimum width of individual leaves of a multileaf adjustable collimator having sawtooth top and bottom surfaces between adjacent leaves of a first stack of leaves and sawtooth end edges which are capable of intermeshing with the corresponding sawtooth end edges of leaves in a second stack of leaves of the collimator. The minimum width of individual leaves in the collimator, each having a sawtooth configuration in the surface facing another leaf in the same stack and a sawtooth end edge, is selected to comprise the sum of the penetration depth or range of the particular type of radiation comprising the beam in the particular material used for forming the leaf; plus the total path length across all the air gaps in the area of the joint at the edges between two leaves defined between lines drawn across the peaks of adjacent sawtooth edges; plus at least one half of the length or period of a single sawtooth. To accomplish this, in accordance with the method of the invention, the penetration depth of the particular type of radiation in the particular material to be used for the collimator leaf is first measured. Then the distance or gap between adjoining or abutting leaves is selected, and the ratio of this distance to the height of the sawteeth is selected. Finally the number of air gaps through which the radiation will pass between sawteeth is determined by selecting the number of sawteeth to be formed in the joint. The measurement and/or selection of these parameters will permit one to determine the minimum width of the leaf which is required to prevent passage of the beam through the sawtooth joint.

  16. SU-E-T-610: Comparison of Treatment Times Between the MLCi and Agility Multileaf Collimators

    SciTech Connect

    Ramsey, C; Bowling, J

    2014-06-01

    Purpose: The Agility is a new 160-leaf MLC developed by Elekta for use in their Infinity and Versa HD linacs. As compared to the MLCi, the Agility increased the maximum leaf speed from 2 cm/s to 3.5 cm/s, and the maximum primary collimator speed from 1.5 cm/s to 9.0 cm/s. The purpose of this study was to determine if the Agility MLC resulted in improved plan quality and/or shorter treatment times. Methods: An Elekta Infinity that was originally equipped with a 80 leaf MLCi was upgraded to an 160 leaf Agility. Treatment plan quality was evaluated using the Pinnacle planning system with SmartArc. Optimization was performed once for the MLCi and once for the Agility beam models using the same optimization parameters and the same number of iterations. Patient treatment times were measured for all IMRT, VMAT, and SBRT patients treated on the Infinity with the MLCi and Agility MLCs. Treatment times were extracted from the EMR and measured from when the patient first walked into the treatment room until exiting the treatment room. Results: 11,380 delivery times were measured for patients treated with the MLCi, and 1,827 measurements have been made for the Agility MLC. The average treatment times were 19.1 minutes for the MLCi and 20.8 minutes for the Agility. Using a t-test analysis, there was no difference between the two groups (t = 0.22). The dose differences between patients planned with the MLCi and the Agility MLC were minimal. For example, the dose difference for the PTV, GTV, and cord for a head and neck patient planned using Pinnacle were effectively equivalent. However, the dose to the parotid glands was slightly worse with the Agility MLC. Conclusion: There was no statistical difference in treatment time, or any significant dosimetric difference between the Agility MLC and the MLCi.

  17. Dosimetric and radiobiological comparison of CyberKnife M6™ InCise multileaf collimator over IRIS™ variable collimator in prostate stereotactic body radiation therapy

    PubMed Central

    Kathriarachchi, Vindu; Shang, Charles; Evans, Grant; Leventouri, Theodora; Kalantzis, Georgios

    2016-01-01

    The impetus behind our study was to establish a quantitative comparison between the IRIS collimator and the InCise multileaf collimator (MLC) (Accuray Inc. Synnyvale, CA) for prostate stereotactic body radiation therapy (SBRT). Treatment plans for ten prostate cancer patients were performed on MultiPlan™ 5.1.2 treatment planning system utilizing MLC and IRIS for 36.25 Gy in five fractions. To reduce the magnitude of variations between cases, the planning tumor volume (PTV) was defined and outlined for treating prostate gland only, assuming no seminal vesicle or ex-capsule involvement. Evaluation indices of each plan include PTV coverage, conformity index (CI), Paddick's new CI, homogeneity index, and gradient index. Organ at risk (OAR) dose sparing was analyzed by the bladder wall Dmax and V37Gy, rectum Dmax and V36Gy. The radiobiological response was evaluated by tumor control probability and normal tissue complication probability based on equivalent uniform dose. The dose delivery efficiency was evaluated on the basis of planned monitor units (MUs) and the reported treatment time per fraction. Statistical significance was tested using the Wilcoxon signed rank test. The studies indicated that CyberKnife M6™ IRIS and InCise™ MLC produce equivalent SBRT prostate treatment plans in terms of dosimetry, radiobiology, and OAR sparing, except that the MLC plans offer improvement of the dose fall-off gradient by 29% over IRIS. The main advantage of replacing the IRIS collimator with MLC is the improved efficiency, determined from the reduction of MUs by 42%, and a 36% faster delivery time. PMID:27217626

  18. Dosimetric and radiobiological comparison of CyberKnife M6™ InCise multileaf collimator over IRIS™ variable collimator in prostate stereotactic body radiation therapy.

    PubMed

    Kathriarachchi, Vindu; Shang, Charles; Evans, Grant; Leventouri, Theodora; Kalantzis, Georgios

    2016-01-01

    The impetus behind our study was to establish a quantitative comparison between the IRIS collimator and the InCise multileaf collimator (MLC) (Accuray Inc. Synnyvale, CA) for prostate stereotactic body radiation therapy (SBRT). Treatment plans for ten prostate cancer patients were performed on MultiPlan™ 5.1.2 treatment planning system utilizing MLC and IRIS for 36.25 Gy in five fractions. To reduce the magnitude of variations between cases, the planning tumor volume (PTV) was defined and outlined for treating prostate gland only, assuming no seminal vesicle or ex-capsule involvement. Evaluation indices of each plan include PTV coverage, conformity index (CI), Paddick's new CI, homogeneity index, and gradient index. Organ at risk (OAR) dose sparing was analyzed by the bladder wall Dmax and V37Gy, rectum Dmax and V36Gy. The radiobiological response was evaluated by tumor control probability and normal tissue complication probability based on equivalent uniform dose. The dose delivery efficiency was evaluated on the basis of planned monitor units (MUs) and the reported treatment time per fraction. Statistical significance was tested using the Wilcoxon signed rank test. The studies indicated that CyberKnife M6™ IRIS and InCise™ MLC produce equivalent SBRT prostate treatment plans in terms of dosimetry, radiobiology, and OAR sparing, except that the MLC plans offer improvement of the dose fall-off gradient by 29% over IRIS. The main advantage of replacing the IRIS collimator with MLC is the improved efficiency, determined from the reduction of MUs by 42%, and a 36% faster delivery time. PMID:27217626

  19. Peripheral dose measurements for 6 and 18 MV photon beams on a linear accelerator with multileaf collimator

    SciTech Connect

    Mazonakis, Michalis; Zacharopoulou, Fotini; Varveris, Haralambos; Damilakis, John

    2008-10-15

    Peripheral dose (PD) to critical structures outside treatment volume is of clinical importance. The aim of the current study was to estimate PD on a linear accelerator equipped with multileaf collimator (MLC). Dose measurements were carried out using an ionization chamber embedded in a water phantom for 6 and 18 MV photon beams. PD values were acquired for field sizes from 5x5 to 20x20 cm{sup 2} in increments of 5 cm at distances up to 24 cm from the field edge. Dose data were obtained at two collimator orientations where the measurement points are shielded by MLC and jaws. The variation of PD with the source to skin distance (SSD), depth, and lateral displacement of the measurement point was evaluated. To examine the dependence of PD upon the tissue thickness at the entrance point of the beam, scattered dose was measured using thermoluminescent dosemeters placed on three anthropomorphic phantoms simulating 5- and 10-year-old children and an average adult patient. PD from 6 MV photons varied from 0.13% to 6.75% of the central-axis maximum dose depending upon the collimator orientation, extent of irradiated area, and distance from the treatment field. The corresponding dose range from 18 MV x rays was 0.09% to 5.61%. The variation of PD with depth and with lateral displacements up to 80% of the field dimension was very small. The scattered dose from both photon beams increased with the increase of SSD or tissue thickness along beam axis. The presented dosimetric data set allows the estimation of scattered dose outside the primary beam.

  20. Real-time verification of multileaf collimator-driven radiotherapy using a novel optical attenuation-based fluence monitor

    SciTech Connect

    Goulet, Mathieu; Gingras, Luc; Beaulieu, Luc

    2011-03-15

    Purpose: Multileaf collimator (MLC)-driven conformal radiotherapy modalities [e.g., such as intensity-modulated radiotherapy (IMRT), intensity-modulated arc therapy, and stereotactic body radiotherapy] are more subject to delivery errors and dose calculation inaccuracies than standard modalities. Fluence monitoring during treatment delivery could reduce such errors by allowing an independent interface to quantify and assess measured difference between the delivered and planned treatment administration. We developed an optical attenuation-based detector to monitor fluence for the on-line quality control of radiotherapy delivery. The purpose of the current study was to develop the theoretical background of the invention and to evaluate the detector's performance both statistically and in clinical situations. Methods: We aligned 60 27-cm scintillating fibers coupled to a photodetector via clear optical fibers in the direction of motion of each of the 60 leaf pairs of a 120 leaves Millenium MLC on a Varian Clinac iX. We developed a theoretical model to predict the intensity of light collected on each side of the scintillating fibers when placed under radiation fields of varying sizes, intensities, and positions. The model showed that both the central position of the radiation field on the fiber (x{sub c}) and the integral fluence passing through the fiber ({Phi}{sub int}) could be assessed independently in a single measurement. We evaluated the performance of the prototype by (1) measuring the intrinsic variation of the measured values of x{sub c} and {Phi}{sub int}, (2) measuring the impact on the measured values of x{sub c} and {Phi}{sub int} of random leaf positioning errors introduced into IMRT fields, and (3) comparing the predicted values of x{sub c} and {Phi}{sub int} calculated with the treatment planning software to the measured values of x{sub c} and {Phi}{sub int} in order to assess the predictive effectiveness of the developed theoretical model. Results: We

  1. Multileaf Collimator Tracking Improves Dose Delivery for Prostate Cancer Radiation Therapy: Results of the First Clinical Trial

    SciTech Connect

    Colvill, Emma; Booth, Jeremy T.; O'Brien, Ricky T.; Eade, Thomas N.; Kneebone, Andrew B.; Poulsen, Per R.; Keall, Paul J.

    2015-08-01

    Purpose: To test the hypothesis that multileaf collimator (MLC) tracking improves the consistency between the planned and delivered dose compared with the dose without MLC tracking, in the setting of a prostate cancer volumetric modulated arc therapy trial. Methods and Materials: Multileaf collimator tracking was implemented for 15 patients in a prostate cancer radiation therapy trial; in total, 513 treatment fractions were delivered. During each treatment fraction, the prostate trajectory and treatment MLC positions were collected. These data were used as input for dose reconstruction (multiple isocenter shift method) to calculate the treated dose (with MLC tracking) and the dose that would have been delivered had MLC tracking not been applied (without MLC tracking). The percentage difference from planned for target and normal tissue dose-volume points were calculated. The hypothesis was tested for each dose-volume value via analysis of variance using the F test. Results: Of the 513 fractions delivered, 475 (93%) were suitable for analysis. The mean difference and standard deviation between the planned and treated MLC tracking doses and the planned and without-MLC tracking doses for all 475 fractions were, respectively, PTV D{sub 99%} −0.8% ± 1.1% versus −2.1% ± 2.7%; CTV D{sub 99%} −0.6% ± 0.8% versus −0.6% ± 1.1%; rectum V{sub 65%} 1.6% ± 7.9% versus −1.2% ± 18%; and bladder V{sub 65%} 0.5% ± 4.4% versus −0.0% ± 9.2% (P<.001 for all dose-volume results). Conclusion: This study shows that MLC tracking improves the consistency between the planned and delivered doses compared with the modeled doses without MLC tracking. The implications of this finding are potentially improved patient outcomes, as well as more reliable dose-volume data for radiobiological parameter determination.

  2. Comparison of stereotactic plans for brain tumors with two different multileaf collimating systems.

    PubMed

    Marrazzo, Livia; Zani, Margherita; Pallotta, Stefania; Greto, Daniela; Scoccianti, Silvia; Talamonti, Cinzia; Biti, Giampaolo; Bucciolini, Marta

    2014-01-01

    Linac-based stereotactic radiosurgery (SRS) has been widely used for treating small intracranial lesions. This technique allows conforming the dose distribution to the planning target volume (PTV), providing a steep dose gradient with the surrounding normal tissues. This is realized through dedicated collimation systems. The present study aims to compare SRS plans with two collimating systems: the beam modulator (BM) of the Elekta Synergy linac and the DirexGroup micromultileaf collimator (μMLC). Seventeen patients (25 PTVs) were planned both with BM and μMLC (mounted on an Elekta Precise linac) using the Odyssey (PerMedics) treatment planning system (TPS). Plans were compared in terms of dose-volume histograms (DVH), minimum dose to the PTV, conformity index (CI), and homogeneity index (HI), as defined by the TPS, and doses to relevant organs at risk (OAR). The mean difference between the μMLC and the BM plans in minimum PTV dose was 5.7% ± 4.2% in favor of the μMLC plans. No statistically significant difference was found between the distributions of the CI values for the two planning modalities (p = 0.54), while the difference between the distributions of the HI values was statistically significant (p = 0.018). For both BM and μMLC plans, no differences were observed in CI and HI, depending on lesion size and shape. The PTV homogeneity achieved by BM plans was 15.1% ± 6.8% compared to 10.4% ± 6.6% with μMLC. Higher maximum and mean doses to OAR were observed in the BM plans; however, for both plans, dose constraints were respected. The comparison between the two collimating systems showed no substantial differences in terms of PTV coverage or OAR sparing. The improvements obtained by using μMLC are relatively small, and both systems turned out to be adequate for SRS treatments. PMID:24423831

  3. Peripheral dose from a dual energy linear accelerator equipped with tertiary multileaf collimators and enhanced dynamic wedge.

    PubMed

    Varatharaj, C; Ravikumar, M; Sathiyan, S; Supe, S S

    2011-01-01

    Peripheral dose (PD) or the dose outside the geometrical boundaries of the radiation field is of clinical importance when anatomical structures with low dose tolerances might be involved(1). It is the aim of this study is to estimate the PD on linear accelerators on different wedge systems without multileaf collimator (MLC). Measurements were performed on a dual energy linear accelerator equipped with tertiary MLC and enhanced dynamic wedge (EDW). Measurements were made using an ionization chamber embedded in a Radiation Field Analyser (RFA-300) with the secondary collimator and MLC setting of 5x5, 10x10, 15x15, and 20x20 cm2, and with the MLC fully retracted. The effects of SSD on PD were measured at three SSDs of 90, 100, and 110 cm for the irradiation fields of 5x5, 10x10, 15x15, and 20x20 cm2 and the effects of the three different wedges (Upper wedge, Lower Wedge and Enhanced Dynamic Wedge) on PD were measured for 45° wedges with field size of 15x15 cm2. Data were taken from 3 cm to 24 cm away from the field edge. Results show that due to tertiary MLC, PD can be reduced by means of a factor of two to three at certain distance from the edge of the field compared with TG-36 data. In between the wedges, the PD was less for the EDW when compared with the upper and lower physical wedges. We conclude that the reduction in PD is significant in reducing or eliminating the need for external peripheral shielding to reduce the dose on affected critical organs. PMID:21177206

  4. SU-E-T-247: Multi-Leaf Collimator Model Adjustments Improve Small Field Dosimetry in VMAT Plans

    SciTech Connect

    Young, L; Yang, F

    2014-06-01

    Purpose: The Elekta beam modulator linac employs a 4-mm micro multileaf collimator (MLC) backed by a fixed jaw. Out-of-field dose discrepancies between treatment planning system (TPS) calculations and output water phantom measurements are caused by the 1-mm leaf gap required for all moving MLCs in a VMAT arc. In this study, MLC parameters are optimized to improve TPS out-of-field dose approximations. Methods: Static 2.4 cm square fields were created with a 1-mm leaf gap for MLCs that would normally park behind the jaw. Doses in the open field and leaf gap were measured with an A16 micro ion chamber and EDR2 film for comparison with corresponding point doses in the Pinnacle TPS. The MLC offset table and tip radius were adjusted until TPS point doses agreed with photon measurements. Improvements to the beam models were tested using static arcs consisting of square fields ranging from 1.6 to 14.0 cm, with 45° collimator rotation, and 1-mm leaf gap to replicate VMAT conditions. Gamma values for the 3-mm distance, 3% dose difference criteria were evaluated using standard QA procedures with a cylindrical detector array. Results: The best agreement in point doses within the leaf gap and open field was achieved by offsetting the default rounded leaf end table by 0.1 cm and adjusting the leaf tip radius to 13 cm. Improvements in TPS models for 6 and 10 MV photon beams were more significant for smaller field sizes 3.6 cm or less where the initial gamma factors progressively increased as field size decreased, i.e. for a 1.6cm field size, the Gamma increased from 56.1% to 98.8%. Conclusion: The MLC optimization techniques developed will achieve greater dosimetric accuracy in small field VMAT treatment plans for fixed jaw linear accelerators. Accurate predictions of dose to organs at risk may reduce adverse effects of radiotherapy.

  5. Rounded leaf end effect of multileaf collimator on penumbra width and radiation field offset: an analytical and numerical study

    PubMed Central

    Zhou, Dong; Zhang, Hui; Ye, Peiqing

    2015-01-01

    Background Penumbra characteristics play a significant role in dose delivery accuracy for radiation therapy. For treatment planning, penumbra width and radiation field offset strongly influence target dose conformity and organ at risk sparing. Methods In this study, we present an analytical and numerical approach for evaluation of the rounded leaf end effect on penumbra characteristics. Based on the rule of half-value layer, algorithms for leaf position calculation and radiation field offset correction were developed, which were advantageous particularly in dealing with large radius leaf end. Computer simulation was performed based on the Monte Carlo codes of EGSnrc/BEAMnrc, with groups of leaf end radii and source sizes. Data processing technique of curve fitting was employed for deriving penumbra width and radiation field offset. Results Results showed that penumbra width increased with source size. Penumbra width curves for large radius leaf end were U-shaped. This observation was probably related to the fact that radiation beams penetrated through the proximal and distal leaf sides. In contrast, source size had negligible impact on radiation field offset. Radiation field offsets were found to be constant both for analytical method and numerical simulation. However, the overall resulting values of radiation field offset obtained by analytical method were slightly smaller compared with Monte Carlo simulation. Conclusions The method we proposed could provide insight into the investigation of rounded leaf end effects on penumbra characteristics. Penumbra width and radiation field offset calibration should be carefully performed to commission multileaf collimator for intensity modulated radiotherapy. PMID:26401137

  6. Development, physical properties and clinical applicability of a mechanical Multileaf Collimator for the use in Cobalt-60 radiotherapy

    NASA Astrophysics Data System (ADS)

    Langhans, Marco; Echner, Gernot; Runz, Armin; Baumann, Martin; Xu, Mark; Ueltzhöffer, Stefan; Häring, Peter; Schlegel, Wolfgang

    2015-04-01

    According to the Directory of Radiotherapy Centres (DIRAC) there are 2348 Cobalt-60 (Co-60) teletherapy units worldwide, most of them in low and middle income countries, compared to 11046 clinical accelerators. To improve teletherapy with Co-60, a mechanical Multi-Leaf Collimator (MLC) was developed, working with pneumatic pressure and thus independent of electricity supply. Instead of tungsten, brass was used as leaf material to make the mechanical MLC more affordable. The physical properties and clinical applicability of this mechanical MLC are presented here. The leakage strongly depends on the fieldsize of the therapy unit due to scatter effects. The maximum transmission through the leaves measured 2.5 cm from the end-to-end gap, within a field size of 20 cm × 30 cm defined by jaws of the therapy unit at 80 cm SAD, amounts 4.2%, normalized to an open 10 cm × 10 cm field, created by the mechanical MLC. Within a precollimated field size of 12.5 cm × 12.5 cm, the end-to-end leakage is 6.5% normalized to an open 10 cm × 10 cm field as well. This characteristic is clinically acceptable considering the criteria for non-IMRT MLCs of the International Electrotechnical Commission (IEC 60601-2-1). The penumbra for a 10 cm × 10 cm field was measured to be 9.14 mm in plane and 8.38 mm cross plane. The clinical applicability of the designed mechanical MLC was affirmed by measurements relating to all relevant clinical properties such as penumbra, leakage, output factors and field widths. Hence this novel device presents an apt way forward to make radiotherapy with conformal fields possible in low-infrastructure environments, using gantry based Co-60 therapy units.

  7. Development, physical properties and clinical applicability of a mechanical Multileaf Collimator for the use in Cobalt-60 radiotherapy.

    PubMed

    Langhans, Marco; Echner, Gernot; Runz, Armin; Baumann, Martin; Xu, Mark; Ueltzhöffer, Stefan; Häring, Peter; Schlegel, Wolfgang

    2015-04-21

    According to the Directory of Radiotherapy Centres (DIRAC) there are 2348 Cobalt-60 (Co-60) teletherapy units worldwide, most of them in low and middle income countries, compared to 11046 clinical accelerators. To improve teletherapy with Co-60, a mechanical Multi-Leaf Collimator (MLC) was developed, working with pneumatic pressure and thus independent of electricity supply. Instead of tungsten, brass was used as leaf material to make the mechanical MLC more affordable. The physical properties and clinical applicability of this mechanical MLC are presented here. The leakage strongly depends on the fieldsize of the therapy unit due to scatter effects. The maximum transmission through the leaves measured 2.5 cm from the end-to-end gap, within a field size of 20 cm × 30 cm defined by jaws of the therapy unit at 80 cm SAD, amounts 4.2%, normalized to an open 10 cm × 10 cm field, created by the mechanical MLC. Within a precollimated field size of 12.5 cm × 12.5 cm, the end-to-end leakage is 6.5% normalized to an open 10 cm × 10 cm field as well. This characteristic is clinically acceptable considering the criteria for non-IMRT MLCs of the International Electrotechnical Commission (IEC 60601-2-1). The penumbra for a 10 cm × 10 cm field was measured to be 9.14 mm in plane and 8.38 mm cross plane. The clinical applicability of the designed mechanical MLC was affirmed by measurements relating to all relevant clinical properties such as penumbra, leakage, output factors and field widths. Hence this novel device presents an apt way forward to make radiotherapy with conformal fields possible in low-infrastructure environments, using gantry based Co-60 therapy units. PMID:25831017

  8. Determining the optimal dosimetric leaf gap setting for rounded leaf-end multileaf collimator systems by simple test fields.

    PubMed

    Yao, Weiguang; Farr, Jonathan B

    2015-01-01

    Individual QA for IMRT/VMAT plans is required by protocols. Sometimes plans cannot pass the institute's QA criteria. For the Eclipse treatment planning system (TPS) with rounded leaf-end multileaf collimator (MLC), one practical way to improve the agreement of planned and delivered doses is to tune the value of dosimetric leaf gap (DLG) in the TPS from the measured DLG. We propose that this step may be necessary due to the complexity of the MLC system, including dosimetry of small fields and the tongue-and-groove (T&G) effects, and report our use of test fields to obtain linac-specific optimal DLGs in TPSs. More than 20 original patient plans were reoptimized with the linac-specific optimal DLG value. We examined the distribution of gaps and T&G extensions in typical patient plans and the effect of using the optimal DLG on the distribution. The QA pass rate of patient plans using the optimal DLG was investigated. The dose-volume histograms (DVHs) of targets and organs at risk were checked. We tested three MLC systems (Varian millennium 120 MLC, high-definition 120 MLC, and Siemens 160 MLC) installed in four Varian linear accelerators (linacs) (TrueBEAM STx, Trilogy, Clinac 2300 iX, and Clinac 21 EX) and 1 Siemens linac (Artiste). With an optimal DLG, the individual QA for all those patient plans passed the institute's criteria (95% in DTA test or gamma test with 3%/3 mm/10%), even though most of these plans had failed to pass QA when using original DLGs optimized from typical patient plans or from the optimization process (automodeler) of Pinnacle TPS. Using either our optimal DLG or one optimized from typical patient plans or from the Pinnacle optimization process yielded similar DVHs. PMID:26218999

  9. SU-E-I-49: The Evaluation of Usability of Multileaf Collimator for Diagnostic Radiation in Cephalometric Exposure

    SciTech Connect

    Han, S; Kim, K; Jung, H; Kim, M; Ji, Y; Park, S; Choi, S

    2014-06-01

    Purpose: This study evaluated usability of Multileaf collimator (MLC) for diagnostic radiation in cephalometric exposure using optical stimulated luminance dosimeters (OSLDs) Methods: The MLC material was made alloy tool steel (SKD-11) and the density of it is 7.89g/m3 that is similar to it of steel (Fe, 7.85 g/m3) and the MLC was attached to general radiography unit (Rex-650R, Listem Inc, Korea) for cephalometric exposure. The OSLDs that used were nanoDotTM Dosimeter (Landauer Inc, Glenwood, USA) and we read out OSLDs with micro star system (Landauer Inc, Glenwood, USA). The Optical annealing system contained fluorescent lamps (Osram lumilux, 24 W, 280 ∼780 nm). To measure absorbed dose using OSLDs, was carried out dosimetric characteristics of OSLDs. Based on these, we evaluated dose reduction of critical organ (Eyes, Thyroids) with MLC in cephalometric exposure Results: The dosimetric characteristics were following that batch homogeneity was 1.21% and reproducibility was 0.96% of the coefficient of variation The linearity was that the correlation of between dose and count was fitted by linear function (dose,mGy = 0.00029 × Count, R2 =0.997). The range of angular dependence was from −3.6% to 3.7% variation when each degree was normalized by zero degree. The organ dose of Rt. eye, Lt eye, thyroids were 77.8 μGy, 337.0 μGy, 323.1μGy, respectively in open field and the dose reduction of organ dose was 10.6%(8.3μGy), 12.4 %(42 μGy), 87.1%(281.4μGy) with MLC Conclusion: We certified dose reduction of organ dose in cephalometric exposure. The dose reduction of Eye was 11% because of reduction of field size and it of thyroids was 87% by primary beam shielding.

  10. Suggesting a new design for multileaf collimator leaves based on Monte Carlo simulation of two commercial systems.

    PubMed

    Hariri, Sanaz; Shahriari, Majid

    2010-01-01

    Due to intensive use of multileaf collimators (MLCs) in clinics, finding an optimum design for the leaves becomes essential. There are several studies which deal with comparison of MLC systems, but there is no article with a focus on offering an optimum design using accurate methods like Monte Carlo. In this study, we describe some characteristics of MLC systems including the leaf tip transmission, beam hardening, leakage radiation and penumbra width for Varian and Elekta 80-leaf MLCs using MCNP4C code. The complex geometry of leaves in these two common MLC systems was simulated. It was assumed that all of the MLC systems were mounted on a Varian accelerator and with a similar thickness as Varian's and the same distance from the source. Considering the obtained results from Varian and Elekta leaf designs, an optimum design was suggested combining the advantages of three common MLC systems and the simulation results of this proposed one were compared with the Varian and the Elekta. The leakage from suggested design is 29.7% and 31.5% of the Varian and Elekta MLCs. In addition, other calculated parameters of the proposed MLC leaf design were better than those two commercial ones. Although it shows a wider penumbra in comparison with Varian and Elekta MLCs, taking into account the curved motion path of the leaves, providing a double focusing design will solve the problem. The suggested leaf design is a combination of advantages from three common vendors (Varian, Elekta and Siemens) which can show better results than each one. Using the results of this theoretical study may bring about superior practical outcomes. PMID:20717079

  11. Dynamic Multileaf Collimator Tracking of Respiratory Target Motion Based on a Single Kilovoltage Imager During Arc Radiotherapy

    SciTech Connect

    Poulsen, Per Rugaard; Cho, Byungchul; Ruan, Dan; Sawant, Amit; Keall, Paul J.

    2010-06-01

    Purpose: To demonstrate and characterize dynamic multileaf collimator (DMLC) tracking of respiratory moving targets that are spatially localized with a single kV X-ray imager during arc radiotherapy. Methods and Materials: During delivery of an arc field (358 deg. gantry rotation, 72-sec duration, circular field shape), the three-dimensional (3D) position of a fiducial marker in a phantom was estimated in real time from fluoroscopic kV X-ray images acquired orthogonally to the treatment beam axis. A prediction algorithm was applied to account for system latency (570 ms) before the estimated marker position was used for DMLC aperture adaptation. Experiments were performed with 12 patient-measured tumor trajectories that were selected from 160 trajectories (46 patients) and reproduced by a programmable phantom. Offline, the 3D deviation of the estimated phantom position from the actual position was quantified. The two-dimensional (2D) beam-target deviation was quantified as the positional difference between the MLC aperture center and the marker in portal images acquired continuously during experiments. Simulations of imaging and treatment delivery extended the study to all 160 tumor trajectories and to arc treatments of 3-min and 5-min duration. Results: In the experiments, the mean root-mean-square deviation was 1.8 mm for the 3D target position and 1.5 mm for the 2D aperture position. Simulations agreed with this to within 0.1 mm and resulted in mean 2D root-mean-square beam-target deviations of 1.1 mm for all 160 trajectories for all treatment durations. The deviations were mainly caused by system latency (570 ms). Conclusions: Single-imager DMLC tracking of respiratory target motion during arc radiotherapy was implemented, providing less than 2-mm geometric uncertainty for most trajectories.

  12. First Demonstration of Combined kV/MV Image-Guided Real-Time Dynamic Multileaf-Collimator Target Tracking

    SciTech Connect

    Cho, Byungchul Poulsen, Per R.; Sloutsky, Alex; Sawant, Amit; Keall, Paul J.

    2009-07-01

    Purpose: For intrafraction motion management, a real-time tracking system was developed by combining fiducial marker-based tracking via simultaneous kilovoltage (kV) and megavoltage (MV) imaging and a dynamic multileaf collimator (DMLC) beam-tracking system. Methods and Materials: The integrated tracking system employed a Varian Trilogy system equipped with kV/MV imaging systems and a Millennium 120-leaf MLC. A gold marker in elliptical motion (2-cm superior-inferior, 1-cm left-right, 10 cycles/min) was simultaneously imaged by the kV and MV imagers at 6.7 Hz and segmented in real time. With these two-dimensional projections, the tracking software triangulated the three-dimensional marker position and repositioned the MLC leaves to follow the motion. Phantom studies were performed to evaluate time delay from image acquisition to MLC adjustment, tracking error, and dosimetric impact of target motion with and without tracking. Results: The time delay of the integrated tracking system was {approx}450 ms. The tracking error using a prediction algorithm was 0.9 {+-} 0.5 mm for the elliptical motion. The dose distribution with tracking showed better target coverage and less dose to surrounding region over no tracking. The failure rate of the gamma test (3%/3-mm criteria) was 22.5% without tracking but was reduced to 0.2% with tracking. Conclusion: For the first time, a complete tracking system combining kV/MV image-guided target tracking and DMLC beam tracking was demonstrated. The average geometric error was less than 1 mm, and the dosimetric error was negligible. This system is a promising method for intrafraction motion management.

  13. Real-Time Target Position Estimation Using Stereoscopic Kilovoltage/Megavoltage Imaging and External Respiratory Monitoring for Dynamic Multileaf Collimator Tracking

    SciTech Connect

    Cho, Byungchul; Poulsen, Per Rugaard; Sawant, Amit; Ruan, Dan; Keall, Paul J.

    2011-01-01

    Purpose: To develop a real-time target position estimation method using stereoscopic kilovoltage (kV)/megavoltage (MV) imaging and external respiratory monitoring, and to investigate the performance of a dynamic multileaf collimator tracking system using this method. Methods and Materials: The real-time three-dimensional internal target position estimation was established by creating a time-varying correlation model that connected the external respiratory signals with the internal target motion measured intermittently using kV/MV imaging. The method was integrated into a dynamic multileaf collimator tracking system. Tracking experiments were performed for 10 thoracic/abdominal traces. A three-dimensional motion platform carrying a gold marker and a separate one-dimensional motion platform were used to reproduce the target and external respiratory motion, respectively. The target positions were detected by kV (1 Hz) and MV (5.2 Hz) imaging, and external respiratory motion was captured by an optical system (30 Hz). The beam-target alignment error was quantified as the positional difference between the target and circular beam center on the MV images acquired during tracking. The correlation model error was quantified by comparing a model estimate and measured target positions. Results: The root-mean-square errors in the beam-target alignment that had ranged from 3.1 to 7.6 mm without tracking were reduced to <1.5 mm with tracking, except during the model building period (6 s). The root-mean-square error in the correlation model was submillimeters in all directions. Conclusion: A novel real-time target position estimation method was developed and integrated into a dynamic multileaf collimator tracking system and demonstrated an average submillimeter geometric accuracy after initializing the internal/external correlation model. The method used hardware tools available on linear accelerators and therefore shows promise for clinical implementation.

  14. SU-E-T-424: Dosimetric Verification of Modulated Electron Radiation Therapy Delivered Using An Electron Specific Multileaf Collimator for Treatment of Scalp Cases

    SciTech Connect

    Eldib, A; Jin, L; Martin, J; Li, J; Chibani, O; Galloway, T; Ma, C; Mora, G

    2014-06-01

    Purpose: Modulated electron radiotherapy (MERT) has the potential to achieve better treatment outcome for shallow tumors such as those of breast and scalp. In a separate study with scalp lesions, MERT was compared to volumetric modulated arc therapy. Our results showed a reduction in the dose reaching the brain with MERT. However dose calculation accuracy and delivery efficiency challenges remain. Thus in the current study we proceed to add more cases to demonstrate MERT beneficial outcome and its delivery accuracy using an electron specific multileaf collimator (eMLC). Methods: We have used the MCBEAM code for treatment head simulation and for generating phase space files to be used as radiation source input for our Monte Carlo based treatment planning system (MC TPS). MCPLAN code is used for calculation of patient specific dose deposition coefficient and for final MERT plan dose calculation. An in-house developed optimization code is used for the optimization process. MERT plans were generated for real patients and head and neck phantom. Film was used for dosimetric verification. The film was cut following the contour of the curved phantom surface and then sealed with black masking tape. In the measurement, the sealed film packet was sandwiched between two adjacent slabs of the head and neck phantom. The measured 2D dose distribution was then compared with calculations. Results: The eMLC allows effective treatment of scalps with multi-lesions spreading around the patient head, which was usually difficult to plan or very time consuming with conventional applicators. MERT continues to show better reduction in the brain dose. The dosimetric measurements showed slight discrepancy, which was attributed to the film setup. Conclusion: MERT can improve treatment plan quality for patients with scalp cancers. Our in-house MC TPS is capable of performing treatment planning and accurate dose calculation for MERT using the eMLC.

  15. Matching extended-SSD electron beams to multileaf collimated photon beams in the treatment of head and neck cancer

    SciTech Connect

    Steel, Jared; Stewart, Allan; Satory, Philip

    2009-09-15

    Purpose: Matching the penumbra of a 6 MeV electron beam to the penumbra of a 6 MV photon beam is a dose optimization challenge, especially when the electron beam is applied from an extended source-to-surface distance (SSD), as in the case of some head and neck treatments. Traditionally low melting point alloy blocks have been used to define the photon beam shielding over the spinal cord region. However, these are inherently time consuming to construct and employ in the clinical situation. Multileaf collimators (MLCs) provide a fast and reproducible shielding option but generate geometrically nonconformal approximations to the desired beam edge definition. The effects of substituting Cerrobend for the MLC shielding mode in the context of beam matching with extended-SSD electron beams are the subject of this investigation. Methods: Relative dose beam data from a Varian EX 2100 linear accelerator were acquired in a water tank under the 6 MeV electron beam at both standard and extended-SSD and under the 6 MV photon beam defined by Cerrobend and a number of MLC stepping regimes. The effect of increasing the electron beam SSD on the beam penumbra was assessed. MLC stepping was also assessed in terms of the effects on both the mean photon beam penumbra and the intraleaf dose-profile nonuniformity relative to the MLC midleaf. Computational techniques were used to combine the beam data so as to simulate composite relative dosimetry in the water tank, allowing fine control of beam abutment gap variation. Idealized volumetric dosimetry was generated based on the percentage depth-dose data for the beam modes and the abutment geometries involved. Comparison was made between each composite dosimetry dataset and the relevant ideal dosimetry dataset by way of subtraction. Results: Weighted dose-difference volume histograms (DDVHs) were produced, and these, in turn, summed to provide an overall dosimetry score for each abutment and shielding type/angle combination. Increasing the

  16. Neutron dosimetry in organs of an adult human phantom using linacs with multileaf collimator in radiotherapy treatments

    SciTech Connect

    Martinez-Ovalle, S. A.; Barquero, R.; Gomez-Ros, J. M.; Lallena, A. M.

    2012-05-15

    Purpose: To calculate absorbed doses due to neutrons in 87 organs/tissues for anthropomorphic phantoms, irradiated in position supine (head first into the gantry) with orientations anteroposterior (AP) and right-left (RLAT) with a 18 MV accelerator. Conversion factors from monitor units to {mu}Gy per neutron in organs, equivalent doses in organs/tissues, and effective doses, which permit to quantify stochastic risks, are estimated. Methods: MAX06 and FAX06 phantoms were modeled with MCNPX and irradiated with a 18 MV Varian Clinac 2100C/D accelerator whose geometry included a multileaf collimator. Two actual fields of a pelvic treatment were simulated using electron-photon-neutron coupled transport. Absorbed doses due to neutrons were estimated from kerma. Equivalent doses were estimated using the radiation weighting factor corresponding to an average incident neutron energy 0.47 MeV. Statistical uncertainties associated to absorbed doses, as calculated by MCNPX, were also obtained. Results: Largest doses were absorbed in shallowest (with respect to the neutron pathway) organs. In {mu}GyMU{sup -1}, values of 2.66 (for penis) and 2.33 (for testes) were found in MAX06, and 1.68 (for breasts), 1.05 (for lenses of eyes), and 0.94 (for sublingual salivary glands) in FAX06, in AP orientation. In RLAT, the largest doses were found for bone tissues (leg) just at the entrance of the beam in the body (right side in our case). Values, in {mu}GyMU{sup -1}, of 1.09 in upper leg bone right spongiosa, for MAX06, and 0.63 in mandible spongiosa, for FAX06, were found. Except for gonads, liver, and stomach wall, equivalent doses found for FAX06 were, in both orientations, higher than for MAX06. Equivalent doses in AP are higher than in RLAT for all organs/tissues other than brain and liver. Effective doses of 12.6 and 4.1 {mu}SvMU{sup -1} were found for AP and RLAT, respectively. The organs/tissues with larger relative contributions to the effective dose were testes and breasts, in

  17. Dosimetric effects of multileaf collimator leaf width on intensity-modulated radiotherapy for head and neck cancer

    SciTech Connect

    Hong, Chae-Seon; Ju, Sang Gyu Kim, Minkyu; Kim, Jin Man; Han, Youngyih; Ahn, Yong Chan; Choi, Doo Ho; Park, Hee Chul; Kim, Jung-in; Nam, Heerim; Suh, Tae-Suk

    2014-02-15

    Purpose: The authors evaluated the effects of multileaf collimator (MLC) leaf width (2.5 vs. 5 mm) on dosimetric parameters and delivery efficiencies of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) for head and neck (H and N) cancers. Methods: The authors employed two types of mock phantoms: large-sized head and neck (LH and N) and small-sized C-shape (C-shape) phantoms. Step-and-shoot IMRT (S and S-IMRT) and VMAT treatment plans were designed with 2.5- and 5.0-mm MLC for both C-shape and LH and N phantoms. Their dosimetric characteristics were compared in terms of the conformity index (CI) and homogeneity index (HI) for the planning target volume (PTV), the dose to organs at risk (OARs), and the dose-spillage volume. To analyze the effects of the field and arc numbers, 9-field IMRT (9F-IMRT) and 13-field IMRT (13F-IMRT) plans were established for S and S-IMRT. For VMAT, single arc (VMAT{sub 1}) and double arc (VMAT{sub 2}) plans were established. For all plans, dosimetric verification was performed using the phantom to examine the relationship between dosimetric errors and the two leaf widths. Delivery efficiency of the two MLCs was compared in terms of beam delivery times, monitor units (MUs) per fraction, and the number of segments for each plan. Results: 2.5-mm MLC showed better dosimetric characteristics in S and S-IMRT and VMAT for C-shape, providing better CI for PTV and lower spinal cord dose and high and intermediate dose-spillage volume as compared with the 5-mm MLC (p < 0.05). However, no significant dosimetric benefits were provided by the 2.5-mm MLC for LH and N (p > 0.05). Further, beam delivery efficiency was not observed to be significantly associated with leaf width for either C-shape or LH and N. However, MUs per fraction were significantly reduced for the 2.5-mm MLC for the LH and N. In dosimetric error analysis, absolute dose evaluations had errors of less than 3%, while the Gamma passing rate was

  18. Feasibility of using Geant4 Monte Carlo simulation for IMRT dose calculations for the Novalis Tx with a HD-120 multi-leaf collimator

    NASA Astrophysics Data System (ADS)

    Jung, Hyunuk; Shin, Jungsuk; Chung, Kwangzoo; Han, Youngyih; Kim, Jinsung; Choi, Doo Ho

    2015-05-01

    The aim of this study was to develop an independent dose verification system by using a Monte Carlo (MC) calculation method for intensity modulated radiation therapy (IMRT) conducted by using a Varian Novalis Tx (Varian Medical Systems, Palo Alto, CA, USA) equipped with a highdefinition multi-leaf collimator (HD-120 MLC). The Geant4 framework was used to implement a dose calculation system that accurately predicted the delivered dose. For this purpose, the Novalis Tx Linac head was modeled according to the specifications acquired from the manufacturer. Subsequently, MC simulations were performed by varying the mean energy, energy spread, and electron spot radius to determine optimum values of irradiation with 6-MV X-ray beams by using the Novalis Tx system. Computed percentage depth dose curves (PDDs) and lateral profiles were compared to the measurements obtained by using an ionization chamber (CC13). To validate the IMRT simulation by using the MC model we developed, we calculated a simple IMRT field and compared the result with the EBT3 film measurements in a water-equivalent solid phantom. Clinical cases, such as prostate cancer treatment plans, were then selected, and MC simulations were performed. The accuracy of the simulation was assessed against the EBT3 film measurements by using a gamma-index criterion. The optimal MC model parameters to specify the beam characteristics were a 6.8-MeV mean energy, a 0.5-MeV energy spread, and a 3-mm electron radius. The accuracy of these parameters was determined by comparison of MC simulations with measurements. The PDDs and the lateral profiles of the MC simulation deviated from the measurements by 1% and 2%, respectively, on average. The computed simple MLC fields agreed with the EBT3 measurements with a 95% passing rate with 3%/3-mm gamma-index criterion. Additionally, in applying our model to clinical IMRT plans, we found that the MC calculations and the EBT3 measurements agreed well with a passing rate of greater

  19. Toward Submillimeter Accuracy in the Management of Intrafraction Motion: The Integration of Real-Time Internal Position Monitoring and Multileaf Collimator Target Tracking

    SciTech Connect

    Sawant, Amit Smith, Ryan L.; Venkat, Raghu B.; Santanam, Lakshmi; Cho, Byungchul; Poulsen, Per; Cattell, Herbert; Newell, Laurence J.; Parikh, Parag; Keall, Paul J.

    2009-06-01

    Purpose: We report on an integrated system for real-time adaptive radiation delivery to moving tumors. The system combines two promising technologies-three-dimensional internal position monitoring using implanted electromagnetically excitable transponders and corresponding real-time beam adaptation using a dynamic multileaf collimator (DMLC). Methods and Materials: In a multi-institutional academic and industrial collaboration, a research version of the Calypso position monitoring system was integrated with a DMLC-based four-dimensional intensity-modulated radiotherapy delivery system using a Varian 120-leaf multileaf collimator (MLC). Two important determinants of system performance-latency (i.e., elapsed time between target motion and MLC response) and geometric accuracy-were investigated. Latency was quantified by acquiring continuous megavoltage X-ray images of a moving phantom (with embedded transponders) that was tracked in real time by a circular MLC field. The latency value was input into a motion prediction algorithm within the DMLC tracking system. Geometric accuracy was calculated as the root-mean-square positional error between the target and the centroid of the MLC aperture for patient-derived three-dimensional motion trajectories comprising two lung tumor traces and one prostate trace. Results: System latency was determined to be approximately 220 milliseconds. Tracking accuracy was observed to be sub-2 mm for the respiratory motion traces and sub-1 mm for prostate motion. Conclusion: We have developed and characterized a research version of a novel four-dimensional delivery system that integrates nonionizing radiation-based internal position monitoring and accurate real-time DMLC-based beam adaptation. This system represents a significant step toward achieving the eventual goal of geometrically ideal dose delivery to moving tumors.

  20. Investigating the clinical advantages of a robotic linac equipped with a multileaf collimator in the treatment of brain and prostate cancer patients.

    PubMed

    McGuinness, Christopher M; Gottschalk, Alexander R; Lessard, Etienne; Nakamura, Jean L; Pinnaduwage, Dilini; Pouliot, Jean; Sims, Colin; Descovich, Martina

    2015-01-01

    The purpose of this study was to evaluate the performance of a commercially avail-able CyberKnife system with a multileaf collimator (CK-MLC) for stereotactic body radiotherapy (SBRT) and standard fractionated intensity-modulated radiotherapy (IMRT) applications. Ten prostate and ten intracranial cases were planned for the CK-MLC. Half of these cases were compared with clinically approved SBRT plans generated for the CyberKnife with circular collimators, and the other half were compared with clinically approved standard fractionated IMRT plans generated for conventional linacs. The plans were compared on target coverage, conformity, homogeneity, dose to organs at risk (OAR), low dose to the surrounding tissue, total monitor units (MU), and treatment time. CK-MLC plans generated for the SBRT cases achieved more homogeneous dose to the target than the CK plans with the circular collimators, for equivalent coverage, conformity, and dose to OARs. Total monitor units were reduced by 40% to 70% and treatment time was reduced by half. The CK-MLC plans generated for the standard fractionated cases achieved prescription isodose lines between 86% and 93%, which was 2%-3% below the plans generated for conventional linacs. Compared to standard IMRT plans, the total MU were up to three times greater for the prostate (whole pelvis) plans and up to 1.4 times greater for the intracranial plans. Average treatment time was 25min for the whole pelvis plans and 19 min for the intracranial cases. The CK-MLC system provides significant improvements in treatment time and target homogeneity compared to the CK system with circular collimators, while main-taining high conformity and dose sparing to critical organs. Standard fractionated plans for large target volumes (> 100 cm3) were generated that achieved high prescription isodose levels. The CK-MLC system provides more efficient SRS and SBRT treatments and, in select clinical cases, might be a potential alternative for standard

  1. SU-E-T-515: Field-In-Field Compensation Technique Using Multi-Leaf Collimator to Deliver Total Body Irradiation (TBI) Dose

    SciTech Connect

    Lakeman, T; Wang, IZ

    2014-06-01

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been used conventionally to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern field-in-field (FIF) technique with the multi-leaf collimator (MLC) to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the FIF technique to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Treatment fields include one pair of opposed open large fields (collimator=45°) with a specific weighting and a succession of smaller fields (collimator=90°) each with their own weighting. The smaller fields are shaped by moving MLC to block the sections of the patient which have already received close to 100% of the prescribed dose. The weighting factors for each of these fields were calculated using the attenuation coefficient of the initial lead compensators and the separation of the patient in different positions in the axial plane. Results: Dose-volume histograms (DVH) were calculated for evaluating the FIF compensation technique. The maximum body doses calculated from the DVH were reduced from the non-compensated 179.3% to 148.2% in the FIF plans, indicating a more uniform dose with the FIF compensation. All calculated monitor units were well within clinically acceptable limits and exceeded those of the original lead compensation plan by less than 50 MU (only ~1.1% increase). Conclusion: MLC FIF technique for TBI will not significantly increase the beam on time while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.

  2. Megavoltage Image-Based Dynamic Multileaf Collimator Tracking of a NiTi Stent in Porcine Lungs on a Linear Accelerator

    SciTech Connect

    Poulsen, Per R.; Carl, Jesper; Nielsen, Jane; Nielsen, Martin S.; Thomsen, Jakob B.; Jensen, Henrik K.; Kjaergaard, Benedict; Zepernick, Peter R.; Worm, Esben; Fledelius, Walther; Cho, Byungchul; Sawant, Amit; Ruan, Dan; Keall, Paul J.

    2012-02-01

    Purpose: To investigate the accuracy and potential limitations of MV image-based dynamic multileaf collimator (DMLC) tracking in a porcine model on a linear accelerator. Methods and Materials: A thermo-expandable NiTi stent designed for kilovoltage (kV) X-ray visualization of lung lesions was inserted into the bronchia of three anaesthetized Goettingen minipigs. A four-dimensional computed tomography scan was used for planning a five-field conformal treatment with circular multileaf collimator (MLC) apertures. A 22.5 Gy single fraction treatment was delivered to the pigs. The peak-to-peak stent motion was 3 to 8 mm, with breathing periods of 1.2 to 4 s. Before treatment, X-ray images were used for image-guided setup based on the stent. During treatment delivery, continuous megavoltage (MV) portal images were acquired at 7.5 Hz. The stent was segmented in the images and used for continuous adaptation of the MLC aperture. Offline, the tracking error in beam's eye view of the treatment beam was calculated for each MV image as the difference between the MLC aperture center and the segmented stent position. The standard deviations of the systematic error {Sigma} and the random error {sigma} were determined and compared with the would-be errors for a nontracking treatment with pretreatment image-guided setup. Results: Reliable stent segmentation was obtained for 11 of 15 fields. Segmentation failures occurred when image contrast was dominated by overlapping anatomical structures (ribs, diaphragm) rather than by the stent, which was designed for kV rather than MV X-ray visibility. For the 11 fields with reliable segmentation, {Sigma} was 0.5 mm/0.4 mm in the two imager directions, whereas {sigma} was 0.5 mm/1.1 mm. Without tracking, {Sigma} and {sigma} would have been 1.7 mm/1.4 mm and 0.8 mm/1.4 mm, respectively. Conclusion: For the first time, in vivo DMLC tracking has been demonstrated on a linear accelerator showing the potential for improved targeting accuracy. The

  3. SU-E-T-348: Verification MU Calculation for Conformal Radiotherapy with Multileaf Collimator Using Report AAPM TG 114

    SciTech Connect

    Adrada, A; Tello, Z; Medina, L; Garrigo, E; Venencia, D

    2014-06-01

    Purpose: The purpose of this work was to develop and validate an open source independent MU dose calculation software for 3D conformal radiotherapy with multileaf high and low resolution according to the report of AAPM TG 11 Methods: Treatment plans were done using Iplan v4.5 BrainLAB TPS. A 6MV photon beam produced by Primus and Novalis linear accelerators equipped with an Optifocus MLC and HDMLC, respectively. TPS dose calculation algorithms were pencil beam and Monte Carlo. 1082 treatments plans were selected for the study. The algorithm was written in free and open source CodeBlocks C++ platform. Treatment plans were imported by the software using RTP format. Equivalent size field is obtained from the positions of the leaves; the effective depth of calculation can be introduced by TPS's dosimetry report or automatically calculated starting from SSD. The inverse square law is calculated by the 3D coordinates of the isocenter and normalization point of the treatment plan. The dosimetric parameters TPR, Sc, Sp and WF are linearly interpolated. Results: 1082 plans of both machines were analyzed. The average uncertainty between the TPS and the independent calculation was −0.43% ± 2.42% [−7.90%, 7.50%]. Specifically for the Primus the variation obtained was −0.85% ± 2.53% and for the Novalis 0.00% ± 2.23%. Data show that 94.8% of the cases the uncertainty was less than or equal to 5%, while 98.9% is less than or equal to 6%. Conclusion: The developed software is appropriate for use in calculation of UM. This software can be obtained upon request.

  4. Dosimetric advantage and clinical implication of a micro-multileaf collimator in the treatment of prostate with intensity-modulated radiotherapy

    SciTech Connect

    Wang Lu . E-mail: L_wang@fccc.edu; Hoban, Peter; Paskalev, Kamen; Yang Jie; Li Jinsheng; Chen Lili; Xiong Weijun; Ma, Charlie

    2005-06-30

    This paper investigates the dosimetric benefits of a micro-multileaf (4-mm leaf width) collimator (mMLC) for intensity-modulated radiation therapy (IMRT) treatment planning of the prostate cancer and its potential application for dose escalation and hypofractionation. We compared treatment plans for IMRT delivery using 2 different multileaf collimator (MLC) leaf widths (4 vs. 10 mm) for 10 patients with prostate cancer. Treatment planning was performed on the XknifeRT2 treatment planning system. All beams and optimization parameters were identical for the mMLC and MLC plans. All of the plans were normalized to ensure that 95% of the planning target volume (PTV) received 100% of the prescribed dose (74 Gy). The differences in dose distribution between the 2 groups of plans using the mMLC and the MLC were assessed by dose-volume histogram (DVH) analysis of the target and critical organs. Significant reductions in the volume of rectum receiving medium to higher doses were achieved using the mMLC. The average decrease in the volume of the rectum receiving 40, 50, and 60 Gy using the mMLC plans was 40.2%, 33.4%, and 17.7%, respectively, with p-values less than 0.0001 for V{sub 40} and V{sub 50} and 0.012 for V{sub 60}. The mean dose reductions for D{sub 17} and D{sub 35} for the rectum were 20.0% (p < 0.0001) and 18.3% (p < 0.0002), respectively, when compared to those with the MLC plans. There were consistent reductions in all dose indices studied for the bladder. The target dose inhomogeneity was improved in the mMLC plans by an average of 32%. In the high-dose range, there was no significant difference in the dose deposited in the 'hottest' 1 cc of the rectum between the 2 MLC plans for all cases (p > 0.78). Because of the reduction of rectal volume receiving medium to higher doses, dose to the prostate target can be escalated by about 20 Gy to over 74 Gy, while keeping the rectal dose (either denoted by D{sub 17} or D{sub 35}) the same as those with the use of the

  5. Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator-based four-dimensional radiation delivery

    SciTech Connect

    Vedam, S.; Docef, A.; Fix, M.; Murphy, M.; Keall, P.

    2005-06-15

    The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effects of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the

  6. Intensity modulated radiation therapy with irregular multileaf collimated field: A dosimetric study on the penumbra region with different leaf stepping patterns

    SciTech Connect

    Chow, James C. L.; Grigorov, Grigor N.; Jiang Runqing

    2006-12-15

    Using a Varian 21 EX linear accelerator with a multileaf collimator (MLC) of 120 leaves, the penumbra regions of beam profiles within an irregular multileaf collimated fields were studied. MLC fields with different leaf stepping angles from 21.8 deg. to 68.2 deg. were used. Beam profiles in different directions: (1) along the cross-line and in-line axis (2) along the leaf stepping edges of the field, and (3) parallel to the stepping edges but in the middle of the field, were measured and calculated using Kodak XV radiographic film and Pinnacle3 treatment planning system version 7.4f. These beam profiles were measured and calculated at source to axis distance=100 cm with 5 cm of solid water slab on top. On the one hand, for both cross-line and in-line beam profiles, the penumbra widths of 20%-80% did not vary with the leaf stepping angles and were about 0.4 cm. On the other hand, the penumbra widths of 10%-90% of the above two profiles varied with the stepping angles and had maximum widths of about 1.9 cm (cross-line) and 1.65 cm (in-line) for stepping angles of 38.7 deg. and 51.3 deg., respectively. For profiles crossing the 'rippled' stepping edges of the field, the penumbra widths (10%-90%) at the regions between two opposite leaves (i.e., profile end at the Y1/Y2 jaw position) decreased with the stepping angles. At the penumbra regions between two leaf edges with the tongue-and-groove structure of the same bank (i.e., profile end at the X1/X2 jaw position), the penumbra widths increased with the stepping angles. When the penumbra widths were measured between two opposite leaf edges and at corners between two leaves, the widths first decreased with the stepping angles and then increased beyond the minimum width point at stepping angle of 45 deg. The penumbra width (10%-90%) measured at the leaf edge was larger than that at the corner. For the beam profiles calculated using Pinnacle3, it is found that the results agreed well with the measurements along the cross

  7. The effect of multileaf collimator leaf width on the radiosurgery planning for spine lesion treatment in terms of the modulated techniques and target complexity

    PubMed Central

    2014-01-01

    Purpose We aim to evaluate the effects of multileaf collimator (MLC) leaf width (5 mm vs. 2.5 mm) on the radiosurgery planning for the treatment of spine lesions according to the modulated techniques (intensity-modulated radiotherapy [IMRT] vs. volumetric-modulated arc therapy [VMAT]) and the complexity of the target shape. Methods For this study, artificial spinal lesions were contoured and used for treatment plans. Three spinal levels (C5, T5, and L2 spines) were selected, and four types of target shapes reflecting the complexity of lesions were contoured. The treatment plans were performed using 2.5-mm and 5-mm MLCs, and also using both static IMRT and VMAT. In total, 48 treatment plans were established. The efficacy of each treatment plan was compared using target volume coverage (TVC), conformity index (CI), dose gradient index (GI), and V30%. Results When the 5-mm MLC was replaced by the 2.5-mm MLC, TVC and GI improved significantly by 5.68% and 6.25%, respectively, while CI did not improve. With a smaller MLC leaf width, the improvement ratios of the TVC were larger in IMRT than VMAT (8.38% vs. 2.97%). In addition, the TVC was improved by 14.42-16.74% in target type 4 compared to the other target types. These improvements were larger in IMRT than in VMAT (27.99% vs. 6.34%). The V30% was not statistically different between IMRT and VMAT according to the MLC leaf widths and the types of target. Conclusion The smaller MLC leaf width provided improved target coverage in both IMRT and VMAT, and its improvement was larger in IMRT than in VMAT. In addition, the smaller MLC leaf width was more effective for complex-shaped targets. PMID:24606890

  8. SU-E-T-214: Intensity Modulated Proton Therapy (IMPT) Based On Passively Scattered Protons and Multi-Leaf Collimation: Prototype TPS and Dosimetry Study

    SciTech Connect

    Sanchez-Parcerisa, D; Carabe-Fernandez, A

    2014-06-01

    Purpose. Intensity-modulated proton therapy is usually implemented with multi-field optimization of pencil-beam scanning (PBS) proton fields. However, at the view of the experience with photon-IMRT, proton facilities equipped with double-scattering (DS) delivery and multi-leaf collimation (MLC) could produce highly conformal dose distributions (and possibly eliminate the need for patient-specific compensators) with a clever use of their MLC field shaping, provided that an optimal inverse TPS is developed. Methods. A prototype TPS was developed in MATLAB. The dose calculation process was based on a fluence-dose algorithm on an adaptive divergent grid. A database of dose kernels was precalculated in order to allow for fast variations of the field range and modulation during optimization. The inverse planning process was based on the adaptive simulated annealing approach, with direct aperture optimization of the MLC leaves. A dosimetry study was performed on a phantom formed by three concentrical semicylinders separated by 5 mm, of which the inner-most and outer-most were regarded as organs at risk (OARs), and the middle one as the PTV. We chose a concave target (which is not treatable with conventional DS fields) to show the potential of our technique. The optimizer was configured to minimize the mean dose to the OARs while keeping a good coverage of the target. Results. The plan produced by the prototype TPS achieved a conformity index of 1.34, with the mean doses to the OARs below 78% of the prescribed dose. This Result is hardly achievable with traditional conformal DS technique with compensators, and it compares to what can be obtained with PBS. Conclusion. It is certainly feasible to produce IMPT fields with MLC passive scattering fields. With a fully developed treatment planning system, the produced plans can be superior to traditional DS plans in terms of plan conformity and dose to organs at risk.

  9. Implementation of a New Method for Dynamic Multileaf Collimator Tracking of Prostate Motion in Arc Radiotherapy Using a Single KV Imager

    SciTech Connect

    Poulsen, Per Rugaard; Cho, Byungchul; Sawant, Amit; Keall, Paul J.

    2010-03-01

    Purpose: To implement a method for real-time prostate motion estimation with a single kV imager during arc radiotherapy and to integrate it with dynamic multileaf collimator (DMLC) target tracking. Methods and Materials: An arc field with a circular aperture and 358 deg. gantry rotation was delivered to a motion phantom with a fiducial marker under continuous kV X-ray imaging at 5 Hz, perpendicular to the treatment beam. A pretreatment gantry rotation of 120 deg. in 20 sec with continuous imaging preceded the treatment. During treatment, each kV image was first used together with all previous images to estimate the three-dimensional (3D) target probability density function and then used together with this probability density function to estimate the 3D target position. The MLC aperture was then adapted to the estimated 3D target position. Tracking was performed with five patient-measured prostate trajectories that represented characteristic prostate motion patterns. Two data sets were recorded during tracking: (1) the estimated 3D target positions, for off-line comparison with the actual phantom motion; and (2) continuous portal images, for independent off-line calculation of the 2D tracking error as the positional difference between the marker and the MLC aperture center in each portal image. All experiments were also made with 1- Hz kV imaging. Results: The mean 3D root-mean-square error of the trajectory estimation was 0.6 mm. The mean root-mean-square tracking error was 0.7 mm, both parallel and perpendicular to the MLC. The accuracy degraded slightly for 1- Hz imaging. Conclusions: Single-imager DMLC prostate tracking that allows arbitrary beam modulation during arc radiotherapy was implemented. It has submillimeter accuracy for most prostate motion types.

