Science.gov

Sample records for multilevel metallization interconnection

  1. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1989-03-21

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration. 6 figs.

  2. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  3. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1989-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  4. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-08-23

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  5. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-06-24

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  6. Planarization of metal films for multilevel interconnects by pulsed laser heating

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  7. Development and characterization of multilevel metal interconnection etch process

    NASA Astrophysics Data System (ADS)

    Dang, Kim

    1997-08-01

    A more robust chlorine chemistry based reactive ion etch (RIE) process was developed, characterized and optimized to anisotropically etch the interconnecting metal layers for use in the fabrication of CMOS and BiCMOS IC devices, using the Lam 4600 single wafer etcher. The titanium nitride and titanium silicide buried layer, used in the metal 1 structure, present unique constraints on etch selectivity to the underlying film. The process must clear metal stringers with minimal lateral etching of the aluminum during the tiN/Ti etch and overetch steps. The new optimized process meets all requirements imposed by advanced technologies, such as vertical metal sidewalls, wide process latitude, tight CD control, minimal of TEOS oxide underlayer, less sensitivity to photoresist pattern, excellent reliability and reproducibility, and lower level of polymer (reaction by- product) build-up in reactor chamber which could lead to metal corrosion and cluster defects.

  8. A novel multi-level interconnect scheme with air as low K inter-metal dielectric for ultradeep submicron application

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Hui; Fang, Yean-Kuen; Lin, Chun-Sheng; Yang, Chih-Wei; Hsieh, Jang-Cheng

    2001-01-01

    In this letter, a novel multi-level interconnect scheme with air as the low K inter-metal dielectric for ultra large scale integrated circuit (ULSI) application in ultradeep submicron (UDSM) range is proposed. The detailed process integration with copper dual damascene processing is described. The feasibility of the scheme is examined by trimethylaluminum Raphael simulation for the effective dielectric constant and the cutoff frequency in a standard divide by three counter. The simulation results are also compared with these reported air gap formation technologies. The results show the developed multi-level interconnect system is suitable for UDSM application.

  9. The MSFC complementary metal oxide semiconductor (including multilevel interconnect metallization) process handbook

    NASA Technical Reports Server (NTRS)

    Bouldin, D. L.; Eastes, R. W.; Feltner, W. R.; Hollis, B. R.; Routh, D. E.

    1979-01-01

    The fabrication techniques for creation of complementary metal oxide semiconductor integrated circuits at George C. Marshall Space Flight Center are described. Examples of C-MOS integrated circuits manufactured at MSFC are presented with functional descriptions of each. Typical electrical characteristics of both p-channel metal oxide semiconductor and n-channel metal oxide semiconductor discrete devices under given conditions are provided. Procedures design, mask making, packaging, and testing are included.

  10. Multilevel metallization method for fabricating a metal oxide semiconductor device

    NASA Technical Reports Server (NTRS)

    Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)

    1978-01-01

    An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.

  11. Copper metallization for on-chip interconnects

    NASA Astrophysics Data System (ADS)

    Gelatos, A. V.; Nguyen, Bich-Yen; Perry, Kathleen A.; Marsh, R.; Peschke, J.; Filipiak, Stanley M.; Travis, Edward O.; Thompson, Matthew A.; Saaranen, T.; Tobin, Phil J.; Mogab, C. J.

    1996-09-01

    interconnects and multilevel metal structures with reliability significantly better than that of aluminum. This article describes our efforts to integrate copper in the backend of integrated circuits. The first part deals with the chemical vapor deposition (CVD) of copper films. The second describes the integration of copper into the last metal level of a 2-level metal 0.5um BiCMOS SRAM circuit.

  12. Durability of Metallic Interconnects and Protective Coatings

    SciTech Connect

    Yang, Zhenguo; Stevenson, Jeffry W.

    2009-12-15

    To build up a useful voltage, a number of solid oxide fuel cells (SOFCs) are electrically connected into series in a stack via interconnects, which are placed between adjacent cells. In addition to functioning as a bi-polar electrical connector, the interconnect also acts as a separator plate that separates the fuel at the anode side of one cell from the air at the cathode side on an adjacent cell. During SOFC operation at the high temperatures, the interconnects are thus simultaneously exposed to the oxidizing air at one side and a reducing fuel that can be either hydrogen or hydrocarbon at the other. Besides, they are in contact with adjacent components, such as electrodes or electrical contacts, seals, etc. With steady reduction in SOFC operating temperatures into the low or intermediate range 600-850oC, oxidation resistant alloys are often used to construct interconnects. However, the metallic interconnects may degrade via interactions at their interfaces with surrounding environments or adjacent components, potentially affecting the stability and performance of interconnects and the SOFC stacks. Thus protection layers are applied to metallic interconnects that also intend to mitigate or prevent chromium migration into cells and the cell poisoning. This chapter provides a comprehensive review of materials for metallic interconnects, their degradation and coating protection.

  13. Laser printing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  14. Recent Development of SOFC Metallic Interconnect

    SciTech Connect

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  15. Metallic Nanowire Interconnections for Integrated Circuit Fabrication

    NASA Technical Reports Server (NTRS)

    Ng, Hou Tee (Inventor); Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    A method for fabricating an electrical interconnect between two or more electrical components. A conductive layer is provided on a substarte and a thin, patterned catalyst array is deposited on an exposed surface of the conductive layer. A gas or vapor of a metallic precursor of a metal nanowire (MeNW) is provided around the catalyst array, and MeNWs grow between the conductive layer and the catalyst array. The catalyst array and a portion of each of the MeNWs are removed to provide exposed ends of the MeNWs.

  16. The metal interconnected cascade solar cell

    SciTech Connect

    LaRue, R.A.; Borden, P.G.; Dietze, W.T.; Gregory, P.E.; Ludowise, M.J.

    1982-09-01

    A cascade cell employing a new type of interconnect is described. It uses a groove etch and metallization process to connect the base of the top cell to the emitter of the bottom cell. The best cell yielded 21.3% efficiency under conditions of AM3, 130 suns, 50/sup 0/C, with the result not corrected for grid coverage. Other features include a 1.2-micron thick 1.82-eV ALGaAs top cell with a BSF under the base and an n/p heteroface GaAs bottom cell that is stable during top cell growth.

  17. Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber

    NASA Technical Reports Server (NTRS)

    Routh, D. E.; Sharma, G. C. (Inventor)

    1982-01-01

    The processing of wafer devices to form multilevel interconnects for microelectronic circuits is described. The method is directed to performing the sequential steps of etching the via, removing the photo resist pattern, back sputtering the entire wafer surface and depositing the next layer of interconnect material under common vacuum conditions without exposure to atmospheric conditions. Apparatus for performing the method includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a DC magnetron sputtering system. A gas inlet is provided in the chamber for the introduction of various gases to the vacuum chamber and the creation of various gas plasma during the sputtering steps.

  18. Clad metals, roll bonding and their applications for SOFC interconnects

    NASA Astrophysics Data System (ADS)

    Chen, Lichun; Yang, Zhenguo; Jha, Bijendra; Xia, Guanguang; Stevenson, Jeffry W.

    Metallic interconnects have been becoming an increasingly interesting topic in the development in intermediate temperature solid oxide fuel cells (SOFC). High temperature oxidation resistant alloys are currently considered as candidate materials. Among these alloys however, different groups of alloys demonstrate different advantages and disadvantages, and few if any can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, clad metal has been proposed for SOFC interconnect applications and interconnect structures. This paper gives a brief overview of the cladding approach and its applications, and discuss the viability of this technology to fabricate the metallic layered-structure interconnects. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated.

  19. Clad metals by roll bonding for SOFC interconnects

    SciTech Connect

    Chen, L.; Jha, B; Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.; Singh, Prabhakar

    2006-08-01

    Metallic interconnects have been becoming an increasingly interesting topic in the development in intermediate temperature solid oxide fuel cells (SOFC). High temperature oxidation resistant alloys are currently considered as candidate materials. Among these alloys however, different groups of alloys demonstrate different advantages and disadvantages, and few if any can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, clad metal has been proposed for SOFC interconnect applications and interconnect structures. This paper gives a brief overview of the cladding approach and its applications, and discuss the viability of this technology to fabricate the metallic layered-structure interconnects. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated.

  20. Clad Metals, Roll Bonding and their Applications for SOFC Interconnects

    SciTech Connect

    Chen, L.; Yang, Zhenguo; Jha, B.; Xia, Guanguang; Stevenson, Jeffry W.

    2005-12-01

    High temperature oxidation resistant alloys are currently considered as candidate materials for construction of interconnects in intermediate temperature SOFCs. Among these alloys however, different groups of alloys demonstrate different advantages and disadvantages for the interconnect applications, and few if any can completely satisfied the stringent requirements for the applications. To integrate the advantages and avoid the disadvantages of different groups of alloys, cladding has been proposed as the approach to fabricate metallic layered interconnect structures. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL453 were selected as examples and manufactured into a clad metal. It’s suitability as interconnect construction materials were investigated. This paper will give a brief overview of the cladding approach and discuss the viability of this technology to fabricate the metallic layered-structure interconnects.

  1. Clad metals by roll bonding for SOFC interconnects

    NASA Astrophysics Data System (ADS)

    Chen, L.; Jha, B.; Yang, Zhenguo; Xia, Guang-Guang; Stevenson, Jeffry W.; Singh, Prabhakar

    2006-08-01

    High-temperature oxidation-resistant alloys are currently considered as a candidate material for construction of interconnects in intermediate-temperature solid oxide fuel cells. Among these alloys, however, different groups of alloys demonstrate different advantages and disadvantages, and few, if any, can completely satisfy the stringent requirements for the application. To integrate the advantages and avoid the disadvantages of different groups of alloys, cladding has been proposed as one approach in fabricating metallic layered interconnect structures. To examine the feasibility of this approach, the austenitic Ni-base alloy Haynes 230 and the ferritic stainless steel AL 453 were selected as examples and manufactured into a clad metal. Its suitability as an interconnect construction material was investigated. This paper provides a brief overview of the cladding approach and discusses the viability of this technology to fabricate the metallic layered-structure interconnects.

  2. Metal complex modified azo polymers for multilevel organic memories

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Chen, Hong-Xia; Zhou, Feng; Li, Hua; Dong, Huilong; Li, You-Yong; Hu, Zhi-Jun; Xu, Qing-Feng; Lu, Jian-Mei

    2015-04-01

    Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage.Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00871a

  3. Ultralight Interconnected Metal Oxide Nanotube Networks.

    PubMed

    Stano, Kelly L; Faraji, Shaghayegh; Hodges, Ryan; Yildiz, Ozkan; Wells, Brian; Akyildiz, Halil I; Zhao, Junjie; Jur, Jesse; Bradford, Philip D

    2016-05-01

    Record-breaking ultralow density aluminum oxide structures are prepared using a novel templating technique. The alumina structures are unique in that they are comprised by highly aligned and interconnected nanotubes yielding anisotropic behavior. Large-scale network structures with complex form-factors can easily be made using this technique. The application of the low density networks as humidity sensing materials as well as thermal insulation is demonstrated. PMID:26969860

  4. Maskless laser writing of microscopic metallic interconnects

    DOEpatents

    Maya, L.

    1995-10-17

    A method of forming a metal pattern on a substrate is disclosed. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern. 4 figs.

  5. Maskless laser writing of microscopic metallic interconnects

    DOEpatents

    Maya, Leon

    1995-01-01

    A method of forming a metal pattern on a substrate. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern.

  6. Scaling of Metal Interconnects: Challenges to Functionality and Reliability

    SciTech Connect

    Engelhardt, M.; Schindler, G.; Traving, M.; Stich, A.; Gabric, Z.; Pamler, W.; Hoenlein, W.

    2006-02-07

    Copper-based nano interconnects featuring CDs well beyond today's chip generations and air gap structures were fabricated and subjected to electrical characterization and tests to get already today insight on functionality and reliability aspects of metallization schemes in future semiconductor products. Size effects observed already in today's advanced products will definitely limit the resistivity in future interconnects. Copper diffusion barrier layers were scaled down to the 1nm regime of thicknesses without observable degradation effects regarding adhesion properties and functionality. Interconnect reliability was found to decrease with decreasing barrier thickness. Worst results regarding adhesion properties and interconnect reliability were obtained for vanishing barrier thickness which promotes unrestricted mass flow of copper along the interconnect line. Air gaps were developed and characterized as an alternative approach to porous ultra low-k materials. They allowed the realization of effective k-values of the insulation of 2.4, which meet requirements of chip generations far in the future, while avoiding the integration issues associated with these soft materials. First reliability results obtained with air gaps are comparable with those obtained on full structures. Whereas leakage current behavior with electrical field strength expected to be present between neighboring lines in chip generations during the next 10 years were similar for air gaps and oxide, interconnects insulated by air gaps displayed lower breakdown fields than those insulated by oxide.

  7. Corrosion of Metallic SOFC Interconnects in Coal Syngas

    SciTech Connect

    Dastane, R.R.; Liu, X.; Johnson, C., Mao, Scott

    2007-09-01

    With recent reductions in the operating temperature of Solid Oxide Fuel Cells (SOFC), the potential of using metallic interconnect has gone up. There is also an interest in using Coal syngas as the fuel gas and thus there is a need to analyze the behavior and performance of metallic interconnects when exposed to Coal syngas. Three high temperature material alloys, Crofer 22 APU, Ebrite and Haynes 230, having the potential to be used as SOFC interconnects were studied in simulated wet coal syngas. These alloys were exposed to syngas at 800 degrees C and for 100 hours. The exposure to coal syngas led to the formation of oxides and spinels, which evidently led to an increase in electrical resistance. Oxidation in a reducing and carburizing environment leads to unique phase and morphology formations. A comparative analysis was carried out for all the three alloys, wherein the samples were characterized by using SEM, EDS, Raman and X-Ray diffraction to obtain the morphology, thickness, composition and crystal structure of the oxides and spinels

  8. Interconnected hollow carbon nanospheres for stable lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng; Lee, Hyun-Wook; Yan, Kai; Yao, Hongbin; Wang, Haotian; Li, Weiyang; Chu, Steven; Cui, Yi

    2014-08-01

    For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g-1) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm-2. The Coulombic efficiency improves to ˜99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes.

  9. Interconnected hollow carbon nanospheres for stable lithium metal anodes.

    PubMed

    Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng; Lee, Hyun-Wook; Yan, Kai; Yao, Hongbin; Wang, Haotian; Li, Weiyang; Chu, Steven; Cui, Yi

    2014-08-01

    For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g(-1)) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm(-2). The Coulombic efficiency improves to ∼ 99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes. PMID:25064396

  10. A metallic interconnect for a solid oxide fuel cell stack

    NASA Astrophysics Data System (ADS)

    England, Diane Mildred

    A solid oxide fuel cell (SOFC) electrochemically converts the chemical energy of reaction into electrical energy. The commercial success of planar, SOFC stack technology has a number of challenges, one of which is the interconnect that electrically and physically connects the cathode of one cell to the anode of an adjacent cell in the SOFC stack and in addition, separates the anodic and cathodic gases. An SOFC stack operating at intermediate temperatures, between 600°C and 800°C, can utilize a metallic alloy as an interconnect material. Since the interconnect of an SOFC stack must operate in both air and fuel environments, the oxidation kinetics, adherence and electronic resistance of the oxide scales formed on commercial alloys were investigated in air and wet hydrogen under thermal cycling conditions to 800°C. The alloy, Haynes 230, exhibited the slowest oxidation kinetics and the lowest area-specific resistance as a function of oxidation time of all the alloys in air at 800°C. However, the area-specific resistance of the oxide scale formed on Haynes 230 in wet hydrogen was unacceptably high after only 500 hours of oxidation, which was attributed to the high resistivity of Cr2O3 in a reducing atmosphere. A study of the electrical conductivity of the minor phase manganese chromite, MnXCr3-XO4, in the oxide scale of Haynes 230, revealed that a composition closer to Mn2CrO4 had significantly higher electrical conductivity than that closer to MnCr 2O4. Haynes 230 was coated with Mn to form a phase closer to the Mn2CrO4 composition for application on the fuel side of the interconnect. U.S. Patent No. 6,054,231 is pending. Although coating a metallic alloy is inexpensive, the stringent economic requirements of SOFC stack technology required an alloy without coating for production applications. As no commercially available alloy, among the 41 alloys investigated, performed to the specifications required, a new alloy was created and designated DME-A2. The oxide scale

  11. Design methodology of focusing elements for multilevel planar optical systems in optical interconnects

    NASA Astrophysics Data System (ADS)

    Al Hafiz, Md. Abdullah; MacKenzie, Mark R.; Kwok, Chee-Yee

    2009-12-01

    We present a simple technique to determine the design parameters of an optical interconnect system that uses integral planar lenses. The technique is based on the ABCD transformation matrix method. This analysis technique is significantly simpler and more efficient than the previously published methods for finding the design parameters and predicting the coupling efficiency of the system. The proposed method is applied to compute the coupling efficiency of single- and two-level optical systems.

  12. Fabrication and characterization of metal-to-metal interconnect structures for 3-D integration

    NASA Astrophysics Data System (ADS)

    Huffman, Alan; Lannon, John; Lueck, Matthew; Gregory, Christopher; Temple, Dorota

    2009-03-01

    The use of collapsible (solder) bump interconnects in pixel detector hybridization has been shown to be very successful. However, as pixel sizes decrease, the use of non-collapsible metal-to-metal bump bonding methods is needed to push the interconnect dimensions smaller. Furthermore, these interconnects are compatible with 3D intgration technologies which are being considered to increase overall pixel and system performance. These metal-to-metal bonding structures provide robust mechanical and electrical connections and allow for a dramatic increase in pixel density. Of particular interest are Cu-Cu thermocompression bonding and Cu/Sn-Cu solid-liquid diffusion bonding processes. Working with Fermilab, RTI undertook a demonstration to show that these bump structures could be reliably used to interconnect devices designed with 20 micron I/O pitch. Cu and Cu/Sn bump fabrication processes were developed to provide a well-controlled surface topography necessary for the formation of low resistance, high yielding, and reliable interconnects. The electrical resistance and yield has been quantified based on electrical measurements of daisy chain test structures and the mechanical strength of the bonding has been quantified through die shear testing. The reliability has been characterized through studies of the impact of thermal exposure on the mechanical performance of the bonds. Cross-section SEM analysis, coupled with high resolution energy dispersive spectroscopy, has provided insight into the physical and chemical nature of the bonding interfaces and aided in the evaluation of the long-term stability of the bonds.

  13. ELECTRICAL CONTACTS BETWEEN CATHODES AND METALLIC INTERCONNECTS IN SOLID OXIDE FUEL CELLS

    SciTech Connect

    Yang, Zhenguo; Xia, Guanguang; Stevenson, Jeffry W.

    2005-11-28

    To minimize electrical resistance and maximize power output, contact layers are often applied between interconnects and electrodes during construction of a SOFC stack. In this work, simulated cathode/interconnect structures were used to investigate the effects of different contact materials on the contact resistance between a LSF cathode and a Crofer22 APU interconnect. The results from the resistance measurements are reported and correlated to interfacial interactions occurring between the metallic interconnect and the contact materials, particularly perovskites. The materials requirements for the contact layers between cathodes and metallic interconnects in intermediate temperature SOFCs are also discussed.

  14. Fabrication of Ultralow Density Interconnected Pure Metal Foams

    NASA Astrophysics Data System (ADS)

    Burks, Edward C.; Gilbert, Dustin A.; Liu, Kai; Kucheyev, Sergei O.; Colvin, Jeffrey D.; Felter, Thomas E.

    Ultra-low density metallic nanostructures have been shown to possess interesting thermal, electrical, magnetic, chemical and mechanical properties due to their extremely high surface areas, nanoscale geometries and high porosities. Here we report the synthesis of pure metal foams using interconnected metallic nanowires with densities as low as 0.1% of their bulk density that are still mechanically stable. The highly porous monoliths are macroscopic in size (several mm) and can be created in a wide variety of shapes for application-specific needs. Preliminary studies of such metal foams have already revealed fascinating mechanical and magnetic properties, since the physical dimensions of the foams are below some of the basic length scales that govern the material properties. These foams have been used as targets for ultrabright x-ray sources. They also have a wide variety of other potential applications such as photovoltaic devices, supercapacitors, catalysts, coatings, fuel cells, etc. This work has been supported by DTRA #BRCALL08-Per3-C-2-0006, and in part by NSF DMR-1008791 and DMR-1543582. Work at LLNL was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  15. Dual-environment effects on the oxidation of metallic interconnects

    SciTech Connect

    Holcomb, G.R.; Ziomek-Moroz, M.; Covino, B.S., Jr.; Bullard, S.J.

    2006-08-01

    Metallic interconnects in solid oxide fuel cells are exposed to a dual environment: fuel on one side (i.e., H2 gas) and oxidizer on the other side (i.e., air). It has been observed that the oxidation behavior of thin stainless steel sheet in air is changed by the presence of H2 on the other side of the sheet. The resulting dual-environment scales are flaky and more friable than the single-environment scales. The H2 disrupts the scale on the air side. A model to explain some of the effects of a dual environment is presented where hydrogen diffusing through the stainless steel sheet reacts with oxygen diffusing through the scale to form water vapor, which has sufficient vapor pressure to mechanically disrupt the scale. Experiments on preoxidized 316L stainless steel tubing exposed to air-air, H2-air, and H2-Ar environments are reported in support of the model.

  16. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography.

