Science.gov

Sample records for multimode quantum properties

  1. Multimode quantum properties of a self-imaging optical parametric oscillator: Squeezed vacuum and Einstein-Podolsky-Rosen-beams generation

    SciTech Connect

    Lopez, L.; Chalopin, B.; Riviere de la Souchere, A.; Fabre, C.; Treps, N.; Maitre, A.

    2009-10-15

    We investigate the spatial quantum properties of the light emitted by a perfectly spatially degenerate optical parametric oscillator (self-imaging optical parametric oscillator). We show that this device produces local squeezing for areas bigger than a coherence area that depends on the crystal length and pump width. Furthermore, it generates local EPR beams in the far field. We show, calculating the eigenmodes of the system, that it is highly multimode for realistic experimental parameters.

  2. Quantum teleportation of nonclassical wave packets: An effective multimode theory

    SciTech Connect

    Benichi, Hugo; Takeda, Shuntaro; Lee, Noriyuki; Furusawa, Akira

    2011-07-15

    We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.

  3. Invariant measures on multimode quantum Gaussian states

    SciTech Connect

    Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.

    2012-12-15

    We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.

  4. Towards highly multimode optical quantum memory for quantum repeaters

    NASA Astrophysics Data System (ADS)

    Jobez, Pierre; Timoney, Nuala; Laplane, Cyril; Etesse, Jean; Ferrier, Alban; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael

    2016-03-01

    Long-distance quantum communication through optical fibers is currently limited to a few hundreds of kilometres due to fiber losses. Quantum repeaters could extend this limit to continental distances. Most approaches to quantum repeaters require highly multimode quantum memories in order to reach high communication rates. The atomic frequency comb memory scheme can in principle achieve high temporal multimode storage, without sacrificing memory efficiency. However, previous demonstrations have been hampered by the difficulty of creating high-resolution atomic combs, which reduces the efficiency for multimode storage. In this article we present a comb preparation method that allows one to increase the multimode capacity for a fixed memory bandwidth. We apply the method to a 3+151Eu -doped Y2SiO5 crystal, in which we demonstrate storage of 100 modes for 51 μ s using the AFC echo scheme (a delay-line memory) and storage of 50 modes for 0.541 ms using the AFC spin-wave memory (an on-demand memory). We also briefly discuss the ultimate multimode limit imposed by the optical decoherence rate, for a fixed memory bandwidth.

  5. Two-photon quantum walk in a multimode fiber

    PubMed Central

    Defienne, Hugo; Barbieri, Marco; Walmsley, Ian A.; Smith, Brian J.; Gigan, Sylvain

    2016-01-01

    Multiphoton propagation in connected structures—a quantum walk—offers the potential of simulating complex physical systems and provides a route to universal quantum computation. Increasing the complexity of quantum photonic networks where the walk occurs is essential for many applications. We implement a quantum walk of indistinguishable photon pairs in a multimode fiber supporting 380 modes. Using wavefront shaping, we control the propagation of the two-photon state through the fiber in which all modes are coupled. Excitation of arbitrary output modes of the system is realized by controlling classical and quantum interferences. This report demonstrates a highly multimode platform for multiphoton interference experiments and provides a powerful method to program a general high-dimensional multiport optical circuit. This work paves the way for the next generation of photonic devices for quantum simulation, computing, and communication. PMID:27152325

  6. Two-photon quantum walk in a multimode fiber.

    PubMed

    Defienne, Hugo; Barbieri, Marco; Walmsley, Ian A; Smith, Brian J; Gigan, Sylvain

    2016-01-01

    Multiphoton propagation in connected structures-a quantum walk-offers the potential of simulating complex physical systems and provides a route to universal quantum computation. Increasing the complexity of quantum photonic networks where the walk occurs is essential for many applications. We implement a quantum walk of indistinguishable photon pairs in a multimode fiber supporting 380 modes. Using wavefront shaping, we control the propagation of the two-photon state through the fiber in which all modes are coupled. Excitation of arbitrary output modes of the system is realized by controlling classical and quantum interferences. This report demonstrates a highly multimode platform for multiphoton interference experiments and provides a powerful method to program a general high-dimensional multiport optical circuit. This work paves the way for the next generation of photonic devices for quantum simulation, computing, and communication. PMID:27152325

  7. Quantum theory of multimode polariton condensation

    NASA Astrophysics Data System (ADS)

    Racine, David; Eastham, P. R.

    2014-08-01

    We develop a theory for the dynamics of the density matrix describing a multimode polariton condensate. In such a condensate several single-particle orbitals become highly occupied, due to stimulated scattering from reservoirs of high-energy excitons. A generic few-parameter model for the system leads to a Lindblad equation which includes saturable pumping, decay, and condensate interactions. We show how this theory can be used to obtain the population distributions, and the time-dependent first- and second-order coherence functions, in such a multimode condensate. As a specific application, we consider a polaritonic Josephson junction, formed from a double-well potential. We obtain the population distributions, emission line shapes, and widths (first-order coherence functions), and predict the dephasing time of the Josephson oscillations.

  8. Teleporting photonic qudits using multimode quantum scissors

    NASA Astrophysics Data System (ADS)

    Goyal, Sandeep K.; Konrad, Thomas

    2013-12-01

    Teleportation plays an important role in the communication of quantum information between the nodes of a quantum network and is viewed as an essential ingredient for long-distance Quantum Cryptography. We describe a method to teleport the quantum information carried by a photon in a superposition of a number d of light modes (a ``qudit'') by the help of d additional photons based on transcription. A qudit encoded into a single excitation of d light modes (in our case Laguerre-Gauss modes which carry orbital angular momentum) is transcribed to d single-rail photonic qubits, which are spatially separated. Each single-rail qubit consists of a superposition of vacuum and a single photon in each one of the modes. After successful teleportation of each of the d single-rail qubits by means of ``quantum scissors'' they are converted back into a qudit carried by a single photon which completes the teleportation scheme.

  9. Teleporting photonic qudits using multimode quantum scissors.

    PubMed

    Goyal, Sandeep K; Konrad, Thomas

    2013-01-01

    Teleportation plays an important role in the communication of quantum information between the nodes of a quantum network and is viewed as an essential ingredient for long-distance Quantum Cryptography. We describe a method to teleport the quantum information carried by a photon in a superposition of a number d of light modes (a "qudit") by the help of d additional photons based on transcription. A qudit encoded into a single excitation of d light modes (in our case Laguerre-Gauss modes which carry orbital angular momentum) is transcribed to d single-rail photonic qubits, which are spatially separated. Each single-rail qubit consists of a superposition of vacuum and a single photon in each one of the modes. After successful teleportation of each of the d single-rail qubits by means of "quantum scissors" they are converted back into a qudit carried by a single photon which completes the teleportation scheme. PMID:24352610

  10. Multimode quantum interference of photons in multiport integrated devices

    PubMed Central

    Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L.

    2011-01-01

    Photonics is a leading approach in realizing future quantum technologies and recently, optical waveguide circuits on silicon chips have demonstrated high levels of miniaturization and performance. Multimode interference (MMI) devices promise a straightforward implementation of compact and robust multiport circuits. Here, we show quantum interference in a 2×2 MMI coupler with visibility of V=95.6±0.9%. We further demonstrate the operation of a 4×4 port MMI device with photon pairs, which exhibits complex quantum interference behaviour. We have developed a new technique to fully characterize such multiport devices, which removes the need for phase-sensitive measurements and may find applications for a wide range of photonic devices. Our results show that MMI devices can operate in the quantum regime with high fidelity and promise substantial simplification and concatenation of photonic quantum circuits. PMID:21364563

  11. Entanglement-based continuous-variable quantum key distribution with multimode states and detectors

    NASA Astrophysics Data System (ADS)

    Usenko, Vladyslav C.; Ruppert, Laszlo; Filip, Radim

    2014-12-01

    Secure quantum key distribution with multimode Gaussian entangled states and multimode homodyne detectors is proposed. In general the multimode character of both the sources of entanglement and the homodyne detectors can cause a security break even for a perfect channel when trusted parties are unaware of the detection structure. Taking into account the multimode structure and potential leakage of information from a homodyne detector reduces the loss of security to some extent. We suggest the symmetrization of the multimode sources of entanglement as an efficient method allowing us to fully recover the security irrespectively to multimode structure of the homodyne detectors. Further, we demonstrate that by increasing the number of the fluctuating but similar source modes the multimode protocol stabilizes the security of the quantum key distribution. The result opens the pathway towards quantum key distribution with multimode sources and detectors.

  12. Multimode squeezing, biphotons and uncertainty relations in polarization quantum optics

    NASA Technical Reports Server (NTRS)

    Karassiov, V. P.

    1994-01-01

    The concept of squeezing and uncertainty relations are discussed for multimode quantum light with the consideration of polarization. Using the polarization gauge SU(2) invariance of free electromagnetic fields, we separate the polarization and biphoton degrees of freedom from other ones, and consider uncertainty relations characterizing polarization and biphoton observables. As a consequence, we obtain a new classification of states of unpolarized (and partially polarized) light within quantum optics. We also discuss briefly some interrelations of our analysis with experiments connected with solving some fundamental problems of physics.

  13. Multimode circuit optomechanics near the quantum limit

    PubMed Central

    Massel, Francesco; Cho, Sung Un; Pirkkalainen, Juha-Matti; Hakonen, Pertti J.; Heikkilä, Tero T.; Sillanpää, Mika A.

    2012-01-01

    The coupling of distinct systems underlies nearly all physical phenomena. A basic instance is that of interacting harmonic oscillators, giving rise to, for example, the phonon eigenmodes in a lattice. Of particular importance are the interactions in hybrid quantum systems, which can combine the benefits of each part in quantum technologies. Here we investigate a hybrid optomechanical system having three degrees of freedom, consisting of a microwave cavity and two micromechanical beams with closely spaced frequencies around 32 MHz and no direct interaction. We record the first evidence of tripartite optomechanical mixing, implying that the eigenmodes are combinations of one photonic and two phononic modes. We identify an asymmetric dark mode having a long lifetime. Simultaneously, we operate the nearly macroscopic mechanical modes close to the motional quantum ground state, down to 1.8 thermal quanta, achieved by back-action cooling. These results constitute an important advance towards engineering of entangled motional states. PMID:22871806

  14. Experimental quantum imaging exploiting multimode spatial correlation of twin beams

    SciTech Connect

    Brida, Giorgio; Genovese, Marco; Meda, Alice; Berchera, Ivano Ruo

    2011-03-15

    Properties of quantum states have disclosed new and revolutionary technologies, ranging from quantum information to quantum imaging. This last field is intended to overcome the limits of classical imaging by exploiting specific properties of quantum states of light. One of the most interesting proposed schemes exploits spatial quantum correlations between twin beams for realizing sub-shot-noise imaging of weakly absorbing objects, leading ideally to a noise-free imaging. Here we discuss in detail the experimental realization of this scheme, showing its capability to reach a larger signal-to-noise ratio with respect to classical imaging methods and therefore its potential for future practical applications.

  15. Multi-modal luminescence properties of RE3+ (Tm3+, Yb3+) and Bi3+ activated GdNbO4 phosphors—upconversion, downshifting and quantum cutting for spectral conversion

    NASA Astrophysics Data System (ADS)

    Dwivedi, A.; Mishra, Kavita; Rai, S. B.

    2015-11-01

    This work investigates the promising multi-modal luminescence (upconversion (UC), downshifting (DS) and quantum cutting (QC)) properties of RE3+ (Tm3+, Yb3+) and Bi3+ activated GdNbO4 phosphors synthesized using the well-known solid state reaction method. Structural characterization using x-ray diffraction measurements confirms the formation of the pure phase of the GdNbO4 host with no impurities. The optical band gap (E g) of GdNbO4 (with and without RE3+ ions) calculated from UV-Vis-near-infrared (NIR) measurements was found to be the same ~4.44 eV which indicates that GdNbO4 is a wide band gap material. Further, Bi3+ doping presents an interesting E g tuning of the GdNbO4 phosphor, i.e. E g increases up to 5.38 eV. In terms of luminescence, this material produces intense blue and NIR emission via multi-modal optical processes. On NIR excitation (λ exc  =  980 nm), Gd0.94Tm0.01Yb0.05NbO4 produces intense upconverted blue and NIR and relatively weak red emission. In addition to the UC process, Gd0.94Tm0.01Yb0.05NbO4 also exhibits pump power dependent variation in fluorescence intensity ratio for I 472/I 477 showing the applicability of this material as an optical heater. On UV excitation (λ exc  =  265 nm), Gd0.99Tm0.01NbO4 produces intense DS blue emission due to the Tm3+ ion, overlapped with the emission of the (NbO4)3- ion through strong energy transfer (ET) from (NbO4)3- to Tm3+ ions. Interestingly, NIR QC has also been successfully observed in Gd0.9Yb0.1NbO4, Gd0.89Bi0.01Yb0.1NbO4 and Gd0.79Tm0.01Yb0.2NbO4 phosphors through cooperative ET from the (NbO4)3- group to the Yb3+ ion, Bi(6s)-Nb(4d) to the Yb3+ ion and the Tm3+ ion to the Yb3+ ion, respectively. The mechanisms involved in these processes are explained in detail in this work. The QC efficiency in this work has been found to be ~177%. Thus, the multi-modal luminescence (UC, DS and QC) property of this material makes it a promising candidate for display devices, spectral

  16. Quantum probabilities of composite events in quantum measurements with multimode states

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Sornette, D.

    2013-10-01

    The problem of defining quantum probabilities of composite events is considered. This problem is of great importance for the theory of quantum measurements and for quantum decision theory, which is a part of measurement theory. We show that the Lüders probability of consecutive measurements is a transition probability between two quantum states and that this probability cannot be treated as a quantum extension of the classical conditional probability. The Wigner distribution is shown to be a weighted transition probability that cannot be accepted as a quantum extension of the classical joint probability. We suggest the definition of quantum joint probabilities by introducing composite events in multichannel measurements. The notion of measurements under uncertainty is defined. We demonstrate that the necessary condition for mode interference is the entanglement of the composite prospect together with the entanglement of the composite statistical state. As an illustration, we consider an example of a quantum game. Special attention is paid to the application of the approach to systems with multimode states, such as atoms, molecules, quantum dots, or trapped Bose-condensed atoms with several coherent modes.

  17. Tumor-Targeted Multimodal Optical Imaging with Versatile Cadmium-Free Quantum Dots

    PubMed Central

    Liu, Xiangyou; Braun, Gary B.; Zhong, Haizheng; Hall, David J.; Han, Wenlong; Qin, Mingde; Zhao, Chuanzhen; Wang, Meina; She, Zhi-Gang; Cao, Chuanbao; Sailor, Michael J.; Stallcup, William B.; Ruoslahti, Erkki

    2016-01-01

    The rapid development of fluorescence imaging technologies requires concurrent improvements in the performance of fluorescent probes. Quantum dots have been extensively used as an imaging probe in various research areas because of their inherent advantages based on unique optical and electronic properties. However, their clinical translation has been limited by the potential toxicity especially from cadmium. Here, a versatile bioimaging probe is developed by using highly luminescent cadmium-free CuInSe2/ZnS core/shell quantum dots conjugated with CGKRK (Cys–Gly–Lys–Arg–Lys) tumor-targeting peptides. This probe exhibits excellent photostability, reasonably long circulation time, minimal toxicity, and strong tumor-specific homing property. The most important feature of this probe is that it shows distinctive versatility in tumor-targeted multimodal imaging including near-infrared, time-gated, and two-photon imaging in different tumor models. In a glioblastoma mouse model, the targeted probe clearly denotes tumor boundaries and positively labels a population of diffusely infiltrating tumor cells, suggesting its utility in precise tumor detection during surgery. This work lays a foundation for potential clinical translation of the probe.

  18. Storage and retrieval of squeezing in multimode resonant quantum memories

    NASA Astrophysics Data System (ADS)

    Tikhonov, K.; Samburskaya, K.; Golubeva, T.; Golubev, Yu.

    2014-01-01

    In this article the ability to record, store, and read out the quantum properties of light is studied. The discussion is based on high-speed and adiabatic models of quantum memory in λ configuration and in the limit of strong resonance. We show that in this case the equality between efficiency and squeezing ratio, predicted by the simple beam-splitter model, is broken. The requirement of the maximum squeezing in the output pulse should not be accompanied by the requirement of maximum efficiency of memory, as in the beam-splitter model. We have demonstrated that for the same optical depth a high output pulse squeezing can be reached earlier than the high efficiency. Comprehension of this "paradox" is achieved on the basis of mode analysis. The memories eigenmodes, which have an impact on the memory process, are found numerically. Also, the spectral analysis of modes was performed to match the spectral width of the input signal to the capacities of the memories.

  19. Multimode cavity-assisted quantum storage via continuous phase-matching control

    NASA Astrophysics Data System (ADS)

    Kalachev, Alexey; Kocharovskaya, Olga

    2013-09-01

    A scheme for spatial multimode quantum memory is developed such that spatial-temporal structure of a weak signal pulse can be stored and recalled via cavity-assisted off-resonant Raman interaction with a strong angular-modulated control field in an extended Λ-type atomic ensemble. It is shown that effective multimode storage is possible when the Raman coherence spatial grating involves wave vectors with different longitudinal components relative to the paraxial signal field. The possibilities of implementing the scheme in the solid-state materials are discussed.

  20. Energy exchange between modes in a multimode two-color quantum dot laser with optical feedback.

    PubMed

    Virte, Martin; Pawlus, Robert; Sciamanna, Marc; Panajotov, Krassimir; Breuer, Stefan

    2016-07-15

    We investigate experimentally and theoretically the multimode dynamics of a two-color quantum dot laser subject to time-delayed optical feedback. We unveil energy exchanges between the longitudinal modes of the excited state triggered by variations of the feedback phase, and observe that the modal competition between longitudinal modes appears independently within the ground state and excited state emission. These features are accurately reproduced with a quantum dot laser model extended to take into account multiple modes for both ground and excited states. Finally, we discuss the significant impact of such behavior on feedback-based control of two-color quantum dot lasers. PMID:27420496

  1. Gold-silica quantum rattles for multimodal imaging and therapy.

    PubMed

    Hembury, Mathew; Chiappini, Ciro; Bertazzo, Sergio; Kalber, Tammy L; Drisko, Glenna L; Ogunlade, Olumide; Walker-Samuel, Simon; Krishna, Katla Sai; Jumeaux, Coline; Beard, Paul; Kumar, Challa S S R; Porter, Alexandra E; Lythgoe, Mark F; Boissière, Cédric; Sanchez, Clément; Stevens, Molly M

    2015-02-17

    Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. Here, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanoparticles within the shell's central cavity. This "quantum rattle" structure is stable in aqueous solutions, does not elicit cell toxicity, preserves the attractive near-infrared photonics and paramagnetism of gold quantum dots, and enhances the drug-carrier performance of the silica shell. In vivo, the quantum rattles reduced tumor burden in a single course of photothermal therapy while coupling three complementary imaging modalities: near-infrared fluorescence, photoacoustic, and magnetic resonance imaging. The incorporation of gold within the quantum rattles significantly enhanced the drug-carrier performance of the silica shell. This innovative material design based on the mutually beneficial interaction of gold and silica introduces the use of gold quantum dots for imaging and therapeutic applications. PMID:25653336

  2. Gold–silica quantum rattles for multimodal imaging and therapy

    PubMed Central

    Hembury, Mathew; Chiappini, Ciro; Bertazzo, Sergio; Kalber, Tammy L.; Drisko, Glenna L.; Ogunlade, Olumide; Walker-Samuel, Simon; Krishna, Katla Sai; Jumeaux, Coline; Beard, Paul; Kumar, Challa S. S. R.; Porter, Alexandra E.; Lythgoe, Mark F.; Boissière, Cédric; Sanchez, Clément; Stevens, Molly M.

    2015-01-01

    Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. Here, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanoparticles within the shell’s central cavity. This “quantum rattle” structure is stable in aqueous solutions, does not elicit cell toxicity, preserves the attractive near-infrared photonics and paramagnetism of gold quantum dots, and enhances the drug-carrier performance of the silica shell. In vivo, the quantum rattles reduced tumor burden in a single course of photothermal therapy while coupling three complementary imaging modalities: near-infrared fluorescence, photoacoustic, and magnetic resonance imaging. The incorporation of gold within the quantum rattles significantly enhanced the drug-carrier performance of the silica shell. This innovative material design based on the mutually beneficial interaction of gold and silica introduces the use of gold quantum dots for imaging and therapeutic applications. PMID:25653336

  3. Collective dynamics of multimode bosonic systems induced by weak quantum measurement

    NASA Astrophysics Data System (ADS)

    Mazzucchi, Gabriel; Kozlowski, Wojciech; Caballero-Benitez, Santiago F.; Mekhov, Igor B.

    2016-07-01

    In contrast to the fully projective limit of strong quantum measurement, where the evolution is locked to a small subspace (quantum Zeno dynamics), or even frozen completely (quantum Zeno effect), the weak non-projective measurement can effectively compete with standard unitary dynamics leading to nontrivial effects. Here we consider global weak measurement addressing collective variables, thus preserving quantum superpositions due to the lack of which path information. While for certainty we focus on ultracold atoms, the idea can be generalized to other multimode quantum systems, including various quantum emitters, optomechanical arrays, and purely photonic systems with multiple-path interferometers (photonic circuits). We show that light scattering from ultracold bosons in optical lattices can be used for defining macroscopically occupied spatial modes that exhibit long-range coherent dynamics. Even if the measurement strength remains constant, the quantum measurement backaction acts on the atomic ensemble quasi-periodically and induces collective oscillatory dynamics of all the atoms. We introduce an effective model for the evolution of the spatial modes and present an analytic solution showing that the quantum jumps drive the system away from its stable point. We confirm our finding describing the atomic observables in terms of stochastic differential equations.