  10. Integration of Real-Time Internal Electromagnetic Position Monitoring Coupled With Dynamic Multileaf Collimator Tracking: An Intensity-Modulated Radiation Therapy Feasibility Study

    SciTech Connect

    Smith, Ryan L.; Sawant, Amit PhD.; Santanam, Lakshmi PhD.; Venkat, Raghu B.; Newell, Laurence J.; Cho, Byung-chul; Poulsen, Per; Catell, Herbert; Keall, Paul J.; Parikh, Parag J.

    2009-07-01

    Purpose: Continuous tumor position measurement coupled with a tumor tracking system would result in a highly accurate radiation therapy system. Previous internal position monitoring systems have been limited by fluoroscopic radiation dose and low delivery efficiency. We aimed to incorporate a continuous, electromagnetic, three-dimensional position tracking system (Calypso 4D Localization System) with a dynamic multileaf collimator (DMLC)-based dose delivery system. Methods and Materials: A research version of the Calypso System provided real-time position of three Beacon transponders. These real-time three-dimensional positions were sent to research MLC controller with a motion-tracking algorithm that changed the planned leaf sequence. Electromagnetic transponders were embedded in a solid water film phantom that moved with patient lung trajectories while being irradiated with two different plans: a step-and-shoot intensity-modulated radiation therapy (S-IMRT) field and a dynamic IMRT (D-IMRT) field. Dosimetric results were recorded under three conditions: no intervention, DMLC tracking, and a spatial gating system. Results: Dosimetric accuracy was comparable for gating and DMLC tracking. Failure rates for gating/DMLC tracking are as follows: {+-}3 cGy 10.9/ 7.5% for S-IMRT, 3.3/7.2% for D-IMRT; gamma (3mm/3%) 0.2/1.2% for S-IMRT, 0.2/0.2% for D-IMRT. DMLC tracking proved to be as efficient as standard delivery, with a two- to fivefold efficiency increase over gating. Conclusions: Real-time target position information was successfully integrated into a DMLC effector system to modify dose delivery. Experimental results show both comparable dosimetric accuracy as well as improved efficiency compared with spatial gating.

  11. Dosimetric characterization of a multileaf collimator for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000

    SciTech Connect

    Nakamura, Mitsuhiro; Sawada, Akira; Ishihara, Yoshitomo; Takayama, Kenji; Mizowaki, Takashi; Kaneko, Shuji; Yamashita, Mikiko; Tanabe, Hiroaki; Kokubo, Masaki; Hiraoka, Masahiro

    2010-09-15

    Purpose: To present the dosimetric characterization of a multileaf collimator (MLC) for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000. Methods: MHI-TM2000 has an x-ray head composed of an ultrasmall linear accelerator guide and a system-specific MLC. The x-ray head can rotate along the two orthogonal gimbals (pan and tilt rotations) up to {+-}2.5 deg., which swings the beam up to {+-}41.9 mm in each direction from the isocenter on the isocenter plane perpendicular to the beam. The MLC design is a single-focus type, has 30 pairs of 5 mm thick leaves at the isocenter, and produces a maximum field size of 150x150 mm{sup 2}. Leaf height and length are 110 and 260 mm, respectively. Each leaf end is circular, with a radius of curvature of 370 mm. The distance that each leaf passes over the isocenter is 77.5 mm. Radiation leakage between adjacent leaves is minimized by an interlocking tongue-and-groove (T and G) arrangement with the height of the groove part 55 mm. The dosimetric characterizations including field characteristics, leaf position accuracy, leakage, and T and G effect were evaluated using a well-commissioned 6 MV photon beam, EDR2 films (Kodak, Rochester, NY), and water-equivalent phantoms. Furthermore, the field characteristics and leaf position accuracy were evaluated under conditions of pan or tilt rotation. Results: The differences between nominal and measured field sizes were within {+-}0.5 mm. Although the penumbra widths were greater with wider field size, the maximum width was <5.5 mm even for the fully opened field. Compared to the results of field characteristics without pan or tilt rotation, the variation in field size, penumbra width, flatness, and symmetry was within {+-}1 mm/1% at the maximum pan or tilt rotational angle. The leaf position accuracy was 0.0{+-}0.1 mm, ranging from -0.3 to 0.2 mm at four gantry angles of 0 deg., 90 deg., 180 deg., and 270 deg. with and without pan or tilt rotation

  12. SU-E-T-428: Dosimetric Impact of Multileaf Collimator Leaf Width On Single and multiple Isocenter Stereotactic IMRT Treatment Plans for multiple Brain Tumors

    SciTech Connect

    Giem, J; Algan, O; Ahmad, S; Ali, I; Young, J; Hossain, S

    2014-06-01

    Purpose: To assess the impacts that multileaf collimator (MLC) leaf width has on the dose conformity and normal brain tissue doses of single and multiple isocenter stereotactic IMRT (SRT) plans for multiple intracranial tumors. Methods: Fourteen patients with 2–3 targets were studied retrospectively. Patients treated with multiple isocenter treatment plans using 9 to 12 non-coplanar beams per lesion underwent repeat planning using single isocenter and 10 to 12 non-coplanar beams with 2.5mm, 3mm and 5mm MLC leaf widths. Brainlab iPlan treatment planning system for delivery with the 2.5mm MLC served as reference. Identical contour sets and dose-volume constraints were applied. The prescribed dose to each target was 25 Gy to be delivered over 5 fractions with a minimum of 99% dose to cover ≥ 95% of the target volume. Results: The lesions and normal brains ranged in size from 0.11 to 51.67cc (median, 2.75cc) and 1090 to 1641cc (median, 1401cc), respectively. The Paddick conformity index for single and multiple isocenter (2.5mm vs. 3mm and 5mm MLCs) was (0.79±0.08 vs. 0.79±0.07 and 0.77±0.08) and (0.79±0.09 vs. 0.77±0.09 and 0.76±0.08), respectively. The average normal brain volumes receiving 15 Gy for single and multiple isocenter (2.5mm vs. 3mm and 5mm MLCs) were (3.65% vs. 3.95% and 4.09%) and (2.89% vs. 2.91% and 2.92%), respectively. Conclusion: The average dose conformity observed for the different leaf width for single and multiple isocenter plans were similar, throughout. However, the average normal brain volumes receiving 2.5 to 15 Gy were consistently lower for the 2.5mm MLC leaf width, especially for single isocenter plans. The clinical consequences of these integral normal brain tissue doses are still unknown, but employing the use of the 2.5mm MLC option is desirable at sparing normal brain tissue for both single and multiple isocenter cases.

  13. Measurement and Monte Carlo simulation for energy- and intensity-modulated electron radiotherapy delivered by a computer-controlled electron multileaf collimator.

    PubMed

    Jin, Lihui; Eldib, Ahmed; Li, Jinsheng; Emam, Ismail; Fan, Jiajin; Wang, Lu; Ma, C-M

    2014-01-01

    The dosimetric advantage of modulated electron radiotherapy (MERT) has been explored by many investigators and is considered to be an advanced radiation therapy technique in the utilization of electrons. A computer-controlled electron multileaf collimator (MLC) prototype, newly designed to be added onto a Varian linac to deliver MERT, was investigated both experimentally and by Monte Carlo simulations. Four different electron energies, 6, 9, 12, and 15 MeV, were employed for this investigation. To ensure that this device was capable of delivering the electron beams properly, measurements were performed to examine the electron MLC (eMLC) leaf leakage and to determine the appropriate jaw positioning for an eMLC-shaped field in order to eliminate a secondary radiation peak that could otherwise appear outside of an intended radiation field in the case of inappropriate jaw positioning due to insufficient radiation blockage from the jaws. Phase space data were obtained by Monte Carlo (MC) simulation and recorded at the plane just above the jaws for each of the energies (6, 9, 12, and 15 MeV). As an input source, phase space data were used in MC dose calculations for various sizes of the eMLC shaped field (10 × 10 cm2, 3.4 × 3.4 cm2, and 2 × 2 cm2) with respect to a water phantom at source-to-surface distance (SSD) = 94 cm, while the jaws, eMLC leaves, and some accessories associated with the eMLC assembly as well were modeled as modifiers in the calculations. The calculated results were then compared with measurements from a water scanning system. The results showed that jaw settings with 5 mm margins beyond the field shaped by the eMLC were appropriate to eliminate the secondary radiation peak while not widening the beam penumbra; the eMLC leaf leakage measurements ranged from 0.3% to 1.8% for different energies based on in-phantom measurements, which should be quite acceptable for MERT. Comparisons between MC dose calculations and measurements showed agreement

  14. Tracking 'differential organ motion' with a 'breathing' multileaf collimator: magnitude of problem assessed using 4D CT data and a motion-compensation strategy

    NASA Astrophysics Data System (ADS)

    McClelland, J. R.; Webb, S.; McQuaid, D.; Binnie, D. M.; Hawkes, D. J.

    2007-08-01

    Intrafraction tumour (e.g. lung) motion due to breathing can, in principle, be compensated for by applying identical breathing motions to the leaves of a multileaf collimator (MLC) as intensity-modulated radiation therapy is delivered by the dynamic MLC (DMLC) technique. A difficulty arising, however, is that irradiated voxels, which are in line with a bixel at one breathing phase (at which the treatment plan has been made), may move such that they cease to be in line with that breathing bixel at another phase. This is the phenomenon of differential voxel motion and existing tracking solutions have ignored this very real problem. There is absolutely no tracking solution to the problem of compensating for differential voxel motion. However, there is a strategy that can be applied in which the leaf breathing is determined to minimize the geometrical mismatch in a least-squares sense in irradiating differentially-moving voxels. A 1D formulation in very restricted circumstances is already in the literature and has been applied to some model breathing situations which can be studied analytically. These are, however, highly artificial. This paper presents the general 2D formulation of the problem including allowing different importance factors to be applied to planning target volume and organ at risk (or most generally) each voxel. The strategy also extends the literature strategy to the situation where the number of voxels connecting to a bixel is a variable. Additionally the phenomenon of 'cross-leaf-track/channel' voxel motion is formally addressed. The general equations are presented and analytic results are given for some 1D, artificially contrived, motions based on the Lujan equations of breathing motion. Further to this, 3D clinical voxel motion data have been extracted from 4D CT measurements to both assess the magnitude of the problem of 2D motion perpendicular to the beam-delivery axis in clinical practice and also to find the 2D optimum breathing-leaf strategy

  15. Discussion on the usefulness of dose dynamic multi-leaf collimator-based plan to overcome dose limit of spinal cord in high-dose radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, E. C.; Cho, J. H.; Park, C. S.; Kim, D. H.; Choi, C. W.

    2014-03-01

    In this study, the conventional plan was compared with the plan that was based on a dose dynamic multi-leaf collimator (MLC), and a dose dynamic MLC was used to evaluate its usefulness. Then, this study examined if it was possible to perform a high-dose radiation therapy by adjusting the dose limit of the spinal cord when the dose dynamic MLC-based plan was used. First of all, linear accelerator was used to compare the conventional plan with the dose dynamic MLC-based plan. Then, the study was conducted in two methods in order to examine the proper range of the shield for the spinal cord when the dose dynamic MLC was used to adjust the dose of the spinal cord. In the first method, X-omat film was used to perform film dosimetry. In the second method, radiation treatment planning (RTP) system was used to find out the proper range among 0, 3, 6, and 9 mm. When film scan was performed in the each range, respectively, from the spinal cord and under the same conditions, it was confirmed to be appropriate to use the range of 3 mm. When the RTP system was used to perform planning in the shield range of each range, respectively, from the spinal cord, dose-volume histogram (DVH) was a slight difference could be found in the region from 25% to 35%. On the contrary, no radiation exposure was found in the region of 35% or higher for all of the each range. Consequently, if MLC is selected in consideration of the planning target volume (PTV), the most proper value can be obtained by selecting the range of 3 mm. Next, the DVH was compared to examine the relationship in PTV when the each range was used for planning. All of the ranges showed the same pattern up to the point of 90%. However, the results were different in the region of higher than 90% because the dose was low for the spinal cord, and a relatively useful dose was used for PTV when the range was 3 mm.

  16. SU-E-T-604: Penumbra Characteristics of a New InCiseâ„¢ Multileaf Collimator of CyberKnife M6â„¢ System

    SciTech Connect

    Hwang, M; Jang, S; Ozhasoglu, C; Lalonde, R; Heron, D; Huq, M

    2015-06-15

    Purpose: The InCise™ Multileaf Collimator (MLC) of CyberKnife M6™ System has been released recently. The purpose of this study was to explore the dosimetric characteristics of the new MLC. In particular, the penumbra characteristics of MLC fields at varying locations are evaluated. Methods: EBT3-based film measurements were performed with varying MLC fields ranging from 7.5 mm to 27.5 mm. Seventeen regions of interests (ROIs) were identified for irradiation. These are regions located at the central area (denoted as reference field), at the left/right edge areas of reference open field, at an intermediate location between central and edge area. Single beam treatment plans were designed by using the MultiPlan and was delivered using the Blue Phantom. Gafchromic films were irradiated at 1.5 cm depth in the Blue Phantom and analyzed using the Film Pro software. Variation of maximum dose, penumbra of MLC-defined fields, and symmetry/flatness were calculated as a function of locations of MLC fields. Results: The InCise™ MLC System showed relatively consistent dose distribution and penumbra size with varying locations of MLC fields. The measured maximum dose varied within 5 % at different locations compared to that at the central location and agreed with the calculated data well within 2%. The measured penumbrae were in the range of 2.9 mm and 3.7 mm and were relatively consistent regardless of locations. However, dose profiles in the out-of-field and in-field regions varied with locations and field sizes. Strong variation was seen for all fields located at 55 mm away from the central field. The MLC leakage map showed that the leakage is dependent on position. Conclusion: The size of penumbra and normalized maximum dose for MLC-defined fields were consistent in different regions of MLC. However, dose profiles in the out-field region varied with locations and field sizes.

  17. Feasibility of single-isocenter, multi-arc non-coplanar volumetric modulated arc therapy for multiple brain tumors using a linear accelerator with a 160-leaf multileaf collimator: a phantom study

    PubMed Central

    Iwai, Yoshio; Ozawa, Shuichi; Ageishi, Tatsuya; Pellegrini, Roberto; Yoda, Kiyoshi

    2014-01-01

    The feasibility of single isocenter, multi-arc non-coplanar volumetric modulated arc therapy (VMAT) for multiple brain tumors was studied using an Elekta Synergy linear accelerator with an Agility multileaf collimator and a Monaco treatment planning system. Two VMAT radiosurgery plans consisting of a full arc and three half arcs were created with a prescribed dose of 20 Gy in a single fraction. After dose delivery to a phantom, ionization chambers and radiochromic films were used for dose measurement. The first VMAT radiosurgery plan had nine targets inside the phantom, and the doses were measured by the chambers at two different points and by the films on three sagittal and three coronal planes. The differences between the calculated dose and the dose measured by a Farmer ionization chamber and a pinpoint ionization chamber were <1.00% and <2.30%, respectively, and the average pass rates of gamma indices among the six planes under each of 3%/3 mm and 2%/2 mm criteria were 98.6% and 92.6%, respectively. The second VMAT radiosurgery plan was based on a clinical 14 brain metastases. Differences between calculated and film-measured doses were evaluated on two sagittal planes. The average pass rates of the gamma indices on the planes under each of 3%/3 mm and 2%/2 mm criteria were 97.8% and 88.8%, respectively. It was confirmed that single-isocenter, non-coplanar multi-arc VMAT radiosurgery for multiple brain metastases was feasible using Elekta Synergy with Agility and Monaco treatment planning systems. It was further shown that film dosimetry was accurately performed for a dose of up to nearly 25 Gy. PMID:24944266

  18. Feasibility of single-isocenter, multi-arc non-coplanar volumetric modulated arc therapy for multiple brain tumors using a linear accelerator with a 160-leaf multileaf collimator: a phantom study.

    PubMed

    Iwai, Yoshio; Ozawa, Shuichi; Ageishi, Tatsuya; Pellegrini, Roberto; Yoda, Kiyoshi

    2014-09-01

    The feasibility of single isocenter, multi-arc non-coplanar volumetric modulated arc therapy (VMAT) for multiple brain tumors was studied using an Elekta Synergy linear accelerator with an Agility multileaf collimator and a Monaco treatment planning system. Two VMAT radiosurgery plans consisting of a full arc and three half arcs were created with a prescribed dose of 20 Gy in a single fraction. After dose delivery to a phantom, ionization chambers and radiochromic films were used for dose measurement. The first VMAT radiosurgery plan had nine targets inside the phantom, and the doses were measured by the chambers at two different points and by the films on three sagittal and three coronal planes. The differences between the calculated dose and the dose measured by a Farmer ionization chamber and a pinpoint ionization chamber were <1.00% and <2.30%, respectively, and the average pass rates of gamma indices among the six planes under each of 3%/3 mm and 2%/2 mm criteria were 98.6% and 92.6%, respectively. The second VMAT radiosurgery plan was based on a clinical 14 brain metastases. Differences between calculated and film-measured doses were evaluated on two sagittal planes. The average pass rates of the gamma indices on the planes under each of 3%/3 mm and 2%/2 mm criteria were 97.8% and 88.8%, respectively. It was confirmed that single-isocenter, non-coplanar multi-arc VMAT radiosurgery for multiple brain metastases was feasible using Elekta Synergy with Agility and Monaco treatment planning systems. It was further shown that film dosimetry was accurately performed for a dose of up to nearly 25 Gy. PMID:24944266

  19. SU-E-T-534: Dosimetric Effect of Multileaf Collimator Leaf Width On Volumetric Modulated Arc Stereotactic Radiotherapy for Spine Tumors

    SciTech Connect

    Amoush, A; Djemil, T; Subedi, L; Huang, L; Xia, P

    2014-06-01

    Purpose: To study the dosimetric impact of MLC leaf width in patients treated with Volumetric Modulated Arc Therapy (VMAT) for spine Stereotactic Body radiation Therapy (SBRT). Methods: Twelve spine SBRT patients were retrospectively selected for this study. The patients were treated with IMRT following the RTOG-0631 of spine metastasis. The prescription dose was 16 Gy in one fraction to 90% of the target volume (V16 > 90%). The maximum spinal cord dose of 14 Gy and 10% of the cord receiving < 10 Gy (V10) were set as dose constraints. For purpose of this study, three dual arc VMAT plans were created for each patient using three different MLC leaf widths: 2.5 mm, 4mm, and 5mm. The compliance to RTOG 0631, conformal index (CI), dose gradient index (DGI), and number of monitor units (MUs) were compared. Results: The average V16 of the target was 91.91±1.36%, 93.73±2.38%, and 92.25±2.49% for 2.5 mm, 4 mm, and 5 mm leaf widths, respectively (p=0.39). Accordingly, the average CI was 1.36±0.39, 1.36±0.34, and 1.41±0.3 (0.96), respectively. The average DGI was 0.24 ± 0.05, 0.22 ± 0.05, and 0.23 ± 0.04, respectively (p=0.86). The average spinal cord maximum dose was 12.10 ± 0.88 Gy, 12.52 ± 1.15 Gy, and 12.05 ± 1.12 (p=0.75) and V10 was 2.69 ± 1.71 cc, 5.43 ± 2.16 cc, and 3.71 ± 2.34 cc (p=0.15) for 2.5 mm, 4 mm, and 5 mm leaf widths, respectively. According, the average number of MUs was 4255 ± 431 MU, 5049 ± 1036 MU, and 4231 ± 580 MU respectively (p=0.17). Conclusion: The use of 2.5 mm, 4 mm, and 5 mm MLCs achieved similar VMAT plan quality as recommended by RTOG-0631. The dosimetric parameters were also comparable for the three MLCs.

  20. Impact of large x-ray beam collimation on image quality

    NASA Astrophysics Data System (ADS)

    Racine, Damien; Ba, Alexandre; Ott, Julien G.; Bochud, François O.; Verdun, Francis R.

    2016-03-01

    Large X-ray beam collimation in computed tomography (CT) opens the way to new image acquisition techniques and improves patient management for several clinical indications. The systems that offer large X-ray beam collimation enable, in particular, a whole region of interest to be investigated with an excellent temporal resolution. However, one of the potential drawbacks of this option might be a noticeable difference in image quality along the z-axis when compared with the standard helical acquisition mode using more restricted X-ray beam collimations. The aim of this project is to investigate the impact of the use of large X-ray beam collimation and new iterative reconstruction on noise properties, spatial resolution and low contrast detectability (LCD). An anthropomorphic phantom and a custom made phantom were scanned on a GE Revolution CT. The images were reconstructed respectively with ASIR-V at 0% and 50%. Noise power spectra, to evaluate the noise properties, and Target Transfer Functions, to evaluate the spatial resolution, were computed. Then, a Channelized Hotelling Observer with Gabor and Dense Difference of Gaussian channels was used to evaluate the LCD using the Percentage correct as a figure of merit. Noticeable differences of 3D noise power spectra and MTF have been recorded; however no significant difference appeared when dealing with the LCD criteria. As expected the use of iterative reconstruction, for a given CTDIvol level, allowed a significant gain in LCD in comparison to ASIR-V 0%. In addition, the outcomes of the NPS and TTF metrics led to results that would contradict the outcomes of CHO model observers if used for a NPWE model observer (Non- Prewhitening With Eye filter). The unit investigated provides major advantages for cardiac diagnosis without impairing the image quality level of standard chest or abdominal acquisitions.

  1. A Novel Method for Quality Assurance of the Cyberknife Iris Variable Aperture Collimator

    PubMed Central

    Kremer, Nikolaus; Fürweger, Christoph

    2016-01-01

    Objective: To characterize a novel method for field-size quality assurance of a variable approximately circular aperture collimator by means of dose-area product measurements and to validate its practical use over two years of clinical application. Methods:  To assess methodical limitations, we analyze measurement errors due to change in linac output, beam tuning, uncertainty in MU delivery, daily factors, inherent uncertainty of the large-area parallel-plate ionisation chamber, and misalignment of the large-area parallel-plate ionisation chamber relative to the primary beam axis. To establish a baseline for quality assurance, the dose-area product is measured with the large-area parallel-plate ionisation chamber for all 12 clinical iris apertures in relation to the 60 mm fixed reference aperture. To evaluate the long-term stability of the Iris collimation system, deviation from baseline data is assessed monthly and compared to a priori derived tolerance levels. Results: Only chamber misalignment, variation in output, and uncertainty in MU delivery contribute to a combined error that is estimated at 0.2 % of the nominal field size. This is equivalent to a resolution of 0.005 mm for the 5 mm, and 0.012 mm for the 60 mm field. The method offers ease of use, small measurement time commitment, and is independent of most error sources. Over the observed period, the Iris accuray is within the tolerance levels. Conclusions:  The method is an advantageous alternative to film quality assurance with a high reliability, short measurement time, and superior accuracy in field-size determination. PMID:27382526

  2. Consideration of optimal isodose surface selection for target coverage in micro-multileaf collimator-based stereotactic radiotherapy for large cystic brain metastases: comparison of 90%, 80% and 70% isodose surface-based planning

    PubMed Central

    Ohtakara, K; Hayashi, S; Tanaka, H; Hoshi, H

    2012-01-01

    Objective This study aims to compare dynamic conformal arc (DCA) plans based on different-percentage isodose surfaces (IDSs), normalised to 100% at the isocentre, for target coverage (TC; dose prescription) in stereotactic radiotherapy for large cystic brain metastases. Methods The DCA plans were generated for 15 targets (5 spherical models and 10 metastatic brain lesions) based on 90%, 80% and 70% IDSs for dose prescription to attain ≥99% TC values using the Novalis Tx platform. These plans were optimised mainly by leaf margin and/or collimator angle adjustment, while similar arc arrangements were used. Results TC values were equivalent among the three plans. Conformity index values were similar between the 80% and 70% plans, while they were worse in the 90% plans. Mean doses (Dmean) of the interior 3 mm rind structure were highest in the 70% plans, followed by the 80% plans and lowest in the 90% plans. Dmean of the exterior 3 mm rind structure and the ratio of 50%/100% isodose volumes (Paddick's gradient index values) were highest in the 90% plans, followed by 80% and lowest in the 70% plans. Conclusions These results suggest that the 70% IDS plans might be beneficial for both tumour control and reducing toxicity to surrounding normal tissue if appropriate dose conformity and precise treatment set-up are ensured. The 90% IDS plans are unfavourable in view of inferior dose gradient outside the target and should be limited to cases in which the target dose homogeneity is given the highest priority. PMID:22422384

  3. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality.

    PubMed

    Zhi, Dong; Ma, Yanxing; Chen, Zilun; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2016-05-15

    We report on the development of a monolithic adaptive fiber optics collimator, with a large deflection angle and preserved near-diffraction-limited beam quality, that has been tested at a maximal output power at the 300 W level. Additionally, a new measurement method of beam quality (M2 factor) is developed. Experimental results show that the deflection angle of the collimated beam is in the range of 0-0.27 mrad in the X direction and 0-0.19 mrad in the Y direction. The effective working frequency of the device is about 710 Hz. By employing the new measurement method of the M2 factor, we calculate that the beam quality is Mx2=1.35 and My2=1.24, which is in agreement with the result from the beam propagation analyzer and is preserved well with the increasing output power. PMID:27176966

  4. Dosimetric characteristics and quality control tests for the collimator sectors of the Leksell Gamma Knife Perfexion{sup TM}

    SciTech Connect

    Bhatnagar, Jagdish P.; Novotny, Josef Jr.; Saiful Huq, M.

    2012-01-15

    Purpose: The purpose of this study was to evaluate the dosimetric characteristics of each sector of the Leksell Gamma Knife Perfexion (LGK PFX) and to develop tests that can be done for the routine quality assurance checks of the sectors of the LGK PFX. Methods: The following tests were performed to evaluate the dosimetric characteristics of the sectors: (1) Flash-radiation dose for the 16 mm collimator, (2) transit-radiation dose for the 8 and 4 mm collimators, (3) sector leakage within the radiation cavity and, (4) sector output uniformity. In these tests, the Elekta ABS phantom was used. A micropoint ion-chamber Exradin A16 was placed at the center of the phantom for all measurements. Results: With the version 8.0 of the control software of the MCU in the LGK PFX, the average flash-radiation dose per sector for the 16 mm collimator was measured to be 0.423 {+-} 0.003 cGy, and the average transit-radiation dose per sector for the 8 and 4 mm collimators was measured to be 0.169 {+-} 0.0009 and 0.147 {+-} 0.020 cGy, respectively. The calibration dose rate on the day of measurements was 280.8 cGy/min. Here, the authors have introduced a new concept of ''equivalent-time-duration'' (ETD) to represent the time duration, during which the flash-radiation or the transit-radiation dose is delivered. The ETD is a quotient of the measured dose of the flash-radiation or the transit-radiation and the respective calibrated dose rate for the 16, 8, or 4 mm collimator. The ETD constancy is an indicator of the constancy of the sector movements. The average value of ETD per sector was measured to be 724 {+-} 6, 313 {+-} 2, and 311 {+-} 45 ms for the 16, 8, and 4 mm collimators, respectively. During monthly spot checks, the authors have been measuring the total ETD for the flash-radiation when all eight sectors are open with the 16 mm collimator. The average value of the total ETD of the last 40 consecutive months was measured to be 642 {+-} 10 ms. This number is a useful quality

  5. On isocentre adjustment and quality control in linear accelerator based radiosurgery with circular collimators and room lasers

    NASA Astrophysics Data System (ADS)

    Treuer, H.; Hoevels, M.; Luyken, K.; Gierich, A.; Kocher, M.; Müller, R.-P.; Sturm, V.

    2000-08-01

    We have developed a densitometric method for measuring the isocentric accuracy and the accuracy of marking the isocentre position for linear accelerator based radiosurgery with circular collimators and room lasers. Isocentric shots are used to determine the accuracy of marking the isocentre position with room lasers and star shots are used to determine the wobble of the gantry and table rotation movement, the effect of gantry sag, the stereotactic collimator alignment, and the minimal distance between gantry and table rotation axes. Since the method is based on densitometric measurements, beam spot stability is implicitly tested. The method developed is also suitable for quality assurance and has proved to be useful in optimizing isocentric accuracy. The method is simple to perform and only requires a film box and film scanner for instrumentation. Thus, the method has the potential to become widely available and may therefore be useful in standardizing the description of linear accelerator based radiosurgical systems.

  6. Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator

    SciTech Connect

    Du, Weiliang; Gao, Song

    2011-08-15

    Purpose: The isocenter accuracy of a linear accelerator is often assessed with star-shot films. This approach is limited in its ability to quantify three dimensional wobble of radiation field centers (RFCs). The authors report a Winston-Lutz based method to measure the 3D wobble of RFCs during gantry rotation, collimator rotation, and collimator field size change. Methods: A stationary ball-bearing phantom was imaged using multileaf collimator-shaped radiation fields at various gantry angles, collimator angles, and field sizes. The center of the ball-bearing served as a reference point, to which all RFCs were localized using a computer algorithm with subpixel accuracy. Then, the gantry rotation isocenter and the collimator rotation axis were derived from the coordinates of these RFCs. Finally, the deviation or wobble of the individual RFC from the derived isocenter or rotation axis was quantified. Results: The results showed that the RFCs were stable as the field size of the multileaf collimator was varied. The wobble of RFCs depended on the gantry angle and the collimator angle and was reproducible, indicating that the mechanical imperfections of the linac were mostly systematic and quantifiable. It was found that the 3D wobble of RFCs during gantry rotation was reduced after compensating for a constant misalignment of the multileaf collimator. Conclusions: The 3D wobble of RFCs can be measured with submillimeter precision using the proposed method. This method provides a useful tool for checking and adjusting the radiation isocenter tightness of a linac.

  7. [Ballistic quality assurance].

    PubMed

    Cassol, E; Bonnet, J; Porcheron, D; Mazeron, J-J; Peiffert, D; Alapetite, C

    2012-06-01

    This review describes the ballistic quality assurance for stereotactic intracranial irradiation treatments delivered with Gamma Knife® either dedicated or adapted medical linear accelerators. Specific and periodic controls should be performed in order to check the mechanical stability for both irradiation and collimation systems. If this step remains under the responsibility of the medical physicist, it should be done in agreement with the manufacturer's technical support. At this time, there are no recent published guidelines. With technological developments, both frequency and accuracy should be assessed in each institution according to the treatment mode: single versus hypofractionnated dose, circular collimator versus micro-multileaf collimators. In addition, "end-to-end" techniques are mandatory to find the origin of potential discrepancies and to estimate the global ballistic accuracy of the delivered treatment. Indeed, they include frames, non-invasive immobilization devices, localizers, multimodal imaging for delineation and in-room positioning imaging systems. The final precision that could be reasonably achieved is more or less 1mm. PMID:22632786

  8. Evaluation of infrared collimators for testing thermal imaging systems

    NASA Astrophysics Data System (ADS)

    Chrzanowski, K.

    2007-06-01

    Infrared reflective collimators are important components of expensive sophisticated test systems used for testing thermal imagers. Too low quality collimators can become a source of significant measurement errors and collimators of too high quality can unnecessarily increase cost of a test system. In such a situation it is important for test system users to know proper requirements on the collimator and to be able to verify its performance. A method for evaluation of infrared reflective collimators used in test systems for testing thermal imagers is presented in this paper. The method requires only easily available optical equipment and can be used not only by collimator manufactures but also by users of test equipment to verify performance of the collimators used for testing thermal imagers.

  9. Conformity of LINAC-Based Stereotactic Radiosurgery Using Dynamic Conformal Arcs and Micro-Multileaf Collimator

    SciTech Connect

    Hazard, Lisa J. Wang, Brian; Skidmore, Thomas B.; Chern, Shyh-Shi; Salter, Bill J.; Jensen, Randy L.; Shrieve, Dennis C.

    2009-02-01

    Purpose: To assess the conformity of dynamic conformal arc linear accelerator-based stereotactic radiosurgery and to describe a standardized method of isodose surface (IDS) selection. Methods and Materials: In 174 targets, the conformity index (CI) at the prescription IDS used for treatment was calculated as CI = (PIV/PVTV)/(PVTV/TV), where TV is the target volume, PIV (prescription isodose volume) is the total volume encompassed by the prescription IDS, and PVTV is the TV encompassed by the IDS. In addition, a 'standardized' prescription IDS (sIDS) was chosen according to the following criteria: 95% of the TV was encompassed by the PIV and 99% of TV was covered by 95% of the prescription dose. The CIs at the sIDS were also calculated. Results: The median CI at the prescription IDS and sIDS was 1.63 and 1.47, respectively (p < 0.001). In 132 of 174 cases, the volume of normal tissue in the PIV was reduced by the prescription to the sIDS compared with the prescription IDS, in 20 cases it remained unchanged, and in 22 cases it was increased. Conclusion: The CIs obtained with linear accelerator-based stereotactic radiosurgery are comparable to those previously reported for gamma knife stereotactic radiosurgery. Using a uniform method to select the sIDS, adequate target coverage was usually achievable with prescription to an IDS greater than that chosen by the treating physician (prescription IDS), providing sparing of normal tissue. Thus, the sIDS might aid physicians in identifying a prescription IDS that balances coverage and conformity.

  10. Multileaf collimator tracking integrated with a novel x-ray imaging system and external surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2012-04-01

    We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking.

  11. Investigating the fundamentals of IMRT decomposition using ten simple collimator models

    NASA Astrophysics Data System (ADS)

    Anderson, J. W.; Symonds-Tayler, R.; Webb, S.

    2006-05-01

    The fundamentals of IMRT collimation have been studied using ten conceptual collimators. Spanning a range of complexities from the LINAC jaws alone to a full multi-leaf collimator (MLC), these collimators were designed with two abilities in mind: (1) to be able to define arbitrary field shapes, and (2) to be able to irradiate multiple, disconnected regions in a single segment. The collimators were tested by finding decompositions of random and clinical intensity-modulated beams (IMBs), and collimator performance was measured using both the number of segments required to complete the IMB and the monitor-unit efficiency of the treatment. The decompositions were run on 10 × 10 IMBs with integer bixel values randomly between 1 and 10, and clinical IMBs of varying sizes from lung, head and neck, and pelvic patients taken from a Pinnacle treatment-planning system. Results confirmed that although treatment performance improves with increased collimator complexity, it is not solely dependent on the number of segment shapes deliverable by the collimator but instead on how well these shapes lend themselves to IMRT delivery.

  12. Random array grid collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-22

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  13. TH-A-18C-11: An Investigation of KV CBCT Image Quality and Dose Reduction for Volume-Of-Interest Imaging Using Dynamic Collimation

    SciTech Connect

    Parsons, D; Robar, J

    2014-06-15

    Purpose: The focus of this work was to investigate the improvements in image quality and dose reduction for volume-of-interest (VOI) kV-CBCT using dynamic collimation. Methods: A prototype iris aperture was used to track a VOI during a CBCT acquisition. The current aperture design is capable of one-dimensional translation as a function of gantry angle and dynamic adjustment of the iris radius. The aperture occupies the location of the bow-tie filter on a Varian OBI system. CBCT and planar image quality was investigated as a function of aperture radius, while maintaining the same dose to the VOI, for a 20 cm diameter cylindrical water phantom with a 9 mm diameter bone insert centered on isocenter. Corresponding scatter-to-primary ratios (SPR) were determined at the detector plane with Monte Carlo simulation using EGSnrc. Dose distributions for various anatomical sites were modeled using a dynamic BEAMnrc library and DOSXYZnrc. The resulting VOI dose distributions were compared to full-field distributions. Results: SPR was reduced by a factor of 8.4 when decreasing iris diameter from 21.2 cm to 2.4 cm (at isocenter). Similarly, this change in iris diameter corresponds to a factor increase of approximately 1.4 and 1.5 in image contrast for CBCT and planar images, respectively, and similarly a factor decrease in image noise of approximately 1.7 and 1.5. This results in a measured gain in contrast-to-noise ratio of a factor of approximately 2.3 for both CBCT and planar images. Depending upon the anatomical site, dose was reduced to 10%–70% of the full field value along the central axis plane and down to 2% along the axial planes, while maintaining the same dose to the VOI compared to full-field techniques. Conclusion: The presented VOI technique offers improved image quality for image-guided radiotherapy while sparing the surrounding volume of unnecessary dose compared to full-field techniques.

  14. CRYSTAL COLLIMATION AT RHIC.

    SciTech Connect

    FLILLER,III, R.P.; DREES,A.; GASSNER,D.; HAMMONS,L.; MCINTYRE,G.; PEGGS,S.; TRBOJEVIC,D.; BIRYUKOV,V.; CHESNKOV,Y.; TEREKHOV,V.

    2002-06-02

    For the year 2001 run, a bent crystal was installed in the yellow ring of the Relativistic Heavy Ion Collider (RHIC). The crystal forms the first stage of a two stage collimation system. By aligning the crystal to the beam, halo particles are channeled through the crystal and deflected into a copper scraper. The purpose is to reduce beam halo with greater efficiency than with a scraper alone. In this paper we present the first results from the use of the crystal collimator. We compare the crystal performance under various conditions, such as different particle species, and beta functions.

  15. COLLIMATION EXPERIENCE AT RHIC.

    SciTech Connect

    DREES,K.A.FLILLER,R.TRBOJEVIC,D.KAIN,V.

    2003-05-19

    In the Relativistic Heavy Ion Collider (RHIC) the abort kicker magnets are the limiting aperture. Continuous losses at this location could deteriorate the kicker performance. In addition, losses especially in the triplet area cause backgrounds in the experimental detectors. The RHIC one-stage collimation system was used to reduce these backgrounds as well as losses at the abort kickers. Collimation performance and results from various runs with even and uneven species (Au-Au, pp and d-Au) are presented and compared. Upgrades of the system for the upcoming high luminosity runs are outlined.

  16. Gamma ray collimator

    NASA Technical Reports Server (NTRS)

    Casanova, Edgar J. (Inventor)

    1991-01-01

    A gamma ray collimator including a housing having first and second sections is disclosed. The first section encloses a first section of depleted uranium which is disposed for receiving and supporting a radiation emitting component such as cobalt 60. The second section encloses a depleted uranium member which is provided with a conical cut out focusing portion disposed in communication with the radiation emitting element for focusing the emitted radiation to the target.

  17. Gamma ray collimator

    NASA Technical Reports Server (NTRS)

    Casanova, Edgar J. (Inventor)

    1993-01-01

    A gamma ray collimator including a housing having first and second sections. The first section encloses a first section of depleted uranium which is disposed for receiving and supporting a radiation emitting component such as cobalt 60. The second section encloses a depleted uranium member which is provided with a conical cut-out focusing portion disposed in communication with the radiation emitting element for focusing the emitted radiation to the target.

  18. Beam collimation in the PEFP RCS

    SciTech Connect

    Jang, J.; Lee, Y.; Kwon, H.J.; Cho, Y.S.

    2010-06-01

    This work is related with the beam collimation in the injection period of the proton engineering frontier project (PEFP) rapid cycling synchrotron (RCS).The two-stage collimation scheme was used with two rectangular collimators. We studied the collimation efficiency in various collimator conditions and optimized the collimation systemin order to minimize the uncontrolled beam losses.

  19. Advances in Pinhole and Multi-Pinhole Collimators for Single Photon Emission Computed Tomography Imaging

    PubMed Central

    Islamian, Jalil Pirayesh; Azazrm, AhmadReza; Mahmoudian, Babak; Gharapapagh, Esmail

    2015-01-01

    The collimator in single photon emission computed tomography (SPECT), is an important part of the imaging chain. One of the most important collimators that used in research, preclinical study, small animal, and organ imaging is the pinhole collimator. Pinhole collimator can improve the tradeoff between sensitivity and resolution in comparison with conventional parallel-hole collimator and facilities diagnosis. However, a major problem with pinhole collimator is a small field of view (FOV). Multi-pinhole collimator has been investigated in order to increase the sensitivity and FOV with a preserved spatial resolution. The geometry of pinhole and multi-pinhole collimators is a critical factor in the image quality and plays a key role in SPECT imaging. The issue of the material and geometry for pinhole and multi-pinhole collimators have been a controversial and much disputed subject within the field of SPECT imaging. On the other hand, recent developments in collimator optimization have heightened the need for appropriate reconstruction algorithms for pinhole SPECT imaging. Therefore, iterative reconstruction algorithms were introduced to minimize the undesirable effect on image quality. Current researches have focused on geometry and configuration of pinhole and multi-pinhole collimation rather than reconstruction algorithm. The lofthole and multi-lofthole collimator are samples of novel designs. The purpose of this paper is to provide a review on recent researches in the pinhole and multi-pinhole collimators for SPECT imaging. PMID:25709537

  20. Advances in pinhole and multi-pinhole collimators for single photon emission computed tomography imaging.

    PubMed

    Islamian, Jalil Pirayesh; Azazrm, AhmadReza; Mahmoudian, Babak; Gharapapagh, Esmail

    2015-01-01

    The collimator in single photon emission computed tomography (SPECT), is an important part of the imaging chain. One of the most important collimators that used in research, preclinical study, small animal, and organ imaging is the pinhole collimator. Pinhole collimator can improve the tradeoff between sensitivity and resolution in comparison with conventional parallel-hole collimator and facilities diagnosis. However, a major problem with pinhole collimator is a small field of view (FOV). Multi-pinhole collimator has been investigated in order to increase the sensitivity and FOV with a preserved spatial resolution. The geometry of pinhole and multi-pinhole collimators is a critical factor in the image quality and plays a key role in SPECT imaging. The issue of the material and geometry for pinhole and multi-pinhole collimators have been a controversial and much disputed subject within the field of SPECT imaging. On the other hand, recent developments in collimator optimization have heightened the need for appropriate reconstruction algorithms for pinhole SPECT imaging. Therefore, iterative reconstruction algorithms were introduced to minimize the undesirable effect on image quality. Current researches have focused on geometry and configuration of pinhole and multi-pinhole collimation rather than reconstruction algorithm. The lofthole and multi-lofthole collimator are samples of novel designs. The purpose of this paper is to provide a review on recent researches in the pinhole and multi-pinhole collimators for SPECT imaging. PMID:25709537

  1. Optimization of Collimator Trajectory in Volumetric Modulated Arc Therapy: Development and Evaluation for Paraspinal SBRT

    SciTech Connect

    Zhang Pengpeng; Happersett, Laura; Yang Yingli; Yamada, Yoshiya; Mageras, Gig; Hunt, Margie

    2010-06-01

    Purpose: To develop a collimator trajectory optimization paradigm for volumetric modulated arc therapy (VMAT) and evaluate this technique in paraspinal stereotactic body radiation therapy (SBRT). Method and Materials: We propose a novel VMAT paradigm, Coll-VMAT, which integrates collimator rotation with synchronized gantry rotation, multileaf collimator (MLC) motion, and dose-rate modulation. At each gantry angle a principal component analysis (PCA) is applied to calculate the primary cord orientation. The collimator angle is then aligned so that MLC travel is parallel to the PCA-derived direction. An in-house VMAT optimization follows the geometry-based collimator trajectory optimization to obtain the optimal MLC position and monitor units (MU) at each gantry angle. A treatment planning study of five paraspinal SBRT patients compared Coll-VMAT to standard VMAT (fixed collimator angle) and static field IMRT plans. Plan evaluation statistics included planning target volume (PTV) V95%, PTV-D95%, cord-D05%, and total beam-on time. Results: Variation of collimator angle in Coll-VMAT plans ranges from 26 deg. to 54 deg., with a median of 40 deg. Patient-averaged PTV V95% (94.6% Coll-VMAT vs. 92.1% VMAT and 93.3% IMRT) and D95% (22.5 Gy vs. 21.4 Gy and 22.0 Gy, respectively) are highest with Coll-VMAT, and cord D05% (9.8 Gy vs. 10.0 Gy and 11.7 Gy) is lowest. Total beam-on time with Coll-VMAT (5,164 MU) is comparable to standard VMAT (4,868 MU) and substantially lower than IMRT (13,283 MU). Conclusion: Collimator trajectory optimization-based VMAT provides an additional degree of freedom that can improve target coverage and cord sparing of paraspinal SBRT plans compared with standard VMAT and IMRT approaches.

  2. Choreographing Couch and Collimator in Volumetric Modulated Arc Therapy

    SciTech Connect

    Yang Yingli; Zhang Pengpeng; Happersett, Laura; Xiong Jianping; Yang Jie; Chan, Maria; Beal, Kathryn; Mageras, Gig; Hunt, Margie

    2011-07-15

    Purpose: To design and optimize trajectory-based, noncoplanar subarcs for volumetric modulated arc therapy (VMAT) deliverable on both Varian TrueBEAM system and traditional accelerators; and to investigate their potential advantages for treating central nervous system (CNS) tumors. Methods and Materials: To guide the computerized selection of beam trajectories consisting of simultaneous couch, gantry, and collimator motion, a score function was implemented to estimate the geometric overlap between targets and organs at risk for each couch/gantry angle combination. An initial set of beam orientations is obtained as a function of couch and gantry angle, according to a minimum search of the score function excluding zones of collision. This set is grouped into multiple continuous and extended subarcs subject to mechanical limitations using a hierarchical clustering algorithm. After determination of couch/gantry trajectories, a principal component analysis finds the collimator angle at each beam orientation that minimizes residual target-organ at risk overlaps. An in-house VMAT optimization algorithm determines the optimal multileaf collimator position and monitor units for control points within each subarc. A retrospective study of 10 CNS patients compares the proposed method of VMAT trajectory with dynamic gantry, leaves, couch, and collimator motion (Tra-VMAT); a standard noncoplanar VMAT with no couch/collimator motion within subarcs (Std-VMAT); and noncoplanar intensity-modulated radiotherapy (IMRT) plans that were clinically used. Results: Tra-VMAT provided improved target dose conformality and lowered maximum dose to brainstem, optic nerves, and chiasm by 7.7%, 1.1%, 2.3%, and 1.7%, respectively, compared with Std-VMAT. Tra-VMAT provided higher planning target volume minimum dose and reduced maximum dose to chiasm, optic nerves, and cochlea by 6.2%, 1.3%, 6.3%, and 8.4%, respectively, and reduced cochlea mean dose by 8.7%, compared with IMRT. Tra-VMAT averaged

  3. The design and clinical utilities of a fan beam collimator for a SPECT system

    SciTech Connect

    Tsui, B.M.W.; Gullberg, G.T.; Edgerton, E.R.; Gilland, D.R.; Rho, T.; Johnston, R.E.; Perry, J.R.; McCartney, W.H.

    1984-01-01

    A low-energy fan-beam collimator (LEFB) designed for SPECT imaging of the head was evaluated using physical measurements, phantom and clinical studies. In the transverse image plane, the collimator holes are tapered and converged to a focal point 58 cm from the collimator face. In the longitudinal image plane, the collimator holes are straight and parallel. The collimator holes are hexagonal in shape and 13 cm in length. The extended hole design allows improved clearance of the patient's shoulders during rotation such that the collimator face may be positioned 8.5 cm closer to the patient's head than is possible with conventional collimators. At the center of rotation with the closest rotational radius, the spatial resolutions for the LEGP, LEHR, and LEFB collimators are 17.0, 14.4 and 12.2 mm, respectively. The point source sensitivities are 330, 220 and 190 (at 15 cm) cpm/..mu..Ci, respectively. Line spread functions at various distances from the collimator face, both in air and in water, were measured. Reconstruction algorithms and a special attenuation correction method for the fan beam geometry were developed and various reconstruction parameters for the LEFB collimator were determined experimentally. Images of a SPECT phantom were obtained to evaluate the imaging capabilities of the LEFB collimator and the reconstruction algorithm. Clinical comparison of SPECT bone images of the temporomandibular joints obtained with both LEGP and LEFB collimators on the same patients show superior image quality with the LEFB collimator.

  4. Helical tomotherapy quality assurance.

    PubMed

    Balog, John; Soisson, Emilie

    2008-01-01

    Helical tomotherapy uses a dynamic delivery in which the gantry, treatment couch, and multileaf collimator leaves are all in motion during treatment. This results in highly conformal radiotherapy, but the complexity of the delivery is partially hidden from the end-user because of the extensive integration and automation of the tomotherapy control systems. This presents a challenge to the medical physicist who is expected to be both a system user and an expert, capable of verifying relevant aspects of treatment delivery. A related issue is that a clinical tomotherapy planning system arrives at a customer's site already commissioned by the manufacturer, not by the clinical physicist. The clinical physicist and the manufacturer's representative verify the commissioning at the customer site before acceptance. Theoretically, treatment could begin immediately after acceptance. However, the clinical physicist is responsible for the safe and proper use of the machine. In addition, the therapists and radiation oncologists need to understand the important machine characteristics before treatment can proceed. Typically, treatment begins about 2 weeks after acceptance. This report presents an overview of the tomotherapy system. Helical tomotherapy has unique dosimetry characteristics, and some of those features are emphasized. The integrated treatment planning, delivery, and patient-plan quality assurance process is described. A quality assurance protocol is proposed, with an emphasis on what a clinical medical physicist could and should check. Additionally, aspects of a tomotherapy quality assurance program that could be checked automatically and remotely because of its inherent imaging system and integrated database are discussed. PMID:18406907

  5. Helical Tomotherapy Quality Assurance

    SciTech Connect

    Balog, John Soisson, Emilie

    2008-05-01

    Helical tomotherapy uses a dynamic delivery in which the gantry, treatment couch, and multileaf collimator leaves are all in motion during treatment. This results in highly conformal radiotherapy, but the complexity of the delivery is partially hidden from the end-user because of the extensive integration and automation of the tomotherapy control systems. This presents a challenge to the medical physicist who is expected to be both a system user and an expert, capable of verifying relevant aspects of treatment delivery. A related issue is that a clinical tomotherapy planning system arrives at a customer's site already commissioned by the manufacturer, not by the clinical physicist. The clinical physicist and the manufacturer's representative verify the commissioning at the customer site before acceptance. Theoretically, treatment could begin immediately after acceptance. However, the clinical physicist is responsible for the safe and proper use of the machine. In addition, the therapists and radiation oncologists need to understand the important machine characteristics before treatment can proceed. Typically, treatment begins about 2 weeks after acceptance. This report presents an overview of the tomotherapy system. Helical tomotherapy has unique dosimetry characteristics, and some of those features are emphasized. The integrated treatment planning, delivery, and patient-plan quality assurance process is described. A quality assurance protocol is proposed, with an emphasis on what a clinical medical physicist could and should check. Additionally, aspects of a tomotherapy quality assurance program that could be checked automatically and remotely because of its inherent imaging system and integrated database are discussed.

  6. Monte Carlo design of optimal wire mesh collimator for breast tumor imaging process

    NASA Astrophysics Data System (ADS)

    Saad, W. H. M.; Roslan, R. E.; Mahdi, M. A.; Choong, W.-S.; Saion, E.; Saripan, M. I.

    2011-08-01

    This paper presents the modeling of breast tumor imaging process using wire mesh collimator gamma camera. Previous studies showed that the wire mesh collimator has a potential to improve the sensitivity of the tumor detection. In this paper, we extend our research significantly, to find an optimal configuration of the wire mesh collimator specifically for semi-compressed breast tumor detection, by looking into four major factors: weight, sensitivity, spatial resolution and tumor contrast. The numbers of layers in the wire mesh collimator is varied to optimize the collimator design. The statistical variations of the results are studied by simulating multiple realizations for each experiment using different starting random numbers. All the simulation environments are modeled using Monte Carlo N-Particle Code (MCNP). The quality of the detection is measured directly by comparing the sensitivity, spatial resolution and tumor contrast of the images produced by the wire mesh collimator and benchmarked that with a standard multihole collimator. The proposed optimal configuration of the wire mesh collimator is optimized by selecting the number of layers in wire mesh collimator, where the tumor contrast shows a relatively comparable value to the multihole collimator, when it is tested with uniformly semi-compressed breast phantom. The wire mesh collimator showed higher number of sensitivity because of its loose arrangement while the spatial resolution of wire mesh collimator does not shows much different compared to the multihole collimator. With a relatively good tumor contrast and spatial resolution, and increased in sensitivity, a new proposed wire mesh collimator gives a significant improvement in the wire mesh collimator design for breast cancer imaging process. The proposed collimator configuration is reduced to 44.09% from the total multihole collimator weight.

  7. Simultaneous reduction of radiation dose and scatter for CBCT by using collimators

    SciTech Connect

    Li, Tianfang; Li, Xiang; Yang, Yong; Zhang, Yongqian; Heron, Dwight E.; Huq, M. Saiful

    2013-12-15

    Purpose: On-board cone-beam CT (CBCT) imaging has been widely available in radiotherapy clinic for target localization. However, the extra radiation dose from CBCT is always a concern for its frequent use. Additionally, the relatively large scatter in CBCT often degrades the image quality. By using collimators, some of the X-rays can be stopped from reaching the patient and the detectors, hence both the scatter and the patient doses are simultaneously reduced. The authors show in this work that the collimated CBCT data can be reconstructed without any noticeable artifacts for certain collimator blocking ratios and blocking patterns, and the focus of this work is to study the relationship between the image quality and these two collimator factors.Methods: A CBCT system with collimators was simulated following the typical geometry used in clinic. Different collimator designs were tested by varying the size and the number of the collimator slits, and at the same time, the ratio of transmitted beams to total beams was varied from 100% to 10%, resulting in hundreds of different simulation scenarios. Lung and pelvis phantoms created from patients CT images were used in the simulations, and an iterative reconstruction algorithm using the compressed sensing technique was adopted. The image quality was examined by root mean square errors (RMSEs) and compared with the conventional CBCT images.Results: The CBCT image quality increases as the amount of beams passing through the collimators increases, and decreases as the size of the collimator slits increases. With ultra-high resolution collimators, the RMSEs were comparable to the conventional CBCT image quality until the beam transmission rate is reduced below 25%.Conclusions: Collimators can reduce the scatters and radiation dose, however, the collimated CBCT image quality is strongly dependent on both the collimator blocking ratio and the blocking pattern. To achieve image quality comparable to the conventional CBCT, the

  8. High energy collimating fine grids

    NASA Technical Reports Server (NTRS)

    Arrieta, Victor M.; Tuffias, Robert H.; Laferla, Raffaele

    1995-01-01

    The objective of this project was to demonstrate the fabrication of extremely tight tolerance collimating grids using a high-Z material, specifically tungsten. The approach taken was to fabricate grids by a replication method involving the coating of a silicon grid substrate with tungsten by chemical vapor deposition (CVD). A negative of the desired grid structure was fabricated in silicon using highly wafering techniques developed for the semiconductor industry and capable of producing the required tolerances. Using diamond wafering blades, a network of accurately spaced slots was machined into a single-crystal silicon surface. These slots were then filled with tungsten by CVD, via the hydrogen reduction of tungsten hexafluoride. Following tungsten deposition, the silicon negative was etched away to leave the tungsten collimating grid structure. The project was divided into five tasks: (1) identify materials of construction for the replica and final collimating grid structures; (2) identify and implement a micromachining technique for manufacturing the negative collimator replicas (performed by NASA/JPL); (3) develop a CVD technique and processing parameters suitable for the complete tungsten densification of the collimator replicas; (4) develop a chemical etching technique for the removal of the collimator replicas after the tungsten deposition process; and (5) fabricate and deliver tungsten collimating grid specimens.

  9. Multileaf shielding design against neutrons produced by medical linear accelerators.

    PubMed

    Rebello, W F; Silva, A X; Facure, A

    2008-01-01

    This work aims at presenting a study using Monte Carlo simulation of a Multileaf Shielding (MLS) System designed to be used for the protection of patients who undergo radiotherapy treatment, against undesired exposure to neutrons produced in the components of the medical linear accelerator heads. The choice of radiotherapy equipment as the subject of study fell on the Varian Clinac 2,100/2,300 with MLC-120 operating at 18 MeV. The general purpose Monte Carlo N-Particle radiation transport code, MCNP5, was used in the computer simulation in order to determine the ambient dose equivalent, H (10), on several points on the patient's plane, with the equipment operation with and without the MLS. The results of the simulations showed a significant neutron dose reduction after the inclusion of the proposed shielding. PMID:17569690

  10. Optimization of the rounded leaf offset table in modeling the multileaf collimator leaf edge in a commercial treatment planning system.

    PubMed

    Rice, John R

    2014-01-01

    An editable rounded leaf offset (RLO) table is provided in the Pinnacle3 treatment planning software. Default tables are provided for major linear accelerator manu- facturers, but it is not clear how the default table values should be adjusted by the user to optimize agreement between the calculated leaf tip value and the actual measured value. Since we wish for the calculated MLC-defined field edge to closely match the actual delivered field edge, optimal RLO table values are crucial. This is especially true for IMRT fields containing a large number of segments, since any errors would add together. A method based on the calculated MLC-defined field edge was developed for optimizing and modifying the default RLO table values. Modified RLO tables were developed and evaluated for both dosimetric and light field-based MLC leaf calibrations. It was shown, using a Picket Fence type test, that the optimized RLO table better modeled the calculated leaf tip than the Pinnacle3 default table. This was demonstrated for both an Elekta Synergy 80-leaf and a Varian 120-leaf MLC.  PMID:25493515

  11. Wakefields in SLAC linac collimators

    NASA Astrophysics Data System (ADS)

    Novokhatski, A.; Decker, F.-J.; Smith, H.; Sullivan, M.

    2014-12-01

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. We also present results from experimental measurements that confirm our model.

  12. Half-cone beam collimation for triple-camera SPECT systems

    SciTech Connect

    Li, Jianying; Jaszczak, R.J.; Van Mullekom, A. |

    1996-03-01

    Cone-beam collimators provide increased sensitivity at similar resolution compared to other collimators. The use of cone-beam collimators for brain imaging with triple-camera SPECT systems, however, results in truncation of the base of the brain because of clearance of the shoulders. A half-cone beam collimator does not have the problem of truncation. The objective of this study was to compare the performance characteristics of half-cone beam with parallel-beam and fan-beam collimators with similar resolution characteristics for SPECT imaging of the brain. A half-cone beam collimator with the focal point located towards the base of the brain was built for a triple-camera SPECT system. Spatial resolutions and sensitivities of three collimators were measured. When 10-cm from the collimator surface, the planar spatial resolutions FWHM in mm (point source sensitivities in cps-MBq) for half-cone beam, fan-beam and parallel-beam collimators were 5.2 (85.6), 5.1 (55.6) and 5.9 (39.7), respectively. Image quality was evaluated using a three-dimensional Hoffman brain phantom and patient data. The deeper gray matter were more clearly visualized in the half-cone beam scans. Half-cone beam collimation provides higher sensitivity and offers the potential for improved brain imaging compared with parallel-beam and fan-beam collimation when used with a triple-camera SPECT system. 23 refs., 9 figs., 1 tab.

  13. Design of collimating system for LED source

    NASA Astrophysics Data System (ADS)

    Shen, Yanan; Huang, Yifan; Xing, Han

    2013-12-01

    Along with the development of semiconductor lighting technology, LED chip is widely used as the source of the glare flashlight. Collimating the light of the source and improving the utilization rate of light energy is crucial. The collimating lens is designed by the theory of geometrical optics and the theory of non-imaging optics. The small angle light from the source is collimated through the collimating lens surface, and the large angle light is collimated by the total reflection of the collimating lens. The collimating lens has a high light energy utilization and a good collimating performance. The collimation system is simulated and optimized in the Lighttools software. When the size of the LED chip is 1 mm*1 mm, the energy utilization rate of the collimating lens is more than 95%, and most lighting area radii are no more than 8 m when the illuminated plane is 500 m away from the light source.