    PubMed

    Khan, Muhammad Umar; Justice, John; Petäjä, Jarno; Korhonen, Tia; Boersma, Arjen; Wiegersma, Sjoukje; Karppinen, Mikko; Corbett, Brian

    2015-06-01

    Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index contrast between core and cladding of fabricated devices. 1x2 splitting devices based on directional couplers and multimode interference interferometers are demonstrated to have less than 0.45 dB insertion loss with 0.02 ± 0.01 dB power imbalance between the outputs. We demonstrate an 'optical via' with an insertion loss less than 0.45 dB to transfer light from one optical signal plane to another. A 1x4 two-dimensional optical port is experimentally demonstrated to spatially split the input power with an insertion loss of 1.2 dB. PMID:26072823

  17. Modification of low dielectric constant materials for ULSI multilevel interconnection by ion implantation

    NASA Astrophysics Data System (ADS)

    Roy, Alok Nandini Usha

    As integrated circuit (IC) dimensions continue to decrease, RC delay, cross-talk noise, and power dissipation of the interconnect structure become limiting factors for ultra-large-scale integration of integrated circuits. Low dielectric constant materials are being introduced and developed to replace silicon dioxide as inter level dielectrics into current interconnect technologies to meet RC delay goals and minimize cross-talk. These low kappa films generally have dielectric constants less than 3 (vs. 4 for silicon dioxide) and very poor mechanical strength. The elastic modulus (E) of the low kappa film is typically less than 10Gpa, compared with 70Gpa for SiO2. The poor mechanical strength of the low kappa dielectric films increases the risk of thermo-mechanical failures within the Cu/low kappa interconnect structure; e.g. thin film delamination and cracking. Maintaining the mechanical integrity of the low kappa films with the stresses of fab processing, packaging and reliability testing has proven challenging. Therefore, surface hardening is necessary to withstand processing (e.g. CMP). This research work will address the methods to enhance the mechanical strength of low dielectric films. Results of two classes of material (i.e. Xerogel (porous) and methyl silsesquioxane (MSQ (organic)) are discussed. Thin films of Ultra-Low kappa materials such as Xerogel (kappa = 1.76) and porous MSQ (kappa = 2.2) were implanted with argon, neon, nitrogen, carbon and helium with 2 x 1015 cm-2 and 1 x 1016 cm-2 dose at energies varying from 20 to 150 keV at room temperature. In this work we showed that the surface hardness of the porous films can be improved five times as compared to the as-deposited porous films by implanting Ar with 1 x 10 16 cm-2 doses at 50 keV, sacrificing only a slight increase (˜15%) in dielectric constant (e.g., from 1.76 to 2.0). The hardness persists after 450°C annealing. The ion implantation process suppressed the moisture uptake in the porous low

  18. Tight Interconnection and Multi-Level Control of Arabidopsis MYB44 in MAPK Cascade Signalling

    PubMed Central

    2013-01-01

    Abiotic stress poses a huge, ever-increasing problem to plants and agriculture. The dissection of signalling pathways mediating stress tolerance is a prerequisite to develop more resistant plant species. Mitogen-activated protein kinase (MAPK) cascades are universal signalling modules. In Arabidopsis, the MAPK MPK3 and its upstream regulator MAPK kinase MKK4 initiate the adaptation response to numerous abiotic and biotic stresses. Yet, molecular steps directly linked with MKK4 – MPK3 activation are largely unknown. Starting with a yeast-two-hybrid screen for interacting partners of MKK4, we identified a transcription factor, MYB44. MYB44 is controlled at multiple levels by and strongly inter-connected with MAPK signalling. As we had shown earlier, stress-induced expression of the MYB44 gene is regulated by a MPK3-targeted bZIP transcription factor VIP1. At the protein level, MYB44 interacts with MPK3 in vivo. MYB44 is phosphorylated by MPK3 in vitro at a single residue, Ser145. Although replacement of Ser145 by a non-phosphorylatable (S145A) or phosphomimetic (S145D) residue did not alter MYB44 subcellular localisation, dimerization behaviour nor DNA-binding characteristics, abiotic stress tolerance tests in stable transgenic Arabidopsis plants clearly related S145 phosphorylation to MYB44 function: Compared to Arabidopsis wild type plants, MYB44 overexpressing lines exhibit an enhanced tolerance to osmotic stress and are slightly more sensitive to abscisic acid. Interestingly, overexpression of the S145A variant revealed that impaired phosphorylation does not render the MYB44 protein non-functional. Instead, S145A lines are highly sensitive to abiotic stress, and thereby remarkably similar to mpk3-deficient plants. Its in vivo interaction with the nuclear sub-pools of both MPK3 and MKK4 renders MYB44 the first plant transcription factor to have a second function as putative MAPK cascade scaffolding protein. PMID:23437396

  19. Laser nanolithography and chemical metalization for the manufacturing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Jonavičius, Tomas; RekštytÄ--, Sima; Žukauskas, Albertas; Malinauskas, Mangirdas

    2014-03-01

    We present a developed method based on direct laser writing (DLW) and chemical metallization (CM) for microfabrication of three-dimensional (3D) metallic structures. Such approach enables manufacturing of free­-form electro conductive interconnects which can be used in integrated electric circuits such micro-opto-electro mechanical systems (MOEMS). The proposed technique employing ultrafast high repetition rate laser enables efficient fabrication of 3D microstructures on dielectric as well as conductive substrates. The produced polymer links out of organic-inorganic composite matrix after CM serve as interconnects of separate metallic contacts, their dimensions are: height 15μm, width 5μm, length 35-45 μm and could provide 300 nΩm resistivity measured in a macroscopic way. This proves the techniques potential for creating integrated 3D electric circuits at microscale.

  20. Dual Environment Effects on the Oxidation of Metallic Interconnects

    SciTech Connect

    Holcomb, Gordon R.; Ziomek-Moroz, Malgorzata; Cramer, Stephen D.; Covino, Jr., Bernard S.; and Bullard, Sophie J.

    2004-10-20

    Metallic interconnects in solid oxide fuel cells are exposed to a dual environment: fuel on one side (i.e. H2 gas) and oxidizer on the other side (i.e. air). It has been observed that the oxidation behavior of thin stainless steel sheet in air is changed by the presence of H2 on the other side of the sheet. The resulting dual environment scales are flaky and more friable than the single environment scales. The H2 disrupts the scale on the air-side. A model to explain some of the effects of a dual environment is presented where hydrogen diffusing through the stainless steel sheet reacts with oxygen diffusing through the scale to form water vapor, which has sufficient vapor pressure to mechanically disrupt the scale. Experiments on preoxidized 316L stainless steel tubing exposed to air/air, H2/air, and H2/Ar environments are reported in support of the model.

  1. Study of metallic materials for solid oxide fuel cell interconnect applications.

    SciTech Connect

    Natesan, K.; Zeng, Z.; Nuclear Engineering Division

    2009-04-24

    Metallic interconnect acts as a gas separator and a gas distributor and therefore, it needs to function adequately in two widely different environments. The interconnect material will be exposed to air on one side and natural gas or coal-derived synthesis gas on the other side. The viable material for the interconnect application must be resistant not only to oxidation but also carburization in hydrocarbon containing low-oxygen environments. In addition, the scales that develop on the exposed surfaces must possess adequate electrical conductivity for them to function as current leads over long service life of the fuel cell. This report addresses five topics of interest for the development of metallic interconnects with adequate performance in fuel cells for long service life. The research conducted over the years and the conclusions reached were used to identify additional areas of research on materials for improved performance of components, especially metallic interconnects, in the complex fuel cell environments. This report details research conducted in the following areas: measurement of area specific electrical resistivity, corrosion performance in dual gas environments by experiments using alloy 446, long term corrosion performance of ferritic and austenitic alloys in hydrogen and methane-reformed synthesis fuel-gas environments, approaches to reduce the area resistance of metallic interconnect, and reduction of electrical resistivity of alumina scales on metallic interconnect. Based on the key requirements for metallic interconnects and the data developed on the corrosion behavior of candidate materials in meeting those requirements, several areas are recommended for further research to develop metallic interconnects with acceptable and reliable long-term performance in solid oxide fuel cells.

  2. Characterization of nanostructured metals and metal nanowires for chip-to-package interconnections

    NASA Astrophysics Data System (ADS)

    Bansal, Shubhra

    The Packaging Research Center at Georgia Tech is proposing nano-interconnections as a new interconnect paradigm for potential low-cost, highest performance and reliability. The idea is to use nanocrystalline (nc) metals and metal nanowires as potential interconnect materials with good mechanical properties and shortest electrical interconnection. The goal of the present work is to determine, as closely as possible, the intrinsic electrical and mechanical behavior of nc- metals and metal nanowires to assess the suitability of these materials for off-chip interconnections. In this study, the microstructural stability, creep, fatigue and fracture properties of nanocrystalline copper and nickel (grain size ~ 50 nm) have been reported, in such depth, for the first time to the best of our knowledge. Fatigue life of nanostructured interconnects has also been computed through finite element models, and a clear advantage of using such a material has been demonstrated. Nanostructured copper interconnections exhibit better fatigue life as compared to microcrystalline copper interconnects at a pitch of 100 mum and lower. Nanocrystalline copper is quite stable upto 100°C whereas nickel is stable even upto 400°C. The activation energy of grain growth is 33.427 kJ/mol and 53.056 kJ/mol for ECAE nanocrystalline copper and nickel respectively. GB diffusion along with grain rotation and coalescence has been identified as the grain growth mechanism. Ultimate tensile and yield strength of nc- copper are 454 MPa and 438 MPa, respectively. These for nc- nickel are 898 MPa and 867 MPa, respectively. These values are at least 5 times higher than microcrystalline counterparts. Considerable amount of plastic deformation has been observed and the fracture is ductile in nature. Fracture surfaces show dimples much larger than grain size and stretching between dimples indicates localized plastic deformation. Nanoindentation hardness for nc- copper and nickel is 2.33 GPa and 3.92 GPa

  3. On the State of the Art of Metal Interconnects for SOFC Application

    SciTech Connect

    Jablonski@netl.doe.gov

    2011-02-27

    One of the recent developments for Solid Oxide Fuel Cells (SOFC) is oxide component materials capable of operating at lower temperatures such as 700-800C. This lower temperature range has provided for the consideration of metallic interconnects which have several advantages over ceramic interconnects: low cost, ease in manufacturing, and high conductivity. Most metals and alloys will oxidize under both the anode and cathode conditions within an SOFC, thus a chief requirement is that the base metal oxide scale must be electrically conductive since this constitutes the majority of the electrical resistance in a metallic interconnect. Common high temperature alloys form scales that contain chrome, silicon and aluminum oxides among others. Under SOFC operating conditions chrome oxide is a semi-conductor while silicon and aluminum oxides are insulators. In this talk we will review the evolution in candidate alloys and surface modifications which constitute an engineered solution for SOFC interconnect applications.

  4. Metal Interconnects for Solid Oxide Fuel Cell Power Systems

    SciTech Connect

    S. Elangovan

    2006-04-01

    Interconnect development is identified by the US Department of energy as a key technical area requiring focused research to meet the performance and cost goals under the Solid State Energy Conversion Alliance initiative. In the Phase I SECA Core Technology Program, Ceramatec investigated a commercial ferritic stainless steel composition for oxidation resistance properties by measuring the weight gain when exposed to air at the fuel cell operating temperature. A pre-treatment process that results in a dense, adherent scale was found to reduce the oxide scale growth rate significantly. A process for coating the surface of the alloy in order to reduce the in-plane resistance and potentially inhibit chromium oxide evaporation was also identified. The combination of treatments provided a very low resistance through the scale. The resistance measured was as low as 10 milliohm-cm2 at 750 C in air. The oxide scale was also found to be stable in humidified air at 750 C. The resistance value was stable over several thermal cycles. A similar treatment and coating for the fuel side of the interconnect also showed an exceptionally low resistance of one milliohm-cm2 in humidified hydrogen at 750 c, and was stable through multiple thermal cycles. Measurement of interconnect resistance when it was exposed to both air and humidified hydrogen on opposite sides also showed low, stable resistance after additional modification to the pre-treatment process. Resistance stacks, using an interconnect stack with realistic gas flows, also provided favorable results. Chromium evaporation issue however requires testing of fuel stacks and was outside of the scope of this project. based on results to-date, the alloy selection and the treatment processes appear to be well suited for SOFC interconnect application.

  5. Determination of interfacial adhesion strength between oxide scale and substrate for metallic SOFC interconnects

    NASA Astrophysics Data System (ADS)

    Sun, X.; Liu, W. N.; Stephens, E.; Khaleel, M. A.

    The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in solid oxide fuel cell (SOFC) operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between the oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

  6. Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Xia, Guanguang; Singh, Prabhakar; Stevenson, Jeffry W.

    In this work, simulated cathode/interconnect structures were used to investigate the effects of different contact materials on the contact resistance between a strontium doped lanthanum ferrite cathode and a Crofer22 APU interconnect. Among the materials studied, Pt, which has a prohibitive cost for the application, demonstrated the best performance as a contact paste. For the relatively cost-effective perovskites, the contact ASR was found to depend on their electrical conductivity, scale growth on the metallic interconnect, and interactions between the contact material and the metallic interconnect or particularly the scale grown on the interconnect. Manganites appeared to promote manganese-containing spinel interlayer formation that helped minimize the increase of contact ASR. Chromium from the interconnects reacted with strontium in the perovskites to form SrCrO 4. An improved performance was achieved by application of a thermally grown (Mn,Co) 3O 4 spinel protection layer on Crofer22 APU that dramatically minimized the contact resistance between the cathodes and interconnects.

  7. Effect of Interfacial characteristics of metal clad polymeric substrates on electrical high frequency interconnection performance

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Romanofsky, R. R.; Ponchak, G. E.; Liu, D. C.

    1984-01-01

    Etched metallic conductor lines on metal clad polymeric substrates are used for electronic component interconnections. Significant signal losses are observed for microstrip conductor lines used for interconnecting high frequency devices. At these frequencies, the electronic signal travels closer to the metal-polymer interface due to the skin effect. Copper-teflon interfaces were characterized by scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to determine the interfacial properties. Data relating roughness of the copper film to signal losses was compared to theory. Films used to enhance adhesion are found, to contribute to these losses.

  8. Highly porous metal oxide networks of interconnected nanotubes by atomic layer deposition.

    PubMed

    Li, Fengbin; Yao, Xueping; Wang, Zhaogen; Xing, Weihong; Jin, Wanqin; Huang, Jun; Wang, Yong

    2012-09-12

    Mesoporous metal oxide networks composed of interconnected nanotubes with ultrathin tube walls down to 3 nm and high porosity up to 90% were fabricated by atomic layer deposition (ALD) of alumina or titania onto templates of swelling-induced porous block copolymers. The nanotube networks possessed dual sets of interconnected pores separated by the tube wall whose thickness could be finely tuned by altering ALD cycles. Because of the excellent pore interconnectivity and high porosity, the alumina nanotube networks showed superior humidity-sensing performances. PMID:22888959

  9. LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC

    SciTech Connect

    Song, Rak-Hyun; Shin, Dong Ryul; Dokiya, Masayuki

    1996-12-31

    In the planar SOFC, the interconnect materials plays two roles as an electrical connection and as a gas separation plate in a cell stack. The interconnect materials must be chemically stable in reducing and oxidizing environments, and have high electronic conductivity, high thermal conductivity, matching thermal expansion with an electrolyte, high mechanical strength, good fabricability, and gas tightness. Lanthanum chromite so far has been mainly used as interconnect materials in planar SOFC. However, the ceramic materials are very weak in mechanical strength and have poor machining property as compared with metal. Also the metallic materials have high electronic conductivity and high thermal conductivity. Recently some researchers have studied metallic interconnects such as Al{sub 2}O{sub 3}/Inconel 600 cermet, Ni-20Cr coated with (LaSr)CoO{sub 3}, and Y{sub 2}O{sub 3-} or La{sub 2}O{sub 3}-dispersed Cr alloy. These alloys have still some problems because Ni-based alloys have high thermal expansion, the added Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3} and La{sub 2}O{sub 3} to metals have no electronic conductivity, and the oxide formed on the surface of Cr alloy has high volatility. To solve these problems, in this study, LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC was investigated. The LaCrO{sub 3}-dispersed Cr can be one candidate of metallic interconnect because LaCrO{sub 3} possesses electronic conductivity and Cr metal has relatively low thermal expansion. The content of 25 vol.% LaCrO{sub 3} Was selected on the basis of a theoretically calculated thermal expansion. The thermal expansion, electrical and oxidation properties were examined and the results were discussed as related to SOFC requirements.

  10. Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%

    NASA Astrophysics Data System (ADS)

    Arafat, Yeasir; Dutta, Indranath; Panat, Rahul

    2015-08-01

    Metal interconnects in flexible and wearable devices are heterogeneous metal-polymer systems that are expected to sustain large deformation without failure. The principal strategy to make strain tolerant interconnect lines on flexible substrates has comprised of creating serpentine structures of metal films with either in-plane or out-of-plane waves, using porous substrates, or using highly ductile materials such as gold. The wavy and helical serpentine patterns preclude high-density packing of interconnect lines on devices, while ductile materials such as Au are cost prohibitive for real world applications. Ductile copper films can be stretched if bonded to the substrate, but show high level of cracking beyond few tens of % strain. In this paper, we demonstrate a material system consisting of Indium metal film over an elastomer (PDMS) with a discontinuous Cr layer such that the metal interconnect can be stretched to extremely high linear strain (up to 100%) without any visible cracks. Such linear strain in metal interconnects exceeds that reported in literature and is obtained without the use of any geometrical manipulations or porous substrates. Systematic experimentation is carried out to explain the mechanisms that allow the Indium film to sustain the high strain level without failure. The islands forming the discontinuous Cr layer are shown to move apart from each other during stretching without delamination, providing strong adhesion to the Indium film while accommodating the large strain in the system. The Indium film is shown to form surface wrinkles upon release from the large strain, confirming its strong adhesion to PDMS. A model is proposed based upon the observations that can explain the high level of stretch-ability of the Indium metal film over the PDMS substrate.

  11. Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%

    SciTech Connect

    Arafat, Yeasir; Dutta, Indranath; Panat, Rahul

    2015-08-24

    Metal interconnects in flexible and wearable devices are heterogeneous metal-polymer systems that are expected to sustain large deformation without failure. The principal strategy to make strain tolerant interconnect lines on flexible substrates has comprised of creating serpentine structures of metal films with either in-plane or out-of-plane waves, using porous substrates, or using highly ductile materials such as gold. The wavy and helical serpentine patterns preclude high-density packing of interconnect lines on devices, while ductile materials such as Au are cost prohibitive for real world applications. Ductile copper films can be stretched if bonded to the substrate, but show high level of cracking beyond few tens of % strain. In this paper, we demonstrate a material system consisting of Indium metal film over an elastomer (PDMS) with a discontinuous Cr layer such that the metal interconnect can be stretched to extremely high linear strain (up to 100%) without any visible cracks. Such linear strain in metal interconnects exceeds that reported in literature and is obtained without the use of any geometrical manipulations or porous substrates. Systematic experimentation is carried out to explain the mechanisms that allow the Indium film to sustain the high strain level without failure. The islands forming the discontinuous Cr layer are shown to move apart from each other during stretching without delamination, providing strong adhesion to the Indium film while accommodating the large strain in the system. The Indium film is shown to form surface wrinkles upon release from the large strain, confirming its strong adhesion to PDMS. A model is proposed based upon the observations that can explain the high level of stretch-ability of the Indium metal film over the PDMS substrate.

  12. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Ito, Kota; Nishikawa, Kazutaka; Iizuka, Hideo

    2016-02-01

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO2) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO2 film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  13. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOEpatents

    Isenberg, A.O.

    1987-03-10

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection. 1 fig.

  14. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOEpatents

    Isenberg, Arnold O.

    1987-01-01

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.

  15. Mechanism maps for electromigration-induced failure of metal and alloy interconnects

    NASA Astrophysics Data System (ADS)

    Andleigh, Vaibhav K.; Srikar, V. T.; Park, Young-Joon; Thompson, Carl V.

    1999-12-01

    Numerical simulation of electromigration-induced stress evolution provides a versatile technique for analyzing the reliability of interconnects under a wide range of conditions. We study the evolution of stress in confined, layered, stud-terminated, pure metal, and alloy interconnects. Failure times are estimated using different failure criteria associated with different failure modes for broad ranges of line lengths and current densities. The simulation results can be conveniently catalogued through construction of failure mechanism maps that display domains of dominance of different failure modes. Failure mechanism maps are constructed for several different failure criteria, illustrating regimes of line immortality, void-nucleation-limited failure, void-growth-limited failure, and compressive failure as a function of line length and current density. The effects of changes in failure criteria, geometry, and composition are studied for representative interconnect stacks at accelerated and service temperatures. Failure maps may be used to: (i) provide an overview of predicted reliability behavior, (ii) assess how data from accelerated tests can be accurately scaled to service conditions, and (iii) predict the effects of changes in interconnect and shunt-layer materials and dimensions on interconnect reliability.

  16. Characterization of Fe–Cr alloy metallic interconnects coated with LSMO using the aerosol deposition process

    SciTech Connect

    Huang, Jian-Jia; Fu, Yen-Pei; Wang, Jian-Yih; Cheng, Yung-Neng; Lee, Shyong; Hsu, Jin-Cherng

    2014-03-01

    Graphical abstract: - Highlights: • Lanthanum strontium manganite (LSMO) as the protective layer for metallic interconnects was successfully prepared by aerosol deposition method (AD). • The microstructure, electrical resistance and composition for LSMO-coated Fe–Cr alloys undergoing high temperature, long-hour oxidation were investigated. • The denser protective layer prepared by AD might effectively prohibit the growth of oxidized scale after long time running at 800 °C in air. - Abstract: A Fe–Cr alloy, used for metallic interconnects, was coated with a protective layer of lanthanum strontium manganite (LSMO) using the aerosol deposition method (AD). The effects of the LSMO protective layer, which was coated on the Fe–Cr interconnects using AD, on the area specific resistance (ASR) during high temperature oxidation and the Cr evaporation behaviors were systematically investigated in this paper. The microstructures, morphologies, and compositions of the oxidized scales that appeared on the LSMO-coated Fe–Cr alloy after annealing at 800 °C for 750 h in air were examined using SEM equipped with EDS. The EPMA mapping of the LSMO-coated Fe–Cr interconnects undergoing long term, high-temperature oxidation was used to explain the formation layers of the oxidized scale, which consists of (Mn,Cr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} layers. Moreover, the experimental results revealed that the AD process is a potential method for preparing denser protective layers with highly desirable electrical properties for metallic interconnects.

  17. Oxidation Resistant, Cr Retaining, Electrically Conductive Coatings on Metallic Alloys for SOFC Interconnects

    SciTech Connect

    Vladimir Gorokhovsky

    2008-03-31

    This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantial increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.

  18. Compatibility between strontium-doped ferrite cathode and metallic interconnects in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Miguel-Pérez, Verónica; Martínez-Amesti, Ana; Arriortua, María Isabel

    2015-04-01

    One of the most important issues related to the performance of solid oxide fuel cells (SOFCs) is the chromium poisoning of the perovskite-type materials used as cathodes by the gaseous chromium species from metallic interconnects. In this study, powder mixtures of LSF40-Cr2O3 were heated at 800 °C and 1000 °C in air and were subsequently analysed by X-ray powder diffraction. For all the mixtures, the crystallisation of SrCrO4 was observed. In addition, the degradation occurring between three alloys with different compositions, Crofer 22 APU, SS430 and Conicro 4023 W 188, as metallic interconnects and La0.6Sr0.4FeO3 (LSF40) ceramic material as a cathode was studied. The results show significant chromium deposition and the formation of SrCrO4, LaCrO3 and La2O3 that block the active LSF40 electrode surface and degrade the stack (YSZ/SDC/LSF40/Interconnect) performance. LSF40 assembled with SS430 exhibited substantial Cr deposition. The deposition of the Cr species and the reaction with the LSF40 cathode is related to the composition of the oxide scales formed at each metallic interconnect and at the same time is related to the composition of the alloys. The best results obtained were for the half-cell (YSZ/SDC/LSF40) in contact with Conicro 4023 W 188 and Crofer 22 APU after heat treatment in air at 800 °C for 100 h.

  19. Porous electrode apparatus for electrodeposition of detailed metal structures or microelectronic interconnections

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Hruby, Jill M.

    2002-01-01

    An apparatus and procedure for performing microfabrication of detailed metal structures by electroforming metal deposits within small cavities. Two primary areas of application are: the LIGA process which manufactures complex three-dimensional metal parts and the damascene process used for electroplating line and via interconnections of microelectronic devices. A porous electrode held in contact or in close proximity with a plating substrate or mold top to ensure one-dimensional and uniform current flow into all mold cavities is used. Electrolyte is pumped over the exposed surface of the porous electrode to ensure uniform ion concentrations at this external surface. The porous electrode prevents electrolyte circulation within individual mold cavities, avoiding preferential enhancement of ion transport in cavities having favorable geometries. Both current flow and ion transport are one-dimensional and identical in all mold cavities, so all metal deposits grow at the same rate eliminating nonuniformities of the prior art.