  4. Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging

    NASA Astrophysics Data System (ADS)

    Yong, Ken-Tye

    2009-01-01

    This work presents a novel approach to producing manganese (Mn)-doped quantum dots (Mnd-QDs) emitting in the near-infrared (NIR). Surface functionalization of Mnd-QDs with lysine makes them stably disperse in aqueous media and able to conjugate with targeting molecules. The nanoparticles were structurally and compositionally characterized and maintained a high photoluminescence quantum yield and displayed paramagnetism in water. The receptor-mediated delivery of bioconjugated Mnd-QDs into pancreatic cancer cells was demonstrated using the confocal microscopy technique. Cytotoxicity of Mnd-QDs on live cells has been evaluated. The NIR-emitting characteristic of the QDs has been exploited to acquire whole animal body imaging with high contrast signals. In addition, histological and blood analysis of mice have revealed that no long-term toxic effects arise from MnD-QDs. These studies suggest multimodal Mnd-QDs have the potentials as probes for early pancreatic cancer imaging and detection.

  5. Multimodality and interactivity: connecting properties of serious games with educational outcomes.

    PubMed

    Ritterfeld, Ute; Shen, Cuihua; Wang, Hua; Nocera, Luciano; Wong, Wee Ling

    2009-12-01

    Serious games have become an important genre of digital media and are often acclaimed for their potential to enhance deeper learning because of their unique technological properties. Yet the discourse has largely remained at a conceptual level. For an empirical evaluation of educational games, extra effort is needed to separate intertwined and confounding factors in order to manipulate and thus attribute the outcome to one property independent of another. This study represents one of the first attempts to empirically test the educational impact of two important properties of serious games, multimodality and interactivity, through a partial 2 x 3 (interactive, noninteractive by high, moderate, low in multimodality) factorial between-participants follow-up experiment. Results indicate that both multimodality and interactivity contribute to educational outcomes individually. Implications for educational strategies and future research directions are discussed. PMID:19903078

  6. Multi-mode absorption spectroscopy using a quantum cascade laser for simultaneous detection of NO and H2O

    NASA Astrophysics Data System (ADS)

    O'Hagan, S.; Pinto, T.; Ewart, P.; Ritchie, G. A. D.

    2016-08-01

    Detection of multiple transitions in NO and H2O using multi-mode absorption spectroscopy, MUMAS, with a quantum cascade laser, QCL, operating at 5.3 μm at scan rates up to 10 kHz is reported. The linewidth of longitudinal modes of the QCL is derived from pressure-dependent fits to experimental MUMAS data. Variations in the spectral structure of the broadband, multi-mode, output of the commercially available QCL employed are analysed to provide accurate fits of modelled MUMAS signatures to the experimental data.

  7. In Situ Study on the Evolution of Multimodal Particle Size Distributions of ZnO Quantum Dots: Some General Rules for the Occurrence of Multimodalities.

    PubMed

    Schindler, Torben; Walter, Johannes; Peukert, Wolfgang; Segets, Doris; Unruh, Tobias

    2015-12-10

    Properties of small semiconductor nanoparticles (NPs) are strongly governed by their size. Precise characterization is a key requirement for tailored dispersities and thus for high-quality devices. Results of a careful analysis of particle size distributions (PSDs) of ZnO are presented combining advantages of UV/vis absorption spectroscopy, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS). Our study reveals that careful cross-validation of these different methods is mandatory to end up with reliable resolution. PSDs of ZnO NPs are multimodal on a size range of 2-8 nm, a finding that is not yet sufficiently addressed. In the second part of our work the evolution of PSDs was studied using in situ SAXS. General principles for the appearance of multimodalities covering a temperature range between 15 and 45 °C were found which are solely determined by the aging state indicated by the size of the medium-sized fraction. Whenever this fraction exceeds a critical diameter, a new multimodality is identified, independent of the particular time-temperature combination. A fraction of larger particles aggregates first before a fraction of smaller particles is detected. Fixed multimodalities have not yet been addressed adequately and could only be evidenced due to careful size analysis. PMID:26550985

  8. Multimodal Mn-doped I-III-VI quantum dots for near infrared fluorescence and magnetic resonance imaging: from synthesis to in vivo application

    NASA Astrophysics Data System (ADS)

    Sitbon, Gary; Bouccara, Sophie; Tasso, Mariana; Francois, Aurélie; Bezdetnaya, Lina; Marchal, Frédéric; Beaumont, Marine; Pons, Thomas

    2014-07-01

    The development of sensitive multimodal contrast agents is a key issue to provide better global, multi-scale images for diagnostic or therapeutic purposes. Here we present the synthesis of Zn-Cu-In-(S, Se)/Zn1-xMnxS core-shell quantum dots (QDs) that can be used as markers for both near-infrared fluorescence imaging and magnetic resonance imaging (MRI). We first present the synthesis of Zn-Cu-In-(S, Se) cores coated with a thick ZnS shell doped with various proportions of Mn. Their emission wavelengths can be tuned over the NIR optical window suitable for deep tissue imaging. The incorporation of manganese ions (up to a few thousand ions per QD) confers them a paramagnetic character, as demonstrated by structural analysis and electron paramagnetic resonance spectroscopy. These QDs maintain their optical properties after transfer to water using ligand exchange. They exhibit T1-relaxivities up to 1400 mM-1 [QD] s-1 at 7 T and 300 K. We finally show that these QDs are suitable multimodal in vivo probes and demonstrate MRI and NIR fluorescence detection of regional lymph nodes in mice.The development of sensitive multimodal contrast agents is a key issue to provide better global, multi-scale images for diagnostic or therapeutic purposes. Here we present the synthesis of Zn-Cu-In-(S, Se)/Zn1-xMnxS core-shell quantum dots (QDs) that can be used as markers for both near-infrared fluorescence imaging and magnetic resonance imaging (MRI). We first present the synthesis of Zn-Cu-In-(S, Se) cores coated with a thick ZnS shell doped with various proportions of Mn. Their emission wavelengths can be tuned over the NIR optical window suitable for deep tissue imaging. The incorporation of manganese ions (up to a few thousand ions per QD) confers them a paramagnetic character, as demonstrated by structural analysis and electron paramagnetic resonance spectroscopy. These QDs maintain their optical properties after transfer to water using ligand exchange. They exhibit T1-relaxivities

  9. Multimode analysis of highly tunable, quantum cascade powered, circular graphene spaser

    SciTech Connect

    Jayasekara, Charith Premaratne, Malin; Stockman, Mark I.; Gunapala, Sarath D.

    2015-11-07

    We carried out a detailed analysis of a circular graphene spaser made of a circular graphene flake and a quantum cascade well structure. Owing to unique properties of graphene and quantum cascade well structure, the proposed design shows high mechanical and thermal stability and low optical losses. Additionally, operation characteristics of the model are analysed and tunability of the device is demonstrated. Some advantages of the proposed design include compact size, lower power operation, and the ability to set the operating wavelength over a wide range from Mid-IR to Near-IR. Thus, it can have wide spread applications including designing of ultracompact and ultrafast devices, nanoscopy and biomedical applications.

  10. Multimodal Mn-doped I-III-VI quantum dots for near infrared fluorescence and magnetic resonance imaging: from synthesis to in vivo application.

    PubMed

    Sitbon, Gary; Bouccara, Sophie; Tasso, Mariana; Francois, Aurélie; Bezdetnaya, Lina; Marchal, Frédéric; Beaumont, Marine; Pons, Thomas

    2014-08-01

    The development of sensitive multimodal contrast agents is a key issue to provide better global, multi-scale images for diagnostic or therapeutic purposes. Here we present the synthesis of Zn-Cu-In-(S, Se)/Zn(1-x)Mn(x)S core-shell quantum dots (QDs) that can be used as markers for both near-infrared fluorescence imaging and magnetic resonance imaging (MRI). We first present the synthesis of Zn-Cu-In-(S, Se) cores coated with a thick ZnS shell doped with various proportions of Mn. Their emission wavelengths can be tuned over the NIR optical window suitable for deep tissue imaging. The incorporation of manganese ions (up to a few thousand ions per QD) confers them a paramagnetic character, as demonstrated by structural analysis and electron paramagnetic resonance spectroscopy. These QDs maintain their optical properties after transfer to water using ligand exchange. They exhibit T1-relaxivities up to 1400 mM(-1) [QD] s(-1) at 7 T and 300 K. We finally show that these QDs are suitable multimodal in vivo probes and demonstrate MRI and NIR fluorescence detection of regional lymph nodes in mice. PMID:24980473

  11. Double quantum dot in a quantum dash: Optical properties

    SciTech Connect

    Kaczmarkiewicz, Piotr Machnikowski, Paweł; Kuhn, Tilmann

    2013-11-14

    We study the optical properties of highly elongated, highly flattened quantum dot structures, also referred to as quantum dashes, characterized by the presence of two trapping centers located along the structure. Such a system can exhibit some of the properties characteristic for double quantum dots. We show that sub- and super-radiant states can form for certain quantum dash geometries, which is manifested by a pronounced transfer of intensity between spectral lines, accompanied by the appearance of strong electron-hole correlations. We also compare exciton absorption spectra and polarization properties of a system with a single and double trapping center and show how the geometry of multiple trapping centers influences the optical properties of the system. We show that for a broad range of trapping geometries the relative absorption intensity of the ground state is larger than that of the lowest excited states, contrary to the quantum dash systems characterized by a single trapping center. Thus, optical properties of these structures are determined by fine details of their morphology.

  12. Entanglement properties of quantum polaritons

    NASA Astrophysics Data System (ADS)

    Suárez-Forero, D. G.; Cipagauta, G.; Vinck-Posada, H.; Fonseca Romero, K. M.; Rodríguez, B. A.; Ballarini, D.

    2016-05-01

    Exciton polaritons are coupled states of matter and light, originated by the strong interaction between an optical mode and semiconductor excitons. This interaction can be obtained also at a single-particle level, in which case it has been shown that a quantum treatment is mandatory. In this work we study the light-matter entanglement of polaritons from a fully quantum formalism including pumping and dissipation. We find that the entanglement is completely destroyed if the exciton and photon are tuned at the resonance condition, even under very low pumping rates. Instead, the best condition for maximizing entanglement and purity of the steady state is when the exciton and photon are out of resonance and when incoherent pumping exactly compensates the dissipation rate. In the presence of multiple quantum dots coupled to the light mode, matter-light entanglement survives only at larger detuning for a higher number of quantum dots considered.

  13. Quantum optical properties in plasmonic systems

    SciTech Connect

    Ooi, C. H. Raymond

    2015-04-24

    Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.

  14. Reliability and failure mode investigation of high-power multimode InGaAs strained quantum well single emitters

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Foran, Brendan; Presser, Nathan; Mason, Maribeth; Moss, Steven C.

    2007-02-01

    In recent years record performance characteristics from multi-mode InGaAs strained quantum well single emitters at 920-980nm have been reported including a maximum CW optical output power of ~20W and a power conversion efficiency of ~75%. These excellent performance characteristics are only possible through combined optimization of laser structure design, chip fabrication processes, and packaging. Whereas broad area multi-mode single emitters likely have sufficient reliability for industrial uses, reliability of these lasers still remains a concern for communications applications including deployment in potential space satellite systems where high reliability is required. Most of previous reports on these lasers have been focused on their performance characteristics with very limited reports on failure mode analysis although understanding the physics of failure is crucial in developing a proper lifetime model for these lasers. We thus report on the reliability and failure mode analysis of high power multi-mode single emitters. The lasers studied were broad area strained InGaAs single QW lasers at 940-980nm with typical aperture widths of around 100μm. At an injection current of 7A typical CW output powers were over 6W at 25°C with a wall plug efficiency of ~60%. First, various lasing characteristics were measured including spatial and thermal characteristics that are critical to understanding performance and reliability of these devices. ACC burn-in tests with different stress conditions were performed on these devices until their failure. We report accelerated lifetest results with over 5000 accumulated test hours. Finally, we report failure mode investigation results of the degraded lasers.

  15. Generation of Light with Multimode Time-Delayed Entanglement Using Storage in a Solid-State Spin-Wave Quantum Memory

    NASA Astrophysics Data System (ADS)

    Ferguson, Kate R.; Beavan, Sarah E.; Longdell, Jevon J.; Sellars, Matthew J.

    2016-07-01

    Here, we demonstrate generating and storing entanglement in a solid-state spin-wave quantum memory with on-demand readout using the process of rephased amplified spontaneous emission (RASE). Amplified spontaneous emission (ASE), resulting from an inverted ensemble of Pr3 + ions doped into a Y2 SiO5 crystal, generates entanglement between collective states of the praseodymium ensemble and the output light. The ensemble is then rephased using a four-level photon echo technique. Entanglement between the ASE and its echo is confirmed and the inseparability violation preserved when the RASE is stored as a spin wave for up to 5 μ s . RASE is shown to be temporally multimode with almost perfect distinguishability between two temporal modes demonstrated. These results pave the way for the use of multimode solid-state quantum memories in scalable quantum networks.

  16. Generation of Light with Multimode Time-Delayed Entanglement Using Storage in a Solid-State Spin-Wave Quantum Memory.

    PubMed

    Ferguson, Kate R; Beavan, Sarah E; Longdell, Jevon J; Sellars, Matthew J

    2016-07-01

    Here, we demonstrate generating and storing entanglement in a solid-state spin-wave quantum memory with on-demand readout using the process of rephased amplified spontaneous emission (RASE). Amplified spontaneous emission (ASE), resulting from an inverted ensemble of Pr^{3+} ions doped into a Y_{2}SiO_{5} crystal, generates entanglement between collective states of the praseodymium ensemble and the output light. The ensemble is then rephased using a four-level photon echo technique. Entanglement between the ASE and its echo is confirmed and the inseparability violation preserved when the RASE is stored as a spin wave for up to 5  μs. RASE is shown to be temporally multimode with almost perfect distinguishability between two temporal modes demonstrated. These results pave the way for the use of multimode solid-state quantum memories in scalable quantum networks. PMID:27447494

  17. Red persistent luminescence and magnetic properties of nanomaterials for multimodal imaging

    NASA Astrophysics Data System (ADS)

    Rosticher, C.; Chanéac, C.; Viana, B.; Fortin, M. A.; Lagueux, J.; Faucher, L.

    2014-03-01

    We present a new generation of nanotracers with persistent luminescence properties in the red-near IR range for small animal imaging. Silicates, oxysulfides and calcium phosphates nanoparticles doped with transition metal and lanthanide ions were developed in this aim. We have focused our attention in this paper on the biocompatible TCP/HAp phosphate compounds doped with Eu, Mn, Dy and on the Gd2O2S:Eu, Mg, Ti materials in the form of nanoparticles. All the nanosensors were hydrothermally synthesized and if the phosphate has a very high interest due to its biocompatibility Gd2O2S:Eu, Mg, Ti was investigated as a multimodal agent for possible in vivo optical imaging and MRI imaging.

  18. Monogamy properties of quantum and classical correlations

    SciTech Connect

    Giorgi, Gian Luca

    2011-11-15

    In contrast with entanglement, as measured by concurrence, in general, quantum discord does not possess the property of monogamy; that is, there is no tradeoff between the quantum discord shared by a pair of subsystems and the quantum discord that both of them can share with a third party. Here, we show that, as far as monogamy is considered, quantum discord of pure states is equivalent to the entanglement of formation. This result allows one to analytically prove that none of the pure three-qubit states belonging to the subclass of W states is monogamous. A suitable physical interpretation of the meaning of the correlation information as a quantifier of monogamy for the total information is also given. Finally, we prove that, for rank 2 two-qubit states, discord and classical correlations are bounded from above by single-qubit von Neumann entropies.

  19. Optical properties of charged semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Jha, Praket P.

    The effect of n-type doping on the luminescence properties of II-VI quantum dots is studied. The addition of two shells of CdS on CdSe quantum dots prevents the creation of surface traps and makes the system stable under reducing environment. The injection of electrons into films of quantum dots leads to lower photoluminescence (PL) efficiency, with the extent of quenching dependent on both the number and the quantum states of the spectator charges in the nanocrystal. It is found that a 1Pe electron is an eightfold better PL quencher than the 1Se electron. Reduced threshold for stimulated emission is also observed in doped CdSe/CdS films. Time resolved photoluminescence measurements are used to extract the recombination rates of a charged exciton, called trion. It is observed that the negative trion has a radiative rate ˜2.2 +/- 0.4x faster than a neutral exciton, while its non-radiative recombination rate is slower than the biexciton non-radiative recombination rate by a factor of 7.5 +/- 1.7. The knowledge of the recombination rates of the trion enables us to calculate the quantum yield of a negative trion to be ˜10% for the nanocrystals investigated in our work. This is larger than the off state quantum yield from a single quantum dot photoluminescence trajectory and eliminates the formation of negative trion as the possible reason for the PL blinking of single quantum dots. Single quantum dot electrochemistry has also been achieved. It is shown that by varying the Fermi level of the system electrons can be reversibly injected into and extracted out of single CdSe/CdS and CdSe/ZnS nanoparticles to modulate the photoluminescence.

  20. Quantum properties of QCD string fragmentation

    NASA Astrophysics Data System (ADS)

    Todorova-Nová, Šárka

    2016-07-01

    A simple quantization concept for a 3-dim QCD string is used to derive properties of QCD flux tube from the mass spectrum of light mesons and to predict observable quantum effects in correlations between adjacent hadrons. The quantized fragmentation model is presented and compared with experimental observations.

  1. Time-Dependent Properties of Multimodal Polyoxymethylene Based Binder for Powder Injection Molding

    NASA Astrophysics Data System (ADS)

    Gonzalez-Gutierrez, Joamin; Stringari, Gustavo Beulke; Zupancic, Barbara; Kubyshkina, Galina; Bernstorff, Bernd Von; Emri, Igor

    Powder injection molding (PIM) is one of the most versatile methods for the manufacturing of small complex shaped components from metal, ceramic or cemented carbide powders for the use in many applications. PIM consists of mixing the powder and a polymeric binder, injecting this mixture in a mold, debinding and then sintering. Catalytic debinding of polyoxymethylene (POM) is attractive since it shows high debinding rates and low risk of cracking. This work examines the possibility of using POM with bimodal molecular mass distribution as the main component of the binding agent by studying its time-dependent properties and comparing them to monomodal POM. Furthermore, possible optimization of the binder formulation was investigated by the addition of shorter polymeric chains (wax) to bimodal POM, as to create a multimodal material. It was observed that the magnitude of the complex viscosity for the commercial bimodal material was more than 2 times lower than for the chemically identical monomodal POM within the investigated frequency range and temperature. Viscosity values were observed to drop as the content of wax was increased, without compromising the binders mechanical properties in solid state. A new formulation of bimodal POM plus 8 wt.% of added wax provided the most appropriate results from investigated combinations. This work has shown how the addition of short polymeric chains in POM influences its time-dependent properties in solid and molten state, which can be an important tool for the optimization of binders designed to be used in PIM technology.

  2. Quantum Control of Molecular Properties

    SciTech Connect

    Sola, I. R.; Gonzalez-Vazquez, J.; Santamaria, J.; Malinovsky, V. S.; Chang, B. Y.

    2007-12-26

    A general scheme is presented for controlling different molecular properties under strong pulse sequences working in the adiabatic regime. The strong laser pulses create laser induced potentials (LIP). The design of adiabatic schemes allows to move the wave function to the desired LIP. Manipulation of the structure of these LIPs and the starting energy of the wave function in the LIP, allows to control such different properties as bond lengths, vibrational motions, and intramolecular couplings. This work reviews some recent results under a unified frame and explores future applications.

  3. Quantum steering of multimode Gaussian states by Gaussian measurements: monogamy relations and the Peres conjecture

    NASA Astrophysics Data System (ADS)

    Ji, Se-Wan; Kim, M. S.; Nha, Hyunchul

    2015-04-01

    It is a topic of fundamental and practical importance how a quantum correlated state can be reliably distributed through a noisy channel for quantum information processing. The concept of quantum steering recently defined in a rigorous manner is relevant to study it under certain circumstances and here we address quantum steerability of Gaussian states to this aim. In particular, we attempt to reformulate the criterion for Gaussian steering in terms of local and global purities and show that it is sufficient and necessary for the case of steering a 1-mode system by an N-mode system. It subsequently enables us to reinforce a strong monogamy relation under which only one party can steer a local system of 1-mode. Moreover, we show that only a negative partial-transpose state can manifest quantum steerability by Gaussian measurements in relation to the Peres conjecture. We also discuss our formulation for the case of distributing a two-mode squeezed state via one-way quantum channels making dissipation and amplification effects, respectively. Finally, we extend our approach to include non-Gaussian measurements, more precisely, all orders of higher-order squeezing measurements, and find that this broad set of non-Gaussian measurements is not useful to demonstrate steering for Gaussian states beyond Gaussian measurements.

  4. Coin state properties in quantum walks

    PubMed Central

    Andrade, R. F. S.

    2013-01-01

    Recent experimental advances have measured individual coin components in discrete time quantum walks, which have not received the due attention in most theoretical studies on the theme. Here is presented a detailed investigation of the properties of M, the difference between square modulus of coin states of discrete quantum walks on a linear chain. Local expectation values are obtained in terms of real and imaginary parts of the Fourier transformed wave function. A simple expression is found for the average difference between coin states in terms of an angle θ gauging the coin operator and its initial state. These results are corroborated by numerical integration of dynamical equations in real space. The local dependence is characterized both by large and short period modulations. The richness of revealed patterns suggests that the amount of information stored and retrieved from quantum walks is significantly enhanced if M is taken into account. PMID:23756358

  5. Hopc: a Novel Similarity Metric Based on Geometric Structural Properties for Multi-Modal Remote Sensing Image Matching

    NASA Astrophysics Data System (ADS)

    Ye, Yuanxin; Shen, Li

    2016-06-01

    Automatic matching of multi-modal remote sensing images (e.g., optical, LiDAR, SAR and maps) remains a challenging task in remote sensing image analysis due to significant non-linear radiometric differences between these images. This paper addresses this problem and proposes a novel similarity metric for multi-modal matching using geometric structural properties of images. We first extend the phase congruency model with illumination and contrast invariance, and then use the extended model to build a dense descriptor called the Histogram of Orientated Phase Congruency (HOPC) that captures geometric structure or shape features of images. Finally, HOPC is integrated as the similarity metric to detect tie-points between images by designing a fast template matching scheme. This novel metric aims to represent geometric structural similarities between multi-modal remote sensing datasets and is robust against significant non-linear radiometric changes. HOPC has been evaluated with a variety of multi-modal images including optical, LiDAR, SAR and map data. Experimental results show its superiority to the recent state-of-the-art similarity metrics (e.g., NCC, MI, etc.), and demonstrate its improved matching performance.