  14. Mechanical and dosimetric quality control for computer controlled radiotherapy treatment equipment.

    PubMed

    Thompson, A V; Lam, K L; Balter, J M; McShan, D L; Martel, M K; Weaver, T A; Fraass, B A; Ten Haken, R K

    1995-05-01

    Modern computer controlled radiotherapy treatment equipment offers the possibility of delivering complex, multiple field treatments with minimal operator intervention, thus making multiple field conformal therapy practical. Conventional quality control programs are inadequate for this new technology, so new quality control procedures are needed. A reasonably fast, sensitive, and complete daily quality control program has been developed in our clinic that includes nearly automated mechanical as well as dosimetric tests. Automated delivery of these quality control fields is performed by the control system of the MM50 racetrack microtron, directed by the CCRS sequence processor [D. L. McShan and B. A. Fraass, Proceedings of the XIth International Conference on the use of computers in Radiation Therapy, 20-24 March 1994, Manchester, U.K. (North Western Medical Physics Department, Manchester, U.K., 1994), pp. 210-211], which controls the treatment process. The mechanical tests involve multiple irradiations of a single film to check the accuracy and reproducibility of the computer controlled setup of gantry and collimator angles, table orientation, collimator jaws, and multileaf collimator shape. The dosimetric tests, which involve multiple irradiations of an array of ionization chambers in a commercial dose detector (Keithly model 90100 Tracker System) rigidly attached to the head of the treatment gantry, check the output and symmetry of the treatment unit as a function of gantry and collimator angle and other parameters. For each of the dosimetric tests, readings from the five ionization chambers are automatically read out, stored, and analyzed by the computer, along with the geometric parameters of the treatment unit for that beam.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7643792

  15. SU-E-T-11: A Dosimetric Comparison of Robotic Prostatic Radiosugery Using Multi- Leaf Collimation Vs Circular Collimators

    SciTech Connect

    Feng, J; Yang, J; Lamond, J; Lavere, N; Laciano, R; Ding, W; Arrigo, S; Brady, L

    2014-06-01

    Purpose: The study compared the dosimetry plans of Stereotatic Body Radiotherapy (SBRT) prostate cancer patients using the M6 Cyberknife with Multi-leaf Collimation (MLC) compared with the plans using G4 Cyberknife with circular collimators. Methods: Eight previously treated prostate cancer patients' SBRT plans using circular collimators, designed with Multiplan v3.5.3, were used as a benchmark. The CT, contours and the optimization scripts were imported into Multiplan v5.0 system and replanned with MLC. The same planning objectives were used: more than 95% of PTV received 36.25Gy, 90% of prostate received 40Gy and maximum dose <45Gy, in five fractions. For organs at risk, less than 1cc of rectum received 36Gy and less than 10cc of bladder received 37Gy. Plans were evaluated on parameters derived from dose volume. The beam number, MU and delivery time were recorded to compare the treatment efficiency. Results: The mean CTV volume was 41.3cc (27.5∼57.6cc) and mean PTV volume was 76.77cc (59.1∼99.7cc). The mean PTV coverage was comparable between MLC (98.87%) and cone (98.74%). MLC plans had a slightly more favorable homogeneity index (1.22) and conformity index (1.17), than the cone (1.24 and 1.15). The mean rectum volume of 36 Gy (0.52cc) of MLC plans was slightly larger than cone (0.38cc) and the mean bladder volume of 37 Gy was smaller in MLC (1.82cc) than in cone plans (3.09cc). The mean number of nodes and beams were 65.9 and 80.5 in MLC vs 65.9 and 203.6 in cone. The mean MUs were significantly less for MLC plans (24,228MUs) than cone (32,347MUs). The total delivery time (which included 5 minutes for setup) was less, 29.6min (26∼32min) for MLC vs 45min (35∼55min) for cone. Conclusion: While the differences in the dosimetry between the MLC and circular collimator plans were rather minor, the MLC plans were much more efficient and required significantly less treatment time.

  16. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    PubMed Central

    Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanner. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present an LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3-D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the nonnegative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  17. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    NASA Astrophysics Data System (ADS)

    Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  18. Binocular collimation vs conditional alignment

    NASA Astrophysics Data System (ADS)

    Cook, William J.

    2012-10-01

    As binocular enthusiasts share their passion, topics related to collimation abound. Typically, we find how observers, armed only with a jeweler's screwdriver, can "perfectly collimate" his or her binocular, make it "spot on," or other verbiage of similar connotation. Unfortunately, what most are addressing is a form of pseudo-collimation I have referred to since the mid-1970s as "Conditional Alignment." Ignoring the importance of the mechanical axis (hinge) in the alignment process, this "condition," while having the potential to make alignment serviceable, or even outstanding—within a small range of IPD (Interpupillary Distance) settings relative to the user's spatial accommodation (the ability to accept small errors in parallelism of the optical axes)—may take the instrument farther from the 3-axis collimation conscientious manufacturers seek to implement. Becoming more optically savvy—and especially with so many mechanically inferior binoculars entering the marketplace— the consumer contemplating self-repair and alignment has a need to understand the difference between clinical, 3-axis "collimation" (meaning both optical axes are parallel with the axis of the hinge) and "conditional alignment," as differentiated in this paper. Furthermore, I believe there has been a long-standing need for the term "Conditional Alignment," or some equivalent, to be accepted as part of the vernacular of those who use binoculars extensively, whether for professional or recreational activities. Achieving that acceptance is the aim of this paper.

  19. Beam Collimation at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Mokhov, N. V.

    2003-12-01

    Operational and accidental beam losses in hadron colliders can have a serious impact on machine and detector performance, resulting in effects ranging from minor to catastrophic. Principles and realization are described for a reliable beam collimation system required to sustain favorable background conditions in the collider detectors, provide quench stability of superconducting magnets, minimize irradiation of accelerator equipment, maintain operational reliability over the life of the machine, and reduce the impact of radiation on personnel and the environment. Based on detailed Monte-Carlo simulations, such a system has been designed and incorporated in the Tevatron collider. Its performance, comparison to measurements and possible ways to further improve the collimation efficiency are described in detail. Specifics of the collimation systems designed for the SSC, LHC, VLHC, and HERA colliders are discussed.

  20. Collimation with hollow electron beams.

    PubMed

    Stancari, G; Valishev, A; Annala, G; Kuznetsov, G; Shiltsev, V; Still, D A; Vorobiev, L G

    2011-08-19

    A novel concept of controlled halo removal for intense high-energy beams in storage rings and colliders is presented. It is based on the interaction of the circulating beam with a 5-keV, magnetically confined, pulsed hollow electron beam in a 2-m-long section of the ring. The electrons enclose the circulating beam, kicking halo particles transversely and leaving the beam core unperturbed. By acting as a tunable diffusion enhancer and not as a hard aperture limitation, the hollow electron beam collimator extends conventional collimation systems beyond the intensity limits imposed by tolerable losses. The concept was tested experimentally at the Fermilab Tevatron proton-antiproton collider. The first results on the collimation of 980-GeV antiprotons are presented. PMID:21929171

  1. Analysing collimator structure effects in head-scatter calculations for IMRT class fields using scatter raytracing.

    PubMed

    Naqvi, S A; Sarfaraz, M; Holmes, T; Yu, C X; Li, X A

    2001-07-01

    The frequent blocking of the irradiated volume in intensity modulated radiation therapy (IMRT) makes the head-scatter fraction of the incident photon fluence more significant than that in conventional therapy with open fields. On the other hand. certain collimator configurations block scatter photons directed to a given observation point while allowing primary photons to be transmitted. The 'anomalous blocking' makes the primary field a poor indicator of the scatter fluence. Since large MU-to-cGy ratios in IMRT can magnify head-scatter uncertainties, it becomes necessary to accurately model both the effective scatter source and the collimator structure that limits the scatter reaching the irradiated volume. First we obtain a dual-source model, using a Taylor series expansion to derive the effective scatter source distribution from the data measured for the Elekta SL20 linac equipped with a multi-leaf collimator (MLC). Then, using a raytracing algorithm, we calculate the transmission of scatter rays from the effective scatter source plane to points in the patient plane. The method can account for the anomalous blocking of scatter by the MLC leaves and the backup diaphragms. For a variety of collimator settings tested, the calculations agree with measurements to an accuracy of 0.002psi10 x 10, where psi10 x 10 is the total (primary + scatter) photon fluence of an open 10 x 10 cm2 field for the same MU delivered. Although the significance of collimator structure in IMRT depends strongly on fields shapes employed for the delivery, potential cumulative errors on the order of a few per cent can be avoided in fluence calculations if the proposed method is used. PMID:11474941

  2. Incorporating dynamic collimator motion in Monte Carlo simulations: an application in modelling a dynamic wedge.

    PubMed

    Verhaegen, F; Liu, H H

    2001-02-01

    In radiation therapy, new treatment modalities employing dynamic collimation and intensity modulation increase the complexity of dose calculation because a new dimension, time, has to be incorporated into the traditional three-dimensional problem. In this work, we investigated two classes of sampling technique to incorporate dynamic collimator motion in Monte Carlo simulation. The methods were initially evaluated for modelling enhanced dynamic wedges (EDWs) from Varian accelerators (Varian Medical Systems, Palo Alto, USA). In the position-probability-sampling or PPS method, a cumulative probability distribution function (CPDF) was computed for the collimator position, which could then be sampled during simulations. In the static-component-simulation or SCS method, a dynamic field is approximated by multiple static fields in a step-shoot fashion. The weights of the particles or the number of particles simulated for each component field are computed from the probability distribution function (PDF) of the collimator position. The CPDF and PDF were computed from the segmented treatment tables (STTs) for the EDWs. An output correction factor had to be applied in this calculation to account for the backscattered radiation affecting monitor chamber readings. Comparison of the phase-space data from the PPS method (with the step-shoot motion) with those from the SCS method showed excellent agreement. The accuracy of the PPS method was further verified from the agreement between the measured and calculated dose distributions. Compared to the SCS method, the PPS method is more automated and efficient from an operational point of view. The principle of the PPS method can be extended to simulate other dynamic motions, and in particular, intensity-modulated beams using multileaf collimators. PMID:11229715

  3. Plug Would Collimate X Rays

    NASA Technical Reports Server (NTRS)

    Anders, Jeffrey E.; Adams, James F.

    1989-01-01

    Device creates narrow, well-defined beam for radiographic measurements of thickness. Cylindrical plug collimates and aligns X rays with respect to through holes in parts. Helps in determination of wall thickness by radiography. Lead absorbs X rays that do not pass axially through central hole. Lead/vinyl seals prevent off-axis rays from passing along periphery of plug.

  4. Proton Collimators for Fusion Reactors

    NASA Technical Reports Server (NTRS)

    Miley, George H.; Momota, Hiromu

    2003-01-01

    Proton collimators have been proposed for incorporation into inertial-electrostatic-confinement (IEC) fusion reactors. Such reactors have been envisioned as thrusters and sources of electric power for spacecraft and as sources of energetic protons in commercial ion-beam applications.

  5. Carbon nanotube collimator fabrication and application

    DOEpatents

    Chow, Lee; Chai, Guangyu; Schenkel, Thomas

    2010-07-06

    Apparatus, methods, systems and devices for fabricating individual CNT collimators. Micron size fiber coated CNT samples are synthesized with chemical vapor deposition method and then the individual CNT collimators are fabricated with focused ion beam technique. Unfocused electron beams are successfully propagated through the CNT collimators. The CNT nano-collimators are used for applications including single ion implantation and in high-energy physics, and allow rapid, reliable testing of the transmission of CNT arrays for transport of molecules.

  6. High resolution alpha particle spectrometry through collimation

    NASA Astrophysics Data System (ADS)

    Park, Seunghoon; Kwak, Sung-Woo; Kang, Han-Byeol

    2015-06-01

    Alpha particle spectrometry with collimation is a useful method for identifying nuclear materials among various nuclides. A mesh type collimator reduces the low energy tail and broadened energy distribution by cutting off particles with a low incidence angle. The relation between the resolution and the counting efficiency can be investigated by changing a ratio of the mesh hole diameter and the collimator thickness. Through collimation, a target particle can be distinguished by a PIPS® detector under a mixture of various nuclides.

  7. Collimator with attachment mechanism and system

    DOEpatents

    Kross, Brian J.; McKisson, John; Stolin, Aleksandr; Weisenberger, Andrew G.; Zorn, Carl

    2012-07-10

    A self-aligning collimator for a radiation imaging device that is secured and aligned through the use of a plurality of small magnets. The collimator allows for the rapid exchange, removal, or addition of collimators for the radiation imaging device without the need for tools. The accompanying method discloses the use of magnets and accompanying magnetic fields to align and secure collimators in a radiation imaging assembly.

  8. Optimizing Collimator Margins for Isotoxically Dose-Escalated Conformal Radiation Therapy of Non-Small Cell Lung Cancer

    SciTech Connect

    Warren, Samantha; Panettieri, Vanessa; Panakis, Niki; Bates, Nicholas; Lester, Jason F.; Jain, Pooja; Landau, David B.; Nahum, Alan E.; Mayles, W. Philip M.; Fenwick, John D.

    2014-04-01

    Purpose: Isotoxic dose escalation schedules such as IDEAL-CRT [isotoxic dose escalation and acceleration in lung cancer chemoradiation therapy] (ISRCTN12155469) individualize doses prescribed to lung tumors, generating a fixed modeled risk of radiation pneumonitis. Because the beam penumbra is broadened in lung, the choice of collimator margin is an important element of the optimization of isotoxic conformal radiation therapy for lung cancer. Methods and Materials: Twelve patients with stage I-III non-small cell lung cancer (NSCLC) were replanned retrospectively using a range of collimator margins. For each plan, the prescribed dose was calculated according to the IDEAL-CRT isotoxic prescription method, and the absolute dose (D{sub 99}) delivered to 99% of the planning target volume (PTV) was determined. Results: Reducing the multileaf collimator margin from the widely used 7 mm to a value of 2 mm produced gains of 2.1 to 15.6 Gy in absolute PTV D{sub 99}, with a mean gain ± 1 standard error of the mean of 6.2 ± 1.1 Gy (2-sided P<.001). Conclusions: For NSCLC patients treated with conformal radiation therapy and an isotoxic dose prescription, absolute doses in the PTV may be increased by using smaller collimator margins, reductions in relative coverage being offset by increases in prescribed dose.

  9. Mechanical and Thermal Prototype Testing for a Rotatable Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Doyle, Eric; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; /SLAC

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z, low impedance Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and testing of this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. A prototype collimator jaw has been tested for both mechanical and thermal compliance with the design goals. Thermal expansion bench-top tests are compared to ANSYS simulation results.

  10. A new CT collimator for producing two simultaneous overlapping slices from one scan. [for biomedical applications

    NASA Technical Reports Server (NTRS)

    Kwoh, Y. S.; Glenn, W. V., Jr.; Reed, I. S.; Truong, T. K.

    1981-01-01

    A new CT collimator is developed which is capable of producing two simultaneous successive overlapping images from a single scan. The collimator represents a modification of the standard EMI 5005 collimator achieved by alternately masking one end or portions of both ends of the X-ray detectors at a 13-mm beamwidth so that a set of 540 filtered projections is obtained for each scan which can be separated into two sets of interleaved projections corresponding to views 3 mm apart. Tests have demonstrated that the quality of the images produced from these two projections almost equals the quality of those produced by the standard collimator from two separate scans. The new collimator may thus be used to achieve a speed improvement in the generation of overlapping sections as well as a reduction in X-ray dosage.

  11. Anatomically shaped cranial collimation (ACC) for lateral cephalometric radiography: a technical report.

    PubMed

    Hoogeveen, R C; van der Stelt, P F; Berkhout, W E R

    2014-01-01

    Lateral cephalograms in orthodontic practice display an area cranial of the base of the skull that is not required for diagnostic evaluation. Attempts have been made to reduce the radiation dose to the patient using collimators combining the shielding of the areas above the base of the skull and below the mandible. These so-called "wedge-shaped" collimators have not become standard equipment in orthodontic offices, possibly because these collimators were not designed for today's combination panoramic-cephalometric imaging systems. It also may be that the anatomical variability of the area below the mandible makes this area unsuitable for standardized collimation. In addition, a wedge-shaped collimator shields the cervical vertebrae; therefore, assessment of skeletal maturation, which is based on the stage of development of the cervical vertebrae, cannot be performed. In this report, we describe our investigations into constructing a collimator to be attached to the cephalostat and shield the cranial area of the skull, while allowing the visualization of diagnostically relevant structures and markedly reducing the size of the irradiated area. The shape of the area shielded by this "anatomically shaped cranial collimator" (ACC) was based on mean measurements of cephalometric landmarks of 100 orthodontic patients. It appeared that this collimator reduced the area of irradiation by almost one-third without interfering with the imaging system or affecting the quality of the image. Further research is needed to validate the clinical efficacy of the collimator. PMID:24170799

  12. Cardiac single-photon emission-computed tomography using combinedcone-beam/fan-beam collimation

    SciTech Connect

    Gullberg, Grant T.; Zeng, Gengsheng L.

    2004-12-03

    The objective of this work is to increase system sensitivity in cardiac single-photon emission-computed tomography (SPECT) studies without increasing patient imaging time. For imaging the heart, convergent collimation offers the potential of increased sensitivity over that of parallel-hole collimation. However, if a cone-beam collimated gamma camera is rotated in a planar orbit, the projection data obtained are not complete. Two cone-beam collimators and one fan-beam collimator are used with a three-detector SPECT system. The combined cone-beam/fan-beam collimation provides a complete set of data for image reconstruction. The imaging geometry is evaluated using data acquired from phantom and patient studies. For the Jaszazck cardiac torso phantom experiment, the combined cone-beam/fan-beam collimation provided 1.7 times greater sensitivity than standard parallel-hole collimation (low-energy high-resolution collimators). Also, phantom and patient comparison studies showed improved image quality. The combined cone-beam/fan-beam imaging geometry with appropriate weighting of the two data sets provides improved system sensitivity while measuring sufficient data for artifact free cardiac images.

  13. Comparison of Monte Carlo collimator transport methods for photon treatment planning in radiotherapy

    SciTech Connect

    Schmidhalter, D.; Manser, P.; Frei, D.; Volken, W.; Fix, M. K.

    2010-02-15

    Purpose: The aim of this work was a Monte Carlo (MC) based investigation of the impact of different radiation transport methods in collimators of a linear accelerator on photon beam characteristics, dose distributions, and efficiency. Thereby it is investigated if it is possible to use different simplifications in the radiation transport for some clinical situations in order to save calculation time. Methods: Within the Swiss Monte Carlo Plan, a GUI-based framework for photon MC treatment planning, different MC methods are available for the radiation transport through the collimators [secondary jaws and multileaf collimator (MLC)]: EGSnrc (reference), VMC++, and Pin (an in-house developed MC code). Additional nonfull transport methods were implemented in order to provide different complexity levels for the MC simulation: Considering collimator attenuation only, considering Compton scatter only or just the firstCompton process, and considering the collimators as totally absorbing. Furthermore, either a simple or an exact geometry of the collimators can be selected for the absorbing or attenuation method. Phasespaces directly above and dose distributions in a water phantom are analyzed for academic and clinical treatment fields using 6 and 15 MV beams, including intensity modulated radiation therapy with dynamic MLC. Results: For all MC transport methods, differences in the radial mean energy and radial energy fluence are within 1% inside the geometric field. Below the collimators, the energy fluence is underestimated for nonfull MC transport methods ranging from 5% for Compton to 100% for Absorbing. Gamma analysis using EGSnrc calculated doses as reference shows that the percentage of voxels fulfilling a 1% /1 mm criterion is at least 98% when using VMC++, Compton, or firstCompton transport methods. When using the methods Pin, Transmission, Flat-Transmission, Flat-Absorbing or Absorbing, the mean value of points fulfilling this criterion over all tested cases is 97

  14. Optimization of the CLIC Baseline Collimation System

    SciTech Connect

    Resta-Lopez, Javier; Angal-Kalinin, Deepa; Fernandez-Hernando, Juan; Jackson, Frank; Dalena, Barbara; Schulte, Daniel; Tomas, Rogelio; Seryi, Andrei; /SLAC

    2012-07-06

    Important efforts have recently been dedicated to the improvement of the design of the baseline collimation system of the Compact Linear Collider (CLIC). Different aspects of the design have been optimized: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers have also been reviewed to minimize wakefields; in addition, the optics design have been polished to improve the collimation efficiency. This paper describes the current status of the CLIC collimation system after this optimization.

  15. Multi-resolution multi-sensitivity design for parallel-hole SPECT collimators.

    PubMed

    Li, Yanzhao; Xiao, Peng; Zhu, Xiaohua; Xie, Qingguo

    2016-07-21

    Multi-resolution multi-sensitivity (MRMS) collimator offering adjustable trade-off between resolution and sensitivity, can make a SPECT system adaptive. We propose in this paper a new idea for MRMS design based on, for the first time, parallel-hole collimators for clinical SPECT. Multiple collimation states with varied resolution/sensitivity trade-offs can be formed by slightly changing the collimator's inner structure. To validate the idea, the GE LEHR collimator is selected as the design prototype and is modeled using a ray-tracing technique. Point images are generated for several states of the design. Results show that the collimation states of the design can obtain similar point response characteristics to parallel-hole collimators, and can be used just like parallel-hole collimators in clinical SPECT imaging. Ray-tracing modeling also shows that the proposed design can offer varied resolution/sensitivity trade-offs: at 100 mm before the collimator, the highest resolution state provides 6.9 mm full width at a half maximum (FWHM) with a nearly minimum sensitivity of about 96.2 cps MBq(-1), while the lowest resolution state obtains 10.6 mm FWHM with the highest sensitivity of about 167.6 cps MBq(-1). Further comparisons of the states on image qualities are conducted through Monte Carlo simulation of a hot-spot phantom which contains five hot spots with varied sizes. Contrast-to-noise ratios (CNR) of the spots are calculated and compared, showing that different spots can prefer different collimation states: the larger spots obtain better CNRs by using the larger sensitivity states, and the smaller spots prefer the higher resolution states. In conclusion, the proposed idea can be an effective approach for MRMS design for parallel-hole SPECT collimators. PMID:27359049

  16. High-intensity beam collimation and targetry

    SciTech Connect

    Mokhov, N.V.; /Fermilab

    2006-11-01

    Principles, design criteria and realization of reliable collimation systems for the high-power accelerators and hadron colliders are described. Functionality of collimators as the key elements of the machine protection system are discussed along with the substantial progress on the crystal collimation front. The key issues are considered in design of high-power target systems and achieving their best performance. Simulation code requirements are presented.

  17. Recent Progress on the Design of a Rotatable Copper Collimator for the LHC Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; Lari, Luisella; /Cern /EPFL-ISIC

    2009-08-03

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite collimators with 30 high Z Phase II collimators. One option is to use metallic rotatable collimators and this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. Design issues include: (1) Collimator jaw deflection due to heating and sagitta must be small when operated in the steady state condition, (2) Collimator jaws must withstand transitory periods of high beam impaction with no permanent damage, (3) Jaws must recover from accident scenario where up to 8 full intensity beam pulses impact on the jaw surface and (4) The beam impedance contribution due to the collimators must be small to minimize coherent beam instabilities. This paper reports on recent updates to the design and testing.

  18. A simple and effective method for validation and measurement of collimator output factors for Leksell Gamma Knife® Perfexion™

    NASA Astrophysics Data System (ADS)

    Ma, Lijun; Kjäll, Per; Novotny, Josef Jr; Nordström, Håkan; Johansson, Jonas; Verhey, Lynn

    2009-06-01

    Accurate determination of collimator output factors is important for Leksell Gamma Knife radiosurgery. The new Leksell Gamma Knife® Perfexion™ system has a completely redesigned collimator system and the collimator output factors are different from the other Leksell Gamma Knife® models. In this study, a simple method was developed to validate the collimator output factors specifically for Leksell Gamma Knife® Perfexion™. The method uses double-shot exposures on a single film to eliminate repeated setups and the necessity to acquire dose calibration curves required for the traditional film exposure method. Using the method, the collimator output factors with respect to the 16 mm collimator were measured to be 0.929 ± 0.009 and 0.817 ± 0.012 for the 8 mm and the 4 mm collimator, respectively. These values are in agreement (within 2%) with the default values of 0.924 and 0.805 in the Leksell Gamma Plan® treatment planning system. These values also agree with recently published results of 0.917 (8 mm collimator) and 0.818 (4 mm collimator) obtained from the traditional methods. Given the efficiency of the method, measurement and validation of the collimator output factors can be readily adopted in commissioning and quality assurance of a Leksell Gamma Knife® Perfexion™ system.

  19. Multi-resolution multi-sensitivity design for parallel-hole SPECT collimators

    NASA Astrophysics Data System (ADS)

    Li, Yanzhao; Xiao, Peng; Zhu, Xiaohua; Xie, Qingguo

    2016-07-01

    Multi-resolution multi-sensitivity (MRMS) collimator offering adjustable trade-off between resolution and sensitivity, can make a SPECT system adaptive. We propose in this paper a new idea for MRMS design based on, for the first time, parallel-hole collimators for clinical SPECT. Multiple collimation states with varied resolution/sensitivity trade-offs can be formed by slightly changing the collimator’s inner structure. To validate the idea, the GE LEHR collimator is selected as the design prototype and is modeled using a ray-tracing technique. Point images are generated for several states of the design. Results show that the collimation states of the design can obtain similar point response characteristics to parallel-hole collimators, and can be used just like parallel-hole collimators in clinical SPECT imaging. Ray-tracing modeling also shows that the proposed design can offer varied resolution/sensitivity trade-offs: at 100 mm before the collimator, the highest resolution state provides 6.9 mm full width at a half maximum (FWHM) with a nearly minimum sensitivity of about 96.2 cps MBq‑1, while the lowest resolution state obtains 10.6 mm FWHM with the highest sensitivity of about 167.6 cps MBq‑1. Further comparisons of the states on image qualities are conducted through Monte Carlo simulation of a hot-spot phantom which contains five hot spots with varied sizes. Contrast-to-noise ratios (CNR) of the spots are calculated and compared, showing that different spots can prefer different collimation states: the larger spots obtain better CNRs by using the larger sensitivity states, and the smaller spots prefer the higher resolution states. In conclusion, the proposed idea can be an effective approach for MRMS design for parallel-hole SPECT collimators.

  20. Dual-prism interferometer for collimation testing

    SciTech Connect

    Hii, King Ung; Kwek, Kuan Hiang

    2009-01-10

    An air-wedge lateral-shear interferometer using two prisms is presented. With a variable shear, the interferometer is suitable for testing collimation of a wide range of beam sizes down to a few millimeters in diameter. No antireflection coatings are necessary. Collimation for a light source with short coherent length is also demonstrated.

  1. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, W.K.

    1983-12-16

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  2. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, William K.

    1985-01-01

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  3. Collimator design for the NSNS accumulator ring

    SciTech Connect

    Ludewig, H.; Schmidt, E.; Aronson, A.; Walker, J.; Todosow, M.; Mughabghab, S.

    1997-10-01

    Collimators are used to remove halo or off-momentum particles from the main proton beam. Off-momentum particles are removed by situating collimators in high dispersion areas of the beam. In addition to removing halo particles collimators will also act as shielding for the remainder of the accelerator structures. Thus, collimators reduce uncontrolled losses around the ring and reduce activation of the accelerator components. Requirements and performance goals for the collimator are summarized. In order to meet these goals a self-shielding collimator configuration will be designed. An arrangement consisting of a layered structure will be considered. The initial layers (in the direction of the proton beam) are transparent to protons, and become progressively less transparent (blacker) with depth into the collimator. In addition, a high density (iron) shield will be added around this structure, particularly in the backward direction, to attenuate any reflected protons. The protons are stopped in the approximate center of the collimator, and thus the bulk of the secondary particles will also be generated there. Since these secondary particles are primarily produced isotropically their leakage path length will be maximized in this manner (high probability of capture or attenuation). In the case of neutrons a black layer is included at each end in order to further minimize their leakage in the direction of the beam. This design will therefore minimize the activation of surrounding accelerator components.

  4. Collimation testing by use of the Lau effect coupled with moire readout

    SciTech Connect

    Rana, Santosh; Prakash, Shashi

    2006-05-10

    We present an easy, simple, and inexpensive technique for checking the quality of the collimation of optical beams using the Lau effect combined with moire readout. The experimental arrangement consists of a modified Lau-based interferometer in which a white-light incoherent source illuminates a set of two gratings. A collimating lens is placed between the two gratings such that the self-images of the second grating are formed. The third grating is positioned at one of the self-imaging planes forming moire fringes. The type of the moire fringe demonstrates the quality of collimation of the optical beam. The necessary theoretical background is presented and the results of our experimental investigation are reported. The technique can also be used for accurate determination of the focal length of a collimating lens using low-cost components.

  5. Construction and Bench Testing of a Rotatable Collimator for the LHC Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas; /SLAC

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. The Phase II collimators must be robust in various operating conditions and accident scenarios. This paper reports on the final construction and testing of the prototype collimator to be installed in the SPS (Super Proton Synchrotron) at CERN. Bench-top measurements will demonstrate that the device is fully operational and has the mechanical and vacuum characteristics acceptable for installation in the SPS.

  6. The PEP-II Movable Collimators

    SciTech Connect

    DeBarger, S.; Metcalfe, S.; Ng, C.; Porter, T.G.; Seeman, J.; Sullivan, M.; Wienands, U.; /SLAC

    2006-03-13

    Three movable collimators have been manufactured for installation in the PEP-II LER and HER beamlines upstream of BaBar to improve backgrounds in BaBar by a factor of 2. Each collimator has a pair of horizontally opposed, water cooled jaws with RF finger seals all around the edge of the jaws, these seals are the only sliding parts inside the vacuum chamber. Each jaw travels independently through a distance of 16.5 mm (LER) or 21mm (HER) and is supported above the collimator from motorized slideways with position feedback. The larger HER collimator has a titanium sublimation pump incorporated into the underside of the collimator, pumping through RF screens in the bottom of the chamber. Water cooled fixed ramps protect the leading and trailing edges of the jaws.

  7. Soller collimators for small angle neutron scattering

    SciTech Connect

    Crawford, R.K.; Epperson, J.E.; Thiyagarajan, P.

    1988-09-30

    Small angle diffractometers at pulsed sources need to have fairly short flight paths if they are to make use of the long-wavelength portion of the spectrum without encountering problems from frame overlap or sacrificing intensity with band-limiting or pulse-removing choppers. With such short flight paths, achieving the necessary angular collimation in the incident beam while utilizing the full source size (/approximately/10 cm diameter) and a reasonable sample size (/approximately/1 cm diameter) requires the use of converging multiple-aperture collimation. If the collimation channels are all focused to the same point on the detector then the large sample size will not affect Q/sub min/ or the Q-resolution, even if the sample-to-detector distance is short. The Small Angle Diffractometer (SAD) at IPNS uses crossed converging soller collimators to provide focusing multiple-aperture collimation having /approximately/400 converging beam channels with essentially no ''dead'' space between them. This entire collimator system occupies a distance of only /approximately/60 cm along the incident flight path, while providing angular collimation of 0.003 radians FWHM. The dimensions for the SAD upstream collimator are L/sub c/ = 32.8 cm, d/sub 1/ = 0.974 mm, d/sub 2/ = 0.851 mm, while for the SAD downstream collimator L/sub c/ = 25.0 cm, d/sub 1/ - 0.844 mm, d/sub 2/ = 0.750 mm. Each of these collimators has 20 blades defining 21 horizontal or vertical channels. 4 refs., 6 figs.

  8. Field size effect of radiation quality in carbon therapy using passive method

    SciTech Connect

    Nose, H.; Kase, Y.; Matsufuji, N.; Kanai, T.

    2009-03-15

    The authors have investigated the dependency of radiation quality and absorbed dose on radiation field size in therapeutic carbon beams. The field size of the broad beam, formed using the passive technique, was controlled from 20 to 100 mm per side with a multileaf collimator. The absorbed dose and radiation quality on the beam center were evaluated at several depths in a water phantom using microdosimetric technique in experiments and Monte Carlo simulations. With an increase in the field size, the radiation quality was reduced, although the absorbed dose grew at the center of the field. This indicates that the dose and radiation quality at the center of the broad beam are influenced by particles from the off-center region via large-angle scattering and that such particles have relatively low radiation quality and mainly consist of fragment particles. Because such a tendency appeared to be more remarkable in the deeper region of the water phantom, it is likely that fragment particles that are born in a water phantom have a marked role in determining the field size effect.

  9. Collimator performance evaluation for In-111 SPECT using a detection/localization task

    NASA Astrophysics Data System (ADS)

    Lu, Yihuan; Chen, Lin; Gindi, Gene

    2014-02-01

    In SPECT, the collimator is a crucial element in controlling image quality. We take a task performance approach to collimator performance evaluation in which an ideal observer is applied to the raw camera data without regard to the subsequent reconstruction stage. The clinical context of our collimator study is one of searching for and detecting neuroendocrine tumor metastases in the liver as seen in In-111 Octreotide SPECT. Our task involves detection and localization of a signal and thus differs from the conventionally used detection-only task. The scalar task performance metric is ALROC, the area under the localization receiver operating characteristic curve. Since In-111 emits photons at both 171 and 245 keV, the higher energy emissions can contribute significant septal scatter and penetration. Our collimator evaluations address a question previously considered by Mähler et al (2012 IEEE Trans. Nucl. Sci. 59 47-53) who used a different methodology: does allowing a limited amount of septal scatter and penetration yield improved task performance? We used simulation methods to evaluate five parallel-hole collimators. The collimators had roughly equal geometric sensitivity and resolution but a range of contributions from septal effects leading to variations in total sensitivity and resolution. We found that the best performance was obtained with a collimator that allowed a moderate amount of septal scatter and penetration.

  10. Geometrical Wake of a Smooth Flat Collimator

    SciTech Connect

    Stupakov, G.V.; /SLAC

    2011-09-09

    A transverse geometrical wake generated by a beam passing through a smooth flat collimator with a gradually varying gap between the upper and lower walls is considered. Based on generalization of the approach recently developed for a smooth circular taper we reduce the electromagnetic problem of the impedance calculation to the solution of two much simpler static problems - a magnetostatic and an electrostatic ones. The solution shows that in the limit of not very large frequencies, the impedance increases with the ratio h/d where h is the width and d is the distance between the collimating jaws. Numerical results are presented for the NLC Post Linac collimator.

  11. Trapped Mode Study For A Rotatable Collimator Design For The LHC Upgrade

    SciTech Connect

    Xiao, Liling; Ng, Cho-Kuen; Smith, Jeffery Claiborne; Caspers, Fritz; /SLAC /CERN

    2009-06-23

    A rotatable collimator is proposed for the LHC phase II collimation upgrade. When the beam crosses the collimator, it will excite trapped modes that can contribute to the beam energy loss and power dissipation on the vacuum chamber wall. Transverse trapped modes can also generate transverse kicks on the beam and may thus affect the beam quality. In this paper, the parallel eigensolver code Omega3P is used to search for all the trapped modes below 2 GHz in two collimator designs, one with rectangular and the other with circular vacuum chamber. It is found that the longitudinal trapped modes in the circular vacuum chamber design may cause excessive heating. Adding ferrite tiles on the circular vacuum chamber wall can strongly damp these trapped modes. We will present and discuss the simulation results.

  12. Collimation of laser-produced proton beam

    NASA Astrophysics Data System (ADS)

    Takano, M.; Nagashima, T.; Izumiyama, T.; Gu, Y. J.; Barada, D.; Kong, Q.; Wang, P. X.; Ma, Y. Y.; Wang, W. M.; Kawata, S.

    2016-03-01

    In intense laser plasma interaction for particle acceleration several issues remain to be solved. In this paper we focus on a collimation of ion beam, which is produced by a laser plasma interaction. In this study, the ion beam is collimated by a thin film target. When an intense short pulse laser illuminates a target, target electrons are accelerated, and create an electron cloud that generates a sheath electric field at the target surface. Such the ion acceleration mechanism is called the target normal sheath acceleration (TNSA). The TNSA field would be used for the ion beam collimation by the electric field. We have successfully obtained a collimated beam in our particle-in-cell simulations.

  13. Variable aperture collimator for high energy radiation

    DOEpatents

    Hill, Ronald A.

    1984-05-22

    An apparatus is disclosed providing a variable aperture energy beam collimator. A plurality of beam opaque blocks are in sliding interface edge contact to form a variable aperture. The blocks may be offset at the apex angle to provide a non-equilateral aperture. A plurality of collimator block assemblies may be employed for providing a channel defining a collimated beam. Adjacent assemblies are inverted front-to-back with respect to one another for preventing noncollimated energy from emerging from the apparatus. An adjustment mechanism comprises a cable attached to at least one block and a hand wheel mechanism for operating the cable. The blocks are supported by guide rods engaging slide brackets on the blocks. The guide rods are pivotally connected at each end to intermediate actuators supported on rotatable shafts to change the shape of the aperture. A divergent collimated beam may be obtained by adjusting the apertures of adjacent stages to be unequal.

  14. Quasi-random array imaging collimator

    DOEpatents

    Fenimore, E.E.

    1980-08-20

    A hexagonally shaped quasi-random no-two-holes-touching imaging collimator. The quasi-random array imaging collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasing throughput by elimination of a substrate. The present invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  15. Solid Collection Efforts: Ta Collimator Evaluation

    SciTech Connect

    Gostic, J M

    2011-11-21

    Ta collimator sets that were part of the gated x-ray detector diagnostic (GXD) at NIF were analyzed for debris distribution and damage in 2011. These disks (ranging in thickness from 250 to 750 {mu}m) were fielded approximately 10 cm from target chamber center (TCC) on various symcap, THD and re-emit shots. The nose cone holder and forward Ta collimator (facing target chamber center, TCC) from all shots show evidence of surface melt. Non-destructive analysis techniques such as optical microscopy, surface profilometry, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray fluorescence (XRF) were used to determine debris composition and degree of deformation associated with each Ta disk. Molten debris from the stainless steel nose cone contaminated the surface of the collimators along with other debris associated with the target assembly (Al, Si, Cu, Au and In). Surface elemental analysis of the forward collimator Ta disks indicates that Au hohlraum debris is less concentrated on these samples versus those fielded 50 cm from TCC in the wedge range filter (WRF) assembly. It is possible that the Au is distributed below or within the stainless steel melt layer covering the disk, as most of the foreign debris is captured in the melted coating. The other disks (fielded directly behind the forward collimator in a sandwiched configuration) have visible forms of deformation and warping. The degree of warping increases as the shock wave penetrates the assembly with the most damage sustained on the back collimator. In terms of developing a solid collection capability, the collimator analyses suggests that close proximity may cause more interference with capsule debris collection and more damage to the surface of the collector diagnostic. The analyses of the Ta collimators were presented to the Target and Laser Interaction Sphere (TaLIS) group; a representative presentation is attached to this document.

  16. Review of freeform TIR collimator design methods

    NASA Astrophysics Data System (ADS)

    Talpur, Taimoor; Herkommer, Alois

    2016-04-01

    Total internal reflection (TIR) collimators are essential illumination components providing high efficiency and uniformity in a compact geometry. Various illumination design methods have been developed for designing such collimators, including tailoring methods, design via optimization, the mapping and feedback method, and the simultaneous multiple surface (SMS) method. This paper provides an overview of the different methods and compares the performance of the methods along with their advantages and their limitations.

  17. Comparison of Carbon and Hi-Z Primary Collimators for the LHC Phase II Collimation System

    SciTech Connect

    Keller, Lewis; Markiewicz, Thomas; Smith, Jeffrey; Assmann, Ralph; Bracco, Chiara; Weiler, Thomas; /Karlsruhe, Inst. Technol.

    2011-10-31

    A current issue with the LHC collimation system is single-diffractive, off-energy protons from the primary collimators that pass completely through the secondary collimation system and are absorbed immediately downbeam in the cold magnets of the dispersion suppressor section. Simulations suggest that the high impact rate could result in quenching of these magnets. We have studied replacing the 60 cm primary graphite collimators, which remove halo mainly by inelastic strong interactions, with 5.25 mm tungsten, which remove halo mainly by multiple coulomb scattering and thereby reduce the rate of single-diffractive interactions that cause losses in the dispersion suppressor.

  18. Wake fields in SLAC Linac Collimators

    SciTech Connect

    Novokhatski, Alexander; Decker, F. -J.; Smith, H.; Sullivan, M.

    2014-12-02

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. In addition, we also present results from experimental measurements that confirm our model.

  19. New Methods of Particle Collimation in Colliders

    SciTech Connect

    Stancari, Giulio; /Fermilab

    2011-10-01

    The collimation system is an essential part of the design of any high-power accelerator. Its functions include protection of components from accidental and intentional energy deposition, reduction of backgrounds, and beam diagnostics. Conventional multi-stage systems based on scatterers and absorbers offer robust shielding and efficient collection of losses. Two complementary concepts have been proposed to address some of the limitations of conventional systems: channeling and volume reflection in bent crystals and collimation with hollow electron beams. The main focus of this paper is the hollow electron beam collimator, a novel concept based on the interaction of the circulating beam with a 5-keV, magnetically confined, pulsed hollow electron beam in a 2-m-long section of the ring. The electrons enclose the circulating beam, kicking halo particles transversely and leaving the beam core unperturbed. By acting as a tunable diffusion enhancer and not as a hard aperture limitation, the hollow electron beam collimator extends conventional collimation systems beyond the intensity limits imposed by tolerable losses. The concept was tested experimentally at the Fermilab Tevatron proton-antiproton collider. Results on the collimation of 980-GeV antiprotons are presented, together with prospects for the future.

  20. Collimator optimization and collimator-detector response compensation in myocardial perfusion SPECT using the ideal observer with and without model mismatch and an anthropomorphic model observer

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Links, Jonathan M.; Frey, Eric C.

    2016-03-01

    The collimator is the primary factor that determines the spatial resolution and noise tradeoff in myocardial perfusion SPECT images. In this paper, the goal was to find the collimator that optimizes the image quality in terms of a perfusion defect detection task. Since the optimal collimator could depend on the level of approximation of the collimator-detector response (CDR) compensation modeled in reconstruction, we performed this optimization for the cases of modeling the full CDR (including geometric, septal penetration and septal scatter responses), the geometric CDR, or no model of the CDR. We evaluated the performance on the detection task using three model observers. Two observers operated on data in the projection domain: the Ideal Observer (IO) and IO with Model-Mismatch (IO-MM). The third observer was an anthropomorphic Channelized Hotelling Observer (CHO), which operated on reconstructed images. The projection-domain observers have the advantage that they are computationally less intensive. The IO has perfect knowledge of the image formation process, i.e. it has a perfect model of the CDR. The IO-MM takes into account the mismatch between the true (complete and accurate) model and an approximate model, e.g. one that might be used in reconstruction. We evaluated the utility of these projection domain observers in optimizing instrumentation parameters. We investigated a family of 8 parallel-hole collimators, spanning a wide range of resolution and sensitivity tradeoffs, using a population of simulated projection (for the IO and IO-MM) and reconstructed (for the CHO) images that included background variability. We simulated anterolateral and inferior perfusion defects with variable extents and severities. The area under the ROC curve was estimated from the IO, IO-MM, and CHO test statistics and served as the figure-of-merit. The optimal collimator for the IO had a resolution of 9-11 mm FWHM at 10 cm, which is poorer resolution than typical collimators

  1. Collimator optimization and collimator-detector response compensation in myocardial perfusion SPECT using the ideal observer with and without model mismatch and an anthropomorphic model observer.

    PubMed

    Ghaly, Michael; Links, Jonathan M; Frey, Eric C

    2016-03-01

    The collimator is the primary factor that determines the spatial resolution and noise tradeoff in myocardial perfusion SPECT images. In this paper, the goal was to find the collimator that optimizes the image quality in terms of a perfusion defect detection task. Since the optimal collimator could depend on the level of approximation of the collimator-detector response (CDR) compensation modeled in reconstruction, we performed this optimization for the cases of modeling the full CDR (including geometric, septal penetration and septal scatter responses), the geometric CDR, or no model of the CDR. We evaluated the performance on the detection task using three model observers. Two observers operated on data in the projection domain: the Ideal Observer (IO) and IO with Model-Mismatch (IO-MM). The third observer was an anthropomorphic Channelized Hotelling Observer (CHO), which operated on reconstructed images. The projection-domain observers have the advantage that they are computationally less intensive. The IO has perfect knowledge of the image formation process, i.e. it has a perfect model of the CDR. The IO-MM takes into account the mismatch between the true (complete and accurate) model and an approximate model, e.g. one that might be used in reconstruction. We evaluated the utility of these projection domain observers in optimizing instrumentation parameters. We investigated a family of 8 parallel-hole collimators, spanning a wide range of resolution and sensitivity tradeoffs, using a population of simulated projection (for the IO and IO-MM) and reconstructed (for the CHO) images that included background variability. We simulated anterolateral and inferior perfusion defects with variable extents and severities. The area under the ROC curve was estimated from the IO, IO-MM, and CHO test statistics and served as the figure-of-merit. The optimal collimator for the IO had a resolution of 9-11 mm FWHM at 10 cm, which is poorer resolution than typical collimators

  2. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers.

    PubMed

    Arbabi, Amir; Briggs, Ryan M; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei

    2015-12-28

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 μm distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36° and beam quality factor of M2=1.02. PMID:26831996

  3. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir; Briggs, Ryan M.; Horie, Yu; Bagheri, Mahmood; Faraon, Andrei

    2015-12-01

    Light emitted from single-mode semiconductor lasers generally has large divergence angles, and high numerical aperture lenses are required for beam collimation. Visible and near infrared lasers are collimated using aspheric glass or plastic lenses, yet collimation of mid-infrared quantum cascade lasers typically requires more costly aspheric lenses made of germanium, chalcogenide compounds, or other infrared-transparent materials. Here we report mid-infrared dielectric metasurface flat lenses that efficiently collimate the output beam of single-mode quantum cascade lasers. The metasurface lenses are composed of amorphous silicon posts on a flat sapphire substrate and can be fabricated at low cost using a single step conventional UV binary lithography. Mid-infrared radiation from a 4.8 $\\mu$m distributed-feedback quantum cascade laser is collimated using a polarization insensitive metasurface lens with 0.86 numerical aperture and 79% transmission efficiency. The collimated beam has a half divergence angle of 0.36$^\\circ$ and beam quality factor of $M^2$=1.02.

  4. Performance characterization of a new CZT-based preclinical SPECT system: a comparative study of different collimators

    NASA Astrophysics Data System (ADS)

    Yu, A. R.; Park, S.-J.; Choi, Y. Y.; Kim, K. M.; Kim, H.-J.

    2015-09-01

    Triumph X-SPECT is a newly released CZT-based preclinical small-animal SPECT system with interchangeable collimators. The purpose of this work was to evaluate and systematically compare the imaging performances of three different collimators in the CZT-based preclinical small-animal system: a single-pinhole collimator (SPH), a multi-pinhole collimator (MPH) and a parallel-hole collimator. We measured the spatial resolutions and sensitivities of the three collimators with 99mTc sources, considering three distinct energy window widths (5, 10, and 20%), and used the NEMA NU4-2008 Image Quality phantom to test the imaging performance of the three collimators in terms of uniformity and spill-over ratio (SOR) for each energy window. With a 10% energy window width at a radius of rotation (ROR) of 30 mm, the system resolution of the SPH, MPH and parallel-hole collimators was 0.715, 0.855 and 3.270 mm FWHM, respectively. For the same energy window, the sensitivity of the system with SPH, MPH and parallel-hole collimators was 32.860, 152.514 and 49.205 counts/sec/MBq at a 100 mm source-to-detector distance and 6.790, 33.376 and 49.038 counts/sec/MBq at a 130 mm source-to-detector distance, respectively. The image noise and SORair for the three collimators were 20.137, 12.278 and 11.232 (%STDunif) and 0.106, 0.140 and 0.161, respectively. Overall, the results show that the SPH had better spatial resolution than the other collimators. The MPH had the highest sensitivity at 100 mm source-to-collimator distance, and the parallel-hole collimator had the highest sensitivity at 130 mm-source-to-detector distance. Therefore, the proper collimator for Triumph X-SPECT system must be determined by the task. These results provide valuable reference data and insight into the imaging performance of various collimators in CZT-based preclinical small-animal SPECT.

  5. Upgrade scenario for the RHIC collimation system

    SciTech Connect

    Robert-Demolaize, G.; Drees, A.

    2012-01-19

    The RHIC collimation system is used to reduce background levels in both STAR and PHENIX detectors. With a push for higher luminosity in the near future, it becomes critical to check if and how the level of performance of the collimators can be improved. The following reviews a proposal for additional collimators placed further downstream of the current system and designed to intercept the tertiary halo coming out of the IR8 insertion before it can reach the triplet quadrupoles in either STAR or PHENIX. Simulations have been peformed to quantify the efficiency of additional collimator jaws in RHIC. Each figure presented in this article clearly shows that the additional mask collimators provide the expected reduction in losses around the machine, and especially to the incoming triplet to the STAR experiment (IP6), for the Yellow beam as much as for the Blue beam. Looking at compiled statistics for all three working point cases studied, proton losses around the machine are reduced by roughly one order of magnitude: at most a factor 30 for magnet losses, and at most a factor 40 for losses in spaces between magnets.

  6. Prototype magnified and collimated autostereoscopic displays

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    1996-04-01

    Experiments indicate that the volume of virtual space within which stereoscopic images can be seen comfortably, without eye discomfort, fusion difficulty, or inaccuracies in perceived depth, is dependent upon the eye to screen distance. This volume is maximized when the screen appears to be at infinity--that is, when it is collimated. With the image collimated, objects located within a virtual space extending from a few feet in front of the observer to infinity can be viewed comfortably. Collimation also reduces the distortion seen in stereoscopic images when viewing them from off axis locations. DTI is developing two magnified and collimated autostereoscopic displays. One uses a collimation module designed for out the window simulators to provide a very wide angle, immersive image that is potentially well suited to flight simulators and video games. Another, more compact version uses Fresnel lenses to magnify the images of a high resolution 13.8" diagonal LCD to the same angular size as a 21" display seen at 30". This variation may be more suited to desktop displays. It provides resolution, color palette, and apparent screen size equivalent to a high end CRT.

  7. A SPECT imager with synthetic collimation

    PubMed Central

    Havelin, Ronan J.; Miller, Brian W.; Barrett, Harrison H.; Furenlid, Lars R.; Murphy, J M; Foley, Mark J.

    2015-01-01

    This work outlines the development of a multi-pinhole SPECT system designed to produce a synthetic-collimator image of a small field of view. The focused multi-pinhole collimator was constructed using rapid-prototyping and casting techniques. The collimator projects the field of view through forty-six pinholes when the detector is adjacent to the collimator. The detector is then moved further from the collimator to increase the magnification of the system. The amount of pinhole-projection overlap increases with the system magnification. There is no rotation in the system; a single tomographic angle is used in each system configuration. The maximum-likelihood expectation-maximization (MLEM) algorithm is implemented on graphics processing units to reconstruct the object in the field of view. Iterative reconstruction algorithms, such as MLEM, require an accurate model of the system response. For each system magnification, a sparsely-sampled system response is measured by translating a point source through a grid encompassing the field of view. The pinhole projections are individually identified and associated with their respective apertures. A 2D elliptical Gaussian model is applied to the pinhole projections on the detector. These coefficients are associated with the object-space location of the point source, and a finely-sampled system matrix is interpolated. Simulations with a hot-rod phantom demonstrate the efficacy of combining low-resolution non-multiplexed data with high-resolution multiplexed data to produce high-resolution reconstructions. PMID:26346410

  8. Using an EPID for patient-specific VMAT quality assurance

    SciTech Connect

    Bakhtiari, M.; Kumaraswamy, L.; Bailey, D. W.; Boer, S. de; Malhotra, H. K.; Podgorsak, M. B.

    2011-03-15

    Purpose: A patient-specific quality assurance (QA) method was developed to verify gantry-specific individual multileaf collimator (MLC) apertures (control points) in volumetric modulated arc therapy (VMAT) plans using an electronic portal imaging device (EPID). Methods: VMAT treatment plans were generated in an Eclipse treatment planning system (TPS). DICOM images from a Varian EPID (aS1000) acquired in continuous acquisition mode were used for pretreatment QA. Each cine image file contains the grayscale image of the MLC aperture related to its specific control point and the corresponding gantry angle information. The TPS MLC file of this RapidArc plan contains the leaf positions for all 177 control points (gantry angles). In-house software was developed that interpolates the measured images based on the gantry angle and overlays them with the MLC pattern for all control points. The 38% isointensity line was used to define the edge of the MLC leaves on the portal images. The software generates graphs and tables that provide analysis for the number of mismatched leaf positions for a chosen distance to agreement at each control point and the frequency in which each particular leaf mismatches for the entire arc. Results: Seven patients plans were analyzed using this method. The leaves with the highest mismatched rate were found to be treatment plan dependent. Conclusions: This in-house software can be used to automatically verify the MLC leaf positions for all control points of VMAT plans using cine images acquired by an EPID.

  9. Characterization of parallel-hole collimator using Monte Carlo Simulation

    PubMed Central

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Karunanithi, Sellam; Kumar, Praveen; Bal, Chandrasekhar; Kumar, Rakesh

    2015-01-01

    Objective: Accuracy of in vivo activity quantification improves after the correction of penetrated and scattered photons. However, accurate assessment is not possible with physical experiment. We have used Monte Carlo Simulation to accurately assess the contribution of penetrated and scattered photons in the photopeak window. Materials and Methods: Simulations were performed with Simulation of Imaging Nuclear Detectors Monte Carlo Code. The simulations were set up in such a way that it provides geometric, penetration, and scatter components after each simulation and writes binary images to a data file. These components were analyzed graphically using Microsoft Excel (Microsoft Corporation, USA). Each binary image was imported in software (ImageJ) and logarithmic transformation was applied for visual assessment of image quality, plotting profile across the center of the images and calculating full width at half maximum (FWHM) in horizontal and vertical directions. Results: The geometric, penetration, and scatter at 140 keV for low-energy general-purpose were 93.20%, 4.13%, 2.67% respectively. Similarly, geometric, penetration, and scatter at 140 keV for low-energy high-resolution (LEHR), medium-energy general-purpose (MEGP), and high-energy general-purpose (HEGP) collimator were (94.06%, 3.39%, 2.55%), (96.42%, 1.52%, 2.06%), and (96.70%, 1.45%, 1.85%), respectively. For MEGP collimator at 245 keV photon and for HEGP collimator at 364 keV were 89.10%, 7.08%, 3.82% and 67.78%, 18.63%, 13.59%, respectively. Conclusion: Low-energy general-purpose and LEHR collimator is best to image 140 keV photon. HEGP can be used for 245 keV and 364 keV; however, correction for penetration and scatter must be applied if one is interested to quantify the in vivo activity of energy 364 keV. Due to heavy penetration and scattering, 511 keV photons should not be imaged with HEGP collimator. PMID:25829730

  10. Laser beam collimation using Talbot interferometry

    NASA Technical Reports Server (NTRS)

    Ganesan, A. R.; Venkateswarlu, Putcha

    1993-01-01

    A modified method of checking laser beam collimation using a single grating and a right-angled prism is presented. The self-images (Talbot images) of a grating illuminated by a collimated beam are formed at some distance from the grating. The use of a right-angled prism makes it possible to carry out the folding of the self-image with respect to the original grating and to ensure that the grating lines in the self-image and the actual grating are inclined at equal angles with respect to horizontal direction. It is concluded that the proposed collimation test method has an in-built reference and does not require precise orientation of the grating as in the two-grating method. Large beams can be tested with a small-size assembly.

  11. Macrostrain measurement using radial collimators at LANSCE

    SciTech Connect

    Bourke, M.A.M.; Roberts, J.A.; Davis, D.

    1996-06-01

    A series of `short` radial collimators have been implemented in the 90{degrees} scattering geometries on the neutron powder diffractometer at Los Alamos. The capability to perform macrostrain measurements has been improved by the commensurate ability to rapidly select a sampling volume appropriate to the specimen. The compact design of the collimators was dictated by the need to fit them in a cylindrical vacuum chamber as well as providing space in which to manipulate a specimen in three dimensions. Collimators of different vane lengths were fabricated to give 4 different resolutions for which 2/3 of the diffracted intensity comes form distances of 0.75, 1. 25, 2.5, and 4.0 mm along the incident beam. Qualifying scans and a demonstration of a cracked ring, containing a steep stress gradient, are included.

  12. Channeling collimation studies at the Fermilab Tevatron

    SciTech Connect

    Carrigan, Richard A.; Drozhdin, Alexandr I.; Fliller, Raymond P., III; Mokhov, Nikolai V.; Shiltsev, Vladimir D.; Still, Dean A.; /Fermilab

    2006-08-01

    Bent crystal channeling has promising advantages for accelerator beam collimation at high energy hadron facilities such as the LHC. This significance has been amplified by several surprising developments including multi-pass channeling and the observation of enhanced deflections over the entire arc of a bent crystal. The second effect has been observed both at RHIC and recently at the Tevatron. Results are reported showing channeling collimation of the circulating proton beam halo at the Tevatron. Parenthetically, this study is the highest energy proton channeling experiment ever carried out. The study is continuing.

  13. Radiation collimator and systems incorporating same

    DOEpatents

    Norman, Daren R.; Yoon, Woo Y.; Jones, James L.; Haskell, Kevin J.; Bennett, Brion D.; Tschaggeny, Charles W.; Jones, Warren F.

    2011-09-13

    A collimator including a housing having disposed therein a shield element surrounding a converter core in which a photon beam is generated from electrons emanating from a linear accelerator. A beam channeler longitudinally adjacent the shield element has a beam aperture therethrough coaxially aligned with, and of the same diameter as, an exit bore of the converter core. A larger entry bore in the converter core is coaxial with, and longitudinally separated from, the exit bore thereof. Systems incorporating the collimator are also disclosed.

  14. A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: A multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking

    PubMed Central

    Colvill, Emma; Booth, Jeremy; Nill, Simeon; Fast, Martin; Bedford, James; Oelfke, Uwe; Nakamura, Mitsuhiro; Poulsen, Per; Worm, Esben; Hansen, Rune; Ravkilde, Thomas; Scherman Rydhög, Jonas; Pommer, Tobias; Munck af Rosenschold, Per; Lang, Stephanie; Guckenberger, Matthias; Groh, Christian; Herrmann, Christian; Verellen, Dirk; Poels, Kenneth; Wang, Lei; Hadsell, Michael; Sothmann, Thilo; Blanck, Oliver; Keall, Paul

    2016-01-01

    Purpose A study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion. Methods and materials Ten institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for γ-tests recorded. Results For all lung traces all measurement sets show improved dose accuracy with a mean 2%/2 mm γ-fail rate of 1.6% with adaptation and 15.2% without adaptation (p < 0.001). For all prostate the mean 2%/2 mm γ-fail rate was 1.4% with adaptation and 17.3% without adaptation (p < 0.001). The difference between the four systems was small with an average 2%/2 mm γ-fail rate of <3% for all systems with adaptation for lung and prostate. Conclusions The investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods. PMID:27016171

  15. Strict X-ray beam collimation for facial bones examination can increase lens exposure

    PubMed Central

    Powys, R; Robinson, J; Kench, P L; Ryan, J; Brennan, P C

    2012-01-01

    Objectives It is well accepted that collimation is a cost-effective dose-reducing tool for X-ray examinations. This phantom-based study investigated the impact of X-ray beam collimation on radiation dose to the lenses of the eyes and thyroid along with the effect on image quality in facial bone radiography. Methods A three-view series (occipitomental, occipitomental 30 and lateral) was investigated, and radiation doses to the lenses and thyroid were measured using an Unfors dosemeter. Images were assessed by six experienced observers using a visual grading analysis and a total of 5400 observations were made. Results Strict collimation significantly (p<0.0001) reduced the radiation dose to the lenses of the eyes and thyroid when using a fixed projection-specific exposure. With a variable exposure technique (fixed exit dose, to simulate the behaviour of an automatic exposure control), while strict collimation was again shown to reduce thyroid dose, higher lens doses were demonstrated when compared with larger fields of exposure. Image quality was found to significantly improve using strict collimation, with observer preference being demonstrated using visual grading characteristic curves. Conclusion The complexities of optimising radiographic techniques have been shown and the data presented emphasise the importance of examining dose-reducing strategies in a comprehensive way. PMID:22374279

  16. Design Studies of a CZT-based Detector Combined with a Pixel-Geometry-Matching Collimator for SPECT Imaging.

    PubMed

    Weng, Fenghua; Bagchi, Srijeeta; Huang, Qiu; Seo, Youngho

    2013-10-01

    Single Photon Emission Computed Tomography (SPECT) suffers limited efficiency due to the need for collimators. Collimator properties largely decide the data statistics and image quality. Various materials and configurations of collimators have been investigated in many years. The main thrust of our study is to evaluate the design of pixel-geometry-matching collimators to investigate their potential performances using Geant4 Monte Carlo simulations. Here, a pixel-geometry-matching collimator is defined as a collimator which is divided into the same number of pixels as the detector's and the center of each pixel in the collimator is a one-to-one correspondence to that in the detector. The detector is made of Cadmium Zinc Telluride (CZT), which is one of the most promising materials for applications to detect hard X-rays and γ-rays due to its ability to obtain good energy resolution and high light output at room temperature. For our current project, we have designed a large-area, CZT-based gamma camera (20.192 cm×20.192 cm) with a small pixel pitch (1.60 mm). The detector is pixelated and hence the intrinsic resolution can be as small as the size of the pixel. Materials of collimator, collimator hole geometry, detection efficiency, and spatial resolution of the CZT detector combined with the pixel-matching collimator were calculated and analyzed under different conditions. From the simulation studies, we found that such a camera using rectangular holes has promising imaging characteristics in terms of spatial resolution, detection efficiency, and energy resolution. PMID:25378898

  17. Design Studies of a CZT-based Detector Combined with a Pixel-Geometry-Matching Collimator for SPECT Imaging

    PubMed Central

    Weng, Fenghua; Bagchi, Srijeeta; Huang, Qiu; Seo, Youngho

    2014-01-01

    Single Photon Emission Computed Tomography (SPECT) suffers limited efficiency due to the need for collimators. Collimator properties largely decide the data statistics and image quality. Various materials and configurations of collimators have been investigated in many years. The main thrust of our study is to evaluate the design of pixel-geometry-matching collimators to investigate their potential performances using Geant4 Monte Carlo simulations. Here, a pixel-geometry-matching collimator is defined as a collimator which is divided into the same number of pixels as the detector’s and the center of each pixel in the collimator is a one-to-one correspondence to that in the detector. The detector is made of Cadmium Zinc Telluride (CZT), which is one of the most promising materials for applications to detect hard X-rays and γ-rays due to its ability to obtain good energy resolution and high light output at room temperature. For our current project, we have designed a large-area, CZT-based gamma camera (20.192 cm×20.192 cm) with a small pixel pitch (1.60 mm). The detector is pixelated and hence the intrinsic resolution can be as small as the size of the pixel. Materials of collimator, collimator hole geometry, detection efficiency, and spatial resolution of the CZT detector combined with the pixel-matching collimator were calculated and analyzed under different conditions. From the simulation studies, we found that such a camera using rectangular holes has promising imaging characteristics in terms of spatial resolution, detection efficiency, and energy resolution. PMID:25378898

  18. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: quality assurance for clinical radiotherapy treatment planning.