  20. Corrosion and Protection of Metallic Interconnects in Solid Oxide Fuel Cells

    SciTech Connect

    Yang, Z Gary; Stevenson, Jeffry W.; Singh, Prabhakar

    2007-12-09

    Energy security and increased concern over environmental protection have spurred a dramatic world-wide growth in research and development of fuel cells, which electrochemically convert incoming fuel into electricity with no or low pollution. Fuel cell technology has become increasingly attractive to a number of sectors, including utility, automotive, and defense industries. Among the various types of fuel cells, solid oxide fuel cells (SOFCs) operate at high temperature (typically 650-1,000 C) and have advantages in terms of high conversion efficiency and the flexibility of using hydrocarbon fuels, in addition to hydrogen. The high temperature operation, however, can lead to increased mass transport and interactions between the surrounding environment and components that are required to be stable during a lifetime of thousands of hours and up to hundreds of thermal cycles. For stacks with relatively low operating temperatures (<800 C), the interconnects that are used to electrically connect a number of cells in series are typically made from cost-effective metals or alloys. The metallic interconnects must demonstrate excellent stability in a very challenging environment during SOFC operation, as they are simultaneously exposed to both an oxidizing (air) environment on the cathode side and a reducing environment (hydrogen or a reformed hydrocarbon fuel) on the anode side. Other challenges include the fact that water vapor is likely to be present in both of these environments, and the fuel is likely to contain impurities, such as sulfides. Since the fuel is usually a reformed hydrocarbon fuel, such as natural gas, coal gas, biogas, gasoline, etc., the interconnect is exposed to a wet carbonaceous environment at the anode side. Finally, the interconnect must be stable towards any adjacent components, such as electrodes, seals and electrical contact materials, with which it is in physical contact.

  1. Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits.

    PubMed

    Park, Chan Woo; Moon, Yu Gyeong; Seong, Hyejeong; Jung, Soon Won; Oh, Ji-Young; Na, Bock Soon; Park, Nae-Man; Lee, Sang Seok; Im, Sung Gap; Koo, Jae Bon

    2016-06-22

    We demonstrate a new patterning technique for gallium-based liquid metals on flat substrates, which can provide both high pattern resolution (∼20 μm) and alignment precision as required for highly integrated circuits. In a very similar manner as in the patterning of solid metal films by photolithography and lift-off processes, the liquid metal layer painted over the whole substrate area can be selectively removed by dissolving the underlying photoresist layer, leaving behind robust liquid patterns as defined by the photolithography. This quick and simple method makes it possible to integrate fine-scale interconnects with preformed devices precisely, which is indispensable for realizing monolithically integrated stretchable circuits. As a way for constructing stretchable integrated circuits, we propose a hybrid configuration composed of rigid device regions and liquid interconnects, which is constructed on a rigid substrate first but highly stretchable after being transferred onto an elastomeric substrate. This new method can be useful in various applications requiring both high-resolution and precisely aligned patterning of gallium-based liquid metals. PMID:27250997

  2. Solar cell welded interconnection development program. [parallel gap and ultrasonic metal-metal bonding

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.

    1974-01-01

    Parallel gap welding and ultrasonic bonding techniques were developed for joining selected interconnect materials (silver, aluminum, copper, silver plated molybdenum and Kovar) to silver-titanium and aluminum contact cells. All process variables have been evaluated leading to establishment of optimum solar cell, interconnect, electrodes and equipment criteria for obtainment of consistent high quality welds. Applicability of nondestructive testing of solar cell welds has been studied. A pre-weld monitoring system is being built and will be utilized in the numerically controlled parallel gap weld station.

  3. A multi-level code for metallurgical effects in metal-forming processes

    SciTech Connect

    Taylor, P.A.; Silling, S.A.; Hughes, D.A.; Bammann, D.J.; Chiesa, M.L.

    1997-08-01

    The authors present the final report on a Laboratory-Directed Research and Development (LDRD) project, A Multi-level Code for Metallurgical Effects in metal-Forming Processes, performed during the fiscal years 1995 and 1996. The project focused on the development of new modeling capabilities for simulating forging and extrusion processes that typically display phenomenology occurring on two different length scales. In support of model fitting and code validation, ring compression and extrusion experiments were performed on 304L stainless steel, a material of interest in DOE nuclear weapons applications.

  4. Electrodeposited porous metal oxide films with interconnected nanoparticles applied as anode of lithium ion battery

    SciTech Connect

    Xiao, Anguo Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2014-12-15

    Highlights: • Highly porous NiO film is prepared by a co-electrodeposition method. • Porous NiO film is composed of interconnected nanoparticles. • Porous structure is favorable for fast ion/electron transfer. • Porous NiO film shows good lithium ion storage properties. - Abstract: Controllable synthesis of porous metal oxide films is highly desirable for high-performance electrochemical devices. In this work, a highly porous NiO film composed of interconnected nanoparticles is prepared by a simple co-electrodeposition method. The nanoparticles in the NiO film have a size ranging from 30 to 100 nm and construct large-quantity pores of 20–120 nm. As an anode material for lithium ion batteries, the highly porous NiO film electrode delivers a high discharge capacity of 700 mA h g{sup −1} at 0.2 C, as well as good high-rate performance. After 100 cycles at 0.2 C, a specific capacitance of 517 mA h g{sup −1} is attained. The good electrochemical performance is attributed to the interconnected porous structure, which facilitates the diffusion of ion and electron, and provides large reaction surface area leading to improved performance.

  5. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    DOEpatents

    Huang, Kevin; Ruka, Roswell J.

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  6. High contrast and metal-less alignment process for all-polymer optical interconnect devices

    NASA Astrophysics Data System (ADS)

    Ge, Tao; Yang, Jilin; Summitt, Chris; Wang, Sunglin; Johnson, Lee; Zaverton, Melissa; Milster, Tom; Takashima, Yuzuru

    2015-03-01

    A polymer-based flat, flexible and parallel optical interconnect has become an attractive approach for short-range data transfer. For such a device, a low cost fabrication technique is required for light couplers to redirect light from source to waveguides. Recently, we demonstrated a mask-less gray scale lithography process, which used a CMOS compatible polymer for a 45-degree mirror coupler. Polymer materials such as epoclad and AP2210B can be used to fabricate flexible substrates and waveguides, respectively. We propose an all-photopolymer lithography process to fabricate the flexible and parallel optical interconnect in conjunction with the mirror couplers. In the process, a buried polymer structure is used to precisely align the mirror coupler to waveguides, which make it possible to avoid an additional metallization process. However, the contrast of such buried fiducial mark is low since such the structure is a phase structure. As a result, it is not feasible to use the buried polymer structure as an alignment mark with conventional amplitude based imaging modalities. To increase the contrast of these buried alignment marks, we propose a feature specific alignment system for which the shape and depth of the buried alignment marks are optimized for phase-based imaging such as phase contrast and Schlieren imaging. Our results show that an optimized alignment mark provides a significant contrast enhancement while using a phase contrast imaging system compared to that of a conventional imaging system. In addition, we have fabricated an optimized alignment mark specifically for use with a Schlieren imaging system.

  7. Electrically Conductive, Corrosion-Resistant Coatings Through Defect Chemistry for Metallic Interconnects

    SciTech Connect

    Anil V. Virkar

    2006-12-31

    The principal objective of this work was to develop oxidation protective coatings for metallic interconnect based on a defect chemistry approach. It was reasoned that the effectiveness of a coating is dictated by oxygen permeation kinetics; the slower the permeation kinetics, the better the protection. All protective coating materials investigated to date are either perovskites or spinels containing metals exhibiting multiple valence states (Co, Fe, Mn, Cr, etc.). As a result, all of these oxides exhibit a reasonable level of electronic conductivity; typically at least about {approx}0.05 S/cm at 800 C. For a 5 micron coating, this equates to a maximum {approx}0.025 {Omega}cm{sup 2} area specific resistance due to the coating. This suggests that the coating should be based on oxygen ion conductivity (the lower the better) and not on electronic conductivity. Measurements of ionic conductivity of prospective coating materials were conducted using Hebb-Wagner method. It was demonstrated that special precautions need to be taken to measure oxygen ion conductivity in these materials with very low oxygen vacancy concentration. A model for oxidation under a protective coating is presented. Defect chemistry based approach was developed such that by suitably doping, oxygen vacancy concentration was suppressed, thus suppressing oxygen ion transport and increasing effectiveness of the coating. For the cathode side, the best coating material identified was LaMnO{sub 3} with Ti dopant on the Mn site (LTM). It was observed that LTM is more than 20 times as effective as Mn-containing spinels. On the anode side, LaCrO3 doped with Nb on the Cr site (LNC) was the material identified. Extensive oxidation kinetics studies were conducted on metallic alloy foils with coating {approx}1 micron in thickness. From these studies, it was projected that a 5 micron coating would be sufficient to ensure 40,000 h life.

  8. Growth and Structure of Metallic Barrier Layer and Interconnect Films I: Experiments

    SciTech Connect

    Baumann, F.H.; Gilmer, G.H.; O'Sullivan, P.L.; Sapjeta, J.; Torre, J.D.; Windt, D.L.

    1999-04-05

    We present experimented results directed at understanding the growth and structure of metallic barrier layer and interconnect films. Numerical simulation results associated with this experimental work are presented in an accompanying paper in these proceedings. Here, thin films of Al, Ti, Cu and Ta have been grown by magnetron sputtering onto oxidized Si substrates. Using a specially-constructed substrate holder, the orientation of the substrate with respect to the growth direction was varied from horizontal to vertical. Films were grown at both low and high argon pressure; in the case of Ta, the cathode power was varied as well. The film structure and in particular the surface roughness was measured by X-ray reflectance and also by atomic force microscopy. We find that the surface roughness increases markedly with orientation angle in the case of Ta and Cu films, and in Ti films grown at high argon pressure. At low pressure, however, the Ti film surface roughness remains constant for all substrate orientations. No variation in roughness with either orientation angle or argon pressure was observed in the Al films. These results suggest that, under certain circumstances, shadowing effects and/or grain orientation (i.e., texture) competition during growth can give rise to lower density, more porous (and thus more rough) films, particularly at large orientation angles, as on sidewalls in sub-micron trenches.

  9. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    SciTech Connect

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  10. Life prediction of coated and uncoated metallic interconnect for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Liu, W. N.; Sun, X.; Stephens, E.; Khaleel, M. A.

    In this paper, we present an integrated experimental and modeling methodology in predicting the life of coated and uncoated metallic interconnect (IC) for solid oxide fuel cell (SOFC) applications. The ultimate goal is to provide cell designer and manufacture with a predictive methodology such that the life of the IC system can be managed and optimized through different coating thickness to meet the overall cell designed life. Crofer 22 APU is used as the example IC material system. The life of coated and uncoated Crofer 22 APU under isothermal cooling was predicted by comparing the predicted interfacial strength and the interfacial stresses induced by the cooling process from the operating temperature to room temperature, together with the measured oxide scale growth kinetics. It was found that the interfacial strength between the oxide scale and the Crofer 22 APU substrate decreases with the growth of the oxide scale, and that the interfacial strength for the oxide scale/spinel coating interface is much higher than that of the oxide scale/Crofer 22 APU substrate interface. As expected, the predicted life of the coated Crofer 22 APU is significantly longer than that of the uncoated Crofer 22 APU.

  11. 3-D perpendicular assembly of single walled carbon nanotubes for complimentary metal oxide semiconductor interconnects.

    PubMed

    Kim, Tae-Hoon; Yilmaz, Cihan; Somu, Sivasubramanian; Busnaina, Ahmed

    2014-05-01

    Due to their superior electrical properties such as high current density and ballistic transport, carbon nanotubes (CNT) are considered as a potential candidate for future Very Large Scale Integration (VLSI) interconnects. However, direct incorporation of CNTs into Complimentary Metal Oxide Semiconductor (CMOS) architecture by conventional chemical vapor deposition (CVD) growth method is problematic since it requires high temperatures that might damage insulators and doped semiconductors in the underlying CMOS circuits. In this paper, we present a directed assembly method to assemble aligned CNTs into pre-patterned vias and perpendicular to the substrate. A dynamic electric field with a static offset is applied to provide the force needed for directing the SWNT assembly. It is also shown that by adjusting assembly parameters the density of the assembled CNTs can be significantly enhanced. This highly scalable directed assembly method is conducted at room temperature and pressure and is accomplished in a few minutes. I-V characterization of the assembled CNTs was conducted using a Zyvex nanomanipulator in a scanning electron microscope (SEM) and the measured value of the resistance is found to be 270 komega s. PMID:24734611

  12. Chip-package nano-structured copper and nickel interconnections with metallic and polymeric bonding interfaces

    NASA Astrophysics Data System (ADS)

    Aggarwal, Ankur

    With the semiconductor industry racing toward a historic transition, nano chips with less than 45 nm features demand I/Os in excess of 20,000 that support computing speed in terabits per second, with multi-core processors aggregately providing highest bandwidth at lowest power. On the other hand, emerging mixed signal systems are driving the need for 3D packaging with embedded active components and ultra-short interconnections. Decreasing I/O pitch together with low cost, high electrical performance and high reliability are the key technological challenges identified by the 2005 International Technology Roadmap for Semiconductors (ITRS). Being able to provide several fold increase in the chip-to-package vertical interconnect density is essential for garnering the true benefits of nanotechnology that will utilize nano-scale devices. Electrical interconnections are multi-functional materials that must also be able to withstand complex, sustained and cyclic thermo-mechanical loads. In addition, the materials must be environmentally-friendly, corrosion resistant, thermally stable over a long time, and resistant to electro-migration. A major challenge is also to develop economic processes that can be integrated into back end of the wafer foundry, i.e. with wafer level packaging. Device-to-system board interconnections are typically accomplished today with either wire bonding or solders. Both of these are incremental and run into either electrical or mechanical barriers as they are extended to higher density of interconnections. Downscaling traditional solder bump interconnect will not satisfy the thermo-mechanical reliability requirements at very fine pitches of the order of 30 microns and less. Alternate interconnection approaches such as compliant interconnects typically require lengthy connections and are therefore limited in terms of electrical properties, although expected to meet the mechanical requirements. A novel chip-package interconnection technology is

  13. Metal/ceramic composites via infiltration of an interconnected wood-derived ceramic

    NASA Astrophysics Data System (ADS)

    Wilkes, Thomas E.

    The use of composites is increasing as they afford scientists and engineers the ability to combine the advantageous properties of each constituent phase, e.g. metal ductility and ceramic stiffness. With respect to materials design, biomimetics is garnering increasing attention due to the complex, yet efficient, natural microstructures. One such biomimetic, or in this case 'bio-derived,' curiosity is wood-derived ceramic, which is made by either replicating or converting wood into a ceramic. The resulting porous and anisotropic material retains the precursor microstructure. The wide variety of precursors can yield materials with a range of pore sizes and distribution of pores. The purpose of this work was to study the processing, microstructure, and properties of aluminum/silicon carbide composites. The composites were made by infiltrating molten aluminum into porous wood-derived SIC, which was produced by the reactive melt-infiltration of silicon into pyrolyzed wood. The composite microstructure consisted of interconnected SiC surrounding Al-alloy 'fibers.' The strength, modulus, and toughness were measured in both longitudinal and transverse orientations. The Al → SiC load transfer was investigated with high-energy X-ray diffraction in combination with in-situ compressive loading. The properties in flexure were found to decrease with increasing temperature. Despite the complex microstructure, predictions of the composite flexural modulus and longitudinal fracture toughness were obtained using simple models: Halpin-Tsai bounds and the Ashby et al. model of the effect of ductile particle-reinforcements on the toughness of brittle materials (Ashby et al. 1989), respectively. In addition, the Al/SiC research inspired the investigation of carbon-reinforced copper composites. The goal was to explore the feasibility of making a high-thermal conductivity composite by infiltrating copper into wood-derived carbon. Results indicated that Cu/C composites could be made with

  14. Multilevel Green's function interpolation method for scattering from composite metallic and dielectric objects.

    PubMed

    Shi, Yan; Wang, Hao Gang; Li, Long; Chan, Chi Hou

    2008-10-01

    A multilevel Green's function interpolation method based on two kinds of multilevel partitioning schemes--the quasi-2D and the hybrid partitioning scheme--is proposed for analyzing electromagnetic scattering from objects comprising both conducting and dielectric parts. The problem is formulated using the surface integral equation for homogeneous dielectric and conducting bodies. A quasi-2D multilevel partitioning scheme is devised to improve the efficiency of the Green's function interpolation. In contrast to previous multilevel partitioning schemes, noncubic groups are introduced to discretize the whole EM structure in this quasi-2D multilevel partitioning scheme. Based on the detailed analysis of the dimension of the group in this partitioning scheme, a hybrid quasi-2D/3D multilevel partitioning scheme is proposed to effectively handle objects with fine local structures. Selection criteria for some key parameters relating to the interpolation technique are given. The proposed algorithm is ideal for the solution of problems involving objects such as missiles, microstrip antenna arrays, photonic bandgap structures, etc. Numerical examples are presented to show that CPU time is between O(N) and O(N log N) while the computer memory requirement is O(N). PMID:18830332

  15. Electromigration of damascene copper of IC interconnect

    NASA Astrophysics Data System (ADS)

    Meyer, William Kevin

    Copper metallization patterned with multi-level damascene process is prone to electromigration failure, which affects the reliability and performance of IC interconnect. In typical products, interconnect that is not already constrained by I·R drop or Joule self-heating operates at 'near threshold' conditions. Measurement of electromigration damage near threshold is very difficult due to slow degradation requiring greatly extended stress times, or high currents that cause thermal anomalies. Software simulations of the electromigration mechanism combined with characterization of temperature profiles allows extracting material parameters and calculation of design rules to ensure reliable interconnect. Test structures capable of demonstrating Blech threshold effects while allowing thermal characterization were designed and processed. Electromigration stress tests at various conditions were performed to extract both shortline (threshold) and long-line (above threshold) performance values. The resistance increase time constant shows immortality below Je·L (product of current density and segment length) of 3200 amp/cm. Statistical analysis of times-to-failure show that long lines last 105 hours at 3.1 mA/mum2 (120°C). While this is more robust than aluminum interconnect, the semiconductor industry will be challenged to improve that performance as future products require.

  16. Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys

    NASA Astrophysics Data System (ADS)

    Fontana, S.; Amendola, R.; Chevalier, S.; Piccardo, P.; Caboche, G.; Viviani, M.; Molins, R.; Sennour, M.

    One of challenges in improving the performance and cost-effectiveness of solid oxide fuel cells (SOFCs) is the development of suitable interconnect materials. Recent researches have enabled to decrease the operating temperature of the SOFC from 1000 to 800 °C. Chromia forming alloys are then among the best candidates for interconnects. However, low electronic conductivity and volatility of chromium oxide scale need to be solved to improve interconnect performances. In the field of high temperature oxidation of metals, it is well known that the addition of reactive element into alloys or as thin film coatings, improves their oxidation resistance at high temperature. The elements of beginning of the lanthanide group and yttrium are the most efficient. The goal of this study is to make reactive element oxides (La 2O 3, Nd 2O 3 and Y 2O 3) coatings by metal organic chemical vapour deposition (MOCVD) on Crofer 22 APU, AL 453 and Haynes 230 in order to form perovskite oxides which present a good conductivity at high temperature. The coatings were analysed after 100 h ageing at 800 °C in air under atmospheric pressure by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analyses, X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. Area-specific resistance (ASR) was measured in air for the same times and temperature, using a sandwich technique with Pt paste for electrical contacts between surfaces. The ASR values for the best coating were estimated to be limited to 0.035 Ω cm 2, even after 40,000 h use.

  17. A low-Cr metallic interconnect for intermediate-temperature solid oxide fuel cells

    SciTech Connect

    Geng, Shujiang; Zhu, Jiahong; Brady, Michael P; Anderson, Harlan; ZHOU, XIADONG; YANG, ZHENGUO

    2007-01-01

    Solid oxide fuel cells (SOFCs) have attracted significant attention due to the potential for environmentally-friendly power generation with high efficiency, fuel flexibility, and zero/no emissions. However, the main hurdles thwarting the commercial introduction of SOFCs are the stack cost and durability, particularly related to the long-term stability of stack/cell materials such as the interconnect 1-3. There has been recent interest in utilizing the Cr2O3-forming alloys as interconnect for intermediate-temperature SOFCs4-6. As a consequence, volatile Cr species from the Cr2O3 scale can cause severe degradation of electrical and catalytic properties of the cathode7-9. Here, we report a new low-Cr Fe-Co-Ni base alloy that demonstrates a close match in coefficient of thermal expansion (CTE) with adjacent cell components; good oxidation resistance; and low oxide scale area specific resistance (ASR). The formation of a Cr-free (Fe,Co,Ni)3O4 spinel outer layer over the chromia inner layer upon thermal exposure effectively reduces the chromium evaporation.

  18. Processing and Prolonged 500 C Testing of 4H-SiC JFET Integrated Circuits with Two Levels of Metal Interconnect

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2015-01-01

    Complex integrated circuit (IC) chips rely on more than one level of interconnect metallization for routing of electrical power and signals. This work reports the processing and testing of 4H-SiC junction field effect transistor (JFET) prototype ICs with two levels of metal interconnect capable of prolonged operation at 500 C. Packaged functional circuits including 3-and 11-stage ring oscillators, a 4-bit digital to analog converter, and a 4-bit address decoder and random access memory cell have been demonstrated at 500 C. A 3-stage oscillator functioned for over 3000 hours at 500 C in air ambient.

  19. Processing and Prolonged 500 C Testing of 4H-SiC JFET Integrated Circuits with Two Levels of Metal Interconnect

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2015-01-01

    Complex integrated circuit (IC) chips rely on more than one level of interconnect metallization for routing of electrical power and signals. This work reports the processing and testing of 4H-SiC junction field effect transistor (JFET) prototype IC's with two levels of metal interconnect capable of prolonged operation at 500 C. Packaged functional circuits including 3- and 11-stage ring oscillators, a 4-bit digital to analog converter, and a 4-bit address decoder and random access memory cell have been demonstrated at 500 C. A 3-stage oscillator functioned for over 3000 hours at 500 C in air ambient. Improved reproducibility remains to be accomplished.

  20. Multilevel memristor effect in metal-semiconductor core-shell nanoparticles tested by scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sudipto; Pal, Amlan J.

    2015-05-01

    We have grown gold (Au) and copper-zinc-tin-sulfide (CZTS) nanocrystals and Au-CZTS core-shell nanostructures, with gold in the core and the semiconductor in the shell layer, through a high-temperature colloidal synthetic approach. Following usual characterization, we formed ultrathin layers of these in order to characterize the nanostructures in an ultrahigh-vacuum scanning tunneling microscope. Scanning tunneling spectroscopy of individual nanostructures showed the memristor effect or resistive switching from a low- to a high-conducting state upon application of a suitable voltage pulse. The Au-CZTS core-shell nanostructures also show a multilevel memristor effect with the nanostructures undergoing two transitions in conductance at two magnitudes of voltage pulse. We have studied the reproducibility, reversibility, and retentivity of the multilevel memristors. From the normalized density of states (NDOS), we infer that the memristor effect is correlated to a decrease in the transport gap of the nanostructures. We also infer that the memristor effect occurs in the nanostructures due to an increase in the density of available states upon application of a voltage pulse.We have grown gold (Au) and copper-zinc-tin-sulfide (CZTS) nanocrystals and Au-CZTS core-shell nanostructures, with gold in the core and the semiconductor in the shell layer, through a high-temperature colloidal synthetic approach. Following usual characterization, we formed ultrathin layers of these in order to characterize the nanostructures in an ultrahigh-vacuum scanning tunneling microscope. Scanning tunneling spectroscopy of individual nanostructures showed the memristor effect or resistive switching from a low- to a high-conducting state upon application of a suitable voltage pulse. The Au-CZTS core-shell nanostructures also show a multilevel memristor effect with the nanostructures undergoing two transitions in conductance at two magnitudes of voltage pulse. We have studied the reproducibility

  1. High-efficiency organometallic vapor phase epitaxy AlGaAs/GaAs monolithic cascade solar cell using metal interconnects

    SciTech Connect

    Ludowise, M.J.; LaRue, R.A.; Borden, P.G.; Gregory, P.E.; Dietze, W.T.