  6. Electrical properties of semiconductor quantum dots

    SciTech Connect

    Kharlamov, V. F. Korostelev, D. A.; Bogoraz, I. G.; Milovidova, O. A.; Sergeyev, V. O.

    2013-04-15

    A method, which makes it possible to obtain semiconductor particles V Almost-Equal-To 10{sup -20} cm{sup 3} in volume (quantum dots) with a concentration of up to 10{sup 11} cm{sup -2} and electrical contacts to each of them, is suggested. High variability in the electrical properties of such particles from a metal oxide (CuO or NiO) after the chemisorption of gas molecules is found.

  7. Nonclassical properties and quantum resources of hierarchical photonic superposition states

    SciTech Connect

    Volkoff, T. J.

    2015-11-15

    We motivate and introduce a class of “hierarchical” quantum superposition states of N coupled quantum oscillators. Unlike other well-known multimode photonic Schrödinger-cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schrödinger-cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical states, we consider their usefulness for highprecision quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently existing quantum optical technology for generating entanglement between spatially separated electromagnetic field modes.

  8. Mid-infrared multimode fiber-coupled quantum cascade laser for off-beam quartz-enhanced photoacoustic detection.

    PubMed

    Li, Zhili; Shi, Chao; Ren, Wei

    2016-09-01

    A mid-infrared quartz-enhanced photoacoustic sensor was developed using a multimode fiber (MMF)-coupled quantum cascade laser (QCL) and demonstrated for sensitive nitric oxide (NO) detection at a wavelength near 5.26 μm. The QCL radiation was readily coupled into a solid-core InF3 MMF (100 μm core) with 97% coupling efficiency using an aspheric lens. Despite the 25.5% transmission loss for the 1 m long MMF, the Gaussian beam-like fiber output of 5.72° divergence was almost completely focused through the microresonator tube (length, 8.0 mm; ID, 600 μm) designed for off-beam quartz-enhanced photoacoustic spectroscopy. The sensor exploiting the R6.5 (Π21/2) doublet of NO at 1900.08  cm-1 demonstrated a minimum detection limit of 24 parts per billion by volume at an averaging time of 130 s. The sensor was found to be insensitive to the fiber bending noise for a bending radius >5  cm. PMID:27607981

  9. Statistical properties of a quantum cellular automaton

    NASA Astrophysics Data System (ADS)

    Inui, Norio; Inokuchi, Shuichi; Mizoguchi, Yoshihiro; Konno, Norio

    2005-09-01

    We study a quantum cellular automaton (QCA) whose time evolution is defined using the global transition function of a classical cellular automaton (CA). In order to investigate natural transformations from CAs to QCAs, the present QCA includes the CA with Wolfram’s rules 150 and 105 as special cases. We first compute the time evolution of the QCA and examine its statistical properties. As a basic statistical value, the probability of finding an active cell averaged over spatial-temporal space is introduced, and the difference between the CA and QCA is considered. In addition, it is shown that statistical properties in QCAs are related to the classical trajectory in configuration space.

  10. Quantum multimode treatment of light scattering by an atom in a waveguide

    NASA Astrophysics Data System (ADS)

    Konyk, William; Gea-Banacloche, Julio

    2016-06-01

    We present a full multimode treatment of the interaction of the quantized radiation field with a single two-level atom in a one-dimensional waveguide configuration. Starting with an incident pulse consisting of an arbitrary (finite) number of photons in a general initial state, we derive the equations of motion and a closed-form expression for the shape of the pulse after its interaction with the atom. We then specialize our results to the two-photon case where a number of analytical results can be derived, for both unidirectional and bidirectional systems. We study the effects of different pulse shapes, the manifestations of the entangled, so-called bound state of the two photons, single- and two-photon detection probabilities, and provide simple approximate results for the strong-coupling (or adiabatic, or long-pulse) regime. We also discuss the requirements for a true unidirectional setup, and the application of such a setup to photon sorting proposed by Witthaut, Lukin, and Sørensen [Europhys. Lett. 97, 50007 (2012), 10.1209/0295-5075/97/50007].

  11. General Properties of Overlap Operators in Disordered Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Itoi, C.

    2016-04-01

    We study short-range quantum spin systems with Gaussian disorder. We obtain quantum mechanical extensions of the Ghirlanda-Guerra identities. We discuss properties of overlap spin operators with these identities.

  12. Observation of multi-mode: Upconversion, downshifting and quantum-cutting emission in Tm3+/Yb3+ co-doped Y2O3 phosphor

    NASA Astrophysics Data System (ADS)

    Yadav, Ranvijay; Singh, S. K.; Verma, R. K.; Rai, S. B.

    2014-04-01

    Micro-crystalline Y2O3 phosphor co-doped with Yb3+/Tm3+ has been synthesized and characterized. The phosphor material gives efficient multimodal emission via downshifting (DS), upconversion (UC), and downconversion (DC)/quantum cutting (QC) luminescence processes. Cross relaxation and co-operative energy transfer (CET) have been ascribed as the possible mechanism for QC; as result of which a UV/blue photon absorbed by Tm3+ splits into two near infrared photons (wavelength range 950-1050 nm) emitted by Yb3+. The Yb3+ concentration dependent ET efficiency and QC efficiency has also been evaluated. Such multi-mode emitting phosphors could have potential applications in increasing the conversion efficiency of solar cells via spectral modification.

  13. Multimode mediated qubit-qubit coupling and dark-state symmetries in circuit quantum electrodynamics

    SciTech Connect

    Filipp, S.; Goeppl, M.; Fink, J. M.; Baur, M.; Bianchetti, R.; Steffen, L.; Wallraff, A.

    2011-06-15

    Microwave cavities with high quality factors enable coherent coupling of distant quantum systems. Virtual photons lead to a transverse interaction between qubits when they are nonresonant with the cavity but resonant with each other. We experimentally investigate the inverse scaling of the interqubit coupling with the detuning from a cavity mode and its proportionality to the qubit-cavity interaction strength. We demonstrate that the enhanced coupling at higher frequencies is mediated by multiple higher-harmonic cavity modes. Moreover, we observe dark states of the coupled qubit-qubit system and analyze their relation to the symmetry of the applied driving field at different frequencies.

  14. Degradation processes in high power multi-mode InGaAs strained quantum well lasers

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Foran, Brendan; Moss, Steven C.

    2009-02-01

    Recently, broad-area InGaAs-AlGaAs strained quantum well (QW) lasers have attracted much attention because of their unparalleled high optical output power characteristics that narrow stripe lasers or tapered lasers can not achieve. However, broad-area lasers suffer from poor beam quality and their high reliability operation has not been proven for communications applications. This paper concerns reliability and degradation aspects of broad-area lasers. Good facet passivation techniques along with optimized structural designs have led to successful demonstration of reliable 980nm single-mode lasers, and the dominant failure mode of both single-mode and broadarea lasers is catastrophic optical mirror damage (COMD), which limits maximum output powers and also determines operating output powers. Although broad-area lasers have shown characteristics unseen from singlemode lasers including filamentation, their effects on long-term reliability and degradation processes have not been fully investigated. Filamentation can lead to instantaneous increase in optical power density and thus temperature rise at localized areas through spatial-hole burning and thermal lensing which significantly reduces filament sizes under high power operation, enhancing the COMD process. We investigated degradation processes in commercial MOCVD-grown broad-area InGaAs-AlGaAs strained QW lasers at ~975nm with and without passivation layers by performing accelerated lifetests of these devices followed by failure mode analyses with various micro-analytical techniques. Since instantaneous fluctuations of filaments can lead to faster wear-out of passivation layer thus leading to facet degradation, both passivated and unpassivated broad-area lasers were studied that yielded catastrophic failures at the front facet and also in the bulk. Electron beam induced current technique was employed to study dark line defects (DLDs) generated in degraded lasers stressed under different test conditions and focused

  15. Multi-mode entangled states represented as Grassmannian polynomials

    NASA Astrophysics Data System (ADS)

    Maleki, Y.

    2016-06-01

    We introduce generalized Grassmannian representatives of multi-mode state vectors. By implementing the fundamental properties of Grassmann coherent states, we map the Hilbert space of the finite-dimensional multi-mode states to the space of some Grassmannian polynomial functions. These Grassmannian polynomials form a well-defined space in the framework of Grassmann variables; namely Grassmannian representative space. Therefore, a quantum state can be uniquely defined and determined by an element of Grassmannian representative space. Furthermore, the Grassmannian representatives of some maximally entangled states are considered, and it is shown that there is a tight connection between the entanglement of the states and their Grassmannian representatives.

  16. Optical properties of quantum-dot-doped liquid scintillators

    PubMed Central

    Aberle, C.; Li, J.J.; Weiss, S.; Winslow, L.

    2014-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO. PMID:25392711

  17. A family of generalized quantum entropies: definition and properties

    NASA Astrophysics Data System (ADS)

    Bosyk, G. M.; Zozor, S.; Holik, F.; Portesi, M.; Lamberti, P. W.

    2016-08-01

    We present a quantum version of the generalized (h,φ )-entropies, introduced by Salicrú et al. for the study of classical probability distributions. We establish their basic properties and show that already known quantum entropies such as von Neumann, and quantum versions of Rényi, Tsallis, and unified entropies, constitute particular classes of the present general quantum Salicrú form. We exhibit that majorization plays a key role in explaining most of their common features. We give a characterization of the quantum (h,φ )-entropies under the action of quantum operations and study their properties for composite systems. We apply these generalized entropies to the problem of detection of quantum entanglement and introduce a discussion on possible generalized conditional entropies as well.

  18. A family of generalized quantum entropies: definition and properties

    NASA Astrophysics Data System (ADS)

    Bosyk, G. M.; Zozor, S.; Holik, F.; Portesi, M.; Lamberti, P. W.

    2016-05-01

    We present a quantum version of the generalized (h,φ ) -entropies, introduced by Salicrú et al. for the study of classical probability distributions. We establish their basic properties and show that already known quantum entropies such as von Neumann, and quantum versions of Rényi, Tsallis, and unified entropies, constitute particular classes of the present general quantum Salicrú form. We exhibit that majorization plays a key role in explaining most of their common features. We give a characterization of the quantum (h,φ ) -entropies under the action of quantum operations and study their properties for composite systems. We apply these generalized entropies to the problem of detection of quantum entanglement and introduce a discussion on possible generalized conditional entropies as well.

  19. Space-Time in Quantum Gravity: Does Space-Time have Quantum Properties?

    NASA Astrophysics Data System (ADS)

    Hedrich, Reiner

    The conceptual incompatibility between General Relativity and Quantum Mechanics is generally seen as sufficient motivation for the development of a theory of Quantum Gravity. If--so a typical argument goes -- Quantum Mechanics gives a universally valid basis for the description of the dynamical behavior of all natural systems, then the gravitational field should have quantum properties, like all other fundamental interaction fields. And if General Relativity can be seen as an adequate description of the classical aspects of gravity and space-time -- and their mutual relation -- this leads, together with the rather convincing arguments against semi-classical theories of gravity, to a strategy which takes a quantization of General Relativity as the natural avenue to a theory of Quantum Gravity. And because in General Relativity, the gravitational field is represented by the space-time metric, a quantization of the gravitational field would in some sense correspond to a quantization of geometry. Space-time would have quantum properties...

  20. Characteristics and reliability of high power multi-mode InGaAs strained quantum well single emitters with CW output powers of over 5W

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Mason, Maribeth; Moss, Steven C.

    2006-02-01

    High-power multi-mode broad area InGaAs strained quantum well (QW) single emitters (λ ~ 920-980nm) have been mainly used for industrial applications. Recently, these broad area lasers with CW output powers >5W have also found applications in communications as pump lasers for Er-Yb co-doped fiber amplifiers. This application requires very demanding characteristics including higher reliability than industrial applications. In contrast to 980nm single mode InGaAs strained QW lasers that are widely employed in both terrestrial and submarine applications, the fact that multimode lasers have never been used in optical communications necessitates careful study of these lasers. We report investigations of performance characteristics, reliability, and failure modes of high-power multi-mode single emitters. The lasers studied were broad area strained InGaAs-GaAs single QW lasers grown either by MOCVD or MBE. Typical apertures were around 100μm wide and cavity lengths were <=4.2mm. AR-HR coated laser diode chips were mounted on carriers with junction down configuration to reduce thermal impedance. Laser thresholds were <=453mA at RT. At 6A injection current typical CW output powers were over 5W at 25°C with wall-plug efficiency of ~60%. Characteristics measured included thermal impedance and optical beam profiles that are critical in understanding performance and reliability. Automatic current control burn-in tests with different stress conditions were performed and log (I)-V characteristics were measured at RT to correlate degradation in optical output power and an increase in trap density estimated from the 2κ•T term in bulk recombination current. We also report initial analysis of lifetest results and failure modes from these lasers.

  1. Comparing student understanding of quantum physics when embedding multimodal representations into two different writing formats: Presentation format versus summary report format

    NASA Astrophysics Data System (ADS)

    Gunel, Murat; Hand, Brian; Gunduz, Sevket

    2006-11-01

    Physics as a subject for school students requires an understanding and ability to move between different modes of representation for the concepts under review. However, the inability of students to have a multimodal understanding of the concepts is seen as restricting their understandings of the concepts. The aim of this study was to explore the effectiveness of using writing-to-learn strategies that required students to embed multimodal representations of the concepts. In particular, the study compared a presentation format with a summary report format for students learning quantum theory. A pre-post test design was used to compare performances of these two groups across two units. For unit 1, students' scores from groups that completed either a presentation format (PowerPoint presentation) or a summary report format (chapter summary) were compared. No limits were placed on the amount of text or the number of representations used. For unit 2, products of both groups were constructed for an audience of year 10 students. The presentation format group (PowerPoint) was limited to 15 slides, with a maximum of 10 words displayed per slide; a script was written to accompany the presentation. Slides could include graphical and mathematical formulae; however, the text could not. The summary report format group that wrote out its explanations was limited to four pages and was required to incorporate multimodal representations. Results indicated that for both units students using the presentation format group scored significantly better on tests than the summary report format group. The effect size difference between the groups increased for the second unit, indicating that more practice was leading to better student understanding of the physics concepts.

  2. A Multimodal System with Synergistic Effects of Magneto-Mechanical, Photothermal, Photodynamic and Chemo Therapies of Cancer in Graphene-Quantum Dot-Coated Hollow Magnetic Nanospheres

    PubMed Central

    Wo, Fangjie; Xu, Rujiao; Shao, Yuxiang; Zhang, Zheyu; Chu, Maoquan; Shi, Donglu; Liu, Shupeng

    2016-01-01

    In this study, a multimodal therapeutic system was shown to be much more lethal in cancer cell killing compared to a single means of nano therapy, be it photothermal or photodynamic. Hollow magnetic nanospheres (HMNSs) were designed and synthesized for the synergistic effects of both magneto-mechanical and photothermal cancer therapy. By these combined stimuli, the cancer cells were structurally and physically destroyed with the morphological characteristics distinctively different from those by other therapeutics. HMNSs were also coated with the silica shells and conjugated with carboxylated graphene quantum dots (GQDs) as a core-shell composite: HMNS/SiO2/GQDs. The composite was further loaded with an anticancer drug doxorubicin (DOX) and stabilized with liposomes. The multimodal system was able to kill cancer cells with four different therapeutic mechanisms in a synergetic and multilateral fashion, namely, the magnetic field-mediated mechanical stimulation, photothermal damage, photodynamic toxicity, and chemotherapy. The unique nanocomposites with combined mechanical, chemo, and physical effects will provide an alternative strategy for highly improved cancer therapy efficiency. PMID:26941842

  3. A Multimodal System with Synergistic Effects of Magneto-Mechanical, Photothermal, Photodynamic and Chemo Therapies of Cancer in Graphene-Quantum Dot-Coated Hollow Magnetic Nanospheres.

    PubMed

    Wo, Fangjie; Xu, Rujiao; Shao, Yuxiang; Zhang, Zheyu; Chu, Maoquan; Shi, Donglu; Liu, Shupeng

    2016-01-01

    In this study, a multimodal therapeutic system was shown to be much more lethal in cancer cell killing compared to a single means of nano therapy, be it photothermal or photodynamic. Hollow magnetic nanospheres (HMNSs) were designed and synthesized for the synergistic effects of both magneto-mechanical and photothermal cancer therapy. By these combined stimuli, the cancer cells were structurally and physically destroyed with the morphological characteristics distinctively different from those by other therapeutics. HMNSs were also coated with the silica shells and conjugated with carboxylated graphene quantum dots (GQDs) as a core-shell composite: HMNS/SiO2/GQDs. The composite was further loaded with an anticancer drug doxorubicin (DOX) and stabilized with liposomes. The multimodal system was able to kill cancer cells with four different therapeutic mechanisms in a synergetic and multilateral fashion, namely, the magnetic field-mediated mechanical stimulation, photothermal damage, photodynamic toxicity, and chemotherapy. The unique nanocomposites with combined mechanical, chemo, and physical effects will provide an alternative strategy for highly improved cancer therapy efficiency. PMID:26941842

  4. Quantum analysis of polarization properties of optical beams

    SciTech Connect

    Lahiri, Mayukh; Wolf, Emil

    2010-10-15

    We present a quantum treatment of polarization of optical beams and discuss some properties of beams of any state of polarization. The analysis is based on quantum-mechanical interpretation of a canonical experiment that is used to elucidate polarization properties of stochastic fields in classical optics. Our work shows how to apply some ideas and techniques, commonly used in the classical theory, for fields that cannot be treated classically.

  5. Multimodal Upconversion Nanoplatform with a Mitochondria-Targeted Property for Improved Photodynamic Therapy of Cancer Cells.

    PubMed

    Zhang, Xiaoman; Ai, Fujin; Sun, Tianying; Wang, Feng; Zhu, Guangyu

    2016-04-18

    Upconversion nanoparticles (UCNPs) with the capacity to emit high-energy visible or UV light under low-energy near-infrared excitation have been extensively explored for biomedical applications including imaging and photodynamic therapy (PDT) against cancer. Enhanced cellular uptake and controlled subcellular localization of a UCNP-based PDT system are desired to broaden the biomedical applications of the system and to increase its PDT effect. Herein, we build a multimodal nanoplatform with enhanced therapeutic efficiency based on 808 nm excited NaYbF4:Nd@NaGdF4:Yb/Er@NaGdF4 core-shell-shell nanoparticles that have a minimized overheating effect. The photosensitizer pyropheophorbide a (Ppa) is loaded onto the nanoparticles capped with biocompatible polymers, and the nanoplatform is functionalized with transcriptional activator peptides as targeting moieties. Significantly increased cellular uptake of the nanoparticles and dramatically elevated photocytotoxicity are achieved. Remarkably, colocalization of Ppa with mitochondria, a crucial subcellular organelle as a target of PDT, is proven and quantified. The subsequent damage to mitochondria caused by this colocalization is also confirmed to be significant. Our work provides a comprehensively improved UCNP-based nanoplatform that maintains great biocompatibility but shows higher photocytotoxicity under irradiation and superior imaging capabilities, which increases the biomedical values of UCNPs as both nanoprobes and carriers of photosensitizers toward mitochondria for PDT. PMID:27049165

  6. Optical properties of dielectric thin films including quantum dots

    NASA Astrophysics Data System (ADS)

    Flory, F.; Chen, Y. J.; Lee, C. C.; Escoubas, L.; Simon, J. J.; Torchio, P.; Le Rouzo, J.; Vedraine, S.; Derbal-Habak, Hassina; Ackermann, Jorg; Shupyk, Ivan; Didane, Yahia

    2010-08-01

    Depending on the minimum size of their micro/nano structure, thin films can exhibit very different behaviors and optical properties. From optical waveguides down to artificial anisotropy, through diffractive optics and photonic crystals, the application changes when decreasing the minimum feature size. Rigorous electromagnetic theory can be used to model most of the components but when the size is of a few nanometers, quantum theory has also to be used. These materials including quantum structures are of particular interest for other applications, in particular for solar cells, because of their luminescent and electronic properties. We show that the properties of electrons in multiple quantum wells can be easily modeled with a formalism similar to that used for multilayer waveguides. The effects of different parameters, in particular coupling between wells and well thickness dispersion, on possible discrete energy levels or energy band of electrons and on electron wave functions is given. When such quantum confinement appears the spectral absorption and the extinction coefficient dispersion with wavelength is modified. The dispersion of the real part of the refractive index can then be deduced from the Kramers- Krönig relations. Associated with homogenization theory this approach gives a new model of refractive index for thin films including quantum dots. Absorption spectra of samples composed of ZnO quantum dots in PMMA layers are in preparation are given.

  7. Interval Prediction of Molecular Properties in Parametrized Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Edwards, David E.; Zubarev, Dmitry Yu.; Packard, Andrew; Lester, William A.; Frenklach, Michael

    2014-06-01

    The accurate evaluation of molecular properties lies at the core of predictive physical models. Most reliable quantum-chemical calculations are limited to smaller molecular systems while purely empirical approaches are limited in accuracy and reliability. A promising approach is to employ a quantum-mechanical formalism with simplifications and to compensate for the latter with parametrization. We propose a strategy of directly predicting the uncertainty interval for a property of interest, based on training-data uncertainties, which sidesteps the need for an optimum set of parameters.

  8. Multimodal Therapy.

    ERIC Educational Resources Information Center

    Lazarus, Arnold A.