    PubMed

    Fraass, B; Doppke, K; Hunt, M; Kutcher, G; Starkschall, G; Stern, R; Van Dyke, J

    1998-10-01

    In recent years, the sophistication and complexity of clinical treatment planning and treatment planning systems has increased significantly, particularly including three-dimensional (3D) treatment planning systems, and the use of conformal treatment planning and delivery techniques. This has led to the need for a comprehensive set of quality assurance (QA) guidelines that can be applied to clinical treatment planning. This document is the report of Task Group 53 of the Radiation Therapy Committee of the American Association of Physicists in Medicine. The purpose of this report is to guide and assist the clinical medical physicist in developing and implementing a comprehensive but viable program of quality assurance for modern radiotherapy treatment planning. The scope of the QA needs for treatment planning is quite broad, encompassing image-based definition of patient anatomy, 3D beam descriptions for complex beams including multileaf collimator apertures, 3D dose calculation algorithms, and complex plan evaluation tools including dose volume histograms. The Task Group recommends an organizational framework for the task of creating a QA program which is individualized to the needs of each institution and addresses the issues of acceptance testing, commissioning the planning system and planning process, routine quality assurance, and ongoing QA of the planning process. This report, while not prescribing specific QA tests, provides the framework and guidance to allow radiation oncology physicists to design comprehensive and practical treatment planning QA programs for their clinics. PMID:9800687

  19. Multiple wavelength light collimator and monitor

    NASA Technical Reports Server (NTRS)

    Gore, Warren J. (Inventor)

    2011-01-01

    An optical system for receiving and collimating light and for transporting and processing light received in each of N wavelength ranges, including near-ultraviolet, visible, near-infrared and mid-infrared wavelengths, to determine a fraction of light received, and associated dark current, in each wavelength range in each of a sequence of time intervals.

  20. The acceleration and collimation of jets.

    PubMed Central

    Begelman, M C

    1995-01-01

    I will discuss several issues related to the acceleration, collimation, and propagation of jets from active galactic nuclei. Hydromagnetic stresses provide the best bet for both accelerating relativistic flows and providing a certain amount of initial collimation. However, there are limits to how much "self-collimation" can be achieved without the help of an external pressurized medium. Moreover, existing models, which postulate highly organized poloidal flux near the base of the flow, are probably unrealistic. Instead, a large fraction of the magnetic energy may reside in highly disorganized "chaotic" fields. Such a field can also accelerate the flow to relativistic speeds, in some cases with greater efficiency than highly organized fields, but at the expense of self-collimation. The observational interpretation of jet physics is still hampered by a dearth of unambiguous diagnostics. Propagating disturbances in flows, such as the oblique shocks that may constitute the kiloparsec-scale "knots" in the M87 jet, may provide a wide range of untapped diagnostics for jet properties. PMID:11607615

  1. A Monte Carlo model for quality assurance of intensity-modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Aaronson, Randi Fogg

    Intensity modulated radiotherapy provides improved target coverage and reduced dose to surrounding normal tissues compared with conformal radiotherapy. However, computational quality assurance is more challenging for the complex fluence maps used in IMRT treatments, and direct measurements can be labor-intensive. A Monte Carlo based phase space model has been developed based on the Novalis linear accelerator to simulate arbitrary static fields and IMRT sequences. The basis for the model is the MCNP4C code, which accounts for the lack of lateral electronic equilibrium present in the small fields used in IMRT. This work is based on a virtual phase space source model, which is a two-step process. In the first step, the open beam fluence is calculated by simulating the components of the linear accelerator treatment head above the field defining multileaf collimator. This is done one time for a machine, and the resulting fluence map is used in all subsequent dose calculations. In the second step, this fluence map is then adjusted to match the physical beam using an intensity grid, which incorporates a detailed model of the multileaf collimator. The intensity grid accounts for the shaped leaf tip geometry and the beam divergence that influence the dose at the edge of the open leaves. It includes the transmission through the leaves, the leakage between them, and the tongue-and-groove design, which affect the dose under the leaves. The variation in beam energy across the field is also incorporated with a look-up table of effective attenuation coefficients based on the position in the field. The model can simulate both segmented and dynamic sequences. Depth dose and profile calculations for three field sizes agree well with measurement. Irregular field calculations in homogeneous media are compared with film measurement, and IMRT plan simulations in heterogeneous media are compared with film measurement and an accepted treatment planning system. These results show the

  2. Conceptual design of 1.5m aperture vertical collimator assembly with short tube and long focus

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Ming, Ming; Wang, Fu-guo; Zhang, Li-min; Chen, Bao-gang; Shao, Liang

    2013-09-01

    In order to evaluate and test the image quality of large aperture telescope, the most directly method is adopting the collimator and test the telescope system with full aperture. Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) commenced developing the large aperture collimator for interferometric and image quality testing of meter scale optical systems under cryogenic, vacuum conditions. The aperture of the collimator which has been on the conceptual design phase is 1.5m diameter, and the optical configuration is Cassegrain, the focus is 50m. The material of reaction bonded Silicon Carbide (RB-SiC) produced by CIOMP will be used as the primary mirror substrate. And the figure accuracy of the primary mirror will be polished better than 15nm (RMS). The collimator will be working in a vacuum chamber and face down vertically to the unit under test. The application requirements, specification requirements, and some key technology are demonstrated and analysed with finite element analysis (FEA) in the paper. The feasibility, error budget, and hazards evaluation of the collimator are fulfilled by the FEA results. It demonstrated that the conceptual design meet the requirements of the 1.5m aperture vertical collimator, and could achieve the high accuracy requirements of the wavefront for the beam of light in the vacuum chamber, which the wavefront error should less than 32nm(RMS). Mechanical alignment errors induced by thermal and structural perturbations are monitored with an auto-focusing system to enable focus compensation. The ambient temperature of the collimator in chamber are controlled allowing testing while the chamber shrouds and test unit are brought to cryogenic temperatures. With the high accuracy of the wavefront, the collimator could test the image resolution, modulation transfer functions (MTFs), point spread functions (PSFs), encircled energy, wavefront error, best focus, etc. for optical systems. And the conceptual design could be

  3. Can Collimated Extraterrestrial Signals be Intercepted?

    NASA Astrophysics Data System (ADS)

    Forgan, D. H.

    2014-06-01

    The Optical Search for Extraterrestrial Intelligence (OSETI) attempts to detect collimated, narrow-band pulses of electromagnetic radiation. These pulses may either consist of signals intentionally directed at the Earth, or signals between two star systems with a vector that unintentionally intersects the Solar System, allowing Earth to intercept the communication. But should we expect to be able to intercept these unintentional signals? And what constraints can we place upon the frequency of intelligent civilisations if we do? We carry out Monte Carlo Realisation simulations of interstellar communications between civilisations in the Galactic Habitable Zone (GHZ) using collimated beams. We measure the frequency with which beams between two stars are intercepted by a third. The interception rate increases linearly with the fraction of communicating civilisations, and as the cube of the beam opening angle, which is somewhat stronger than theoretical expectations, which we argue is due to the geometry of the GHZ. We find that for an annular GHZ containing 10,000 civilisations, intersections are unlikely unless the beams are relatively uncollimated. These results indicate that optical SETI is more likely to find signals deliberately directed at the Earth than accidentally intercepting collimated communications. Equally, civilisations wishing to establish a network of communicating species may use weakly collimated beams to build up the network through interception, if they are willing to pay a cost penalty that is lower than that meted by fully isotropic beacons. Future SETI searches should consider the possibility that communicating civilisations will attempt to strike a balance between optimising costs and encouraging contact between civilisations, and look for weakly collimated pulses as well as narrow-beam pulses directed deliberately at the Earth.

  4. BPM Design and Impedance Considerations for a Rotatable Collimator for the LHC Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas; Young, Andrew; /SLAC

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. This paper reports on BPM and impedance considerations and measurements of the integrated BPMs in the prototype rotatable collimator to be installed in the Super Proton Synchrotron (SPS) at CERN. The BPMs are necessary to align the jaws with the beam. Without careful design the beam impedance can result in unacceptable heating of the chamber wall or beam instabilities. The impedance measurements involve utilizing both a single displaced wire and two wires excited in opposite phase to disentangle the driving and detuning transverse impedances. Trapped mode resonances and longitudinal impedance are to also be measured and compared with simulations. These measurements, when completed, will demonstrate the device is fully operational and has the impedance characteristics and BPM performance acceptable for installation in the SPS.

  5. Task Group 142 report: quality assurance of medical accelerators.

    PubMed

    Klein, Eric E; Hanley, Joseph; Bayouth, John; Yin, Fang-Fang; Simon, William; Dresser, Sean; Serago, Christopher; Aguirre, Francisco; Ma, Lijun; Arjomandy, Bijan; Liu, Chihray; Sandin, Carlos; Holmes, Todd

    2009-09-01

    The task group (TG) for quality assurance of medical accelerators was constituted by the American Association of Physicists in Medicine's Science Council under the direction of the Radiation Therapy Committee and the Quality Assurance and Outcome Improvement Subcommittee. The task group (TG-142) had two main charges. First to update, as needed, recommendations of Table II of the AAPM TG-40 report on quality assurance and second, to add recommendations for asymmetric jaws, multileaf collimation (MLC), and dynamic/virtual wedges. The TG accomplished the update to TG-40, specifying new test and tolerances, and has added recommendations for not only the new ancillary delivery technologies but also for imaging devices that are part of the linear accelerator. The imaging devices include x-ray imaging, photon portal imaging, and cone-beam CT. The TG report was designed to account for the types of treatments delivered with the particular machine. For example, machines that are used for radiosurgery treatments or intensity-modulated radiotherapy (IMRT) require different tests and/or tolerances. There are specific recommendations for MLC quality assurance for machines performing IMRT. The report also gives recommendations as to action levels for the physicists to implement particular actions, whether they are inspection, scheduled action, or immediate and corrective action. The report is geared to be flexible for the physicist to customize the QA program depending on clinical utility. There are specific tables according to daily, monthly, and annual reviews, along with unique tables for wedge systems, MLC, and imaging checks. The report also gives specific recommendations regarding setup of a QA program by the physicist in regards to building a QA team, establishing procedures, training of personnel, documentation, and end-to-end system checks. The tabulated items of this report have been considerably expanded as compared with the original TG-40 report and the recommended

  6. The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery

    NASA Astrophysics Data System (ADS)

    Echner, G. G.; Kilby, W.; Lee, M.; Earnst, E.; Sayeh, S.; Schlaefer, A.; Rhein, B.; Dooley, J. R.; Lang, C.; Blanck, O.; Lessard, E.; Maurer, C. R., Jr.; Schlegel, W.

    2009-09-01

    Robotic radiosurgery using more than one circular collimator can improve treatment plan quality and reduce total monitor units (MU). The rationale for an iris collimator that allows the field size to be varied during treatment delivery is to enable the benefits of multiple-field-size treatments to be realized with no increase in treatment time due to collimator exchange or multiple traversals of the robotic manipulator by allowing each beam to be delivered with any desired field size during a single traversal. This paper describes the Iris™ variable aperture collimator (Accuray Incorporated, Sunnyvale, CA, USA), which incorporates 12 tungsten-copper alloy segments in two banks of six. The banks are rotated by 30° with respect to each other, which limits the radiation leakage between the collimator segments and produces a 12-sided polygonal treatment beam. The beam is approximately circular, with a root-mean-square (rms) deviation in the 50% dose radius of <0.8% (corresponding to <0.25 mm at the 60 mm field size) and an rms variation in the 20-80% penumbra width of about 0.1 mm at the 5 mm field size increasing to about 0.5 mm at 60 mm. The maximum measured collimator leakage dose rate was 0.07%. A commissioning method is described by which the average dose profile can be obtained from four profile measurements at each depth based on the periodicity of the isodose line variations with azimuthal angle. The penumbra of averaged profiles increased with field size and was typically 0.2-0.6 mm larger than that of an equivalent fixed circular collimator. The aperture reproducibility is <=0.1 mm at the lower bank, diverging to <=0.2 mm at a nominal treatment distance of 800 mm from the beam focus. Output factors (OFs) and tissue-phantom-ratio data are identical to those used for fixed collimators, except the OFs for the two smallest field sizes (5 and 7.5 mm) are considerably lower for the Iris Collimator. If average collimator profiles are used, the assumption of

  7. Light Collimator and Monitor for a Spectroradiometer

    NASA Technical Reports Server (NTRS)

    Gore, Warren

    2008-01-01

    A system that comprises optical and electronic subsystems has been developed as an infrastructure for a spectroradiometer that measures time-dependent spectral radiance of the daylight sky, in a narrow field of view (having angular width of the order of 1 ) centered on the zenith, in several spectral bands in the wavelength range from 0.3 to 2.2 m. This system is used in conjunction with two commercially available monolithic spectrometers: a silicon-based one for wavelengths from 0.3 to 1.1 m and a gallium arsenide-based one for wavelengths from 1.05 to 2.2 m (see figure). The role of this system is to collect the light from the affected region of the sky, collimate the light, deliver the collimated light to the monolithic spectrometers, and process the electronic outputs of the spectrometers

  8. PERFORMANCE OF AND UPGRADES TO THE SNS COLLIMATOR SYSTEMS

    SciTech Connect

    Plum, Michael A; Abdou, Ashraf A; Jacobs, Lorelei L; Janney, Jim G; Geoghegan, Patrick J; McTeer, Stephen Mark; Popova, Irina; Ferguson, Phillip D; Zhukov, Alexander P

    2009-01-01

    As the Spallation Neutron Source (SNS) beam power is increased, the collimator systems are becoming correspondingly more important. The High Energy Beam Transport (HEBT) transverse collimators are now routinely used during neutron production. We are in the process of redesigning the HEBT momentum collimation system due to problems with gas production from radiolysis. The Ring collimators are designed for two-stage operation but to date they are mainly used in one-stage mode. In this paper we will discuss the status, the operational performance, and upgrades to the collimation systems.

  9. Electron lenses for particle collimation in LHC

    SciTech Connect

    Shiltsev, v.; /Fermilab

    2007-12-01

    Electron Lenses built and installed in Tevatron have proven themselves as safe and very reliable instruments which can be effectively used in hadron collider operation for a number of applications, including compensation of beam-beam effects [1], DC beam removal from abort gaps [2], as a diagnostic tool. In this presentation we - following original proposal [3] - consider in more detail a possibility of using electron lenses with hollow electron beam for ion and proton collimation in LHC.

  10. Subwavelength nanobrush target to collimate fast electrons

    NASA Astrophysics Data System (ADS)

    Zhao, Zongqing; Cao, Lihua; Cao, Leifeng; Zhou, Weimin; Wu, Yuchi; Zhu, Bin; Dong, Kegong; Zhang, Baohan; Ding, Yongkun; Gu, Yuqiu

    2011-10-01

    A subwavelength nanobrush target was proposed to collimate fast electrons in laser plasma interaction, which consists of a 5 μm copper underlay covered with a 20 μm thick layer of metallic fibers. The diameter of the individual fibers is about 200 nm and the spacing between them is about 150 nm. The experiment was hold at SILEX-I laser facility (10 J, 31 fs, 300 TW). When a subwavelength nanobrush target interacts with ultraintense laser of 7.9*1018/cm2, highly collimated fast electron beam with divergence angle nearly zero whereas the divergence of the plane target is 40 degree. Two-dimensional particle-in-cell (PIC) simulations show that the fast electrons will be accelerated and guided by strong transient electromagnetic fields created at the wall surfaces of nanobrushs. Both experiment and simulation show that the subwavelength nanobrush target can indeed generate fast electrons more efficiency and collimate them. The scheme should be useful for fast ignition and K α source research in inertial confinement fusion.

  11. Modeling and design of micromachined optical Söller collimators for lensless CCD-based fluorometry.

    PubMed

    Balsam, Joshua; Ossandon, Miguel; Bruck, Hugh Alan; Rasooly, Avraham

    2012-11-01

    modeling. These profile measurements suggest an excellent agreement with the theoretical predictions. The integral equation presented here can be used to perfect the design of the optical Söller collimator. These results may lead to the development of more effective Söller collimators for lensfree CCD-based fluorometry for use in simple low cost lensfree optical detectors with the potential to enhance the accessibility and the quality of health care for underserved populations. PMID:22973572

  12. Beam characteristics of fiber-based supercontinuum light sources with mirror- and lens-based beam collimators.

    PubMed

    Arnold, Ian J; Moosmüller, Hans; Sharma, Noopur; Mazzoleni, Claudio

    2014-06-01

    Commercially available supercontinuum light sources that cover most of the solar spectrum are well suited for instrumentation, where a well-collimated beam with wide spectral coverage is needed. Typically, the optical power is emitted from a single-mode photonic-crystal fiber and the output can either be collimated using a proprietary, permanently integrated, lens-based collimator or with a customer-provided, off-axis parabolic mirror. Here, we evaluate both approaches and conclude that, superior beam quality and collimation over the whole spectral range can be obtained with an off-axis parabolic mirror, however at the price of a more complex and bulky system requiring additional user alignment. PMID:24921577

  13. TH-C-BRD-03: Determining the Optimal Collimator Position for Collimated Pencil Beam Scanning Proton Therapy

    SciTech Connect

    Wang, D; Smith, B; Hill, P; Gelover, E; Flynn, R; Hyer, D

    2014-06-15

    Purpose: There has been a growing interest in applying collimation to pencil beam scanning (PBS) proton therapy in order to sharpen the lateral dose falloff out of the target, especially at low energies. Currently, there is not a method to optimally determine the collimation position or margin around the target. A uniform margin would not be ideal due to the fact that an incoming symmetric pencil beam, after being intercepted by a collimator near the target boundary, will become asymmetric and experience a lateral shift away from its original spot location, leaving the target insufficiently covered. We demonstrate a method that optimally determines the collimator position on a per-spot basis, in order to maximize target dose while minimizing normal tissue dose. Methods: A library of collimated pencil beams were obtained through Monte Carlo simulation with a collimator placed at varying distances from the central axis of an incoming symmetrical pencil beam of 118 MeV and 5 mm sigma-in-air. Two-dimensional treatment plans were then created using this library of collimated pencil beams. For each spot position in a treatment plan, the collimator position was optimally determined in such a way that the resultant pencil beam maximized the ratio of in-target dose and out-of-target dose. For comparison, un-collimated treatment plans were also computed. Results: The spot-by-spot optimally determined collimator positions allowed the reduction of normal tissue dose while maintaining the same target coverage as un-collimated PBS. Quantitatively, the mean dose outside of the target was reduced by approximately 40% as compared to the plan without collimation. Conclusion: The proposed method determines the optimal collimator position for each spot in collimated PBS proton therapy. The use of a collimator will improve PBS dose distributions achievable today and will continue to be the subject of future investigations.

  14. Quality control procedures for dynamic treatment delivery techniques involving couch motion

    SciTech Connect

    Yu, Victoria Y.; Fahimian, Benjamin P.; Xing, Lei; Hristov, Dimitre H.

    2014-08-15

    In this study, the authors introduce and demonstrate quality control procedures for evaluating the geometric and dosimetric fidelity of dynamic treatment delivery techniques involving treatment couch motion synchronous with gantry and multileaf collimator (MLC). Tests were designed to evaluate positional accuracy, velocity constancy and accuracy for dynamic couch motion under a realistic weight load. A test evaluating the geometric accuracy of the system in delivering treatments over complex dynamic trajectories was also devised. Custom XML scripts that control the Varian TrueBeam™ STx (Serial #3) axes in Developer Mode were written to implement the delivery sequences for the tests. Delivered dose patterns were captured with radiographic film or the electronic portal imaging device. The couch translational accuracy in dynamic treatment mode was 0.01 cm. Rotational accuracy was within 0.3°, with 0.04 cm displacement of the rotational axis. Dose intensity profiles capturing the velocity constancy and accuracy for translations and rotation exhibited standard deviation and maximum deviations below 3%. For complex delivery involving MLC and couch motions, the overall translational accuracy for reproducing programmed patterns was within 0.06 cm. The authors conclude that in Developer Mode, TrueBeam™ is capable of delivering dynamic treatment delivery techniques involving couch motion with good geometric and dosimetric fidelity.

  15. 3D RBI-EM reconstruction with spherically-symmetric basis function for SPECT rotating slat collimator

    NASA Astrophysics Data System (ADS)

    Wang, Wenli; Hawkins, William; Gagnon, Daniel

    2004-06-01

    A single photon emission computed tomography (SPECT) rotating slat collimator with strip detector acquires distance-weighted plane integral data, along with the attenuation factor and distance-dependent detector response. In order to image a 3D object, the slat collimator device has first to spin around its axis and then rotate around the object to produce 3D projection measurements. Compared to the slice-by-slice 2D reconstruction for the parallel-hole collimator and line integral data, a more complex 3D reconstruction is needed for the slat collimator and plane integral data. In this paper, we propose a 3D RBI-EM reconstruction algorithm with spherically-symmetric basis function, also called 'blobs', for the slat collimator. It has a closed and spherically symmetric analytical expression for the 3D Radon transform, which makes it easier to compute the plane integral than the voxel. It is completely localized in the spatial domain and nearly band-limited in the frequency domain. Its size and shape can be controlled by several parameters to have desired reconstructed image quality. A mathematical lesion phantom study has demonstrated that the blob reconstruction can achieve better contrast-noise trade-offs than the voxel reconstruction without greatly degrading the image resolution. A real lesion phantom study further confirmed this and showed that a slat collimator with CZT detector has better image quality than the conventional parallel-hole collimator with NaI detector. The improvement might be due to both the slat collimation and the better energy resolution of the CZT detector.

  16. Source holder collimator for encapsulating radioactive material and collimating the emanations from the material

    DOEpatents

    Laurer, G.R.

    1974-01-22

    This invention provides a transportable device capable of detecting normal levels of a trace element, such as lead in a doughnutshaped blood sample by x-ray fluorescence with a minimum of sample preparation in a relatively short analyzing time. In one embodiment, the blood is molded into a doughnut-shaped sample around an annular array of low-energy radioactive material that is at the center of the doughnut-shaped sample but encapsulated in a collimator, the latter shielding a detector that is close to the sample and facing the same so that the detector receives secondary emissions from the sample while the collimator collimates ths primary emissions from the radioactive material to direct these emissions toward the sample around 360 deg and away from the detector. (Official Gazette)

  17. Analytical studies of collimated winds. IV. Rotating and collimated MHD outflows.

    NASA Astrophysics Data System (ADS)

    Trussoni, E.; Tsinganos, K.; Sauty, C.

    1997-09-01

    This paper continues the study of the initial acceleration and final collimation of magnetized and rotating astrophysical winds, via analytical and exact steady MHD solutions, self-similar in the meridional direction. By prescribing the shape of the streamlines on the poloidal plane for a nonspherically symmetric gas pressure, related a posteriori to the density via a nonconstant polytropic index γ relationship (P{prop.to}ρgamma^), the main physical features of the outflowing plasma are deduced. Simple analytical relations show that cylindrical collimation and superAlfvenic terminal velocities can be attained asymptotically which depend on the rotation rate, the collimation distance from the base and the pressure gradient. If the plasma is overpressured at the flow axis, the pinching magnetic field can confine the jet, while if the gas is under-pressured at its axis, the centrifugal force cannot always counterbalance the pinching magnetic stress and inwards pressure gradient. Physically acceptable solutions are obtained by a numerical integration of the radial dependence of the MHD system from the subAlfvenic to the asymptotically collimated regions and by a smooth crossing of the Alfven critical surface. Two classes of solutions are found where either the flow speed increases monotonically to an asymptotic value, or it reaches a maximum value at an intermediate region. In the last case it is the toroidal magnetic field that collimates asymptotically the wind, while in the former the outflow of a slow rotator (respectively fast rotator) is collimated by the gas pressure (respectively by the magnetic field). The possible implications of these results on the modelling of astrophysical winds from slow and fast magnetic rotators are shortly discussed.

  18. Beam Delivery WG Summary: Optics, Collimation & Background

    SciTech Connect

    Angal-Kalinin, D.; Jackson, F.; Mokhov, N.V.; Kuroda, S.; Seryi, A.A.; /SLAC

    2006-01-20

    The presented paper partially summarizes the work of the Beam Delivery working group (WG4) at Snowmass, concentrating on status of optics, layout, collimation, and background. The strawman layout with 2 interaction regions was recommended at the first ILC workshop at KEK in November 2004. Two crossing-angle designs were included in this layout. The design of the ILC BDS has evolved since the first ILC workshop. The progress on the BDS design and extraction line design has been reviewed and the design issues were discussed during the optics and layout session at the Snowmass.

  19. Treatment planning systems for external whole brain radiation therapy: With and without MLC (multi leaf collimator) optimization

    NASA Astrophysics Data System (ADS)

    Budiyono, T.; Budi, W. S.; Hidayanto, E.

    2016-03-01

    Radiation therapy for brain malignancy is done by giving a dose of radiation to a whole volume of the brain (WBRT) followed by a booster at the primary tumor with more advanced techniques. Two external radiation fields given from the right and left side. Because the shape of the head, there will be an unavoidable hotspot radiation dose of greater than 107%. This study aims to optimize planning of radiation therapy using field in field multi-leaf collimator technique. A study of 15 WBRT samples with CT slices is done by adding some segments of radiation in each field of radiation and delivering appropriate dose weighting using a TPS precise plan Elekta R 2.15. Results showed that this optimization a more homogeneous radiation on CTV target volume, lower dose in healthy tissue, and reduced hotspots in CTV target volume. Comparison results of field in field multi segmented MLC technique with standard conventional technique for WBRT are: higher average minimum dose (77.25% ± 0:47%) vs (60% ± 3:35%); lower average maximum dose (110.27% ± 0.26%) vs (114.53% ± 1.56%); lower hotspot volume (5.71% vs 27.43%); and lower dose on eye lenses (right eye: 9.52% vs 18.20%); (left eye: 8.60% vs 16.53%).

  20. Collimator application for microchannel plate image intensifier resolution improvement

    DOEpatents

    Thomas, S.W.

    1996-02-27

    A collimator is included in a microchannel plate image intensifier (MCPI). Collimators can be useful in improving resolution of MCPIs by eliminating the scattered electron problem and by limiting the transverse energy of electrons reaching the screen. Due to its optical absorption, a collimator will also increase the extinction ratio of an intensifier by approximately an order of magnitude. Additionally, the smooth surface of the collimator will permit a higher focusing field to be employed in the MCP-to-collimator region than is currently permitted in the MCP-to-screen region by the relatively rough and fragile aluminum layer covering the screen. Coating the MCP and collimator surfaces with aluminum oxide appears to permit additional significant increases in the field strength, resulting in better resolution. 2 figs.

  1. Collimator application for microchannel plate image intensifier resolution improvement

    DOEpatents

    Thomas, Stanley W.

    1996-02-27

    A collimator is included in a microchannel plate image intensifier (MCPI). Collimators can be useful in improving resolution of MCPIs by eliminating the scattered electron problem and by limiting the transverse energy of electrons reaching the screen. Due to its optical absorption, a collimator will also increase the extinction ratio of an intensifier by approximately an order of magnitude. Additionally, the smooth surface of the collimator will permit a higher focusing field to be employed in the MCP-to-collimator region than is currently permitted in the MCP-to-screen region by the relatively rough and fragile aluminum layer covering the screen. Coating the MCP and collimator surfaces with aluminum oxide appears to permit additional significant increases in the field strength, resulting in better resolution.

  2. Design of optimal collimation for dedicated molecular breast imaging systems

    PubMed Central

    Weinmann, Amanda L.; Hruska, Carrie B.; O’Connor, Michael K.

    2009-01-01

    Molecular breast imaging (MBI) is a functional imaging technique that uses specialized small field-of-view gamma cameras to detect the preferential uptake of a radiotracer in breast lesions. MBI has potential to be a useful adjunct method to screening mammography for the detection of occult breast cancer. However, a current limitation of MBI is the high radiation dose (a factor of 7–10 times that of screening mammography) associated with current technology. The purpose of this study was to optimize the gamma camera collimation with the aim of improving sensitivity while retaining adequate resolution for the detection of sub-10-mm lesions. Square-hole collimators with holes matched to the pixilated cadmium zinc telluride detector elements of the MBI system were designed. Data from MBI patient studies and parameters of existing dual-head MBI systems were used to guide the range of desired collimator resolutions, source-to-collimator distances, pixel sizes, and collimator materials that were examined. General equations describing collimator performance for a conventional gamma camera were used in the design process along with several important adjustments to account for the specialized imaging geometry of the MBI system. Both theoretical calculations and a Monte Carlo model were used to measure the geometric efficiency (or sensitivity) and resolution of each designed collimator. Results showed that through optimal collimation, collimator sensitivity could be improved by factors of 1.5–3.2, while maintaining a collimator resolution of either ≤5 or ≤7.5 mm at a distance of 3 cm from the collimator face. These gains in collimator sensitivity permit an inversely proportional drop in the required dose to perform MBI. PMID:19378745

  3. Design of optimal collimation for dedicated molecular breast imaging systems

    SciTech Connect

    Weinmann, Amanda L.; Hruska, Carrie B.; O'Connor, Michael K.

    2009-03-15

    Molecular breast imaging (MBI) is a functional imaging technique that uses specialized small field-of-view gamma cameras to detect the preferential uptake of a radiotracer in breast lesions. MBI has potential to be a useful adjunct method to screening mammography for the detection of occult breast cancer. However, a current limitation of MBI is the high radiation dose (a factor of 7-10 times that of screening mammography) associated with current technology. The purpose of this study was to optimize the gamma camera collimation with the aim of improving sensitivity while retaining adequate resolution for the detection of sub-10-mm lesions. Square-hole collimators with holes matched to the pixilated cadmium zinc telluride detector elements of the MBI system were designed. Data from MBI patient studies and parameters of existing dual-head MBI systems were used to guide the range of desired collimator resolutions, source-to-collimator distances, pixel sizes, and collimator materials that were examined. General equations describing collimator performance for a conventional gamma camera were used in the design process along with several important adjustments to account for the specialized imaging geometry of the MBI system. Both theoretical calculations and a Monte Carlo model were used to measure the geometric efficiency (or sensitivity) and resolution of each designed collimator. Results showed that through optimal collimation, collimator sensitivity could be improved by factors of 1.5-3.2, while maintaining a collimator resolution of either {<=}5 or {<=}7.5 mm at a distance of 3 cm from the collimator face. These gains in collimator sensitivity permit an inversely proportional drop in the required dose to perform MBI.

  4. Mechanical approach to the neutrons spectra collimation and detection

    SciTech Connect

    Sadeghi, H.; Roshan, M. V.

    2014-11-15

    Neutrons spectra from most of known sources require being collimated for numerous applications; among them one is the Neutron Activation Analysis. High energy neutrons are collimated through a mechanical procedure as one of the most promising methods. The output energy of the neutron beam depends on the velocity of the rotating Polyethylene disks. The collimated neutrons are then measured by an innovative detection technique with high accuracy.

  5. Some basic considerations of measurements involving collimated direct sunlight

    NASA Technical Reports Server (NTRS)

    Chai, A. T.

    1976-01-01

    The geometry of collimators for devices or instruments dealing with terrestrial direct sunlight is discussed. Effects of the opening angle and slope angle of a collimator on the measurements are investigated with regard to variations of turbidity and air mass. Based on this investigation, geometric dimensions for collimators and certain realistic terrestrial reference conditions are recommended for the purpose of solar cell calibration in terrestrial applications.

  6. New scheme of high-precision visual collimator

    NASA Astrophysics Data System (ADS)

    Ge, Zhaoxiang; Ying, Han; Chen, Lei

    1998-08-01

    Machine manufacture and installation, special constructional engineering and precision engineering surveying need a very high precision collimator. In the text, we discus a plane focusing visual collimator, which had been specially made for the synchrotron accelerator. Using an electronic spirit level as the reference element, CCD automatic aiming system, photoelectric readout device and computer processing technology, the new visual collimator has a much higher precision and can be used more quickly, more conveniently and more reliably.

  7. Leaky wave lenses for spoof plasmon collimation.

    PubMed

    Panaretos, Anastasios H; Werner, Douglas H

    2016-06-27

    We theoretically demonstrate the feasibility of collimating radiating spoof plasmons using a leaky wave lens approach. Spoof plasmons are surface waves excited along reactance surfaces realized through metallic corrugations. By employing a periodic perturbation to the geometric profile of this type of reactance surface, it becomes feasible to convert the excited spoof plasmons into free-space radiating leaky wave modes. It is demonstrated that by structurally modifying such a corrugated surface through the introduction of a non-uniform sinusoidally modulated reactance profile, then a tapered wavenumber, with a real part less than that of free space, can be established along the surface. In this way the radiating properties of the structure (amplitude and phase) can be locally controlled thereby creating a radiating effect similar to that of a non-uniform current distribution. By properly engineering the space dependent wavenumber along the corrugated surface, different regions of the structure will emit spoof plasmon energy at different angles with varying intensity. The combined effect is the emission of an electromagnetic wave exhibiting a converging wave-front that eventually collimates spoof plasmon energy at some desired focal point. PMID:27410618

  8. A variable-collimation display system

    NASA Astrophysics Data System (ADS)

    Batchko, Robert; Robinson, Sam; Schmidt, Jack; Graniela, Benito

    2014-03-01

    Two important human depth cues are accommodation and vergence. Normally, the eyes accommodate and converge or diverge in tandem; changes in viewing distance cause the eyes to simultaneously adjust both focus and orientation. However, ambiguity between accommodation and vergence cues is a well-known limitation in many stereoscopic display technologies. This limitation also arises in state-of-the-art full-flight simulator displays. In current full-flight simulators, the out-the-window (OTW) display (i.e., the front cockpit window display) employs a fixed collimated display technology which allows the pilot and copilot to perceive the OTW training scene without angular errors or distortions; however, accommodation and vergence cues are limited to fixed ranges (e.g., ~ 20 m). While this approach works well for long-range, the ambiguity of depth cues at shorter range hinders the pilot's ability to gauge distances in critical maneuvers such as vertical take-off and landing (VTOL). This is the first in a series of papers on a novel, variable-collimation display (VCD) technology that is being developed under NAVY SBIR Topic N121-041 funding. The proposed VCD will integrate with rotary-wing and vertical take-off and landing simulators and provide accurate accommodation and vergence cues for distances ranging from approximately 3 m outside the chin window to ~ 20 m. A display that offers dynamic accommodation and vergence could improve pilot safety and training, and impact other applications presently limited by lack of these depth cues.

  9. Optimization of convergent collimators for pixelated SPECT systems

    SciTech Connect

    Capote, Ricardo M.; Matela, Nuno; Conceicao, Raquel C.; Almeida, Pedro

    2013-06-15

    Purpose: The optimization of the collimator design is essential to obtain the best possible sensitivity in single photon emission computed tomography imaging. The aim of this work is to present a methodology for maximizing the sensitivity of convergent collimators, specifically designed to match the pitch of pixelated detectors, for a fixed spatial resolution value and to present some initial results using this approach. Methods: Given the matched constraint, the optimal collimator design cannot be simply found by allowing the highest level of septal penetration and spatial resolution consistent with the imposed restrictions, as it is done for the optimization of conventional collimators. Therefore, an algorithm that interactively calculates the collimator dimensions, with the maximum sensitivity, which respect the imposed restrictions was developed and used to optimize cone and fan beam collimators with tapered square-shaped holes for low (60-300 keV) and high energy radiation (300-511 keV). The optimal collimator dimensions were locally calculated based on the premise that each hole and septa of the convergent collimator should locally resemble an appropriate optimal matched parallel collimator. Results: The optimal collimator dimensions, calculated for subcentimeter resolutions (3 and 7.5 mm), common pixel sizes (1.6, 2.1, and 2.5 mm), and acceptable septal penetration at 140 keV, were approximately constant throughout the collimator, despite their different hole incidence angles. By using these input parameters and a less strict septal penetration value of 5%, the optimal collimator dimensions and the corresponding mass per detector area were calculated for 511 keV. It is shown that a low value of focal distance leads to improvements in the average sensitivity at a fixed source-collimator distance and resolution. The optimal cone beam performance outperformed that of other optimal collimation geometries (fan and parallel beam) in imaging objects close to the

  10. Dose evaluation of selective collimation effect in cephalography by measurement and Monte Carlo simulation.

    PubMed

    Lee, Boram; Shin, Gwisoon; Kang, Sunjung; Shin, Boram; Back, Ilhong; Park, Hyok; Park, Changseo; Lee, Jeongwoo; Lee, Wonho; Choi, Jonghak; Park, Ryeonghwang; Kim, Youhyun

    2012-01-01

    Recently, simulations based on the Monte Carlo code have been increasingly applied for physics phenomena, patient dose and quality assurance of radiation systems. The objective of this study was to use Monte Carlo simulation and measurement to verify dose and dose reduction in cephalography. The collimator was constructed with 3-mm thick lead plate, and attached to the tube head to remove regions of disinterest in the radiation field. A digital phantom patient was constructed to evaluate patient dose. In addition, detectors of pixel size 1×1 cm² and 0.1×0.1 cm² were constructed to check collimator location. The effective dose according to International Commission on Radiological Protection 103 was calculated with and without collimation. The effective doses for simulation with and without collimation were 5.09 and 11.32 µSv, respectively. The results of the calculated effective dose show 61.7 % reduction of field area and 55 % of effective dose. The Monte Carlo simulation is a good evaluation tool for patient dose. PMID:21335329

  11. Introducing a system for automated control of rotation axes, collimator and laser adjustment for a medical linear accelerator

    NASA Astrophysics Data System (ADS)

    Winkler, Peter; Bergmann, Helmar; Stuecklschweiger, Georg; Guss, Helmuth

    2003-05-01

    Mechanical stability and precise adjustment of rotation axes, collimator and room lasers are essential for the success of radiotherapy and particularly stereotactic radiosurgery with a linear accelerator. Quality assurance procedures, at present mainly based on visual tests and radiographic film evaluations, should desirably be little time consuming and highly accurate. We present a method based on segmentation and analysis of digital images acquired with an electronic portal imaging device (EPID) that meets these objectives. The method can be employed for routine quality assurance with a square field formed by the built-in collimator jaws as well as with a circular field using an external drill hole collimator. A number of tests, performed to evaluate accuracy and reproducibility of the algorithm, yielded very satisfying results. Studies performed over a period of 18 months prove the applicability of the inspected accelerator for stereotactic radiosurgery.

  12. Beam quality of the ATA (Advanced Test Accelerator) injector

    SciTech Connect

    Boyd, J.K.; Caporaso, G.J.; Cole, A.G.; Weir, J.T.

    1987-01-01

    The beam quality of the ATA injector has been experimentally measured using a magnetic collimator. These measurements have been performed for a variety of magnetic field profiles, including field strengths where the collimator is shorter than a cyclotron wavelength. The experimental currents transmitted through the collimator have been predicted numerically. The numerical predictions and experimental data are in good agreement.

  13. Self-collimated unstable resonator semiconductor laser

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor)

    1993-01-01

    Self-collimation of the output is achieved in an unstable resonator semiconductor laser by providing a large concave mirror M sub 1 and a small convex mirror M sub 2 on opposite surfaces of a semiconductor body of a material having an effective index of refraction denoted by n, where the respective mirror radii R sub 1, R sub 2 and beam radii r sub 1, r sub 2 are chosen to satisfy a condition (R sub 2)/(1 + r sub 1) = (n - 1)/n, with a value of geometric magnification 1 less than or equal to M less than or equal to (n + 1)/(n - 1) where r sub 1 and r sub 2 are the radii of counterpropagating beams at respective mirrors of radii R sub 1 and R sub 2.

  14. Cometary Jet Collimation Without Physical Confinement

    NASA Astrophysics Data System (ADS)

    Steckloff, J. K.; Melosh, H. J.

    2012-12-01

    Recent high-resolution images of comet nuclei reveal that gases and dust expelled by the comet are organized into narrow jets. Contemporary models postulate that these jets collimate when the expanding gases and dust pass through a physical aperture or nozzle. However, recent high-resolution spacecraft observations fail to detect such apertures on cometary surfaces. Furthermore, these models do not explain why cometary jets appear to be directed normal to the local gravitational potential, and/or appear to originate on the faces of scarps. Additionally, observations of comet nuclei by visiting spacecraft have observed that jet activity is tied to the diurnal rotation of the comet. This suggests that jet emissions are powered by the sun, and therefore must emanate from close to the surface of the comet due to a thermal skin depth on the order of ~10 cm. Here we describe a simplified computer model of jets emanating from Comet Tempel 1. Our novel mechanism is based on the occurrence of fluidized flows, which have gained observational support from the Deep Impact and Stardust-NExT flyby missions We approximate the vents of the comet as a region of smooth terrain on the order of ~10 m in width. We assume that each element of the active area is emitting gas molecules with the same spatial distribution function, and integrate over the active area in order to calculate the gas drag force due to the vent. We consider two angular emission profiles (isotropic and lambertian), and assume plane-strain geometry. The vent surfaces were modeled at various angles with respect to the gravitational potential. To approximate scarps, we modeled a non-venting region located above the vent and at the same angle as the vent. The size of this non-venting region was allowed to vary. We assumed that the scarp face, which is composed of the vent and non-venting regions, eroded uniformly. Particles of a constant size are placed randomly on the surface of the vent, and their positions in time

  15. Beam diffusion measurements using collimator scans in the LHC

    NASA Astrophysics Data System (ADS)

    Valentino, Gianluca; Aßmann, Ralph; Bruce, Roderik; Burkart, Florian; Previtali, Valentina; Redaelli, Stefano; Salvachua, Belen; Stancari, Giulio; Valishev, Alexander

    2013-02-01

    The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  16. Ion beam collimating grid to reduce added defects

    DOEpatents

    Lindquist, Walter B.; Kearney, Patrick A.

    2003-01-01

    A collimating grid for an ion source located after the exit grid. The collimating grid collimates the ion beamlets and disallows beam spread and limits the beam divergence during transients and steady state operation. The additional exit or collimating grid prevents beam divergence during turn-on and turn-off and prevents ions from hitting the periphery of the target where there is re-deposited material or from missing the target and hitting the wall of the vessel where there is deposited material, thereby preventing defects from being deposited on a substrate to be coated. Thus, the addition of a collimating grid to an ion source ensures that the ion beam will hit and be confined to a specific target area.

  17. Preliminary Exploratory Study of Different Phase II Collimators

    SciTech Connect

    Lari, L.; Assmann, R.W.; Bertarelli, A.; Bracco, C.; Brugger, M.; Cerutti, F.; Dallocchio, A.; Ferrari, A.; Mauri, M.; Roesler, S.; Sarchiapone, L.; Vlachoudis, Vasilis; Doyle, J.E.; Keller, L.; Lundgren, S.A.; Markiewicz, Thomas W.; Smith, J.C.; Lari, L.; /LPHE, Lausanne

    2011-11-02

    The Large Hadron Collider (LHC) collimation system is installed and commissioned in different phases, following the natural evolution of the LHC performance. To improve cleaning efficiency towards the end of the low beta squeeze at 7TeV, and in stable physics conditions, it is foreseen to complement the 30 highly robust Phase I secondary collimators with low impedance Phase II collimators. At this stage, their design is not yet finalized. Possible options include metallic collimators, graphite jaws with a movable metallic foil, or collimators with metallic rotating jaws. As part of the evaluation of the different designs, the FLUKA Monte Carlo code is extensively used for calculating energy deposition and studying material damage and activation. This report outlines the simulation approach and defines the critical quantities involved.

  18. Direct Measurement of the Transverse Wakefields of Tapered Collimators

    SciTech Connect

    Tenenbaum, P.; Bane, K.L.F.; Eriksson, L.; Irwin, J.; Jobe, R.K.; McCormick, D.; Ng, C.K.; Raubenheimer, T.O.; Ross, M.C.; Stupakov, G.; Walz, D.; /SLAC

    2007-01-09

    We report on a recent set of measurements of the transverse wakefields from longitudinally-tapered collimators. The measurements were performed with a low-emittance 1.19 GeV beam in the SLAC linac by inserting a collimator aperture into the beam path and reconstructing the vertical deflection of the beam as a function of the vertical position of the aperture. Each collimator in the experiment was designed to present a relatively large transverse impedance and to minimize the impedance from other contributions such as resistivity. In addition, the collimator parameters were chosen to provide some insight into the scaling of the transverse geometric wakefield as a function of the collimator's geometry. Description of the experimental apparatus and the aperture design, method of data collection and analysis, and comparison to theoretical and numerical predictions are presented.

  19. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system

    SciTech Connect

    Diffenderfer, Eric S.; Ainsley, Christopher G.; Kirk, Maura L.; McDonough, James E.; Maughan, Richard L.

    2011-11-15

    Purpose: To apply the dual ionization chamber method for mixed radiation fields to an accurate comparison of the secondary neutron dose arising from the use of a tungsten alloy multileaf collimator (MLC) as opposed to a brass collimator system for defining the shape of a therapeutic proton field. Methods: Hydrogenous and nonhydrogenous ionization chambers were constructed with large volumes to enable measurements of absorbed doses below 10{sup -4} Gy in mixed radiation fields using the dual ionization chamber method for mixed-field dosimetry. Neutron dose measurements were made with a nominal 230 MeV proton beam incident on a closed tungsten alloy MLC and a solid brass block. The chambers were cross-calibrated against a {sup 60}Co-calibrated Farmer chamber in water using a 6 MV x-ray beam and Monte Carlo simulations were performed to account for variations in ionization chamber response due to differences in secondary neutron energy spectra. Results: The neutron and combined proton plus {gamma}-ray absorbed doses are shown to be nearly equivalent downstream from either a closed tungsten alloy MLC or a solid brass block. At 10 cm downstream from the distal edge of the collimating material the neutron dose from the closed MLC was (5.3 {+-} 0.4) x 10{sup -5} Gy/Gy. The neutron dose with brass was (6.4 {+-} 0.7) x 10{sup -5} Gy/Gy. Further from the secondary neutron source, at 50 cm, the neutron doses remain close for both the MLC and brass block at (6.9 {+-} 0.6) x 10{sup -6} Gy/Gy and (6.3 {+-} 0.7) x 10{sup -6} Gy/Gy, respectively. Conclusions: The dual ionization chamber method is suitable for measuring secondary neutron doses resulting from proton irradiation. The results of measurements downstream from a closed tungsten alloy MLC and a brass block indicate that, even in an overly pessimistic worst-case scenario, secondary neutron production in a tungsten alloy MLC leads to absorbed doses that are nearly equivalent to those seen from brass collimators. Therefore

  20. Determination of optimal collimation parameters for a rotating slat collimator system: a system matrix method using ML-EM

    NASA Astrophysics Data System (ADS)

    Boisson, F.; Bekaert, V.; Brasse, D.

    2016-03-01

    Nowadays, Single Photon imaging has become an essential part of molecular imaging and nuclear medicine. Whether to establish a diagnosis or in the therapeutic monitoring, this modality presents performance that continues to improve. For over 50 years, several collimators have been proposed. Mainly governed by collimation parameters, the resolution-sensitivity trade-off is the factor determining the collimator the most suitable for an intended study. One alternative to the common approaches is the rotating slat collimator (RSC). In the present study, we are aiming at developing a preclinical system equipped with a RSC dedicated to mice and rats imaging, which requires both high sensitivity and spatial resolution. We investigated the resolution-sensitivity trade-offs obtained by varying different collimation parameters: (i) the slats height (H), and (ii) the gap between two consecutive slats (g), considering different intrinsic spatial resolutions. One system matrix was generated for each set of collimation parameters (H,g). Spatial resolutions, Signal-to-Noise Ratio (SNR) and sensitivity obtained for all the set of collimation parameters (H,g) were measured in the 2D projections reconstructed with ML-EM. According to our results, 20 mm high slats and a 1 mm gap were chosen as a good RSC candidate for a preclinical detection module. This collimator will ensure a sensitivity greater than 0.2% and a system spatial resolution below 1 mm, considering an intrinsic spatial resolution below 0.8 mm.

  1. Determination of optimal collimation parameters for a rotating slat collimator system: a system matrix method using ML-EM.

    PubMed

    Boisson, F; Bekaert, V; Brasse, D

    2016-03-21

    Nowadays, Single Photon imaging has become an essential part of molecular imaging and nuclear medicine. Whether to establish a diagnosis or in the therapeutic monitoring, this modality presents performance that continues to improve. For over 50 years, several collimators have been proposed. Mainly governed by collimation parameters, the resolution-sensitivity trade-off is the factor determining the collimator the most suitable for an intended study. One alternative to the common approaches is the rotating slat collimator (RSC). In the present study, we are aiming at developing a preclinical system equipped with a RSC dedicated to mice and rats imaging, which requires both high sensitivity and spatial resolution. We investigated the resolution-sensitivity trade-offs obtained by varying different collimation parameters: (i) the slats height (H), and (ii) the gap between two consecutive slats (g), considering different intrinsic spatial resolutions. One system matrix was generated for each set of collimation parameters (H,g). Spatial resolutions, Signal-to-Noise Ratio (SNR) and sensitivity obtained for all the set of collimation parameters (H,g) were measured in the 2D projections reconstructed with ML-EM. According to our results, 20 mm high slats and a 1 mm gap were chosen as a good RSC candidate for a preclinical detection module. This collimator will ensure a sensitivity greater than 0.2% and a system spatial resolution below 1 mm, considering an intrinsic spatial resolution below 0.8 mm. PMID:26930449

  2. Slit slat collimator optimization with respect to MTF.

    PubMed

    Kamali-Asl, A; Sarkar, S; Shahriari, M; Agha-Hosseini, H

    2005-03-01

    Conventional single photon emission computed tomography (SPECT) collimators are not suitable for 511 keV imaging. In order to use a SPECT system for single positron emission tomography (SPET), we need to design high-efficiency collimators capable of absorbing 511 keV photons. Slit slat (SS) collimators have been proposed for this purpose even though the optimization of such collimators has not yet been performed. In order to investigate the reliability of the system with SS collimator, it was decided to evaluate such a system. A gamma camera system with both parallel hole (PH) and SS collimators was simulated by Monte Carlo method. In these simulation parameters of the simulated system having 3/8 in NaI(Tl) crystal for 140 keV gamma-rays with PH collimator was compared with practical results and a good correlation was found between the simulated and practical results. In this way, the validity of our simulation code was confirmed. The crystal thickness for simulated gamma-camera system with SS collimator for detection of 511 keV photons was set to be 5/8 in which resulted in an intrinsic spatial resolution of 4mm. The simulated SS collimators consisted of 50 lead plates of various height, thickness and spacing. The imaging was performed by rotating the SS collimator from 0 degrees to 180 degrees in 73 steps of 2.5 degrees each. The physical parameters such as spatial resolution, efficiency and modulation transfer function (MTF) of this system for different SS collimator designs, (i.e. SS(64,3,3), SS(80,3,3), SS(64,4,5), SS(80,4,5), SS(85,4,5), where in SS(h,s,t) is used to indicate the septal height (h), septal separation (s), and septal thickness (t) in millimeters were evaluated. The value of these parameters were compared with the values obtained employing a 511 keV PH(85,4,2.5) collimator. Based on MTF values, our result showed that the SS(85,4,5) collimator has an optimum performance to the other SS collimators. The relative efficiency of the system with SS(85

  3. Quality assurance of dynamic parameters in volumetric modulated arc therapy

    PubMed Central

    Manikandan, A; Sarkar, B; Holla, R; Vivek, T R; Sujatha, N

    2012-01-01

    Objectives The purpose of this study was to demonstrate quality assurance checks for accuracy of gantry speed and position, dose rate and multileaf collimator (MLC) speed and position for a volumetric modulated arc treatment (VMAT) modality (Synergy® S; Elekta, Stockholm, Sweden), and to check that all the necessary variables and parameters were synchronous. Methods Three tests (for gantry position–dose delivery synchronisation, gantry speed–dose delivery synchronisation and MLC leaf speed and positions) were performed. Results The average error in gantry position was 0.5° and the average difference was 3 MU for a linear and a parabolic relationship between gantry position and delivered dose. In the third part of this test (sawtooth variation), the maximum difference was 9.3 MU, with a gantry position difference of 1.2°. In the sweeping field method test, a linear relationship was observed between recorded doses and distance from the central axis, as expected. In the open field method, errors were encountered at the beginning and at the end of the delivery arc, termed the “beginning” and “end” errors. For MLC position verification, the maximum error was −2.46 mm and the mean error was 0.0153 ±0.4668 mm, and 3.4% of leaves analysed showed errors of >±1 mm. Conclusion This experiment demonstrates that the variables and parameters of the Synergy® S are synchronous and that the system is suitable for delivering VMAT using a dynamic MLC. PMID:22745206

  4. IMRT Quality Assurance Using a Second Treatment Planning System

    SciTech Connect

    Anjum, Muhammad Naeem; Parker, William; Ruo, Russell; Aldahlawi, Ismail; Afzal, Muhammad

    2010-01-01

    We used a second treatment planning system (TPS) for independent verification of the dose calculated by our primary TPS in the context of patient-specific quality assurance (QA) for intensity-modulated radiation therapy (IMRT). QA plans for 24 patients treated with inverse planned dynamic IMRT were generated using the Nomos Corvus TPS. The plans were calculated on a computed tomography scan of our QA phantom that consists of three Solid Water slabs sandwiching radiochromic films, and an ion chamber that is inserted into the center slab of the phantom. For the independent verification, the dose was recalculated using the Varian Eclipse TPS using the multileaf collimator files and beam geometry from the original plan. The data was then compared in terms of absolute dose to the ion chamber volume as well as relative dose on isodoses calculated at the film plane. The calculation results were also compared with measurements performed for each case. When comparing ion chamber doses, the mean ratio was 0.999 (SD 0.010) for Eclipse vs. Corvus, 0.988 (SD 0.020) for the ionization chamber measurements vs. Corvus, and 0.989 (SD 0.017) for the ionization chamber measurements vs. Eclipse. For 2D doses with gamma histogram, the mean value of the percentage of pixels passing the criteria of 3%, 3 mm was 94.4 (SD 5.3) for Eclipse vs. Corvus, 85.1 (SD 10.6) for Corvus vs. film, and 93.7 (SD 4.1) for Eclipse vs. film; and for the criteria of 5%, 3 mm, 98.7 (SD 1.5) for Eclipse vs. Corvus, 93.0 (SD 7.8) for Corvus vs. film, and 98.0 (SD 1.9) for Eclipse vs. film. We feel that the use of the Eclipse TPS as an independent, accurate, robust, and time-efficient method for patient-specific IMRT QA is feasible in clinic.

  5. Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study.

    PubMed

    Roshan, Hoda Rezaei; Mahmoudian, Babak; Gharepapagh, Esmaeil; Azarm, Ahmadreza; Islamian, Jalil Pirayesh

    2016-02-01

    Treatment efficacy of radioembolization using Yttrium-90 ((90)Y) microspheres is assessed by the (90)Y bremsstrahlung single photon emission computed tomography (SPECT) imaging following radioembolization. The radioisotopic image has the potential of providing reliable activity map of (90)Y microspheres distribution. One of the main reasons of the poor image quality in (90)Y bremsstrahlung SPECT imaging is the continuous and broad energy spectrum of the related bremsstrahlung photons. Furthermore, collimator geometry plays an impressive role in the spatial resolution, sensitivity and image contrast. Due to the relatively poor quality of the (90)Y bremsstrahlung SPECT images, we intend to optimize the medium-energy (ME) parallel-hole collimator and energy window. The Siemens e.cam gamma camera equipped with a ME collimator and a voxelized phantom was simulated by the SImulating Medical Imaging Nuclear Detectors (SIMIND) program. We used the SIMIND Monte Carlo program to generate the (90)Y bremsstrahlung SPECT projection of the digital Jaszczak phantom. The phantom consist of the six hot spheres ranging from 9.5 to 31.8mm in diameter, which are used to evaluate the image contrast. In order to assess the effect of the energy window on the image contrast, three energy windows ranging from 60 to 160 KeV, 160 to 400 KeV, and 60 to 400 KeV were set on a (90)Y bremsstrahlung spectrum. As well, the effect of the hole diameter of a ME collimator on the image contrast and bremsstrahlung spectrum were investigated. For the fixed collimator and septa thickness values (3.28 cm and 1.14 mm, respectively), a hole diameter range (2.35-3.3mm) was chosen based on the appropriate balance between the spatial resolution and sensitivity. The optimal energy window for (90)Y bremsstrahlung SPECT imaging was extended energy window from 60 to 400 KeV. Besides, The optimal value of the hole diameter of ME collimator was obtained 3.3mm. Geometry of the ME parallel-hole collimator and energy

  6. Comparison of Plan Quality Provided by Intensity-Modulated Arc Therapy and Helical Tomotherapy

    SciTech Connect

    Cao Daliang; Holmes, Timothy W.; Afghan, Muhammad K.N.; Shepard, David M.

    2007-09-01

    Purpose: Intensity-modulated arc therapy (IMAT) is an arc-based approach to intensity-modulated radiotherapy (IMRT) that can be delivered on a conventional linear accelerator using a conventional multileaf collimator. In a previous work, we demonstrated that our arc-sequencing algorithm can produce highly conformal IMAT plans. Through plan comparisons, we explored the ability of IMAT to serve as an alternative to helical tomotherapy. Methods and Materials: The IMAT plans were created for 10 patients previously treated with helical tomotherapy. Treatment plan comparisons, according to the target dose coverage and critical structure sparing, were performed to determine whether similar plan quality could be achieved using IMAT. Results: In 8 of 10 patient cases, IMAT was able to provide plan quality comparable to that of helical tomotherapy. In 2 of these 8 cases, the use of non-axial coplanar or non-coplanar arcs in IMAT planning led to significant improvements in normal tissue sparing. The remaining 2 cases posed particular dosimetric challenges. In 1 case, the target was immediately adjacent to a spinal cord that had received previous irradiation. The second case involved multiple target volumes and multiple prescription levels. Both IMAT and tomotherapy were able to produce clinically acceptable plans. Tomotherapy, however, provided a more uniform target dose and improved critical structure sparing. Conclusions: For most cases, IMAT can provide plan qualities comparable to that of helical tomotherapy. For some intracranial tumors, IMAT's ability to deliver non-coplanar arcs led to significant dosimetric improvements. Helical tomotherapy, however, can provide improved dosimetric results in the most complex cases.

  7. The HEAO-1 Scanning Modulation Collimator

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel A.

    2013-01-01

    My niche on this panel seems to be the High Energy Astronomy Observatory-1 Scanning Modulation Collimator experiment. Our chair, Hale Bradt, and the late Herb Gursky each proposed a different version modulation collimator, which was condensed by NASA via "forced marriage," to the SMC. I worked as Project Scientist under Herb, later inheriting the PI role. The MIT Project Scientist, the late Rodger Doxsey, and I were told "this is your experiment," and "we are a seamless team regardless of institution." Rodger and I were young enough to believe this, and we made it happen (and not always with the best results vis a vis higher internal management). I was never interested in astronomy, and allegedly am still not. Why do an astro-metrical job of measuring and reporting the coordinates of X-ray sources? In fact we participated widely in the identification of the sources with astronomical object, and making each paper a discussion of the physics of the emission. An enjoyable way to learn some astronomy. The stated purpose of the Gursky/Bradt experiment was to enable optical identifications so that more detailed study could be done. I remember meeting with John Whelan to discuss his collaboration in making the optical identifications. He said he only wanted to study sources after they were identified. For many milliseconds I became very angry - "who is going to to the work to MAKE those identifications," but luckily before speaking I realized how satisfying it was that astronomers indeed wanted to study X-ray sources in other wavebands. The second biggest excitement in the HEAO-1 program was the "glitches" that appeared in the gyro data during final functional testing. This took some high-powered politics by all the PI's to convince MSFC to delay for 4 months, replacing the "funny" unit with one from HEAO-2 (Einstein) and later refurbishing that unit. Third biggest excitement was when a computer failed and final checkout during countdown at the Cape was done by looking at

  8. A novel method involving Matlab coding to determine the distribution of a collimated ionizing radiation beam

    NASA Astrophysics Data System (ADS)

    Ioan, M.-R.

    2016-08-01

    In ionizing radiation related experiments, precisely knowing of the involved parameters it is a very important task. Some of these experiments are involving the use of electromagnetic ionizing radiation such are gamma rays and X rays, others make use of energetic charged or not charged small dimensions particles such are protons, electrons, neutrons and even, in other cases, larger accelerated particles such are helium or deuterium nuclei are used. In all these cases the beam used to hit an exposed target must be previously collimated and precisely characterized. In this paper, a novel method to determine the distribution of the collimated beam involving Matlab coding is proposed. The method was implemented by using of some Pyrex glass test samples placed in the beam where its distribution and dimension must be determined, followed by taking high quality pictures of them and then by digital processing the resulted images. By this method, information regarding the doses absorbed in the exposed samples volume are obtained too.