    1982-09-15

    A two-junction solar cell has been fabricated using an Al/sub 0.30/Ga/sub 0.70/As (1.82 eV) tap cell and a GaAs (1.43 eV) bottom cell. A processed metal interconnect is used to connect the two cells together in series. An efficiency of 21.5% at 980 mW/cm/sup 2/ has been measured in a solar simulator with an open circuit voltage of 2.35 V, a short circuit current of 118.6 mA/cm/sup 2/, and a fill factor of 0.76. An efficiency of 22% has been measured under 130 AM3 sun in a solar tracking concentrator. Organometallic vapor phase epitaxy is used to grow the entire nine-layer device.

  2. Introduction to Electrochemical Process Integration for Cu Interconnects

    NASA Astrophysics Data System (ADS)

    Ohba, Takayuki

    This chapter focuses on advanced multilevel interconnects, contributed by distinguished authors in the following sections: Damascene Concept and Process Steps (Nobuyoshi Kobayashi), Advanced BEOL Technology Overview (Takashi Yoda and Hideshi Miyajima), Lithography for Cu Damascene fabrication (Yoshihiro Hayashi), Physical Vapor Deposition Barriers for Cu metallization PVD Barriers (Junichi Koike), Low-k dielectrics (Yoshihiro Hayashi), CMP for Cu Processing (Manabu Tsujimura), Electrochemical View of Copper Chemical Mechanical Polishing (CMP) (D. Starosvetsky and Y. Ein-Eli), and Copper Post-CMP Cleaning (D. Starosvetsky and Y. Ein-Eli).

  3. Multilevel memristor effect in metal-semiconductor core-shell nanoparticles tested by scanning tunneling spectroscopy.

    PubMed

    Chakrabarti, Sudipto; Pal, Amlan J

    2015-06-01

    We have grown gold (Au) and copper-zinc-tin-sulfide (CZTS) nanocrystals and Au-CZTS core-shell nanostructures, with gold in the core and the semiconductor in the shell layer, through a high-temperature colloidal synthetic approach. Following usual characterization, we formed ultrathin layers of these in order to characterize the nanostructures in an ultrahigh-vacuum scanning tunneling microscope. Scanning tunneling spectroscopy of individual nanostructures showed the memristor effect or resistive switching from a low- to a high-conducting state upon application of a suitable voltage pulse. The Au-CZTS core-shell nanostructures also show a multilevel memristor effect with the nanostructures undergoing two transitions in conductance at two magnitudes of voltage pulse. We have studied the reproducibility, reversibility, and retentivity of the multilevel memristors. From the normalized density of states (NDOS), we infer that the memristor effect is correlated to a decrease in the transport gap of the nanostructures. We also infer that the memristor effect occurs in the nanostructures due to an increase in the density of available states upon application of a voltage pulse. PMID:25966930

  4. Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects

    NASA Astrophysics Data System (ADS)

    Faramarzi, Vina; Niess, Frédéric; Moulin, Emilie; Maaloum, Mounir; Dayen, Jean-François; Beaufrand, Jean-Baptiste; Zanettini, Silvia; Doudin, Bernard; Giuseppone, Nicolas

    2012-06-01

    The construction of soft and processable organic material able to display metallic conduction properties—a large density of freely moving charges—is a major challenge for electronics. Films of doped conjugated polymers are widely used as semiconductor devices, but metallic-type transport in the bulk of such materials remains extremely rare. On the other hand, single-walled carbon nanotubes can exhibit remarkably low contact resistances with related large currents, but are intrinsically very difficult to isolate and process. Here, we describe the self-assembly of supramolecular organic nanowires between two metallic electrodes, from a solution of triarylamine derivative, under the simultaneous action of light and electric field triggers. They exhibit a combination of large conductivity values (>5 × 103 S m-1) and a low interface resistance (<2 × 10-4 Ω m). Moreover, the resistance of nanowires in series with metal interfaces systematically decreases when the temperature is lowered to 1.5 K, revealing an intrinsic metallic behaviour.

  5. Flexible polymer optical layer for board-level optical interconnects by highly durable metal imprinting method

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Dou, Xinyuan; Lin, Xiaohui; Chen, Ray T.

    2010-02-01

    In this paper, we presented fabrication of nickel based metal mold with 45° tilted surfaces on both ends of the channel waveguide through electroplating process. To obtain a precise 45° tilted angle, a 50μm thick SU-8 layer was UV exposed under de-ionized water, with repeatable error control of 0.5°. The polymeric waveguide array with 45° micromirrors, which is formed by a UV imprinting method with the fabricated metallic mold, shows total insertion losses around 4dB, propagation loss around 0.18dB/cm and 75% coupling efficiency.

  6. High performance ceramic interconnect material for solid oxide fuel cells (SOFCs): Ca- and transition metal-doped yttrium chromite

    NASA Astrophysics Data System (ADS)

    Yoon, Kyung Joong; Stevenson, Jeffrey W.; Marina, Olga A.

    2011-10-01

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at.% Co, 4 at.% Ni, and 1 at.% Cu substitution on B-site of 20 at.% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 °C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 °C is 57 S cm-1 in air and 11 S cm-1 in fuel (pO2 = 5 × 10-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  7. High Performance Ceramic Interconnect Material for Solid Oxide Fuel Cells (SOFCs): Ca- and Transition Metal-doped Yttrium Chromite

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2011-10-15

    The effect of transition metal substitution on thermal and electrical properties of Ca-doped yttrium chromite was investigated in relation to use as a ceramic interconnect in high temperature solid oxide fuel cells (SOFCs). 10 at% Co, 4 at% Ni, and 1 at% Cu substitution on B-site of 20 at% Ca-doped yttrium chromite led to a close match of thermal expansion coefficient (TEC) with that of 8 mol% yttria-stabilized zirconia (YSZ), and a single phase Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 remained stable between 25 and 1100 degree C over a wide oxygen partial pressure range. Doping with Cu significantly facilitated densification of yttrium chromite. Ni dopant improved both electrical conductivity and dimensional stability in reducing environments, likely through diminishing the oxygen vacancy formation. Substitution with Co substantially enhanced electrical conductivity in oxidizing atmosphere, which was attributed to an increase in charge carrier density and hopping mobility. Electrical conductivity of Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 at 900 degree C is 57 S/cm in air and 11 S/cm in fuel (pO2=5×10^-17 atm) environments. Chemical compatibility of doped yttrium chromite with other cell components was verified at the processing temperatures. Based on the chemical and dimensional stability, sinterability, and thermal and electrical properties, Y0.8Ca0.2Cr0.85Co0.1Ni0.04Cu0.01O3 is suggested as a promising SOFC ceramic interconnect to potentially overcome technical limitations of conventional acceptor-doped lanthanum chromites.

  8. Creep rupture of the joint of a solid oxide fuel cell glass-ceramic sealant with metallic interconnect

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Kuang; Lin, Kun-Liang; Yeh, Jing-Hong; Wu, Si-Han; Lee, Ruey-Yi

    2014-01-01

    Creep properties of sandwich joint specimens made of a newly developed BaO-B2O3-Al2O3-SiO2 glass-ceramic sealant (GC-9) and a ferritic-stainless-steel interconnect (Crofer 22 H) for planar solid oxide fuel cells (pSOFCs) are investigated at 800 °C under constant shear and tensile loadings. The creep rupture time of Crofer 22 H/GC-9/Crofer 22 H joint specimens is increased with a decrease in applied load for both shear and tensile loading modes. The given metal/sealant/metal joint has a greater degradation of joint strength at 800 °C under prolonged, constant tensile loading as compared to shear loading. The tensile creep strength at a rupture time of 1000 h is about 9% of the average tensile joint strength, while the shear creep strength at 1000 h is about 23% of the average shear joint strength. Failure patterns of both shear and tensile joint specimens are similar regardless of the creep rupture time. In general, creep cracks initiate at the interface between the (Cr,Mn)3O4 spinel layer and the BaCrO4 chromate layer, penetrate through the BaCrO4 layer, and propagate along the interface between the chromate layer and glass-ceramic substrate until final fracture. Final, fast fracture occasionally takes place within the glass-ceramic layer.

  9. Material development of polymer/metal paste for flip-chip attach interconnection technology

    SciTech Connect

    Roldann, J.M.; Saraf, R.F.; Sambucetti, C.J.; Cotte, J.

    1996-11-01

    Upon completion of the second year of this contract, we have delivered the next generation of polymer/metal composite, optimum paste H, to Endicott. We have done preliminary flip-chip type bonding at Universal Instruments, working closely with their personnel to enhance their equipment set and process. We have also shown that a PMC bond can withstand over 40% strain without effecting its electrical and mechanical properties. This resilience of the conductive polymer paste both under electrical and mechanical behavior, is a strong indication of the applicability of the material for Flip Chip Attach to organic laminates. We have also confirmed during this phase of the Contract that the Optimum Paste H can be processed and applied under normal ambient conditions, without special precautions of low temperature or inert atmospheres, a property which sets our system apart from many other commercial pastes. We would also like to remark the achievement of optimized paste properties and how these properties address the mayor issues and requirements for flip attach applications, in Table I and II of this report. Use of the PMC to build interposer for chip-testing. Due to the high electrical conductivity of the PMC, a process was developed to use a thin film layer of the paste applied to a metal cathode of an electrochemical cell, to build fully metallized thru hole arrays containing a given C-4 chip foot print. This array interposers can be used for chip test (known-good-chip) applications. This process will be described in detail at the Year-End Review Meeting in Binghanton.

  10. The effect of metal-contacts on carbon nanotube for high frequency interconnects and devices

    SciTech Connect

    Chimowa, George; Bhattacharyya, Somnath

    2014-08-15

    High frequency characterisation of platinum and tungsten contacts on individual multi-walled carbon nanotubes (MWNT) is performed from 10 MHz to 50 GHz. By measuring the scattering parameters of aligned individual MWNTs, we show that metal contacts enhance an inductive response due to the improved MWNT-electrode coupling reducing the capacitive effect. This behaviour is pronounced in the frequency below 10 GHz and strong for tungsten contacts. We explain the inductive response as a result of the interaction of stimulus current with the localized (or defects) states present at the contact region resulting in the current lagging behind the voltage. The results are further supported by direct current measurements that show tungsten to significantly increase carbon nanotube-electrode coupling. The immediate consequence is the reduction of the contact resistance, implying a reduction of electron tunnelling barrier from the electrode to the carbon nanotube.

  11. Model-based prediction of the ohmic resistance of metallic interconnects from oxide scale growth based on scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Linder, Markus; Hocker, Thomas; Holzer, Lorenz; Friedrich, K. Andreas; Iwanschitz, Boris; Mai, Andreas; Schuler, J. Andreas

    2014-12-01

    The increase of ohmic losses caused by continuously growing Cr2O3 scales on metallic interconnects (MICs) is a major contribution to the degradation of SOFC stacks. Comparison of measured ohmic resistances of chromium- (CFY) and ferritic-based alloy (Crofer) MICs at 850 °C in air with the growth of mean oxide scale thicknesses, obtained from SEM cross section images, reveals a non-trivial, non-linear relationship. To understand the correlation between scale evolution and resulting ohmic losses, 2D finite element (FE) simulations of electrical current distributions have been performed for a large number of real oxide scale morphologies. It turns out that typical morphologies favor nonhomogeneous electrical current distributions, where the main current flows over rather few "bridges", i.e. local spots with relatively thin oxide scales. These current-"bridges" are the main reason for the non-linear dependence of ohmic losses on the corresponding oxide scale morphology. Combining electrical conductivity and SEM measurements with FE simulations revealed two further advantages: it permits a more reliable extrapolation of MIC-degradation data over the whole stack lifetime and it provides a method to assess the effective electrical conductivity of thermally grown Cr2O3 scales under stack operation.

  12. Electrically Robust Metal Nanowire Network Formation by In-Situ Interconnection with Single-Walled Carbon Nanotubes

    PubMed Central

    Woo, Jong Seok; Han, Joong Tark; Jung, Sunshin; Jang, Jeong In; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2014-01-01

    Modulation of the junction resistance between metallic nanowires is a crucial factor for high performance of the network-structured conducting film. Here, we show that under current flow, silver nanowire (AgNW) network films can be stabilised by minimizing the Joule heating at the NW-NW junction assisted by in-situ interconnection with a small amount (less than 3 wt%) of single-walled carbon nanotubes (SWCNTs). This was achieved by direct deposition of AgNW suspension containing SWCNTs functionalised with quadruple hydrogen bonding moieties excluding dispersant molecules. The electrical stabilisation mechanism of AgNW networks involves the modulation of the electrical transportation pathway by the SWCNTs through the SWCNT-AgNW junctions, which results in a relatively lower junction resistance than the NW-NW junction in the network film. In addition, we propose that good contact and Fermi level matching between AgNWs and modified SWCNTs lead to the modulation of the current pathway. The SWCNT-induced stabilisation of the AgNW networks was also demonstrated by irradiating the film with microwaves. The development of the high-throughput fabrication technology provides a robust and scalable strategy for realizing high-performance flexible transparent conductor films. PMID:24763208

  13. Dielectric/metal sidewall diffusion barrier for Cu/porous ultralow-k interconnect technology

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Prasad, K.; Li, C. Y.; Lu, P. W.; Su, S. S.; Tang, L. J.; Gui, D.; Balakumar, S.; Shu, R.; Kumar, Rakesh

    2004-03-01

    With the acknowledged insufficiency of traditional Ta or TaN barriers, deposited by physical vapor deposition (PVD), in the Cu/porous ultralow-k intermetal dielectric integration, an amorphous hydrogenated SiC (a-SiC:H)/Ta bilayer sidewall diffusion barrier has been fabricated using 0.13 μm Cu/porous ultralow-k [Porous-SiLK (Proprietary product from Dow Chemical Corporation, USA), k˜2.2] single damascene process. The electrical tests show that the line-to-line leakage current and the electrical breakdown field (EBD) of samples with this a-SiC:H/Ta dielectric/metal bilayer structure are significantly improved compared to the conventional PVD multi-stacked Ta(N) sidewall barrier. This improvement is mostly due to surface roughness modification after the deposition of a-SiC:H film, which, in addition to being a good barrier to Cu diffusion, can effectively "seal" the weak points on the surface of porous low-k material that are responsible for the sidewall barrier failure.

  14. Evaluation of nickel-titanium oxide-niobium pentoxide metal ceramic composite as interconnect for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Budur, Abhijith

    With increasing importance for clean energy, fuel cells have gained great significance in recent decades. Solid oxide fuel cells are easy to transport due to presence of solid electrolyte and also have requisite electrical properties,but have been obstructed by their limitation to be used at only temperatures greater than 6000C and less than 8000C. To construct a stack of cells, materials that are good electrical conductors and having necessary mechanical strengths at that temperatures are being considered as interconnects between the cells. Evaluation of Nickel-Titanium dioxide-Niobium pentoxide (NTN) as interconnect and comparison to Stainless Steel 441 alloy has been made in this research. The criteria for evaluation are the resistance, long-term stability and the power density characteristics of the cell for each interconnect. Electrical measurements by impedance spectroscopy techniques were conducted at variousworking temperatures using a gas mixture of 10 % hydrogen and 90% nitrogen to evaluate both interconnect materials in the working range of fuel cells. Scanning Electron Microscopy images of Lanthanum Strontium Manganite paste before and after the fuel cell measurements are shown.The results showed that both NTN and Stainless Steel 441 interconnects exhibit similar electrical properties under operating conditions of the fuel cell. Since theNTN interconnect is less prone to corrosion and does not have the effect of chromium poisoning, it can be considered as a viable interconnect material for solid oxide fuel cells.

  15. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-01

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  16. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  17. Multi-level modeling for sensitivity assessment of springback in sheet metal forming

    NASA Astrophysics Data System (ADS)

    Lebon, J.; Lequilliec, G.; Coelho, R. Filomeno; Breitkopf, P.; Villon, P.

    2013-05-01

    In this work, we highlight that sensitivity analysis of metal forming process requires both high precision and low cost numerical models. We propose a two-pronged methodology to address these challenges. The deep drawing simulation process is performed using an original low cost semi-analytical approach based on a bending under tension model (B-U-T) with a good accuracy for small random perturbations of the physical and process parameters. The springback sensitivity analysis is based on the Sobol indices approach and performed using an non intrusive efficient methodology based on the post-treatment of the polynomial chaos coefficients.

  18. SOFC INTERCONNECT DEVELOPMENT

    SciTech Connect

    Diane M. England

    2004-03-16

    An interconnect for an SOFC stack is used to connect fuel cells into a stack. SOFC stacks are expected to run for 40,000 hours and 10 thermal cycles for the stationary application and 10,000 hours and 7000 thermal cycles for the transportation application. The interconnect of a stack must be economical and robust enough to survive the SOFC stack operation temperature of 750 C and must maintain the electrical connection to the fuel cells throughout the lifetime and under thermal cycling conditions. Ferritic and austenitic stainless steels, and nickel-based superalloys were investigated as possible interconnect materials for solid oxide fuel cell (SOFC) stacks. The alloys were thermally cycled in air and in a wet nitrogen-argon-hydrogen (N2-Ar-H2-H2O) atmosphere. Thermogravimetry was used to determine the parabolic oxidation rate constants of the alloys in both atmospheres. The area-specific resistance of the oxide scale and metal substrates were measured using a two-probe technique with platinum contacts. The study identifies two new interconnect designs which can be used with both bonded and compressive stack sealing mechanisms. The new interconnect designs offer a solution to chromium vaporization, which can lead to degradation of some (chromium-sensitive) SOFC cathodes.

  19. The effect of doping (Mn,B)3O4 materials as protective layers in different metallic interconnects for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Miguel-Pérez, Verónica; Martínez-Amesti, Ana; Nó, María Luisa; Larrañaga, Aitor; Arriortua, María Isabel

    2013-12-01

    Spinel oxides with the general formula of (Mn,B)3O4 (B = Co, Fe) were used as barrier materials between the cathode and the metallic interconnect to reduce the rate of cathode degradation by Cr poisoning. The effect of doping at the B position was investigated terms of microstructure and electrical conductivity to determine its behaviour and effectiveness as a protective layer in contact with three metallic materials (Crofer 22 APU, SS430 and Conicro 4023 W 188). The analysis showed that the use of these materials considerably decreased the reactivity and diffusion of Cr between the cathode and the metallic interconnects. The protective layer doped with Fe at the B position exhibited the least amount of reactivity with the interconnector and cathode materials. The worst results were observed for SS430 cells coated with a protective layer perhaps due to their low Cr content. The Crofer 22 APU and Conicro 4023 W 188 samples exhibited very similar conductivity results in the presence of the MnCo1.9Fe0.1O4 protective coating. As a result, these two material combinations are a promising option for use as bipolar plates in SOFC.

  20. Multilevel metal/Pb(Zr0.52Ti0.48)O3/TiOxNy/Si for next generation FeRAM technology node

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak K.; Khosla, Robin; Sharma, Satinder K.

    2015-09-01

    Metal-Ferroelectric-Insulator-Semiconductor (MFIS) thin film capacitors with lead zirconate titanate (Pb(Zr0.52Ti0.48)O3) as ferroelectric layer and ultrathin high-κ titanium oxynitride (TiOxNy) as insulating buffer layer on p-Si are fabricated by RF magnetron sputtering for non-volatile multilevel ferroelectric random access memory (FeRAM). Micro Raman analysis of the proposed systems confirmed the existence of most stable tetragonal rutile phase in ultrathin TiOxNy and perovskite phase of PZT thin films. AFM analysis showed that surface roughness of ultrathin TiOxNy and thin PZT films are ∼2.54 nm and ∼1.85 nm, respectively and result the uniform interface between substrate and metal. The maximum C-V memory window of ∼1.25 V was obtained at cyclic sweep voltage of ±6 V and starts to decrease when the sweep voltage exceeds 6 V due to charge injection. The fabricated structure possesses good data retention measured till 1.5 h and high, low capacitance states remain distinguishable even if extrapolated to 15 years. The proposed system exhibited excellent TiOxNy-Si interface, incomparable high breakdown field strength ∼11.15 MV/cm and low leakage current density (J) ∼5 μA/cm2 at +4 V. Thus, Au/PZT/TiOxNy/Si MFIS based FeRAM devices with multilevel operation, high breakdown field and excellent retention are prospective contender for next generation multilevel FeRAM technology node.

  1. Evidence of Processing Non-Idealities in 4H-SiC Integrated Circuits Fabricated with Two Levels of Metal Interconnect

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Liangyu, Chen; Evans, Laura J.; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.

    2015-01-01

    The fabrication and prolonged 500 C electrical testing of 4H-SiC junction field effect transistor (JFET) integrated circuits (ICs) with two levels of metal interconnect is reported in another submission to this conference proceedings. While some circuits functioned more than 1000 hours at 500 C, the majority of packaged ICs from this wafer electrically failed after less than 200 hours of operation in the same test conditions. This work examines the root physical degradation and failure mechanisms believed responsible for observed large discrepancies in 500 C operating time. Evidence is presented for four distinct issues that significantly impacted 500 C IC operational yield and lifetime for this wafer.

  2. Evidence of Processing Non-Idealities in 4H-SiC Integrated Circuits Fabricated With Two Levels of Metal Interconnect

    NASA Technical Reports Server (NTRS)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Evans, Laura J.; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.

    2015-01-01

    The fabrication and prolonged 500 C electrical testing of 4H-SiC junction field effect transistor (JFET) integrated circuits (ICs) with two levels of metal interconnect is reported in another submission to this conference proceedings. While some circuits functioned more than 3000 hours at 500 C, the majority of packaged ICs from this wafer electrically failed after less than 200 hours of operation in the same test conditions. This work examines the root physical degradation and failure mechanisms believed responsible for observed large discrepancies in 500 C operating time. Evidence is presented for four distinct issues that significantly impacted 500 C IC operational yield and lifetime for this wafer.

  3. Electrical behavior of aluminosilicate glass-ceramic sealants and their interaction with metallic solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Goel, Ashutosh; Tulyaganov, Dilshat U.; Kharton, Vladislav V.; Yaremchenko, Aleksey A.; Ferreira, José M. F.

    A series of alkaline-earth aluminosilicate glass-ceramics (GCs) were appraised with respect to their suitability as sealants for solid oxide fuel cells (SOFCs). The parent composition with general formula Ca 0.9MgAl 0.1La 0.1Si 1.9O 6 was modified with Cr 2O 3 and BaO. The addition of BaO led to a substantial decrease in the total electrical conductivity of the GCs, thus improving their insulating properties. BaO-containing GCs exhibited higher coefficient of thermal expansion (CTE) in comparison to BaO-free GCs. An extensive segregation of oxides of Ti and Mn, components of the Crofer22 APU interconnect alloy, along with negligible formation of BaCrO 4 was observed at the interface between GC/interconnects diffusion couples. Thermal shock resistance and gas-tightness of GC sealants in contact with yttria-stabilized zirconia electrolyte (8YSZ) was evaluated in air and water. Good matching of CTE and strong, but not reactive, adhesion to the solid electrolyte and interconnect, in conjunction with a high level of electrical resistivity, are all advantageous for potential SOFC applications.