    The multimodal therapy (MMT) approach provides a framework that facilitates systematic treatment selection in a broad-based, comprehensive and yet highly focused manner. It respects science, and data driven findings, and endeavors to use empirically supported methods when possible. Nevertheless, it recognizes that many issues still fall into the…

  9. Quantum Plasmonics: Optical Properties and Tunability of Metallic Nanorods

    SciTech Connect

    Zuloaga, Jorge; Prodan, Emil; Nordlander, Peter

    2010-09-28

    The plasmon resonances in metallic nanorods are investigated using fully quantum mechanical time-dependent density functional theory. The computed optical absorption curves display well-defined longitudinal and transverse plasmon resonances whose energies depend on the aspect ratio of the rods, in excellent agreement with classical electromagnetic modeling. The field enhancements obtained from the quantum mechanical calculations, however, differ significantly from classical predictions for distances shorter than 0.5 nm from the nanoparticle surfaces. These deviations can be understood as arising from the nonlocal screening properties of the conduction electrons at the nanoparticle surface.

  10. Thermodynamical properties of Strunz’s quantum dissipative models

    SciTech Connect

    Zen, Freddy P.; Sulaiman, A.

    2015-09-30

    The existence of the negative of specific heat from quantum dissipative theory is investigated. Strunz’s quantum dissipative model will be used in this studies. The thermodynamical properties will be studied starts out from the thermo-dynamic partition function of the dissipative system. The path integral technique is used to calculate the partition function under consideration. The results shows that the specific heat can be negative if the damping parameter more than a half the oscillator frequency and also occur at low temperatures. For damping factor greater than the frequency of harmonic oscillator then specific heat will oscillate at low temperatures and approaching normal conditions at a high temperature.

  11. Intraoperative model based identification of tissue properties using a multimodal and multiscale elastographic measurement approach

    NASA Astrophysics Data System (ADS)

    Claus, D.; Schumacher, P. M.; Labitzke, T.; Mlikota, M.; Weber, U.; Schmauder, S.; Schierbaum, N.; Schäffer, T. E.; Wittmüβ, P.; Teutsch, T.; Tarin, C.; Hoffmann, S.; Taran, F. A.; Brucker, S.; Mischinger, J.; Stenzel, A.; Osten, W.

    2015-07-01

    During minimally invasive surgery the visual (3 dimensional) and mechanical (haptic) feedback is restricted or even non-existing, which imposes a serious loss of important information for decision making. Information about the mechanical properties of the biological tissue helps the surgeon to localize tissue abnormalities (benign vs. malign tissue). The work described here is directed towards assisting the surgeon during minimally invasive surgery, which in particular relates to the segmentation and navigation based on the recovery of mechanical properties. Besides the development of noninvasive elastographic measurement techniques, a reliable constitutive FE-model of the organ (describing its mechanical properties) is generated resulting in a further improvement of the segmentation and localization process. At first silicon phantoms, with and without foreign bodies have been generated for the purpose of testing the transfer of information (delivery and processing of data). The stress-strain curve was recorded and embedded in the FE-model (Arruda-Boyce). Two dimensional (2D) displacement maps have experimentally been obtained from the phantom, which were in good agreement with the FE simulation.

  12. Spin properties of charged Mn-doped quantum dota)

    NASA Astrophysics Data System (ADS)

    Besombes, L.; Léger, Y.; Maingault, L.; Mariette, H.

    2007-04-01

    The optical properties of individual quantum dots doped with a single Mn atom and charged with a single carrier are analyzed. The emission of the neutral, negatively and positively charged excitons coupled with a single magnetic atom (Mn) are observed in the same individual quantum dot. The spectrum of the charged excitons in interaction with the Mn atom shows a rich pattern attributed to a strong anisotropy of the hole-Mn exchange interaction slightly perturbed by a small valence-band mixing. The anisotropy in the exchange interaction between a single magnetic atom and a single hole is revealed by comparing the emission of a charged Mn-doped quantum dot in longitudinal and transverse magnetic field.

  13. Highly sensitive humidity sensing properties of carbon quantum dots films

    SciTech Connect

    Zhang, Xing; Ming, Hai; Liu, Ruihua; Han, Xiao; Kang, Zhenhui; Liu, Yang; Zhang, Yonglai

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► A humidity sensing device was fabricated based on carbon quantum dots (CQDs) films. ► The conductivity of the CQDs films shows a linear and rapid response to atmosphere humidity. ► The humidity sensing property was due to the hydrogen bonds between the functional groups on CQDs. -- Abstract: We reported the fabrication of a humidity sensing device based on carbon quantum dots (CQDs) film. The conductivity of the CQDs film has a linear and rapid response to relative humidity, providing the opportunity for the fabrication of humidity sensing devices. The mechanism of our humidity sensor was proposed to be the formation of hydrogen bonds between carbon quantum dots and water molecules in the humidity environment, which significantly promote the electrons migration. In a control experiment, this hypothesis was confirmed by comparing the humidity sensitivity of candle soot (i.e. carbon nanoparticles) with and without oxygen containing groups on the surfaces.

  14. Multi-modal data fusion using source separation: Two effective models based on ICA and IVA and their properties

    PubMed Central

    Adali, Tülay; Levin-Schwartz, Yuri; Calhoun, Vince D.

    2015-01-01

    Fusion of information from multiple sets of data in order to extract a set of features that are most useful and relevant for the given task is inherent to many problems we deal with today. Since, usually, very little is known about the actual interaction among the datasets, it is highly desirable to minimize the underlying assumptions. This has been the main reason for the growing importance of data-driven methods, and in particular of independent component analysis (ICA) as it provides useful decompositions with a simple generative model and using only the assumption of statistical independence. A recent extension of ICA, independent vector analysis (IVA) generalizes ICA to multiple datasets by exploiting the statistical dependence across the datasets, and hence, as we discuss in this paper, provides an attractive solution to fusion of data from multiple datasets along with ICA. In this paper, we focus on two multivariate solutions for multi-modal data fusion that let multiple modalities fully interact for the estimation of underlying features that jointly report on all modalities. One solution is the Joint ICA model that has found wide application in medical imaging, and the second one is the the Transposed IVA model introduced here as a generalization of an approach based on multi-set canonical correlation analysis. In the discussion, we emphasize the role of diversity in the decompositions achieved by these two models, present their properties and implementation details to enable the user make informed decisions on the selection of a model along with its associated parameters. Discussions are supported by simulation results to help highlight the main issues in the implementation of these methods. PMID:26525830

  15. Transition metal doped semiconductor quantum dots: Optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Dahnovsky, Yuri; Proshchenko, Vitaly; Pimachev, Artem

    We study optical and magnetic properties of CdSe and Cd-Mn-Se quantum dots (QD). We find that there are two luminescence lines, one is fast and another is slow (~1ms). With the increase of a QD diameter the slow luminescence disappears at some critical QD size, thus only one line (fast) remains. Using the SAC SI computational method we find that D = 3.2 nm and D = 2.7 nm if the Mn impurity is located inside a QD or on a QD surface, respectively. For two or four Mn atoms in the quantum dot, now absorption takes place because the transition is spin-allowed. The DFT calculations of the magnetic state reveal that it is an antiferromagnet. We also study other quantum dots such as Cd-Mn-Se, Zn-Mn-S, and Zn-Mn-Se, doped and undoped. We find the slow luminescence energies for low concentrations of Mn impurities for each QD type. The calculations indicate that two luminescence lines, fast and slow, should always take place. However for Pb-Mn-S quantum dots there are now Mn levels inside a HOMO-LUMO gap, i.e., the Mn-levels are located in a PbS conduction band. The presence of Mn dopants increases the band gap and also removes the exciton peak. This effect is different to the other quantum dots.

  16. Quantum chemistry structures and properties of 134 kilo molecules.

    PubMed

    Ramakrishnan, Raghunathan; Dral, Pavlo O; Rupp, Matthias; von Lilienfeld, O Anatole

    2014-01-01

    Computational de novo design of new drugs and materials requires rigorous and unbiased exploration of chemical compound space. However, large uncharted territories persist due to its size scaling combinatorially with molecular size. We report computed geometric, energetic, electronic, and thermodynamic properties for 134k stable small organic molecules made up of CHONF. These molecules correspond to the subset of all 133,885 species with up to nine heavy atoms (CONF) out of the GDB-17 chemical universe of 166 billion organic molecules. We report geometries minimal in energy, corresponding harmonic frequencies, dipole moments, polarizabilities, along with energies, enthalpies, and free energies of atomization. All properties were calculated at the B3LYP/6-31G(2df,p) level of quantum chemistry. Furthermore, for the predominant stoichiometry, C7H10O2, there are 6,095 constitutional isomers among the 134k molecules. We report energies, enthalpies, and free energies of atomization at the more accurate G4MP2 level of theory for all of them. As such, this data set provides quantum chemical properties for a relevant, consistent, and comprehensive chemical space of small organic molecules. This database may serve the benchmarking of existing methods, development of new methods, such as hybrid quantum mechanics/machine learning, and systematic identification of structure-property relationships. PMID:25977779

  17. Imparting Nonfouling Properties to Chemically Distinct Surfaces with a Single Adsorbing Polymer: A Multimodal Binding Approach.

    PubMed

    Serrano, Ângela; Zürcher, Stefan; Tosatti, Samuele; Spencer, Nicholas D

    2016-04-01

    Surface-active polymers that display nonfouling properties and carry binding groups that can adsorb onto different substrates are highly desirable. We present a postmodification protocol of an active-ester-containing polymer that allows the creation of such a versatile platform. Poly(pentafluorophenyl acrylate) has been postmodified with a fixed grafting ratio of a nonfouling function (mPEG) and various combinations of functional groups, such as amine, silane and catechol, which can provide strong affinity to two model substrates: SiO2 and TiO2 . Adsorption, stability and resistance to nonspecific protein adsorption of the polymer films were studied. A polymer was obtained that maintained its surface functionality under a variety of harsh conditions. EG surface-density calculations show that this strategy generates a denser packing when both negatively and positively charged groups are present within the backbone, and readily allows the fabrication of a broad combinatorial matrix. PMID:26858017

  18. Intraoperative model based identification of tissue properties based on multimodal and multiscale measurements

    NASA Astrophysics Data System (ADS)

    Claus, D.; Schumacher, P. M.; Wilke, M.; Mlikota, M.; Weber, U.; Schmauder, S.; Schierbaum, N.; Schäffer, T. E.; Wittmüß, P.; Teutsch, T.; Tarin, C.; Hoffmann, S.; Brucker, S.; Mischinger, J.; Schwentner, C.; Stenzl, A.; Osten, W.

    2015-03-01

    Besides the many advantages minimally invasive surgery offers, the surgeon suffers from the loss of information, visual and mechanical (haptic feedback). The latter is an important tool, which helps the surgeon to localize tissue abnormalities (benign vs. malign tissue). We are aiming to generate a reliable constitutive FE model of the organ describing its mechanical properties by employing multiple elastographic measurement techniques at different scales (cell, tissue, and organ). A silicon phantom has been generated for the purpose of testing the transfer of information (delivery and processing of data). The stress-strain curve was recorded and embedded in the FE Model (Arruda-Boyce). A 2D displacement map was experimentally obtained from the phantom, which was in good agreement with the FE simulation.

  19. Optical properties of transition metal oxide quantum wells

    SciTech Connect

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  20. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-01

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  1. Electronic ground state properties of Coulomb blockaded quantum dots

    NASA Astrophysics Data System (ADS)

    Patel, Satyadev Rajesh

    Conductance through quantum dots at low temperature exhibits random but repeatable fluctuations arising from quantum interference of electrons. The observed fluctuations follow universal statistics arising from the underlying universality of quantum chaos. Random matrix theory (RMT) has provided an accurate description of the observed universal conductance fluctuations (UCF) in "open" quantum dots (device conductance ≥e 2/h). The focus of this thesis is to search for and decipher the underlying origin of similar universal properties in "closed" quantum dots (device conductance ≤e2/ h). A series of experiments is presented on electronic ground state properties measured via conductance measurements in Coulomb blockaded quantum dots. The statistics of Coulomb blockade (CB) peak heights with zero and non-zero magnetic field measured in various devices agree qualitatively with predictions from Random Matrix Theory (RMT). The standard deviation of the peak height fluctuations for non-zero magnetic field is lower than predicted by RMT; the temperature dependence of the standard deviation of the peak height for non-zero magnetic field is also measured. The second experiment summarizes the statistics of CB peak spacings. The peak spacing distribution width is observed to be on the order of the single particle level spacing, Delta, for both zero and non-zero magnetic field. The ratio of the zero field peak spacing distribution width to the non-zero field peak spacing distribution width is ˜1.2; this is good agreement with predictions from spin-resolved RMT predictions. The standard deviation of the non-zero magnetic field peak spacing distribution width shows a T-1/2 dependence in agreement with a thermal averaging model. The final experiment summarizes the measurement of the peak height correlation length versus temperature for various quantum dots. The peak height correlation length versus temperature saturates in small quantum dots, suggesting spectral scrambling

  2. Optical polarization properties of InAs/InP quantum dot and quantum rod nanowires.

    PubMed

    Anufriev, Roman; Barakat, Jean-Baptiste; Patriarche, Gilles; Letartre, Xavier; Bru-Chevallier, Catherine; Harmand, Jean-Christophe; Gendry, Michel; Chauvin, Nicolas

    2015-10-01

    The emission polarization of single InAs/InP quantum dot (QD) and quantum rod (QR) nanowires is investigated at room temperature. Whereas the emission of the QRs is mainly polarized parallel to the nanowire axis, the opposite behavior is observed for the QDs. These optical properties can be explained by a combination of dielectric effects related to the nanowire geometry and to the configuration of the valence band in the nanostructure. A theoretical model and finite difference in time domain calculations are presented to describe the impact of the nanowire and the surroundings on the optical properties of the emitter. Using this model, the intrinsic degree of linear polarization of the two types of emitters is extracted. The strong polarization anisotropies indicate a valence band mixing in the QRs but not in the QDs. PMID:26349621

  3. Optical polarization properties of InAs/InP quantum dot and quantum rod nanowires

    NASA Astrophysics Data System (ADS)

    Anufriev, Roman; Barakat, Jean-Baptiste; Patriarche, Gilles; Letartre, Xavier; Bru-Chevallier, Catherine; Harmand, Jean-Christophe; Gendry, Michel; Chauvin, Nicolas

    2015-10-01

    The emission polarization of single InAs/InP quantum dot (QD) and quantum rod (QR) nanowires is investigated at room temperature. Whereas the emission of the QRs is mainly polarized parallel to the nanowire axis, the opposite behavior is observed for the QDs. These optical properties can be explained by a combination of dielectric effects related to the nanowire geometry and to the configuration of the valence band in the nanostructure. A theoretical model and finite difference in time domain calculations are presented to describe the impact of the nanowire and the surroundings on the optical properties of the emitter. Using this model, the intrinsic degree of linear polarization of the two types of emitters is extracted. The strong polarization anisotropies indicate a valence band mixing in the QRs but not in the QDs.

  4. Optical properties of magnetoexcitons in double quantum dots

    NASA Astrophysics Data System (ADS)

    Schillak, Piotr; Czajkowski, Gerard

    2015-10-01

    Here we investigate the influence of a constant magnetic field on the energy levels and optical properties of excitons in a double quantum disk (quantum molecule). Taking into account the cylindrical symmetry of the double disk we calculate the wave functions and excitonic energies when the external constant magnetic field is applied along the symmetry axis. Having the eigenfunctions and eigenvalues and using the long-wave approximation we can compute all the optical functions. The double quantum dot is considered as one system rather than two interacting dots separated by narrow barrier. The screened Coulomb interaction between an electron and a hole is assumed. Since in the given structure the separation of the relative- and center-of-mass motion of the electron and the hole is not possible, we use an approach where the six-dimensional eigenvalue problem is transformed into the equivalent eigenvalue problem given by the system of the coupled two-dimensional second order differential equations. The so obtained differential equations are solved numerically. As an example, we give detailed results for a InP/InGaP double quantum dot. Satisfactory agreement with the available experimental data is obtained.

  5. Multimodality Neuromonitoring.

    PubMed

    Kirkman, Matthew A; Smith, Martin

    2016-09-01

    The monitoring of systemic and central nervous system physiology is central to the management of patients with neurologic disease in the perioperative and critical care settings. There exists a range of invasive and noninvasive and global and regional monitors of cerebral hemodynamics, oxygenation, metabolism, and electrophysiology that can be used to guide treatment decisions after acute brain injury. With mounting evidence that a single neuromonitor cannot comprehensively detect all instances of cerebral compromise, multimodal neuromonitoring allows an individualized approach to patient management based on monitored physiologic variables rather than a generic one-size-fits-all approach targeting predetermined and often empirical thresholds. PMID:27521195

  6. Exotic properties and optimal control of quantum heat engine

    NASA Astrophysics Data System (ADS)

    Ou, Congjie; Abe, Sumiyoshi

    2016-02-01

    A quantum heat engine of a specific type is studied. This engine contains a single particle confined in the infinite square well potential with variable width and consists of three processes: the isoenergetic process (which has no classical analogs) as well as the isothermal and adiabatic processes. It is found that the engine possesses exotic properties in its performance. The efficiency takes the maximum value when the expansion ratio of the engine is appropriately set, and, in addition, the lower the temperature is, the higher the maximum efficiency becomes, highlighting aspects of the influence of quantum effects on thermodynamics. A comment is also made on the relevance of this engine to that of Carnot.

  7. Ground-state properties of quantum triangular ice

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2016-03-01

    Motivated by recent quantum Monte Carlo (QMC) simulations of the quantum Kagome ice model by Juan Carrasquilla et al., [Nat. Commun., 6, 7421 (2015), 10.1038/ncomms8421], we study the ground-state properties of this model on the triangular lattice. In the presence of a magnetic field h , the Hamiltonian possesses competing interactions between a Z2-invariant easy-axis ferromagnetic interaction J±± and a frustrated Ising term Jz. As in the U(1)-invariant model, we obtain four classical distinctive phases, however, the classical phases in the Z2-invariant model are different. They are as follows: a fully polarized (FP) ferromagnet for large h , an easy-axis canted ferromagnet (CFM) with broken Z2 symmetry for small h and dominant J±±, a ferrosolid phase with broken translational and Z2 symmetries for small h and dominant Jz, and two lobes with m ==±1 /6 for small h and dominant Jz. We show that quantum fluctuations are suppressed in this model, hence the large-S expansion gives an accurate picture of the ground-state properties. When quantum fluctuations are introduced, we show that the ferrosolid state is the ground state in the dominant Ising limit at zero magnetic field. It remains robust for Jz→∞ . With nonzero magnetic field the classical lobes acquire a finite magnetic susceptibility with no Sz order. We present the trends of the ground-state energy and the magnetizations. We also present a detail analysis of the CFM.

  8. Coupling single quantum dots to plasmonic nanocones: optical properties.

    PubMed

    Meixner, Alfred J; Jäger, Regina; Jäger, Sebastian; Bräuer, Annika; Scherzinger, Kerstin; Fulmes, Julia; Krockhaus, Sven zur Oven; Gollmer, Dominik A; Kern, Dieter P; Fleischer, Monika

    2015-01-01

    Coupling a single quantum emitter, such as a fluorescent molecule or a quantum dot (QD), to a plasmonic nanostructure is an important issue in nano-optics and nano-spectroscopy, relevant for a wide range of applications, including tip-enhanced near-field optical microscopy, plasmon enhanced molecular sensing and spectroscopy, and nanophotonic amplifiers or nanolasers, to mention only a few. While the field enhancement of a sharp nanoantenna increasing the excitation rate of a very closely positioned single molecule or QD has been well investigated, the detailed physical mechanisms involved in the emission of a photon from such a system are, by far, less investigated. In one of our ongoing research projects, we try to address these issues by constructing and spectroscopically analysing geometrically simple hybrid heterostructures consisting of sharp gold cones with single quantum dots attached to the very tip apex. An important goal of this work is to tune the longitudinal plasmon resonance by adjusting the cones' geometry to the emission maximum of the core-shell CdSe/ZnS QDs at nominally 650 nm. Luminescence spectra of the bare cones, pure QDs and hybrid systems were distinguished successfully. In the next steps we will further investigate, experimentally and theoretically, the optical properties of the coupled systems in more detail, such as the fluorescence spectra, blinking statistics, and the current results on the fluorescence lifetimes, and compare them with uncoupled QDs to obtain a clearer picture of the radiative and non-radiative processes. PMID:26404008

  9. Reliability, failure modes, and degradation mechanisms in high power single- and multi-mode InGaAs-AlGaAs strained quantum well lasers

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Lingley, Zachary; Brodie, Miles; Foran, Brendan; Moss, Steven C.

    2016-03-01

    High power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both telecommunications and potential space satellite communications systems. However, little has been reported on failure modes of state-of-the-art SM InGaAs-AlGaAs strained QW lasers although it is crucial to understand failure modes and underlying degradation mechanisms in developing these lasers that meet lifetime requirements for space satellite systems, where extremely high reliability of these lasers is required. Our present study addresses the aforementioned issues by performing long-term life tests under different test conditions followed by failure mode analysis (FMA) and physics of failure investigation. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs-AlGaAs strained QW lasers under ACC (automatic current control) mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. FMA was performed on failed SM lasers using electron beam induced current (EBIC). This technique allowed us to identify failure types by observing dark line defects. All the SM failures we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Our group previously reported that bulk failure or COBD (catastrophic optical bulk damage) is the dominant failure mode of MM InGaAs-AlGaAs strained QW lasers. To the best of our knowledge, this is the first report demonstrating that the dominant failure mode of both SM and MM InGaAs-AlGaAs strained QW lasers is the bulk failure. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) processing and high-resolution TEM to further study dark line defects and dislocations in post-aged SM and MM lasers. Our long-term life test results and FMA results are reported.