  9. Multipinhole collimator with 20 apertures for a brain SPECT application

    SciTech Connect

    Lee, Tzu-Cheng; Ellin, Justin R.; Shrestha, Uttam; Seo, Youngho; Huang, Qiu; Gullberg, Grant T.

    2014-11-01

    Purpose: Several new technologies for single photon emission computed tomography (SPECT) instrumentation with parallel-hole collimation have been proposed to improve detector sensitivity and signal collection efficiency. Benefits from improved signal efficiency include shorter acquisition times and lower dose requirements. In this paper, the authors show a possibility of over an order of magnitude enhancement in photon detection efficiency (from 7.6 × 10{sup −5} to 1.6 × 10{sup −3}) for dopamine transporter (DaT) imaging of the striatum over the conventional SPECT parallel-hole collimators by use of custom-designed 20 multipinhole (20-MPH) collimators with apertures of 0.75 cm diameter. Methods: Quantifying specific binding ratio (SBR) of {sup 123}I-ioflupane or {sup 123}I-iometopane’s signal at the striatal region is a common brain imaging method to confirm the diagnosis of the Parkinson’s disease. The authors performed imaging of a striatal phantom filled with aqueous solution of I-123 and compared camera recovery ratios of SBR acquired between low-energy high-resolution (LEHR) parallel-hole collimators and 20-MPH collimators. Results: With only two-thirds of total acquisition time (20 min against 30 min), a comparable camera recovery ratio of SBR was achieved using 20-MPH collimators in comparison to that from the LEHR collimator study. Conclusions: Their systematic analyses showed that the 20-MPH collimator could be a promising alternative for the DaT SPECT imaging for brain over the traditional LEHR collimator, which could give both shorter scan time and improved diagnostic accuracy.

  10. A comparative study of collimation in bedside chest radiography for preterm infants in two teaching hospitals

    PubMed Central

    Stollfuss, J.; Schneider, K.; Krüger-Stollfuss, I.

    2015-01-01

    Objective Unnecessary exposure of the abdomen, arms or head may lead to a substantial increase of the radiation dose in portable chest X-rays on the neonatal intensive care unit. The objective was to identify potential factors influencing inappropriate exposure of non-thoracic structures in two teaching hospitals. Methods The study analysed 200 consecutive digital chest radiographs in 20 preterm neonates (mean gestation 25 ± 1 weeks). Demographical data, tube settings and exposure parameters were recorded. To grade the collimation, we used a scoring system with a maximum of 12 exposed non-thoracic structures. Length of gestation, age, the radiographer, years of experience in performing X-rays and the number of in situ catheters or lines, were correlated with collimation quality. Results There was no significant difference between the rates of optimal images obtained in the two hospitals (0.32 vs 0.39, n.s.). Scores showed that most suboptimal images had only mildly reduced image quality (1.40 ± 1.38 vs 1.20 ± 1.43, n.s.). Length of gestation or presence of surgical drains, catheters and tubes had no obvious effects on the exposure of non-thoracic structures. Large intra-individual variation in optimal collimation (14–86%) was noted for the radiographers in both hospitals; this was unrelated to their respective years of experience. Conclusion In our study, the only identifiable factor influencing the collimation of portable chest radiographs in preterm infants was the radiographer’s dedication and awareness. There were no apparent differences between the hospitals investigated. Exposure of non-thoracic structures was relatively frequent and mainly involved the proximal humeri. PMID:26937444

  11. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  12. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  13. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  14. Development of hollow electron beams for proton and ion collimation

    SciTech Connect

    Stancari, G.; Drozhdin, A.I.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.; /UC, San Diego

    2010-06-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  15. Tracking studies of the Compact Linear Collider collimation system

    SciTech Connect

    Agapov, I.; Burkhardt, H.; Schulte, D.; Latina, A.; Blair, G.A.; Malton, S.; Resta-Lopez, J.; /Oxford U., JAI

    2009-08-01

    A collimation system performance study includes several types of computations performed by different codes. Optics calculations are performed with codes such as MADX, tracking studies including additional effects such as wakefields, halo and tail generation, and dynamical machine alignment are done with codes such as PLACET, and energy deposition can be studied with BDSIM. More detailed studies of hadron production in the beam halo interaction with collimators are better performed with GEANT4 and FLUKA. A procedure has been developed that allows one to perform a single tracking study using several codes simultaneously. In this paper we study the performance of the Compact Linear Collider collimation system using such a procedure.

  16. Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system

    NASA Astrophysics Data System (ADS)

    Lee, Young-Jin; Ryu, Hyun-Ju; Lee, Seung-Wan; Park, Su-Jin; Kim, Hee-Joung

    2013-06-01

    Recently, many studies have sought to improve the sensitivity and spatial resolution of pixelated semiconductor detectors. Spatial resolution can be improved by using a pinhole or pixelated parallel-hole collimator with equal hole and pixel sizes. We compared a pinhole to a pixelated parallel-hole collimator and found that the pixelated parallel-hole collimator had higher sensitivity. Additionally, collimator materials with high absorption efficiency are often used because of their high spatial resolution. The purpose of this study was to compare the quality of images generated using a pixelated semiconductor single photon emission computed tomography (SPECT) system simulated with pixelated parallel-hole collimators of lead, tungsten, gold, and depleted uranium. We performed a simulation study of the PID 350 (Ajat Oy Ltd., Finland) CdTe pixelated semiconductor detector, which consists of small pixels (0.35×0.35 mm2), using a Geant4 Application for Tomographic Emission (GATE) simulation. Sensitivities and spatial resolutions were measured for the four collimator materials. To evaluate overall image performance, a hot-rod phantom was designed using GATE simulation. The results showed that with lead, sensitivity was 4.25%, 6.53%, and 10.28% higher than with tungsten, gold, and depleted uranium, respectively. Spatial resolution using depleted uranium was 3.19%, 4.19%, and 8.01% better than that of gold, tungsten, and lead, respectively. Sensitivity and spatial resolution showed little difference among the four types of collimator materials tested. It was difficult to visually distinguish between the reconstructed images of the hot-rod phantom for different collimator materials. The results are promising for notable cost reductions in collimator manufacturing while avoiding impractical and rare materials.

  17. Collimator design for a multipinhole brain SPECT insert for MRI

    SciTech Connect

    Van Audenhaege, Karen; Van Holen, Roel; Vanhove, Christian; Vandenberghe, Stefaan

    2015-11-15

    show sufficient axial sampling (in a Defrise phantom) and a reconstructed resolution of 5.0 mm (in a cold-rod phantom). The authors compared the 24-pinhole setup with a 34-pinhole system (with the same detector radius but a collimator radius of 156.63 mm) and found that 34 pinholes result in better uniformity but a worse reconstruction of the cold-rod phantom. The authors also compared the 24-pinhole system with a clinical triple-head UHR fan beam system based on contrast-to-noise ratio and found that the 24-pinhole setup performs better for the 6 mm hot and the 16 mm cold lesions and worse for the 8 and 10 mm hot lesions. Finally, the authors reconstructed noisy projection data of a Hoffman phantom with a 9 mm cold lesion and found that the lesion was slightly better visible on the multipinhole image compared to the fan beam image. Conclusions: The authors have optimized a stationary multipinhole SPECT insert for MRI and showed the feasibility of doing brain SPECT imaging inside a MRI with an image quality similar to the best clinical SPECT systems available.

  18. Bench-Top Impedance Measurements for a Rotatable Copper Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Bane, Karl; Doyle, Eric; Keller, Lew; Lundgren, Steve; Markiewicz, Tom; Ng, Cho-Kuen; Xiao, Liling; /SLAC

    2010-08-26

    Simulations have been performed in Omega3P to study both trapped modes and impedance contributions of a rotatable collimator for the LHC phase II collimation upgrade. Bench-top stretched coil probe impedance methods are also being implemented for measurements on prototype components to directly measure the low frequency impedance contributions. The collimator design also calls for a RF contact interface at both jaw ends with contact resistance much less than a milliohm in order to limit transverse impedance. DC resistance measurements in a custom built test chamber have been performed to test the performance of this interface.

  19. Monte Carlo simulation-based feasibility study of a dose-area product meter built into a collimator for diagnostic X-ray.

    PubMed

    Yoon, Yongsu; Kim, Hyunji; Park, MinSeok; Kim, Jungsu; Seo, Deoknam; Choi, Inseok; Jeong, Hoiwoun; Kim, Jungmin

    2014-12-01

    According to the International Electro-technical Commission, manufacturers of X-ray equipment should indicate the number of radiation doses to which a patient can be exposed. Dose-area product (DAP) meters are readily available devices that provide dose indices. Collimators are the most commonly employed radiation beam restrictors in X-ray equipment. DAP meters are attached to the lower surface of a collimator. A DAP meter consists of a chamber and electronics. This separation makes it difficult for operators to maintain the accuracy of a DAP meter. Developing a comprehensive system that has a DAP meter in place of a mirror in the collimator would be effective for measuring, recording the dose and maintaining the quality of the DAP meter. This study was conducted through experimental measurements and a simulation. A DAP meter built into a collimator was found to be feasible when its reading was multiplied by a correction factor. PMID:24353031

  20. Magnetized and collimated millimeter scale plasma jets with astrophysical relevance

    SciTech Connect

    Brady, Parrish C.; Quevedo, Hernan J.; Valanju, Prashant M.; Bengtson, Roger D.; Ditmire, Todd

    2012-01-15

    Magnetized collimated plasma jets are created in the laboratory to extend our understanding of plasma jet acceleration and collimation mechanisms with particular connection to astrophysical jets. In this study, plasma collimated jets are formed from supersonic unmagnetized flows, mimicking a stellar wind, subject to currents and magnetohydrodynamic forces. It is found that an external poloidal magnetic field, like the ones found anchored to accretion disks, is essential to stabilize the jets against current-driven instabilities. The maximum jet length before instabilities develop is proportional to the field strength and the length threshold agrees well with Kruskal-Shafranov theory. The plasma evolution is modeled qualitatively using MHD theory of current-carrying flux tubes showing that jet acceleration and collimation arise as a result of electromagnetic forces.

  1. Comparison of the TESLA, NLC and CLIC beam collimation performance

    SciTech Connect

    Alexandr I Drozhdin et al.

    2003-03-27

    This note describes studies performed in the framework of the Collimation Task Force organized to support the work of the International Linear Collider Technical Review Committee. The post-linac beam-collimation systems in the TESLA, JLC/NLC and CLIC linear-collider designs are compared using the same computer code under the same assumptions. Their performance is quantified in terms of beam-halo and synchrotron-radiation collimation efficiency. The performance of the current designs varies across projects, and does not always meet the original design goals. But these comparisons suggest that achieving the required performance in a future linear collider is feasible. The post-TRC plans of the Collimation Task Force are briefly outlined in closing.

  2. Slant-hole collimator, dual mode sterotactic localization method

    DOEpatents

    Weisenberger, Andrew G.

    2002-01-01

    The use of a slant-hole collimator in the gamma camera of dual mode stereotactic localization apparatus allows the acquisition of a stereo pair of scintimammographic images without repositioning of the gamma camera between image acquisitions.

  3. Variable-energy collimator for high-energy radiation

    DOEpatents

    Hill, R.A.

    1982-03-03

    An apparatus is disclosed providing a variable aperture energy beam collimator. A plurality of beam opaque blocks are in sliding interface edge contact to form a variable aperture. The blocks may be offset at the apex angle to provide a non-equilateral aperture. A plurality of collimator block assemblies may be employed for providing a channel defining a collimated beam. Adjacent assemblies are inverted front-to-back with respect to one another for preventing noncollimated ;energy from emergine from the apparatus. An adjustment mechanism comprises a cable attached to at least one block and a hand wheel mechanism for operating the cable. The blocks are supported by guide rods engaging slide brackets on the blocks. The guide rods are pivotally connected at each end to intermediate actuators supported on rotatable shafts to change the shape of the aperture. A divergent collimated beam may be obtained by adjusting the apertures of adjacent stages to be unequal.

  4. System characteristics of SPECT with a slat collimated strip detector.

    PubMed

    Vandenberghe, Stefaan; Van Holen, Roel; Staelens, Steven; Lemahieu, Ignace

    2006-01-21

    In classical SPECT with parallel hole collimation, the sensitivity is constant over the field of view (FOV). This is no longer the case if a rotating slat collimator with planar photon collection is used: there will be a significant variation of the sensitivity within the FOV. Since not compensating for this inhomogeneous sensitivity distribution would result in non-quantitative images, an accurate knowledge of the sensitivity is mandatory to account for it during reconstruction. On the other hand, the spatial resolution versus distance dependency remains unaltered compared to parallel hole collimation. For deriving the sensitivity, different factors have to be taken into account: a first factor concerns the intrinsic detector properties and will be incorporated into the calculations as a detection efficiency term depending on the incident angle. The calculations are based on a second and more pronounced factor: the collimator and detector geometry. Several assumptions will be made for the calculation of the sensitivity formulae and it will be proven that these calculations deliver a valid prediction of the sensitivity at points far enough from the collimator. To derive a close field model which also accounts for points close to the collimator surface, a modified calculation method is used. After calculating the sensitivity in one plane it is easy to obtain the tomographic sensitivity. This is done by rotating the sensitivity maps for spin and camera rotation. The results derived from the calculations are then compared to simulation results and both show good agreement after including the aforementioned detection efficiency term. The validity of the calculations is also proven by measuring the sensitivity in the FOV of a prototype rotating slat gamma camera. An expression for the resolution of these planar collimation systems is obtained. It is shown that for equal collimator dimensions the same resolution-distance relationship is obtained as for parallel hole

  5. Electron Beam Collimation for the Next Generation Light Source

    SciTech Connect

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  6. Beam loss by collimation in a neutralizer duct

    SciTech Connect

    Hamilton, G.W.; Willmann, P.A.

    1980-04-03

    Beam fractions lost by collimation in a neutralizer duct are computed in x-x' phase space by using three examples of slab beam distributions under a broad range of duct dimensions, beam half-widths, and beam divergences. The results can be used to design compact neutralizers and to specify beam requirements. The computer code ILOST can be used under a broad range of beam conditions to compute the fraction lost by collimation.

  7. Steering and collimating ballistic electrons with amphoteric refraction

    SciTech Connect

    Radu, A.; Dragoman, D.; Iftimie, S.

    2012-07-15

    We show that amphoteric refraction of ballistic electrons, i.e., positive or negative refraction depending on the incidence angle, occurs at an interface between an isotropic and an anisotropic medium and can be employed to steer and collimate electron beams. The steering angle is determined by the materials' parameters, but the degree of collimation can be tuned in a significant range by changing the energy of ballistic electrons.

  8. Benchmarking of collimation tracking using RHIC beam loss data.

    SciTech Connect

    Robert-Demolaize,G.; Drees, A.

    2008-06-23

    State-of-the-art tracking tools were recently developed at CERN to study the cleaning efficiency of the Large Hadron Collider (LHC) collimation system. In order to estimate the prediction accuracy of these tools, benchmarking studies can be performed using actual beam loss measurements from a machine that already uses a similar multistage collimation system. This paper reviews the main results from benchmarking studies performed with specific data collected from operations at the Relativistic Heavy Ion Collider (RHIC).

  9. Color mixing collimating lamp based on RGB LEDs

    NASA Astrophysics Data System (ADS)

    Lo, Yi-Chien; Moreno, Ivan; Chiu, Bo-Chun; Chien, Wei-Ting; Cai, Jhih-You; Chang, Yu-Yu; Sun, Ching-Cherng

    2012-10-01

    A novel light luminaire is proposed and experimentally analyzed, which efficiently mixes and projects the tunable light from red, green and blue (RGB) light-emitting diodes (LEDs). Simultaneous light collimation and color mixing is a challenging task because most collimators separate colors, and most color mixers spread the light beam. We performed an experimental study to find a balance between optical efficiency and color uniformity by changing light recycling and color mixing.

  10. Steering and collimating ballistic electrons with amphoteric refraction

    NASA Astrophysics Data System (ADS)

    Radu, A.; Dragoman, D.; Iftimie, S.

    2012-07-01

    We show that amphoteric refraction of ballistic electrons, i.e., positive or negative refraction depending on the incidence angle, occurs at an interface between an isotropic and an anisotropic medium and can be employed to steer and collimate electron beams. The steering angle is determined by the materials' parameters, but the degree of collimation can be tuned in a significant range by changing the energy of ballistic electrons.

  11. Improving IMRT-plan quality with MLC leaf position refinement post plan optimization

    PubMed Central

    Niu, Ying; Zhang, Guowei; Berman, Barry L.; Parke, William C.; Yi, Byongyong; Yu, Cedric X.

    2012-01-01

    Purpose: In intensity-modulated radiation therapy (IMRT) planning, reducing the pencil-beam size may lead to a significant improvement in dose conformity, but also increase the time needed for the dose calculation and plan optimization. The authors develop and evaluate a postoptimization refinement (POpR) method, which makes fine adjustments to the multileaf collimator (MLC) leaf positions after plan optimization, enhancing the spatial precision and improving the plan quality without a significant impact on the computational burden. Methods: The authors’ POpR method is implemented using a commercial treatment planning system based on direct aperture optimization. After an IMRT plan is optimized using pencil beams with regular pencil-beam step size, a greedy search is conducted by looping through all of the involved MLC leaves to see if moving the MLC leaf in or out by half of a pencil-beam step size will improve the objective function value. The half-sized pencil beams, which are used for updating dose distribution in the greedy search, are derived from the existing full-sized pencil beams without need for further pencil-beam dose calculations. A benchmark phantom case and a head-and-neck (HN) case are studied for testing the authors’ POpR method. Results: Using a benchmark phantom and a HN case, the authors have verified that their POpR method can be an efficient technique in the IMRT planning process. Effectiveness of POpR is confirmed by noting significant improvements in objective function values. Dosimetric benefits of POpR are comparable to those of using a finer pencil-beam size from the optimization start, but with far less computation and time. Conclusions: The POpR is a feasible and practical method to significantly improve IMRT-plan quality without compromising the planning efficiency. PMID:22894437

  12. Parallel-hole collimator concept for stationary SPECT imaging

    NASA Astrophysics Data System (ADS)

    Pato, Lara R. V.; Vandenberghe, Stefaan; Zedda, Tiziana; Van Holen, Roel

    2015-11-01

    Parallel-hole SPECT collimators have traditionally been manufactured by stacking sheets of lead foil or by casting. These techniques significantly restrict our options in terms of collimator geometry. However, recent developments in metal additive manufacturing are making novel collimator designs possible, giving rise to new opportunities in SPECT imaging. In this paper we propose an innovative type of collimator for stationary SPECT, using parallel-holes whose collimation direction depends on their axial position. Its main advantage compared to current stationary SPECT systems (which are based on pinholes) is that, using only axial bed translations, we can achieve complete angular sampling of an increased portion of the transaxial area of the collimator bore. This allows the system to be much more compact than current stationary SPECT systems that image objects of the same size. We describe three possible designs, for full-body, brain and small-animal imaging, respectively, and test their feasibility using simulations. The system modeling method is validated against realistic Monte Carlo simulations, and then used in the evaluation of the systems’ performances and reconstructions. The simulations show that the system is able to reconstruct objects occupying the predicted field of view (75% of the transaxial area of the bore) without sampling artifacts. In particular, we perform reconstructions from noisy projection data obtained for an activity and scanning time similar to standard protocols for the three applications, and the resulting images indicate the possibility of using the proposed systems in practice.

  13. Parallel-hole collimator concept for stationary SPECT imaging.

    PubMed

    Pato, Lara R V; Vandenberghe, Stefaan; Zedda, Tiziana; Van Holen, Roel

    2015-11-21

    Parallel-hole SPECT collimators have traditionally been manufactured by stacking sheets of lead foil or by casting. These techniques significantly restrict our options in terms of collimator geometry. However, recent developments in metal additive manufacturing are making novel collimator designs possible, giving rise to new opportunities in SPECT imaging. In this paper we propose an innovative type of collimator for stationary SPECT, using parallel-holes whose collimation direction depends on their axial position. Its main advantage compared to current stationary SPECT systems (which are based on pinholes) is that, using only axial bed translations, we can achieve complete angular sampling of an increased portion of the transaxial area of the collimator bore. This allows the system to be much more compact than current stationary SPECT systems that image objects of the same size. We describe three possible designs, for full-body, brain and small-animal imaging, respectively, and test their feasibility using simulations. The system modeling method is validated against realistic Monte Carlo simulations, and then used in the evaluation of the systems' performances and reconstructions. The simulations show that the system is able to reconstruct objects occupying the predicted field of view ([Formula: see text] of the transaxial area of the bore) without sampling artifacts. In particular, we perform reconstructions from noisy projection data obtained for an activity and scanning time similar to standard protocols for the three applications, and the resulting images indicate the possibility of using the proposed systems in practice. PMID:26528908

  14. Dual self-image technique for beam collimation

    NASA Astrophysics Data System (ADS)

    Herrera-Fernandez, Jose Maria; Sanchez-Brea, Luis Miguel; Torcal-Milla, Francisco Jose; Morlanes, Tomas; Bernabeu, Eusebio

    2016-07-01

    We propose an accurate technique for obtaining highly collimated beams, which also allows testing the collimation degree of a beam. It is based on comparing the period of two different self-images produced by a single diffraction grating. In this way, variations in the period of the diffraction grating do not affect to the measuring procedure. Self-images are acquired by two CMOS cameras and their periods are determined by fitting the variogram function of the self-images to a cosine function with polynomial envelopes. This way, loss of accuracy caused by imperfections of the measured self-images is avoided. As usual, collimation is obtained by displacing the collimation element with respect to the source along the optical axis. When the period of both self-images coincides, collimation is achieved. With this method neither a strict control of the period of the diffraction grating nor a transverse displacement, required in other techniques, are necessary. As an example, a LED considering paraxial approximation and point source illumination is collimated resulting a resolution in the divergence of the beam of δ φ =+/- 1.57 μ {rad}.

  15. Drop filters in a rod-type photonic crystal based on self-collimation ring resonators

    NASA Astrophysics Data System (ADS)

    Lin, Guimin; Chen, Xiyao; Lin, Nan; Li, Junjun; Qiu, Yishen

    2010-10-01

    We design a rod-type drop filter (RTDF) in a two-dimensional photonic crystal (2D PhC) employing self-collimation (SC) effect. The perfect 2D PhC consists of a square-lattice of cylindrical silicon rods in air. The dielectric constant and the radius of host rods are ɛ=12.25 (correspondingly the refractive index n = 3.5) and r=0.40a respectively, where a is the lattice constant. In such a PhC, self-collimation phenomenon occurs for transverse-magnetic (TM) light beams with frequencies between 0.176c/a and 0.192c/a. The proposed RTDF based on a self-collimation ring resonator (SCRR) consists of two beam splitters and two mirrors. The performances of the SCRR are investigated with the finite-difference time-domain (FDTD) simulation technique. The calculation results show that the transmissivity spectrum at the drop port has nearly equal peak spacing which will decreases when the geometrical length of the SCRR is increased. Moreover, the full width at half maximum (FWHM) and thus quality (Q) factor of peaks can be easily tuned by changing the reflectivity of two beam splitters.

  16. Finding Optimized Conditions of Slit-Slat and Multislit-Slat Collimation for Breast Imaging

    PubMed Central

    Kau, Daekwang; Metzler, Scott D.

    2013-01-01

    In order to develop a breast-imaging system for Single Photon Emission Computed Tomography (SPECT) using slit-slat and multislit-slat collimators, we searched for optimized geometric parameters of the collimators. For this study, we employed two independent metrics to validate each result: 1) Signal to Noise Ratio (SNR) based on the Cramer-Rao lower Bound (CRB) and 2) contrast at the same noise level from an ensemble. We calculated SNR values using forward-projection data of an anthropomorphic digital phantom containing two lesions in the breast (one at the chest wall and the other at the center) with a simulated slit-slat collimator as a function of the collimator’s geometric parameters. We also calculated contrast values from reconstructed images with noise. Based on the results from the slit-slat case, we investigated angular range, SNR, and contrast for the multislit-slat. We saw similar trends of the two metrics. One interesting property of the multislit-slat is that the imaging performance depends on the orientation of the field of view (FOV) of the side slits. When we compared the metric values for the slit-slat and multislit-slat, improvement was seen only when the lesion was in the FOV of the side slits. Therefore, tuning the parameters of the multislit-slat to optimally detect lesions at the chest wall might be a sensible option since the slit-slat already provides good image quality for center and superficial lesions. PMID:24347677

  17. Poster — Thur Eve — 19: Performance assessment of a 160-leaf beam collimation system

    SciTech Connect

    Ali, E. S. M.; La Russa, D. J.; Vandervoort, E.

    2014-08-15

    In this study, the performance of the new beam collimation system with 160 leaves, each with a 5 mm leaf width projected at isocenter, is evaluated in terms of positional accuracy and plan/delivery quality. Positional accuracy was evaluated using a set of static and dynamic MLC/jaw delivery patterns at different gantry angles, dose rates, and MLC/jaw speeds. The impact on IMRT plan quality was assessed by comparing against a previous generation collimation system using the same optimization parameters, while delivery quality was quantified using a combination of patient-specific QA measurements with ion chambers, film, and a bi-planar diode array. Positional accuracy for four separate units was comparable. The field size accuracy, junction width, and total displacement over 16 cm leaf travel are 0.3 ± 0.2 mm, 0.4 ± 0.3 mm, and 0.5 ± 0.2 mm, respectively. The typical leaf minor offset is 0.05 ± 0.04 mm, and MLC hysteresis effects are 0.2 ± 0.1 mm over 16 cm travel. The dynamic output is linear with MU and MLC/jaw speed, and is within 0.7 ± 0.3 % of the planning system value. Plan quality is significantly improved both in terms of target coverage and OAR sparing due, in part, to the larger allowable MLC and jaw speeds. γ-index pass rates for the patient-specific QA measurements exceeded 97% using criteria of 2%/2 mm. In conclusion, the performance of the Agility system is consistent among four separate installations, and is superior to its previous generations of collimation systems.

  18. Design and performance investigation of a multi-pinhole collimator for a small field of view gamma imaging system

    NASA Astrophysics Data System (ADS)

    Bae, Jaekeon; Bae, Seungbin; Lee, Kisung; Choi, Yong; Kim, Yongkwon; Joung, Jinhun

    2014-04-01

    The aim of this study is to design a collimator for a gamma imaging system that has a small-footprint, a fast-scan-time, and a organ-specific applicability. To achieve such features, the collimator must have a high resolution, a high sensitivity, and a gantry with a simple geometry. For ensuring high resolution and high sensitivity, we designed a multi-pinhole collimator. For realizing a simplified gantry, we carried out studies with limited angle reconstruction. On the designed multipinhole collimator has eight-pinholes, whose diameters are 2 mm. Limited-angle reconstruction has been conducted with angle intervals of 3, 6, 9, and 12° and with an angle coverage of 60, 90, 120, 150, and 180°. The reconstruction of an image was separately developed based on the ray-driven and voxel-driven methods in order to overcome the sampling problem and to reduce the amount of computation required. To evaluate the performance of the designed system, performed studies on three spherical phantoms and a heart phantom by using the Geant4 application for tomographic emission (GATE) simulation tool. The results showed that the full width at half maximum (FWHM) of the center source were 6.25 mm and 7.18 mm for single-pinhole and multi-pinhole collimators, respectively. Moreover, limited angle reconstruction resulted in a higher efficiency of the imaging system because it overcame the limitation of the gantry geometry. Limited-angle reconstruction was optimized at an angle coverage of 120° with an angle interval of 6°, then reconstructed image was shown a 12.18 mm FWHM. This suggests that the designed system needs only one-third the number of projections to acquire a reconstructed image with a slight degradation in image quality. This also suggests that our proposed multi-pinhole collimator is suitable for applications requiring a small-footprint, a fast-scan-time, and organ-specificity.

  19. Enhanced PET resolution by combining pinhole collimation and coincidence detection.

    PubMed

    DiFilippo, Frank P

    2015-10-21

    Spatial resolution of clinical PET scanners is limited by detector design and photon non-colinearity. Although dedicated small animal PET scanners using specialized high-resolution detectors have been developed, enhancing the spatial resolution of clinical PET scanners is of interest as a more available alternative. Multi-pinhole 511 keV SPECT is capable of high spatial resolution but requires heavily shielded collimators to avoid significant background counts. A practical approach with clinical PET detectors is to combine multi-pinhole collimation with coincidence detection. In this new hybrid modality, there are three locations associated with each event, namely those of the two detected photons and the pinhole aperture. These three locations over-determine the line of response and provide redundant information that is superior to coincidence detection or pinhole collimation alone. Multi-pinhole collimation provides high resolution and avoids non-colinearity error but is subject to collimator penetration and artifacts from overlapping projections. However the coincidence information, though at lower resolution, is valuable for determining whether the photon passed near a pinhole within the cone acceptance angle and for identifying through which pinhole the photon passed. This information allows most photons penetrating through the collimator to be rejected and avoids overlapping projections. With much improved event rejection, a collimator with minimal shielding may be used, and a lightweight add-on collimator for high resolution imaging is feasible for use with a clinical PET scanner. Monte Carlo simulations were performed of a (18)F hot rods phantom and a 54-pinhole unfocused whole-body mouse collimator with a clinical PET scanner. Based on coincidence information and pinhole geometry, events were accepted or rejected, and pinhole-specific crystal-map projections were generated. Tomographic images then were reconstructed using a conventional pinhole SPECT

  20. Enhanced PET resolution by combining pinhole collimation and coincidence detection

    NASA Astrophysics Data System (ADS)

    DiFilippo, Frank P.

    2015-10-01

    Spatial resolution of clinical PET scanners is limited by detector design and photon non-colinearity. Although dedicated small animal PET scanners using specialized high-resolution detectors have been developed, enhancing the spatial resolution of clinical PET scanners is of interest as a more available alternative. Multi-pinhole 511 keV SPECT is capable of high spatial resolution but requires heavily shielded collimators to avoid significant background counts. A practical approach with clinical PET detectors is to combine multi-pinhole collimation with coincidence detection. In this new hybrid modality, there are three locations associated with each event, namely those of the two detected photons and the pinhole aperture. These three locations over-determine the line of response and provide redundant information that is superior to coincidence detection or pinhole collimation alone. Multi-pinhole collimation provides high resolution and avoids non-colinearity error but is subject to collimator penetration and artifacts from overlapping projections. However the coincidence information, though at lower resolution, is valuable for determining whether the photon passed near a pinhole within the cone acceptance angle and for identifying through which pinhole the photon passed. This information allows most photons penetrating through the collimator to be rejected and avoids overlapping projections. With much improved event rejection, a collimator with minimal shielding may be used, and a lightweight add-on collimator for high resolution imaging is feasible for use with a clinical PET scanner. Monte Carlo simulations were performed of a 18F hot rods phantom and a 54-pinhole unfocused whole-body mouse collimator with a clinical PET scanner. Based on coincidence information and pinhole geometry, events were accepted or rejected, and pinhole-specific crystal-map projections were generated. Tomographic images then were reconstructed using a conventional pinhole SPECT

  1. Assessment of a fast generated analytical matrix for rotating slat collimation iterative reconstruction: a possible method to optimize the collimation profile.

    PubMed

    Boisson, F; Bekaert, V; Reilhac, A; Wurtz, J; Brasse, D

    2015-03-21

    In SPECT imaging, improvement or deterioration of performance is mostly due to collimator design. Classical SPECT systems mainly use parallel hole or pinhole collimators. Rotating slat collimators (RSC) can be an interesting alternative to optimize the tradeoff between detection efficiency and spatial resolution. The present study was conducted using a RSC system for small animal imaging called CLiR. The CLiR system was used in planar mode only. In a previous study, planar 2D projections were reconstructed using the well-known filtered backprojection algorithm (FBP). In this paper, we investigated the use of the statistical reconstruction algorithm maximum likelihood expectation maximization (MLEM) to reconstruct 2D images with the CLiR system using a probability matrix calculated using an analytic approach. The primary objective was to propose a method to quickly generate a light system matrix, which facilitates its handling and storage, while providing accurate and reliable performance. Two other matrices were calculated using GATE Monte Carlo simulations to investigate the performance obtained using the matrix calculated analytically. The first matrix calculated using GATE took all the physics processes into account, where the second did not consider for the scattering, as the analytical matrix did not take this physics process into account either. 2D images were reconstructed using FBP and MLEM with the three different probability matrices. Both simulated and experimental data were used. A comparative study of these images was conducted using different metrics: the modulation transfert function, the signal-to-noise ratio and quantification measurement. All the results demonstrated the suitability of using a probability matrix calculated analytically. It provided similar results in terms of spatial resolution (about 0.6 mm with differences <5%), signal-to-noise ratio (differences <10%), or quality of image. PMID:25716556

  2. Assessment of a fast generated analytical matrix for rotating slat collimation iterative reconstruction: a possible method to optimize the collimation profile

    NASA Astrophysics Data System (ADS)

    Boisson, F.; Bekaert, V.; Reilhac, A.; Wurtz, J.; Brasse, D.

    2015-03-01

    In SPECT imaging, improvement or deterioration of performance is mostly due to collimator design. Classical SPECT systems mainly use parallel hole or pinhole collimators. Rotating slat collimators (RSC) can be an interesting alternative to optimize the tradeoff between detection efficiency and spatial resolution. The present study was conducted using a RSC system for small animal imaging called CLiR. The CLiR system was used in planar mode only. In a previous study, planar 2D projections were reconstructed using the well-known filtered backprojection algorithm (FBP). In this paper, we investigated the use of the statistical reconstruction algorithm maximum likelihood expectation maximization (MLEM) to reconstruct 2D images with the CLiR system using a probability matrix calculated using an analytic approach. The primary objective was to propose a method to quickly generate a light system matrix, which facilitates its handling and storage, while providing accurate and reliable performance. Two other matrices were calculated using GATE Monte Carlo simulations to investigate the performance obtained using the matrix calculated analytically. The first matrix calculated using GATE took all the physics processes into account, where the second did not consider for the scattering, as the analytical matrix did not take this physics process into account either. 2D images were reconstructed using FBP and MLEM with the three different probability matrices. Both simulated and experimental data were used. A comparative study of these images was conducted using different metrics: the modulation transfert function, the signal-to-noise ratio and quantification measurement. All the results demonstrated the suitability of using a probability matrix calculated analytically. It provided similar results in terms of spatial resolution (about 0.6 mm with differences <5%), signal-to-noise ratio (differences <10%), or quality of image.

  3. Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing.

    PubMed

    Thiele, Simon; Gissibl, Timo; Giessen, Harald; Herkommer, Alois M

    2016-07-01

    By using two-photon lithographic 3D printing, we demonstrate additive manufacturing of a dielectric concentrator directly on a LED chip. With a size of below 200 μm in diameter and length, light output is increased by a factor of 6.2 in collimation direction, while the emission half-angle is reduced by 50%. We measure excellent form fidelity and irradiance patterns close to simulation. Additionally, a more complex shape design is presented, which exhibits a nonconventional triangular illumination pattern. The introduced method features exceptional design freedoms which can be used to tailor high-quality miniature illumination optics for specific lighting tasks, for example, endoscopy. PMID:27367093

  4. Collimator Width Optimization in X-Ray Luminescent Computed Tomography (XLCT) with Selective Excitation Scheme

    PubMed Central

    Mishra, S.; Kappiyoor, R.

    2015-01-01

    X-ray luminescent computed tomography (XLCT) is a promising new functional imaging modality based on computed tomography (CT). This imaging technique uses X-ray excitable nanophosphors to illuminate objects of interest in the visible spectrum. Though there are several validations of the underlying technology, none of them have addressed the issues of performance optimality for a given design of the imaging system. This study addresses the issue of obtaining best image quality through optimizing collimator width to balance the signal to noise ratio (SNR) and resolution. The results can be generalized as to any XLCT system employing a selective excitation scheme. PMID:25642356

  5. Plasma spray nozzle with low overspray and collimated flow

    NASA Technical Reports Server (NTRS)

    Beason, Jr., George P. (Inventor); McKechnie, Timothy N. (Inventor); Power, Christopher A. (Inventor)

    1996-01-01

    An improved nozzle for reducing overspray in high temperature supersonic plasma spray devices comprises a body defining an internal passageway having an upstream end and a downstream end through which a selected plasma gas is directed. The nozzle passageway has a generally converging/diverging Laval shape with its upstream end converging to a throat section and its downstream end diverging from the throat section. The upstream end of the passageway is configured to accommodate a high current cathode for producing an electrical arc in the passageway to heat and ionize the gas flow to plasma form as it moves along the passageway. The downstream end of the nozzle is uniquely configured through the methodology of this invention to have a contoured bell-shape that diverges from the throat to the exit of the nozzle. Coating material in powder form is injected into the plasma flow in the region of the bell-shaped downstream end of the nozzle and the powder particles become entrained in the flow. The unique bell shape of the nozzle downstream end produces a plasma spray that is ideally expanded at the nozzle exit and thus virtually free of shock phenomena, and that is highly collimated so as to exhibit significantly reduced fanning and diffusion between the nozzle and the target. The overall result is a significant reduction in the amount of material escaping from the plasma stream in the form of overspray and a corresponding improvement in the cost of the coating operation and in the quality and integrity of the coating itself.

  6. Radiation shielding for the Main Injector collimation system

    SciTech Connect

    Rakhno, Igor; /Fermilab

    2007-12-01

    The results of Monte Carlo radiation shielding studies performed with the MARS15 code for the Main Injector collimation system are presented and discussed. A Proton Plan was developed recently at Fermilab for the benefit of the existing neutrino programs as well as to increase anti-proton production for the Tevatron programs [1]. As a part of the plan, the intensity of proton beams in the Main Injector (MI) should be increased by means of slip-stacking injection. In order to localize beam loss associated with the injection, a collimation system was designed [2] that satisfies all the radiation and engineering constraints. The system itself comprises a primary collimator and four secondary ones to which various masks are added. It is assumed that beam loss at the slip-stacking injection is equal to 5% of total intensity which is 5.5 x 10{sup 13} protons per pulse [2]. As far as pulse separation is 2.2 seconds, one has (5.5 x 10{sup 13}/2.2) x 0.05 = 1.25 x 10{sup 12} protons interacting per second with the primary collimator. In the paper the geometry model of the corresponding MI region and beam loss model are described. The model of the region was built by means of the MAD-MARS Beam Line Builder (MMBLB) [3] using results of the collimation studies [2]. The results of radiation shielding calculations performed with the MARS15 code [4] are presented.

  7. A magnetically collimated jet from an evolved star.

    PubMed

    Vlemmings, Wouter H T; Diamond, Philip J; Imai, Hiroshi

    2006-03-01

    Planetary nebulae often have asymmetric shapes, even though their progenitor stars were symmetric; this structure could be the result of collimated jets from the evolved stars before they enter the planetary nebula phase. Theoretical models have shown that magnetic fields could be the dominant source of jet-collimation in evolved stars, just as these fields are thought to collimate outflows in other astrophysical sources, such as active galactic nuclei and proto-stars. But hitherto there have been no direct observations of both the magnetic field direction and strength in any collimated jet. Here we report measurements of the polarization of water vapour masers that trace the precessing jet emanating from the asymptotic giant branch star W43A (at a distance of 2.6 kpc from the Sun), which is undergoing rapid evolution into a planetary nebula. The masers occur in two clusters at opposing tips of the jets, approximately 1,000 au from the star. We conclude from the data that the magnetic field is indeed collimating the jet. PMID:16511488

  8. Collimated fast electron beam generation in critical density plasma

    SciTech Connect

    Iwawaki, T. Habara, H.; Morita, K.; Tanaka, K. A.; Baton, S.; Fuchs, J.; Chen, S.; Nakatsutsumi, M.; Rousseaux, C.; Filippi, F.; Nazarov, W.

    2014-11-15

    Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 10{sup 14 }W/cm{sup 2}, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 10{sup 14 }W/cm{sup 2}, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magnetic field in the region of the laser pulse propagation. To understand the physical mechanism of the collimation, we calculate energetic electron motion in the magnetic field obtained from the 2D PIC simulation. As the results, the strong magnetic field (300 MG) collimates electrons with energy over a few MeV. This collimation mechanism may attract attention in many applications such as electron acceleration, electron microscope and fast ignition of laser fusion.

  9. SU-C-207-03: Optimization of a Collimator-Based Sparse Sampling Technique for Low-Dose Cone-Beam CT

    SciTech Connect

    Lee, T; Cho, S; Kim, I; Han, B

    2015-06-15

    Purpose: In computed tomography (CT) imaging, radiation dose delivered to the patient is one of the major concerns. Sparse-view CT takes projections at sparser view angles and provides a viable option to reducing dose. However, a fast power switching of an X-ray tube, which is needed for the sparse-view sampling, can be challenging in many CT systems. We have earlier proposed a many-view under-sampling (MVUS) technique as an alternative to sparse-view CT. In this study, we investigated the effects of collimator parameters on the image quality and aimed to optimize the collimator design. Methods: We used a bench-top circular cone-beam CT system together with a CatPhan600 phantom, and took 1440 projections from a single rotation. The multi-slit collimator made of tungsten was mounted on the X-ray source for beam blocking. For image reconstruction, we used a total-variation minimization (TV) algorithm and modified the backprojection step so that only the measured data through the collimator slits are to be used in the computation. The number of slits and the reciprocation frequency have been varied and the effects of them on the image quality were investigated. We also analyzed the sampling efficiency: the sampling density and data incoherence in each case. We tested three sets of slits with their number of 6, 12 and 18, each at reciprocation frequencies of 10, 30, 50 and 70 Hz/ro. Results: Consistent results in the image quality have been produced with the sampling efficiency, and the optimum condition was found to be using 12 slits at 30 Hz/ro. As image quality indices, we used the CNR and the detectability. Conclusion: We conducted an experiment with a moving multi-slit collimator to realize a sparse-sampled cone-beam CT. Effects of collimator parameters on the image quality have been systematically investigated, and the optimum condition has been reached.

  10. Reliable detection of fluence anomalies in EPID-based IMRT pretreatment quality assurance using pixel intensity deviations

    SciTech Connect

    Gordon, J. J.; Gardner, J. K.; Wang, S.; Siebers, J. V.

    2012-08-15

    Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal images used for IMRT pretreatment quality assurance. Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelerator at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered to minimize the impact of linear accelerator and electronic portal imaging device (EPID) positioning deviations. Detection studies are performed in which rectangular anomalies of various sizes are inserted into the images. The performance of detection strategies based on pixel intensity deviations (PIDs) and gamma indices is evaluated using receiver operating characteristic analysis. Results: Residual differences between registered images are due to interfraction positional deviations of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using gradient scaling. Background noise is suppressed using median filtering. In the majority of images, PID-based detection strategies can reliably detect fluence anomalies of {>=}5% in {approx}1 mm{sup 2} areas and {>=}2% in {approx}20 mm{sup 2} areas. Conclusions: The ability to detect small dose differences ({<=}2%) depends strongly on the level of background noise. This in turn depends on the accuracy of image registration, the quality of the reference image, and field properties. The longer term aim of this work is to develop accurate and reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adaptive, and arc therapies, to be quantified.

  11. Collimated neutron probe for soil water content measurements

    USGS Publications Warehouse

    Klenke, J.M.; Flint, A.L.

    1991-01-01

    A collimated neutron probe was designed to enable mesurements in specific directions from the access tube. To determine the size and shape of soil volume affecting the neutron counts, experiments were conducted to evaluate: 1) the vertical distance of soil above and below the probe that influences neutron counts; 2) the horizontal distance away from the probe into the soil that influences neutron counts; 3) the angle of soil viewed by the probe from the collimator; and 4) the three-dimensional thermal-neutron density field. The vertical distance was ~0.5m, the horizontal distance was ~0.2m, and the angle of soil viewed by the probe from the collimator was ~120??. Thermal neutrons detected from distances or angles larger than these values influence the determination of relative water content by 5% or less. -from Authors

  12. Impact of dose rate on accuracy of intensity modulated radiation therapy plan delivery using the pretreatment portal dosimetry quality assurance and setting up the workflow at hospital levels

    PubMed Central

    Kaviarasu, Karunakaran; Raj, N. Arunai Nambi; Murthy, K. Krishna; Babu, A. Ananda Giri; Prasad, Bhaskar Laxman Durga

    2015-01-01

    The aim of this study was to examine the impact of dose rate on accuracy of intensity modulated radiation therapy (IMRT) plan delivery by comparing the gamma agreement between the calculated and measured portal doses by pretreatment quality assurance (QA) using electronic portal imaging device dosimetry and creating a workflow for the pretreatment IMRT QA at hospital levels. As the improvement in gamma agreement leads to increase in the quality of IMRT treatment delivery, gamma evaluation was carried out for the calculated and the measured portal images for the criteria of 3% dose difference and 3 mm distance-to-agreement (DTA). Three gamma parameters: Maximum gamma, average gamma, and percentage of the field area with a gamma value>1.0 were analyzed. Three gamma index parameters were evaluated for 40 IMRT plans (315 IMRT fields) which were calculated for 400 monitor units (MU)/min dose rate and maximum multileaf collimator (MLC) speed of 2.5 cm/s. Gamma parameters for all 315 fields are within acceptable limits set at our center. Further, to improve the gamma results, we set an action level for this study using the mean and standard deviation (SD) values from the 315 fields studied. Forty out of 315 IMRT fields showed low gamma agreement (gamma parameters>2 SD as per action level of the study). The parameters were recalculated and reanalyzed for the dose rates of 300, 400 and 500 MU/min. Lowering the dose rate helped in getting an enhanced gamma agreement between the calculated and measured portal doses of complicated fields. This may be attributed to the less complex motion of MLC over time and the MU of the field/segment. An IMRT QA work flow was prepared which will help in improving the quality of IMRT delivery. PMID:26865759

  13. Wavefront reversal technique for self-referencing collimation testing

    SciTech Connect

    Hii, King Ung; Kwek, Kuan Hiang

    2010-02-01

    We present a wavefront reversal technique to produce a dual-field fringe pattern for self-referencing collimation testing in wedge-plate lateral-shear interferometry. The method requires only a suitably placed cubic beam splitter to produce two replicas of the fringe field formed by the wedge-plate lateral-shear interferometer. One of the replicas has a fringe pattern that is the reverse of the other. With these two fringe fields, the collimation testing has a built-in reference, and the detection sensitivity is twice that of a single-wedge-plate technique.

  14. Impedance Scaling for Small-angle Tapers and Collimators

    SciTech Connect

    Stupakov, G.; /SLAC

    2010-02-11

    In this note I will prove that the impedance calculated for a small-angle collimator or taper, of arbitrary 3D profile, has a scaling property that can greatly simplify numerical calculations. This proof is based on the parabolic equation approach to solving Maxwell's equation developed in Refs. [1, 2]. We start from the parabolic equation formulated in [3]. As discussed in [1], in general case this equation is valid for frequencies {omega} >> c/a where a is a characteristic dimension of the obstacle. However, for small-angle tapers and collimators, the region of validity of this equation extends toward smaller frequencies and includes {omega} {approx} c/a.

  15. ILC Beam delivery WG summary: Optics, collimation and background

    SciTech Connect

    Angal-Kalinin, D.; Jackson, F.; Mokhov, N.V.; Kuroda, S.; Seryi, A.A.; /SLAC

    2006-07-01

    The paper summarizes the work of the Beam Delivery working group (WG4) at Snowmass 2005 workshop, focusing on status of optics, layout, collimation and detector background. The strawman layout with two interaction regions was recommended at the first ILC workshop at KEK in November 2004. Two crossing-angle designs were included in this layout. The design of the ILC BDS has evolved since the first ILC workshop. The progress on the BDS design including the collimation system, and extraction line design have been reviewed and the design issues were discussed during the WG4 sessions at the Snowmass, and are described in this paper.

  16. High energy collimating fine grids for HESP program

    NASA Technical Reports Server (NTRS)

    Eberhard, Carol D.; Frazier, Edward

    1993-01-01

    There is a need to develop fine pitch x-ray collimator grids as an enabling technology for planned future missions. The grids consist of an array of thin parallel strips of x-ray absorbing material, such as tungsten, with pitches ranging from 34 microns to 2.036 millimeters. The grids are the key components of a new class of spaceborne instruments known as 'x-ray modulation collimators.' These instruments are the first to produce images of celestial sources in the hard x-ray and gamma-ray spectral regions.

  17. MagicPlate-512: A 2D silicon detector array for quality assurance of stereotactic motion adaptive radiotherapy

    SciTech Connect

    Petasecca, M. Newall, M. K.; Aldosari, A. H.; Fuduli, I.; Espinoza, A. A.; Porumb, C. S.; Guatelli, S.; Metcalfe, P.; Lerch, M. L. F.; Rosenfeld, A. B.; Booth, J. T.; Colvill, E.; Duncan, M.; Cammarano, D.; Carolan, M.; Oborn, B.; Perevertaylo, V.; Keall, P. J.

    2015-06-15

    Purpose: Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named “MagicPlate-512” for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. Methods: MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of small field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by GEANT4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Results: Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion

  18. Research and development of a dedicated collimator for 14.2 MeV fast neutrons for imaging using a D-T generator

    NASA Astrophysics Data System (ADS)

    Sabo-Napadensky, I.; Weiss-Babai, R.; Gayer, A.; Vartsky, D.; Bar, D.; Mor, I.; Chacham-Zada, R.; Cohen, M.; Tamim, N.

    2012-06-01

    One of the main problems in neutron imaging is the scattered radiation that accompanies the direct neutrons that reach the imaging detectors and affect the image quality. We have developed a dedicated collimator for 14.2 MeV fast neutrons. The collimator optimizes the amount of scattered radiation to primary neutrons that arrive at the imaging plane. We have used different materials within the collimator in order to lower the scattered radiation that arrives at the scanned object. The image quality and the signal to noise ratios that are measured show that a mixture of BORAX (Na2B4O7ṡ10H2O) and water in the experimental beam collimator give the best results. We have used GEANT4 to simulate the collimator performance, the simulations predict the optimized material looking on the ratios of the scattered to primary neutrons that contribute in the detector. We present our experimental setup, report the results of the experimental and related simulation studies with neutrons beam generated by a 14.2 MeV D-T neutron generator.

  19. Study of Alternative Optics for the NLC Prelinac Collimation section (LCC-0057)

    SciTech Connect

    Nosochkov, Y

    2003-12-03

    In this note, we describe a study of alternative optics for the NLC pre-linac collimation and bunch compressor sections. The advantage of the new design is a significant reduction of effective emittance growth and a less complex collimation system compared to the ZDR type design. In the new collimation section design, only energy collimation is performed, and the betatron collimation will take place upstream the collimation section, just after the damping rings. The new optics described in this note are not exactly the most recent NLC optics, but were, in part, the basis for the present optics.

  20. A new algorithm for determining collimator angles that favor efficiency in MLC based IMRT delivery.

    PubMed

    Wang, David; Hill, R W; Lam, S

    2004-05-01

    A new algorithm to determine collimator angles that favor delivery efficiency of intensity modulated radiotherapy plans was developed. It was found that the number of segments and monitor units (MUs) were largely reduced with the set of collimator angles determined with the new algorithm without compromising plan quality. The improvement of delivery efficiency using the new algorithm depends on the size and shape of the target(s), the number of modulation levels, and the type of leaf-sequencing algorithm. In a typical prostate case, when a sweeping leaf-sequencer is used for Varian 120 leaf (0.5 x 0.5 cm2 beamlet), 80 leaf (1 x 1 cm2 beamlet) and Elekta 40 leaf (1 x 1 cm2 beamlet), the number of segments was reduced by 42%, 29%, and 5%, respectively. The number of MUs was reduced by 41%, 35%, and 10%. For the Siemens MLC (IMFAST leaf sequencer, 1 x 1 cm2 beamlet) the segment reduction was 32% and the MU reduction was 14%. Comparison of the plans using the new and Brahme algorithms, in terms of target conformity index and dose volume histogram of the organs at risk, showed that the quality of the plans using the new algorithm was uncompromised. Similar results were obtained for a set of head and neck treatment plans. PMID:15191316

  1. Quality.

    ERIC Educational Resources Information Center

    Evans, Judith L.; Schaeffer, Sheldon

    1996-01-01

    This issue of the Coordinator's Notebook focuses on the quality of Early Childhood Care and Development (ECCD) programs. The bulk of the issue is devoted to an article "Quality in ECCD: Everyone's Concern" (Judith Evans), which reviews the need for a definition of high quality in ECCD programs and discusses how diverse stakeholders define quality.…

  2. Discovery of collimated ejection from the symbiotic binary BF Cygni

    NASA Astrophysics Data System (ADS)

    Skopal, A.; Tomov, N. A.; Tomova, M. T.

    2013-03-01

    Context. Detection of collimated ejection from white dwarfs (WD) in symbiotic binaries is very rare and has employed a variety of methods in X-ray, radio, optical imagery, and spectroscopy. To date, its signature in the optical spectra has only been recorded for four objects (MWC 560, Hen 3-1341, StHα 190, and Z And). Aims: We present the first observational evidence of highly-collimated bipolar ejection from the symbiotic binary BF Cyg, which developed during its current (2006-12) active phase, and determine their physical parameters. Methods: We monitored the outburst with the optical high-resolution spectroscopy and multicolour UBVRCIC photometry. Results: During 2009, three years after the 2006-eruption of BF Cyg, satellite components to Hα and Hβ lines emerged in the spectrum. During 2012, they became stable and were located symmetrically with respect to the main emission core of the line. Spectral properties of these components suggest bipolar ejection collimated within an opening angle of ≲15°, whose radiation is produced by an optically thin medium with the emission measure of 1-2 × 1059 (d/3.8 kpc)2 cm-3. Conclusions: Formation of the collimated ejection a few years after the eruption and its evolution on a time scale of years at a constant optical brightness can aid us in better understanding the accretion process during the active phases of symbiotic stars. Based on data collected with 2-m telescope at the Rozhen National Astronomical Observatory and the David Dunlap Observatory.

  3. Radiation shielding for the Main Injector collimation system

    SciTech Connect

    Rakhno, Igor; /Fermilab

    2008-05-01

    The results of Monte Carlo radiation shielding studies performed with the MARS15 code for the Main Injector collimation system at Fermilab are presented and discussed. MAD-to-MARS Beam Line Builder is used to generate realistic extended curvilinear geometry models.

  4. Geometric beam coupling impedance of LHC secondary collimators

    NASA Astrophysics Data System (ADS)

    Frasciello, Oscar; Tomassini, Sandro; Zobov, Mikhail; Salvant, Benoit; Grudiev, Alexej; Mounet, Nicolas

    2016-02-01

    The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep beam instabilities under control and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are among the major impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were higher by about a factor of 2 with respect to the theoretical predictions based on the LHC impedance model up to 2012. In that model the resistive wall impedance has been considered as the dominating impedance contribution for collimators. By carefully simulating also their geometric impedance we have contributed to the update of the LHC impedance model, reaching also a better agreement between the measured and simulated betatron tune shifts. During the just ended LHC Long Shutdown I (LSI), TCS/TCT collimators were replaced by new devices embedding BPMs and TT2-111R ferrite blocks. We present here preliminary estimations of their broad-band impedance, showing that an increase of about 20% is expected in the kick factors with respect to previous collimators without BPMs.

  5. Creating a collimated ultrasound beam in highly attenuating fluids.

    PubMed

    Raeymaekers, Bart; Pantea, Cristian; Sinha, Dipen N

    2012-04-01

    We have devised a method, based on a parametric array concept, to create a low-frequency (300-500 kHz) collimated ultrasound beam in fluids highly attenuating to sound. This collimated beam serves as the basis for designing an ultrasound visualization system that can be used in the oil exploration industry for down-hole imaging in drilling fluids. We present the results of two different approaches to generating a collimated beam in three types of highly attenuating drilling mud. In the first approach, the drilling mud itself was used as a nonlinear mixing medium to create a parametric array. However, the short absorption length in mud limits the mixing length and, consequently, the resulting beam is weak and broad. In the second improved approach, the beam generation process was confined to a separate "frequency mixing tube" that contained an acoustically non-linear, low attenuation medium (e.g., water) that allowed establishing a usable parametric array in the mixing tube. A low-frequency collimated beam was thus created prior to its propagation into the drilling fluid. Using the latter technique, the penetration depth of the low frequency ultrasound beam in the drilling fluid was significantly extended. We also present measurements of acoustic nonlinearity in various types of drilling mud. PMID:22204917

  6. The collimation of magnetic jets by disc winds

    NASA Astrophysics Data System (ADS)

    Globus, N.; Levinson, A.

    2016-09-01

    The collimation of a Poynting-flux dominated jet by a wind emanating from the surface of an accretion flow is computed using a semi-analytic model. The injection of the disc wind is treated as a boundary condition in the equatorial plane, and its evolution is followed by invoking a prescribed geometry of streamlines. Solutions are obtained for a wide range of disc wind parameters. It is found that jet collimation generally occurs when the total wind power exceeds about 10 percents of the jet power. For moderate wind powers, we find gradual collimation. For strong winds, we find rapid collimation followed by focusing of the jet, after which it remains narrow over many Alfvén crossing times before becoming conical. We estimate that in the later case, the jet's magnetic field may be dissipated by the current-driven kink instability over a distance of a few hundreds gravitational radii. We apply the model to M87 and show that the observed parabolic shape of the radio jet within the Bondi radius can be reproduced provided that the wind injection zone extends to several hundreds gravitational radii, and that its total power is about one-third of the jet power. The radio spectrum can be produced by synchrotron radiation of relativistically hot, thermal electrons in the sheath flow surrounding the inner jet.

  7. Collimator design for neutron imaging of laser-fusion targets

    SciTech Connect

    Sommargren, G.E.; Lerche, R.A.

    1981-12-15

    Several pinhole collimator geometries for use in neutron imaging experiments have been modeled and compared. Point spread functions are shown for a cylinder, hyperbola, intersecting cones, and a five-zone approximation to the intersecting cones. Of the geometries studied, the intersecting cones appear the most promising with respect to neutron efficiency, field of view, and isoplanatism.

  8. Method for Measuring Collimator-Pointing Sensitivity to Temperature Changes

    NASA Technical Reports Server (NTRS)

    Abramovici, Alex; Cox, Timothy E.; Hein, Randall C.; MacDonald, Daniel R.

    2011-01-01

    For a variety of applications, it is important to measure the sensitivity of the pointing of a beam emerging from a collimator, as a function of temperature changes. A straightforward method for carrying out this measurement is based on using interferometry for monitoring the changes in beam pointing, which presents its own problems. The added temperature dependence and complexity issues relating to using an interferometer are addressed by not using an interferometer in the first place. Instead, the collimator is made part of an arrangement that uses a minimum number of low-cost, off-the-shelf materials and by using a quad diode to measure changes in beam pointing. In order to minimize the influence of the test arrangement on the outcome of the measurement, several steps are taken. The collimator assembly is placed on top of a vertical, 1-m-long, fused silica tube. The quad diode is bonded to a fused silica bar, which, in turn, is bonded to the lower end of the fused silica tube. The lower end of the tube rests on a self-aligning support piece, while the upper end of the tube is kept against two rounded setscrew tips, using a soft rubber string. This ensures that very little stress is applied to the tube as the support structure changes dimensions due to thermal expansion. Light is delivered to the collimator through a bare fiber in order to minimize variable bending torque caused by a randomly relaxing, rigid fiber jacket. In order to separate the effect of temperature on the collimator assembly from the effect temperature has on the rest of the setup, multiple measurements are taken with the collimator assembly rotated from measurement to measurement. Laboratory testing, with 1-m spacing between the collimator and the quad diode, has shown that the sensitivity of the arrangement is better than 100 nm rms, over time spans of at least one hour, if the beam path is protected from atmospheric turbulence by a tube. The equivalent sensitivity to detecting changes in

  9. Multiple pinhole collimator based X-ray luminescence computed tomography

    PubMed Central

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-01-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686

  10. Multiple pinhole collimator based X-ray luminescence computed tomography.

    PubMed

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-07-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686

  11. The manipulation of self-collimated beam in phononic crystals composed of orientated rectangular inclusions

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Nien; Chen, Lien-Wen

    2016-07-01

    Self-collimation is wave propagation in straight path without diffraction. The performance is evaluated by bandwidth, angular collimating range and straightness of equi-frequency contours. The present study aims to manipulate the self-collimated beam in square-array phononic crystals by means of orientated rectangular inclusions. Finite element simulations are performed to investigate the effects of the aspect ratio and orientation angle of rectangular inclusions on the self-collimated beam. The simulation results show that the proposed design successfully achieves all-angle self-collimation phenomenon. In addition, it also shows that the propagation direction of a self-collimated beam can be effectively manipulated by varying the orientation angle of inclusions. Numerical simulation result of the S-shaped bend demonstrates that acoustic collimated beam can be steered with negligible diffraction. Overall, the proposed design has significant potential for the realization of applications such as collimators, acoustic waveguides and other phononic crystals-based systems.