  4. Interconnect resistance of photovoltaic submodules

    NASA Technical Reports Server (NTRS)

    Volltrauer, H.; Eser, E.; Delahoy, A. E.

    1985-01-01

    Small area amorphous silicon solar cells generally have higher efficiencies than large interconnected submodules. Among the reasons for the differences in performance are the lack of large area uniformity, the effect of nonzero tin oxide sheet resistance, and possibly pinholes in the various layers. Another and usually small effect that can contribute to reduced performance of interconnected cells is the resistance of the interconnection i.e., the series resistance introduced by the metal to tin oxide contact through silicon. Proper processing problems to avoid poor contacts are discussed.

  5. Alloy Films Deposited by Electroplating as Precursors for Protective Oxide Coatings on Solid Oxide Fuel Cells Metallic Interconnect Materials

    SciTech Connect

    Johnson, Christopher; Gemmen, R.S.; Cross, Caleb

    2006-10-01

    The successful development of stainless steel interconnects for intermediate temperature solid oxide fuel cells (SOFC) may be the materials breakthrough that makes SOFC technology truly commercial. Many of the ferritic stainless steels, however, suffer from a relatively high area specific resistance (ASR) after long exposure times at temperature and the Cr in the native oxide can evaporate and contaminate other cell components. Conductive coatings that resist oxide scale growth and chromium evaporation may prevent both of these problems. In the present study electrochemical deposition of binary alloys followed by oxidation of the alloy to form protective and conductive oxide layers is examined. Results are presented for the deposition of Mn/Co and Fe/Ni alloys via electroplating to form a precursor for spinel oxide coating formation. Analysis of the alloy coatings is done by SEM, EDS and XRD.

  6. Electrical interconnect

    DOEpatents

    Frost, John S.; Brandt, Randolph J.; Hebert, Peter; Al Taher, Omar

    2015-10-06

    An interconnect includes a first set of connector pads, a second set of connector pads, and a continuous central portion. A first plurality of legs extends at a first angle from the continuous central portion. Each leg of the first plurality of legs is connected to a connector pad of a first set of connector pads. A second plurality of legs extends at a second angle from the continuous central portion. Each leg of the second plurality of legs is connected to a connector pad of the second set of connector pads. Gaps are defined between legs. The gaps enable movement of the first set of connector pads relative to the second set of connector pads.

  7. Modeling interconnect corners under double patterning misalignment

    NASA Astrophysics Data System (ADS)

    Hyun, Daijoon; Shin, Youngsoo

    2016-03-01

    Publisher's Note: This paper, originally published on March 16th, was replaced with a corrected/revised version on March 28th. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. Interconnect corners should accurately reflect the effect of misalingment in LELE double patterning process. Misalignment is usually considered separately from interconnect structure variations; this incurs too much pessimism and fails to reflect a large increase in total capacitance for asymmetric interconnect structure. We model interconnect corners by taking account of misalignment in conjunction with interconnect structure variations; we also characterize misalignment effect more accurately by handling metal pitch at both sides of a target metal independently. Identifying metal space at both sides of a target metal.

  8. Interfacial fracture resistance of the joint of a solid oxide fuel cell glass-ceramic sealant with metallic interconnect

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Kuang; Shiu, Wei-Hong; Wu, Si-Han; Liu, Chien-Kuo; Lee, Ruey-Yi

    2014-09-01

    Interfacial cracking resistance of a joint between a glass-ceramic sealant (GC-9) and interconnect stainless steel (Crofer 22 H) for planar solid oxide fuel cells is investigated. Interfacial fracture energy is measured at room temperature to 800 °C using a four-point bending test technique. A heat treatment of 100 h or 1000 h at 800 °C is applied for studying the thermal aging effect. Results show the variation trend of interfacial fracture energy with temperature is similar for all given material conditions. Interfacial fracture energy increases with temperature to reach a peak value at 700 °C and then drops at temperature above 700 °C. A 100-h aging treatment does not change the interfacial fracture energy significantly, compared to the non-aged condition. The 1000 h-aged joint, however, has greater interfacial fracture energy than the non-aged and 100 h-aged joints at 700 °C-800 °C. Two types of cracking path in the interior of fracture surface are identified. Firstly, delamination takes place at the interface between the glass-ceramic substrate and chromate layer. Secondly, cracking occurs within the chromate layer. However, for the 1000 h-aged joints tested at 700 °C-800 °C, fracture at the highly oxidized, peripheral regions takes place within the glass-ceramic layer.

  9. Joint strength of a solid oxide fuel cell glass-ceramic sealant with metallic interconnect in a reducing environment

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Kuang; Liu, Yu-An; Wu, Si-Han; Liu, Chien-Kuo; Lee, Ruey-Yi

    2015-04-01

    Effects of reducing environment and thermal aging on the joint strength of a BaO-B2O3-Al2O3-SiO2 glass-ceramic sealant (GC-9) with a ferritic-stainless-steel interconnect (Crofer 22 H) for planar solid oxide fuel cells are investigated. A technique is developed for conducting mechanical tests at room temperature and 800 °C in H2-7 vol% H2O under shear and tensile loadings. Given an aged condition and loading mode, the joint strength at 800 °C is lower than that at room temperature in the given humidified hydrogen atmosphere. A thermal aging at 800 °C in H2-7 vol% H2O for 100 h or 1000 h enhances both shear and tensile joint strengths at room temperature but degrades them at 800 °C in the same reducing environment. Non-aged specimens show a comparable joint strength and fracture mode when tested in humidified hydrogen and in air under a given loading mode and testing temperature. The shear strength at 800 °C for joint specimens after a 1000-h thermal aging at 800 °C in air or humidified hydrogen is reduced by a similar extent of 19%, compared to the counterpart of non-aged joint specimens tested in the same oxidizing or reducing environment.

  10. Advanced Interconnect Development

    SciTech Connect

    Yang, Z.G.; Maupin, G.; Simner, S.; Singh, P.; Stevenson, J.; Xia, G.

    2005-01-27

    The objectives of this project are to develop cost-effective, optimized materials for intermediate temperature SOFC interconnect and interconnect/electrode interface applications and identify and understand degradation processes in interconnects and at their interfaces with electrodes.

  11. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  12. Interconnection networks

    DOEpatents

    Faber, V.; Moore, J.W.

    1988-06-20

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs GAMMA/sub d/(k) with degree d, diameter k, and (d + 1)exclamation/ (d /minus/ k + 1)exclamation processors for each d greater than or equal to k and GAMMA/sub d/(k, /minus/1) with degree d /minus/ 1, diameter k + 1, and (d + 1)exclamation/(d /minus/ k + 1)exclamation processors for each d greater than or equal to k greater than or equal to 4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network GAMMA/sub d/(k, /minus/1) is provided, no processor has a channel connected to form an edge in a direction delta/sub 1/. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations. 9 figs.

  13. Breakdown current density in h-BN-capped quasi-1D TaSe3 metallic nanowires: prospects of interconnect applications.

    PubMed

    Stolyarov, Maxim A; Liu, Guanxiong; Bloodgood, Matthew A; Aytan, Ece; Jiang, Chenglong; Samnakay, Rameez; Salguero, Tina T; Nika, Denis L; Rumyantsev, Sergey L; Shur, Michael S; Bozhilov, Krassimir N; Balandin, Alexander A

    2016-08-25

    We report on the current-carrying capacity of the nanowires made from the quasi-1D van der Waals metal tantalum triselenide capped with quasi-2D boron nitride. The chemical vapor transport method followed by chemical and mechanical exfoliation were used to fabricate the mm-long TaSe3 wires with the lateral dimensions in the 20 to 70 nm range. Electrical measurements establish that the TaSe3/h-BN nanowire heterostructures have a breakdown current density exceeding 10 MA cm(-2)-an order-of-magnitude higher than that for copper. Some devices exhibited an intriguing step-like breakdown, which can be explained by the atomic thread bundle structure of the nanowires. The quasi-1D single crystal nature of TaSe3 results in a low surface roughness and in the absence of the grain boundaries. These features can potentially enable the downscaling of the nanowires to lateral dimensions in a few-nm range. Our results suggest that quasi-1D van der Waals metals have potential for applications in the ultimately downscaled local interconnects. PMID:27531559

  14. Recent advances on electromigration in very-large-scale-integration of interconnects

    NASA Astrophysics Data System (ADS)

    Tu, K. N.

    2003-11-01

    Today, the price of building a factory to produce submicron size electronic devices on 300 mm Si wafers is over billions of dollars. In processing a 300 mm Si wafer, over half of the production cost comes from fabricating the very-large-scale-integration of the interconnect metallization. The most serious and persistent reliability problem in interconnect metallization is electromigration. In the past 40 years, the microelectronic industry has used Al as the on-chip conductor. Due to miniaturization, however, a better conductor is needed in terms of resistance-capacitance delay, electromigration resistance, and cost of production. The industry has turned to Cu as the on-chip conductor, so the question of electromigration in Cu metallization must be examined. On the basis of what we have learned from the use of Al in devices, we review here what is current with respect to electromigration in Cu. In addition, the system of interconnects on an advanced device includes flip chip solder joints, which now tend to become weak links in the system due to, surprisingly, electromigration. In this review, we compare the electromigration in Al, Cu, and solder on the basis of the ratio of their melting point to the device operating temperature of 100 °C. Accordingly, grain boundary diffusion, surface diffusion, and lattice diffusion dominate, respectively, the electromigration in Al, Cu, and solder. In turn, the effects of microstructure, solute, and stress on electromigration in Al, Cu, and solder are different. The stress induced by electromigration in Cu/low-k interconnects will be a very serious issue since the low-k dielectric (with a value of k around 2) tends to be weak mechanically. In a multilevel interconnect, a electromigration force due to current crowding, acting normal to current flow, has been proposed to explain why many electromigration induced damages occur away from the high current density region. In mean-time-to-failure analysis, the time taken to nucleate

  15. A Novel, Free-Space Optical Interconnect Employing Vertical-Cavity Surface Emitting Laser Diodes and InGaAs Metal-Semiconductor-Metal Photodetectors for Gbit/s RF/Microwave Systems

    NASA Technical Reports Server (NTRS)

    Savich, Gregory R.; Simons, Rainee N.

    2006-01-01

    Emerging technologies and continuing progress in vertical-cavity surface emitting laser (VCSEL) diode and metal-semiconductor-metal (MSM) photodetector research are making way for novel, high-speed forms of optical data transfer in communication systems. VCSEL diodes operating at 1550 nm have only recently become commercially available, while MSM photodetectors are pushing the limits of contact lithography with interdigitated electrode widths reaching sub micron levels. We propose a novel, free-space optical interconnect operating at about 1Gbit/s utilizing VCSEL diodes and MSM photodetectors. We report on development, progress, and current work, which are as follows: first, analysis of the divergent behavior of VCSEL diodes for coupling to MSM photodetectors with a 50 by 50 m active area and second, the normalized frequency response of the VCSEL diode as a function of the modulating frequency. Third, the calculated response of MSM photodetectors with varying electrode width and spacing on the order of 1 to 3 m as well as the fabrication and characterization of these devices. The work presented here will lead to the formation and characterization of a fully integrated 1Gbit/s free-space optical interconnect at 1550 nm and demonstrates both chip level and board level functionality for RF/microwave digital systems.

  16. A novel low Cr-containing Fe-Cr-Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wenying; Yan, Dong; Yang, Jie; Chen, Jing; Chi, Bo; Pu, Jian; Li, Jian

    2014-12-01

    A newly developed low-Cr containing Fe-Cr-Co alloy, named as FeCro, is evaluated as a candidate material of metallic interconnects for intermediate temperature solid oxide fuel cells (IT-SOFCs). This alloy possesses excellent oxidation resistance and adequate electrical conductivity at 750 °C in air, and shows slight Cr deposition in/around La0.72Sr0.18MnO3(LSM) electrode under a harsh accelerating condition of 400 mA cm-2 and 850 °C. The thickness of the oxide scale thermally grown at 750 °C in air for 1000 his less than 1 μm, presenting a double-layered structure with dense (Mn, Cr)3O4 on the top of Cr2O3. The oxidation kinetics at 750 °C obeys the parabolic law with a low rate constant of1.42 × 10-15 g2 cm-4 s-1. The Cr deposition in/around the LSM electrode in the presence of the FeCro alloy is remarkably reduced, compared to the commercial Crofer 22H alloy. The measured area specific resistance (ASR) at 750 °C in air after 1000 h isothermal oxidation is 14 mΩ cm2. It is the unique microstructure of the formed oxide scale that significantly enhances the resistances of the FeCro alloy to oxidation and Cr volatilization.

  17. Application of selective CVD tungsten for low contact resistance via filling to aluminum multilayer interconnection

    NASA Astrophysics Data System (ADS)

    Rang, S.; Chow, R.; Wilson, R. H.; Gorowitz, B.; Williams, A. G.

    1988-05-01

    Process parameters for selective chemical vapor deposition of tungsten to fill vias between aluminum or aluminum alloy multilevel metallization have been identified and demonstrated. By controlling two competing parallel reactions: Aluminum and hydrogen reductions of tungsten hexafluoride in one reduction step process, the specific contact resistivity was found to be in the range of 2.5 to 8.0 x 10-9 ohm-cm2 for 1.8 micron diameter vias. This is at least one order of magnitude lower than the values reported by the previous workers. It was also observed that alloying the aluminum did not appear to affect the contact resistance significantly. In this experiment one cold wall experimental reactor, two cold wall production systems of two different models and one hot wall tube furnace were used to deposit selective CVD tungsten on aluminum or aluminum with 1% silicon first level metal. As a consequence of these findings, problems associated with filling straight wall vias of high aspect ratio in VLSI multilevel interconnection (i.e., high contact resistance, poor step coverage, electromigration, etc.) can now be alleviated or resolved. Therefore, the use of selective CVD tungsten in the existing aluminum IC metallization becomes very attractive and feasible.

  18. Multilevel Model Prediction

    ERIC Educational Resources Information Center

    Frees, Edward W.; Kim, Jee-Seon

    2006-01-01

    Multilevel models are proven tools in social research for modeling complex, hierarchical systems. In multilevel modeling, statistical inference is based largely on quantification of random variables. This paper distinguishes among three types of random variables in multilevel modeling--model disturbances, random coefficients, and future response…

  19. Printed Module Interconnects

    SciTech Connect

    Stockert, Talysa R.; Fields, Jeremy D.; Pach, Gregory F.; Mauger, Scott A.; van Hest, Maikel F. A. M.

    2015-06-14

    Monolithic interconnects in photovoltaic modules connect adjacent cells in series, and are typically formed sequentially involving multiple deposition and scribing steps. Interconnect widths of 500 um every 10 mm result in 5% dead area, which does not contribute to power generation in an interconnected solar panel. This work expands on previous work that introduced an alternative interconnection method capable of producing interconnect widths less than 100 um. The interconnect is added to the module in a single step after deposition of the photovoltaic stack, eliminating the need for scribe alignment. This alternative method can be used for all types of thin film photovoltaic modules. Voltage addition with copper-indium-gallium-diselenide (CIGS) solar cells using a 2-scribe printed interconnect approach is demonstrated. Additionally, interconnect widths of 250 um are shown.

  20. Perforation patterned electrical interconnects

    SciTech Connect

    Frey, Jonathan

    2014-01-28

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  1. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  2. Immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-04-01

    We have studied short-line effects in fully-integrated Cu damascene interconnects through electromigration experiments on lines of various lengths and embedded in different dielectric materials. We compare these results with results from analogous experiments on subtractively-etched Al-based interconnects. It is known that Al-based interconnects exhibit three different behaviors, depending on the magnitude of the product of current density, j, and line length, L: For small values of (jL), no void nucleation occurs, and the line is immortal. For intermediate values, voids nucleate, but the line does not fail because the current can flow through the higher-resistivity refractory-metal-based shunt layers. Here, the resistance of the line increases but eventually saturates, and the relative resistance increase is proportional to (jL/B), where B is the effective elastic modulus of the metallization system. For large values of (jL/B), voiding leads to an unacceptably high resistance increase, and the line is considered failed. By contrast, we observed only two regimes for Cu-based interconnects: Either the resistance of the line stays constant during the duration of the experiment, and the line is considered immortal, or the line fails due to an abrupt open-circuit failure. The absence of an intermediate regime in which the resistance saturates is due to the absence of a shunt layer that is able to support a large amount of current once voiding occurs. Since voids nucleate much more easily in Cu- than in Al-based interconnects, a small fraction of short Cu lines fails even at low current densities. It is therefore more appropriate to consider the probability of immortality in the case of Cu rather than assuming a sharp boundary between mortality and immortality. The probability of immortality decreases with increasing amount of material depleted from the cathode, which is proportional to (jL2/B) at steady state. By contrast, the immortality of Al-based interconnects is

  3. Nanotrench for nano and microparticle electrical interconnects

    NASA Astrophysics Data System (ADS)

    Dayen, J.-F.; Faramarzi, V.; Pauly, M.; Kemp, N. T.; Barbero, M.; Pichon, B. P.; Majjad, H.; Begin-Colin, S.; Doudin, B.

    2010-08-01

    We present a simple and versatile patterning procedure for the reliable and reproducible fabrication of high aspect ratio (104) electrical interconnects that have separation distances down to 20 nm and lengths of several hundreds of microns. The process uses standard optical lithography techniques and allows parallel processing of many junctions, making it easily scalable and industrially relevant. We demonstrate the suitability of these nanotrenches as electrical interconnects for addressing micro and nanoparticles by realizing several circuits with integrated species. Furthermore, low impedance metal-metal low contacts are shown to be obtained when trapping a single metal-coated microsphere in the gap, emphasizing the intrinsic good electrical conductivity of the interconnects, even though a wet process is used. Highly resistive magnetite-based nanoparticles networks also demonstrate the advantage of the high aspect ratio of the nanotrenches for providing access to electrical properties of highly resistive materials, with leakage current levels below 1 pA.

  4. Multilevel and Diverse Classrooms

    ERIC Educational Resources Information Center

    Baurain, Bradley, Ed.; Ha, Phan Le, Ed.

    2010-01-01

    The benefits and advantages of classroom practices incorporating unity-in-diversity and diversity-in-unity are what "Multilevel and Diverse Classrooms" is all about. Multilevel classrooms--also known as mixed-ability or heterogeneous classrooms--are a fact of life in ESOL programs around the world. These classrooms are often not only multilevel…

  5. Multilevel Mixture Factor Models

    ERIC Educational Resources Information Center

    Varriale, Roberta; Vermunt, Jeroen K.

    2012-01-01

    Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs)…

  6. Solar cell array interconnects

    DOEpatents

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  7. Solar cell array interconnects

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  8. Laser printed interconnects for flexible electronics

    NASA Astrophysics Data System (ADS)

    Pique, Alberto; Beniam, Iyoel; Mathews, Scott; Charipar, Nicholas

    Laser-induced forward transfer (LIFT) can be used to generate microscale 3D structures for interconnect applications non-lithographically. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or dispersed metallic nanoparticles. However, the resulting 3D structures do not achieve the bulk conductivity of metal interconnects of the same cross-section and length as those formed by wire bonding or tab welding. It is possible, however, to laser transfer entire structures using a LIFT technique known as lase-and-place. Lase-and-place allows whole components and parts to be transferred from a donor substrate onto a desired location with one single laser pulse. This talk will present the use of LIFT to laser print freestanding solid metal interconnects to connect individual devices into functional circuits. Furthermore, the same laser can bend or fold the thin metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief due to flexing or thermal mismatch. Examples of these laser printed 3D metallic bridges and their role in the development of next generation flexible electronics by additive manufacturing will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  9. Double interconnection fuel cell array

    DOEpatents

    Draper, Robert; Zymboly, Gregory E.

    1993-01-01

    A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

  10. Micro-fluidic interconnect

    DOEpatents

    Okandan, Murat; Galambos, Paul C.; Benavides, Gilbert L.; Hetherington, Dale L.

    2006-02-28

    An apparatus for simultaneously aligning and interconnecting microfluidic ports is presented. Such interconnections are required to utilize microfluidic devices fabricated in Micro-Electromechanical-Systems (MEMS) technologies, that have multiple fluidic access ports (e.g. 100 micron diameter) within a small footprint, (e.g. 3 mm.times.6 mm). Fanout of the small ports of a microfluidic device to a larger diameter (e.g. 500 microns) facilitates packaging and interconnection of the microfluidic device to printed wiring boards, electronics packages, fluidic manifolds etc.

  11. Multilevel filtering elliptic preconditioners

    NASA Technical Reports Server (NTRS)

    Kuo, C. C. Jay; Chan, Tony F.; Tong, Charles

    1989-01-01

    A class of preconditioners is presented for elliptic problems built on ideas borrowed from the digital filtering theory and implemented on a multilevel grid structure. They are designed to be both rapidly convergent and highly parallelizable. The digital filtering viewpoint allows the use of filter design techniques for constructing elliptic preconditioners and also provides an alternative framework for understanding several other recently proposed multilevel preconditioners. Numerical results are presented to assess the convergence behavior of the new methods and to compare them with other preconditioners of multilevel type, including the usual multigrid method as preconditioner, the hierarchical basis method and a recent method proposed by Bramble-Pasciak-Xu.

  12. Multilevel ensemble Kalman filtering

    DOE PAGESBeta

    Hoel, Hakon; Law, Kody J. H.; Tempone, Raul

    2016-06-14

    This study embeds a multilevel Monte Carlo sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF) in the setting of finite dimensional signal evolution and noisy discrete-time observations. The signal dynamics is assumed to be governed by a stochastic differential equation (SDE), and a hierarchy of time grids is introduced for multilevel numerical integration of that SDE. Finally, the resulting multilevel EnKF is proved to asymptotically outperform EnKF in terms of computational cost versus approximation accuracy. The theoretical results are illustrated numerically.

  13. A multilevel optimization of large-scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Sundareshan, M. K.

    1976-01-01

    A multilevel feedback control scheme is proposed for optimization of large-scale systems composed of a number of (not necessarily weakly coupled) subsystems. Local controllers are used to optimize each subsystem, ignoring the interconnections. Then, a global controller may be applied to minimize the effect of interconnections and improve the performance of the overall system. At the cost of suboptimal performance, this optimization strategy ensures invariance of suboptimality and stability of the systems under structural perturbations whereby subsystems are disconnected and again connected during operation.

  14. LTCC interconnects in microsystems

    NASA Astrophysics Data System (ADS)

    Rusu, Cristina; Persson, Katrin; Ottosson, Britta; Billger, Dag

    2006-06-01

    Different microelectromechanical system (MEMS) packaging strategies towards high packaging density of MEMS devices and lower expenditure exist both in the market and in research. For example, electrical interconnections and low stress wafer level packaging are essential for improving device performance. Hybrid integration of low temperature co-fired ceramics (LTCC) with Si can be a way for an easier packaging system with integrated electrical interconnection, and as well towards lower costs. Our research on LTCC-Si integration is reported in this paper.