  10. Potassium doping: Tuning the optical properties of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Qian, Fuli; Li, Xueming; Tang, Libin; Lai, Sin Ki; Lu, Chaoyu; Lau, Shu Ping

    2016-07-01

    Doping with hetero-atoms is an effective way to tune the properties of graphene quantum dots (GQDs). Here, potassium-doped GQDs (K-GQDs) are synthesized by a one-pot hydrothermal treatment of sucrose and potassium hydroxide solution. Optical properties of the GQDs are altered as a result of K-doping. The absorption peaks exhibit a blue shift. Multiple photoluminescence (PL) peaks are observed as the excitation wavelength is varied from 380 nm to 620 nm. New energy levels are introduced into the K-GQDs and provide alternative electron transition pathways. The maximum PL intensity of the K-GQDs is obtained at an excitation wavelength of 480 nm which is distinct from the undoped GQDs (375 nm). The strong PL of the K-GQDs at the longer emission wavelengths is expected to make K-GQDs more suitable for bioimaging and optoelectronic applications.

  11. Temperature of a small quantum system as an internal property

    NASA Astrophysics Data System (ADS)

    Wang, Jiaozi; Wang, Wenge

    Equilibration of small quantum systems is a topic of current interest both theoretically and experimentally. In this work, we study the extent to which a temperature can be assigned to a small quantum (chaotic) system as an internal property, but not as a property of any large environment. Specifically, we study a total system, which is composed of an Ising chain in a nonhomogeneous transverse field and an additional spin coupled to one of the spins in the chain. The additional spin can be used as a probe to detect local temperature of the chain. The total system lies in a pure state under unitary evolution and initial state of the chain is prepared in a typical state within an energy shell. Our numerical simulations show that the reduced density matrix of the probe spin approaches canonical states with similar temperatures at different locations of the chain beyond a relaxation time, and the results are close to the theoretical prediction given by the statistical mechanics in the thermodynamic limit, namely β =∂lnρ/(E) ∂E with ρ (E) being the density of states. We also study effects due to finite size of the chain, including the dependence on initial state of the probe and difference of numerically-obtain temperature from theoretical results.

  12. Properties of reactive oxygen species by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-07

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} − N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  13. Properties of reactive oxygen species by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Trout, Bernhardt L; Guidoni, Leonardo

    2014-07-01

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N(3) - N(4), where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles. PMID:25005287

  14. Properties of reactive oxygen species by quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-01

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N3 - N4, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  15. Magneto-optical properties of indium antimide based quantum wells

    NASA Astrophysics Data System (ADS)

    Khodaparast, Giti Adham

    2001-08-01

    The goal of this work was to study the band structure and spin properties of the InSb quantum wells experimentally. Many new observations resulted such as spin resolved cyclotron resonance and zero field spin splitting in InSb quantum wells. Our cyclotron resonance experimental results are in good agreement with our theoretical model. The values of the effective mass show the expected nonparabolicity behavior. We observed spin resolved cyclotron resonance in the high mobility samples with a rather unexpected amplitude pattern at 70.6 μm which might be a result of deviation from the Kohn theorem. More experiments using FTIR are required to understand the spin resolved cyclotron resonance in InSb. We observe electron spin resonance using FIR laser spectroscopy in symmetric and asymmetric InSb quantum wells over a wide range of magnetic field and the Landau level index. The behavior of the asymmetric wells at low magnetic fields with g-factors far in excess of the bulk g-factor of InSb is due to spin splitting at zero magnetic field. Asymmetry-induced shifts in the spin resonance at high fields depend on the Landau level index as predicted by the Bychkov-Rashba model. In an extension of this work, we plan to compare samples where the asymmetry in the confinement potential is due to differing Al concentrations in the barriers on either side of the quantum well to samples with asymmetric doping which were studied in this work. The α values measured in this work (1.5 × 10-9 eVcm) are among the largest reported as would be expected for a material like InSb with a large bulk g-factor. Recently, in gated InAs samples [61] α values ranging from 2 × 10-9 to 4 × 10-9 eV cm have been measured which suggest that we can achieve even larger α in InSb quantum wells. We are extending our spin resonance studies to gated samples. These should give us the ability to study the spin resonance in the absence of any applied magnetic field.

  16. Super quantum measures on effect algebras with the Riesz decomposition properties

    SciTech Connect

    Xie, Yongjian Ren, Fang; Yang, Aili

    2015-10-15

    We give one basis of the space of super quantum measures on finite effect algebras with the Riesz decomposition properties (RDP for short). Then we prove that the super quantum measures and quantum interference functions on finite effect algebras with the RDP are determined each other. At last, we investigate the relationships between the super quantum measures and the diagonally positive signed measures on finite effect algebras with the RDP in detail.

  17. Passive interferometric symmetries of multimode Gaussian pure states

    NASA Astrophysics Data System (ADS)

    Gabay, Natasha; Menicucci, Nicolas C.

    2016-05-01

    As large-scale multimode Gaussian states begin to become accessible in the laboratory, their representation and analysis become a useful topic of research in their own right. The graphical calculus for Gaussian pure states provides powerful tools for their representation, while this work presents a useful tool for their analysis: passive interferometric (i.e., number-conserving) symmetries. Here we show that these symmetries of multimode Gaussian states simplify calculations in measurement-based quantum computing and provide constructive tools for engineering large-scale harmonic systems with specific physical properties, and we provide a general mathematical framework for deriving them. Such symmetries are generated by linear combinations of operators expressed in the Schwinger representation of U (2 ) , called nullifiers because the Gaussian state in question is a zero eigenstate of them. This general framework is shown to have applications in the noise analysis of continuous-various cluster states and is expected to have additional applications in future work with large-scale multimode Gaussian states.

  18. Comparing Student Understanding of Quantum Physics when Embedding Multimodal Representations into Two Different Writing Formats: Presentation Format versus Summary Report Format

    ERIC Educational Resources Information Center

    Gunel, Murat; Hand, Brian; Gunduz, Sevket

    2006-01-01

    Physics as a subject for school students requires an understanding and ability to move between different modes of representation for the concepts under review. However, the inability of students to have a multimodal understanding of the concepts is seen as restricting their understandings of the concepts. The aim of this study was to explore the…

  19. Radiolabeled Nanoparticles for Multimodality Tumor Imaging

    PubMed Central

    Xing, Yan; Zhao, Jinhua; Conti, Peter S.; Chen, Kai

    2014-01-01

    Each imaging modality has its own unique strengths. Multimodality imaging, taking advantages of strengths from two or more imaging modalities, can provide overall structural, functional, and molecular information, offering the prospect of improved diagnostic and therapeutic monitoring abilities. The devices of molecular imaging with multimodality and multifunction are of great value for cancer diagnosis and treatment, and greatly accelerate the development of radionuclide-based multimodal molecular imaging. Radiolabeled nanoparticles bearing intrinsic properties have gained great interest in multimodality tumor imaging over the past decade. Significant breakthrough has been made toward the development of various radiolabeled nanoparticles, which can be used as novel cancer diagnostic tools in multimodality imaging systems. It is expected that quantitative multimodality imaging with multifunctional radiolabeled nanoparticles will afford accurate and precise assessment of biological signatures in cancer in a real-time manner and thus, pave the path towards personalized cancer medicine. This review addresses advantages and challenges in developing multimodality imaging probes by using different types of nanoparticles, and summarizes the recent advances in the applications of radiolabeled nanoparticles for multimodal imaging of tumor. The key issues involved in the translation of radiolabeled nanoparticles to the clinic are also discussed. PMID:24505237

  20. Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors

    SciTech Connect

    Zhao, Jianhong; Xiang, Jinzhong; Tang, Libin Ji, Rongbin Yuan, Jun; Zhao, Jun; Yu, Ruiyun; Tai, Yunjian; Song, Liyuan

    2014-09-15

    Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of HCl treated carbon fibers (CFs), which were prepared from degreasing cotton through an annealing process at 1000 °C for 30 min. Raman study shows that both G and 2D peaks of GQDs may be redshifted (softened) by chlorine doping, leading to an n-type doping. The first vertical (Cl)-GQDs based photovoltaic detectors have been demonstrated, both the light absorbing and electron-accepting roles for (Cl)-GQDs in photodetection have been found, resulting in an exceptionally big ratio of photocurrent to dark current as high as ∼10{sup 5} at room temperature using a 405 nm laser irradiation under the reverse bias voltage. The study expands the application of (Cl)-GQDs to the important optoelectronic detection devices.

  1. Arithmetic properties of mirror map and quantum coupling

    NASA Astrophysics Data System (ADS)

    Lian, Bong H.; Yau, Shing-Tung

    1996-02-01

    We study some arithmetic properties of the mirror maps and the quantum Yukawa couplings for some 1-parameter deformations of Calabi-Yau manifolds. First we use the Schwarzian differential equation, which we derived previously, to characterize the mirror map in each case. For algebraic K3 surfaces, we solve the equation in terms of the J-function. By deriving explicit modular relations we prove that some K3 mirror maps are algebraic over the genus zero function field Q( J). This leads to a uniform proof that those mirror maps have integral Fourier coefficients. Regarding the maps as Riemann mappings, we prove that they are genus zero functions. By virtue of the Conway-Norton conjecture (proved by Borcherds using Frenkel-Lepowsky-Meurman's Moonshine module), we find that these maps are actually the reciprocals of the Thompson series for certain conjugacy classes in the Griess-Fischer group. This also gives, as an immediate consequence, a second proof that those mirror maps are integral. We thus conjecture a surprising connection between K3 mirror maps and the Thompson series. For threefolds, we construct a formal nonlinear ODE for the quantum coupling reduced mod p. Under the mirror hypothesis and an integrality assumption, we derive mod p congurences for the Fourier coefficients. For the quintics, we deduce, (at least for 5× d) that the degree d instanton numbers n d are divisible by 53 — a fact first conjectured by Clemens.

  2. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Demkov, Alexander; Choi, Miri; Butcher, Matthew; Rodriguez, Cesar; He, Qian; Posadas, Agham; Borisevich, Albina; Zollner, Stefan; Lin, Chungwei; Ortmann, Elliott

    2015-03-01

    We report on the investigation of SrTiO3/LaAlO3 quantum wells (QWs) grown by molecular beam epitaxy (MBE) on LaAlO3 substrate. Structures with different QW thicknesses ranging from two to ten unit cells were grown and characterized using x-ray photoemission spectroscopy, reflection high-energy electron diffraction (RHEED), scanning transmission electron microscopy (STEM). Optical properties (complex dielectric function) were measured by spectroscopic ellipsometry (SE) in the range of 1.0 eV to 6.0 eV at room temperature. We observed that the absorption edge was blue-shifted by approximately 0.39 eV as the STO quantum well thickness was reduced to two unit cells (uc). Density functional theory and tight-binding are used to model the optical response of these heterostructures. Our results demonstrate that the energy level of the first sub-band can be controlled by the QW thickness in a complex oxide material. We acknowledge support from Air Force Office of Scientific Research (FA9550-12-10494).

  3. Photonic quantum technologies

    NASA Astrophysics Data System (ADS)

    O'Brien, Jeremy

    2013-03-01

    Of the approaches to quantum computing, photons are appealing for their low-noise properties and ease of manipulation, and relevance to other quantum technologies, including communication, metrology and measurement. We report an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability [6-10]. We address the challenges of scaling up quantum circuits using new insights into how controlled operations can be efficiently realised, demonstrating Shor's algorithm with consecutive CNOT gates and the iterative phase estimation algorithm. We have shown how quantum circuits can be reconfigured, using thermo-optic phase shifters to realise a highly reconfigurable quantum circuit, and electro-optic phase shifters in lithium niobate to rapidly manipulate the path and polarisation of telecomm wavelength single photons. We have addressed miniaturisation using multimode interference architectures to directly implement NxN Hadamard operations, and by using high refractive index contrast materials such as SiOxNy, in which we have implemented quantum walks of correlated photons, and Si, in which we have demonstrated generation of orbital angular momentum states of light. We have incorporated microfluidic channels for the delivery of samples to measure the concentration of a blood protein with entangled states of light. We have begun to address the integration of superconducting single photon detectors and diamond and non-linear single photon sources. Finally, we give an overview of recent work on fundamental aspects of quantum measurement, including a quantum version of Wheeler's delayed choice experiment.

  4. Characterizing the beam properties of terahertz quantum-cascade lasers

    NASA Astrophysics Data System (ADS)

    Richter, H.; Rothbart, N.; Hübers, H.-W.

    2014-08-01

    Terahertz quantum-cascade lasers (QCLs) are very promising radiation sources for many scientific and commercial applications. Shaping and characterizing the beam profile of a QCL is crucial for any of these applications. Usually the beam profile should be as close as possible to a fundamental Gaussian TEM00 mode. In order to completely characterize the laser beam the power and the wavefront have to be measured. We describe methods for characterizing the beam properties of QCLs. Several QCLs with single-plasmon waveguide and emission frequencies between 2 and 5 THz are investigated. The beam profiles of these lasers are shaped into almost fundamental Gaussian modes using dedicated lenses. The beam propagation factor M2 is as low as 1.2. The wavefront is measured along the axis of propagation with a THz Hartmann sensor. Its curvature behaves as expected for a Gaussian beam. The applied methods can be transferred to any other THz beam.

  5. Enhanced Photoluminescence Property for Quantum Dot-Gold Nanoparticle Hybrid

    NASA Astrophysics Data System (ADS)

    Huang, Qianqian; Chen, Jing; Zhao, Jian; Pan, Jiangyong; Lei, Wei; Zhang, Zichen

    2015-10-01

    In this paper, we have synthesized ZnCdSeS quantum dots (QDs)-gold nanoparticle (Au NPs) hybrids in aqueous solution via bi-functional linker mercaptoacetic acid (MPA). The absorption peaks of ZnCdSeS QDs and Au are both located at 520 nm. It is investigated that PL intensity of QD-Au hybrid can be affected by the amounts of Au and pH value of hybrid solution. The located surface plasmon resonance (LSPR) effect of QD-Au NPs has been demonstrated by increased fluorescence intensity. The phenomenon of fluorescence enhancement can be maximized under the optimized pH value of 8.5. LSPR-enhanced photoluminescence property of QD-Au hybrid will be beneficial for the potential applications in the area of biological imaging and detection.

  6. Enhanced Photoluminescence Property for Quantum Dot-Gold Nanoparticle Hybrid.

    PubMed

    Huang, Qianqian; Chen, Jing; Zhao, Jian; Pan, Jiangyong; Lei, Wei; Zhang, Zichen

    2015-12-01

    In this paper, we have synthesized ZnCdSeS quantum dots (QDs)-gold nanoparticle (Au NPs) hybrids in aqueous solution via bi-functional linker mercaptoacetic acid (MPA). The absorption peaks of ZnCdSeS QDs and Au are both located at 520 nm. It is investigated that PL intensity of QD-Au hybrid can be affected by the amounts of Au and pH value of hybrid solution. The located surface plasmon resonance (LSPR) effect of QD-Au NPs has been demonstrated by increased fluorescence intensity. The phenomenon of fluorescence enhancement can be maximized under the optimized pH value of 8.5. LSPR-enhanced photoluminescence property of QD-Au hybrid will be beneficial for the potential applications in the area of biological imaging and detection. PMID:26471479

  7. Fundamental Entangling Operators in Quantum Mechanics and Their Properties

    NASA Astrophysics Data System (ADS)

    Dao-Ming, Lu

    2016-07-01

    For the first time, we introduce so-called fundamental entangling operators e^{iQ1 P2} and e^{iP1 Q2 } for composing bipartite entangled states of continuum variables, where Q i and P i ( i = 1, 2) are coordinate and momentum operator, respectively. We then analyze how these entangling operators naturally appear in the quantum image of classical quadratic coordinate transformation ( q 1, q 2) → ( A q 1 + B q 2, C q 1 + D q 2), where A D- B C = 1, which means even the basic coordinate transformation ( Q 1, Q 2) → ( A Q 1 + B Q 2, C Q 1 + D Q 2) involves entangling mechanism. We also analyse their Lie algebraic properties and use the integration technique within an ordered product of operators to show they are also one- and two- mode combinatorial squeezing operators.

  8. Properties of dipolar bosonic quantum gases at finite temperatures

    NASA Astrophysics Data System (ADS)

    Boudjemâa, Abdelâali

    2016-07-01

    The properties of ultracold quantum gases of bosons with dipole–dipole interaction are investigated at finite temperature in the frame of representative ensembles theory. Self-consistent coupled equations of motion are derived for the condensate and the non-condensate components. Corrections due to the dipolar interaction to condensate depletion, the anomalous density and thermodynamic quantities such as the ground state energy, the equation of state, the compressibility and the presure are calculated in the homogeneous case at both zero and finite temperatures. Effects of interaction and temperature on the structure factor are also discussed. Within the realm of the local density approximation, we generalize our results to the case of a trapped dipolar gas.

  9. Fundamental Entangling Operators in Quantum Mechanics and Their Properties

    NASA Astrophysics Data System (ADS)

    Dao-Ming, Lu

    2016-02-01

    For the first time, we introduce so-called fundamental entangling operators e^{iQ1 P2} and e^{iP1 Q2 } for composing bipartite entangled states of continuum variables, where Q i and P i (i = 1, 2) are coordinate and momentum operator, respectively. We then analyze how these entangling operators naturally appear in the quantum image of classical quadratic coordinate transformation (q 1, q 2) → (A q 1 + B q 2, C q 1 + D q 2), where A D-B C = 1, which means even the basic coordinate transformation (Q 1, Q 2) → (A Q 1 + B Q 2, C Q 1 + D Q 2) involves entangling mechanism. We also analyse their Lie algebraic properties and use the integration technique within an ordered product of operators to show they are also one- and two- mode combinatorial squeezing operators.

  10. Quantum nonlocal effects on optical properties of spherical nanoparticles

    SciTech Connect

    Moradi, Afshin

    2015-02-15

    To study the scattering of electromagnetic radiation by a spherical metallic nanoparticle with quantum spatial dispersion, we develop the standard nonlocal Mie theory by allowing for the excitation of the quantum longitudinal plasmon modes. To describe the quantum nonlocal effects, we use the quantum longitudinal dielectric function of the system. As in the standard Mie theory, the electromagnetic fields are expanded in terms of spherical vector wavefunctions. Then, the usual Maxwell boundary conditions are imposed plus the appropriate additional boundary conditions. Examples of calculated extinction spectra are presented, and it is found that the frequencies of the subsidiary peaks, due to quantum bulk plasmon excitations exhibit strong dependence on the quantum spatial dispersion.

  11. Quantum Chemical Study of the Thermochemical Properties of Organophosphorous Compounds.

    PubMed

    Khalfa, A; Ferrari, M; Fournet, R; Sirjean, B; Verdier, L; Glaude, P A

    2015-10-22

    Organophosphorous compounds are involved in many toxic compounds such as fungicides, pesticides, or chemical warfare nerve agents. The understanding of the decomposition chemistry of these compounds in the environment is largely limited by the scarcity of thermochemical data. Because of the high toxicity of many of these molecules, experimental determination of their thermochemical properties is very difficult. In this work, standard gas-phase thermodynamic data, i.e., enthalpies of formation (ΔfH298°), standard entropies (S298°), and heat capacities (Cp°(T)), were determined using quantum chemical calculations and more specifically the CBS-QB3 composite method, which was found to be the best compromise between precision and calculation time among high accuracy composite methods. A large number of molecules was theoretically investigated, involving trivalent and pentavalent phosphorus atoms, and C, H, O, N, S, and F atoms. These data were used to propose 83 original groups, used in the semiempirical group contribution method proposed by Benson. Thanks to these latter group values, thermochemical properties of several nerve agents, common pesticides and herbicides have been evaluated. Bond dissociations energies (BDE), useful for the analysis the thermal stability of the compounds, were also determined in several molecules of interest. PMID:26434606

  12. The Intersection of Multimodality and Critical Perspective: Multimodality as Subversion

    ERIC Educational Resources Information Center

    Huang, Shin-ying

    2015-01-01

    This study explores the relevance of multimodality to critical media literacy. It is based on the understanding that communication is intrinsically multimodal and multimodal communication is inherently social and ideological. By analysing two English-language learners' multimodal ensembles, the study reports on how multimodality contributes to a…

  13. Spectroscopic properties of colloidal indium phosphide quantum wires

    SciTech Connect

    Wang, Lin-Wang; Wang, Fudong; Yu, Heng; Li, Jingbo; Hang, Qingling; Zemlyanov, Dmitry; Gibbons, Patrick C.; Wang, Lin-Wang; Janes, David B.; Buhro, William E.

    2008-07-11

    Colloidal InP quantum wires are grown by the solution-liquid-solid (SLS) method, and passivated with the traditional quantum dots surfactants 1-hexadecylamine and tri-n-octylphosphine oxide. The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to other experimental results for InP quantum dots and wires, and to the predictions of theory. The photoluminescence behavior of the wires is also investigated. Efforts to enhance photoluminescence efficiencies through photochemical etching in the presence of HF result only in photochemical thinning or photo-oxidation, without a significant influence on quantum-wire photoluminescence. However, photo-oxidation produces residual dot and rod domains within the wires, which are luminescent. The results establish that the quantum-wire band gaps are weakly influenced by the nature of the surface passivation, and that colloidal quantum wires have intrinsically low photoluminescence efficiencies.

  14. Global quantum correlations in tripartite nonorthogonal states and monogamy properties

    NASA Astrophysics Data System (ADS)

    Daoud, M.; Ahl Laamara, R.; Essaber, R.; Kaydi, W.

    2014-06-01

    A global measure of quantum correlations for tripartite nonorthogonal states is presented. It is introduced as the overall average of the pairwise correlations existing in all possible partitions. The explicit expressions for the global measure are derived for squared concurrence, entanglement of formation, quantum discord and its geometric variant. As illustration, we consider even and odd three-mode Schrödinger cat states based on Glauber coherent states. We also discuss limitations to sharing quantum correlations known as monogamy relations.