  12. Examination of the properties of IMRT and VMAT beams and evaluation against pre-treatment quality assurance results.

    PubMed

    Crowe, S B; Kairn, T; Middlebrook, N; Sutherland, B; Hill, B; Kenny, J; Langton, C M; Trapp, J V

    2015-03-21

    This study aimed to provide a detailed evaluation and comparison of a range of modulated beam evaluation metrics, in terms of their correlation with QA testing results and their variation between treatment sites, for a large number of treatments. Ten metrics including the modulation index (MI), fluence map complexity, modulation complexity score (MCS), mean aperture displacement (MAD) and small aperture score (SAS) were evaluated for 546 beams from 122 intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) treatment plans targeting the anus, rectum, endometrium, brain, head and neck and prostate. The calculated sets of metrics were evaluated in terms of their relationships to each other and their correlation with the results of electronic portal imaging based quality assurance (QA) evaluations of the treatment beams. Evaluation of the MI, MAD and SAS suggested that beams used in treatments of the anus, rectum, head and neck were more complex than the prostate and brain treatment beams. Seven of the ten beam complexity metrics were found to be strongly correlated with the results from QA testing of the IMRT beams (p < 0.00008). For example, values of SAS (with multileaf collimator apertures narrower than 10 mm defined as 'small') less than 0.2 also identified QA passing IMRT beams with 100% specificity. However, few of the metrics are correlated with the results from QA testing of the VMAT beams, whether they were evaluated as whole 360° arcs or as 60° sub-arcs. Select evaluation of beam complexity metrics (at least MI, MCS and SAS) is therefore recommended, as an intermediate step in the IMRT QA chain. Such evaluation may also be useful as a means of periodically reviewing VMAT planning or optimiser performance. PMID:25761616

  13. Examination of the properties of IMRT and VMAT beams and evaluation against pre-treatment quality assurance results

    NASA Astrophysics Data System (ADS)

    Crowe, S. B.; Kairn, T.; Middlebrook, N.; Sutherland, B.; Hill, B.; Kenny, J.; Langton, C. M.; Trapp, J. V.

    2015-03-01

    This study aimed to provide a detailed evaluation and comparison of a range of modulated beam evaluation metrics, in terms of their correlation with QA testing results and their variation between treatment sites, for a large number of treatments. Ten metrics including the modulation index (MI), fluence map complexity, modulation complexity score (MCS), mean aperture displacement (MAD) and small aperture score (SAS) were evaluated for 546 beams from 122 intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) treatment plans targeting the anus, rectum, endometrium, brain, head and neck and prostate. The calculated sets of metrics were evaluated in terms of their relationships to each other and their correlation with the results of electronic portal imaging based quality assurance (QA) evaluations of the treatment beams. Evaluation of the MI, MAD and SAS suggested that beams used in treatments of the anus, rectum, head and neck were more complex than the prostate and brain treatment beams. Seven of the ten beam complexity metrics were found to be strongly correlated with the results from QA testing of the IMRT beams (p < 0.00008). For example, values of SAS (with multileaf collimator apertures narrower than 10 mm defined as ‘small’) less than 0.2 also identified QA passing IMRT beams with 100% specificity. However, few of the metrics are correlated with the results from QA testing of the VMAT beams, whether they were evaluated as whole 360° arcs or as 60° sub-arcs. Select evaluation of beam complexity metrics (at least MI, MCS and SAS) is therefore recommended, as an intermediate step in the IMRT QA chain. Such evaluation may also be useful as a means of periodically reviewing VMAT planning or optimiser performance.

  14. Versatile Collimating Crystal Stage for a Bonse-Hart USAXS Instrument

    NASA Astrophysics Data System (ADS)

    Ilavsky, J.; Shu, D.; Jemian, P. R.; Long, G. G.

    2007-01-01

    An advanced ultra-small-angle X-ray scattering (USAXS) instrument, using the Bonse-Hart design and installed at APS, is a robust and reliable instrument, providing a scattering vector (q) range of nearly 4 decades (0.00015 to 1 Å-1), an intensity dynamic range of up to 9 decades, standard-less absolute intensity calibration, and USAXS imaging capabilities. This type of instrument typically uses channel-cut crystals in both the collimating (before sample) and analyzing (after sample) stages. The optical surfaces of these crystals are finished by etching processes, which leave an orange-peel surface texture, which would compromise the USAXS imaging quality. Therefore optics with highly polished surfaces using separated crystals in both collimating and analyzing stages were developed. A novel design of the optics and mechanical stage uses a fixed gap between the two separated collimating crystals in which a triangular section of the first crystal is removed, allowing for a variable number (1, 2, 4, 6, or 8) of crystal reflections for X-ray energies between 7 and 19 keV. The number of reflections is selected by lateral translation of the collimating crystal pair. Rotational alignment of the second crystal in the pair by an artificial channel-cut crystal mechanism, implemented with a novel high-stiffness weak link actuated by both a picomotor and a piezo-electric transducer, provides the capability to align or adjust an assembly of crystals to achieve the same performance as a single channel-cut crystal with integral weak link. The arrangement of both crystals is held on a removable base that can be remounted with precision within the Si(111) rocking curve on a three-point kinematic mount. Additional tilt adjustments are also provided for initial alignment. This monochromator has proven to be highly robust with respect to motions and vibrations, as well as flexible with respect to selection of number of reflections, and its performance directly resulted in the highly

  15. Multiple pinhole collimator based microscopic x-ray luminescence computed tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    X-ray luminescence computed tomography (XLCT) is a new hybrid imaging modality, which has the capability to improve optical spatial resolution to hundreds of micrometers for deep targets. In this paper, we report a multiple pinhole collimator based microscopic X-ray luminescence computed tomography (microXLCT) system for small animal imaging. Superfine collimated X-ray pencil beams are used to excite deeply embedded phosphor particles, allowing us to obtain sub-millimeter optical spatial resolution in deep tissues. Multiple collimated X-ray beams are generated by mounting an array of pinholes in the front of a powerful X-ray tube. With multiple X-ray beams scanning, the phosphor particles in the region of the multiple beams are excited simultaneously, which requires less scanning time compared with a single beam scanning. The emitted optical photons on the top surface of the phantom are measured with an electron multiplying charge-coupled device (EMCCD) camera. Meanwhile, an X-ray detector is used to determine the X-ray beam size and position, which are used as structural guidance in the microXLCT image reconstruction. To validate the performance of our proposed multiple pinhole based microXLCT imaging system, we have performed numerical simulations and a phantom experiment. In the numerical simulations, we simulated a cylindrical phantom with two and six embedded targets, respectively. In the simulations, we used four parallel X-ray beams with the beam diameter of 0.1 mm and the beam interval of 3.2 mm. We can reconstruct deeply embedded multiple targets with a target diameter of 0.2 mm using measurements in six projections, which indicated that four parallel X-ray beam scan could reduce scanning time without comprising the reconstructed image quality. In the phantom experiment, we generated two parallel X-ray beams with the beam diameter of 0.5 mm and the beam interval of 4.2 mm. We scanned a phantom of one target with the two parallel X-ray beams. The target was

  16. Simultaneous Tc-99m/I-123 Dual Radionuclide Myocardial Perfusion/Innervation Imaging Using Siemens IQ-SPECT with SMARTZOOM Collimator

    PubMed Central

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric. C.

    2014-01-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region compared to a typical parallel-hole low-energy high-resolution collimator but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulation and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter modeling

  17. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    NASA Astrophysics Data System (ADS)

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C.

    2014-06-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  18. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator.

    PubMed

    Du, Yong; Bhattacharya, Manojeet; Frey, Eric C

    2014-06-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  19. An energy-optimized collimator design for a CZT-based SPECT camera

    NASA Astrophysics Data System (ADS)

    Weng, Fenghua; Bagchi, Srijeeta; Zan, Yunlong; Huang, Qiu; Seo, Youngho

    2016-01-01

    In single photon emission computed tomography, it is a challenging task to maintain reasonable performance using only one specific collimator for radiotracers over a broad spectrum of diagnostic photon energies, since photon scatter and penetration in a collimator differ with the photon energy. Frequent collimator exchanges are inevitable in daily clinical SPECT imaging, which hinders throughput while subjecting the camera to operational errors and damage. Our objective is to design a collimator, which is independent of the photon energy, performs reasonably well for commonly used radiotracers with low- to medium-energy levels of gamma emissions. Using the Geant4 simulation toolkit, we simulated and evaluated a parallel-hole collimator mounted to a CZT detector. With the pixel-geometry-matching collimation, the pitch of the collimator hole was fixed to match the pixel size of the CZT detector throughout this work. Four variables, hole shape, hole length, hole radius/width and the source-to-collimator distance were carefully studied. Scatter and penetration of the collimator, sensitivity and spatial resolution of the system were assessed for four radionuclides including 57Co, 99mTc, 123I and 111In, with respect to the aforementioned four variables. An optimal collimator was then decided upon such that it maximized the total relative sensitivity (TRS) for the four considered radionuclides while other performance parameters, such as scatter, penetration and spatial resolution, were benchmarked to prevalent commercial scanners and collimators. Digital phantom studies were also performed to validate the system with the optimal square-hole collimator (23 mm hole length, 1.28 mm hole width, and 0.32 mm septal thickness) in terms of contrast, contrast-to-noise ratio and recovery ratio. This study demonstrates promise of our proposed energy-optimized collimator to be used in a CZT-based gamma camera, with comparable or even better imaging performance versus commercial

  20. An energy-optimized collimator design for a CZT-based SPECT camera

    PubMed Central

    Weng, Fenghua; Bagchi, Srijeeta; Zan, Yunlong; Huang, Qiu; Seo, Youngho

    2015-01-01

    In single photon emission computed tomography, it is a challenging task to maintain reasonable performance using only one specific collimator for radio-tracers over a broad spectrum of diagnostic photon energies, since photon scatter and penetration in a collimator differ with the photon energy. Frequent collimator exchanges are inevitable in daily clinical SPECT imaging, which hinders throughput while subjecting the camera to operational errors and damage. Our objective is to design a collimator, which independent of the photon energy performs reasonably well for commonly used radiotracers with low- to medium-energy levels of gamma emissions. Using the Geant4 simulation toolkit, we simulated and evaluated a parallel-hole collimator mounted to a CZT detector. With the pixel-geometry-matching collimation, the pitch of the collimator hole was fixed to match the pixel size of the CZT detector throughout this work. Four variables, hole shape, hole length, hole radius/width and the source-to-collimator distance were carefully studied. Scatter and penetration of the collimator, sensitivity and spatial resolution of the system were assessed for four radionuclides including 57Co, 99mTc, 123I and 111In, with respect to the aforementioned four variables. An optimal collimator was then decided upon such that it maximized the total relative sensitivity (TRS) for the four considered radionuclides while other performance parameters, such as scatter, penetration and spatial resolution, were benchmarked to prevalent commercial scanners and collimators. Digital phantom studies were also performed to validate the system with the optimal square-hole collimator (23 mm hole length, 1.28 mm hole width, 0.32 mm septal thickness) in terms of contrast, contrast-to-noise ratio and recovery ratio. This study demonstrates promise of our proposed energy-optimized collimator to be used in a CZT-based gamma camera, with comparable or even better imaging performance versus commercial collimators

  1. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  2. Outflow Propagation in Collapsars: Collimated Jets And Expanding Outflows

    SciTech Connect

    Mizuta, A.; Yamasaki, T.; Nagataki, S.; Mineshige, S.; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park

    2007-06-08

    We investigate the outflow propagation in the collapsar in the context of gamma-ray bursts (GRBs) with 2D relativistic hydrodynamic simulations. We vary the specific internal energy and bulk Lorentz factor of the injected outflow from non-relativistic regime to relativistic one, fixing the power of the outflow to be 10{sup 51}erg s{sup -1}. We observed the collimated outflow, when the Lorentz factor of the injected outflow is roughly greater than 2. To the contrary, when the velocity of the injected outflow is slower, the expanding outflow is observed. The transition from collimated jet to expanding outflow continuously occurs by decreasing the injected velocity. Different features of the dynamics of the outflows would cause the difference between the GRBs and similar phenomena, such as, X-ray flashes.

  3. Experimental demonstration of an inertial collimation mechanism in nested outflows.

    PubMed

    Yurchak, R; Ravasio, A; Pelka, A; Pikuz, S; Falize, E; Vinci, T; Koenig, M; Loupias, B; Benuzzi-Mounaix, A; Fatenejad, M; Tzeferacos, P; Lamb, D Q; Blackman, E G

    2014-04-18

    Interaction between a central outflow and a surrounding wind is common in astrophysical sources powered by accretion. Understanding how the interaction might help to collimate the inner central outflow is of interest for assessing astrophysical jet formation paradigms. In this context, we studied the interaction between two nested supersonic plasma flows generated by focusing a long-pulse high-energy laser beam onto a solid target. A nested geometry was created by shaping the energy distribution at the focal spot with a dedicated phase plate. Optical and x-ray diagnostics were used to study the interacting flows. Experimental results and numerical hydrodynamic simulations indeed show the formation of strongly collimated jets. Our work experimentally confirms the "shock-focused inertial confinement" mechanism proposed in previous theoretical astrophysics investigations. PMID:24785042

  4. 'Crystal Collimator' Measurement of CESR particle-beam Source Size

    SciTech Connect

    Finkelstein, K.D.; Bazarov, Ivan; White, Jeffrey; Revesz, Peter

    2004-05-12

    We have measured electron and positron beam source size at CHESS when the Cornell Electron Storage Ring (CESR) is run dedicated for the production of synchrotron radiation. Horizontal source size at several beamlines is expected to shrink by a factor of two but synchrotron (visible) light measurements only provide the vertical size. Therefore a 'crystal collimator' using two Bragg reflection in dispersive (+,+) orientation has been built to image the horizontal (vertical) source by passing x-rays parallel to within 5 microradians to an imaging screen and camera. With the 'crystal collimator' we observe rms sizes of 1.2 mm horizontal by 0.28 mm vertical, in good agreement with the 1.27 mm size calculated from lattice functions, and 0.26 mm observed using a synchrotron light interferometer.

  5. A crystal routine for collimation studies in circular proton accelerators

    NASA Astrophysics Data System (ADS)

    Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.

    2015-07-01

    A routine has been developed to simulate interactions of protons with bent crystals in a version of SixTrack for collimation studies. This routine is optimized to produce high-statistics tracking simulations for a highly efficient collimation system, like the one of the CERN Large Hadron Collider (LHC). The routine has recently been reviewed and improved through a comparison with experimental data, benchmarked against other codes and updated by adding better models of low-probability interactions. In this paper, data taken with 400 GeV/c proton beams at the CERN-SPS North Area are used to verify the prediction of the routine, including the results of a more recent analysis.

  6. Experimental Demonstration of an Inertial Collimation Mechanism in Nested Outflows

    NASA Astrophysics Data System (ADS)

    Yurchak, R.; Ravasio, A.; Pelka, A.; Pikuz, S.; Falize, E.; Vinci, T.; Koenig, M.; Loupias, B.; Benuzzi-Mounaix, A.; Fatenejad, M.; Tzeferacos, P.; Lamb, D. Q.; Blackman, E. G.

    2014-04-01

    Interaction between a central outflow and a surrounding wind is common in astrophysical sources powered by accretion. Understanding how the interaction might help to collimate the inner central outflow is of interest for assessing astrophysical jet formation paradigms. In this context, we studied the interaction between two nested supersonic plasma flows generated by focusing a long-pulse high-energy laser beam onto a solid target. A nested geometry was created by shaping the energy distribution at the focal spot with a dedicated phase plate. Optical and x-ray diagnostics were used to study the interacting flows. Experimental results and numerical hydrodynamic simulations indeed show the formation of strongly collimated jets. Our work experimentally confirms the "shock-focused inertial confinement" mechanism proposed in previous theoretical astrophysics investigations.

  7. A radial collimator for a time-of-flight neutron spectrometer

    SciTech Connect

    Stone, M. B.; Abernathy, D. L.; Niedziela, J. L.; Loguillo, M. J.; Overbay, M. A.

    2014-08-15

    We have engineered and installed a radial collimator for use in the scattered beam of a neutron time-of-flight spectrometer at a spallation neutron source. The radial collimator may be used with both thermal and epithermal neutrons, reducing the detected scattering intensity due to material outside of the sample region substantially. The collimator is located inside of the sample chamber of the instrument, which routinely cycles between atmospheric conditions and cryogenic vacuum. The oscillation and support mechanism of the collimator allow it to be removed from use without breaking vacuum. We describe here the design and characterization of this radial collimator.

  8. Innovative light collimator with afocal lens and total internal reflection lens for daylighting system.

    PubMed

    Chen, Bo-Jian; Chen, Yin-Ti; Ullah, Irfan; Chou, Chun-Han; Chan, Kai-Cyuan; Lai, Yi-Lung; Lin, Chia-Ming; Chang, Cheng-Ming; Whang, Allen Jong-Woei

    2015-10-01

    This research presents a novel design of the collimator, which uses total internal reflection (TIR), convex, and concave lenses for the natural light illumination system (NLIS). The concept of the NLIS is to illuminate building interiors with natural light, which saves energy consumption. The TIR lens is used to collimate the light, and convex and concave lenses are used to converge the light to the required area. The results have shown that the efficiency in terms of achieving collimated light using the proposed collimator at the output of the light collector is better than that of a previous system without a collimator. PMID:26479648

  9. A radial collimator for a time-of-flight neutron spectrometer.

    PubMed

    Stone, M B; Niedziela, J L; Loguillo, M J; Overbay, M A; Abernathy, D L

    2014-08-01

    We have engineered and installed a radial collimator for use in the scattered beam of a neutron time-of-flight spectrometer at a spallation neutron source. The radial collimator may be used with both thermal and epithermal neutrons, reducing the detected scattering intensity due to material outside of the sample region substantially. The collimator is located inside of the sample chamber of the instrument, which routinely cycles between atmospheric conditions and cryogenic vacuum. The oscillation and support mechanism of the collimator allow it to be removed from use without breaking vacuum. We describe here the design and characterization of this radial collimator. PMID:25173306

  10. A radial collimator for a time-of-flight neutron spectrometer

    SciTech Connect

    Stone, Matthew B; Niedziela, Jennifer L; Loguillo, Mark; Overbay, Mark A; Abernathy, Douglas L

    2013-01-01

    We have engineered and installed a radial collimator for use in the scattered beam of a neutron time-of-flight spectrometer at a spallation neutron source. The radial collimator may be used with both thermal and epithermal neutrons, reducing the detected scattering intensity due to material outside of the sample region substantially. The collimator is located inside of the sample chamber of the instrument, which routinely cycles between atmospheric conditions and cryogenic vacuum. The oscillation and support mechanism of the collimator allow it to be removed from use without breaking vacuum. We describe here the design and characterization of this radial collimator.

  11. Poster — Thur Eve — 64: Preliminary investigation of arc configurations for optimal sparing of normal tissue in hypofractionated stereotactic radiotherapy (HF-SRT) of multiple brain metastases using a 5mm interdigitating micro-multileaf collimator

    SciTech Connect

    Leavens, C; Wronski, M; Lee, YK; Ruschin, M; Soliman, H; Sahgal, A

    2014-08-15

    Purpose: To evaluate normal tissue sparing in intra-cranial HF-SRT, comparing various arc configurations with the Synergy Beam Modulator (SynBM) and Agility linacs, the latter incorporating leaf interdigitation and backup jaws. Methods: Five patients with multiple brain metastases (BMs), (5 BMs (n=2), 3 BMs (n=3)) treated with HF-SRT using 25 Gy (n=2) or 30 Gy (n=3) in 5 fractions, were investigated. Clinical treatment plans used the SynBM. Each patient was retrospectively re-planned on Agility, employing three planning strategies: (A) one isocenter and dedicated arc for each BM; (B) a single isocenter, centrally placed with respect to BMs; (C) the isocenter and arc configuration used in the SynBM plan, where closely spaced (<5cm) BMs used a dedicated isocenter and arcs. Agility plans were normalized for PTV coverage and heterogeneity. Results and Conclusion: Strategy A obtained the greatest improvements over the SynBM plan, where the maximum OAR dose, and mean dose to normal brain (averaged for all patients) were reduced by 55cGy and 25cGy, respectively. Strategy B was limited by having a single isocenter, hence less jaw shielding and increased MLC leakage. The maximum OAR dose was reduced by 13cGy, however mean dose to normal brain increased by 84cGy. Strategy C reduced the maximum OAR dose and mean dose to normal brain by 32cGy and 9cGy, respectively. The results from this study indicate that, for intra-cranial HF-SRT of multiple BMs, Agility plans are equal or better than SynBM plans. Further planning is needed to investigate dose sparing using Strategy A and the SynBM.

  12. Ball Lenses Collimate And Focus Diode-Laser-Array Beams

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1992-01-01

    Ball lenses used to collimate and focus pump light from array of diode lasers onto input face of solid-state laser. Experiments show ball lenses perform as well as, or better than, multiple-element lenses supplied heretofore as parts of commercial arrays of diode lasers. Offers advantages of relative simplicity and ease of fabrication, lower cost, lower weight, and less sensitivity to misalignment.

  13. Device for detachably securing a collimator to a radiation detector

    SciTech Connect

    Hanz, G.J.; Jung, G.; Pflaum, M.

    1986-12-16

    A device is described for detachably securing a collimator to a radiation detector, comprising: (a) a first annular groove means secured to the radiation detector; (b) a second annular groove means secured to the collimator; (c) a split ring having a first and second ring ends, the ring being received in the first annular groove means; and (d) a ring diameter control system, including (d1) a first lever system having two ends; (d2) a second lever system having two ends; and (d3) a rotating hub being rotatably secured to the detector head; wherein the first lever system is rotatably mounted with one end linked to the first ring end and with the other end linked to the rotating hub. The second lever system is rotatably mounted with one end linked to the second ring end and with the other end linked to the rotating hub, such that rotation of the rotating hub moves the first and second lever systems in opposite directions thereby moving the first and second ring ends between a first position, in which the split ring is positioned only in the first annular groove means, and a second position, in which the split ring is located in both the first annular groove means and the second annular groove means, thus attaching the collimator to the radiation detector.

  14. First Sub-arcsecond Collimation of Monochromatic Neutrons

    NASA Astrophysics Data System (ADS)

    Wagh, Apoorva G.; Abbas, Sohrab; Treimer, Wolfgang

    2010-11-01

    We have achieved the tightest collimation to date of a monochromatic neutron beam by diffracting neutrons from a Bragg prism, viz. a single crystal prism operating in the vicinity of Bragg incidence. An optimised silicon {111} Bragg prism has collimated 5.26Å neutrons down to 0.58 arcsecond. In conjunction with a similarly optimised Bragg prism analyser of opposite asymmetry, this ultra-parallel beam yielded a 0.62 arcsecond wide rocking curve. This beam has produced the first SUSANS spectrum in Q ~ 10-6 Å-1 range with a hydroxyapatite casein protein sample and demonstrated the instrument capability of characterising agglomerates upto 150 μm in size. The super-collimation has also enabled recording of the first neutron diffraction pattern from a macroscopic grating of 200 μm period. An analysis of this pattern yielded the beam transverse coherence length of 175 μm (FWHM), the greatest achieved to date for Å wavelength neutrons.

  15. Negative particle planar and axial channeling and channeling collimation

    SciTech Connect

    Carrigan, Richard A., Jr.; /Fermilab

    2009-12-01

    While information exists on high energy negative particle channeling there has been little study of the challenges of negative particle bending and channeling collimation. Partly this is because negative dechanneling lengths are relatively much shorter. Electrons are not particularly useful for investigating negative particle channeling effects because their material interactions are dominated by channeling radiation. Another important factor is that the current central challenge in channeling collimation is the proton-proton Large Hadron Collider (LHC) where both beams are positive. On the other hand in the future the collimation question might reemerge for electon-positron or muon colliders. Dechanneling lengths increase at higher energies so that part of the negative particle experimental challenge diminishes. In the article different approaches to determining negative dechanneling lengths are reviewed. The more complicated case for axial channeling is also discussed. Muon channeling as a tool to investigate dechanneling is also discussed. While it is now possible to study muon channeling it will probably not illuminate the study of negative dechanneling.

  16. Formation and Collimation of Jets by Magnetic Forces

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Kudoh, T.

    1999-12-01

    Recent development of theory and numerical simulations of magnetically driven jets from young stellar objects is reviewed. Topics to be discussed are: 1) Acceleration of jets: Magnetically driven jets are accelerated by both magneto-centrifugal force and magnetic pressure force. The former (latter) becomes important when magnetic field is strong (weak). The basic properties (i.e., terminal velocity and mass flux) of jets accelerated by these two forces is discussed in detail. We also discuss the condition of production of jets, which is applied to answer the following question: When do jets begin to be accelerated in the course of star formation ? 2) Collimation of jets: Magnetically driven jets can in principle be collimated by pinching effect of toroidal magnetic fields. Recently, some controvertial arguments have been put forward: Are all field lines (and jets) really collimated by pinching effect ? The current status of this issue is discussed. 3) Protostellar flares: Based on theory and numerical simulations, it has recently been recognized that the formation of jets has a close connection with occurrence of flares (possibly due to magnetic reconnection). We discuss how and when magnetic reconnection occurs in relation to jets.

  17. SYNCHROTRON RADIATION OF SELF-COLLIMATING RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect

    Porth, Oliver; Fendt, Christian; Vaidya, Bhargav; Meliani, Zakaria E-mail: fendt@mpia.de

    2011-08-10

    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow-magnetosonic launching surface of the disk up to 6000{sup 2} Schwarzschild radii allowing jets to reach highly relativistic Lorentz factors. The Poynting-dominated disk wind develops into a jet with Lorentz factors of {Gamma} {approx_equal} 8 and is collimated to 1{sup 0}. In addition to the disk jet, we evolve a thermally driven spine jet emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive very long baseline interferometry radio and (sub-) millimeter diagnostics such as core shift, polarization structure, intensity maps, spectra, and Faraday rotation measure (RM) directly from the Stokes parameters. We also investigate depolarization and the detectability of a {lambda}{sup 2}-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles that could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bimodality in the polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint at the spin direction of the central engine.

  18. A Monte Carlo simulation study of the feasibility of a high resolution parallel-hole collimator with a CdTe pixelated semiconductor SPECT system

    NASA Astrophysics Data System (ADS)

    Lee, Y.-J.; Park, S.-J.; Lee, S.-W.; Kim, D.-H.; Kim, Y.-S.; Jo, B.-D.; Kim, H.-J.

    2013-03-01

    It is recommended that a pixelated parallel-hole collimator in which the hole and pixel sizes are equal be used to improve the sensitivity and spatial resolution when using a small pixel size and a single-photon emission computed tomography (SPECT) system with pixelated semiconductor detector materials (e.g., CdTe and CZT). However, some significant problems arise in the manufacturing of a pixelated parallel-hole collimator. Therefore, we sought to simulate a pixelated semiconductor SPECT system with various collimator geometric designs. The purpose of this study was to compare the quality of images generated with a pixelated semiconductor SPECT system simulated with pixelated parallel-hole collimators of various geometric designs. The sensitivity and spatial resolution of the various collimator geometric designs with varying septal heights and hole sizes were measured. Moreover, to evaluate the overall performance of the imaging system, a hot-rod phantom was designed using a Monte Carlo simulation. According to the results, the average sensitivity using a 15 mm septal height was 1.80, 2.87, and 4.16 times higher than that obtained with septal heights of 20, 25, and 30 mm, respectively. Also, the average spatial resolution using the 30 mm septal height was 44.33, 22.08, and 9.26% better than that attained with 15, 20, and 25 mm septal heights, respectively. When the results acquired with 0.3 and 0.6 mm hole sizes were compared, the average sensitivity with the 0.6 mm hole size was 3.97 times higher than that obtained with the 0.3 mm hole size, and the average spatial resolution with the 0.3 mm hole size was 45.76% better than that with the 0.6 mm hole size. We have presented the pixelated parallel-hole collimators of various collimator geometric designs and evaluations. Our results showed that the effect of various collimator geometric designs can be investigated by Monte Carlo simulation so as to evaluate the feasibility of a high resolution parallel

  19. Changes to the Transfer Line Collimation System for the High-Luminosity LHC Beams

    SciTech Connect

    Kain, V.; Aberle, O.; Bracco, C.; Fraser, M.; Galleazzi, F.; Gianfelice-Wendt, E.; Kosmicki, A.; Maciariello, F.; Meddahi, M.; Nuiry, F. X.; Steele, G.; Velotti, F.

    2015-06-01

    The current LHC transfer line collimation system will not be able to provide enough protection for the high brightness beams in the high-luminosity LHC era. The new collimation system will have to attenuate more and be more robust than its predecessor. The active jaw length of the new transfer line collimators will therefore be 2.1 m instead of currently 1.2 m. The transfer line optics will have to be adjusted for the new collimator locations and larger beta functions at the collimators for absorber robustness reasons. In this paper the new design of the transfer line collimation system will be presented with its implications on transfer line optics and powering, maintainability, protection of transfer line magnets in case of beam loss on a collimator and protection of the LHC aperture.

  20. Neutron collimator design of neutron radiography based on the BNCT facility

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Peng; Yu, Bo-Xiang; Li, Yi-Guo; Peng, Dan; Lu, Jin; Zhang, Gao-Long; Zhao, Hang; Zhang, Ai-Wu; Li, Chun-Yang; Liu, Wan-Jin; Hu, Tao; Lü, Jun-Guang

    2014-02-01

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of the neutron collimator is greater than 1.0×106 n/cm2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography.

  1. The application of Monte Carlo simulation to the design of collimators for single photon emission computed tomography

    NASA Astrophysics Data System (ADS)

    Cullum, Ian Derek

    Single photon emission computed tomography offers the potential for quantification of the uptake of radiopharmaceuticals in-vivo. This thesis investigates some of the factors which limit the accuracy of these methods for measurements in the human brain and investigates how the errors can be reduced. Modifications to data collection devices rather than image reconstruction techniques are studied. To assess the impact of errors on images, a set of computer generated test objects were developed. These included standard Anger and Phelps phantoms and a series of slices of the human brain taken from an atlas of transmission tomography. System design involves a balance between resolution and noise in the image. The optimal resolution depends on the data collection system, the uptake characteristics of the radiopharmaceutical and object size. A method to determine this resolution was developed and showed a single-slice system employing focused, probe detectors to offer greater potential for quantification in the brain than systems based on multiple Anger gamma cameras. A collimation system must be designed to achieve the required resolution. Classical, geometric design is not satisfactory in the presence of scattering materials. For this reason a Monte Carlo simulation allowing flexible choice of collimator parameters and source distribution was developed. The simulation was fully tested and then used to predict the performance of collimators for probe and camera based systems. These assessments were carried out for the 'worst case source' which was a concept developed and validated to allow faster prediction of collimator performance. In essence the geometry of this source is such as to allow a resolution measurement to be made which represents the worst value expected from the system. The effect of changes in collimation on image quality was assessed using the computer phantoms and simulation of the data acquisition process on the singleslice system. These data were

  2. Highly collimated monoenergetic target-surface electron acceleration in near-critical-density plasmas

    SciTech Connect

    Mao, J. Y.; Chen, L. M.; Huang, K.; Ma, Y.; Zhao, J. R.; Yan, W. C.; Ma, J. L.; Wei, Z. Y.; Li, D. Z.; Aeschlimann, M.; Zhang, J.

    2015-03-30

    Optimized-quality monoenergetic target surface electron beams at MeV level with low normalized emittance (0.03π mm mrad) and high charge (30 pC) per shot have been obtained from 3 TW laser-solid interactions at a grazing incidence. The 2-Dimension particle-in-cell simulations suggest that electrons are wake-field accelerated in a large-scale, near-critical-density preplasma. It reveals that a bubble-like structure as an accelerating cavity appears in the near-critical-density plasma region and travels along the target surface. A bunch of electrons are pinched transversely and accelerated longitudinally by the wake field in the bubble. The outstanding normalized emittance and monochromaticity of such highly collimated surface electron beams could make it an ideal beam for fast ignition or may serve as an injector in traditional accelerators.

  3. SU-E-T-442: Sensitivity of Quality Assurance Tools to Delivery Errors On a Magnetic Resonance-Imaging Guided Radiation Therapy (MR-IGRT) System

    SciTech Connect

    Rodriguez, V; Li, H; Yang, D; Kashani, R; Wooten, H; Mutic, S; Green, O; Dempsey, J

    2014-06-01

    Purpose: To test the sensitivity of the quality assurance (QA) tools actively used on a clinical MR-IGRT system for potential delivery errors. Methods: Patient-specific QA procedures have been implemented for a commercially available Cobalt-60 MR-IGRT system. The QA tools utilized were a MR-compatible cylindrical diode-array detector (ArcCHECK) with a custom insert which positions an ionization chamber (Exradin A18) in the middle of the device, as well as an in-house treatment delivery verification program. These tools were tested to investigate their sensitivity to delivery errors. For the ArcCHECK and ion chamber, a baseline was established with a static field irradiation to a known dose. Variations of the baseline were investigated which included rotated gantry, altered field size, directional shifts, and different delivery time. In addition, similar variations were tested with the automated delivery verification program that compared the treatment parameters in the machine delivery logs to the ones in the plan. To test the software, a 3-field conformal plan was generated as the baseline. Results: ArcCHECK noted at least a 13% decrease in passing rate from baseline in the following scenarios: gantry rotation of 1 degree from plan, 5mm change in field size, 2mm lateral shift, and delivery time decrease. Ion chamber measurements remained consistent for these variations except for the 5 second decrease in delivery time scenario which resulted in an 8% difference from baseline. The delivery verification software was able to detect and report the simulated errors such as when the gantry was rotated by 0.6 degrees, the beam weighting was changed by a percent, a single multileaf collimator was moved by 1cm, and the dose was changed from 2 to 1.8Gy. Conclusion: The results show that the current tools used for patient specific QA are capable of detecting small errors in RT delivery with presence of magnetic field.

  4. Diamond-anvil high-pressure cell with improved x-ray collimation system

    DOEpatents

    Schiferl, D.; Olinger, B.W.; Livingston, R.W.

    1984-03-30

    An adjustable x-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The x-ray collimation system includes a tubular insert which contains an x-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric o-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the o-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  5. Diamond-anvil high-pressure cell with improved X-ray collimation system

    DOEpatents

    Schiferl, David; Olinger, Barton W.; Livingston, Robert W.

    1986-01-01

    An adjustable X-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The X-ray collimation system includes a tubular insert which contains an X-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric O-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the O-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  6. COLLIMATED FAST WIND IN THE PREPLANETARY NEBULA CRL 618

    SciTech Connect

    Lee, C.-F.; Hsu, M.-C.; Sahai, Raghvendra

    2009-05-10

    Collimated fast winds (CFWs) have been proposed to operate during the post asymptotic giant branch (post-AGB) evolutionary phase (and even earlier during the late AGB phase), responsible for the shaping of preplanetary nebulae (PPNs) and young planetary nebulae (PNs). This paper is a follow-up to our previous study of CFW models for the well-studied PPN CRL 618. Previously, we compared our CFW models with optical observations of CRL 618 in atomic and ionic lines and found that a CFW with a small opening angle can readily reproduce the highly collimated shape of the northwestern (W1) lobe of CRL 618 and the bowlike structure seen at its tip. In this paper, we compare our CFW models with recent observations of CRL 618 in CO J = 2-1, J = 6-5, and H{sub 2} 1-0 S(1). In our models, limb-brightened shell structures are seen in CO and H{sub 2} at low velocity (LV) arising from the shocked AGB wind in the shell, and can be identified as the LV components in the observations. However, the shell structure in CO J = 2-1 is significantly less extended than that seen in the observations. None of our models can properly reproduce the observed high-velocity (HV) molecular emission near the source along the body of the lobe. In order to reproduce the HV molecular emission in CRL 618, the CFW is required to have a different structure. One possible CFW structure is the cylindrical jet, with the fast wind material confined to a small cross section and collimated to the same direction along the outflow axis.

  7. THE FIRST ''WATER FOUNTAIN'' COLLIMATED OUTFLOW IN A PLANETARY NEBULA

    SciTech Connect

    Gómez, José F.; Miranda, Luis F.; Guerrero, Martín A.; Rizzo, J. Ricardo; García-García, Enrique; Green, James A.; Uscanga, Lucero; Ramos-Larios, Gerardo

    2015-02-01

    ''Water fountains'' (WFs) are evolved objects showing high-velocity, collimated jets traced by water maser emission. Most of them are in the post-asymptotic giant branch (post-AGB) and they may represent one of the first manifestations of collimated mass loss in evolved stars. We present water maser, carbon monoxide, and mid-infrared spectroscopic data (obtained with the Australia Telescope Compact Array, Herschel Space Observatory, and the Very Large Telescope, respectively) toward IRAS 15103–5754, a possible planetary nebula (PN) with WF characteristics. Carbon monoxide observations show that IRAS 15103–5754 is an evolved object, while the mid-IR spectrum displays unambiguous [Ne II] emission, indicating that photoionization has started and thus, its nature as a PN is confirmed. Water maser spectra show several components spreading over a large velocity range (≅ 75 km s{sup –1}) and tracing a collimated jet. This indicates that the object is a WF, the first WF known that has already entered the PN phase. However, the spatial and kinematical distribution of the maser emission in this object are significantly different from those in other WFs. Moreover, the velocity distribution of the maser emission shows a ''Hubble-like'' flow (higher velocities at larger distances from the central star), consistent with a short-lived, explosive mass-loss event. This velocity pattern is not seen in other WFs (which are presumably in earlier evolutionary stages). We therefore suggest that we are witnessing a fundamental change of mass-loss processes in WFs, with water masers being pumped by steady jets in post-AGB stars, but tracing explosive/ballistic events as the object enters the PN phase.

  8. The First "Water Fountain" Collimated Outflow in a Planetary Nebula

    NASA Astrophysics Data System (ADS)

    Gómez, José F.; Suárez, Olga; Bendjoya, Philippe; Rizzo, J. Ricardo; Miranda, Luis F.; Green, James A.; Uscanga, Lucero; García-García, Enrique; Lagadec, Eric; Guerrero, Martín A.; Ramos-Larios, Gerardo

    2015-02-01

    "Water fountains" (WFs) are evolved objects showing high-velocity, collimated jets traced by water maser emission. Most of them are in the post-asymptotic giant branch (post-AGB) and they may represent one of the first manifestations of collimated mass loss in evolved stars. We present water maser, carbon monoxide, and mid-infrared spectroscopic data (obtained with the Australia Telescope Compact Array, Herschel Space Observatory, and the Very Large Telescope, respectively) toward IRAS 15103-5754, a possible planetary nebula (PN) with WF characteristics. Carbon monoxide observations show that IRAS 15103-5754 is an evolved object, while the mid-IR spectrum displays unambiguous [Ne II] emission, indicating that photoionization has started and thus, its nature as a PN is confirmed. Water maser spectra show several components spreading over a large velocity range (sime 75 km s-1) and tracing a collimated jet. This indicates that the object is a WF, the first WF known that has already entered the PN phase. However, the spatial and kinematical distribution of the maser emission in this object are significantly different from those in other WFs. Moreover, the velocity distribution of the maser emission shows a "Hubble-like" flow (higher velocities at larger distances from the central star), consistent with a short-lived, explosive mass-loss event. This velocity pattern is not seen in other WFs (which are presumably in earlier evolutionary stages). We therefore suggest that we are witnessing a fundamental change of mass-loss processes in WFs, with water masers being pumped by steady jets in post-AGB stars, but tracing explosive/ballistic events as the object enters the PN phase.

  9. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  10. Experimentally simulating quantum walks with self-collimated light

    PubMed Central

    Qi, F.; Wang, Y. F.; Ma, Q. Y.; Zheng, W. H.

    2016-01-01

    In self-collimated photonic crystal, periodically arranged air holes of sub-wavelength scale provide flattened equi-frequency curves perpendicular to the ΓM direction, which allow light or photons propagating in a quasi-uniform medium without diffraction. Here we for the first time experimentally simulate four-step single-photon discrete time quantum walks with classical light in such a photonic crystal chip fabricated on silicon-on-insulator. Similarities between theoretical expectations and experimental results are higher than 0.98. The functional area is compact and can be extended to construct more complicated linear quantum circuits. PMID:27353428

  11. T Pyxidis: The First Cataclysmic Variable with a Collimated Jet

    NASA Technical Reports Server (NTRS)

    Shahbaz, T.; Livio, M.; Southwell, K. A.; Charles, P. A.

    1997-01-01

    We present the first observational evidence for a collimated jet in a cataclysmic variable system; the recurrent nova T Pyxidis. Optical spectra show bipolar components of H(alpha) with velocities approx. 1400 km/s, very similar to those observed in the supersoft X-ray sources and in SS 433. We argue that a key ingredient of the formation of jets in the supersoft X-ray sources and T Pyx (in addition to an accretion disk threaded by a vertical magnetic field), is the presence of nuclear burning on the surface of the white dwarf.

  12. Plume collimation for laser ablation electrospray ionization mass spectrometry

    SciTech Connect

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  13. Experimentally simulating quantum walks with self-collimated light.

    PubMed

    Qi, F; Wang, Y F; Ma, Q Y; Zheng, W H

    2016-01-01

    In self-collimated photonic crystal, periodically arranged air holes of sub-wavelength scale provide flattened equi-frequency curves perpendicular to the ΓM direction, which allow light or photons propagating in a quasi-uniform medium without diffraction. Here we for the first time experimentally simulate four-step single-photon discrete time quantum walks with classical light in such a photonic crystal chip fabricated on silicon-on-insulator. Similarities between theoretical expectations and experimental results are higher than 0.98. The functional area is compact and can be extended to construct more complicated linear quantum circuits. PMID:27353428

  14. Compact collimated fiber optic array diagnostic for railgun plasmas

    NASA Astrophysics Data System (ADS)

    Tang, V.; Solberg, J. M.; Ferriera, T. J.; Tully, L. K.; Stephan, P. L.

    2009-01-01

    We developed and tested a compact collimated 16 channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with approximately millimeter spatial and submicrosecond temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore fixed hybrid armature experiment are presented and compared with one-dimensional simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  15. Compact collimated fiber optic array diagnostic for railgun plasmas.

    PubMed

    Tang, V; Solberg, J M; Ferriera, T J; Tully, L K; Stephan, P L

    2009-01-01

    We developed and tested a compact collimated 16 channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with approximately millimeter spatial and submicrosecond temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore fixed hybrid armature experiment are presented and compared with one-dimensional simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments. PMID:19191464

  16. ACCELERATION AND COLLIMATION OF RELATIVISTIC MAGNETOHYDRODYNAMIC DISK WINDS

    SciTech Connect

    Porth, Oliver; Fendt, Christian E-mail: fendt@mpia.d

    2010-02-01

    We perform axisymmetric relativistic magnetohydrodynamic simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. Newtonian gravity is added to the relativistic treatment in order to establish the physical boundary condition of an underlying accretion disk in centrifugal and pressure equilibrium. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Substantial effort has been made to implement a current-free, numerical outflow boundary condition in order to avoid artificial collimation present in the standard outflow conditions. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100 x 200 inner disk radii. The simulations evolve from an initial state in hydrostatic equilibrium and an initially force-free magnetic field configuration. Two options for the initial field geometries are applied-an hourglass-shaped potential magnetic field and a split monopole field. Most of our parameter runs evolve into a steady state solution which can be further analyzed concerning the physical mechanism at work. In general, we obtain collimated beams of mildly relativistic speed with Lorentz factors up to 6 and mass-weighted half-opening angles of 3-7 deg. The split-monopole initial setup usually results in less collimated outflows. The light surface of the outflow magnetosphere tends to align vertically-implying three relativistically distinct regimes in the flow-an inner subrelativistic domain close to the jet axis, a (rather narrow) relativistic jet and a surrounding subrelativistic outflow launched from the outer disk surface-similar to the spine-sheath structure currently

  17. Compact collimated fiber optic array diagnostic for railgun plasmas

    SciTech Connect

    Tang, V.; Solberg, J. M.; Ferriera, T. J.; Tully, L. K.; Stephan, P. L.

    2009-01-15

    We developed and tested a compact collimated 16 channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with approximately millimeter spatial and submicrosecond temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore fixed hybrid armature experiment are presented and compared with one-dimensional simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  18. Compact collimated fiber optic array diagnostic for railgun plasma experiments

    SciTech Connect

    Tang, V; Solberg, J; Ferriera, T; Tully, L; Stephan, P

    2008-10-02

    We have developed and tested a compact collimated sixteen channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with {approx}mm spatial and sub-{micro}s temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore Fixed Hybrid Armature experiment are presented and compared with 1-D simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  19. Design and experimental validation of a compact collimated Knudsen source.

    PubMed

    Wouters, Steinar H W; Ten Haaf, Gijs; Mutsaers, Peter H A; Vredenbregt, Edgar J D

    2016-08-01

    In this paper, the design and performance of a collimated Knudsen source, which has the benefit of a simple design over recirculating sources, is discussed. Measurements of the flux, transverse velocity distribution, and brightness of the resulting rubidium beam at different source temperatures were conducted to evaluate the performance. The scaling of the flux and brightness with the source temperature follows the theoretical predictions. The transverse velocity distribution in the transparent operation regime also agrees with the simulated data. The source was tested up to a temperature of 433 K and was able to produce a flux in excess of 10(13) s(-1). PMID:27587111

  20. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    SciTech Connect

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-12-15

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN{>=}125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be {approx}193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was {approx}35 min, while that taken for comprehensive testing was {approx}3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures

  1. A combined radial collimator and cooled beryllium filter for neutron scattering

    NASA Astrophysics Data System (ADS)

    Groitl, Felix; Rantsiou, Emmanouela; Bartkowiak, Marek; Filges, Uwe; Graf, Dieter; Niedermayer, Christof; Rüegg, Christian; Rønnow, Henrik M.

    2016-05-01

    A flexible, combined, radial collimator and beryllium (Be) filter have been designed and manufactured at the Paul Scherrer Institut (PSI), Switzerland. The Be is integrated in the radial collimator by placing thin Be slices between the collimator lamellas. The filter/collimator is mounted within a vacuum vessel and dry cooled. The flexible design allows for different degrees of collimation and for different Be lengths. Results of measurements carried out at the BOA beamline at PSI are presented. These experiments include rotation scans determining the focal full width half maximum (FWHM), transmission measurements, test of different collimator lamellas and performance tests of the cooling of the filter. This new combined device will be a crucial part of the CAMEA spectrometer at SINQ, PSI.

  2. A condition on the spatial resolution of IR collimators for testing of thermal imaging systems

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Krzysztof; Lee, Hee Chul; Wrona, Wieslaw

    2000-05-01

    A precise condition on the spatial resolution of the IR collimator for testing thermal imaging systems is presented. The condition can be used even if only the spatial resolution of the IR collimator and that of the system under test, measured using popular definitions, are known. It is shown that when the condition is fulfilled, the thermal image degradation caused by the IR collimator is negligible.

  3. Experimental demonstration of adaptive fiber-optics collimator based on flexible hinges

    NASA Astrophysics Data System (ADS)

    Zhi, Dong; Ma, Yan-xing; Si, Lei; Wang, Xiao-lin; Zhou, Pu

    2014-12-01

    Beam combining (BC) of fiber lasers based on master oscillator power amplifier (MOPA) configuration has been considered as a promising way to achieve high power laser output. In recent years, it has been demonstrated that tip-tilt phase errors impact the combining effect seriously, especially the beam quality in coherent beam combining even if all the beamlets are phase-locked. Adaptive fiber-optics collimator (AFOC) is an effective way to compensate the tip-tilt aberrations in fiber laser systems. As the piezoelectric bimorph actuators used in the AFOCs of traditional type provide very weak force (0.1~1N level), they can only actuate the naked fiber. So the application of traditional AFOCs in high power level is limited by the structure. When the output power is scaled up-to several kW, a coreless end cap is usually spliced on the output side as the end of fiber. Because of the end cap, the expansion of the beam reduces the extractable fluence and avoids fiber facet damage. Then the AFOCs that can be used in high-power situations become the direction of research and development. In this paper, a new structure of AFOC based on flexible hinges is presented for the first time to our knowledge. It utilizes two piezoelectric stacks actuators for X-Y displacement of the fiber end cap placed in the focal planes of the collimating lens. Also the new type of AFOC based on flexible hinges has been developed and demonstrated experimentally. The thrust of zero displacement of the piezoelectric stacks actuators is 330 N. The maximum tip/tilt deviation angle of the collimated beam is 180μrad in X direction and 150 μrad in Y direction for a chosen focal length of 0.05m. The first resonance-frequency of this device is about 700 Hz and the bandwidth of this device is 500Hz. This work provides a reference for beam combing and beam pointing controlling in high power conditions.

  4. Cardiac blood-pool scintigraphy in rats and hamsters: comparison of five radiopharmaceuticals and three pinhole collimator apertures

    SciTech Connect

    Pieri, P.; Fischman, A.J.; Ahmad, M.; Moore, R.H.; Callahan, R.J.; Strauss, H.W. )

    1991-05-01

    Preclinical evaluation of cardiac drugs may require evaluation of cardiac function in intact animals. To optimize the quality of radionuclide measurements of ventricular function in small animals, a comparison was made of gated blood-pool scans recorded with five blood-pool radiopharmaceuticals ({sup 99}mTc-labeled human polyclonal IgG, {sup 99}mTc-human serum albumin labeled by two methods, and red blood cells radiolabeled with {sup 99}mTc via in vivo and in vitro methods) in rats and three pinhole apertures in hamsters. The quality of the radiopharmaceuticals was evaluated by comparing count density ratios (LV/BACKGROUND and LV/LIVER) and ejection fractions recorded with each agent. The edge definition of the left ventricle and count rate performance of the 1-, 2-, and 3-mm apertures was evaluated in hamsters. In general, the images obtained with the radiolabeled cells were superior to those obtained with the labeled proteins and no significant differences between the protein preparations were detected. Left ventricular ejection fractions calculated with all five radiopharmaceuticals were not significantly different. The best quality images were obtained with the 1-mm pinhole collimator. Ejection fraction and acquisition time were inversely related to aperture size. A good compromise between resolution and sensitivity was obtained with the 2-mm pinhole collimator.

  5. Design and wakefield performance of the new SLC collimators

    SciTech Connect

    Decker, F.J.; Bane, K.; Emma, P.

    1996-08-01

    The very small transverse beam sizes of the flat SLC bunches are 100-170 {mu}m in the horizontal and 30-50 {mu}m in the vertical near the end of the SLAC linac. Unexpectedly large transverse Wakefield kicks were observed from the collimators in this region during 1995. Upon inspection, it was found that the 20 {mu}m gold plating had melted and formed a line of spherules along the beam path. To refurbish the collimators, an improved design was required. The challenging task was to find a surface material with better conductivity than the titanium core to reduce resistive wakefields. The material must also be able to sustain the mechanical stress and heating from beam losses without damage. Vanadium was first chosen for ease of coating, but later TiN was used because it is more chemically inert. Recent beam tests measured expected values for geometric Wakefield kicks, but the resistive wall Wakefield kicks were four times larger than calculated.

  6. The nuclear dust lane of Circinus: collimation without a torus

    NASA Astrophysics Data System (ADS)

    Mezcua, M.; Prieto, M. A.; Fernández-Ontiveros, J. A.; Tristram, K. R. W.

    2016-03-01

    In some AGN, nuclear dust lanes connected to kpc-scale dust structures provide all the extinction required to obscure the nucleus, challenging the role of the dusty torus proposed by the Unified Model. In this letter, we show the pc-scale dust and ionized gas maps of Circinus constructed using sub-arcsec-accuracy registration of infrared VLT AO images with optical Hubble Space Telescope images. We find that the collimation of the ionized gas does not require a torus but is caused by the distribution of dust lanes of the host galaxy on ˜10 pc scales. This finding questions the presumed torus morphology and its role at parsec scales, as one of its main attributes is to collimate the nuclear radiation, and is in line with interferometric observations which show that most of the pc-scale dust is in the polar direction. We estimate that the nuclear dust lane in Circinus provides 1/3 of the extinction required to obscure the nucleus. This constitutes a conservative lower limit to the obscuration at the central parsecs, where the dust filaments might get optically thicker if they are the channels that transport material from ˜100 pc scales to the centre.

  7. Collimated Light Source Using Patterned Organic Light-Emitting Diodes and Microlens

    NASA Astrophysics Data System (ADS)

    Sukekazu Aratani,; Masaya Adachi,; Masao Shimizu,; Tatsuya Sugita,; Toshinari Shibasaki,; Katsusuke Shimazaki,

    2010-04-01

    We developed for the first time a collimated organic light-emitting diode (OLED) light source using a patterned OLED and a microlens. The structure of the collimated OLED light source was designed by conventional ray-tracking simulation. We demonstrated that the collimated OLED light source enhanced the luminance of a liquid crystal display (LCD) with a low aperture ratio by a factor of more than two compared with a conventional OLED light source, which was not patterned. The collimated OLED light source with the patterned OLED and microlens is thus very effective for achieving a highly efficient LCD with OLED backlight.

  8. Dose characteristics of in-house-built collimators for stereotactic radiotherapy with a linear accelerator

    NASA Astrophysics Data System (ADS)

    Norrgård, F. Stefan E.; Sipilä, Petri M.; Kulmala, Jarmo A. J.; Minn, Heikki R. I.

    1998-06-01

    Dose characteristics of a stereotactic radiotherapy unit based on a standard Varian Clinac 4/100 4 MV linear accelerator, in-house-built Lipowitz collimators and the SMART stereotactic radiotherapy treatment planning software have been determined. Beam collimation is constituted from the standard collimators of the linear accelerator and a tertiary collimation consisting of a replaceable divergent Lipowitz collimator. Four collimators with isocentre diameters of 15, 25, 35 and 45 mm, respectively, were constructed. Beam characteristics were measured in air, acrylic or water with ionization chamber, photon diode, electron diode, diamond detector and film. Monte Carlo simulation was also applied. The radiation leakage under the collimators was less than 1% at 50 mm depth in water. Specific beam characteristics for each collimator were imported to SMART and dose planning with five non-coplanar converging arcs separated by angles was performed for treatment of a RANDO phantom. Dose verification was made with TLD and radiochromic film. The in-house-built collimators were found to be suitable for stereotactic radiotherapy and patient treatments with this system are in progress.

  9. Gamma emission tomosynthesis based on an automated slant hole collimation system

    NASA Astrophysics Data System (ADS)

    Pellegrini, R.; Pani, R.; Cinti, M. N.; Longo, M.; Lo Meo, S.; Viviano, M.

    2015-03-01

    The imaging capabilities of radioisotope molecular imaging systems are limited by their ring geometry and by the object-to-detector distance, which impairs spatial resolution, efficiency and image quality. These detection capabilities could be enhanced by performing acquisitions with dedicated gamma cameras placed in close proximity to the object that has to be examined. The main aim of this work is to develop a compact camera suitable for detecting small and low-contrast lesions, with a higher detection efficiency than conventional SPECT, through a gamma emission tomosynthesis method. In this contribution a prototype of a new automated slant hole collimator, coupled to a small Field of View (FoV) gamma camera, is presented. The proposed device is able to acquire planar projection images at different angles without rotating around the patient body; these projection images are then three-dimensional reconstructed. Therefore, in order to perform the volumetric reconstruction of the studied object, the traditional Back Projection (BP) reconstruction is compared with the Shift And Add (SAA) method. In order to verify the effectiveness of the technique and to test the image reconstruction algorithms, a Monte Carlo simulation, based on the GEANT4 code, was implemented. The method was also validated by a set of experimental measurements. The discussed device is designed to work in patient proximity for detecting lesions placed at a distances ranged from 0 to 8 cm, thus allowing few millimeters planar resolutions and sagittal resolution of about 2 cm. The new collimation method implies high-resolution capabilities demonstrated by reconstructing the projection images through the BP and the SAA methods. The latter is simpler than BP and produces comparable spatial resolutions with respect to the traditional tomographic method, while preserving the image counts.

  10. Performance evaluation of advanced industrial SPECT system with diverging collimator.

    PubMed

    Park, Jang Guen; Jung, Sung-Hee; Kim, Jong Bum; Moon, Jinho; Yeom, Yeon Soo; Kim, Chan Hyeong

    2014-12-01

    An advanced industrial SPECT system with 12-fold-array diverging collimator was developed for flow visualization in industrial reactors and was discussed in the previous study. The present paper describes performance evaluation of the SPECT system under both static- and dynamic- flow conditions. Under static conditions, the movement of radiotracer inside the test reactor was compared with that of color tracer (blue ink) captured with a high-speed camera. The comparison of the reconstructed images obtained with the radiotracer and the SPECT system showed fairly good agreement with video-frames of the color tracer obtained with the camera. Based on the results of the performance evaluation, it is concluded that the SPECT system is suitable for investigation and visualization of flows in industrial flow reactors. PMID:25169132

  11. Augmented reality aiding collimator exchange at the LHC

    NASA Astrophysics Data System (ADS)

    Martínez, Héctor; Fabry, Thomas; Laukkanen, Seppo; Mattila, Jouni; Tabourot, Laurent

    2014-11-01

    Novel Augmented Reality techniques have the potential to have a large positive impact on the way remote maintenance operations are carried out in hazardous areas, e.g. areas where radiation doses that imply careful planning and optimization of maintenance operations are present. This paper describes an Augmented Reality strategy, system and implementation for aiding the remote collimator exchange in the LHC, currently the world's largest and highest-energy particle accelerator. The proposed system relies on marker detection and multi-modal augmentation in real-time. A database system has been used to ensure flexibility. The system has been tested in a mock-up facility, showing real time performance and great potential for future use in the LHC. The technical-scientific difficulties identified during the development of the system and the proposed solutions described in this paper may help the development of future Augmented Reality systems for remote handling in scientific facilities.

  12. Simulations of the Fermilab Recycler for Losses and Collimation

    SciTech Connect

    Stern, Eric; Ainsworth, Robert; Amundson, James; Brown, Bruce

    2015-06-01

    Fermilab has recently completed an upgrade to the com- plex with the goal of delivering 700 kW of beam power as 120 GeV protons to the NuMI target. A major part of boost- ing beam power is to shorten the beam cycle by accumulating up to 12 bunches of 0.5 × 10 11 protons in the Recycler ring through slip-stacking during the Main Injector ramp. This introduces much higher intensities into the Recycler than it has had before. Meeting radiation safety requirements with high intensity operations requires understanding the ef- fects of space charge induced tune spreads and resulting halo formation, and aperture restrictions in the real machine to de- velop a collimation strategy. We report on initial simulations of slip-stacking in the Recycler performed with Synergia.

  13. Fermilab Booster Operational Status: Beam Loss and Collimation

    NASA Astrophysics Data System (ADS)

    Webber, Robert C.

    2002-12-01

    Beam loss reduction and control challenges confronting the Fermilab Booster are presented in the context of the current operational status. In Summer 2002 the programmatic demand for 8 GeV protons will increase to 5E20/year. This is an order of magnitude above recent high rates and nearly as many protons as the machine has produced in its entire 30-year lifetime. Catastrophic radiation damage to accelerator components must be avoided, maintenance in an elevated residual radiation environment must be addressed, and operation within a tight safety envelope must be conducted to limit prompt radiation in the buildings and grounds around the Booster. Diagnostic and performance tracking improvements, enhanced orbit control, and a beam loss collimation/localization system are essential elements in the approach to achieving the expected level of performance and are described here.

  14. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions

    SciTech Connect

    Chen, Hui; Heeter, R. F.; Link, A.; Fiksel, G.; Barnak, D.; Chang, P.-Y.; Meyerhofer, D. D.

    2014-04-15

    Collimation of positrons produced by laser-solid interactions has been observed using an externally applied axial magnetic field. The collimation leads to a narrow divergence positron beam, with an equivalent full width at half maximum beam divergence angle of 4° vs the un-collimated divergence of about 20°. A fraction of the laser-produced relativistic electrons with energies close to those of the positrons is collimated, so the charge imbalance ratio (n{sub e−}/n{sub e+}) in the co-propagating collimated electron-positron jet is reduced from ∼100 (no collimation) to ∼2.5 (with collimation). The positron density in the collimated beam increased from 5 × 10{sup 7} cm{sup −3} to 1.9 × 10{sup 9} cm{sup −3}, measured at the 0.6 m from the source. This is a significant step towards the grand challenge of making a charge neutral electron-positron pair plasma jet in the laboratory.

  15. Simulation aspects of beam collimation and their remedies in the MARS14 code

    SciTech Connect

    Mikhail A Kostin et al.

    2003-08-20

    Simulation aspects of beam collimation are described along with a number of tools and methods developed and used within the MARS14 framework. The tools and methods were implemented in order to relieve the burden of simulations needed for reliable calculations required for design of efficient collimation systems at high-intensity accelerators and colliders.

  16. Quality Assurance Peer Review Chart Rounds in 2011: A Survey of Academic Institutions in the United States

    SciTech Connect

    Lawrence, Yaacov Richard; Whiton, Michal A.; Symon, Zvi; Wuthrick, Evan J.; Doyle, Laura; Harrison, Amy S.; Dicker, Adam P.