  15. Zee electrical interconnect

    NASA Technical Reports Server (NTRS)

    Rust, Thomas M. (Inventor); Gaddy, Edward M. (Inventor); Herriage, Michael J. (Inventor); Patterson, Robert E. (Inventor); Partin, Richard D. (Inventor)

    2001-01-01

    An interconnect, having some length, that reliably connects two conductors separated by the length of the interconnect when the connection is made but in which one length if unstressed would change relative to the other in operation. The interconnect comprises a base element an intermediate element and a top element. Each element is rectangular and formed of a conducting material and has opposed ends. The elements are arranged in a generally Z-shape with the base element having one end adapted to be connected to one conductor. The top element has one end adapted to be connected to another conductor and the intermediate element has its ends disposed against the other end of the base and the top element. Brazes mechanically and electrically interconnect the intermediate element to the base and the top elements proximate the corresponding ends of the elements. When the respective ends of the base and the top elements are connected to the conductors, an electrical connection is formed therebetween, and when the conductors are relatively moved or the interconnect elements change length the elements accommodate the changes and the associated compression and tension forces in such a way that the interconnect does not mechanically fatigue.

  16. Enabling Inexpensive Metallic Alloys as SOFC Interconnects: An Investigation into Hybrid Coating Technologies to Deposit Nanocomposite Functional Coatings on Ferritic Stainless Steel

    SciTech Connect

    Gannon, Paul; Gorokhovsky, Vladimir I.; Deibert, Max; Smith, Richard J.; Kayani, Asghar N.; White, P T.; Sofie, Stephen W.; Yang, Z Gary; Mccready, David E.; Visco, S.; Jacobson, C.; Kurokawa, H.

    2007-11-01

    Reduced operating temperatures (600-800°C) of Solid Oxide Fuel Cells (SOFCs) may enable the use of inexpensive ferritic steels as interconnects. Due to the demanding SOFC interconnect operating environment, protective coatings are required to increase long-term stability. In this study, large area filtered arc deposition (LAFAD) and hybrid filtered arc-assisted electron beam physical vapor deposition (FA-EBPVD) technologies were used to deposit two-segment coatings with Cr-Al-Y-O nanocomposite bottom segments and Mn-Co-O spinel-based top segments. Coatings were deposited on ferritic steels and subsequently annealed in air for various times. Surface oxidation was investigated using SEM/EDS, XRD and RBS analyses. Cr-volatilization was evaluated by transpiration and ICP-MS analysis of the resultant condensate. Time dependent Area Specific Resistance (ASR) was studied using the four-point technique. The oxidation behavior, Cr volatilization rate, and ASR of coated and uncoated samples are reported. Significant long-term (>1,000 hours) surface stability, low ASR, and dramatically reduced Cr-volatility were observed with the coated specimens. Improvement mechanisms, including the coating diffusion barrier properties and electrical conductivity are discussed.

  17. Viewing Integrated-Circuit Interconnections By SEM

    NASA Technical Reports Server (NTRS)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  18. Optically interconnected phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  19. SOFC INTERCONNECT DEVELOPMENT

    SciTech Connect

    Diane M. England

    2003-06-06

    This report summarizes the interconnect work being performed at Delphi. Materials were chosen for this interconnect project were chosen from ferritic and austenitic stainless steels, and nickel-based superalloys. The alloys are thermally cycled in air and a wet hydrogen atmosphere. The oxide scale adherence, electrical resistance and oxidation resistance are determined after long-term oxidation of each alloy. The oxide scale adherence will be observed using a scanning electron microscope. The electrical resistance of the oxidized alloys will be determined using an electrical resistance measurement apparatus which has been designed and is currently being built. Data from the electrical resistance measurement is expected to be provided in the second quarter.

  20. Central American electrical interconnection

    SciTech Connect

    Not Available

    1988-12-01

    A technical cooperation grant of $2.25 million, designed to strengthen the capacity of Central American countries to operate their regional interconnected electrical system, was announced by the Inter-American Development Bank (IDB). The grant, extended from the banks Fund for Special Operations, will help improve the capacity of the regions electric power companies to achieve economical, safe operation of the interconnected electric power systems. The funds will also be used to finance regional studies of the accords, procedures, regulations, and supervisory mechanisms for the system, as well as program development and data bases.

  1. Optical transceivers for interconnections in satellite payloads

    NASA Astrophysics Data System (ADS)

    Karppinen, Mikko; Heikkinen, Veli; Juntunen, Eveliina; Kautio, Kari; Ollila, Jyrki; Sitomaniemi, Aila; Tanskanen, Antti

    2013-02-01

    The increasing data rates and processing on board satellites call for the use of photonic interconnects providing high-bitrate performance as well as valuable savings in mass and volume. Therefore, optical transmitter and receiver technology is developed for aerospace applications. The metal-ceramic-packaging with hermetic fiber pigtails enables robustness for the harsh spacecraft environment, while the 850-nm VCSEL-based transceiver technology meets the high bit-rate and low power requirements. The developed components include 6 Gbps SpaceFibre duplex transceivers for intra-satellite data links and 40 Gbps parallel optical transceivers for board-to-board interconnects. Also, integration concept of interchip optical interconnects for onboard processor ICs is presented.

  2. Interconnecting with VIPs

    ERIC Educational Resources Information Center

    Collins, Robert

    2013-01-01

    Interconnectedness changes lives. It can even save lives. Recently the author got to witness and be part of something in his role as a teacher of primary science that has changed lives: it may even have saved lives. It involved primary science teaching--and the climate. Robert Collins describes how it is all interconnected. The "Toilet…

  3. Capillary interconnect device

    SciTech Connect

    Renzi, Ronald F

    2013-11-19

    An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.

  4. Open Systems Interconnection.

    ERIC Educational Resources Information Center

    Denenberg, Ray

    1985-01-01

    Discusses the need for standards allowing computer-to-computer communication and gives examples of technical issues. The seven-layer framework of the Open Systems Interconnection (OSI) Reference Model is explained and illustrated. Sidebars feature public data networks and Recommendation X.25, OSI standards, OSI layer functions, and a glossary.…

  5. CAISSON: Interconnect Network Simulator

    NASA Technical Reports Server (NTRS)

    Springer, Paul L.

    2006-01-01

    Cray response to HPCS initiative. Model future petaflop computer interconnect. Parallel discrete event simulation techniques for large scale network simulation. Built on WarpIV engine. Run on laptop and Altix 3000. Can be sized up to 1000 simulated nodes per host node. Good parallel scaling characteristics. Flexible: multiple injectors, arbitration strategies, queue iterators, network topologies.

  6. Optical Interconnection Networks

    NASA Astrophysics Data System (ADS)

    Bergman, Keren; Hughes, Gary

    2004-07-01

    In current high-performance computing and communications systems an emerging need for ultra-high-capacity, low-latency interconnection networks has led investigators to consider insertion of optical-domain switching fabrics. The use of optical technology for the physical switching layer within data communication systems is clearly advantageous in providing maximum bandwidth per cable particularly through the exploitation of DWDM. Furthermore, the transparency offered in the optical domain allows potentially wide flexibility in the data encoding and protocols. However, many key challenges remain to the successful implementation of optical packet routing, as optical signals cannot be processed efficiently or buffered for an arbitrary time. Clearly, innovative architectures, switching fabrics, and packet processing subsystems that employ optical technologies in synergetic fashions with powerful electronic techniques would be poised to harvest the immense transmission bandwidth of optics creating the ultimate "unlimited-capacity" interconnection network.

  7. Optical Interconnection Networks

    NASA Astrophysics Data System (ADS)

    Bergman, Keren; Hughes, Gary

    2004-05-01

    In current high-performance computing and communications systems an emerging need for ultra-high-capacity, low-latency interconnection networks has led investigators to consider insertion of optical-domain switching fabrics. The use of optical technology for the physical switching layer within data communication systems is clearly advantageous in providing maximum bandwidth per cable particularly through the exploitation of DWDM. Furthermore, the transparency offered in the optical domain allows potentially wide flexibility in the data encoding and protocols. However, many key challenges remain to the successful implementation of optical packet routing, as optical signals cannot be processed efficiently or buffered for an arbitrary time. Clearly, innovative architectures, switching fabrics, and packet processing subsystems that employ optical technologies in synergetic fashions with powerful electronic techniques would be poised to harvest the immense transmission bandwidth of optics creating the ultimate "unlimited-capacity" interconnection network.

  8. Optical Interconnection Networks

    NASA Astrophysics Data System (ADS)

    Bergman, Keren; Hughes, Gary

    2004-06-01

    In current high-performance computing and communications systems an emerging need for ultra-high-capacity, low-latency interconnection networks has led investigators to consider insertion of optical-domain switching fabrics. The use of optical technology for the physical switching layer within data communication systems is clearly advantageous in providing maximum bandwidth per cable particularly through the exploitation of DWDM. Furthermore, the transparency offered in the optical domain allows potentially wide flexibility in the data encoding and protocols. However, many key challenges remain to the successful implementation of optical packet routing, as optical signals cannot be processed efficiently or buffered for an arbitrary time. Clearly, innovative architectures, switching fabrics, and packet processing subsystems that employ optical technologies in synergetic fashions with powerful electronic techniques would be poised to harvest the immense transmission bandwidth of optics creating the ultimate "unlimited-capacity" interconnection network.

  9. Multilevel Interventions: Measurement and Measures

    PubMed Central

    Charns, Martin P.; Alligood, Elaine C.; Benzer, Justin K.; Burgess, James F.; Mcintosh, Nathalie M.; Burness, Allison; Partin, Melissa R.; Clauser, Steven B.

    2012-01-01

    Background Multilevel intervention research holds the promise of more accurately representing real-life situations and, thus, with proper research design and measurement approaches, facilitating effective and efficient resolution of health-care system challenges. However, taking a multilevel approach to cancer care interventions creates both measurement challenges and opportunities. Methods One-thousand seventy two cancer care articles from 2005 to 2010 were reviewed to examine the state of measurement in the multilevel intervention cancer care literature. Ultimately, 234 multilevel articles, 40 involving cancer care interventions, were identified. Additionally, literature from health services, social psychology, and organizational behavior was reviewed to identify measures that might be useful in multilevel intervention research. Results The vast majority of measures used in multilevel cancer intervention studies were individual level measures. Group-, organization-, and community-level measures were rarely used. Discussion of the independence, validity, and reliability of measures was scant. Discussion Measurement issues may be especially complex when conducting multilevel intervention research. Measurement considerations that are associated with multilevel intervention research include those related to independence, reliability, validity, sample size, and power. Furthermore, multilevel intervention research requires identification of key constructs and measures by level and consideration of interactions within and across levels. Thus, multilevel intervention research benefits from thoughtful theory-driven planning and design, an interdisciplinary approach, and mixed methods measurement and analysis. PMID:22623598

  10. Material development of polymer/metal paste for flip-chip attach interconnection technology. Quarterly progress report, December 1, 1995--March 31, 1996

    SciTech Connect

    Saraf, R.F.; Roldan, J.M.; Sambucetti, C.J.

    1996-05-01

    In this report on Polymer/Metal Composite (PMC) adhesive the authors describe two aspects of the material that are crucial to its applicability as a viable material for Flip Chip Attach (FCA) technology. They describe the shelf-life of the material at room temperature and its effect on the adhesion. Then they discuss the electrical and mechanical behavior of PMC bond under strain. It is demonstrated that the bond can be subjected to well over 40% strain with insignificant change in its electrical properties.

  11. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-09-15

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

  12. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect

    NASA Astrophysics Data System (ADS)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.; Singh, Prabhakar

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO 4 at the outer sealing edges exposed to air.

  13. Carbon Nanotube Interconnect

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2006-01-01

    Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

  14. Recent developments in multilevel optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garret N.; Kim, D.-S.

    1989-01-01

    Recent developments in multilevel optimization are briefly reviewed. The general nature of the multilevel design task, the use of approximations to develop and solve the analysis design task, the structure of the formal multidiscipline optimization problem, a simple cantilevered beam which demonstrates the concepts of multilevel design and the basic mathematical details of the optimization task and the system level are among the topics discussed.

  15. Electrophoretic deposition of Mn1.5Co1.5O4 on metallic interconnect and interaction with glass-ceramic sealant for solid oxide fuel cells application

    NASA Astrophysics Data System (ADS)

    Smeacetto, Federico; De Miranda, Auristela; Cabanas Polo, Sandra; Molin, Sebastian; Boccaccini, Dino; Salvo, Milena; Boccaccini, Aldo R.

    2015-04-01

    Cr-containing stainless steels are widely used as metallic interconnects for SOFCs. Volatile Cr-containing species, which originate from the oxide formed on steel, can poison the cathode material and subsequently cause degradation in the SOFC stack. Mn1.5Co1.5O4 spinel is one of the most promising coating materials due to its high electrical conductivity, good CTE match with the stainless steel substrate and an excellent chromium retention capability. In this work Mn1.5Co1.5O4 spinel coatings are deposited on Crofer22APU substrates by cathodic electrophoretic deposition (EPD) followed by sintering at 800-1150 °C in different atmospheres. Dense, continuous and crack free Mn1.5Co1.5O4 coatings (with thickness ranging from 10 to 40 μm) are obtained on Crofer22APU substrates. Moreover, electrical properties of the coated Crofer22APU alloy are tested up to 2500 h and an excellent compatibility is found between Mn1.5Co1.5O4 coated Crofer22APU and a new glass-ceramic sealant, after 500 h of thermal tests in air, thus suggesting that the spinel protection layer can effectively act as a barrier to outward diffusion of Cr.

  16. Fully-integrated, bezel-less transistor arrays using reversibly foldable interconnects and stretchable origami substrates.

    PubMed

    Kim, Mijung; Park, Jihun; Ji, Sangyoon; Shin, Sung-Ho; Kim, So-Yun; Kim, Young-Cheon; Kim, Ju-Young; Park, Jang-Ung

    2016-05-14

    Here we demonstrate fully-integrated, bezel-less transistor arrays using stretchable origami substrates and foldable conducting interconnects. Reversible folding of these arrays is enabled by origami substrates which are composed of rigid support fixtures and foldable elastic joints. In addition, hybrid structures of thin metal films and metallic nanowires worked as foldable interconnects which are located on the elastomeric joints. PMID:27101972

  17. Polymeric optoelectronic interconnects

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2000-04-01

    Electrical interconnects are reaching their fundamental limits and are becoming the speed bottleneck as processor speeds are increasing. A polymer-based interconnect technology was developed for affordable integrated optical circuits that address the optical signal processing needs in the telecom, datacom, and performance computing industries. We engineered organic polymers that can be readily made into single-mode, multimode, and micro-optical waveguide structures of controlled numerical apertures and geometries. These materials are formed from highly-crosslinked acrylate monomers with specific linkages that determine properties such as flexibility, robustness, optical loss, thermal stability, and humidity resistance. These monomers are intermiscible, providing for precise continuous adjustment of the refractive index over a wide range. In polymer form, they exhibit state-of-the-art loss values and exceptional environmental stability, enabling use in a variety of demanding applications. A wide range of rigid and flexible substrates can be used, including glass, quartz, silicon, glass-filled epoxy printed circuit board substrates, and flexible plastic films. The devices we describe include a variety of routing elements that can be sued as part of a massively parallel photonic integrated circuit on the MCM, board, or backplane level.

  18. Fuel cell system with interconnect

    SciTech Connect

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  19. Fuel cell system with interconnect

    SciTech Connect

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  20. Fuel cell system with interconnect

    SciTech Connect

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  1. Policy issues in interconnecting networks

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.

    1989-01-01

    To support the activities of the Federal Research Coordinating Committee (FRICC) in creating an interconnected set of networks to serve the research community, two workshops were held to address the technical support of policy issues that arise when interconnecting such networks. The workshops addressed the required and feasible technologies and architectures that could be used to satisfy the desired policies for interconnection. The results of the workshop are documented.

  2. Resistive synaptic interconnects for electronic neural networks

    NASA Technical Reports Server (NTRS)

    Lamb, J. L.; Thakoor, A. P.; Moopenn, A.; Khanna, S. K.

    1987-01-01

    The use of the alpha-Ge(1-x):Al(x) and alpha-Ge(1-x):Cu(x) alloys and Pt/Al2O3 cermet thin films as resistive interconnects for binary synaptic memory arrays is evaluated. The fabrication of the 10-20 microns long, 10 microns wide, and 0.1 micron thick interconnects from the alloys and cermet is described. The current-voltage and switching characteristics of the as-deposited films and the patterned test structure are studied. The resistivity, uniformity, stability, and compatibility of the interconnects are examined. It is observed that alpha-Ge(1-x):Cu(x) alloys have a wide resistivity range and low temperature coefficients of resistance; however, their long-term stability is limited due to their low crystallization temperature. It is detected that the alpha-Ge(1-x):Al(x) alloys have higher crystallization temperatures and their resistivity is not greatly affected by large changes in metal content. The Pt/Al2O3 samples display excellent stability, easy fabrication, and control of resistivity with metal content.

  3. Probabilistic immortality of Cu damascene interconnects

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.

    2002-02-01

    We have studied electromigration short-line effects in Cu damascene interconnects through experiments on lines of various lengths L, stressed at a variety of current densities j, and embedded in different dielectric materials. We observed two modes of resistance evolution: Either the resistance of the lines remains constant for the duration of the test, so that the lines are considered immortal, or the lines fail due to abrupt open-circuit failure. The resistance was not observed to gradually increase and then saturate, as commonly observed in Al-based interconnects, because the barrier is too thin and resistive to serve as a redundant current path should voiding occur. The critical stress for void nucleation was found to be smaller than 41 MPa, since voiding occurred even under the mildest test conditions of j=2 MA/cm2 and L=10.5 μm at 300 °C. A small fraction of short Cu lines failed even at low current densities, which deems necessary a concept of probabilistic immortality rather than deterministic immortality. Experiments and modeling suggest that the probability of immortality is described by (jL2/B), where B is the effective elastic modulus of the metallization scheme. By contrast, the immortality of Al-based interconnects with shunt layers is described by (jL) if no voids nucleate, and (jL/B) if voids do nucleate. Even though the phenomenology of short-line effects differs for Al- and Cu-based interconnects, the immortality of interconnects of either materials system can be explained by the phenomena of nucleation barriers for void formation and void-growth saturation. The differences are due solely to the absence of a shunt layer and the low critical stress for void nucleation in the case of Cu.

  4. Copper Nanowire Production for Interconnect Applications

    NASA Technical Reports Server (NTRS)

    Han, Jin-Woo (Inventor); Meyyappan, Meyya (Inventor)

    2014-01-01

    A method of fabricating metallic Cu nanowires with lengths up to about 25 micrometers and diameters in a range 20-100 nanometers, or greater if desired. Vertically oriented or laterally oriented copper oxide structures (CuO and/or Cu2O) are grown on a Cu substrate. The copper oxide structures are reduced with 99+ percent H or H2, and in this reduction process the lengths decrease (to no more than about 25 micrometers), the density of surviving nanostructures on a substrate decreases, and the diameters of the surviving nanostructures have a range, of about 20-100 nanometers. The resulting nanowires are substantially pure Cu and can be oriented laterally (for local or global interconnects) or can be oriented vertically (for standard vertical interconnects).

  5. Multilevel Modeling of Social Segregation

    ERIC Educational Resources Information Center

    Leckie, George; Pillinger, Rebecca; Jones, Kelvyn; Goldstein, Harvey

    2012-01-01

    The traditional approach to measuring segregation is based upon descriptive, non-model-based indices. A recently proposed alternative is multilevel modeling. The authors further develop the argument for a multilevel modeling approach by first describing and expanding upon its notable advantages, which include an ability to model segregation at a…

  6. A Primer on Multilevel Modeling

    ERIC Educational Resources Information Center

    Hayes, Andrew F.

    2006-01-01

    Multilevel modeling (MLM) is growing in use throughout the social sciences. Although daunting from a mathematical perspective, MLM is relatively easy to employ once some basic concepts are understood. In this article, I present a primer on MLM, describing some of these principles and applying them to the analysis of a multilevel data set on…

  7. QUILD: QUantum-regions interconnected by local descriptions.

    PubMed

    Swart, Marcel; Bickelhaupt, F Matthias

    2008-04-15

    A new program for multilevel (QM/QM and/or QM/MM) approaches is presented that is able to combine different computational descriptions for different regions in a transparent and flexible manner. This program, designated QUILD (for QUantum-regions Interconnected by Local Descriptions), uses adapted delocalized coordinates (Int J Quantum Chem 2006, 106, 2536) for efficient geometry optimizations of equilibrium and transition-state structures, where both weak and strong coordinates may be present. The Amsterdam Density Functional (ADF) program is used for providing density functional theory and MM energies and gradients, while an interface to the ORCA program is available for including RHF, MP2, or semiempirical descriptions. The QUILD optimization setup reduces the number of geometry steps needed for the Baker test-set of 30 organic molecules by approximately 30% and for a weakly-bound test-set of 18 molecules by approximately 75% compared with the old-style optimizer in ADF, i.e., a speedup of roughly a factor four. We report two examples of using geometry optimizations with numerical gradients, for spin-orbit relativistic ZORA and for excited-state geometries. Finally, we show examples of its multilevel capabilities for a number of systems, including the multilevel boundary region of amino acid residues, an S(N)2 reaction in the gas-phase and in solvent, and a DNA duplex. PMID:17902157

  8. Stress-induced voiding study in integrated circuit interconnects

    NASA Astrophysics Data System (ADS)

    Hou, Yuejin; Tan, Cher Ming

    2008-07-01

    An analytical equation for an ultralarge-scale integration interconnect lifetime due to stress-induced voiding (SIV) is derived from the energy perspective. It is shown that the SIV lifetime is strongly dependent on the passivation quality at the cap layer/interconnect interface, the confinement effect by the surrounding materials to the interconnects, and the available diffusion paths in the interconnects. Contrary to the traditional power-law creep model, we find that the temperature exponent in SIV lifetime formulation is determined by the available diffusion paths for the interconnect atoms and the interconnect geometries. The critical temperature for the SIV is found to be independent of passivation integrity and dielectric confinement effect. Actual stress-free temperature (SFT) during the SIV process is also found to be different from the dielectric/cap layer deposition temperature or the final annealing temperature of the metallization, and it can be evaluated analytically once the activation energy, temperature exponent and critical temperature are determined experimentally. The smaller actual SFT indicates that a strong stress relaxation occurs before the high temperature storage test. Our results show that our SIV lifetime model can be used to predict the SIV lifetime in nano-interconnects.

  9. Solder joint reliability of indium-alloy interconnection

    NASA Astrophysics Data System (ADS)

    Shimizu, Kozo; Nakanishi, Teru; Karasawa, Kazuaki; Hashimoto, Kaoru; Niwa, Koichi

    1995-01-01

    Recent high-density very large scale integrated (VLSI) interconnections in multichip modules require high-reliability solder interconnection to enable us to achieve small interconnect size andlarge number of input/output terminals, and to minimize soft errors in VLSIs induced by α-particle emission from solder. Lead-free solders such as indium (In)-alloy solders are a possible alternative to conventional lead-tin (Pb-Sn) solders. To realize reliable interconnections using In-alloy solders, fatigue behavior, finite element method (FEM) simulations, and dissolution and reaction between solder and metallization were studied with flip-chip interconnection models. We measured the fatigue life of solder joints and the mechanical properties of solders, and compared the results with a computer simulation based on the FEM. Indium-alloy solders have better mechanical properties for solder joints, and their flip-chip interconnection models showed a longer fatigue life than that of Pb-Sn solder in thermal shock tests between liquid nitrogen and room temperatures. The fatigue characteristics obtained by experiment agree with that given by FEM analysis. Dissolution tests show that Pt film is resistant to dissolution into In solder, indicating that Pt is an adequate barrier layer material for In solder. This test also shows that Au dissolution into the In-Sn solder raises its melting point; however, Ag addition to In-Sn solder prevents melting point rise. Experimental results show that In-alloy solders are suitable for fabricating reliable interconnections.