  15. Photoluminescence Properties Research on Graphene Quantum Dots/Silver Composites.

    PubMed

    Wang, Jun; Li, Yan; Zhang, Bo-Ping; Xie, Dan-Dan; Ge, Juan; Liu, Hui

    2016-04-01

    Graphene quantum dots (GQDs) possess unique properties of graphene and exhibit a series of new phenomena of 0 dimension (D) carbon materials. Thus, GQDs have attracted much attention from researchers and have shown great promise for many applications. Recently, many works focus on GQDs-metal ions and metal nanoparticles (NPs). Although, many researches point out that metal ions and metal NPs have significant effect on photoluminescence (PL) feature of GQDs, mainly focus on PL intensity. Here, for the first time, we reported that metal NPs also affected PL peak position which was dependent on the mix mechanism of metal and GQDs. When GQDs-silver (Ag) composite mixed by physical method and excited at a wavelength of 320 nm, PL peak position of composites first showed blue-shifted then red-shifted with increasing of Ag content. However, if GQDs-Ag composite prepared by chemical method, PL peak position of the composites blue-shifted. Furthermore, the shift of PL peak position of GQDs-Ag prepared both for physical and chemical method displayed excitation-dependent feature. When the excitation wavelength approached to Ag SPR peaks, no obvious PL shift was observed. The mechanism for different PL shifts and the phenomenon of excitation-dependent PL shift as well as the formation mechanism of GQDs-Ag composite by chemical method are discussed in detail in this paper. PMID:27451653

  16. Quantum magnetotransport properties of a MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Tahir, M.; Vasilopoulos, P.; Peeters, F. M.

    2016-01-01

    We study transport properties of a MoS2 monolayer in the presence of a perpendicular magnetic field B . We derive and discuss its band structure and take into account spin and valley Zeeman effects. Compared to a conventional two-dimensional electron gas, these effects lead to new quantum Hall plateaus and new peaks in the longitudinal resistivity as functions of the magnetic field. The field B leads to a significant enhancement of the spin splitting in the conduction band, to a beating of the Shubnikov-de Haas (SdH) oscillations in the low-field regime, and to their splitting in the high-field regime. The Zeeman fields suppress significantly the beating of the SdH oscillations in the low-field regime and strongly enhance their splitting at high fields. The spin and valley polarizations show a similar beating pattern at low fields and are clearly separated at high fields in which they attain a value higher than 90 % .

  17. Electronic Properties of Semiconductor Quantum-Ring Structures

    NASA Astrophysics Data System (ADS)

    Pacheco, Mónica; Fuster, Gonzalo; Barticevic, Zdenka

    2002-03-01

    Motivated by the interesting electronic properties exhibited by these nanorings when they are threaded by a magnetic field, we studied a new semiconductor structure formed by two coupled rings which are concentrically disposed. In order to calculate the two-ring electronic spectrum it is assumed that the in-plane electronic-potential of each ring is generated by a rotation, around the ring axis, of a one-dimensional parabolic potential centered to a distance ρ=ρo of the ring center. The potential of the two-rings system is then assumed as a superposition of a potential for each ring with their minimum at different radii and being truncated in the intersection point. In this way a potential barrier is formed in between the rings. We solve the in-plane problem by expanding the corresponding envelope function as a linear combination of solutions of isolated rings. We have made a detailed study about the influence of the characteristic confinement-parameters of each rings, and of the barrier strength, on the electronic energy spectrum of the system. A uniform magnetic field is applied along the common ring axis and we explore the effects on the Aharonov-Bohm-type oscillations in the energy levels caused by the particular geometry of two coupled quantum-rings.

  18. Electronic properties and the quantum Hall effect in bilayer graphene.

    PubMed

    Fal'ko, Vladimir I

    2008-01-28

    In this paper, I review the quantum Hall effect (QHE) and far-infra red (FIR) absorption properties of bilayer graphene in a strong magnetic field. This includes a derivation of the effective low-energy Hamiltonian for this system and the consequences of this Hamiltonian for the sequencing of the Landau levels in the material: the form of this effective Hamiltonian gives rise to the presence of a level with doubled degeneracy at zero energy. The effect of a potential difference between the layer of a bilayer is also investigated. It is found that there is a density-dependent gap near the K points in the band structure. The consequences of this gap on the QHE are then described. Also, the magneto-absorption spectrum is investigated and an experiment proposed to distinguish between model groundstates of the bilayer QHE system based on the different absorption characteristics of right- and left-handed polarization of FIR light. Finally, the effects of trigonal warping are taken into account in the absorption picture. PMID:18024357

  19. Nonlinear optical properties and supercontinuum spectrum of titania-modified carbon quantum dots

    NASA Astrophysics Data System (ADS)

    Kulchin, Yu N.; Mayor, A. Yu; Proschenko, D. Yu; Postnova, I. V.; Shchipunov, Yu A.

    2016-04-01

    We have studied the nonlinear optical properties and supercontinuum spectrum of solutions of carbon quantum dots prepared by a hydrothermal process from chitin and then coated with titania. The titania coating has been shown to have an activating effect on the carbon quantum dots, enhancing supercontinuum generation in the blue-violet spectral region and enabling their nonlinear optical characteristics to be varied.

  20. Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min

    2016-09-01

    We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.

  1. Density functional calculation of the structural and electronic properties of germanium quantum dots

    SciTech Connect

    Anas, M. M.; Gopir, G.

    2015-04-24

    We apply first principles density functional computational methods to study the structures, densities of states (DOS), and higher occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) gaps of selected free-standing Ge semiconductor quantum dots up to 1.8nm. Our calculations are performed using numerical atomic orbital approach where linear combination of atomic orbital was applied. The surfaces of the quantum dots was passivized by hydrogen atoms. We find that surface passivation does affect the electronic properties associated with the changes of surface state, electron localization, and the energy gaps of germanium nanocrystals as well as the confinement of electrons inside the quantum dots (QDs). Our study shows that the energy gaps of germanium quantum dots decreases with the increasing dot diameter. The size-dependent variations of the computed HOMO-LUMO gaps in our quantum dots model were found to be consistent with the effects of quantum confinement reported in others theoretical and experimental calculation.

  2. Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot

    NASA Astrophysics Data System (ADS)

    Svilans, Artis; Burke, Adam M.; Svensson, Sofia Fahlvik; Leijnse, Martin; Linke, Heiner

    2016-08-01

    Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.

  3. Umbilical cord mesenchymal stem cells labeled with multimodal iron oxide nanoparticles with fluorescent and magnetic properties: application for in vivo cell tracking

    PubMed Central

    Sibov, Tatiana T; Pavon, Lorena F; Miyaki, Liza A; Mamani, Javier B; Nucci, Leopoldo P; Alvarim, Larissa T; Silveira, Paulo H; Marti, Luciana C; Gamarra, LF

    2014-01-01

    Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh), their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC) with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson’s disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 105 cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model. PMID:24531365

  4. Molecular states in double quantum wells: nanochemistry for metatmaterials with new optical properties

    NASA Astrophysics Data System (ADS)

    Gutierrez, Rafael M.; Castañeda, Arcesio

    2009-08-01

    Quantum mechanics explains the existence and properties of the chemical bond responsible for the formation of molecules from isolated atoms. In this work we study quantum states of Double Quantum Wells, DQW, formed from isolated Single Quantum Wells, SQWs, that can be considered metamaterials. Using the quantum chemistry definition of the covalent bond, we discuss molecular states in DQW as a kind of nanochemistry of metamaterials with new properties, in particular new optical properties. An important particularity of such nanochemistry, is the possible experimental control of the geometrical parameters and effective masses characterizing the semiconductor heterostructures represented by the corresponding DQW. This implies a great potential for new applications of the controlled optical properties of the metamaterials. The use of ab initio methods of intensive numerical calculations permits to obtain macroscopic optical properties of the metamaterials from the fundamental components: the spatial distribution of the atoms and molecules constituting the semiconductor layers. The metamaterial new optical properties emerge from the coexistence of many body processes at atomic and molecular level and complex quantum phenomena such as covalent-like bonds at nanometric dimensions.

  5. Negative differential gain in quantum dot systems: Interplay of structural properties and many-body effects

    SciTech Connect

    Goldmann, E. Jahnke, F.; Lorke, M.; Frauenheim, T.

    2014-06-16

    The saturation behaviour of optical gain with increasing excitation density is an important factor for laser device performance. For active materials based on self-organized InGaAs/GaAs quantum dots, we study the interplay between structural properties of the quantum dots and many-body effects of excited carriers in the optical properties via a combination of tight-binding and quantum-kinetic calculations. We identify regimes where either phase-space filling or excitation-induced dephasing dominates the saturation behavior of the optical gain. The latter can lead to the emergence of a negative differential material gain.

  6. Quantum Monte Carlo methods and lithium cluster properties

    SciTech Connect

    Owen, R.K.

    1990-12-01

    Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) [0.1981], 0.1895(9) [0.1874(4)], 0.1530(34) [0.1599(73)], 0.1664(37) [0.1724(110)], 0.1613(43) [0.1675(110)] Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) [0.0203(12)], 0.0188(10) [0.0220(21)], 0.0247(8) [0.0310(12)], 0.0253(8) [0.0351(8)] Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.

  7. Quantum Monte Carlo methods and lithium cluster properties. [Atomic clusters

    SciTech Connect

    Owen, R.K.

    1990-12-01

    Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) (0.1981), 0.1895(9) (0.1874(4)), 0.1530(34) (0.1599(73)), 0.1664(37) (0.1724(110)), 0.1613(43) (0.1675(110)) Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) (0.0203(12)), 0.0188(10) (0.0220(21)), 0.0247(8) (0.0310(12)), 0.0253(8) (0.0351(8)) Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.

  8. Derivation of quantum mechanics from a single fundamental modification of the relations between physical properties

    NASA Astrophysics Data System (ADS)

    Hofmann, Holger F.

    2014-04-01

    Recent results obtained in quantum measurements indicate that the fundamental relations between three physical properties of a system can be represented by complex conditional probabilities. Here, it is shown that these relations provide a fully deterministic and universally valid framework on which all of quantum mechanics can be based. Specifically, quantum mechanics can be derived by combining the rules of Bayesian probability theory with only a single additional law that explains the phases of complex probabilities. This law, which I introduce here as the law of quantum ergodicity, is based on the observation that the reality of physical properties cannot be separated from the dynamics by which they emerge in measurement interactions. The complex phases are an expression of this inseparability and represent the dynamical structure of transformations between the different properties. In its quantitative form, the law of quantum ergodicity describes a fundamental relation between the ergodic probabilities obtained by dynamical averaging and the deterministic relations between three properties expressed by the complex conditional probabilities. The complete formalism of quantum mechanics can be derived from this one relation, without any axiomatic mathematical assumptions about state vectors or superpositions. It is therefore possible to explain all quantum phenomena as the consequence of a single fundamental law of physics.

  9. Multi-modality gellan gum-based tissue-mimicking phantom with targeted mechanical, electrical, and thermal properties

    NASA Astrophysics Data System (ADS)

    Chen, Roland K.; Shih, A. J.

    2013-08-01

    This study develops a new class of gellan gum-based tissue-mimicking phantom material and a model to predict and control the elastic modulus, thermal conductivity, and electrical conductivity by adjusting the mass fractions of gellan gum, propylene glycol, and sodium chloride, respectively. One of the advantages of gellan gum is its gelling efficiency allowing highly regulable mechanical properties (elastic modulus, toughness, etc). An experiment was performed on 16 gellan gum-based tissue-mimicking phantoms and a regression model was fit to quantitatively predict three material properties (elastic modulus, thermal conductivity, and electrical conductivity) based on the phantom material's composition. Based on these material properties and the regression model developed, tissue-mimicking phantoms of porcine spinal cord and liver were formulated. These gellan gum tissue-mimicking phantoms have the mechanical, thermal, and electrical properties approximately equivalent to those of the spinal cord and the liver.

  10. Thermodynamic properties of a quantum Hall anti-dot interferometer

    NASA Astrophysics Data System (ADS)

    Levy Schreier, Sarah; Stern, Ady; Rosenow, Bernd; Halperin, Bertrand I.

    2016-02-01

    We study quantum Hall interferometers in which the interference loop encircles a quantum anti-dot. We base our study on thermodynamic considerations, which we believe reflect the essential aspects of interference transport phenomena. We find that similar to the more conventional Fabry-Perot quantum Hall interferometers, in which the interference loop forms a quantum dot, the anti-dot interferometer is affected by the electro-static Coulomb interaction between the edge modes defining the loop. We show that in the Aharonov-Bohm regime, in which effects of fractional statistics should be visible, is easier to access in interferometers based on anti-dots than in those based on dots. We discuss the relevance of our results to recent measurements on anti-dots interferometers.

  11. Ultrafast optical properties of lithographically defined quantum dot amplifiers

    SciTech Connect

    Miaja-Avila, L.; Verma, V. B.; Mirin, R. P.; Silverman, K. L.; Coleman, J. J.

    2014-02-10

    We measure the ultrafast optical response of lithographically defined quantum dot amplifiers at 40 K. Recovery of the gain mostly occurs in less than 1 picosecond, with some longer-term transients attributable to carrier heating. Recovery of the absorption proceeds on a much longer timescale, representative of relaxation between quantum dot levels and carrier recombination. We also measure transparency current-density in these devices.

  12. Multimodal Learning Clubs

    ERIC Educational Resources Information Center

    Casey, Heather

    2012-01-01

    Multimodal learning clubs link principles of motivation and engagement with 21st century technological tools and texts to support content area learning. The author describes how a sixth grade health teacher and his class incorporated multimodal learning clubs into a unit of study on human body systems. The students worked collaboratively online…

  13. Computing and the electrical transport properties of coupled quantum networks

    NASA Astrophysics Data System (ADS)

    Cain, Casey Andrew

    In this dissertation a number of investigations were conducted on ballistic quantum networks in the mesoscopic range. In this regime, the wave nature of electron transport under the influence of transverse magnetic fields leads to interesting applications for digital logic and computing circuits. The work specifically looks at characterizing a few main areas that would be of interest to experimentalists who are working in nanostructure devices, and is organized as a series of papers. The first paper analyzes scaling relations and normal mode charge distributions for such circuits in both isolated and open (terminals attached) form. The second paper compares the flux-qubit nature of quantum networks to the well-established spintronics theory. The results found exactly contradict the conventional school of thought for what is required for quantum computation. The third paper investigates the requirements and limitations of extending the Thevenin theorem in classic electric circuits to ballistic quantum transport. The fourth paper outlines the optimal functionally complete set of quantum circuits that can completely satisfy all sixteen Boolean logic operations for two variables.

  14. Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging

    NASA Astrophysics Data System (ADS)

    Koktysh, Dmitry; Bright, Vanessa; Pham, Wellington

    2011-07-01

    A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by the conjugation of superparamagnetic Fe3O4 nanoparticles and visible light emitting (~600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. The synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive x-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) (~800 nm) by conjugation of the superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water-soluble glutathione stabilized AgInS2/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. The observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging.

  15. Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging

    PubMed Central

    Bright, Vanessa

    2011-01-01

    A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by conjugation of superparamagnetic Fe3O4 nanoparticles and visible light-emitting (~600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. Synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive X-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) (~800 nm) by conjugation of superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water soluble glutathione stabilized AgInS2/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. Observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging. PMID:21597146

  16. Optical Properties of Quantum Vacuum. Space-Time Engineering

    SciTech Connect

    Gevorkyan, A. S.; Gevorkyan, A. A.

    2011-03-28

    The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) type stochastic differential equations. For a model of fluctuations, type of 'white noise', using ML equations a partial differential equation of second order is obtained which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the 'ground state' energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of quantum vacuum fluctuations may be constructed on a 6D space-time continuum, where 4D is Minkowski space-time and 2D is a compactified subspace. In detail is studied of vacuum's refraction indexes under the influence of external electromagnetic fields.

  17. Excitonic optical properties of wurtzite ZnS quantum dots under pressure

    SciTech Connect

    Zeng, Zaiping; Garoufalis, Christos S.; Baskoutas, Sotirios; Bester, Gabriel

    2015-03-21

    By means of atomistic empirical pseudopotentials combined with a configuration interaction approach, we have studied the optical properties of wurtzite ZnS quantum dots in the presence of strong quantum confinement effects as a function of pressure. We find the pressure coefficients of quantum dots to be highly size-dependent and reduced by as much as 23% in comparison to the bulk value of 63 meV/GPa obtained from density functional theory calculations. The many-body excitonic effects on the quantum dot pressure coefficients are found to be marginal. The absolute gap deformation potential of quantum dots originates mainly from the energy change of the lowest unoccupied molecular orbital state. Finally, we find that the exciton spin-splitting increases nearly linearly as a function of applied pressure.

  18. On one asymptotic property of time-shift quantum cryptography

    NASA Astrophysics Data System (ADS)

    Molotkov, S. N.

    2009-12-01

    One of the basic results of classical information theory is that error-free information transmission is possible even through an imperfect binary communication channel with noise up to an error of Q c = 1/2. There is a fundamental and applied question of whether quantum-mechanical constraints can ensure error-free classical-information transmission with quantum states and, moreover, guarantee the security of distributed keys up to the theoretical limit in the error Q c. It has been shown that the secure key distribution is possible up to the error Q c in the asymptotic limit of a large number of bases.

  19. On quantum Rényi entropies: A new generalization and some properties

    NASA Astrophysics Data System (ADS)

    Müller-Lennert, Martin; Dupuis, Frédéric; Szehr, Oleg; Fehr, Serge; Tomamichel, Marco

    2013-12-01

    The Rényi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in information theory and beyond. Various generalizations of Rényi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new quantum generalization of the family of Rényi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data-processing inequalities, a duality relation, and an entropic uncertainty relation.

  20. On quantum Rényi entropies: A new generalization and some properties

    SciTech Connect

    Müller-Lennert, Martin; Dupuis, Frédéric; Szehr, Oleg; Fehr, Serge; Tomamichel, Marco

    2013-12-15

    The Rényi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in information theory and beyond. Various generalizations of Rényi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new quantum generalization of the family of Rényi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data-processing inequalities, a duality relation, and an entropic uncertainty relation.

  1. Quantum Optical Lattices for Emergent Many-Body Phases of Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Caballero-Benitez, Santiago F.; Mekhov, Igor B.

    2015-12-01

    Confining ultracold gases in cavities creates a paradigm of quantum trapping potentials. We show that this allows us to bridge models with global collective and short-range interactions as novel quantum phases possess properties of both. Some phases appear solely due to quantum light-matter correlations. Because of a global, but spatially structured, interaction, the competition between quantum matter and light waves leads to multimode structures even in single-mode cavities, including delocalized dimers of matter-field coherences (bonds), beyond density orders as supersolids and density waves.

  2. Multimode Directional Coupler

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2016-01-01

    A multimode directional coupler is provided. In some embodiments, the multimode directional coupler is configured to receive a primary signal and a secondary signal at a first port of a primary waveguide. The primary signal is configured to propagate through the primary waveguide and be outputted at a second port of the primary waveguide. The multimode directional coupler also includes a secondary waveguide configured to couple the secondary signal from the primary waveguide with no coupling of the primary signal into the secondary waveguide. The secondary signal is configured to propagate through the secondary waveguide and be outputted from a port of the secondary waveguide.

  3. Markov property and strong additivity of von Neumann entropy for graded quantum systems

    SciTech Connect

    Moriya, Hajime

    2006-03-15

    The quantum Markov property is equivalent to the strong additivity of von Neumann entropy for graded quantum systems. The additivity of von Neumann entropy for bipartite graded systems implies the statistical independence of states. However, the structure of Markov states for graded systems is different from that for tensor-product systems which have trivial grading. For three-composed graded systems we have U(1)-gauge invariant Markov states whose restriction to the marginal pair of subsystems is nonseparable.

  4. (In,Mn)As quantum dots: Molecular-beam epitaxy and optical properties

    SciTech Connect

    Bouravleuv, A. D. Nevedomskii, V. N.; Ubyivovk, E. V.; Sapega, V. F.; Khrebtov, A. I.; Samsonenko, Yu. B.; Cirlin, G. E.; Ustinov, V. M.

    2013-08-15

    Self-assembled (In,Mn)As quantum dots are synthesized by molecular-beam epitaxy on GaAs (001) substrates. The experimental results obtained by transmission electron microscopy show that doping of the central part of the quantum dots with Mn does not bring about the formation of structural defects. The optical properties of the samples, including those in external magnetic fields, are studied.

  5. The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation

    SciTech Connect

    Deta, U. A. E-mail: utamadeta@unesa.ac.id; Suparmi

    2015-09-30

    Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.

  6. The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation

    NASA Astrophysics Data System (ADS)

    Deta, U. A.; Suparmi

    2015-09-01

    Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.

  7. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO{sup +}(H{sub 2}O) cluster using accurate potential energy and dipole moment surfaces

    SciTech Connect

    Homayoon, Zahra

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO{sup +}(H{sub 2}O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO{sup +}(H{sub 2}O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  8. Growth and thermal properties of doped monocrystalline titanium-silicide based quantum dot superlattices

    NASA Astrophysics Data System (ADS)

    Savelli, G.; Silveira Stein, S.; Bernard-Granger, G.; Faucherand, P.; Montès, L.

    2016-04-01

    This paper presents the growth mechanism of a monocrystalline silicide quantum dot superlattices (QDSL) grown by reduced pressure chemical vapor deposition (RPCVD). QDSL are made of TiSi2-based nanodots scattered in a p-doped Si90Ge10 matrix. It is the first time that the growth of a p-type monocrystalline QDSL is presented. We focus here on the growth mechanisms of QDSL and the influence of nanostructuration on their thermal properties. Thus, the dots surface deposition, the dots embedding mechanisms and the final QDSL growths are studied. The crystallographic structures and chemical properties are presented, as well as the thermal properties. It will be shown that some specific mechanisms occur such as the formation of self-formed quantum well superlattices and the dopant accumulation near the quantum dots. Finally, a slight decrease of the QDSL thermal conductivity has been measured compared to the reference sample.