    2012-11-01

    Purpose: In light of concerns regarding the quality of radiation treatment delivery, we surveyed the practice of quality assurance peer review chart rounds at American academic institutions. Methods and Materials: An anonymous web-based survey was sent to the chief resident of each institution across the United States. Results: The response rate was 80% (57/71). The median amount of time spent per patient was 2.7 minutes (range, 0.6-14.4). The mean attendance by senior physicians and residents was 73% and 93%, respectively. A physicist was consistently present at peer review rounds in 66% of departments. There was a close association between attendance by senior physicians and departmental organization: in departments with protected time policies, good attendance was 81% vs. 31% without protected time (p = 0.001), and in departments that documented attendance, attending presence was 69% vs. 29% in departments without documentation (p < 0.05). More than 80% of institutions peer review all external beam therapy courses; however, rates were much lower for other modalities (radiosurgery 58%, brachytherapy 40%-47%). Patient history, chart documentation, and dose prescription were always peer reviewed in >75% of institutions, whereas dosimetric details (beams, wedges), isodose coverage, intensity-modulated radiation therapy constraints, and dose-volume histograms were always peer reviewed in 63%, 59%, 42%, and 50% of cases, respectively. Chart rounds led to both minor (defined as a small multileaf collimator change/repeated port film) and major (change to dose prescription or replan with dosimetry) treatment changes. Whereas at the majority of institutions changes were rare (<10% of cases), 39% and 11% of institutions reported that minor and major changes, respectively, were made to more than 10% of cases. Conclusion: The implementation of peer review chart rounds seems inconsistent across American academic institutions. Brachytherapy and radiosurgical procedures are

  17. SU-C-BRD-01: Multi-Centre Collaborative Quality Assurance Program for IMRT Planning and Delivery: Year 3 Results

    SciTech Connect

    McNiven, A; Jaffray, D; Letourneau, D

    2015-06-15

    Purpose: A multi-centre quality assurance program was developed to enable quality improvement by coupling measurement of intensity modulated radiotherapy (IMRT) planning and delivery performance for site-specific planning exercises with diagnostic testing. The third year of the program specifically assessed the quality of spine stereotactic body radiotherapy (SBRT) planning and delivery amongst the participating centres. Methods: A spine SBRT planning exercise (24 Gy in 2 fractions) was created and completed by participants prior to an on-site visit. The delivery portion of the on-site visit included spine SBRT plan delivery and diagnostic testing, which included portal image acquisition for quantification of phantom positioning error and multi-leaf collimator (MLC) calibration accuracy. The measured dose was compared to that calculated in the treatment planning system (TPS) using 3%/2mm composite analysis and 3%/3mm gamma analysis. Results: Fourteen institutions participated, creating 17 spine SBRT plans (15 VMAT and 2 IMRT). Three different TPS, two beam energies (6 MV and 6 MV FFF), and four MLC designs from two linac vendors were tested. Large variation in total monitor units (MU) per plan (2494–6462 MU) and dose-volume parameters was observed. The maximum point dose in the plans ranged from 116–149% and was dependent upon the TPS used. Pass rates for measured to planned dose comparison ranged from 89.4–100% and 97.3–100% for 3%/2mm and 3%/3mm criteria respectively. The largest measured MLC error did Result in one of the poorer pass rates. No direct correlation between phantom positioning error and pass rates overall. Conclusion: Significant differences were observed in the planning exercise for some plan and dose-volume parameters based on the TPS used. Standard evaluation criteria showed good agreement between planned and measured dose for all participants, however on an individual plan basis, diagnostic tests were able to identify contributing

  18. Collimator optimization in myocardial perfusion SPECT using the ideal observer and realistic background variability for lesion detection and joint detection and localization tasks.

    PubMed

    Ghaly, Michael; Du, Yong; Links, Jonathan M; Frey, Eric C

    2016-03-01

    In SPECT imaging, collimators are a major factor limiting image quality and largely determine the noise and resolution of SPECT images. In this paper, we seek the collimator with the optimal tradeoff between image noise and resolution with respect to performance on two tasks related to myocardial perfusion SPECT: perfusion defect detection and joint detection and localization. We used the Ideal Observer (IO) operating on realistic background-known-statistically (BKS) and signal-known-exactly (SKE) data. The areas under the receiver operating characteristic (ROC) and localization ROC (LROC) curves (AUCd, AUCd+l), respectively, were used as the figures of merit for both tasks. We used a previously developed population of 54 phantoms based on the eXtended Cardiac Torso Phantom (XCAT) that included variations in gender, body size, heart size and subcutaneous adipose tissue level. For each phantom, organ uptakes were varied randomly based on distributions observed in patient data. We simulated perfusion defects at six different locations with extents and severities of 10% and 25%, respectively, which represented challenging but clinically relevant defects. The extent and severity are, respectively, the perfusion defect's fraction of the myocardial volume and reduction of uptake relative to the normal myocardium. Projection data were generated using an analytical projector that modeled attenuation, scatter, and collimator-detector response effects, a 9% energy resolution at 140 keV, and a 4 mm full-width at half maximum (FWHM) intrinsic spatial resolution. We investigated a family of eight parallel-hole collimators that spanned a large range of sensitivity-resolution tradeoffs. For each collimator and defect location, the IO test statistics were computed using a Markov Chain Monte Carlo (MCMC) method for an ensemble of 540 pairs of defect-present and -absent images that included the aforementioned anatomical and uptake variability. Sets of test statistics were computed

  19. Collimator optimization in myocardial perfusion SPECT using the ideal observer and realistic background variability for lesion detection and joint detection and localization tasks

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Du, Yong; Links, Jonathan M.; Frey, Eric C.

    2016-03-01

    In SPECT imaging, collimators are a major factor limiting image quality and largely determine the noise and resolution of SPECT images. In this paper, we seek the collimator with the optimal tradeoff between image noise and resolution with respect to performance on two tasks related to myocardial perfusion SPECT: perfusion defect detection and joint detection and localization. We used the Ideal Observer (IO) operating on realistic background-known-statistically (BKS) and signal-known-exactly (SKE) data. The areas under the receiver operating characteristic (ROC) and localization ROC (LROC) curves (AUCd, AUCd+l), respectively, were used as the figures of merit for both tasks. We used a previously developed population of 54 phantoms based on the eXtended Cardiac Torso Phantom (XCAT) that included variations in gender, body size, heart size and subcutaneous adipose tissue level. For each phantom, organ uptakes were varied randomly based on distributions observed in patient data. We simulated perfusion defects at six different locations with extents and severities of 10% and 25%, respectively, which represented challenging but clinically relevant defects. The extent and severity are, respectively, the perfusion defect’s fraction of the myocardial volume and reduction of uptake relative to the normal myocardium. Projection data were generated using an analytical projector that modeled attenuation, scatter, and collimator-detector response effects, a 9% energy resolution at 140 keV, and a 4 mm full-width at half maximum (FWHM) intrinsic spatial resolution. We investigated a family of eight parallel-hole collimators that spanned a large range of sensitivity-resolution tradeoffs. For each collimator and defect location, the IO test statistics were computed using a Markov Chain Monte Carlo (MCMC) method for an ensemble of 540 pairs of defect-present and -absent images that included the aforementioned anatomical and uptake variability. Sets of test statistics were

  20. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    DOE PAGESBeta

    Tamalonis, A.; Weber, J. K. R.; Neuefeind, J. C.; Carruth, J.; Skinner, L. B.; Alderman, O. L. G.; Benmore, C. J.

    2015-09-09

    We constructed and tested five neutron collimator designs using the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. Moreover, in the Q-range 10-20 Å-1, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å-1, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q similar to 9.5 Å-1 was significantly decreased when the collimators were installed.

  1. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    SciTech Connect

    Tamalonis, A.; Weber, J. K. R.; Neuefeind, J. C.; Carruth, J.; Skinner, L. B.; Alderman, O. L. G.; Benmore, C. J.

    2015-09-09

    We constructed and tested five neutron collimator designs using the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. Moreover, in the Q-range 10-20 Å-1, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å-1, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q similar to 9.5 Å-1 was significantly decreased when the collimators were installed.

  2. Longitudinal Wakefield Study in SLAC Rotatable Collimator Design for the LHC Phase II Upgrade

    SciTech Connect

    Xiao, Liling; Lundgren, Steven; Markiewicz, Thomas; Ng, Cho-Kuen; Smith, Jeffrey; /SLAC

    2010-08-25

    SLAC proposed a rotatable collimator design for the LHC Phase II collimation upgrade. There are 20 facet faces on each cylindrical jaw surface and two jaws are rotatable in order to introduce a clean surface in case of a beam hitting a jaw during operation. When the beam crosses the collimator, it will excite broad-band and narrow-band modes. The longitudinal modes can contribute to beam energy loss and power dissipation on the vacuum chamber wall. In this paper, the parallel finite element eigensolver Omega3P is used to search for all the longitudinal trapped modes in the SLAC collimator design. The power dissipation generated by the beam in collimators with different vacuum chamber and RF contact designs is discussed. It is found that a wider RF foil connecting the jaw and the vacuum flange can reduce efficiently the beam heating caused by the longitudinal modes.

  3. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source

    SciTech Connect

    Tamalonis, A.; Weber, J. K. R. Alderman, O. L. G.; Neuefeind, J. C.; Carruth, J.; Skinner, L. B.; Benmore, C. J.

    2015-09-15

    Five neutron collimator designs were constructed and tested at the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. In the Q-range 10-20 Å{sup −1}, signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å{sup −1}, the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q ∼ 9.5 Å{sup −1} was significantly decreased when the collimators were installed.

  4. Note: Detector collimators for the nanoscale ordered materials diffractometer instrument at the Spallation Neutron Source.

    PubMed

    Tamalonis, A; Weber, J K R; Neuefeind, J C; Carruth, J; Skinner, L B; Alderman, O L G; Benmore, C J

    2015-09-01

    Five neutron collimator designs were constructed and tested at the nanoscale ordered materials diffractometer (NOMAD) instrument. Collimators were made from High Density PolyEthylene (HDPE) or 5% borated HDPE. In all cases, collimators improved the signal to background ratio and reduced detection of secondary scattering. In the Q-range 10-20 Å(-1), signal to background ratio improved by factors of approximately 1.6 and 2.0 for 50 and 100 mm deep collimators, respectively. In the Q-range 40-50 Å(-1), the improvement factors were 1.8 and 2.7. Secondary scattering as measured at Q ∼ 9.5 Å(-1) was significantly decreased when the collimators were installed. PMID:26429492

  5. Optimizing Pinhole and Parallel Hole Collimation for Scintimammography With Compact Pixellated Detectors

    SciTech Connect

    Mark F. Smith; Stan Majewski; Andrew G. Weisenberger

    2002-11-01

    The relative resolution and sensitivity advantages of pinhole and parallel hole collimators for planar scintimammography with compact, pixellated gamma detectors were investigated using analytic models. Collimator design was studied as follows. A desired object resolution was specified for a pixellated detector with a given crystal size and intrinsic spatial resolution and for a given object-to- collimator distance. Using analytic formulas, pinhole and parallel hole collimator parameters were calculated that satisfy this object resolution with optimal geometric sensitivity. Analyses were performed for 15 cm x 20 cm field of view detectors with crystal elements 1.0, 2.0 and 3.0 mm on a side and 140 keV incident photons. The sensitivity for a given object resolution was greater for pinhole collimation at smaller distances, as expected. The object distance at which the pinhole and parallel hole sensitivity curves cross each other is important. The crossover distances increased with larger crystal size for a constant object resolution and increased as the desired object resolution decreases for a constant crystal size. For example, for 4 mm object resolution and a pinhole collimator with focal length 13 cm, these distances were 5.5 cm, 6.5 cm and 8 cm for the 1 mm, 2 mm and 3 mm crystal detectors, respectively. The results suggest a strategy of parallel hole collimation for whole breast imaging and pinhole collimation for imaging focal uptake. This could be accomplished with a dual detector system with a different collimator type on each head or a single head system equipped with two collimators and a rapid switching mechanism.

  6. Collimating Montel mirror as part of a multi-crystal analyzer system for resonant inelastic X-ray scattering.

    PubMed

    Kim, Jungho; Shi, Xianbo; Casa, Diego; Qian, Jun; Huang, XianRong; Gog, Thomas

    2016-07-01

    Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the Ir L3-edge stands at ∼25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the Ir L3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system. PMID:27359136

  7. An investigation of the dose distribution effect related with collimator angle for VMAT method

    NASA Astrophysics Data System (ADS)

    Tas, B.; Bilge, H.; Ozturk, S. Tokdemir

    2016-03-01

    Aim of this study is to investigate the efficacy of dose distribution in eleven prostate cancer patients with single VMAT and double VMAT when varying collimator angle. We generated optimum single and double VMAT treatment plans when collimator angle was 0°. We recalculated single VMAT plans at different collimator angles(0°,15°,30°,45°,60°,75°,90°) for double VMAT plans(0°-0°,15°-345°,30°-330°,45°-315°,60°-300°,75°-285°,90°-270°) without changing any optimization parameters. HI, DVH and %95 dose coverage of PTV calculated and analyzed. We determined better dose distribution with some collimator angles. Plans were verified using the 2 dimensional ion chamber array Matrixx® and 3 dimensional Compass® software program. A higher %95 dose coverage of PTV was found for single VMAT in the 15° collimator angle, for double VMAT in the 60°-300° and 75°-285° collimator angles. Because of lower rectum doses, we suggested 75°-285°. When we compared single and double VMAT's dose distribution, we had better % 95 dose coverage of PTV and lower HI with double VMAT. Our result was significant statistically. These finds are informative for choosing 75°-285° collimator angles in double VMAT plans for prostate cancer.

  8. New method for improving angle measurement precision of laser collimation system under complex background

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Chen, He; Tan, Lilong; Zhang, Zhili; Cai, Wei

    2014-09-01

    We have proposed a new method for improving angle measurement precision based on the principle of CCD laser collimation in this paper. First, through the control of the laser's state, on or off, by the Digital Signal Processor (DSP), the collimation light and the background light can be sampled, individually. Second, with the comparison between the sampled value of the background light intensity and the threshold value which has been set in the DSP previously, the DSP can automatically control Complex Programmable Logic Device (CPLD) to adjust the light integral time of CCD to adapt to different environment background and the changeable scanning driver of CCD is realized. Last, by the digital wave filtering the impact of the background light on the collimation light can be removed. With the comprehensive application of the controlling technology of automatically changeable scanning driving, collimation light on or off, A/D conversion and adaptive filtering, the integration time of the collimation system can automatically adjust to the proper value according to the change of the environment and the impact of the background light on the collimation system can be well removed. The simulation results show that the new method can achieve the self-adaptable control with the change of the environment and can improve the measurement precision of the laser collimation system under the complex environment.

  9. Beam feasibility study of a collimator with in-jaw beam position monitors

    NASA Astrophysics Data System (ADS)

    Wollmann, Daniel; Nosych, Andriy A.; Valentino, Gianluca; Aberle, Oliver; Aßmann, Ralph W.; Bertarelli, Alessandro; Boccard, Christian; Bruce, Roderik; Burkart, Florian; Calvo, Eva; Cauchi, Marija; Dallocchio, Alessandro; Deboy, Daniel; Gasior, Marek; Jones, Rhodri; Kain, Verena; Lari, Luisella; Redaelli, Stefano; Rossi, Adriana

    2014-12-01

    At present, the beam-based alignment of the LHC collimators is performed by touching the beam halo with both jaws of each collimator. This method requires dedicated fills at low intensities that are done infrequently and makes this procedure time consuming. This limits the operational flexibility, in particular in the case of changes of optics and orbit configuration in the experimental regions. The performance of the LHC collimation system relies on the machine reproducibility and regular loss maps to validate the settings of the collimator jaws. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with jaw-integrated Beam Position Monitors (BPMs) was proposed and successfully tested with a prototype (mock-up) collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper, the results of these experiments are discussed. The non-linear response of the BPMs is compared to the predictions from electromagnetic simulations. Finally, the measured alignment accuracy is compared to the one achieved with the present collimators in the LHC.

  10. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy

    SciTech Connect

    Letourneau, Daniel; Keller, Harald; Sharpe, Michael B.; Jaffray, David A.

    2007-05-15

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 deg. of gantry (usually within {+-}1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient {>=}1%/mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance capabilities

  11. Evaluation of the applicability of pinpoint ion chambers for SRS dosimetric quality assurance

    NASA Astrophysics Data System (ADS)

    Baek, Jong Geun; Jang, Hyun Soo; Kim, Eng Chan; Lee, Yong Hee; Oh, Young Kee; Kim, Sung Kyu

    2015-06-01

    The aim of the present study was to evaluate the applicability of a Pinpoint ion chamber for the measurement of the absolute dose for dosimetric quality assurance (QA) under the same conditions as are used for actual stereotactic radiosurgery (SRS). A PTW 31014 Pinpoint chamber with a active volume of 0.015 cm3 was used to measure the absolute doses of small beams. The PTW 60003 natural diamond detector was used as a reference dosimeter. A custom-made cylindrical acrylic phantom (15 cm diameter, 15 cm long) was produced to obtain measurements, and a noncoplanar arc plan was devised to deliver a prescription dose (15-25 Gy) to 80% of the maximum dose to the target in a single fraction by using the BrainLAB planning system. All irradiations were performed by using a Varian Clinac IX 6 MV equipped with a micro-multileaf-collimators (m3) designed by BrainLAB. The acceptability criterion used was a dose difference of less than 3%. The diameter of the target volume was considered the standard parameter in the present study and was used to divide the cases into two groups, that is, a ≤ 10 mm target diameter group (10 cases) and a > 10 mm target diameter group (13 cases). For the Pinpoint chamber and target diameters of ≤ 10 mm, dosimetric uncertainties of > 3% were seen in 4 of the 10 cases, and differences ranged widely from 0.7% to 4.85%. On the other hand, for the Pinpoint chamber and target diameters of > 10 mm all dose differences were less than 1.6%, and the mean discrepancy was 0.81%. A highly significant, but moderate, correlation between dosimetric uncertainties and all target diameters was observed for the Pinpoint chamber (R2 = 0.483, p 0.001). This result indicates that Pinpoint chambers exhibit a field-size dependency when used for SRS dosimetric QA. Based on the results of the present study, we conclude that the use of a Pinpoint chamber for verification of SRS dosimetric QA is unsuitable for all field sizes, but that it can be used to verify the

  12. SU-E-T-261: Plan Quality Assurance of VMAT Using Fluence Images Reconstituted From Log-Files

    SciTech Connect

    Katsuta, Y; Shimizu, E; Matsunaga, K; Majima, K

    2014-06-01

    Purpose: A successful VMAT plan delivery includes precise modulations of dose rate, gantry rotational and multi-leaf collimator (MLC) shapes. One of the main problem in the plan quality assurance is dosimetric errors associated with leaf-positional errors are difficult to analyze because they vary with MU delivered and leaf number. In this study, we calculated integrated fluence error image (IFEI) from log-files and evaluated plan quality in the area of all and individual MLC leaves scanned. Methods: The log-file reported the expected and actual position for inner 20 MLC leaves and the dose fraction every 0.25 seconds during prostate VMAT on Elekta Synergy. These data were imported to in-house software that developed to calculate expected and actual fluence images from the difference of opposing leaf trajectories and dose fraction at each time. The IFEI was obtained by adding all of the absolute value of the difference between expected and actual fluence images corresponding. Results: In the area all MLC leaves scanned in the IFEI, the average and root mean square (rms) were 2.5 and 3.6 MU, the area of errors below 10, 5 and 3 MU were 98.5, 86.7 and 68.1 %, the 95 % of area was covered with less than error of 7.1 MU. In the area individual MLC leaves scanned in the IFEI, the average and rms value were 2.1 – 3.0 and 3.1 – 4.0 MU, the area of errors below 10, 5 and 3 MU were 97.6 – 99.5, 81.7 – 89.5 and 51.2 – 72.8 %, the 95 % of area was covered with less than error of 6.6 – 8.2 MU. Conclusion: The analysis of the IFEI reconstituted from log-file was provided detailed information about the delivery in the area of all and individual MLC leaves scanned.

  13. Wavelength division demultiplexing with photonic crystal self-collimation interference

    NASA Astrophysics Data System (ADS)

    Wang, Yufei; Qiu, Yishen; Chen, Xiyao; Lin, Guimin; Hong, Hailian

    2007-11-01

    A theoretical model of wavelength division demultiplexer (WDD), which is based on an asymmetric Mach-Zehnder interferometer (AMZI) constructed in a two-dimensional photonic crystal (2D PhC), is proposed and numerically demonstrated. The 2D PhC consists of a square lattice of cylindric air holes in silicon. The AMZI includes two mirrors and two splitters. Lights propagate between them employing self-collimation effect. The two interferometer branches have different path lengths. By using the finite-difference time-domain method, the calculation results show that the transmission spectras at two AMZI output ports are in the shape of sinusoidal curves and have a uniform peak spacing in the frequency range from 0.26c/a to 0.27c/a. When the path length of the longer branch is increased and the shorter one is fixed, the peaks shift to the lower frequencies and the peak spacing decreases nonlinearly. Consequently, the transmission can be designed to meet various application demands by changing the length difference between the two branches. For the dimensions of the WDD are about tens of operating wavelengths, this PhC WDD may be applied in future photonic integrated circuits.

  14. RADBALLTECHNOLOGY TESTING AND MCNP MODELING OF THE TUNGSTEN COLLIMATOR

    SciTech Connect

    Farfan, E.

    2010-07-08

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall{trademark}, which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall{trademark} consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall{trademark} technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall{trademark} testing and modeling accomplished at SRNL.

  15. An absorbed dose to water calorimeter for collimated radiation fields

    NASA Astrophysics Data System (ADS)

    Brede, H. J.; Hecker, O.; Hollnagel, R.

    2000-12-01

    A transportable calorimeter of compact design has been developed as a device for the absolute determination of the absorbed dose to water. The ease of operation of the calorimeter allows the application in clinical therapy beams of various energies, specifically for neutron, proton and heavy ion beams. The calorimeter requires collimated radiation fields with diameters lesser than 40 mm. The temperature rise caused by radiation is measured with a thermistor probe which is located in the centre of the calorimeter core. The calorimeter core consists of a cylindrical water-filled gilded aluminium can suspended by three thin nylon threads in a vacuum block in order to reduce the heat transfer by conduction. In addition, it operates at a temperature of 4°C, preventing heat transfer in water by convection. Heat transfer from the core to the surrounding by radiation is minimised by the use of two concentric temperature-controlled jackets, the inner jacket being operated at core temperature. A description of the mechanical and electrical design, of the construction and operation of the water calorimeter is given. In addition, calculations with a finite-element program code performed to determine correction factors for various radiation conditions are included.

  16. [Further development of a streak retinoscope with calibrated collimator].

    PubMed

    Rohrschneider, K; Koch, H R

    1992-08-01

    Development and rationale of a new streak retinoscope have been discussed in an earlier paper. In contrast to classical retinoscopy this retinoscope determines the refraction by forming the narrowest streak in the test person's pupil with a calibrated collimator. In addition to the first prototype the extension of the lamp according to variation of the refraction is measured electronically and the data are transposed into a computer. This allows to freely choose a working distance in a range from about 30 to 120 cm and therefore it is possible to examine restless patients. Accuracy of the measurement was less than or equal to 0.25 D for Ametropia from -0.5 to 5.0 D in a working distance of 30 cm or from -4.0 to -1.5 D in 100 cm. In most persons it is not necessary to use additional glasses during refraction by choosing the adequate distance. Therefore this method can help to refract kids and other persons which could not be refracted by use of glasses. In addition this method excludes the accommodation of the patient as apposed to regular refractometers. PMID:1434382

  17. Magnetically collimated pair jets at the LLNL Titan laser

    NASA Astrophysics Data System (ADS)

    Williams, Jackson; Chen, Hui; Barnak, Daniel; Betti, Riccardo; Fiksel, Gennady; Hazi, Andrew; Kerr, Shaun; Krauland, Christine; Link, Anthony; Manuel, Mario; Meyerhofer, David; Nagel, Sabrina; Park, Jaebum; Peebles, Jonathan; Pollock, Bradley; Tommasini, Riccardo

    2015-11-01

    Positron-electron pair production experiments were performed at the Titan laser at the Jupiter Laser Facility to investigate the dependence of target thickness and atomic number on pair yield. Externally applied axial magnetic fields, generated by a Helmholtz coil, were used to collimate positrons where the signal observed at the detector increased by a factor of 20 over reference shots without a field. This enabled the detection of positrons from a range of target materials. The emitted positron yield was found to be proportional to the square of the atomic number. This scaling is reduced from the Bethe-Heitler cross section of Z4 by Compton scattering and the stopping power of the target. Monte Carlo simulations support these conclusions, providing a power-law scaling of emitted positrons for all materials and a range of mm-thick targets. This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 12-ERD-062 and the LLNL LGSP.

  18. Bending self-collimated one-way light by using gyromagnetic photonic crystals

    SciTech Connect

    Li, Qing-Bo; Li, Zhen; Wu, Rui-xin

    2015-12-14

    We theoretically demonstrate that electromagnetic waves can self-collimate and propagate unidirectionally in photonic crystals fabricated using semicylindrical ferrite rods in magnetized states. The parity and time-reversal symmetries of such photonic crystals are broken, resulting in a self-collimated one-way body wave within the photonic crystals. By applying the bias magnetic field in a complex configuration, the self-collimated one-way wave beam can be bent into arbitrary trajectories within the photonic crystal, providing an avenue for controlling wave beams.

  19. Optimum angle-cut of collimator for dense objects in high-energy proton radiography

    NASA Astrophysics Data System (ADS)

    Hai-Bo, Xu; Na, Zheng

    2016-02-01

    The use of minus identity lenses with an angle-cut collimator can achieve high contrast images in high-energy proton radiography. This article presents the principles of choosing the angle-cut aperture of the collimator for different energies and objects. Numerical simulation using the Monte Carlo code Geant4 has been implemented to investigate the entire radiography for the French test object. The optimum angle-cut apertures of the collimators are also obtained for different energies. Supported by NSAF (11176001) and Science and Technology Developing Foundation of China Academy of Engineering Physics (2012A0202006)

  20. A line-focus collimator with a field of view of uniform thickness.

    PubMed

    Herr, M D; McInerney, J J

    1994-05-01

    A new line-focus x-ray collimator features a field of view (FOV) with uniform thickness in the near field between the collimator and focal line. General design equations were developed and then constrained to define such a uniform FOV. A prototype collimator was experimentally evaluated using a Compton backscatter imaging technique. The full-width-tenth-max (FWTM) thickness, measured at 420 locations in the near field, showed good uniformity (1.51 +/- 0.06 cm) and closely approximated the nominal design thickness (1.8 cm). PMID:8019520

  1. Brain SPECT with short focal-length cone-beam collimation

    SciTech Connect

    Park, Mi-Ae; Moore, Stephen C.; Kijewski, Marie Foley

    2005-07-15

    Single-photon emission-computed tomography (SPECT) imaging of deep brain structures is compromised by loss of photons due to attenuation. We have previously shown that a centrally peaked collimator sensitivity function can compensate for this phenomenon, increasing sensitivity over most of the brain. For dual-head instruments, parallel-hole collimators cannot provide variable sensitivity without simultaneously degrading spatial resolution near the center of the brain; this suggests the use of converging collimators. We have designed collimator pairs for dual-head SPECT systems to increase sensitivity, particularly in the center of the brain, and compared the new collimation approach to existing approaches on the basis of performance in estimating activity concentration of small structures at various locations in the brain. The collimator pairs we evaluated included a cone-beam collimator, for increased sensitivity, and a fan-beam collimator, for data sufficiency. We calculated projections of an ellipsoidal uniform background, with 0.9-cm-radius spherical lesions at several locations in the background. From these, we determined ideal signal-to-noise ratios (SNR{sub CRB}) for estimation of activity concentration within the spheres, based on the Cramer-Rao lower bound on variance. We also reconstructed, by an ordered-subset expectation-maximization (OS-EM) procedure, images of this phantom, as well as of the Zubal brain phantom, to allow visual assessment and to ensure that they were free of artifacts. The best of the collimator pairs evaluated comprised a cone-beam collimator with 20 cm focal length, for which the focal point is inside the brain, and a fan-beam collimator with 40 cm focal length. This pair yielded increased SNR{sub CRB}, compared to the parallel-parallel pair, throughout the imaging volume. The factor by which SNR{sub CRB} increased ranged from 1.1 at the most axially extreme location to 3.5 at the center. The gains in SNR{sub CRB} were relatively

  2. Magnetically manipulable unidirectional self-collimated propagation in two-dimensional ferromagnetic material

    NASA Astrophysics Data System (ADS)

    Li, Qing-bo; Zhou, Ping; Ping, Xue-wei; Sun, Hui-ling; Li, Shan-shan

    2015-10-01

    We present microwave self-collimated properties in two-dimensional ferromagnetic photonic crystals (FPCs) made of an array of ferrite rods. Through utilizing the time reversal symmetry-breaking nature of the FPCs, a technique, i.e., unidirectional self-collimation transmission, can be exhibited near the magnetic surface plasmon resonance and the spin wave resonance by designing the appropriate structure. An incident self-collimated beam can be absorbed completely at a particular bending channel, while an obvious transmission is observed at the symmetrically opposite direction. The working frequency of the unidirectionality can be controlled as well by tuning the external static magnetic field.

  3. The analysis of optical-electro collimated light tube measurement system

    NASA Astrophysics Data System (ADS)

    Li, Zhenhui; Jiang, Tao; Cao, Guohua; Wang, Yanfei

    2005-12-01

    A new type of collimated light tube (CLT) is mentioned in this paper. The analysis and structure of CLT are described detail. The reticle and discrimination board are replaced by a optical-electro graphics generator, or DLP-Digital Light Processor. DLP gives all kinds of graphics controlled by computer, the lighting surface lies on the focus of the CLT. The rays of light pass through the CLT, and the tested products, the image of aim is received by variant focus objective CCD camera, the image can be processed by computer, then, some basic optical parameters will be obtained, such as optical aberration, image slope, etc. At the same time, motorized translation stage carry the DLP moving to simulate the limited distance. The grating ruler records the displacement of the DLP. The key technique is optical-electro auto-focus, the best imaging quality can be gotten by moving 6-D motorized positioning stage. Some principal questions can be solved in this device, for example, the aim generating, the structure of receiving system and optical matching.

  4. Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Dauvergne, D.; Freud, N.; Krimmer, J.; Letang, J. M.; Ray, C.; Roellinghoff, F.; Testa, E.

    2014-12-01

    Hadrontherapy is an innovative radiation therapy modality for which one of the main key advantages is the target conformality allowed by the physical properties of ion species. However, in order to maximise the exploitation of its potentialities, online monitoring is required in order to assert the treatment quality, namely monitoring devices relying on the detection of secondary radiations. Herein is presented a method based on Monte Carlo simulations to optimise a multi-slit collimated camera employing time-of-flight selection of prompt-gamma rays to be used in a clinical scenario. In addition, an analytical tool is developed based on the Monte Carlo data to predict the expected precision for a given geometrical configuration. Such a method follows the clinical workflow requirements to simultaneously have a solution that is relatively accurate and fast. Two different camera designs are proposed, considering different endpoints based on the trade-off between camera detection efficiency and spatial resolution to be used in a proton therapy treatment with active dose delivery and assuming a homogeneous target.

  5. Simulation study comparing the imaging performance of a solid state detector with a rotating slat collimator versus parallel beam collimator setups

    NASA Astrophysics Data System (ADS)

    Staelens, Steven; Vandenberghe, Stefaan; De Beenhouwer, Jan; De Clercq, Stijn; D'Asseler, Yves; Lemahieu, Ignace; Van de Walle, Rik

    2004-05-01

    The main goal of this work is to assess the overall imaging performance of dedicated new solid state devices compared to a traditional scintillation camera for use in SPECT imaging. A solid state detector with a rotating slat collimator will be compared with the same detector mounted with a classical collimator as opposed to a traditional Anger camera. A better energy resolution characterizes the solid state materials while the rotating slat collimator promises a better sensitivity-resolution tradeoff. The evaluation of the different imaging modalities is done using GATE, a recently developed Monte Carlo code. Several features for imaging performance evaluation were addressed: spatial resolution, energy resolution, sensitivity, and a ROC analysis was performed to evaluate the hot spot detectability. In this way a difference in perfromance was concluded for the diverse imaging techniques which allows a task dependent application of these modalities in future clinical practice.

  6. Modeling of strongly collimated jets produced by high energy density plasmas on COBRA

    NASA Astrophysics Data System (ADS)

    Gourdain, P.-A.; Seyler, C. E.

    2014-03-01

    Jet collimation in astrophysical plasmas and in the laboratory has recently received much attention. When the magnetohydrodynamics (MHD) model is used to represent both systems, scale invariance allows for the simple extension of the parameters encountered in laboratory experiments to much larger systems, like astrophysical outflows. However, the validation of such a model requires a precise comparison of numerical simulations with experimental data. Using radial foils as an experimental setup to generate strongly collimated plasma jets, we show that the Hall MHD model included in the PERSEUS code does well to capture the plasma dynamics of collimated jets, even with restrictive conditions such as a constant ionization number and the neglect of normally important transport processes. Very importantly, we show that jet collimation is not only the result of magnetic forces, but also converging radial flows.

  7. Wavefront control of the large optics test and integration site (LOTIS) 6.5m collimator.

    PubMed

    West, Steven C; Bailey, Samuel H; Burge, James H; Cuerden, Brian; Hagen, Jeff; Martin, Hubert M; Tuell, Michael T

    2010-06-20

    The LOTIS Collimator provides scene projection within a 6.5m diameter collimated beam used for optical testing research in air and vacuum. Diffraction-limited performance (0.4 to 5microm wavelength) requires active wavefront control of the alignment and primary mirror shape. A hexapod corrects secondary mirror alignment using measurements from collimated sources directed into the system with nine scanning pentaprisms. The primary mirror shape is controlled with 104 adjustable force actuators based on figure measurements from a center-of-curvature test. A variation of the Hartmann test measures slopes by monitoring the reflections from 36 small mirrors bonded to the optical surface of the primary mirror. The Hartmann source and detector are located at the f/15 Cassegrain focus. Initial operation has demonstrated a closed-loop 110 nm rms wavefront error in ambient air over the 6.5m collimated beam. PMID:20563205

  8. Collimator of multiple plates with axially aligned identical random arrays of apertures

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Underwood, J. H. (Inventor)

    1973-01-01

    A collimator is disclosed for examining the spatial location of distant sources of radiation and for imaging by projection, small, near sources of radiation. The collimator consists of a plurality of plates, all of which are pierced with an identical random array of apertures. The plates are mounted perpendicular to a common axis, with like apertures on consecutive plates axially aligned so as to form radiation channels parallel to the common axis. For near sources, the collimator is interposed between the source and a radiation detector and is translated perpendicular to the common axis so as to project radiation traveling parallel to the common axis incident to the detector. For far sources the collimator is scanned by rotating it in elevation and azimuth with a detector to determine the angular distribution of the radiation from the source.

  9. Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment

    NASA Astrophysics Data System (ADS)

    Valentino, Gianluca; Nosych, Andriy A.; Bruce, Roderik; Gasior, Marek; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Wollmann, Daniel

    2014-02-01

    Collimators with embedded beam position monitor (BPM) button electrodes will be installed in the Large Hadron Collider (LHC) during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.

  10. Improving the performance of gold nanohole array biosensors by controlling the optical collimation conditions.

    PubMed

    Weber de Menezes, Jacson; Thesing, Anderson; Valsecchi, Chiara; Armas, Luis E G; Brolo, Alexandre G

    2015-07-20

    An experimental investigation on how the bulk and surface sensitivities of gold nanohole arrays fabricated by interference lithography affect the degree of white light beam collimation is presented. The optical transmission response of nanohole arrays has been recorded by focused and collimated beam transmission spectra. The results show that both the bulk and surface sensitivities for the collimated case are much larger than for the focused case. In particular, the shape of the spectra was dependent on the degree of beam collimation. The results showed that improved sensing performance (around 3.5 times) and higher figure of merit (around 4.4 times) can be obtained by simply adjusting the incident/collection experimental conditions in transmission measurements. PMID:26367835

  11. Fano resonance of self-collimated beams in two-dimensional photonic crystals.

    PubMed

    Lee, Sun-Goo; Park, Jong-Moon; Kee, Chul-Sik

    2014-11-17

    We report that the Fano resonance of self-collimated beams can be achieved in a two-dimensional photonic crystal by introducing a Fano resonator that is composed of zigzag line defects. An asymmetric Fano line shape in a transmission spectrum is generated by the interference between radiated light beams from the resonator and self-collimated beams that directly pass through the resonator without resonance. It is shown that the Fano profile increases in sharpness as the number of zigzag line defects increases because the phase values of the radiated light beams change more rapidly when the number of defects increases. The Fano resonance of self-collimated beams could provide an efficient approach to manipulate light propagation and increase the possibility of application of self-collimated beams. PMID:25402134

  12. The initial point of collimator CCD imagine calibration by pyramid prism

    NASA Astrophysics Data System (ADS)

    Wang, Zongping; Jin, Shangzhong; Wang, Weicheng; Zhu, Xiaoping

    2013-12-01

    This paper briefly introduces the commonly used photoelectric auto collimator structure and its working principle. A new method for calibrating the initial point of collimator CCD imagine by a pyramid prism was proposed. It consists of a two-dimension rotate instrument, a pyramid prism and a collimator. By combing with the algorithm of calculating the center position of beam spot, a more precise calibration of the initial point of the collimator CCD imagine was realized. Optical properties of the pyramid prism and its impact of initial point calibration were analysed under the oblique incidence. At the same time, effect of the manufacturing errors of pyramid prism on the calibration accuracy was analysed. Experimental data shows that the method has a good reproducibility with a relative standard deviation of less than 10%.

  13. Collimation system design for beam loss localization with slipstacking injection in the Fermilab Main Injector

    SciTech Connect

    Drozhdin, A.I.; Brown, B.C.; Johnson, D.E.; Koba, K.; Kourbanis, I.; Mokhov, N.V.; Rakhno, I.L.; Sidorov, V.I.; /Fermilab

    2007-06-01

    Results of modeling with the 3-D STRUCT and MARS15 codes of beam loss localization and related radiation effects are presented for the slipstacking injection to the Fermilab Main Injector. Simulations of proton beam loss are done using multi-turn tracking with realistic accelerator apertures, nonlinear fields in the accelerator magnets and time function of the RF manipulations to explain the results of beam loss measurements. The collimation system consists of one primary and four secondary collimators. It intercepts a beam power of 1.6 kW at a scraping rate of 5% of 5.5E+13 ppp, with a beam loss rate in the ring outside the collimation region of 1 W/m or less. Based on thorough energy deposition and radiation modeling, a corresponding collimator design was developed that satisfies all the radiation and engineering constraints.

  14. Collimator design for spatially-fractionated proton beams for radiobiology research.

    PubMed

    Lee, Eunsin; Meyer, Juergen; Sandison, George

    2016-07-21

    Preclinical and translational research is an imperative to improve the efficacy of proton radiotherapy. We present a feasible and practical method to produce spatially-modulated proton beams for cellular and small animal research for clinical and research facilities. The University of Washington (UW) 50.5 MeV proton research beamline hosting a brass collimation system was modeled using Monte Carlo simulations. This collimator consisted of an array of 2 cm long slits to cover an area of 2  ×  2 cm(2). To evaluate the collimator design effects on dose rate, valley dose and the peak-to-valley dose ratios (PVDR) the following parameters were varied; slit width (0.1-1.0 mm), peak center-to-center distance (1-3 mm), collimator thickness (1-7 cm) and collimator location along the beam axis. Several combinations of slit widths and 1 mm spacing achieved uniform dose at the Bragg peak while maintaining spatial modulation on the beam entrance. A more detailed analysis was carried out for the case of a slit width of 0.3 mm, peak center-to-center distance of 1 mm, a collimator thickness of 5 cm and with the collimator flush against the water phantom. The dose rate at 5 mm depth dropped relative to an open field by a factor of 12 and produced a PVDR of 10.1. Technical realization of proton mini-beams for radiobiology small animal research is demonstrated to be feasible. It is possible to obtain uniform dose at depth while maintaining reasonable modulation at shallower depths near the beam entrance. While collimator design is important the collimator location has a strong influence on the entrance region PVDRs and on dose rate. These findings are being used to manufacture a collimator for installation on the UW cyclotron proton beam nozzle. This collimator will enable comparative studies on the radiobiological efficacy of x-rays and proton beams. PMID:27362834

  15. Collimator design for spatially-fractionated proton beams for radiobiology research

    NASA Astrophysics Data System (ADS)

    Lee, Eunsin; Meyer, Juergen; Sandison, George

    2016-07-01

    Preclinical and translational research is an imperative to improve the efficacy of proton radiotherapy. We present a feasible and practical method to produce spatially-modulated proton beams for cellular and small animal research for clinical and research facilities. The University of Washington (UW) 50.5 MeV proton research beamline hosting a brass collimation system was modeled using Monte Carlo simulations. This collimator consisted of an array of 2 cm long slits to cover an area of 2  ×  2 cm2. To evaluate the collimator design effects on dose rate, valley dose and the peak-to-valley dose ratios (PVDR) the following parameters were varied; slit width (0.1–1.0 mm), peak center-to-center distance (1–3 mm), collimator thickness (1–7 cm) and collimator location along the beam axis. Several combinations of slit widths and 1 mm spacing achieved uniform dose at the Bragg peak while maintaining spatial modulation on the beam entrance. A more detailed analysis was carried out for the case of a slit width of 0.3 mm, peak center-to-center distance of 1 mm, a collimator thickness of 5 cm and with the collimator flush against the water phantom. The dose rate at 5 mm depth dropped relative to an open field by a factor of 12 and produced a PVDR of 10.1. Technical realization of proton mini-beams for radiobiology small animal research is demonstrated to be feasible. It is possible to obtain uniform dose at depth while maintaining reasonable modulation at shallower depths near the beam entrance. While collimator design is important the collimator location has a strong influence on the entrance region PVDRs and on dose rate. These findings are being used to manufacture a collimator for installation on the UW cyclotron proton beam nozzle. This collimator will enable comparative studies on the radiobiological efficacy of x-rays and proton beams.

  16. Study of High-Frequency Impedance of Small-Angle Tapers and Collimators

    SciTech Connect

    Stupakov, Gennady; Podobedov, B.; /Brookhaven

    2010-06-04

    Collimators and transitions in accelerator vacuum chambers often include small-angle tapering to lower the wakefields generated by the beam. While the low-frequency impedance is well described by Yokoya's formula (for axisymmetric geometry), much less is known about the behavior of the impedance in the high frequency limit. In this paper we develop an analytical approach to the highfrequency regime for round collimators and tapers. Our analytical results are compared with computer simulations using the code ECHO.

  17. Simulation, Design, and Testing of a High Power Collimator for the RDS-112 Cyclotron

    PubMed Central

    Peeples, Johanna L.; Stokely, Matthew H.; Poorman, Michael C.; Bida, Gerald T.; Wieland, Bruce W.

    2015-01-01

    A high power [F-18]fluoride target package for the RDS-112 cyclotron has been designed, tested, and commercially deployed. The upgrade includes the CF-1000 target, a 1.3 kW water target with an established commercial history on RDS-111/Eclipse cyclotrons, and a redesigned collimator with improved heat rejection capabilities. Conjugate heat transfer analyses were employed to both evaluate the existing collimator capabilities and design a suitable high current replacement. PMID:25562677

  18. Radial collimator system for reducing background noise during neutron diffraction with area detectors

    NASA Astrophysics Data System (ADS)

    Wright, A. F.; Berneron, M.; Heathman, S. P.

    1981-04-01

    The construction and performance of an area collimator for use with film or multidetectors is described. A cylindrical assembly of high divergence slits, resembling a venetian blind, at a short distance from the sample permits the detector to observe only scattering from the sample or very close to it. Parasitic scattering from cryostats or furnaces enclosing the sample is absorbed by the slits. Homogeneity of transmission is improved by oscillating the collimator.

  19. Simulation of the ILC Collimation System using BDSIM, MARS15 and STRUCT

    SciTech Connect

    Carter, J.; Agapov, I.; Blair, G.A.; Deacon, L.; Drozhdin, A.I.; Mokhov, N.V.; Nosochkov, Y.M.; Seryi, A.A.; /SLAC

    2006-07-12

    The simulation codes BDSIM, MARS15 and STRUCT are used to simulate in detail the collimation section of the International Linear Collider (ILC). A comparative study of the collimation system performance for the 250 x 250 GeV machine is conducted, and the key radiation loads are calculated. Results for the latest ILC designs are presented together with their implications for future design iterations.

  20. Laser beam collimation using a phase conjugate Twyman-Green interferometer

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Dokhanian, M.; George, M. C.; Venkateswarlu, Putcha

    1991-01-01

    This paper presents an improved technique for testing laser beam collimation using a phase conjugate Twyman-Green interferometer. The technique is useful for measuring laser beam divergence. It is possible using this technique to detect the defocusing of the order of one micrometer for a well corrected collimating lens. A relation is derived for the defocusing that can be detected by the phase conjugate interferometer.

  1. Simple collimator for use with diamond-anvil cells in a synchrotron beam

    NASA Technical Reports Server (NTRS)

    Spain, I. L.; Menoni, C. S.; Black, D. R.

    1984-01-01

    A simple double-slit system is described which allows a synchrotron beam to be collimated onto a small sample (approximately 150-micron diameter) in a diamond-anvil cell using remote control. The apparatus can be constructed easily and inexpensively, and allows the shutter positions to be monitored accurately using readily available electronic equipment. A desirable feature of the collimator is the relatively small time needed for adjustment.

  2. An Optical Demonstration Project For The HESSI Rotating Modulation Collimator

    NASA Astrophysics Data System (ADS)

    Lowe-Schmahl, B.; Schmahl, K.; Mengel, T.; Schmahl, E.

    2000-05-01

    Our 4-7th grade Workshop students made a working prototype of a HESSI rotating modulation collimator (RMC) using PVC pipe, PVC couplers, grid transparencies, a dot matrix (tractor feed) printer, and a slide projector. The idea is to rotate two four-inch long telescopes end-to-end on the same printer roller. Each telescope has two grids and are placed an inch or two apart. They have the same rotational axis and all the grids are parallel. The light beam comes in and hits the imaging telescope. The light going out of it hits a diffusion screen (translucent plastic) and then continues, diffused, into the back-projection telescope. Polaroid film and a modified Polaroid camera sum the back-projection data. The camera is modified by removing the front focusing lens, replacing it with a 4-inch lens, creating a shutter system using layered cardboard and gluing the shutter system to the front of the camera. The shutter system is opened and the film exposed through one complete rotation of the model HESSI Telescope. To our students' amazement a back projection was successfully obtained on the print! The HESSI Telescope Demonstration project provides the impetus for students to stretch their mental boundaries. This project promotes the goals of ``learn one, do one, teach one": 1) Learn one: students must research the field and subject matter for the telescope; 2) Do one: By designing, developing and implementing their project, they are in essence performing valid research, which is the end result of all scientific inquiries; 3) Teach one: By incorporating both written and oral presentations of their projects and through interaction with a scientist and/or engineering mentor, students are given the unique opportunity to experience the peer review process that all scientists and engineers must undergo. We would like to thank the HESSI team of NASA Goddard Space Flight Center for their on-going support of our students' project.

  3. Impact of leaf motion constraints on IMAT plan quality, deliver accuracy, and efficiency

    SciTech Connect

    Chen Fan; Rao Min; Ye Jinsong; Shepard, David M.; Cao Daliang

    2011-11-15

    Purpose: Intensity modulated arc therapy (IMAT) is a radiation therapy delivery technique that combines the efficiency of arc based delivery with the dose painting capabilities of intensity modulated radiation therapy (IMRT). A key challenge in developing robust inverse planning solutions for IMAT is the need to account for the connectivity of the beam shapes as the gantry rotates from one beam angle to the next. To overcome this challenge, inverse planning solutions typically impose a leaf motion constraint that defines the maximum distance a multileaf collimator (MLC) leaf can travel between adjacent control points. The leaf motion constraint ensures the deliverability of the optimized plan, but it also impacts the plan quality, the delivery accuracy, and the delivery efficiency. In this work, the authors have studied leaf motion constraints in detail and have developed recommendations for optimizing the balance between plan quality and delivery efficiency. Methods: Two steps were used to generate optimized IMAT treatment plans. The first was the direct machine parameter optimization (DMPO) inverse planning module in the Pinnacle{sup 3} planning system. Then, a home-grown arc sequencer was applied to convert the optimized intensity maps into deliverable IMAT arcs. IMAT leaf motion constraints were imposed using limits of between 1 and 30 mm/deg. Dose distributions were calculated using the convolution/superposition algorithm in the Pinnacle{sup 3} planning system. The IMAT plan dose calculation accuracy was examined using a finer sampling calculation and the quality assurance verification. All plans were delivered on an Elekta Synergy with an 80-leaf MLC and were verified using an IBA MatriXX 2D ion chamber array inserted in a MultiCube solid water phantom. Results: The use of a more restrictive leaf motion constraint (less than 1-2 mm/deg) results in inferior plan quality. A less restrictive leaf motion constraint (greater than 5 mm/deg) results in improved plan

  4. Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts

    NASA Astrophysics Data System (ADS)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cerutti, F.; Lari, L.; Redaelli, S.; Mollicone, P.; Sammut, N.

    2015-04-01

    The CERN Large Hadron Collider (LHC) is designed to accelerate and bring into collision high-energy protons as well as heavy ions. Accidents involving direct beam impacts on collimators can happen in both cases. The LHC collimation system is designed to handle the demanding requirements of high-intensity proton beams. Although proton beams have 100 times higher beam power than the nominal LHC lead ion beams, specific problems might arise in case of ion losses due to different particle-collimator interaction mechanisms when compared to protons. This paper investigates and compares direct ion and proton beam impacts on collimators, in particular tertiary collimators (TCTs), made of the tungsten heavy alloy INERMET® 180. Recent measurements of the mechanical behavior of this alloy under static and dynamic loading conditions at different temperatures have been done and used for realistic estimates of the collimator response to beam impact. Using these new measurements, a numerical finite element method (FEM) approach is presented in this paper. Sequential fast-transient thermostructural analyses are performed in the elastic-plastic domain in order to evaluate and compare the thermomechanical response of TCTs in case of critical beam load cases involving proton and heavy ion beam impacts.

  5. An empirical model for calculation of the collimator contamination dose in therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Vidal, M.; De Marzi, L.; Szymanowski, H.; Guinement, L.; Nauraye, C.; Hierso, E.; Freud, N.; Ferrand, R.; François, P.; Sarrut, D.

    2016-02-01

    Collimators are used as lateral beam shaping devices in proton therapy with passive scattering beam lines. The dose contamination due to collimator scattering can be as high as 10% of the maximum dose and influences calculation of the output factor or monitor units (MU). To date, commercial treatment planning systems generally use a zero-thickness collimator approximation ignoring edge scattering in the aperture collimator and few analytical models have been proposed to take scattering effects into account, mainly limited to the inner collimator face component. The aim of this study was to characterize and model aperture contamination by means of a fast and accurate analytical model. The entrance face collimator scatter distribution was modeled as a 3D secondary dose source. Predicted dose contaminations were compared to measurements and Monte Carlo simulations. Measurements were performed on two different proton beam lines (a fixed horizontal beam line and a gantry beam line) with divergent apertures and for several field sizes and energies. Discrepancies between analytical algorithm dose prediction and measurements were decreased from 10% to 2% using the proposed model. Gamma-index (2%/1 mm) was respected for more than 90% of pixels. The proposed analytical algorithm increases the accuracy of analytical dose calculations with reasonable computation times.

  6. Channeling and Volume Reflection Based Crystal Collimation of Tevatron Circulating Beam Halo (T-980)

    SciTech Connect

    Shiltsev, V.; Annala, G.; Drozhdin, A.; Johnson, T.; Legan, A.; Mokhov, N.; Reilly, R.; Still, D.; Tesarek, R.; Zagel, J.; Peggs, S.; /Brookhaven /CERN /Serpukhov, IHEP /INFN, Ferrara /PNPI, CSTD

    2010-05-01

    The T980 crystal collimation experiment is underway at the Tevatron to determine if this technique could increase 980 GeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. T980 also studies various crystal types and parameters. The setup has been substantially enhanced during the Summer 2009 shutdown by installing a new O-shaped crystal in the horizontal goniometer, as well as adding a vertical goniometer with two alternating crystals (O-shaped and multi-strip) and additional beam diagnostics. First measurements with the new system are quite encouraging, with channeled and volume-reflected beams observed on the secondary collimators as predicted. Investigation of crystal collimation efficiencies with crystals in volume reflection and channeling modes are described in comparison with an amorphous primary collimator. Results on the system performance are presented for the end-of-store studies and for entire collider stores. The first investigation of colliding beam collimation simultaneously using crystals in both the vertical and horizontal plane has been made in the regime with horizontally channeled and vertically volume-reflected beams. Planning is underway for significant hardware improvements during the FY10 summer shutdown and for dedicated studies during the final year of Tevatron operation and also for a 'post-collider beam physics running' period.

  7. Collimator design for a dedicated molecular breast imaging-guided biopsy system: Proof-of-concept

    PubMed Central

    Weinmann, Amanda L.; Hruska, Carrie B.; Conners, Amy L.; O’Connor, Michael K.

    2013-01-01

    Purpose: Molecular breast imaging (MBI) is a dedicated nuclear medicine breast imaging modality that employs dual-head cadmium zinc telluride (CZT) gamma cameras to functionally detect breast cancer. MBI has been shown to detect breast cancers otherwise occult on mammography and ultrasound. Currently, a MBI-guided biopsy system does not exist to biopsy such lesions. Our objective was to consider the utility of a novel conical slant-hole (CSH) collimator for rapid (<1 min) and accurate monitoring of lesion position to serve as part of a MBI-guided biopsy system. Methods: An initial CSH collimator design was derived from the dimensions of a parallel-hole collimator optimized for MBI performed with dual-head CZT gamma cameras. The parameters of the CSH collimator included the collimator height, cone slant angle, thickness of septa and cones of the collimator, and the annular areas exposed at the base of the cones. These parameters were varied within the geometric constraints of the MBI system to create several potential CSH collimator designs. The CSH collimator designs were evaluated using Monte Carlo simulations. The model included a breast compressed to a thickness of 6 cm with a 1-cm diameter lesion located 3 cm from the collimator face. The number of particles simulated was chosen to represent the count density of a low-dose, screening MBI study acquired with the parallel-hole collimator for 10 min after a ∼150 MBq (4 mCi) injection of Tc-99m sestamibi. The same number of particles was used for the CSH collimator simulations. In the resulting simulated images, the count sensitivity, spatial resolution, and accuracy of the lesion depth determined from the lesion profile width were evaluated. Results: The CSH collimator design with default parameters derived from the optimal parallel-hole collimator provided 1-min images with error in the lesion depth estimation of 1.1 ± 0.7 mm and over 21 times the lesion count sensitivity relative to 1-min images acquired with

  8. Collimator design for a dedicated molecular breast imaging-guided biopsy system: Proof-of-concept

    SciTech Connect

    Weinmann, Amanda L.; Hruska, Carrie B.; Conners, Amy L.; O'Connor, Michael K.

    2013-01-15

    Purpose: Molecular breast imaging (MBI) is a dedicated nuclear medicine breast imaging modality that employs dual-head cadmium zinc telluride (CZT) gamma cameras to functionally detect breast cancer. MBI has been shown to detect breast cancers otherwise occult on mammography and ultrasound. Currently, a MBI-guided biopsy system does not exist to biopsy such lesions. Our objective was to consider the utility of a novel conical slant-hole (CSH) collimator for rapid (<1 min) and accurate monitoring of lesion position to serve as part of a MBI-guided biopsy system. Methods: An initial CSH collimator design was derived from the dimensions of a parallel-hole collimator optimized for MBI performed with dual-head CZT gamma cameras. The parameters of the CSH collimator included the collimator height, cone slant angle, thickness of septa and cones of the collimator, and the annular areas exposed at the base of the cones. These parameters were varied within the geometric constraints of the MBI system to create several potential CSH collimator designs. The CSH collimator designs were evaluated using Monte Carlo simulations. The model included a breast compressed to a thickness of 6 cm with a 1-cm diameter lesion located 3 cm from the collimator face. The number of particles simulated was chosen to represent the count density of a low-dose, screening MBI study acquired with the parallel-hole collimator for 10 min after a {approx}150 MBq (4 mCi) injection of Tc-99m sestamibi. The same number of particles was used for the CSH collimator simulations. In the resulting simulated images, the count sensitivity, spatial resolution, and accuracy of the lesion depth determined from the lesion profile width were evaluated. Results: The CSH collimator design with default parameters derived from the optimal parallel-hole collimator provided 1-min images with error in the lesion depth estimation of 1.1 {+-} 0.7 mm and over 21 times the lesion count sensitivity relative to 1-min images

  9. Quantitative radiography enabled by slot collimation and a novel scatter correction technique on a large-area flat panel x-ray detector

    NASA Astrophysics Data System (ADS)

    Yue, Meghan L.; Boden, Adam E.; Sabol, John M.

    2009-02-01

    In addition to causing loss of contrast and blurring in an image, scatter also makes quantitative measurements of xray attenuation impossible. Many devices, methods, and models have been developed to eliminate, estimate, and correct for the effects of scatter. Although these techniques can reduce the impact of scatter in a large-area image, no methods have proven to be practical and sufficient to enable quantitative analysis of image data in a routine clinical setting. This paper describes a method of scatter correction which uses moderate x-ray collimation in combination with a correction algorithm operating on data obtained from large-area flat panel detector images. The method involves acquiring slot collimated images of the object, and utilizing information from outside of the collimated region, in addition to a priori data, to estimate the scatter within the collimated region. This method requires no increase dose to the patient while providing high image quality and accurate estimates of the primary x-ray data. This scatter correction technique was validated through beam stop experiments and comparison of theoretically calculated and measured contrast of thin aluminum and polymethylmethacrelate objects. Measurements taken with various background material thicknesses, both with and without a grid, showed that the slot-scatter corrected contrast and the theoretical contrast were not significantly different given a 99% confidence interval. However, the uncorrected contrast was found to be significantly different from the corrected and theoretical contrasts. These findings indicate that this method of scatter correction can eliminate the effect of scatter on contrast and potentially enable quantitative x-ray imaging.

  10. Using the Wiener estimator to determine optimal imaging parameters in a synthetic-collimator SPECT system used for small animal imaging

    NASA Astrophysics Data System (ADS)

    Lin, Alexander; Johnson, Lindsay C.; Shokouhi, Sepideh; Peterson, Todd E.; Kupinski, Matthew A.

    2015-03-01

    In synthetic-collimator SPECT imaging, two detectors are placed at different distances behind a multi-pinhole aperture. This configuration allows for image detection at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. Image multiplexing the undesired overlapping between images due to photon origin uncertainty may occur in both detector planes and is often present in the second detector plane due to greater magnification. However, artifact-free image reconstruction is possible by combining data from both the front detector (little to no multiplexing) and the back detector (noticeable multiplexing). When the two detectors are used in tandem, spatial resolution is increased, allowing for a higher sensitivity-to-detector-area ratio. Due to variability in detector distances and pinhole spacings found in synthetic-collimator SPECT systems, a large parameter space must be examined to determine optimal imaging configurations. We chose to assess image quality based on the task of estimating activity in various regions of a mouse brain. Phantom objects were simulated using mouse brain data from the Magnetic Resonance Microimaging Neurological Atlas (MRM NeAt) and projected at different angles through models of a synthetic-collimator SPECT system, which was developed by collaborators at Vanderbilt University. Uptake in the different brain regions was modeled as being normally distributed about predetermined means and variances. We computed the performance of the Wiener estimator for the task of estimating activity in different regions of the mouse brain. Our results demonstrate the utility of the method for optimizing synthetic-collimator system design.

  11. SU-E-T-604: Dosimetric Dependence On the Collimator Angle in Prostate Volumetric Modulated Arc Therapy

    SciTech Connect

    Khan, M; Rehman, J; Khan, M; Chow, J

    2014-06-01

    Purpose: The purpose of this study is to investigate the dose-volume variations of planning target volume (PTV) and organs-at-risk (OARs) in prostate volumetric modulated arc therapy (VMAT) when using different collimator angles. It is because collimator angle awareness is essential for planner to produce an optimal prostate VMAT plan in a rational time. Methods: Single-arc VMAT plans at different collimator angles (0o, 15o, 30o, 45o, 60o, 75o and 90o) were created systematically using a Harold heterogeneous pelvis phantom. For each change of collimator angle, a new plan was re-optimized for that angle. The prescription dose was 78 Gy per 39 fractions. Conformity index (CI), homogeneity index (HI), gradient index, machine monitor unit, dose-volume histogram, the mean and maximum doses of the PTV were calculated and analyzed. On the other hand, dose-volume histogram, the mean and maximum doses of the OARs such as bladder, rectum and femoral heads for different collimator angles were determined from the plans. Results: There was no significance difference, based on the plan dose-volume evaluation criteria, found in the VMAT optimizations for all studied collimator angles. Higher CI and lower HI were found for the 45o collimator angle. In addition, the 15o collimator angle provided lower HI similar to the 45o collimator angle. The 75o and 90o collimator angle were found good for the rectum sparing, and the 75o and 30o collimator angle were found good for the right and left femur sparing, respectively. The PTV dose coverage for each plan was comparatively independent of the collimator angle. Conclusion: The dosimetric results in this study are useful to the planner to select different collimator angles to improve the PTV coverage and OAR sparing in prostate VMAT.