  10. Process for electrically interconnecting electrodes

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    2002-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb--Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb--Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  11. Controlled fracture of Cu/ultralow-k interconnects

    NASA Astrophysics Data System (ADS)

    Li, Han; Kobrinsky, Mauro J.; Shariq, Ahmed; Richards, John; Liu, Jimmy; Kuhn, Markus

    2013-12-01

    Mechanical failures of on-chip interconnects in the forms of delamination and cracking are among the most critical challenges for integrating ultralow-dielectric-constant (ultralow-"k") materials in advanced integrated circuits. Designing a mechanically robust interconnect stack against fabrication and packaging stresses requires quantitative characterization of the fracture properties of the integrated structure and its component materials. In this Letter, we demonstrate a simple method to control crack propagation in Cu/ultralow-k interconnect and thereby extract the fracture properties of the metal vias and interlayer dielectrics from integrated structures. Important implications of the method are discussed for interconnect technology development and for fundamental study of fracture behaviors of materials having nano-scale structures.

  12. Supramolecular Organic Nanowires as Plasmonic Interconnects.

    PubMed

    Armao, Joseph J; Domoto, Yuya; Umehara, Teruhiko; Maaloum, Mounir; Contal, Christophe; Fuks, Gad; Moulin, Emilie; Decher, Gero; Javahiraly, Nicolas; Giuseppone, Nicolas

    2016-02-23

    Metallic nanostructures are able to interact with an incident electromagnetic field at subwavelength scales by plasmon resonance which involves the collective oscillation of conduction electrons localized at their surfaces. Among several possible applications of this phenomenon, the theoretical prediction is that optical circuits connecting multiple plasmonic elements will surpass classical electronic circuits at nanoscale because of their much faster light-based information processing. However, the placement and coupling of metallic elements smaller than optical wavelengths currently remain a formidable challenge by top-down manipulations. Here, we show that organic supramolecular triarylamine nanowires of ≈1 nm in diameter are able to act as plasmonic waveguides. Their self-assembly into plasmonic interconnects between arrays of gold nanoparticles leads to the bottom-up construction of basic optical nanocircuits. When the resonance modes of these metallic nanoparticles are coupled through the organic nanowires, the optical conductivity of the plasmonic layer dramatically increases from 259 to 4271 Ω(-1)·cm(-1). We explain this effect by the coupling of a hot electron/hole pair in the nanoparticle antenna with the half-filled polaronic band of the organic nanowire. We also demonstrate that the whole hybrid system can be described by using the abstraction of the lumped circuit theory, with a far field optical response which depends on the number of interconnects. Overall, our supramolecular bottom-up approach opens the possibility to implement processable, soft, and low cost organic plasmonic interconnects into a large number of applications going from sensing to metamaterials and information technologies. PMID:26814600

  13. Method of doping interconnections for electrochemical cells

    DOEpatents

    Pal, Uday B.; Singhal, Subhash C.; Moon, David M.; Folser, George R.

    1990-01-01

    A dense, electronically conductive interconnection layer 26 is bonded on a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) forming a layer of oxide particles of at least one of the metals Ca, Sr, Co, Ba or Mg on a part 24 of a first surface of the air electrode 16, (B) heating the electrode structure, (C) applying a halide vapor containing at least lanthanum halide and chromium halide to the first surface and applying a source of oxygen to a second opposite surface of the air electrode so that they contact at said first surface, to cause a reaction of the oxygen and halide and cause a dense lanthanum-chromium oxide structure to grow, from the first electrode surface, between and around the oxide particles, where the metal oxide particles get incoporated into the lanthanum-chromium oxide structure as it grows thicker with time, and the metal ions in the oxide particles diffuse into the bulk of the lanthamum-chromium oxide structure, to provide a dense, top, interconnection layer 26 on top of the air electrode 16. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.

  14. Fulvalene- and polyarene-transition metal-carborane complexes as building blocks for multilevel arrays. Stepwise synthesis and structural characterization of polymetallic linked sandwiches

    SciTech Connect

    Davis, J.H. Jr.; Sinn, E.; Grimes, R.N. )

    1989-06-21

    The designed synthesis and structural elucidation of a series of linked double-decker and triple-decker arene-metal carborane complexes, in which the sandwich moieties are linked either directly or via bridging phenylene or biphenylene groups, are reported. The reaction of fulvalenide dianion ((C{sub 5}H{sub 4}){sub 2}{sup 2{minus}}) with CoCl{sub 2} and the Et{sub 2}C{sub 2}B{sub 4}H{sub 5}{sup {minus}} ion generated ((Et{sub 2}C{sub 2}B{sub 4}H{sub 4})Co(C{sub 5}H{sub 4})){sub 2} (1), the first known fulvalene-metal-carborane sandwich species, as air-stable orange crystals. Double-decapitation (removal of the apex BH units) of 1 gave yellow air-stable ((Et{sub 2}C{sub 2}B{sub 3}H{sub 5})Co(C{sub 5}H{sub 4})){sub 2} (3). The interaction of the 1,4-bis(tetramethylcyclopentadienyl)phenylene dianion (Me{sub 4}C{sub 5}-C{sub 6}H{sub 4}-C{sub 5}Me{sub 4}){sup 2{minus}} with CoCl{sub 2} and the carborane ion produced orange ((Et{sub 2}C{sub 2}B{sub 4}H{sub 4})Co(C{sub 5}Me{sub 4})){sub 2}C{sub 6}H{sub 4} (4), which on double-decapitation gave yellow ((Et{sub 2}C{sub 2}B{sub 3}H{sub 5})Co(C{sub 5}Me{sub 4})){sub 2}C{sub 6}H{sub 4} (6), both compounds isolated as air-stable crystals. Similar treatment of the (Me{sub 4}C{sub 5}-(C{sub 6}H{sub 4}){sub 2}-C{sub 5}Me{sub 4}){sup 2{minus}} dianion gave orange crystals of ((Et{sub 2}C{sub 2}B{sub 4}H{sub 4})Co(C{sub 5}Me{sub 4})){sub 2} (7), which was decapitated to generate yellow ((Et{sub 2}C{sub 2}B{sub 3}H{sub 5})Co(C{sub 5}Me{sub 4})){sub 2}(C{sub 6}H{sub 4}){sub 2} (9); again both species are air-stable.

  15. Growing Aligned Carbon Nanotubes for Interconnections in ICs

    NASA Technical Reports Server (NTRS)

    Li, Jun; Ye, Qi; Cassell, Alan; Ng, Hou Tee; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2005-01-01

    A process for growing multiwalled carbon nanotubes anchored at specified locations and aligned along specified directions has been invented. Typically, one would grow a number of the nanotubes oriented perpendicularly to a silicon integrated-circuit (IC) substrate, starting from (and anchored on) patterned catalytic spots on the substrate. Such arrays of perpendicular carbon nanotubes could be used as electrical interconnections between levels of multilevel ICs. The process (see Figure 1) begins with the formation of a layer, a few hundred nanometers thick, of a compatible electrically insulating material (e.g., SiO(x) or Si(y)N(z) on the silicon substrate. A patterned film of a suitable electrical conductor (Al, Mo, Cr, Ti, Ta, Pt, Ir, or doped Si), having a thickness between 1 nm and 2 m, is deposited on the insulating layer to form the IC conductor pattern. Next, a catalytic material (usually, Ni, Fe, or Co) is deposited to a thickness between 1 and 30 nm on the spots from which it is desired to grow carbon nanotubes. The carbon nanotubes are grown by plasma-enhanced chemical vapor deposition (PECVD). Unlike the matted and tangled carbon nanotubes grown by thermal CVD, the carbon nanotubes grown by PECVD are perpendicular and freestanding because an electric field perpendicular to the substrate is used in PECVD. Next, the free space between the carbon nanotubes is filled with SiO2 by means of CVD from tetraethylorthosilicate (TEOS), thereby forming an array of carbon nanotubes embedded in SiO2. Chemical mechanical polishing (CMP) is then performed to remove excess SiO2 and form a flat-top surface in which the outer ends of the carbon nanotubes are exposed. Optionally, depending on the application, metal lines to connect selected ends of carbon nanotubes may be deposited on the top surface. The top part of Figure 2 is a scanning electron micrograph (SEM) of carbon nanotubes grown, as described above, on catalytic spots of about 100 nm diameter patterned by

  16. Interconnecting heterogeneous database management systems

    NASA Technical Reports Server (NTRS)

    Gligor, V. D.; Luckenbaugh, G. L.

    1984-01-01

    It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.

  17. Multilevel DC link inverter

    DOEpatents

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  18. Parallel multilevel preconditioners

    SciTech Connect

    Bramble, J.H.; Pasciak, J.E.; Xu, Jinchao.

    1989-01-01

    In this paper, we shall report on some techniques for the development of preconditioners for the discrete systems which arise in the approximation of solutions to elliptic boundary value problems. Here we shall only state the resulting theorems. It has been demonstrated that preconditioned iteration techniques often lead to the most computationally effective algorithms for the solution of the large algebraic systems corresponding to boundary value problems in two and three dimensional Euclidean space. The use of preconditioned iteration will become even more important on computers with parallel architecture. This paper discusses an approach for developing completely parallel multilevel preconditioners. In order to illustrate the resulting algorithms, we shall describe the simplest application of the technique to a model elliptic problem.

  19. Renewable Systems Interconnection: Executive Summary

    SciTech Connect

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  20. Multilevel techniques for nonelliptic problems

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.

    1981-01-01

    Multigrid and multilevel methods are extended to the solution of nonelliptic problems. A framework for analyzing these methods is established. A simple nonelliptic problem is given, and it is shown how a multilevel technique can be used for its solution. Emphasis is on smoothness properties of eigenvectors and attention is drawn to the possibility of conditioning the eigensystem so that eigenvectors have the desired smoothness properties.

  1. Cantilevered multilevel LIGA devices and methods

    DOEpatents

    Morales, Alfredo Martin; Domeier, Linda A.

    2002-01-01

    In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.

  2. Development of Ceramic Interconnect Materials for SOFC

    SciTech Connect

    Yoon, Kyung J.; Stevenson, Jeffry W.; Marina, Olga A.

    2010-08-05

    Currently, acceptor-doped lanthanum chromite is the state-of-the-art ceramic interconnect material for high temperature solid oxide fuel cells (SOFCs) due to its fairly good electronic conductivity and chemical stability in both oxidizing and reducing atmospheres, and thermal compatibility with other cell components. The major challenge for acceptor-doped lanthanum chromite for SOFC interconnect applications is its inferior sintering behavior in air, which has been attributed to the development of a thin layer of Cr2O3 at the interparticle necks during the initial stages of sintering. In addition, lanthanum chromite is reactive with YSZ electrolyte at high temperatures, forming a highly resistive lanthanum zirconate phase (La2Zr2O7), which further complicates co-firing processes. Acceptor-doped yttrium chromite is considered to be one of the promising alternatives to acceptor-doped lanthanum chromite because it is more stable with respect to the formation of hydroxides in SOFC operating conditions, and the formation of impurity phases can be effectively avoided at co-firing temperatures. In addition, calcium-doped yttrium chromite exhibits higher mechanical strength than lanthanum chromite-based materials. The major drawback of yttrium chromite is considered to be its lower electrical conductivity than lanthanum chromite. The properties of yttrium chromites could possibly be improved and optimized by partial substitution of chromium with various transition metals. During FY10, PNNL investigated the effect of various transition metal doping on chemical stability, sintering and thermal expansion behavior, microstructure, electronic and ionic conductivity, and chemical compatibility with other cell components to develop the optimized ceramic interconnect material.

  3. Janus microspheres for visual assessment of molecular interconnects.

    PubMed

    Fliedel, Christophe; Faramarzi, Vina; Rosa, Vitor; Doudin, Bernard; Braunstein, Pierre

    2014-01-27

    A rigid S-functionalized metalloligand is used to pair Janus Au-coated silica microspheres and the resulting assemblies are assessed with optical microscopy. New Pd complexes provide stable molecular interconnects, and the metal centre controls the structure of the linker and provides the desired rigidity, by virtue of its well-established coordination chemistry. PMID:24382696

  4. Misalignment corrections in optical interconnects

    NASA Astrophysics Data System (ADS)

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or

  5. Multilevel turbulence simulations

    SciTech Connect

    Tziperman, E.

    1994-12-31

    The authors propose a novel method for the simulation of turbulent flows, that is motivated by and based on the Multigrid (MG) formalism. The method, called Multilevel Turbulence Simulations (MTS), is potentially more efficient and more accurate than LES. In many physical problems one is interested in the effects of the small scales on the larger ones, or in a typical realization of the flow, and not in the detailed time history of each small scale feature. MTS takes advantage of the fact that the detailed simulation of small scales is not needed at all times, in order to make the calculation significantly more efficient, while accurately accounting for the effects of the small scales on the larger scale of interest. In MTS, models of several resolutions are used to represent the turbulent flow. The model equations in each coarse level incorporate a closure term roughly corresponding to the tau correction in the MG formalism that accounts for the effects of the unresolvable scales on that grid. The finer resolution grids are used only a small portion of the simulation time in order to evaluate the closure terms for the coarser grids, while the coarse resolution grids are then used to accurately and efficiently calculate the evolution of the larger scales. The methods efficiency relative to direct simulations is of the order of the ratio of required integration time to the smallest eddies turnover time, potentially resulting in orders of magnitude improvement for a large class of turbulence problems.

  6. Multilevel fusion exploitation

    NASA Astrophysics Data System (ADS)

    Lindberg, Perry C.; Dasarathy, Belur V.; McCullough, Claire L.

    1996-06-01

    This paper describes a project that was sponsored by the U.S. Army Space and Strategic Defense Command (USASSDC) to develop, test, and demonstrate sensor fusion algorithms for target recognition. The purpose of the project was to exploit the use of sensor fusion at all levels (signal, feature, and decision levels) and all combinations to improve target recognition capability against tactical ballistic missile (TBM) targets. These algorithms were trained with simulated radar signatures to accurately recognize selected TBM targets. The simulated signatures represent measurements made by two radars (S-band and X- band) with the targets at a variety of aspect and roll angles. Two tests were conducted: one with simulated signatures collected at angles different from those in the training database and one using actual test data. The test results demonstrate a high degree of recognition accuracy. This paper describes the training and testing techniques used; shows the fusion strategy employed; and illustrates the advantages of exploiting multi-level fusion.

  7. Novel structures in ceramic interconnect technology.

    SciTech Connect

    Peterson, Kenneth Allen; Rohde, Steven Barney; Casias, Adrian Luther; Stokes, Robert Neal; Turner, Timothy Shawn

    2003-02-01

    Ceramic interconnect technology has been adapted to new structures. In particular, the ability to customize processing order and material choices in Low Temperature Cofired Ceramic (LTCC) has enabled new features to be constructed, which address needs in MEMS packaging as well as other novel structures. Unique shapes in LTCC permit the simplification of complete systems, as in the case of a miniature ion mobility spectrometer (IMS). In this case, a rolled tube has been employed to provide hermetic external contacts to electrodes and structures internal to the tube. Integral windows in LTCC have been fabricated for use in both lids and circuits where either a short term need for observation or a long-term need for functionality exists. These windows are fabricated without adhesive, are fully compatible with LTCC processing, and remain optically clear. Both vented and encapsulated functional volumes have been fabricated using a sacrificial material technique. These hold promise for self-assembly of systems, as well as complex internal structures in cavities, micro fluidic and optical channels, and multilevel integration techniques. Separation of the burnout and firing cycles has permitted custom internal environments to be established. Existing commercial High Temperature Cofired Ceramic (HTCC) and LTCC systems can also be rendered to have improved properties. A rapid prototyping technique for patterned HTCC packages has permitted prototypes to be realized in a few days, and has further applications to micro fluidics, heat pipes, and MEMS, among others. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  8. Fully-integrated, bezel-less transistor arrays using reversibly foldable interconnects and stretchable origami substrates

    NASA Astrophysics Data System (ADS)

    Kim, Mijung; Park, Jihun; Ji, Sangyoon; Shin, Sung-Ho; Kim, So-Yun; Kim, Young-Cheon; Kim, Ju-Young; Park, Jang-Ung

    2016-05-01

    Here we demonstrate fully-integrated, bezel-less transistor arrays using stretchable origami substrates and foldable conducting interconnects. Reversible folding of these arrays is enabled by origami substrates which are composed of rigid support fixtures and foldable elastic joints. In addition, hybrid structures of thin metal films and metallic nanowires worked as foldable interconnects which are located on the elastomeric joints.Here we demonstrate fully-integrated, bezel-less transistor arrays using stretchable origami substrates and foldable conducting interconnects. Reversible folding of these arrays is enabled by origami substrates which are composed of rigid support fixtures and foldable elastic joints. In addition, hybrid structures of thin metal films and metallic nanowires worked as foldable interconnects which are located on the elastomeric joints. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02041k

  9. Manufacturing of planar ceramic interconnects

    SciTech Connect

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R.

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  10. Is there a “school effect” on pupil outcomes? A review of multilevel studies

    PubMed Central

    Sellström, E; Bremberg, S

    2006-01-01

    Study objective The school environment is of importance for child outcomes. Multilevel analyses can separate determinants operating at an individual level from those operating at a contextual level. This paper aims to systematically review multilevel studies of school contextual effects on pupil outcomes. Design Key word searching of five databases yielded 17 cross sectional or longitudinal studies meeting the inclusion criteria. Results are summarised with reference to type of school contextual determinant. Main results Four main school effects on pupil outcomes were identified. Having a health policy or antismoking policy, a good school climate, high average socioeconomic status, and urban location had a positive effect on pupil outcomes. Outcomes under study were smoking habits, wellbeing, problem behaviour, and school achievement. Conclusions Despite the different pupil outcomes and the variety of determinants used in the included papers, a school effect was evident. However, to improve our understanding of school effects, presentations of results from multilevel studies need to be standardised. Intraclass correlation and explained between school variance give relevant information on factors in the school environment influencing pupil outcomes, and should be included in all multilevel studies. Inclusion of pupil level predictors in the multilevel models should be based on theoretical considerations of how schools and communities are interconnected and how pupils and their families are influenced by school contextual factors. PMID:16415266

  11. Multilevel codes and multistage decoding

    NASA Astrophysics Data System (ADS)

    Calderbank, A. R.

    1989-03-01

    Imai and Hirakawa have proposed (1977) a multilevel coding method based on binary block codes that admits a staged decoding procedure. Here the coding method is extended to coset codes and it is shown how to calculate minimum squared distance and path multiplicity in terms of the norms and multiplicities of the different cosets. The multilevel structure allows the redundancy in the coset selection procedure to be allocated efficiently among the different levels. It also allows the use of suboptimal multistage decoding procedures that have performance/complexity advantages over maximum-likelihood decoding.

  12. Multilevel Ensemble Transform Particle Filtering

    NASA Astrophysics Data System (ADS)

    Gregory, Alastair; Cotter, Colin; Reich, Sebastian

    2016-04-01

    This presentation extends the Multilevel Monte Carlo variance reduction technique to nonlinear filtering. In particular, Multilevel Monte Carlo is applied to a certain variant of the particle filter, the Ensemble Transform Particle Filter (ETPF). A key aspect is the use of optimal transport methods to re-establish correlation between coarse and fine ensembles after resampling; this controls the variance of the estimator. Numerical examples present a proof of concept of the effectiveness of the proposed method, demonstrating significant computational cost reductions (relative to the single-level ETPF counterpart) in the propagation of ensembles.

  13. Simulation of void formation in interconnect lines

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Alireza; Heitzinger, Clemens; Puchner, Helmut; Badrieh, Fuad; Selberherr, Siegfried

    2003-04-01

    The predictive simulation of the formation of voids in interconnect lines is important for improving capacitance and timing in current memory cells. The cells considered are used in wireless applications such as cell phones, pagers, radios, handheld games, and GPS systems. In backend processes for memory cells, ILD (interlayer dielectric) materials and processes result in void formation during gap fill. This approach lowers the overall k-value of a given metal layer and is economically advantageous. The effect of the voids on the overall capacitive load is tremendous. In order to simulate the shape and positions of the voids and thus the overall capacitance, the topography simulator ELSA (Enhanced Level Set Applications) has been developed which consists of three modules, a level set module, a radiosity module, and a surface reaction module. The deposition process considered is deposition of silicon nitride. Test structures of interconnect lines of memory cells were fabricated and several SEM images thereof were used to validate the corresponding simulations.

  14. A General Multilevel SEM Framework for Assessing Multilevel Mediation

    ERIC Educational Resources Information Center

    Preacher, Kristopher J.; Zyphur, Michael J.; Zhang, Zhen

    2010-01-01

    Several methods for testing mediation hypotheses with 2-level nested data have been proposed by researchers using a multilevel modeling (MLM) paradigm. However, these MLM approaches do not accommodate mediation pathways with Level-2 outcomes and may produce conflated estimates of between- and within-level components of indirect effects. Moreover,…

  15. Multilevel Modeling with Correlated Effects

    ERIC Educational Resources Information Center

    Kim, Jee-Seon; Frees, Edward W.

    2007-01-01

    When there exist omitted effects, measurement error, and/or simultaneity in multilevel models, explanatory variables may be correlated with random components, and standard estimation methods do not provide consistent estimates of model parameters. This paper introduces estimators that are consistent under such conditions. By employing generalized…

  16. Generalized Multilevel Structural Equation Modeling

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders; Pickles, Andrew

    2004-01-01

    A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent…

  17. Multilevel algorithms for nonlinear optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Dennis, J. E., Jr.

    1994-01-01

    Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems characterized by a large number of constraints that naturally occur in blocks. We propose a class of multilevel optimization methods motivated by the structure and number of constraints and by the expense of the derivative computations for MDO. The algorithms are an extension to the nonlinear programming problem of the successful class of local Brown-Brent algorithms for nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to fit the application, and they separately process each block and the objective function, restricted to certain subspaces. The methods use trust regions as a globalization strategy, and they have been shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems of equations are a special case of the multilevel optimization methods. In this case, they can be viewed as a trust-region globalization of the Brown-Brent class.

  18. Modeling and experimental characterization of electromigration in interconnect trees

    NASA Astrophysics Data System (ADS)

    Thompson, C. V.; Hau-Riege, S. P.; Andleigh, V. K.

    1999-11-01

    Most modeling and experimental characterization of interconnect reliability is focussed on simple straight lines terminating at pads or vias. However, laid-out integrated circuits often have interconnects with junctions and wide-to-narrow transitions. In carrying out circuit-level reliability assessments it is important to be able to assess the reliability of these more complex shapes, generally referred to as `trees.' An interconnect tree consists of continuously connected high-conductivity metal within one layer of metallization. Trees terminate at diffusion barriers at vias and contacts, and, in the general case, can have more than one terminating branch when they include junctions. We have extended the understanding of `immortality' demonstrated and analyzed for straight stud-to-stud lines, to trees of arbitrary complexity. This leads to a hierarchical approach for identifying immortal trees for specific circuit layouts and models for operation. To complete a circuit-level-reliability analysis, it is also necessary to estimate the lifetimes of the mortal trees. We have developed simulation tools that allow modeling of stress evolution and failure in arbitrarily complex trees. We are testing our models and simulations through comparisons with experiments on simple trees, such as lines broken into two segments with different currents in each segment. Models, simulations and early experimental results on the reliability of interconnect trees are shown to be consistent.