  9. Magnetic resonance imaging properties of multimodality anthropomorphic silicone rubber phantoms for validating surgical robots and image guided therapy systems

    NASA Astrophysics Data System (ADS)

    Cheung, Carling L.; Looi, Thomas; Drake, James; Kim, Peter C. W.

    2012-02-01

    The development of image guided robotic and mechatronic platforms for medical applications requires a phantom model for initial testing. Finding an appropriate phantom becomes challenging when the targeted patient population is pediatrics, particularly infants, neonates or fetuses. Our group is currently developing a pediatricsized surgical robot that operates under fused MRI and laparoscopic video guidance. To support this work, we describe a method for designing and manufacturing silicone rubber organ phantoms for the purpose of testing the robotics and the image fusion system. A surface model of the organ is obtained and converted into a mold that is then rapid-prototyped using a 3D printer. The mold is filled with a solution containing a particular ratio of silicone rubber to slacker additive to achieve a specific set of tactile and imaging characteristics in the phantom. The expected MRI relaxation times of different ratios of silicone rubber to slacker additive are experimentally quantified so that the imaging properties of the phantom can be matched to those of the organ that it represents. Samples of silicone rubber and slacker additive mixed in ratios ranging from 1:0 to 1:1.5 were prepared and scanned using inversion recovery and spin echo sequences with varying TI and TE, respectively, in order to fit curves to calculate the expected T1 and T2 relaxation times of each ratio. A set of infantsized abdominal organs was prepared, which were successfully sutured by the robot and imaged using different modalities.

  10. Thermoelectric properties of symmetric and asymmetric double quantum well structures

    SciTech Connect

    Sur, I. V.

    2009-05-15

    The electronic states and carrier transport in (100)PbTe/Pb {sub 1-x} Eu{sub x} Te double quantum wells are theoretically analyzed. The dependences of the mobility and Seebeck coefficient on the thickness of the internal barrier in symmetric and asymmetric structures are investigated. It was found that at great distance between the wells even small violation of the structure symmetry and essential reconstruction of electron wave functions results in suppression of intersubband scattering with carriers transfer between the wells and provides the correct limit to isolated quantum well in kinetic coefficients. Some possibilities of increasing the thermoelectric power factor are found, and a suitable set of structure parameters is calculated within the proposed model.

  11. General monogamy property of global quantum discord and the application

    SciTech Connect

    Liu, Si-Yuan; Zhang, Yu-Ran; Zhao, Li-Ming; Yang, Wen-Li; Fan, Heng

    2014-09-15

    We provide a family of general monogamy inequalities for global quantum discord (GQD), which can be considered as an extension of the usual discord monogamy inequality. It can be shown that those inequalities are satisfied under the similar condition for the holding of usual monogamy relation. We find that there is an intrinsic connection among them. Furthermore, we present a different type of monogamy inequality and prove that it holds under the condition that the bipartite GQDs do not increase when tracing out some subsystems. We also study the residual GQD based on the second type of monogamy inequality. As applications of those quantities, we investigate the GQDs and residual GQD in characterizing the quantum phase transition in the transverse field Ising model.

  12. General monogamy property of global quantum discord and the application

    NASA Astrophysics Data System (ADS)

    Liu, Si-Yuan; Zhang, Yu-Ran; Zhao, Li-Ming; Yang, Wen-Li; Fan, Heng

    2014-09-01

    We provide a family of general monogamy inequalities for global quantum discord (GQD), which can be considered as an extension of the usual discord monogamy inequality. It can be shown that those inequalities are satisfied under the similar condition for the holding of usual monogamy relation. We find that there is an intrinsic connection among them. Furthermore, we present a different type of monogamy inequality and prove that it holds under the condition that the bipartite GQDs do not increase when tracing out some subsystems. We also study the residual GQD based on the second type of monogamy inequality. As applications of those quantities, we investigate the GQDs and residual GQD in characterizing the quantum phase transition in the transverse field Ising model.

  13. A realistic model for quantum theory with a locality property

    SciTech Connect

    Eberhard, P.H.

    1987-04-01

    A model reproducing the predictions of relativistic quantum theory to any desired degree of accuracy is described in this paper. It involves quantities that are independent of the observer's knowledge, and therefore can be called real, and which are defined at each point in space, and therefore can be called local in a rudimentary sense. It involves faster-than-light, but not instantaneous, action at distance.

  14. Properties of classical and quantum Jensen-Shannon divergence

    SciTech Connect

    Brieet, Jop; Harremoees, Peter

    2009-05-15

    Jensen-Shannon divergence (JD) is a symmetrized and smoothed version of the most important divergence measure of information theory, Kullback divergence. As opposed to Kullback divergence it determines in a very direct way a metric; indeed, it is the square of a metric. We consider a family of divergence measures (JD{sub {alpha}} for {alpha}>0), the Jensen divergences of order {alpha}, which generalize JD as JD{sub 1}=JD. Using a result of Schoenberg, we prove that JD{sub {alpha}} is the square of a metric for {alpha} is an element of (0,2], and that the resulting metric space of probability distributions can be isometrically embedded in a real Hilbert space. Quantum Jensen-Shannon divergence (QJD) is a symmetrized and smoothed version of quantum relative entropy and can be extended to a family of quantum Jensen divergences of order {alpha} (QJD{sub {alpha}}). We strengthen results by Lamberti and co-workers by proving that for qubits and pure states, QJD{sub {alpha}}{sup 1/2} is a metric space which can be isometrically embedded in a real Hilbert space when {alpha} is an element of (0,2]. In analogy with Burbea and Rao's generalization of JD, we also define general QJD by associating a Jensen-type quantity to any weighted family of states. Appropriate interpretations of quantities introduced are discussed and bounds are derived in terms of the total variation and trace distance.

  15. Teleportation of continuous variable multimode Greeberger Horne Zeilinger entangled states

    NASA Astrophysics Data System (ADS)

    He, Guangqiang; Zhang, Jingtao; Zeng, Guihua

    2008-11-01

    Quantum teleportation protocols of continuous variable (CV) Greeberger-Horne-Zeilinger (GHZ) and Einstein-Podolsky-Rosen (EPR) entangled states are proposed, and are generalized to teleportation of arbitrary multimode GHZ entangled states described by Van Loock and Braunstein (2000 Phys. Rev. Lett. 84 3482). Each mode of a multimode entangled state is teleported using a CV EPR entangled pair and classical communication. The analytical expression of fidelity for the multimode Gaussian states which evaluates the teleportation quality is presented. The analytical results show that the fidelity is a function of both the squeezing parameter r, which characterizes the multimode entangled state to be teleported, and the channel parameter p, which characterizes the EPR pairs shared by Alice and Bob. The fidelity increases with increasing p, but decreases with increasing r, i.e., it is more difficult to teleport the more perfect multimode entangled states. The entanglement degree of the teleported multimode entangled states increases with increasing both r and p. In addition, the fact is proved that our teleportation protocol of EPR entangled states using parallel EPR pairs as quantum channels is the best case of the protocol using four-mode entangled states (Adhikari et al 2008 Phys. Rev. A 77 012337).

  16. The Effects of Quantum Delocalization on the Structural and Thermodynamic Properties of Many-Body Systems

    NASA Astrophysics Data System (ADS)

    Deckman, Jason

    The following dissertation is an account of my research in the Mandelshtam group at UC Irvine beginning in the Fall of 2006 and ending in the Summer of 2011. My general area of study falls within the realm of equilibrium quantum statistical mechanics, a discipline which attempts to relate molecular-scale properties to time averaged, macroscopic observables. The major tools used herein are the Variational Gaussian Wavepacket (VGW) approximation for quantum calculations, and Monte-Carlo methods, particularly parallel tempering, for global optimization and the prediction of equilibrium thermodynamic properties. Much of my work used these two methods to model both small and bulk systems at equilibrium where quantum effects are significant. All the systems considered are characterized by inter-molecular van der Waals forces, which are weak but significant electrostatic attractions between atoms and molecules and posses a 1/r6 dependence. The research herein begins at the microscopic level, starting with Lennard-Jones (LJ) clusters, then later shifts to the macroscopic for a study involving bulk para-hydrogen. For the LJ clusters the structural transitions induced by a changing deBoer parameter, Λ, a measure of quantum delocalization of the constituent particles, are investigated over a range of cluster sizes, N. From the data a "phase" diagram as a function of Λ and N is constructed, which depicts the structural motifs favored at different size and quantum parameter. Comparisons of the "quantum induced" structural transitions depicted in the latter are also made with temperature induced transitions and those caused by varying the range of the Morse potential. Following this, the structural properties of binary para-Hydrogen/ ortho-Deuterium clusters are investigated using the VGW approximation and Monte-Carlo methods within the GMIN framework. The latter uses the "Basin-Hopping" algorithm, which simplifies the potential energy landscape, and coupled with the VGW

  17. Controlling the Electronic Structures and Properties of in-Plane Transition-Metal Dichalcogenides Quantum Wells

    PubMed Central

    Wei, Wei; Dai, Ying; Niu, Chengwang; Huang, Baibiao

    2015-01-01

    In-plane transition-metal dichalcogenides (TMDs) quantum wells have been studied on the basis of first-principles density functional calculations to reveal how to control the electronic structures and the properties. In collection of quantum confinement, strain and intrinsic electric field, TMD quantum wells offer a diverse of exciting new physics. The band gap can be continuously reduced ascribed to the potential drop over the embedded TMD and the strain substantially affects the band gap nature. The true type-II alignment forms due to the coherent lattice and strong interface coupling suggesting the effective separation and collection of excitons. Interestingly, two-dimensional quantum wells of in-plane TMD can enrich the photoluminescence properties of TMD materials. The intrinsic electric polarization enhances the spin-orbital coupling and demonstrates the possibility to achieve topological insulator state and valleytronics in TMD quantum wells. In-plane TMD quantum wells have opened up new possibilities of applications in next-generation devices at nanoscale. PMID:26616013

  18. Tuning the properties of Ge-quantum dots superlattices in amorphous silica matrix through deposition conditions

    SciTech Connect

    Pinto, S.; Roldan Gutierrez, Manuel A; Ramos, M. M.D.; Gomes, M.J.M.; Molina, S. I.; Pennycook, Stephen J; Varela del Arco, Maria; Buljan, M.; Barradas, N.; Alves, E.; Chahboun, A.; Bernstorff, S.

    2012-01-01

    In this work, we investigate the structural properties of Ge quantum dot lattices in amorphous silica matrix, prepared by low-temperature magnetron sputtering deposition of (Ge+SiO{sub 2})/SiO{sub 2} multilayers. The dependence of quantum dot shape, size, separation, and arrangement type on the Ge-rich (Ge + SiO{sub 2}) layer thickness is studied. We show that the quantum dots are elongated along the growth direction, perpendicular to the multilayer surface. The size of the quantum dots and their separation along the growth direction can be tuned by changing the Ge-rich layer thickness. The average value of the quantum dots size along the lateral (in-plane) direction along with their lateral separation is not affected by the thickness of the Ge-rich layer. However, the thickness of the Ge-rich layer significantly affects the quantum dot ordering. In addition, we investigate the dependence of the multilayer average atomic composition and also the quantum dot crystalline quality on the deposition parameters.

  19. Tuning the properties of Ge-quantum dots superlattices in amorphous silica matrix through deposition conditions

    SciTech Connect

    Pinto, S. R. C.; Ramos, M. M. D.; Gomes, M. J. M.; Buljan, M.; Chahboun, A.; Roldan, M. A.; Molina, S. I.; Bernstorff, S.; Varela, M.; Pennycook, S. J.; Barradas, N. P.; Alves, E.

    2012-04-01

    In this work, we investigate the structural properties of Ge quantum dot lattices in amorphous silica matrix, prepared by low-temperature magnetron sputtering deposition of (Ge+SiO{sub 2})/SiO{sub 2} multilayers. The dependence of quantum dot shape, size, separation, and arrangement type on the Ge-rich (Ge + SiO{sub 2}) layer thickness is studied. We show that the quantum dots are elongated along the growth direction, perpendicular to the multilayer surface. The size of the quantum dots and their separation along the growth direction can be tuned by changing the Ge-rich layer thickness. The average value of the quantum dots size along the lateral (in-plane) direction along with their lateral separation is not affected by the thickness of the Ge-rich layer. However, the thickness of the Ge-rich layer significantly affects the quantum dot ordering. In addition, we investigate the dependence of the multilayer average atomic composition and also the quantum dot crystalline quality on the deposition parameters.

  20. Tuning the properties of Ge-quantum dots superlattices in amorphous silica matrix through deposition conditions

    NASA Astrophysics Data System (ADS)

    Pinto, S. R. C.; Buljan, M.; Chahboun, A.; Roldan, M. A.; Bernstorff, S.; Varela, M.; Pennycook, S. J.; Barradas, N. P.; Alves, E.; Molina, S. I.; Ramos, M. M. D.; Gomes, M. J. M.

    2012-04-01

    In this work, we investigate the structural properties of Ge quantum dot lattices in amorphous silica matrix, prepared by low-temperature magnetron sputtering deposition of (Ge+SiO2)/SiO2 multilayers. The dependence of quantum dot shape, size, separation, and arrangement type on the Ge-rich (Ge + SiO2) layer thickness is studied. We show that the quantum dots are elongated along the growth direction, perpendicular to the multilayer surface. The size of the quantum dots and their separation along the growth direction can be tuned by changing the Ge-rich layer thickness. The average value of the quantum dots size along the lateral (in-plane) direction along with their lateral separation is not affected by the thickness of the Ge-rich layer. However, the thickness of the Ge-rich layer significantly affects the quantum dot ordering. In addition, we investigate the dependence of the multilayer average atomic composition and also the quantum dot crystalline quality on the deposition parameters.

  1. Quantum description of nanoantenna properties of a graphene membrane

    NASA Astrophysics Data System (ADS)

    Firsova, N. E.; Firsov, Yu. A.

    2016-06-01

    We considered a graphene membrane irradiated by a weak activating periodic electric field in the terahertz range. We used the quantum approach based on the time-dependent density matrix method to analyze the graphene electromagnetic response. For this goal the exact solution was found for the graphene membrane density matrix equation in linear approximation on the external field. On this basis the induced current was studied and then we obtained the formula for quantum conductivity as a function of external field frequency and temperature. The found formula for the conductivity corrected the one obtained in 2007 by Gusynin, Sharapov and Carbotte (Phys. Rev. B, 75 (2007) 165407). The corrected formula allowed to see that the graphene membrane was an oscillating contour, its fundamental eigenfrequency coinciding with a singularity point of the conductivity. The obtained formula allowed us also to calculate the graphene membrane quantum inductivity and capacitance. So in effect we demonstrated that the graphene membrane could be used as an antenna or a transistor. It was shown also that its eigenfrequency could be tuned by doping as its value was found to depend on electrons concentration. It was obtained that the eigenfrequency could be tuned in a rather large terahertz-infrared frequency range as electrons concentration in graphene may differ considerably. The found dependence on concentration is consistent with experiments. The presented formula for conductivity can be used to correct the SPPs Dispersion Relation and for the description of radiation process. It would be useful to take the obtained results into account when constructing devices containing a graphene membrane nanoantenna. Such project could make it possible to create wireless communications among nanosystems. This would be a promising research area of energy harvesting applications.

  2. Property attribution in Bohm's interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Kraus, Katherine Bedard

    1997-09-01

    Bohmian ontology includes particles and a wavefield. I explore how these objects give rise to the world we experience, which properties these fundamental objects have, and what kind of property is spin. Also, I present an example of how our choices about property attribution affect our evaluation of the nonlocality in the system. According to the traditional presentation of Bohm's interpretation, a Bohmian world is 'classical' in the sense that pointer states, mental states, etc., are composed of or supervene on particle properties alone. However, I show that this approach does not make sense and argue that a Bohmian account of these states must include both particle properties and wavefield properties. I then clarify the role this plays in a systematic account of Bohmian probability. Also, my discussion shows that Vink's interpretation does not give us the world we experience. I then focus on particle and wavefield properties. I start by evaluating the recent arguments given by Brown et. al. that Bohmian particles do not bear properties such as gravitational mass, charge, etc. I reject their arguments but agree that (with the exception of inertial mass) we should not attribute these properties to Bohmian particles. I continue by examining the confusions underlying Cushing's (1995) proposal that a tunneling time measurement might be able to falsify Bohm's interpretation but neither verify or falsify the Copenhagen interpretation. The recognition that tunneling time is both a wavefield property and a particle property clarifies many of the issues. Next, I explain how Bohm's interpretation models spin measurements, the ways in which spin is contextual, and how Bohmian spin relates to the Kochen-Specker theorem. I also provide several reasons why we should not attribute spin vectors to Bohmian particles. Finally, I use the framework of the Bell Inequalities to discuss a system in which the properties we decide to attribute, and the time at which we evaluate the system

  3. Negative circular polarization as a universal property of quantum dots

    SciTech Connect

    Taylor, Matthew W.; Spencer, Peter; Murray, Ray

    2015-03-23

    This paper shows that negative circular polarization, a spin flip of polarized carriers resulting in emission of opposite helicity, can be observed in undoped, n-doped, and p-doped InAs/GaAs quantum dots. These results contradict the usual interpretation of the effect. We show using power dependent and time resolved spectroscopy that the generation of negative circular polarization correlates with excited state emission. Furthermore, a longer spin lifetime of negatively polarized excitons is observed where emission is largely ground state in character.

  4. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo

    SciTech Connect

    Overy, Catherine; Blunt, N. S.; Shepherd, James J.; Booth, George H.; Cleland, Deidre; Alavi, Ali

    2014-12-28

    Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.

  5. Multimode model for projective photon-counting measurements

    SciTech Connect

    Tualle-Brouri, Rosa; Ourjoumtsev, Alexei; Dantan, Aurelien; Grangier, Philippe; Wubs, Martijn; Soerensen, Anders S.

    2009-07-15

    We present a general model to account for the multimode nature of the quantum electromagnetic field in projective photon-counting measurements. We focus on photon-subtraction experiments, where non-Gaussian states are produced conditionally. These are useful states for continuous-variable quantum-information processing. We present a general method called mode reduction that reduces the multimode model to an effective two-mode problem. We apply this method to a multimode model describing broadband parametric down-conversion, thereby improving the analysis of existing experimental results. The main improvement is that spatial and frequency filters before the photon detector are taken into account explicitly. We find excellent agreement with previously published experimental results, using fewer free parameters than before, and discuss the implications of our analysis for the optimized production of states with negative Wigner functions.

  6. Optical Properties of Fluorescent Mixtures: Comparing Quantum Dots to Organic Dyes

    ERIC Educational Resources Information Center

    Hutchins, Benjamin M.; Morgan, Thomas T.; Ucak-Astarlioglu, Mine G.; Wlilliams, Mary Elizabeth

    2007-01-01

    The study describes and compares the size-dependent optical properties of organic dyes with those of semiconductor nanocrystals or quantum dots (QDs). The analysis shows that mixtures of QDs contain emission colors that are sum of the individual QD components.

  7. Fabrication and multifunctional properties of ultrasmall water-soluble tungsten oxide quantum dots.

    PubMed

    Peng, Huaping; Liu, Pan; Lin, Danwei; Deng, Yani; Lei, Yun; Chen, Wei; Chen, Yuanzhong; Lin, Xinhua; Xia, Xinghua; Liu, Ailin

    2016-07-21

    A facile and green method has been demonstrated to synthesize ultrasmall tungsten oxide quantum dots (WOx QDs). The water-soluble WOx QDs present high luminescence stability, strong peroxidase-like activity, and excellent electrochemiluminescence properties. This work provides an eco-friendly strategy to prepare multifunctional WOx QDs, and opens the door for bioapplications of the WOx QDs. PMID:27381501

  8. Semi-Classical Localisation Properties of Quantum Oscillators on a Noncommutative Configuration Space

    NASA Astrophysics Data System (ADS)

    Benatti, Fabio; Gouba, Laure

    2015-11-01

    When dealing with the classical limit of two quantum mechanical oscillators on a noncommutative configuration space, the limits corresponding to the removal of configuration-space noncommutativity and position-momentum noncommutativity do not commute. We address this behaviour from the point of view of the phase-space localisation properties of the Wigner functions of coherent states under the two limits.

  9. Asymmetric effects on the optical properties of double-quantum well systems

    NASA Astrophysics Data System (ADS)

    Silotia, Poonam; Batra, Kriti; Prasad, Vinod

    2014-02-01

    Linear, nonlinear, and total absorption coefficient and refractive index changes of double-quantum well (DQW) systems are studied theoretically in the presence of external static electric field applied along the growth direction. The analytical expression for the linear and nonlinear optical properties is obtained using density matrix method. Emphasis is laid on the effect of asymmetry in the shapes of DQW system on optical properties. Some interesting results are obtained and explained.

  10. Optical properties of individual site-controlled Ge quantum dots

    SciTech Connect

    Grydlik, Martyna E-mail: martyna.grydlik@jku.at; Brehm, Moritz E-mail: martyna.grydlik@jku.at; Tayagaki, Takeshi; Langer, Gregor; Schäffler, Friedrich; Schmidt, Oliver G.

    2015-06-22

    We report photoluminescence (PL) experiments on individual SiGe quantum dots (QDs) that were epitaxially grown in a site-controlled fashion on pre-patterned Si(001) substrates. We demonstrate that the PL line-widths of single QDs decrease with excitation power to about 16 meV, a value that is much narrower than any of the previously reported PL signals in the SiGe/Si heterosystem. At low temperatures, the PL-intensity becomes limited by a 25 meV high potential-barrier between the QDs and the surrounding Ge wetting layer (WL). This barrier impedes QD filling from the WL which collects and traps most of the optically excited holes in this type-II heterosystem.