  12. Design and performance of a small-animal imaging system using synthetic collimation.

    PubMed

    Havelin, R J; Miller, B W; Barrett, H H; Furenlid, L R; Murphy, J M; Dwyer, R M; Foley, M J

    2013-05-21

    This work outlines the design and construction of a single-photon emission computed tomography imaging system based on the concept of synthetic collimation. A focused multi-pinhole collimator is constructed using rapid-prototyping and casting techniques. The collimator projects the centre of the field of view (FOV) through 46 pinholes when the detector is adjacent to the collimator, with the number reducing towards the edge of the FOV. The detector is then moved further from the collimator to increase the magnification of the system. The object distance remains constant, and each new detector distance is a new system configuration. The level of overlap of the pinhole projections increases as the system magnification increases, but the number of projections subtended by the detector is reduced. There is no rotation in the system; a single tomographic angle is used in each system configuration. Image reconstruction is performed using maximum-likelihood expectation-maximization and an experimentally measured system matrix. The system matrix is measured for each configuration on a coarse grid, using a point source. The pinholes are individually identified and tracked, and a Gaussian fit is made to each projection. The coefficients of these fits are used to interpolate the system matrix. The system is validated experimentally with a hot-rod phantom. The Fourier crosstalk matrix is also measured to provide an estimate of the average spatial resolution along each axis over the entire FOV. The 3D synthetic-collimator image is formed by estimating the activity distribution within the FOV and summing the activities in the voxels along the axis perpendicular to the collimator face. PMID:23618819

  13. Design and performance of a small-animal imaging system using synthetic collimation

    PubMed Central

    Havelin, R J; Miller, B W; Barrett, H H; Furenlid, L R; Murphy, J M; Foley, M J

    2015-01-01

    This work outlines the design and construction of a single-photon emission computed tomography (SPECT) imaging system based on the concept of synthetic collimation. A focused multi-pinhole collimator is constructed using rapid-prototyping and casting techniques. The collimator projects the centre of the field of view (FOV) through forty-six pinholes when the detector is adjacent to the collimator, with the number reducing towards the edge of the FOV. The detector is then moved further from the collimator to increase the magnification of the system. The object distance remains constant, and each new detector distance is a new system configuration. The level of overlap of the pinhole projections increases as the system magnification increases, but the number of projections subtended by the detector is reduced. There is no rotation in the system; a single tomographic angle is used in each system configuration. Image reconstruction is performed using maximum-likelihood expectation-maximization (MLEM), and an experimentally measured system matrix. The system matrix is measured for each configuration on a coarse grid, using a point source. The pinholes are individually identified and tracked, and a Gaussian fit is made to each projection. The coefficients of these fits are used to interpolate the system matrix. The system is validated experimentally with a hot-rod phantom. The Fourier crosstalk matrix is also measured to provide an estimate of the average spatial resolution along each axis over the entire FOV. The 3D synthetic-collimator image is formed by estimating the activity distribution within the FOV, and summing the activities in the voxels along the axis perpendicular to the collimator face. PMID:23618819

  14. Performance of a novel collimator for high-sensitivity brain SPECT

    SciTech Connect

    El Fakhri, Georges; Ouyang Jinsong; Zimmerman, Robert E.; Fischman, Alan J.; Kijewski, Marie Foley

    2006-01-15

    We assessed improvements in performance in detection and estimation tasks due to a novel brain single photon computed tomography collimator. Data were acquired on the CeraSPECT{sup TM} scanner using both new and standard collimators. The new variable focusing collimator SensOgrade{sup TM} samples the projections unequally, with central regions more heavily represented, to compensate for attenuation of counts from central brain structures. Furthermore, it utilizes more of the cylindrical crystal surface. Two phantom studies were performed. The first phantom was a 21-cm-diameter cylindrical background containing nine spheres ranging from 0.5 to 5 cm{sup 3} in volume. {sup 99m}Tc sphere to background activity ratio was 10:1. Twenty-nine 10-min datasets were acquired with each collimator. The second phantom was the Radiology Support Devices (Long Beach, CA) striatal phantom with striatal-background ratios of 10:1 on the left and 5:1 on the right. Twenty-nine 4-min datasets were acquired with each collimator. Perfusion imaging using {sup 99m}Tc-HMPAO was also performed in three healthy volunteers using both collimators under identical simulations. Projections were reconstructed by filtered backprojection with an unwindowed ramp filter. The nonprewhitening matched filter signal-to-noise ratio (NPW-SNR) was computed as a surrogate for human performance in detecting spherical lesions. Sphere activity concentration, radius, and location coordinates were simultaneously estimated by fitting images to an assumed model using an iterative nonlinear algorithm. Resolution recovery was implicit in the estimation procedure, as the point spread function was incorporated into the model. NPW-SNR for sphere detection was 1.5 to 2 times greater with the new collimator; for the striatal phantom the improvement in SNR was 54%. The SNR for estimating sphere activity concentration improved by 46 to 89 % for spheres located more than 5 cm from the phantom center. Images acquired with the

  15. Monolithic fiber end cap collimator for high-power free-space fiber-fiber coupling.

    PubMed

    Zhou, Xuanfeng; Chen, Zilun; Wang, Zefeng; Hou, Jing

    2016-05-20

    In this paper, we present the design, construction, and testing of a monolithic fiber end cap collimator for high-power free-space fiber-fiber coupling applications. The collimator is based on a large-sized fiber end cap and a spherical lens design on the output facet. Values of the spot size and working distance are theoretically analyzed based on Gaussian approximation and ABCD transmission matrix. The free-space fiber-fiber coupling process is also analyzed for different lens curvature radii and coupling distances. In the experiment, a collimated laser beam is obtained with Rayleigh length of about 400 mm. A high-power laser with 1.1 kW output is tested on the end cap collimator, which only heats up by 7°C at the output facet without active cooling. Free-space fiber-fiber coupling between two 20/400 μm fibers is achieved based on these collimators, with measured coupling loss lower than 0.3 dB. PMID:27411125

  16. Alignment protocol for effective use of hard x-ray quad collimator for micro-crystallography

    NASA Astrophysics Data System (ADS)

    Xu, S.; Nagarajan, V.; Sanishvili, R.; Fischetti, R. F.

    2011-09-01

    In October 2009, a quad, mini-beam collimator was implemented at GM/CA CAT that allowed users to select between a 5, 10, or 20 micron mini-beam or a 300 micron scatter guard for macromolecular crystallography. Initial alignment of each pinhole to the optical axis of each path through the mini-beam collimator is performed under an optical microscope using an alignment jig. Next, the pre-aligned collimator and its kinematic mount are moved to the beamline and attached to a pair of high precision translation stages attached to an on-axis-visualization system for viewing the protein crystal under investigation. The collimator is aligned to the beam axis by two angular and two translational motions. The pitch and yaw adjustments are typically only done during initial installation, and therefore are not motorized. The horizontal and vertical positions are adjusted remotely with high precision translational stages. Final alignment of the collimator is achieved using several endstation components, namely, a YAG crystal at the sample position to visualize the mini-beam, a CCD detector to record an X-ray background image, and a PIN diode to record the mini-beam intensity. The alignment protocol and its opto-mechanical instrumentation design will be discussed in detail.

  17. Collimator angle influence on dose distribution optimization for vertebral metastases using volumetric modulated arc therapy

    SciTech Connect

    Mancosu, Pietro; Cozzi, Luca; Fogliata, Antonella; Lattuada, Paola; Reggiori, Giacomo; Cantone, Marie Claire; Navarria, Pierina; Scorsetti, Marta

    2010-08-15

    Purpose: The cylindrical symmetry of vertebrae favors the use of volumetric modulated arc therapy in generating a dose ''hole'' on the center of the vertebrae limiting the dose to the spinal cord. The authors have evaluated if collimator angle is a significant parameter for dose distribution optimization in vertebral metastases. Methods: Three patients with one-three vertebrae involved were considered. Twenty-one differently optimized plans (nine single-arc and 12 double-arc plans) were performed, testing various collimator angle positions. Clinical target volume was defined as the whole vertebrae, excluding the spinal cord canal. The planning target volume (PTV) was defined as CTV+5 mm. Dose prescription was 5x4 Gy{sup 2} with normalization to PTV mean dose. The dose at 1 cm{sup 3} of spinal cord was limited to 11.5Gy. Results: The best plans in terms of target coverage and spinal cord sparing were achieved by two arcs and Arc1-80 deg. and Arc2-280 deg. collimator angles for all the cases considered (i.e., leaf travel parallel to the spinal cord primary orientation). If one arc is used, only 80 deg. reached the objectives. Conclusions: This study demonstrated the role of collimation rotation for the vertebrae metastasis irradiation, with the leaf travel parallel to the spinal cord primary orientation to be better than other solutions. Thus, optimal choice of collimator angle increases the optimization freedom to shape a desired dose distribution.

  18. Phase-function normalization for accurate analysis of ultrafast collimated radiative transfer.

    PubMed

    Hunter, Brian; Guo, Zhixiong

    2012-04-20

    The scattering of radiation from collimated irradiation is accurately treated via normalization of phase function. This approach is applicable to any numerical method with directional discretization. In this study it is applied to the transient discrete-ordinates method for ultrafast collimated radiative transfer analysis in turbid media. A technique recently developed by the authors, which conserves a phase-function asymmetry factor as well as scattered energy for the Henyey-Greenstein phase function in steady-state diffuse radiative transfer analysis, is applied to the general Legendre scattering phase function in ultrafast collimated radiative transfer. Heat flux profiles in a model tissue cylinder are generated for various phase functions and compared to those generated when normalization of the collimated phase function is neglected. Energy deposition in the medium is also investigated. Lack of conservation of scattered energy and the asymmetry factor for the collimated scattering phase function causes overpredictions in both heat flux and energy deposition for highly anisotropic scattering media. In addition, a discussion is presented to clarify the time-dependent formulation of divergence of radiative heat flux. PMID:22534933

  19. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization.

    PubMed

    Cranmer-Sargison, G; Crewson, C; Davis, W M; Sidhu, N P; Kundapur, V

    2015-09-01

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy. PMID:26305166

  20. Measurements and analysis of a high-brightness electron beam collimated in a magnetic bunch compressor

    NASA Astrophysics Data System (ADS)

    Zhou, F.; Bane, K.; Ding, Y.; Huang, Z.; Loos, H.; Raubenheimer, T.

    2015-05-01

    A collimator located in a magnetic bunch compressor of a linear accelerator driven x-ray free electron laser has many potential applications, such as the removal of horns in the current distribution, the generation of ultrashort beams, and as a diagnostic of the beam slice emittance. Collective effects, however, are a major concern in applying the technique. Systematic measurements of emittance and analysis were performed using a collimator in the first bunch compressor of the Linac Coherent Light Source (LCLS). In the nominal, undercompressed configuration using the collimator we find that the y emittance (nonbending plane) is not increased, and the x emittance (in the bending plane) is increased by about 25%, in comparison to the injector emittance. From the analysis we conclude that the parasitic effects associated with this method are dominated by coherent synchrotron radiation (CSR), which causes a "systematic error" for measuring slice emittance at the bending plane using the collimation method. In general, we find good agreement between the measurements and simulations including CSR. However, for overcompressed beams at smaller collimator gaps, an extra emittance increase is found that does not agree with 1D simulations and is not understood.

  1. Large area x-ray collimator-the zone plate approach.

    PubMed

    Menz, Benedikt; Braig, Christoph; Bräuninger, Heinrich; Burwitz, Vadim; Hartner, Gisela; Predehl, Peter

    2015-09-10

    One question of particular interest in the measurement of x-ray imaging optics for space telescopes concerns the characteristics of the point spread function (PSF) in orbit and the focal length for an infinite source distance. In order to measure such a PSF, a parallel x-ray beam with a diameter of several centimeters to meters is required. For this purpose a large area transmission x-ray zone plate (ZP) for collimating x-ray beams has been designed, built, and tested. Furthermore we present a setup to determine large-scale aberrations of the collimated beam. From x-ray measurements we obtain an upper limit for the angular resolution of ±0.2 arc sec and a first-order diffraction efficiency of ≈13%. These results show that it is possible to use a ZP as a collimator for the PANTER x-ray test facility. PMID:26368954

  2. Wavefront control of the Large Optics Test and Integration Site (LOTIS) 6.5m Collimator

    SciTech Connect

    West, Steven C.; Bailey, Samuel H.; Burge, James H.; Cuerden, Brian; Hagen, Jeff; Martin, Hubert M.; Tuell, Michael T.

    2010-06-20

    The LOTIS Collimator provides scene projection within a 6.5m diameter collimated beam used for optical testing research in air and vacuum. Diffraction-limited performance (0.4 to 5{mu}m wavelength) requires active wavefront control of the alignment and primary mirror shape. A hexapod corrects secondary mirror alignment using measurements from collimated sources directed into the system with nine scanning pentaprisms. The primary mirror shape is controlled with 104 adjustable force actuators based on figure measurements from a center-of-curvature test. A variation of the Hartmann test measures slopes by monitoring the reflections from 36 small mirrors bonded to the optical surface of the primary mirror. The Hartmann source and detector are located at the f/15 Cassegrain focus. Initial operation has demonstrated a closed-loop 110nmrms wavefront error in ambient air over the 6.5mcollimated beam.

  3. Rapid additive manufacturing of MR compatible multipinhole collimators with selective laser melting of tungsten powder

    SciTech Connect

    Deprez, Karel; Vandenberghe, Stefaan; Van Audenhaege, Karen; Van Vaerenbergh, Jonas; Van Holen, Roel

    2013-01-15

    Purpose: The construction of complex collimators with a high number of oblique pinholes is very labor intensive, expensive or is sometimes impossible with the current available techniques (drilling, milling or electric discharge machining). All these techniques are subtractive: one starts from solid plates and the material at the position of the pinholes is removed. The authors used a novel technique for collimator construction, called metal additive manufacturing. This process starts with a solid piece of tungsten on which a first layer of tungsten powder is melted. Each subsequent layer is then melted on the previous layer. This melting is done by selective laser melting at the locations where the CAD design file defines solid material. Methods: A complex collimator with 20 loftholes with 500 {mu}m diameter pinhole opening was designed and produced (16 mm thick and 70 Multiplication-Sign 52 mm{sup 2} transverse size). The density was determined, the production accuracy was measured (GOM ATOS II Triple Scan, Nikon AZ100M microscope, Olympus IMT200 microscope). Point source measurements were done by mounting the collimator on a SPECT detector. Because there is increasing interest in dual-modality SPECT-MR imaging, the collimator was also positioned in a 7T MRI scanner (Bruker Pharmascan). A uniform phantom was acquired using T1, T2, and T2* sequences to check for artifacts or distortion of the phantom images due to the collimator presence. Additionally, three tungsten sample pieces (250, 500, and 750 {mu}m thick) were produced. The density, attenuation (140 keV beam), and uniformity (GE eXplore Locus SP micro-CT) of these samples were measured. Results: The density of the collimator was equal to 17.31 {+-} 0.10 g/cm{sup 3} (89.92% of pure tungsten). The production accuracy ranges from -260 to +650 {mu}m. The aperture positions have a mean deviation of 5 {mu}m, the maximum deviation was 174 {mu}m and the minimum deviation was -122 {mu}m. The mean aperture diameter

  4. Stellar physics. Observing the onset of outflow collimation in a massive protostar.

    PubMed

    Carrasco-González, C; Torrelles, J M; Cantó, J; Curiel, S; Surcis, G; Vlemmings, W H T; van Langevelde, H J; Goddi, C; Anglada, G; Kim, S-W; Kim, J-S; Gómez, J F

    2015-04-01

    The current paradigm of star formation through accretion disks, and magnetohydrodynamically driven gas ejections, predicts the development of collimated outflows, rather than expansion without any preferential direction. We present radio continuum observations of the massive protostar W75N(B)-VLA 2, showing that it is a thermal, collimated ionized wind and that it has evolved in 18 years from a compact source into an elongated one. This is consistent with the evolution of the associated expanding water-vapor maser shell, which changed from a nearly circular morphology, tracing an almost isotropic outflow, to an elliptical one outlining collimated motions. We model this behavior in terms of an episodic, short-lived, originally isotropic ionized wind whose morphology evolves as it moves within a toroidal density stratification. PMID:25838383

  5. A scheme design of collimator for gantry in proton therapy facility

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Yin, Chongxian; Chu, Kecheng; Zhao, Liying; Shu, Hang; Dai, Xiaolei; Zhang, Manzhou; Miao, Chunhui

    2015-08-01

    In proton radiotherapy, a round dose profile at the isocenter is beneficial to the treatment planning in the active scanning mode. Based on the theory of the round-beam method, a collimator was designed to be placed at the entrance of the gantry. A simulation of Monte Carlo method was done to validate the design scheme. With the constraining function of the collimator, the dose profile at the isocenter would maintain a round shape despite of an initial asymmetric phase space in extraction of synchrotron. Furthermore, the shape of dose profile is irrelevant to the rotating angle of the gantry. The mechanical error caused by the axis deviation of the gantry could also be partly eliminated with the collimator.

  6. Throughput comparison of microscope objectives and custom lenses for laser diode output beam collimation

    NASA Technical Reports Server (NTRS)

    Fuhr, P. L.

    1985-01-01

    The efficiency with which microscope objectives and custom lenses collimate laser diode emission was measured. Four microscope objectives of 10, 21, 45, and 60 power and two custom lenses of 1 and 0.8 power were used. An autocollimator system was used to measure throughput. It consisted of 1 m focal length lens, a 10 power microscope objective, and a 128-element G series Reticon linear array. Collimating throughput efficiency was defined as the ratio of measured collimated power to total laser output power. Two throughput efficiencies were obtained: one for the didoe operation below lasing and the other for the diode operation above lasing. The custom lenses had higher throughput efficiencies than the microscope objectives. The f/0.8 system provided better throughput efficiencies than the f/1.0 system.

  7. Thomson scattering measurement of a collimated plasma jet generated by a high-power laser system

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Sakawa, Y.; Morita, T.; Yamaura, Y.; Kuramitsu, Y.; Moritaka, T.; Sano, T.; Shimoda, R.; Tomita, K.; Uchino, K.; Matsukiyo, S.; Mizuta, A.; Ohnishi, N.; Crowston, R.; Woolsey, N.; Doyle, H.; Gregori, G.; Koenig, M.; Michaut, C.; Pelka, A.; Yuan, D.; Li, Y.; Zhang, K.; Zhong, J.; Wang, F.; Takabe, H.

    2016-03-01

    One of the important and interesting problems in astrophysics and plasma physics is collimation of plasma jets. The collimation mechanism, which causes a plasma flow to propagate a long distance, has not been understood in detail. We have been investigating a model experiment to simulate astrophysical plasma jets with an external magnetic field [Nishio et al., EPJ. Web of Conferences 59, 15005 (2013)]. The experiment was performed by using Gekko XII HIPER laser system at Institute of Laser Engineering, Osaka University. We shot CH plane targets (3 mm × 3 mm × 10 μm) and observed rear-side plasma flows. A collimated plasma flow or plasma jet was generated by separating focal spots of laser beams. In this report, we measured plasma jet structure without an external magnetic field with shadowgraphy, and simultaneously measured the local parameters of the plasma jet, i.e., electron density, electron and ion temperatures, charge state, and drift velocity, with collective Thomson scattering.

  8. New Converging Collimator for Cold Neutrons Time-Of-Flight Measurements

    NASA Astrophysics Data System (ADS)

    Naguib, K.; Sallam, O. H.; Salama, Mohamed

    An idea to design a new converging collimator for cold neutron time-of-flight measurements is presented. Using this new facility in combination with a neutron time-of-flight spectrometer, we may have neutron intensity gain factors about three times that obtained using the conventional straight slit collimators. Expressions for calculating the collimators dimensions as well as the intensity gain and the time resolution broading were presented.Translated AbstractEin neuer, konvergierender Kollimator für Flugzeitmessungen mit langsamen NeutronenDie Idee der Konstruktion eines neuen, konvergierenden Kollimators für Flugzeitmessungen mit langsamen Neutronen wird vorgestellt. Mit diesem neuen Gerät in Kombination mit einem Neutronenflugzeitspektrometer sollte sich ein Intensitätsgewinn von drei gegenüber konventionellen Anordnungen ergeben. Die Kollimatordimensionen, der Intensitätsgewinn und die Verbreiterung der Zeitauflösung werden berechnet.

  9. Handling High Activity Components on the SNS (Collimators and Linac Passive Dump Window)

    NASA Astrophysics Data System (ADS)

    Murdoch, G.; Decarlo, A.; Potter, K.; Roseberry, T.; Schubert, J.; Brodowski, J.; Ludewig, H.; Tuozzolo, J.; Simos, N.; Hirst, J.

    2003-12-01

    The Spallation Neutron Source accelerator will provide a 1 GeV, 1.44 MW proton beam to a liquid mercury target for neutron production. The expected highest doses to components are in the collimation regions. This paper presents the mechanical engineering design of a typical collimator highlighting the features incorporated to assist with collimator removal once it is activated. These features include modular shielding, integrated crane mounting, remote water fittings and vacuum clamps. Also presented is the design work in progress at present to validate the remote vacuum clamp design. This includes a test rig that mimics an active handling scenario where vacuum bellows can be compressed and clamps removed/replaced from a safe distance.

  10. Magnetic collimation of fast electrons in specially engineered targets irradiated by ultraintense laser pulses

    SciTech Connect

    Cai Hongbo; Zhu Shaoping; Wu Sizhong; Chen Mo; Zhou Cangtao; He, X. T.; Yu Wei; Nagatomo, Hideo

    2011-02-15

    The efficient magnetic collimation of fast electron flow transporting in overdense plasmas is investigated with two-dimensional collisional particle-in-cell numerical simulations. It is found that the specially engineered targets exhibiting either high-resistivity-core-low-resistivity-cladding structure or low-density-core-high-density-cladding structure can collimate fast electrons. Two main mechanisms to generate collimating magnetic fields are found. In high-resistivity-core-low-resistivity-cladding structure targets, the magnetic field at the interfaces is generated by the gradients of the resistivity and fast electron current, while in low-density-core-high-density-cladding structure targets, the magnetic field is generated by the rapid changing of the flow velocity of the background electrons in transverse direction (perpendicular to the flow velocity) caused by the density jump. The dependences of the maximal magnetic field on the incident laser intensity and plasma density, which are studied by numerical simulations, are supported by our analytical calculations.

  11. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams

    SciTech Connect

    Zhang, Ting; Xu, Jian-yi; Cheng, Ying Liu, Xiao-jun; Guo, Jian-zhong

    2015-03-16

    The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logic and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations.

  12. A 3 × 3 silicon drift chamber array for application in an electronic collimator

    NASA Astrophysics Data System (ADS)

    Kuykens, H. J. P.; Audet, S. A.

    1988-12-01

    The mechanical collimator, used in combination with an Anger camera in nuclear-medical imaging studies, can be replaced with a radiation detector, which performs the function of electronic collimation. The two-detector system is based on the Compton scattering of incident gamma-photons. Although germanium is more efficient in the absorption of gamma-photons by the Compton process than silicon, silicon has advantages which cannot be overlooked when choosing a substrate material on which to fabricate the radiation detector to be used in the electronic collimator system. The semiconductor drift chamber (SDC) principle offers advantages in the construction of a two-dimensional radiation detector array. Simulations of the potential field within the detector array will be shown, as well as the design and processing sequence used in the fabrication of a 3 × 3 SDC array.

  13. Beam collimation and machine detector interface at the International Linear Collider

    SciTech Connect

    Mokhov, N.V.; Drozhdin, A.I.; Kostin, M.A.; /Fermilab

    2005-05-01

    Synchrotron radiation, beam-gas scattering and beam halo interactions with collimators and other components in the ILC beam delivery system (BDS) would create fluxes of muons and other secondaries which could exceed the tolerable levels at a detector by a few orders of magnitude. It is shown that with a multi-stage collimation system, magnetized iron spoilers which fill the tunnel and a set of masks in the detector, one can hopefully meet the design goals. Results of modeling with the STRUCT and MARS15 codes of beam loss and energy deposition effects are presented in this paper. We focus on the collimation system and mask performance optimization, short- and long-term survivability of the critical components (spoilers, absorbers and magnets), dynamic heat loads and radiation levels in magnets and other components, and machine-related backgrounds in collider detectors.

  14. Collimation of diode laser beams with a single holographic diffractive element

    NASA Astrophysics Data System (ADS)

    Miler, Miroslav; Koudela, Ivo; Aubrecht, Ivo

    1999-07-01

    Holographic diffractive optical elements collimating highly divergent, elliptical and astigmatic edge emitted diode laser beams are analyzed. Elements are recorded using only divergent beams with spherical wavefronts while off-axis astigmatism and coma of the holographic recording arrangement are compensated in a narrow beam approximation. Because of the very asymmetrical recording setup, significant blazing properties are present. Two types of the collimators are proposed: one for obliquely and the other for perpendicularly incident laser beam. Astigmatic properties of the output beams were measured in the reverse setup, i.e. when the collimated laser beams impinge on elements from their back side. Comparison of the advantages and drawbacks of both arrangements is presented.

  15. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Cheng, Ying; Guo, Jian-zhong; Xu, Jian-yi; Liu, Xiao-jun

    2015-03-01

    The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logic and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations.

  16. 503MHz repetition rate femtosecond Yb: fiber ring laser with an integrated WDM collimator.

    PubMed

    Wang, Aimin; Yang, Hongyu; Zhang, Zhigang

    2011-12-01

    We demonstrate 503MHz fundamental high repetition rate operation in a ring cavity passively mode-locked Yb:fiber laser incorporating a novel wavelength-division-multiplexing collimator and a piece of all-solid photonic bandgap fiber. The Yb doped fiber was directly fabricated as one fiber pigtail into the functional collimator, greatly shortening the cavity length and facilitating the splicing operation. A 5cm long photonic bandgap fiber with abnormal dispersion at the lasing wavelength (centered at 1030nm) decreases the net dispersion for shorter output pulses. The spectral bandwidth of the pulse was 34nm. The direct output pulse was measured to be 156fs and the dechirped pulse was about 76fs. With this innovative Yb:fiber pigtailed WDM collimator, the ring cavity laser has the potential to work at a repetition rate up to GHz. PMID:22273932

  17. Electron arc therapy: design, implementation and evaluation of a dynamic multi-vane collimator system.

    PubMed

    Leavitt, D D; Stewart, J R; Moeller, J H; Lee, W L; Takach, G A

    1989-11-01

    Innovative techniques in motion control technology have been applied to the design and implementation of a portable computer-controlled multi-vane collimator for use in electron arc therapy. The collimator, consisting of 18 independently controlled vanes, is inserted into the standard accessory mount assembly of a linear accelerator, in the same fashion as standard field shaping blocks. Power is supplied to the collimator vane motors via a self-contained battery system. The range of motion of the vanes, symmetrically mounted nine on each side, provides a variable aperture width projected to isocenter of 2 cm minimum to 8 cm maximum. The projected length of the aperture at isocenter is 38 cm. The transition time between vane positions is less than 1 second, corresponding to gantry movement of less than 1 degree. The movement of each of the 18 vanes is monitored and controlled by six individually addressed three axis processors that are shielded from the electron beam. A table of collimator vane positions versus gantry angle, as determined by dose optimization calculations, is stored in a data file. The desired collimator vane position corresponding to the current arc segment is conveyed from the control console to each vane controller via packets within a token passing network. Communication between the computer in the console area and the vane controllers is accomplished through encoded infra-red pulse transmission, eliminating the need for additional communication lines between the console and the accelerator. This dynamic collimator offers improved dose uniformity while simplifying the delivery of electron arc therapy. PMID:2808043

  18. Cardiac imaging using a four-segment slant-hole collimator

    SciTech Connect

    Bal, G.; DiBella, E.V.R.; Gullberg, G.T.; Zeng, G.L.

    2005-09-27

    The main objective of this paper is to evaluate four segmentslant-hole (FSSH) SPECT for cardiac imaging. FSSH is a slant-holecollimator that is divided into four segments and arranged such that thephotons from the volume of interest (VOI)are projected four times forevery location of the detector. These multiple projections help toimprove the sensitivity of the photons from the VOI by a factor4(cos(sigma))3, where is the slant angle of the collimator. Anotheradvantage of FSSH SPECT is a reduction in the total scan time, since agantry rotation of pi-2sigma is sufficient to satisfy Orlov's condition.That means, for a slant angle of 30 degrees, a gantry rotation of 120degrees is sufficient to satisfy Orlov's condition and obtain a completedataset. In this paper, we evaluate and compare the reconstructed imagesobtained using an FSSH collimator, for a gantry rotation of 180 degreesand 120 degrees, with those obtained from a parallel-hole (PH) SPECTsystem using a 180 degree acquisition. The reconstructed images from thethree imaging geometries were compared in terms of average image noise,contrast, and percentage error, for seven different clinical count levelsand for multiple noise realizations in each case. The increase insensitivity of the FSSH system was found to translate into a proportionaldecrease in statistical noise for voxels in the VOI of the reconstructedimages. Finally, a physical phantom study was performed using a prototypeFSSH collimator. Our findings show that FSSH collimators have thepotential of being the collimator of choice for cardiac SPECT imaging.Though we explore the potential of FSSH collimators for cardiac imagingin this paper, the concept can be extended for imaging other organs suchas the breasts, kidney, and brain.

  19. Evaluating Red Reflex and Surgeon Preference Between Nearly-Collimated and Focused Beam Microscope Illumination Systems

    PubMed Central

    Cionni, Robert J.; Pei, Ron; Dimalanta, Ramon; Lubeck, David

    2015-01-01

    Purpose To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. Methods This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Results Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. Conclusions The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. Translational Relevance This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery. PMID:26290778

  20. Gantry and isocenter displacements of a linear accelerator caused by an add-on micromultileaf collimator

    SciTech Connect

    Riis, Hans L.; Zimmermann, Sune J.; Hjelm-Hansen, Mogens

    2013-03-15

    Purpose: The delivery of high quality stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) treatments to the patient requires knowledge of the position of the isocenter to submillimeter accuracy. To meet the requirements the deviation between the radiation and mechanical isocenters must be less than 1 mm. The use of add-on micromultileaf collimators ({mu}MLCs) in SRS and SRT is an additional challenge to the anticipated high-level geometric and dosimetric accuracy of the treatment. The aim of this work was to quantify the gantry excursions during rotation with and without an add-on {mu}MLC attached to the gantry head. In addition, the shift in the position of the isocenter and its correlation to the kV beam center of the cone-beam CT system was included in the study. Methods: The quantification of the gantry rotational performance was done using a pointer supported by an in-house made rigid holder attached to the gantry head of the accelerator. The pointer positions were measured using a digital theodolite. To quantify the effect of an {mu}MLC of 50 kg, the measurements were repeated with the {mu}MLC attached to the gantry head. The displacement of the isocenter due to an add-on {mu}MLC of 50 kg was also investigated. In case of the pointer measurement the {mu}MLC was simulated by weights attached to the gantry head. A method of least squares was applied to determine the position and displacement of the mechanical isocenter. Additionally, the displacement of the radiation isocenter was measured using a ball-bearing phantom and the electronic portal image device system. These measurements were based on 8 MV photon beams irradiated onto the ball from the four cardinal angles and two opposed collimator angles. The measurements and analysis of the data were carried out automatically using software delivered by the manufacturer. Results: The displacement of the mechanical isocenter caused by a 50 kg heavy {mu}MLC was found to be (-0.01 {+-} 0.05, -0

  1. Monte Carlo design for a new neutron collimator at the ENEA Casaccia TRIGA reactor.

    PubMed

    Burgio, N; Rosa, R

    2004-10-01

    The TRIGA RC-1 1MW reactor operating at ENEA Casaccia Center is currently being developed as a second neutron imaging facility that shall be devoted to computed tomography as well as neutron tomography. In order to reduce the gamma-ray content in the neutron beam, the reactor tangential piercing channel was selected. A set of Monte Carlo simulation was used to design the neutron collimator, to determine the preliminary choice of the materials to be employed in the collimator design. PMID:15246415

  2. Radial period extraction method employing frequency measurement for quantitative collimation testing

    NASA Astrophysics Data System (ADS)

    Li, Sikun; Wang, Xiangzhao

    2016-01-01

    A radial period extraction method employing frequency measurement is proposed for quantitative collimation testing using spiral gratings. The radial period of the difference-frequency fringe is treated as a measure of the collimation condition. A frequency measurement technique based on wavelet transform and a statistical approach is presented to extract the radial period directly from the amplitude-transmittance spiral fringe. A basic constraint to set the parameters of the wavelet is introduced. Strict mathematical demonstration is given. The method outperforms methods employing phase measurement in terms of precision, stability and noise immune ability.

  3. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  4. Simulation of Hollow Electron Beam Collimation in the Fermilab Tevatron Collider

    SciTech Connect

    Morozov, I.A.; Stancari, G.; Valishev, A.; Shatilov, D.N.; /Novosibirsk, IYF

    2012-05-01

    The concept of augmenting the conventional collimation system of high-energy storage rings with a hollow electron beam was successfully demonstrated in experiments at the Tevatron. A reliable numerical model is required for understanding particle dynamics in the presence of a hollow beam collimator. Several models were developed to describe imperfections of the electron beam profile and alignment. The features of the imperfections are estimated from electron beam profile measurements. Numerical simulations of halo removal rates are compared with experimental data taken at the Tevatron.

  5. SU-C-9A-07: Fabrication and Calibration of a Novel High-Sensitivity Collimator for Brain SPECT Imaging

    SciTech Connect

    Park, M; Kijewski, M; Horky, L; Moore, S; Keijzers, M; Keijzers, R; Kalfin, L; Crough, J; Goswami, M

    2014-06-01

    Purpose: We have designed a novel collimator for brain SPECT imaging that yields greatly increased sensitivity near the center of the brain without loss of resolution. The collimator was manufactured and initial evaluation has been completed. Methods: The collimator was time-consuming and challenging to build. Because our desired hole pattern required substantial variations in hole angle, we designed two supporting plates to securely position about 34,000 hexagonal, slightly tapered, 75-mm long steel pins. The holes in the plates were modeled to yield the desired focal length, hole length and septal thickness. Molten lead was poured in between the plates, and all pins were removed after cooling. The sensitivity gain compared to a fan-beam collimator was measured using a point source placed along the central ray at several distances from the collimator face. Visual inspection of the holes was not possible as the collimator was sealed so it could be safely mounted on a SPECT system. Therefore, we prepared a 2D array of 768, ∼48μCi Tc-99m point sources, separated by 1.6 cm. The array was imaged for 10 minutes at 4 shifted locations to reduce sampling distance to 8 mm. Results: The sensitivity of the novel cone-beam collimator varied with distance from the detector face; it was higher than that of the fan-beam collimator by factors ranging from 3 to 176. Examination of the projections of the 4×768 point sources revealed that fewer than 2% of the holes were fully or partially blocked, which indicates that the intensive manual fabrication process was very successful. Conclusion: We have designed and manufactured a novel collimator for brain SPECT imaging. As expected, the sensitivity is much higher than that of a fan-beam collimator. Because of differences between the manufactured collimator and its design, reconstruction of the data will require a measured system function.

  6. Quality, quality, quality!

    NASA Astrophysics Data System (ADS)

    Aubrey, Charles A., II

    1994-03-01

    The manufacturing base is being revitalized by new manufacturing directions such as the new agile manufacturing and environmentally-conscious manufacturing. These processes hold promise for bringing high-impact technologies to quick commercial fruition, and more than ever before they incorporate quality principles in their development and operation. Because of their pivotal role in all of these aspects, the R&D institutions must maintain a firm grasp on solid quality fundamentals and new developments in the field.

  7. Characterization of a rotating slat collimator system dedicated to small animal imaging

    NASA Astrophysics Data System (ADS)

    Boisson, F.; Bekaert, V.; El Bitar, Z.; Wurtz, J.; Steibel, J.; Brasse, D.

    2011-03-01

    Some current investigations based on small animal models are dedicated to functional cerebral imaging. They represent a fundamental tool to understand the mechanisms involved in neurodegenerative diseases. In the radiopharmaceutical development approach, the main challenge is to measure the radioactivity distribution in the brain of a subject with good temporal and spatial resolutions. Classical SPECT systems mainly use parallel hole or pinhole collimators. In this paper we investigate the use of a rotating slat collimator system for small animal brain imaging. The proposed prototype consists of a 64-channel multi-anode photomultiplier tube (H8804, Hamamatsu Corp.) coupled to a YAP:Ce crystal highly segmented into 32 strips of 0.575 × 18.4 × 10 mm3. The parameters of the rotating slat collimator are optimized using GATE Monte Carlo simulations. The performance of the proposed prototype in terms of spatial resolution, detection efficiency and signal-to-noise ratio is compared to that obtained with a gamma camera equipped with a parallel hole collimator. Preliminary experimental results demonstrate that a spatial resolution of 1.54 mm can be achieved with a detection efficiency of 0.012% for a source located at 20 mm, corresponding to the position of the brain in the prototype field of view.

  8. Broadband zoom collimator for installation on a flight motion simulator at the KHILS facility

    NASA Astrophysics Data System (ADS)

    Arendt, James W.; Binduga, Gary E.

    2004-08-01

    A broadband, low-distortion, 2:1 zoom collimator has been designed for projection of infrared scenes in the spectral region of 3.0 to 12.0 micrometers. This collimator provides dynamic scenes for the Kinetic Kill Vehicle Hardware-in-the Loop Simulation (KHILS) facility for testing of missile seekers and other FLIRs. This system, the Target Simulator Optical System (TSOS) is similar to the WISP Optical System already installed at KHILS by Brashear LP, but is lightweighted to allow mounting onto the outside axis of a Flight Motion Simulator. This paper explains the general requirements of the projection collimator optics and describes the system design, assembly and test. The collimator projects dynamic scenes generated by two 1024 x 1024 or 512 x 512 arrays of resistive-emitter elements. The system is composed of four off-axis, powered mirrors, a beamcombiner, spectral filters and array windows. Three of the mirrors are moveable to accommodate changing the field-of-view. Distortion is less than 1.0% at any field position.

  9. New technology enables high precision multislit collimators for microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Requardt, H.; Brochard, T.; Berruyer, G.; Renier, M.; Laissue, J. A.; Bravin, A.

    2009-07-01

    During the past decade microbeam radiation therapy has evolved from preclinical studies to a stage in which clinical trials can be planned, using spatially fractionated, highly collimated and high intensity beams like those generated at the x-ray ID17 beamline of the European Synchrotron Radiation Facility. The production of such microbeams typically between 25 and 100 μm full width at half maximum (FWHM) values and 100-400 μm center-to-center (c-t-c) spacings requires a multislit collimator either with fixed or adjustable microbeam width. The mechanical regularity of such devices is the most important property required to produce an array of identical microbeams. That ensures treatment reproducibility and reliable use of Monte Carlo-based treatment planning systems. New high precision wire cutting techniques allow the fabrication of these collimators made of tungsten carbide. We present a variable slit width collimator as well as a single slit device with a fixed setting of 50 μm FWHM and 400 μm c-t-c, both able to cover irradiation fields of 50 mm width, deemed to meet clinical requirements. Important improvements have reduced the standard deviation of 5.5 μm to less than 1 μm for a nominal FWHM value of 25 μm. The specifications of both devices, the methods used to measure these characteristics, and the results are presented.

  10. Collimation and scattering of the AGN emission in the Sombrero galaxy

    NASA Astrophysics Data System (ADS)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2014-10-01

    We present an analysis of a data cube of the central region of M104, the Sombrero galaxy, obtained with the GMOS-IFU of the Gemini-South telescope, and report the discovery of collimation and scattering of the active galactic nucleus (AGN) emission in the circumnuclear region of this galaxy.

  11. TIR collimator designs based on point source and extended source methods

    NASA Astrophysics Data System (ADS)

    Talpur, T.; Herkommer, A.

    2015-09-01

    TIR collimator are essential illumination components demanding high efficiency, accuracy, and uniformity. Various illumination design methods have been developed for different design domains, including tailoring method, design via optimization, mapping and feedback method, and the simultaneous multiple surface (SMS) method. This paper summarizes and compares the performance of these methods along with the advantages and the limitations.

  12. Optomechanical design considerations in the development of the DDLT laser diode collimator

    NASA Technical Reports Server (NTRS)

    Kampe, Thomas U.; Johnson, Craig W.; Healy, Donald B.; Oschmann, Jacobus M.

    1989-01-01

    A laser diode collimator objective was developed in support of the Direct Detection Transceiver program. Close attention to optomechanical design issues including athermalization, alignment, selection of materials, mounting of elements, and hermetic sealing of the assembly was necessary to insure that the desired optical performance was maintained in space deployment.

  13. A new dual-collimation batch reactor for determination of ultraviolet inactivation rate constants for microorganisms in aqueous suspensions.

    PubMed

    Martin, Stephen B; Schauer, Elizabeth S; Blum, David H; Kremer, Paul A; Bahnfleth, William P; Freihaut, James D

    2016-09-01

    We developed, characterized, and tested a new dual-collimation aqueous UV reactor to improve the accuracy and consistency of aqueous k-value determinations. This new system is unique because it collimates UV energy from a single lamp in two opposite directions. The design provides two distinct advantages over traditional single-collimation systems: 1) real-time UV dose (fluence) determination; and 2) simple actinometric determination of a reactor factor that relates measured irradiance levels to actual irradiance levels experienced by the microbial suspension. This reactor factor replaces three of the four typical correction factors required for single-collimation reactors. Using this dual-collimation reactor, Bacillus subtilis spores demonstrated inactivation following the classic multi-hit model with k=0.1471cm(2)/mJ (with 95% confidence bounds of 0.1426 to 0.1516). PMID:27498232

  14. Image reconstruction algorithm for a spinning strip CZT SPECT camera with a parallel slat collimator and small pixels

    SciTech Connect

    Zeng, Gengsheng L.; Gagnon, Daniel

    2004-12-01

    This paper discusses the use of small pixels in a spinning CdZnTe single photon emission computed tomography (SPECT) camera that is mounted with a parallel slat collimator. In a conventional slat collimation configuration, there is a detector pixel between two adjacent collimator slats. In our design, the pixel size is halved. That is, there are two smaller pixels to replace a regular pixel between two adjacent slats while the collimator remains unchanged. It has an advantage over our older design that uses tilted slats. In order to acquire a complete data set the tilted-slat collimator must spin 360 deg. at each SPECT view while the proposed design requires only 180 deg. at each SPECT view. Computer simulations and phantom experiments have been carried out to investigate the performance of the small-pixel configuration. It is observed that this design has the potential to increase the spatial resolution of the detector while keeping photon counts the same.

  15. A double-focus collimator system for full PAT performance testing of inter-satellite laser communication terminals

    NASA Astrophysics Data System (ADS)

    Wang, Lijuan; Luan, Zhu; Sun, Jianfeng; Zhou, Yu; Liu, De'an; Liu, Liren

    2006-08-01

    A laser collimator is necessary for the testing and verification of the PAT performance of inter-satellite laser communication terminals. However, the terminals mostly have a large field of view for the acquisition and a high angular accuracy for the fine tracking needed to be examined. A single collimator has the conflict to reach at both a large field of view and a fine resolution. To compromise, a double-focus laser collimator is proposed. The collimator is mainly composed of a primary lens, a beam splitter, a secondary lens and some reflectors. The primary lens with a 9.9m focal length directly forms the long focal length arm of the collimator. The combination of the primary lens and the secondary lens has a new focal length of 1.3m and constructs the short focal length arm of the collimator. With two CMOS imaging sensors, the collimator can realize a 1.1mrad field of view with a <1μrad resolution in the focal plane of the long focal length arm and a 8.3mrad field of view with a 8.2μrad resolution in the focal plane of the short focal length arm. In combination with a coarse beam scanner (+/-15°) and a fine beam scanner (1mrad) to simulate the mutual angular movement between two satellites, the united system is capable to test the full PAT performance of inter-satellite laser communication terminals. The optical layouts of the collimator and two detecting units are illustrated. The optical design of the collimator is detailed. The mechanical design of the collimator is given.

  16. Radioguided occult lesion localization: better delineation of the injection site with a high-resolution collimator

    NASA Astrophysics Data System (ADS)

    Geissler, B.; De Freitas, D.; Cachin, F.; Mestas, D.; Lebouedec, G.; Maublant, J.

    2004-07-01

    Aim: Radioguided Occult Lesion Localization (ROLL) is a method for guiding the excision of occult breast lesions. A radiotracer is injected preoperatively in the tumor. The surgeon can locate the lesion with a gamma probe. It has been recommended that the tissue is resected where the activity falls rapidly. But this cut-off level can fluctuate depending on the user. The aim of this study was to compare the accuracy of two different types of collimation. Materials and methods: To simulate the detection of a radioactive "lesion", 0.2 ml of a solution of 99mTc labeled colloids (4 MBq) were deposited at 3 cm depth in a chunk of cow muscle. Detection was performed with a gamma probe (GammaSup, Clerad, F) equipped either with a regular or with an additional high-resolution collimator. The response curve was drawn moving laterally the probe on the chunk of cow by 5 mm steps. Edges of resection were determined with different cut-off levels (from 5 to 50% of maximum counts by 5% steps). Results: Without additional collimator, the mean distance between injection point and resection edge was 18 mm, standard deviation 7.8 mm with a range between 11 and 18 mm. With additional collimator, the mean distance decreased to 10 mm (-44%), standard deviation 4.2 mm (-46%) with a range between 6 and 10 mm. Conclusion: The results demonstrate that the additional collimator provides more precise and reproductive delineation of the injection site. It should be optimal for the ROLL technique.

  17. A novel compact three-dimensional laser-sintered collimator for neutron scattering

    NASA Astrophysics Data System (ADS)

    Ridley, Christopher J.; Manuel, Pascal; Khalyavin, Dmitry; Kirichek, Oleg; Kamenev, Konstantin V.

    2015-09-01

    Improvements in the available flux at neutron sources are making it increasingly feasible to obtain refineable neutron diffraction data from samples smaller than 1 mm3. The signal is typically too weak to introduce any further sample environment in the 30-50 mm diameter surrounding the sample (such as the walls of a pressure cell) due to the high ratio of background to sample signal, such that even longer count times fail to reveal reflections from the sample. Many neutron instruments incorporate collimators to reduce parasitic scattering from the instrument and from any surrounding material and larger pieces of sample environment, such as cryostats. However, conventional collimation is limited in the volume it can focus on due to difficulties in producing tightly spaced neutron-absorbing foils close to the sample and in integrating this into neutron instruments. Here we present the design of a novel compact 3D rapid-prototyped (or "printed") collimator which reduces these limitations and is shown to improve the ratio of signal to background, opening up the feasibility of using additional sample environment for neutron diffraction from small sample volumes. The compactness and ease of customisation of the design allows this concept to be integrated with existing sample environment and with designs that can be tailored to individual detector geometries without the need to alter the setup of the instrument. Results from online testing of a prototype collimator are presented. The proof of concept shows that there are many additional collimator designs which may be manufactured relatively inexpensively, with a broad range of customisation, and geometries otherwise impossible to manufacture by conventional techniques.

  18. A novel compact three-dimensional laser-sintered collimator for neutron scattering.

    PubMed

    Ridley, Christopher J; Manuel, Pascal; Khalyavin, Dmitry; Kirichek, Oleg; Kamenev, Konstantin V

    2015-09-01

    Improvements in the available flux at neutron sources are making it increasingly feasible to obtain refineable neutron diffraction data from samples smaller than 1 mm(3). The signal is typically too weak to introduce any further sample environment in the 30-50 mm diameter surrounding the sample (such as the walls of a pressure cell) due to the high ratio of background to sample signal, such that even longer count times fail to reveal reflections from the sample. Many neutron instruments incorporate collimators to reduce parasitic scattering from the instrument and from any surrounding material and larger pieces of sample environment, such as cryostats. However, conventional collimation is limited in the volume it can focus on due to difficulties in producing tightly spaced neutron-absorbing foils close to the sample and in integrating this into neutron instruments. Here we present the design of a novel compact 3D rapid-prototyped (or "printed") collimator which reduces these limitations and is shown to improve the ratio of signal to background, opening up the feasibility of using additional sample environment for neutron diffraction from small sample volumes. The compactness and ease of customisation of the design allows this concept to be integrated with existing sample environment and with designs that can be tailored to individual detector geometries without the need to alter the setup of the instrument. Results from online testing of a prototype collimator are presented. The proof of concept shows that there are many additional collimator designs which may be manufactured relatively inexpensively, with a broad range of customisation, and geometries otherwise impossible to manufacture by conventional techniques. PMID:26429487

  19. A novel compact three-dimensional laser-sintered collimator for neutron scattering

    SciTech Connect

    Ridley, Christopher J.; Manuel, Pascal; Khalyavin, Dmitry; Kirichek, Oleg; Kamenev, Konstantin V.

    2015-09-15

    Improvements in the available flux at neutron sources are making it increasingly feasible to obtain refineable neutron diffraction data from samples smaller than 1 mm{sup 3}. The signal is typically too weak to introduce any further sample environment in the 30–50 mm diameter surrounding the sample (such as the walls of a pressure cell) due to the high ratio of background to sample signal, such that even longer count times fail to reveal reflections from the sample. Many neutron instruments incorporate collimators to reduce parasitic scattering from the instrument and from any surrounding material and larger pieces of sample environment, such as cryostats. However, conventional collimation is limited in the volume it can focus on due to difficulties in producing tightly spaced neutron-absorbing foils close to the sample and in integrating this into neutron instruments. Here we present the design of a novel compact 3D rapid-prototyped (or “printed”) collimator which reduces these limitations and is shown to improve the ratio of signal to background, opening up the feasibility of using additional sample environment for neutron diffraction from small sample volumes. The compactness and ease of customisation of the design allows this concept to be integrated with existing sample environment and with designs that can be tailored to individual detector geometries without the need to alter the setup of the instrument. Results from online testing of a prototype collimator are presented. The proof of concept shows that there are many additional collimator designs which may be manufactured relatively inexpensively, with a broad range of customisation, and geometries otherwise impossible to manufacture by conventional techniques.

  20. Optimization of electron arc therapy doses by multi-vane collimator control

    SciTech Connect

    Leavitt, D.D.; Stewart, J.R.; Moeller, J.H.; Earley, L.

    1989-02-01

    Retrospective computer simulations, based on clinical treatment planning data available from over 50 patients treated by electron arc radiotherapy to the chestwall following mastectomy, show that a dramatic improvement in dose uniformity can, in many clinical situations, be achieved by dynamic shaping of the electron arc collimator, under computer control, as a function of gantry angle and distance superior or inferior to the central plane. The greatest improvement in dose uniformity is seen in calculational planes in which the patient contour has the greatest departure from a circular shape. Dosimetric studies demonstrate this improvement. Indicators for use of variable-width multi-vane electron arc collimators include the following: (1) Mechanical constraints of the therapy equipment may limit the placement of isocenter to an inadequate depth which causes large variation in the SSD around the arc; (2) Out of the central plane, the shape of the chest wall may change dramatically across the limits of the arc, creating large variations in the dose distribution; (3) Clinical definition of the treatment surface to include surgical scars or other at-risk volume may create an irregularly shaped treatment surface, thereby changing the fraction of the arc included in the treatment surface from one plane to the next. Electron arc collimator shape determines both the dose rate and the electron arc beam profile. Both the dose rate and the beam profile must be included in the integration of dose to a point within the arc. The dose to a point within the arc can be modified by as much as a factor of 1.5 to 2.0 by increasing the collimator width from 3 cm to 7 cm. A multi-vane collimator allows these changes to be made in each specific plane to compensate for changes in patient contour.

  1. The reduction of dose in paediatric panoramic radiography: the impact of collimator height and programme selection

    PubMed Central

    Safi, H; Maddison, S M

    2015-01-01

    Objectives: The aim of this work was to estimate the doses to radiosensitive organs in the head of a young child undergoing panoramic radiography and to establish the effectiveness of a short collimator in reducing dose. Methods: Thermoluminescent dosemeters were used in a paediatric head phantom to simulate an examination on a 5-year-old child. The panoramic system used was an Instrumentarium OP200 D (Instrumentarium Dental, Tuusula, Finland). The collimator height options were 110 and 140 mm. Organ doses were measured using exposure programmes intended for use with adult and child size heads. The performance of the automatic exposure control (AEC) system was also assessed. Results: The short collimator reduced the dose to the brain and the eyes by 57% and 41%, respectively. The dose to the submandibular and sublingual glands increased by 32% and 20%, respectively, when using a programme with a narrower focal trough intended for a small jaw. The effective dose measured with the short collimator and paediatric programme was 7.7 μSv. The dose to the lens of the eye was 17 μGy. When used, the AEC system produced some asymmetry in the dose distribution across the head. Conclusions: Panoramic systems when used to frequently image children should have programmes specifically designed for imaging small heads. There should be a shorter collimator available and programmes that deliver a reduced exposure time and allow reduction of tube current. Programme selection should also provide flexibility for focal trough size, shape and position to match the smaller head size. PMID:25352427

  2. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    DOE PAGESBeta

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.; Domning, Edward E.; Merthe, Daniel J.; Salmassi, Farhad; Smith, Brian V.

    2015-04-08

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows formore » precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ~10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry (e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape (e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength (in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ~0.05 eV, is described.« less

  3. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    PubMed Central

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.; Domning, Edward E.; Merthe, Daniel J.; Salmassi, Farhad; Smith, Brian V.

    2015-01-01

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows for precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ∼10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry (e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape (e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength (in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ∼0.05 eV, is described. PMID:25931083

  4. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2.

    PubMed

    Yashchuk, Valeriy V; Morrison, Gregory Y; Marcus, Matthew A; Domning, Edward E; Merthe, Daniel J; Salmassi, Farhad; Smith, Brian V

    2015-05-01

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4-17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows for precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ∼10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry (e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape (e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength (in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ∼0.05 eV, is described. PMID:25931083

  5. An integral quality monitoring system for real-time verification of intensity modulated radiation therapy

    SciTech Connect

    Islam, Mohammad K.; Norrlinger, Bernhard D.; Smale, Jason R.; Heaton, Robert K.; Galbraith, Duncan; Fan, Cary; Jaffray, David A.

    2009-12-15

    Purpose: To develop an independent and on-line beam monitoring system, which can validate the accuracy of segment-by-segment energy fluence delivery for each treatment field. The system is also intended to be utilized for pretreatment dosimetric quality assurance of intensity modulated radiation therapy (IMRT), on-line image-guided adaptive radiation therapy, and volumetric modulated arc therapy. Methods: The system, referred to as the integral quality monitor (IQM), utilizes an area integrating energy fluence monitoring sensor (AIMS) positioned between the final beam shaping device [i.e., multileaf collimator (MLC)] and the patient. The prototype AIMS consists of a novel spatially sensitive large area ionization chamber with a gradient along the direction of the MLC motion. The signal from the AIMS provides a simple output for each beam segment, which is compared in real time to the expected value. The prototype ionization chamber, with a physical area of 22x22 cm{sup 2}, has been constructed out of aluminum with the electrode separations varying linearly from 2 to 20 mm. A calculation method has been developed to predict AIMS signals based on an elementwise integration technique, which takes into account various predetermined factors, including the spatial response function of the chamber, MLC characteristics, beam transmission through the secondary jaws, and field size factors. The influence of the ionization chamber on the beam has been evaluated in terms of transmission, surface dose, beam profiles, and depth dose. The sensitivity of the system was tested by introducing small deviations in leaf positions. A small set of IMRT fields for prostate and head and neck plans was used to evaluate the system. The ionization chamber and the data acquisition software systems were interfaced to two different types of linear accelerators: Elekta Synergy and Varian iX. Results: For a 10x10 cm{sup 2} field, the chamber attenuates the beam intensity by 7% and 5% for 6 and 18

  6. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    NASA Astrophysics Data System (ADS)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.

    2015-02-01

    The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  7. Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals.

    PubMed

    Kim, Teun-Teun; Lee, Sun-Goo; Park, Hae Yong; Kim, Jae-Eun; Kee, Chul-Sik

    2010-03-15

    A two-dimensional photonic crystal asymmetric Mach-Zehnder filter (AMZF) based on the self-collimation effect is studied by numerical simulations and experimental measurements in microwave region. A self-collimated beam is effectively controlled by employing line-defect beam splitters and mirrors. The measured transmission spectra at the two output ports of the AMZF sinusoidally oscillate with the phase difference of pi in the self-collimation frequency range. Position of the transmission peaks and dips can be controlled by varying the size of the defect rod of perfect mirrors, and therefore this AMZF can be used as a tunable power filter. PMID:20389553

  8. Experimental study of magnetically confined hollow electron beams in the Tevatron as collimators for intense high-energy hadron beams

    SciTech Connect

    Stancari, G.; Annala, G.; Shiltsev, V.; Still, D.; Valishev, A.; Vorobiev, L.; /Fermilab

    2011-03-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable losses. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and tested at Fermilab for this purpose. It was installed in one of the Tevatron electron lenses in the summer of 2010. We present the results of the first experimental tests of the hollow-beam collimation concept on 980-GeV antiproton bunches in the Tevatron.

  9. Exposure reduction and image quality in orthodontic radiology: a review of the literature

    SciTech Connect

    Taylor, T.S.; Ackerman, R.J. Jr.; Hardman, P.K.

    1988-01-01

    This article summarizes the use of rare earth screen technology to achieve high-quality panoramic and cephalometric radiographs with sizable reductions in patient radiation dosage. Collimation, shielding, quality control, and darkroom procedures are reviewed to further reduce patient risk and improve image quality. 34 references.

  10. Guiding and collimating fast electron beam by the quasi-static electromagnetic field array

    SciTech Connect

    Wang, J.; Zhao, Z. Q.; He, W. H.; Dong, K. G.; Wu, Y. C.; Zhu, B.; Zhang, T. K.; Zhang, B.; Zhang, Z. M.; Gu, Y. Q.; Cao, L. H.

    2014-10-15

    A guidance and collimation scheme for fast electron beam in a traverse periodic quasi-static electromagnetic field array is proposed with the semi-analytic method and the particle-in-cell simulation. The sheath electric fields on the surfaces of nanowires and the magnetic fields around the nanowires form a traverse periodic quasi-static electromagnetic field array. Therefore, most of the fast electrons are confined at the nanowire surfaces and transport forward. More importantly, due to the divergent property of the beams, the magnitudes of the generated fields decrease with the target depth. The lateral momenta of the electrons convert into the forward momenta through Lorenz force, and they cannot recover their initial values. Therefore, the fast electrons can be guided and collimated efficiently in the gaps between the nanowires. In our particle-in-cell simulations, the observed guiding efficiency exceeds 80% compared with the reference target.

  11. A Collimated Retarding Potential Analyzer for the Study of Magnetoplasma Rocket Plumes

    NASA Technical Reports Server (NTRS)

    Glover, T. W.; Chan, A. A.; Chang-Diaz, F. R.; Kittrell, C.

    2003-01-01

    A gridded retarding potential analyzer (RPA) has been developed to characterize the magnetized plasma exhaust of the 10 kW Variable Specific Impulse Magnetoplasma Rocket (VX-10) experiment at NASA's Advanced Space Propulsion Laboratory. In this system, plasma is energized through coupling of radio frequency waves at the ion cyclotron resonance (ICR). The particles are subsequently accelerated in a magnetic nozzle to provide thrust. Downstream of the nozzle, the RPA's mounting assembly enables the detector to make complete axial and radial scans of the plasma. A multichannel collimator can be inserted into the RPA to remove ions with pitch angles greater than approximately 1 deg. A calculation of the general collimator transmission as a function over velocity space is presented, which shows the instrument's sensitivity in detecting changes in both the parallel and perpendicular components of the ion energy. Data from initial VX-10 ICRH experiments show evidence of ion heating.

  12. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    SciTech Connect

    C.L. Ellison and J. Fuchs

    2010-09-23

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  13. Micro-Slit Collimators for X-Ray/Gamma-Ray Imaging

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Fraser, Iain; Klinger, Jill

    2011-01-01

    A hybrid photochemical-machining process is coupled with precision stack lamination to allow for the fabrication of multiple ultra-high-resolution grids on a single array substrate. In addition, special fixturing and etching techniques have been developed that allow higher-resolution multi-grid collimators to be fabricated. Building on past work of developing a manufacturing technique for fabricating multi-grid, high-resolution coating modulation collimators for arcsecond and subarcsecond x-ray and gamma-ray imaging, the current work reduces the grid pitch by almost a factor of two, down to 22 microns. Additionally, a process was developed for reducing thin, high-Z (tungsten or molybdenum) from the thinnest commercially available foil (25 microns thick) down to approximately equal to 10 microns thick using precisely controlled chemical etching

  14. Collimated proton acceleration in light sail regime with a tailored pinhole target

    SciTech Connect

    Wang, H. Y.; Zepf, M.; Yan, X. Q.

    2014-06-15

    A scheme for producing collimated protons from laser interactions with a diamond-like-carbon + pinhole target is proposed. The process is based on radiation pressure acceleration in the multi-species light-sail regime [B. Qiao et al., Phys. Rev. Lett. 105, 155002 (2010); T. P. Yu et al., Phys. Rev. Lett. 105, 065002 (2010)]. Particle-in-cell simulations demonstrate that transverse quasistatic electric field at TV/m level can be generated in the pinhole. The transverse electric field suppresses the transverse expansion of protons effectively, resulting in a higher density and more collimated proton beam compared with a single foil target. The dependence of the proton beam divergence on the parameters of the pinhole is also investigated.

  15. The New Transfer Line Collimation System for the LHC High Luminosity Era