  19. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  20. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  1. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  2. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  3. 47 CFR 64.1401 - Expanded interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point...

  4. Formation of interconnections to microfluidic devices

    DOEpatents

    Matzke, Carolyn M.; Ashby, Carol I. H.; Griego, Leonardo

    2003-07-29

    A method is disclosed to form external interconnections to a microfluidic device for coupling of a fluid or light or both into a microchannel of the device. This method can be used to form optical or fluidic interconnections to microchannels previously formed on a substrate, or to form both the interconnections and microchannels during the same process steps. The optical and fluidic interconnections are formed parallel to the plane of the substrate, and are fluid tight.

  5. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Interconnection. 51.305 Section 51.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Additional Obligations of Incumbent Local Exchange Carriers § 51.305 Interconnection. (a) An incumbent LEC shall provide, for the...

  6. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Interconnection. 51.305 Section 51.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Additional Obligations of Incumbent Local Exchange Carriers § 51.305 Interconnection. (a) An incumbent LEC shall provide, for the...

  7. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Interconnection. 51.305 Section 51.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Additional Obligations of Incumbent Local Exchange Carriers § 51.305 Interconnection. (a) An incumbent LEC shall provide, for the...

  8. 47 CFR 51.305 - Interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Interconnection. 51.305 Section 51.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Additional Obligations of Incumbent Local Exchange Carriers § 51.305 Interconnection. (a) An incumbent LEC shall provide, for the...

  9. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Interconnected controls. 29.674 Section 29... Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate independently after a malfunction, failure, or jam of any auxiliary interconnected control....

  10. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Interconnected controls. 27.674 Section 27... Interconnected controls. Each primary flight control system must provide for safe flight and landing and operate independently after a malfunction, failure, or jam of any auxiliary interconnected control....

  11. 18 CFR 292.306 - Interconnection costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any...

  12. 18 CFR 292.306 - Interconnection costs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any...

  13. 18 CFR 292.306 - Interconnection costs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any...

  14. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Interconnected systems. 90.477 Section 90.477 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems. (a) Applicants for new land stations to...

  15. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Interconnected systems. 90.477 Section 90.477 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems. (a) Applicants for new land stations to...

  16. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Interconnected systems. 90.477 Section 90.477... MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems. (a... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases...

  17. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interconnected systems. 90.477 Section 90.477... MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems. (a... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases...

  18. Multilevel step and flash imprint lithography for direct patterning of dielectrics

    NASA Astrophysics Data System (ADS)

    Jen, Wei-Lun; Palmieri, Frank; Chao, Brook; Lin, Michael; Hao, Jianjun; Owens, Jordan; Sotoodeh, Ken; Cheung, Robin; Willson, C. Grant

    2007-03-01

    Modern integrated circuit fabrication uses the dual damascene process to create the copper interconnects in the Back End of the Line (BEOL) processing. The number of wiring levels is increasing to eight or more in advanced microprocessors, and the complexity and cost of the BEOL processes is growing rapidly. An approach to dual damascene processing using Step and Flash Imprint Lithography (S-FIL®) in conjunction with Sacrificial Imprint Materials (SIM) offers the ability to pattern two levels of interconnect structures simultaneously. By using a multi-level imprint template built with both the via and trench structures, one imprint lithography step can produce the same structures as two photolithography steps, greatly reducing the number of patterning process steps in the BEOL layers. This paper presents progress in formulation of new sacrificial imprint materials and the development of S-FIL and etch processes to incorporate the SIM strategy. The SIM is formulated as a two-component system, with a tunable etch rate adjusted by the ratio of the monomer and cross-linker components. High quality imprints were produced with a multi-level template on wafers with blank films of black diamond® dielectric material. The quality of the multi-level pattern transfer from the SIM into black diamond was evaluated.

  19. Flexible interconnects for fuel cell stacks

    DOEpatents

    Lenz, David J.; Chung, Brandon W.; Pham, Ai Quoc

    2004-11-09

    An interconnect that facilitates electrical connection and mechanical support with minimal mechanical stress for fuel cell stacks. The interconnects are flexible and provide mechanically robust fuel cell stacks with higher stack performance at lower cost. The flexible interconnects replace the prior rigid rib interconnects with flexible "fingers" or contact pads which will accommodate the imperfect flatness of the ceramic fuel cells. Also, the mechanical stress of stacked fuel cells will be smaller due to the flexibility of the fingers. The interconnects can be one-sided or double-sided.

  20. Interconnects for nanoscale MOSFET technology: a review

    NASA Astrophysics Data System (ADS)

    Chaudhry, Amit

    2013-06-01

    In this paper, a review of Cu/low-k, carbon nanotube (CNT), graphene nanoribbon (GNR) and optical based interconnect technologies has been done. Interconnect models, challenges and solutions have also been discussed. Of all the four technologies, CNT interconnects satisfy most of the challenges and they are most suited for nanometer scale technologies, despite some minor drawbacks. It is concluded that beyond 32 nm technology, a paradigm shift in the interconnect material is required as Cu/low-k interconnects are approaching fundamental limits.

  1. Pt/Ta2 O5 /HfO2- x /Ti resistive switching memory competing with multilevel NAND flash.

    PubMed

    Yoon, Jung Ho; Kim, Kyung Min; Song, Seul Ji; Seok, Jun Yeong; Yoon, Kyung Jean; Kwon, Dae Eun; Park, Tae Hyung; Kwon, Young Jae; Shao, Xinglong; Hwang, Cheol Seong

    2015-07-01

    Pt/Ta2 O5 /HfO2- x /Ti resistive switching memory with a new circuit design is presented as a feasible candidate to succeed multilevel-cell (MLC) NAND flash memory. This device has the following characteristics: 3 bit MLC, electroforming-free, self-rectifying, much higher cell resistance than interconnection wire resistance, low voltage operation, low power consumption, long-term reliability, and only an electronic switching mechanism, without an ionic-motion-related mechanism. PMID:25973913

  2. Chromium Vaporization Reduction by Nickel Coatings For SOEC Interconnect Materials

    SciTech Connect

    Michael V. Glazoff; Sergey N. Rashkeev; J. Stephen Herring

    2014-09-01

    The vaporization of Cr-rich volatile species from interconnect materials is a major source of degradation that limits the lifetime of planar solid oxide devices systems with metallic interconnects, including Solid Oxide Electrolysis Cells, or SOECs. Some metallic coatings (Ni, Co, and Cu) significantly reduce the Cr release from interconnects and slow down the oxide scale growth on the steel substrate. To shed additional light upon the mechanisms of such protection and find a suitable coating material for ferritic stainless steel materials, we used a combination of first-principles calculations, thermodynamics, and diffusion modeling to investigate which factors determine the quality of the Ni metallic coating at stainless steel interconnector. We found that the Cr migration in Ni coating is determined by a delicate combination of the nickel oxidation, Cr diffusion, and phase transformation processes. Although the formation of Cr2O3 oxide is more exothermic than that of NiO, the kinetic rate of the chromia formation in the coating layer and its surface is significantly reduced by the low mobility of Cr in nickel oxide and in NiCr2O4 spinel. These results are in a good agreement with diffusion modeling for Cr diffusion through Ni coating layer on the ferritic 441 steel substrate.

  3. High performance electrically conductive adhesives (ECAs) for leadfree interconnects

    NASA Astrophysics Data System (ADS)

    Li, Yi

    Electrically conductive adhesives (ECAs) are one of the lead-free interconnect materials with the advantages of environmental friendliness, mild processing conditions, fewer processing steps, low stress on the substrates, and fine pitch interconnect capability. However, some challenging issues still exist for the currently available ECAs, including lower electrical conductivity, conductivity fatigue in reliability tests, limited current-carrying capability, poor impact strength, etc. The interfacial properties is one of the major considerations when resolving these challenges and developing high performance conductive adhesives. Surface functionalization and interface modification are the major approaches used in this thesis. Fundamental understanding and analysis of the interaction between various types of interface modifiers and ECA materials and substrates are the key for the development of high performance ECA for lead-free interconnects. The results of this thesis provide the guideline for the enhancement of interfacial properties of metal-metal and metal-polymer interactions. Systematic investigation of various types of ECAs contributes to a better understanding of materials requirements for different applications, such as surface mount technology (SMT), flip chip applications, flat panel display modules with high resolution, etc. Improvement of the electrical, thermal and reliability of different ECAs make them a potentially ideal candidate for high power and fine pitch microelectronics packaging option.

  4. Metallization failures

    NASA Technical Reports Server (NTRS)

    Beatty, R.

    1971-01-01

    Metallization-related failure mechanisms were shown to be a major cause of integrated circuit failures under accelerated stress conditions, as well as in actual use under field operation. The integrated circuit industry is aware of the problem and is attempting to solve it in one of two ways: (1) better understanding of the aluminum system, which is the most widely used metallization material for silicon integrated circuits both as a single level and multilevel metallization, or (2) evaluating alternative metal systems. Aluminum metallization offers many advantages, but also has limitations particularly at elevated temperatures and high current densities. As an alternative, multilayer systems of the general form, silicon device-metal-inorganic insulator-metal, are being considered to produce large scale integrated arrays. The merits and restrictions of metallization systems in current usage and systems under development are defined.

  5. Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems

    PubMed Central

    Rosvall, Martin; Bergstrom, Carl T.

    2011-01-01

    To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation, which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network — the optimal number of levels and modular partition at each level — with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural networks, and rich multilevel organizations in systems with highly separated regions, such as road networks. PMID:21494658

  6. Interconnects for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Wenhua

    Presently, one of the principal goals of solid oxide fuel cells (SOFCs) research is to reduce the stack operating temperature to between 600 and 800°C. However, one of the principal technological barriers is the non-availability of a suitable material satisfying all of the stability requirements for the interconnect. In this work two approaches for intermediate temperature SOFC interconnects have been explored. The first approach comprises an interconnect consisting of a bi-layer structure, a p-type oxide (La0.96Sr0.08MnO 2.001/LSM) layer exposed to a cathodic environment, and an n-type oxide (Y0.08Sr0.88Ti0.95Al0.05O 3-delta/YSTA) layer exposed to anodic conditions. Theoretical analysis based on the bi-layer structure has established design criteria to implement this approach. The analysis shows that the interfacial oxygen partial pressure, which determines the interconnect stability, is independent of the electronic conductivities of both layers but dependent on the oxygen ion layer interconnects, the oxygen ion conductivities of LSM and YSTA were measured as a function of temperature and oxygen partial pressure. Based on the measured data, it has been determined that if the thickness of YSTA layer is around 0.1cm, the thickness of LSM layer should be around 0.6 mum in order to maintain the stability of LSM. In a second approach, a less expensive stainless steel interconnect has been studied. However, one of the major concerns associated with the use of metallic interconnects is the development of a semi-conducting or insulating oxide scale and chromium volatility during extended exposure to the SOFC operating environment. Dense and well adhered Mn-Cu spinet oxide coatings were successfully deposited on stainless steel by an electrophoretic deposition (EPD) technique. It was found that the Mn-Cu-O coating significantly reduced the oxidation rate of the stainless steel and the volatility of chromium. The area specific resistance (ASR) of coated Crofer 22 APU is

  7. A multilevel stochastic collocation method for SPDEs

    SciTech Connect

    Gunzburger, Max; Jantsch, Peter; Teckentrup, Aretha; Webster, Clayton

    2015-03-10

    We present a multilevel stochastic collocation method that, as do multilevel Monte Carlo methods, uses a hierarchy of spatial approximations to reduce the overall computational complexity when solving partial differential equations with random inputs. For approximation in parameter space, a hierarchy of multi-dimensional interpolants of increasing fidelity are used. Rigorous convergence and computational cost estimates for the new multilevel stochastic collocation method are derived and used to demonstrate its advantages compared to standard single-level stochastic collocation approximations as well as multilevel Monte Carlo methods.

  8. Wafer-level packaging and direct interconnection technology based on hybrid bonding and through silicon vias

    NASA Astrophysics Data System (ADS)

    Kühne, Stéphane; Hierold, Christofer

    2011-08-01

    The presented wafer-level packaging technology enables the direct integration of electrical interconnects during low-temperature wafer bonding of a cap substrate featuring through silicon vias (TSVs) onto a MEMS device wafer. The hybrid bonding process is based on hydrophilic direct bonding of plasma-activated Si/SiO2 surfaces and the simultaneous interconnection of the device metallization layers with Cu TSVs by transient liquid phase (TLP) bonding of ultra-thin AuSn connects. The direct bond enables precise geometry definition between device and cap substrate, whereas the TLP bonding does not require a planarization of the interconnect metallization before bonding. The complete process flow is successfully validated and the fabricated devices' characterization evidenced ohmic interconnects without interfacial voids in the TLP bond.

  9. Thin-film chip-to-substrate interconnect and methods for making same

    DOEpatents

    Tuckerman, David B.

    1991-01-01

    Integrated circuit chips are electrically connected to a silica wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin metal lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability.

  10. IETI - Isogeometric Tearing and Interconnecting.

    PubMed

    Kleiss, Stefan K; Pechstein, Clemens; Jüttler, Bert; Tomar, Satyendra

    2012-11-01

    Finite Element Tearing and Interconnecting (FETI) methods are a powerful approach to designing solvers for large-scale problems in computational mechanics. The numerical simulation problem is subdivided into a number of independent sub-problems, which are then coupled in appropriate ways. NURBS- (Non-Uniform Rational B-spline) based isogeometric analysis (IGA) applied to complex geometries requires to represent the computational domain as a collection of several NURBS geometries. Since there is a natural decomposition of the computational domain into several subdomains, NURBS-based IGA is particularly well suited for using FETI methods. This paper proposes the new IsogEometric Tearing and Interconnecting (IETI) method, which combines the advanced solver design of FETI with the exact geometry representation of IGA. We describe the IETI framework for two classes of simple model problems (Poisson and linearized elasticity) and discuss the coupling of the subdomains along interfaces (both for matching interfaces and for interfaces with T-joints, i.e. hanging nodes). Special attention is paid to the construction of a suitable preconditioner for the iterative linear solver used for the interface problem. We report several computational experiments to demonstrate the performance of the proposed IETI method. PMID:24511167

  11. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-01-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  12. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-03-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  13. Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber

    NASA Technical Reports Server (NTRS)

    Routh, D. E.; Sharma, G. C. (Inventor)

    1984-01-01

    An apparatus is disclosed which includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a dc magnetron sputtering system. A gas inlet introduces various gases to the vacuum chamber and creates various gas plasma during the sputtering steps. The rotating turntables insure that the respective wafers are present under the sputtering guns for an average amount of time such that consistency in sputtering and deposition is achieved. By continuous and sequential processing of the wafers in a common vacuum chamber without removal, the adverse affects of exposure to atmospheric conditions are eliminated providing higher quality circuit contacts and functional device.

  14. Cascade solar cell having conductive interconnects

    DOEpatents

    Borden, Peter G.; Saxena, Ram R.

    1982-10-26

    Direct ohmic contact between the cells in an epitaxially grown cascade solar cell is obtained by means of conductive interconnects formed through grooves etched intermittently in the upper cell. The base of the upper cell is directly connected by the conductive interconnects to the emitter of the bottom cell. The conductive interconnects preferably terminate on a ledge formed in the base of the upper cell.

  15. 47 CFR 90.477 - Interconnected systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Beach, California 34°03′15.0″ 118°14′31.3″ Chicago, Illinois-Northwestern Indiana 41°52′28.1″ 87°38′22.2... 47 Telecommunication 5 2012-10-01 2012-10-01 false Interconnected systems. 90.477 Section 90.477... MOBILE RADIO SERVICES Transmitter Control Interconnected Systems § 90.477 Interconnected systems....

  16. Materials and process development for the monolithic interconnected module (MIM) InGaAs/InP TPV devices

    SciTech Connect

    Fatemi, N.S.; Wilt, D.M.; Jenkins, P.P.; Hoffman, R.W., Jr.; Weizer, V.G.; Murray, C.S.; Riley, D.

    1997-03-01

    The selection, development, and testing of materials and processes for MIM fabrication are described. Topics covered include isolation trenches, contact and interconnect metallization, dielectric isolation barriers, back surface reflectors, and antireflection coatings. (AIP) {copyright} {ital 1997 American Institute of Physics.}

  17. Conducting Multilevel Analyses in Medical Education

    ERIC Educational Resources Information Center

    Zyphur, Michael J.; Kaplan, Seth A.; Islam, Gazi; Barsky, Adam P.; Franklin, Michael S.

    2008-01-01

    A significant body of education literature has begun using multilevel statistical models to examine data that reside at multiple levels of analysis. In order to provide a primer for medical education researchers, the current work gives a brief overview of some issues associated with multilevel statistical modeling. To provide an example of this…

  18. A Multilevel Assessment of Differential Item Functioning.

    ERIC Educational Resources Information Center

    Shen, Linjun

    A multilevel approach was proposed for the assessment of differential item functioning and compared with the traditional logistic regression approach. Data from the Comprehensive Osteopathic Medical Licensing Examination for 2,300 freshman osteopathic medical students were analyzed. The multilevel approach used three-level hierarchical generalized…

  19. Multilevel Interventions: Study Design and Analysis Issues

    PubMed Central

    Gross, Cary P.; Zaslavsky, Alan M.; Taplin, Stephen H.

    2012-01-01

    Multilevel interventions, implemented at the individual, physician, clinic, health-care organization, and/or community level, increasingly are proposed and used in the belief that they will lead to more substantial and sustained changes in behaviors related to cancer prevention, detection, and treatment than would single-level interventions. It is important to understand how intervention components are related to patient outcomes and identify barriers to implementation. Designs that permit such assessments are uncommon, however. Thus, an important way of expanding our knowledge about multilevel interventions would be to assess the impact of interventions at different levels on patients as well as the independent and synergistic effects of influences from different levels. It also would be useful to assess the impact of interventions on outcomes at different levels. Multilevel interventions are much more expensive and complicated to implement and evaluate than are single-level interventions. Given how little evidence there is about the value of multilevel interventions, however, it is incumbent upon those arguing for this approach to do multilevel research that explicates the contributions that interventions at different levels make to the desired outcomes. Only then will we know whether multilevel interventions are better than more focused interventions and gain greater insights into the kinds of interventions that can be implemented effectively and efficiently to improve health and health care for individuals with cancer. This chapter reviews designs for assessing multilevel interventions and analytic ways of controlling for potentially confounding variables that can account for the complex structure of multilevel data. PMID:22623596

  20. Structural optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; James, B.; Dovi, A.

    1983-01-01

    A method is described for decomposing an optimization problem into a set of subproblems and a coordination problem which preserves coupling between the subproblems. The method is introduced as a special case of multilevel, multidisciplinary system optimization and its algorithm is fully described for two level optimization for structures assembled of finite elements of arbitrary type. Numerical results are given for an example of a framework to show that the decomposition method converges and yields results comparable to those obtained without decomposition. It is pointed out that optimization by decomposition should reduce the design time by allowing groups of engineers, using different computers to work concurrently on the same large problem.

  1. Visualizing interconnections among climate risks

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.

    2015-12-01

    It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is

  2. Breathing synchronization in interconnected networks

    PubMed Central

    Louzada, V. H. P.; Araújo, N. A. M.; Andrade, J. S.; Herrmann, H. J.

    2013-01-01

    Global synchronization in a complex network of oscillators emerges from the interplay between its topology and the dynamics of the pairwise interactions among its numerous components. When oscillators are spatially separated, however, a time delay appears in the interaction which might obstruct synchronization. Here we study the synchronization properties of interconnected networks of oscillators with a time delay between networks and analyze the dynamics as a function of the couplings and communication lag. We discover a new breathing synchronization regime, where two groups appear in each network synchronized at different frequencies. Each group has a counterpart in the opposite network, one group is in phase and the other in anti-phase with their counterpart. For strong couplings, instead, networks are internally synchronized but a phase shift between them might occur. The implications of our findings on several socio-technical and biological systems are discussed. PMID:24256765

  3. La0.7Sr0.3MnO3-coated SS444 alloy by dip-coating process for metallic interconnect supported Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    da Conceição, Leandro; Dessemond, Laurent; Djurado, Elisabeth; Souza, Mariana M. V. M.

    2013-11-01

    Sol-gel and dip-coating technologies have been used to deposit La0.7Sr0.3MnO3 (LSM) porous thin films on stainless steel SS444-Cr-17% interconnect plates. Single and double LSM layers were fired in air at 800 °C for 2 h to achieve a sufficient adhesion on the substrate. The microstructure and composition of oxide scales were investigated using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. The area specific resistance (ASR) for coated and uncoated plates was evaluated during long term oxidation in air at 800 °C for 200 h, and between 600 and 900 °C, by DC two point measurements. The formation of an interfacial oxide scale based on (Cr,Mn)3O4 spinel and Cr2O3 has been evidenced for uncoated and LSM-coated SS444. The results indicate that the oxidation resistance of the alloy is enhanced by a protective coating consisting of one single LSM layer. ASR values as low as 0.6 mΩ cm2 were recorded after 200 h at 800 °C. The effectiveness of the LSM layer as a protective coating depends on the stability of the film and its adherence on the alloy substrate.

  4. Strain measurements in aluminum interconnects by x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Hwang, Keith J.

    2000-10-01

    Reliability of metal interconnects in integrated circuits is a major concern to the microelectronics industry. Understanding the impact of stress and strain in metal lines is crucial for improving their reliability. Because of thermal expansion mismatches between the interconnect, substrate, and passivation material, high tensile stresses are developed during processing. In addition, stress gradients develop due to electromigration because of the high current densities passing through the lines. X-ray diffraction is an ideal technique for directly measuring these stresses. However, most of the earlier measurements were performed using millimeter size x-ray beams, allowing only macroscopic determinations of stress. Spatially resolved measurements of stresses in interconnects were not possible. A synchrotron-based white beam x-ray microdiffraction technique was developed and applied for localized strain mapping on polycrystalline thin film interconnects. The system was shown to achieve micron-scale spatial resolution and strain sensitivities on the order of 2 x 10-4. Two methods for performing in-situ calibration of the detector angles utilizing the (001) silicon substrate were presented: the energy method and the interplanar angle method. Various (hkl) reflections were measured from the (001) silicon substrate and the displacement of the x-ray beam was determined. Although discrepancies arose between these methods, both proved satisfactory to correct the Al (hkl) d-spacing measurements. Thermal and electromigration-induced hydrostatic stress distributions in a 2.6 mum wide passivated A1 line were investigated. The Al line exhibited thermal stress behavior consistent with confinement by the silicon/silicon dioxide interface. The electromigration-induced stress evolution indicated the presence of bamboo grains acting as blocking boundaries.

  5. Thin-film chip-to-substrate interconnect and methods for making same

    DOEpatents

    Tuckerman, D.B.

    1988-06-06

    Integrated circuit chips are electrically connected to a silicon wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability. 6 figs.

  6. 14 CFR 29.674 - Interconnected controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Interconnected controls. 29.674 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and...

  7. 14 CFR 27.674 - Interconnected controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Interconnected controls. 27.674 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.674 Interconnected controls. Each primary flight control system must provide for safe flight and landing and...

  8. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All DEMS licensees must make available to the public all information necessary to allow the manufacture of user... the public all information necessary to allow interconnection of DEMS networks....

  9. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All DEMS licensees must make available to the public all information necessary to allow the manufacture of user... the public all information necessary to allow interconnection of DEMS networks....

  10. 47 CFR 101.519 - Interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interconnection. 101.519 Section 101.519 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All...