  11. Quantum-Mechanical Combinatorial Design of Solids with Target Properties

    NASA Astrophysics Data System (ADS)

    Zunger, Alex

    2009-10-01

    One of the most striking aspects of solid-state physics is the diversity of structural forms in which crystals appear in Nature. The already rich repertoire of such (equilibrium) forms has recently been significantly enriched by the advent of artificial growth techniques (MBE, STM- atom positioning, etc) that can create desired structural forms, such as superlattices and geometric atomic clusters even in defiance of the rules of equilibrium thermodynamics. As is well known, different atomic configurations generally lead to different physical properties even at fixed chemical composition. While the most widely-known illustration of such ``form controls function'' rule is the dramatically different color, conductivity and hardness of the allotropical forms of pure carbon, the physics of semiconductor superstructures and nanostructures is full of striking examples of how optical, magnetic and transport properties depend sensitively on atomic configuration (e.g, compare the properties of random to ordered alloys). Yet, the history of material research generally proceeded via accidental discoveries of materials configuration with interesting physical property (semiconductivity, ferromagnetism; superconductivity etc). Given the ability of growing many different atomic configurations, and given the often sensitive dependence of physical properties on atomic configuration, makes one wonder: can one first articulate the desired target physical property, then search (within a class) for the configuration that has this property? This talk describes the recent steps made by solid-state theory and computational physics to address this ``Inverse Design'' problem. I will show how Genetic Algorithms, in combination with efficient (``Order N'') solutions to the Pseudopotential Schr"odinger equation allow us to investigate astronomical spaces of atomic configurations in search of the structure with a target physical problem. Only a small fraction of all ( ˜10^14 in our case

  12. CdS quantum dots in colloids and polymer matrices: electronic structure and photochemical properties

    NASA Astrophysics Data System (ADS)

    Gurin, V. S.; Artemyev, M. V.

    1994-04-01

    We have studied the optical properties and electronic structures of quantum-confined CdS particles (Q-particles, quantum dots) prepared as CdS colloids in different solvents, CdS particles embedded in polymer matrices and vacuum evaporated island films of CdS. Due to the quantum-confined effect, the optical spectra of these systems exhibit the explicit blue shift of fundamental interband absorption and the appearance of well-pronounced exciton peaks at room temperature. The electronic structure of CdS quantum dots was examined by X-ray photoeletron spectroscopy and semi-empirical quantum-chemical calculations were performed. Both XRS data and results of calculations reveal the clear difference in valence band density of states for CdS Q-particles with respect to bulk CdS. Semiconductor-like electronic structure, especially for d-band, appears for CdS clusters containing more than 100 atoms. We also compare the relative stability of CdS clusters of different structure. Additionally, we studied the photochemical properties of CdS Q-particles and observed the effect of spectral hole burning in the absorption spectra of CdS colloids in 2-propanol during UV laser irradiation. This phenomenon results probably from selective photo-oxidation of CdS Q-particles, whose exciton absorption bands are close to irradiation wavelength.

  13. Ab initio quantum mechanical studies in electronic and structural properties of carbon nanotubes and silicon nanowires

    NASA Astrophysics Data System (ADS)

    Matsuda, Yuki

    This dissertation focuses on ab-initio quantum mechanical calculations of nanoelectronics in three research topics: contact resistance properties of carbon nanotubes and graphenes (Chapters 1 through 3), electrical properties of carbon nanotubes (Chapter 4) and silicon nanowires (Chapter 5). Through all the chapters, the aim of the research is to provide useful guidelines for experimentalists. Chapter 1 presents the contact resistance of metal electrode-carbon nanotube and metal electrode-graphene interfaces for various deposited metals, based on first-principles quantum mechanical density functional and matrix Green's function methods. Chapters 2 and 3 describe inventive ways to enhance contact resistance properties as well as mechanical stabilities using "molecular anchors" (Chapter 2) or using "end-contacted" (or end-on) electrodes (Chapter 3). Chapters 1 through 3 also provide useful guidelines for nanotube assembly process which is one of the main obstacles in nanoelectronics. Chapter 4 shows accurate and detailed band structure properties of single-walled carbon nanotubes using B3LYP hybrid functional, which are critical parameters in determining the electronic properties such as small band gaps (˜0.1 eV) and effective masses. Chapter 5 details both structural and electronic properties of silicon nanowires. These results lead to the findings controlling the diameter and surface coverage by adsorbates (e.g., hydrogen) of silicon nanowires can be effectively used to optimize their properties for various applications. All the theoretical results are compared with other theoretical studies and experimental data. Notably, electronic studies using B3LYP show excellent agreement with experimental studies quantitatively, which previous quantum mechanical calculations had failed. These studies show how quantum mechanical predictions of complex phenomena can be effectively investigated computationally in nanomaterials and nanodevices. Given the difficulty, expense

  14. Multimode waveguide speckle patterns for compressive sensing.

    PubMed

    Valley, George C; Sefler, George A; Justin Shaw, T

    2016-06-01

    Compressive sensing (CS) of sparse gigahertz-band RF signals using microwave photonics may achieve better performances with smaller size, weight, and power than electronic CS or conventional Nyquist rate sampling. The critical element in a CS system is the device that produces the CS measurement matrix (MM). We show that passive speckle patterns in multimode waveguides potentially provide excellent MMs for CS. We measure and calculate the MM for a multimode fiber and perform simulations using this MM in a CS system. We show that the speckle MM exhibits the sharp phase transition and coherence properties needed for CS and that these properties are similar to those of a sub-Gaussian MM with the same mean and standard deviation. We calculate the MM for a multimode planar waveguide and find dimensions of the planar guide that give a speckle MM with a performance similar to that of the multimode fiber. The CS simulations show that all measured and calculated speckle MMs exhibit a robust performance with equal amplitude signals that are sparse in time, in frequency, and in wavelets (Haar wavelet transform). The planar waveguide results indicate a path to a microwave photonic integrated circuit for measuring sparse gigahertz-band RF signals using CS. PMID:27244406

  15. Predicting Thermodynamic Properties of PBXTHs with New Quantum Topological Indexes

    PubMed Central

    Peng, Guowen; Yu, Limei

    2016-01-01

    Novel group quantitative structure-property relationship (QSPR) models on the thermodynamic properties of PBXTHs were presented, by the multiple linear regression (MLR) analysis method. Four thermodynamic properties were studied: the entropy (Sθ), the standard enthalpy of formation (ΔfHθ), the standard Gibbs energy of formation (ΔfGθ), and the relative standard Gibbs energy of formation (ΔRGθ). The results by the formula indicate that the calculated and predicted data in this study are in good agreement with those in literature and the deviation is within the experimental errors. To validate the estimation reliability for internal samples and the predictive ability for other samples, leave-one-out (LOO) cross validation (CV) and external validation were performed, and the results show that the models are satisfactory. PMID:26900689

  16. Morphology, optical properties, charge transfer, and charge transport in nanocrystalline quantum dots

    NASA Astrophysics Data System (ADS)

    Biswas, Sushmita; Jung, Hye-son; Stroscio, Michael; Dutta, Mitra

    2012-03-01

    Structural, optical and electrical studies of several hybrids of organic and inorganic nanostructures as well as core shell nanocrystalline structures will be presented. The effects of thermal annealing on the morphological and photoconductive properties of cadmium selenide quantum dots coreshell quantum dots together with indicate that there are collective events happening due to annealing. Two different types of hybrid structures will be discussed. Optical and electrical experimental results in semiconductor nanostructures in conductive polymers as well as those that were integrated into the organic photosystem I (PS1), as part of an artificial light harvesting complex (LHC) will be presented.

  17. Electronic and dielectric properties of vacancy clusters as quantum dot in silicane

    NASA Astrophysics Data System (ADS)

    Mohan, Brij; Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.

    2015-06-01

    First principal study of electronic and dielectric properties of a silicane nanostructure containing cluster of vacancies as quantum dot (QD) has been investigated within density functional theory (DFT). Electronic band structure and corresponding density of states show the decrease in band gap with increasing size of quantum dot. A band gap of 0.38 eV has been achieved for silicane containing 3QD. Electron energy loss spectra (EEL) function shows additional plasmonic features for QD containing silicane in visible region, which may have potential applications in optoelectronic devices.

  18. Quantum Monte Carlo calculation of the properties of atomic carbon and diamond

    SciTech Connect

    Fahy, S.; Wang, X.W.; Louie, S.G.

    1988-06-01

    A new method of calculating total energies of solids using non-local pseudopotentials in conjunction with the variational quantum Monte Carlo approach is presented. By using pseudopotentials, the large fluctuations of the energies in the core region of the atoms which occur in quantum Monte Carlo all-electron schemes are avoided. The method is applied to calculate the cohesive energy and structural properties of diamond and the first ionization energy and electron affinity of the carbon atom. Results are in excellent agreement with experiment. 8 refs., 1 fig., 2 tabs.

  19. Electronic and dielectric properties of vacancy clusters as quantum dot in silicane

    SciTech Connect

    Mohan, Brij Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok

    2015-06-24

    First principal study of electronic and dielectric properties of a silicane nanostructure containing cluster of vacancies as quantum dot (QD) has been investigated within density functional theory (DFT). Electronic band structure and corresponding density of states show the decrease in band gap with increasing size of quantum dot. A band gap of 0.38 eV has been achieved for silicane containing 3QD. Electron energy loss spectra (EEL) function shows additional plasmonic features for QD containing silicane in visible region, which may have potential applications in optoelectronic devices.

  20. CheckDen, a program to compute quantum molecular properties on spatial grids.

    PubMed

    Pacios, Luis F; Fernandez, Alberto

    2009-09-01

    CheckDen, a program to compute quantum molecular properties on a variety of spatial grids is presented. The program reads as unique input wavefunction files written by standard quantum packages and calculates the electron density rho(r), promolecule and density difference function, gradient of rho(r), Laplacian of rho(r), information entropy, electrostatic potential, kinetic energy densities G(r) and K(r), electron localization function (ELF), and localized orbital locator (LOL) function. These properties can be calculated on a wide range of one-, two-, and three-dimensional grids that can be processed by widely used graphics programs to render high-resolution images. CheckDen offers also other options as extracting separate atom contributions to the property computed, converting grid output data into CUBE and OpenDX volumetric data formats, and perform arithmetic combinations with grid files in all the recognized formats. PMID:19447056

  1. Dielectric and Thermal Properties of Transformer Oil Modified by Semiconductive CdS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Abd-Elhady, Amr M.; Ibrahim, Mohamed E.; Taha, T. A.; Izzularab, Mohamed A.

    2016-07-01

    In this paper, modified transformer oil semiconductor quantum dots (QDs) are presented. Cadmium sulfide (CdS) quantum dots of radius 4.5 nm with a hexagonal crystal structure are added to transformer oil to improve its dielectric and thermal properties. CdS QDs modified oil is prepared considering different filler loading levels. Alternating current breakdown voltages of the transformer oil samples before and after the modification are measured based on American Society for Testing and Materials D1816 standard. The relative permittivity and dissipation factor are measured for all samples. Also, thermal properties of the oil samples are experimentally evaluated according to the temperature change measurement considering heating and cooling processes. The results show significant improvements in dielectric and thermal properties of the modified transformer oil, as well as an increase in the breakdown strength by about 81% in comparison to the base transformer oil.

  2. Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, M.; Motyka, M.; Rudno-Rudziński, W.; Sęk, G.; Misiewicz, J.; Pucicki, D.; Kosiel, K.; Sankowska, I.; Kubacka-Traczyk, J.; Bugajski, M.

    2016-07-01

    In this work, AlGaAs/GaAs superlattice, with layers' sequence and compositions imitating the active and injector regions of a quantum cascade laser designed for emission in the terahertz spectral range, was investigated. Three independent absorption-like optical spectroscopy techniques were employed in order to study the band structure of the minibands formed within the conduction band. Photoreflectance measurements provided information about interband transitions in the investigated system. Common transmission spectra revealed, in the target range of intraband transitions, mainly a number of lines associated with the phonon-related processes, including two-phonon absorption. In contrast, differential transmittance realized by means of Fourier-transform spectroscopy was utilized to probe the confined states of the conduction band. The obtained energy separation between the second and third confined electron levels, expected to be predominantly contributing to the lasing, was found to be ~9 meV. The optical spectroscopy measurements were supported by numerical calculations performed in the effective mass approximation and XRD measurements for layers' width verification. The calculated energy spacings are in a good agreement with the experimental values.

  3. Emission and Propagation Properties of Midinfrared Quantum Cascade Lasers

    SciTech Connect

    Krishnaswami, Kannan; Bernacki, Bruce E.; Cannon, Bret D.; Ho, Nicolas; Anheier, Norman C.

    2008-02-15

    We report divergence, astigmatism and M2 measurements of quantum cascade lasers (QCL) with an emission wavelength of 8.77 mum. Emission profiles from the QCL facet showed divergence angles of 62° and 32° FWHM ± 2° for the fast and slow axes, respectively. The observation of far field structure superimposed on the fast axes profiles was attributed to the position of the QCL die with respect to the edge of the laser submount, emphasizing the need for careful placement. Two diffraction-limited Germanium aspheric microlenses were designed and fabricated to efficiently collect, collimate, and focus QCL emission. A confocal system comprised of these lenses was used to measure the beam propagation figure of merit (M2) yielding 1.8 and 1.2 for the fast and slow axes, respectively. Astigmatism at the exit facet was calculated to be about 3.4 mum, or less than half a wave. To the best of our knowledge, this is the first experimental measurement of astigmatism and M2 reported for mid-IR QCLs.

  4. New quantum properties of phonons and their detection

    NASA Technical Reports Server (NTRS)

    Artoni, Maurizo; Birman, Joseph L.

    1994-01-01

    We present a theoretical investigation on new and interesting properties of the phonon polarization field in solids. In particular, non-classical aspects of the phonon population and an experimental scheme that would enable one to detect them will be discussed.

  5. A time/frequency quantum analysis of the light generated by synchronously pumped optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Jiang, Shifeng; Treps, Nicolas; Fabre, Claude

    2012-04-01

    We present in this paper a general model for determining the quantum properties of the light generated by a synchronously pumped optical parametric oscillator (SPOPO) operating below threshold. This model considers time and frequency on an equal footing, which allows us to find new quantum properties, related for example to the carrier envelope offset (CEO) phase, and to consider situations that are close to real experiments. We show that, in addition to multimode squeezing in the so-called ‘supermodes’, the system exhibits quadrature entanglement between frequency combs of opposite CEO phases. We have also determined the quantum properties of the individual pulses and their quantum correlations with the neighboring pulses. Finally, we determine the quantum Cramer-Rao limit for an ultra-short time delay measurement using a given number of pulses generated by the SPOPO.

  6. A molecular-field approximation for quantum crystals. Ph.D. Thesis; [considering ground state properties

    NASA Technical Reports Server (NTRS)

    Danilowicz, R.

    1973-01-01

    Ground-state properties of quantum crystals have received considerable attention from both theorists and experimentalists. The theoretical results have varied widely with the Monte Carlo calculations being the most successful. The molecular field approximation yields ground-state properties which agree closely with the Monte Carlo results. This approach evaluates the dynamical behavior of each pair of molecules in the molecular field of the other N-2 molecules. In addition to predicting ground-state properties that agree well with experiment, this approach yields data on the relative importance of interactions of different nearest neighbor pairs.

  7. Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots

    PubMed Central

    2012-01-01

    We investigate systematically the influence of the nature of thiol-type capping ligands on the optical and structural properties of highly luminescent CdTe quantum dots synthesized in aqueous media, comparing mercaptopropionic acid (MPA), thioglycolic acid (TGA), 1-thioglycerol (TGH), and glutathione (GSH). The growth rate, size distribution, and quantum yield strongly depend on the type of surface ligand used. While TGH binds too strongly to the nanocrystal surface inhibiting growth, the use of GSH results in the fastest growth kinetics. TGA and MPA show intermediate growth kinetics, but MPA yields a much lower initial size distribution than TGA. The obtained fluorescence quantum yields range from 38% to 73%. XPS studies unambiguously put into evidence the formation of a CdS shell on the CdTe core due to the thermal decomposition of the capping ligands. This shell is thicker when GSH is used as ligand, as compared with TGA ligands. PMID:23017183

  8. Ground-state properties of a triangular triple quantum dot connected to superconducting leads

    NASA Astrophysics Data System (ADS)

    Oguri, Akira; Sato, Izumi; Shimamoto, Masashi; Tanaka, Yoichi

    2015-03-01

    We study ground-state properties of a triangular triple quantum dot connected to two superconducting (SC) leads. In this system orbital motion along the triangular configuration causes various types of quantum phases, such as the SU(4) Kondo state and the Nagaoka ferromagnetic mechanism, depending on the electron filling. The ground state also evolves as the Cooper pairs penetrate from the SC leads. We describe the phase diagram in a wide range of the parameter space, varying the gate voltage, the couplings between the dots and leads, and also the Josephson phase between the SC gaps. The results are obtained in the limit of large SC gap, carrying out exact diagonalization of an effective Hamiltonian. We also discuss in detail a classification of the quantum states according to the fixed point of the Wilson numerical renormalization group (NRG). Furthermore, we show that the Bogoliubov zero-energy excitation determines the ground state of a π Josephson junction at small electron fillings.

  9. Failure mode analysis of degraded InGaAs-AlGaAs strained quantum well multi-mode vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Lingley, Zachary; Brodie, Miles; Huang, Michael; Bushmaker, Adam; Theiss, Jesse; Presser, Nathan; Foran, Brendan; Moss, Steven C.

    2016-03-01

    Remarkable progress made in vertical cavity surface emitting lasers (VCSELs) emitting at 850 and 980 nm has led them to find an increasing number of applications in high speed data communications as well as in potential space satellite systems. However, little has been reported on reliability and failure modes of InGaAs VCSELs emitting at ~980 nm although it is crucial to understand failure modes and underlying degradation mechanisms in developing these VCSELs that exceed lifetime requirements for space missions. The active layer of commercial VCSELs that we studied consisted of two or three InGaAs quantum wells. The laser structures were fabricated into deep mesas followed by a steam oxidation process to form oxide-apertures for current and optical confinements. Our multi- mode VCSELs showed a laser threshold of ~ 0.5 mA at RT. Failures were generated via accelerated life-testing of VCSELs. For the present study, we report on failure mode analysis of degraded oxide-VCSELs using various techniques. We employed nondestructive techniques including electroluminescence (EL), optical beam induced current (OBIC), and electron beam induced current (EBIC) techniques as well as destructive techniques including focused ion beam (FIB) and high-resolution TEM techniques to study VCSELs that showed different degradation behaviors. Especially, we employed FIB systems to locally remove a portion of top-DBR mirrors of degraded VCSELs, which made it possible for our subsequent EBIC and OBIC techniques to locate damaged areas that were generated as a result of degradation processes and also for our HR-TEM technique to prepare TEM cross sections from damaged areas. Our nondestructive and destructive physical analysis results are reported including defect and structural analysis results from pre-aged VCSELs as well as from degraded VCSELs life-tested under different test conditions.

  10. Root cause investigation of catastrophic degradation in high power multi-mode InGaAs-AlGaAs strained quantum well lasers

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Ives, Neil; Presser, Nathan; Moss, Steven C.

    2010-02-01

    Optimization of broad-area InGaAs-AlGaAs strained-quantum-well lasers has led to successful demonstration of high power and high efficient operation for industrial applications. State-of-the-art broad-area single emitters show an optical output power of over 20W and a power conversion efficiency of over 70% under CW operation. However, understanding of long-term reliability and degradation processes of these devices is still poor. This paper investigates the root causes of catastrophic degradation in broad-area lasers by performing accelerated lifetests of these devices and failure mode analyses of degraded devices using various techniques. We investigated MOCVDgrown broad-area strained InGaAs-AlGaAs single QW lasers at ~975nm. Our study included both passivated and unpassivated broad-area lasers that yielded catastrophic failures at the facet and also in the bulk. Our accelerated lifetests generated failures at different stages of degradation by forcing them to reach a preset drop in optical output power. Deep-level-transient-spectroscopy (DLTS) was employed to study deep traps in degraded devices. Trap densities and capture cross-sections were estimated from a series of degraded devices to understand the role that point defects and extended defects play in degradation processes via recombination enhanced defect reaction. Electron-beam-induced-current (EBIC) was employed to find correlation between dark line defects in degraded lasers and test stress conditions. Time-resolved electroluminescence (EL) was employed to study formation and progression of dark spots and dark lines in real time to understand mechanisms leading to catastrophic facet and bulk degradation. Lastly, we present our physics-of-failure-based model of catastrophic degradation processes in these broad-area lasers.

  11. The properties of water: insights from quantum simulations.

    PubMed

    Paesani, Francesco; Voth, Gregory A

    2009-04-30

    The properties of water play a central role in many phenomena of relevance to different areas of science, including physics, chemistry, biology, geology, and climate research. Although well studied for decades, the behavior of water under different conditions and in different environments still remains mysterious and often surprising. In this article, various efforts aimed at providing a comprehensive representation of the water properties at a molecular level through computer modeling and simulation will be described. In particular, the unique role played by the hydrogen-bond network will be examined, first in liquid water, then in the solvation of model biological compounds, and finally in ice, especially highlighting the important effects related to the quantization of the nuclear motion. PMID:19385690

  12. Assessing Multimodal Learning Practices

    ERIC Educational Resources Information Center

    Burke, Anne; Rowsell, Jennifer

    2007-01-01

    The authors examine how to assess multimodal reading practices with a group of middle school students attending an elementary school in Eastern Canada. They argue that to assess new reading practices, we need a fine-grained account of what students do, when they do it, with whom, why they do it, and finally, where they go in web space. The authors…

  13. Interactive Multimodal Learning Environments

    ERIC Educational Resources Information Center

    Moreno, Roxana; Mayer, Richard

    2007-01-01

    What are interactive multimodal learning environments and how should they be designed to promote students' learning? In this paper, we offer a cognitive-affective theory of learning with media from which instructional design principles are derived. Then, we review a set of experimental studies in which we found empirical support for five design…

  14. Multimodal Information Exploration.

    ERIC Educational Resources Information Center

    Stock, Oliviero; Zancanaro, Massimo; Strapparava, Carlo

    1997-01-01

    Discussion of information exploration and software design in computer-based educational systems focuses on the integration of hypermedia and natural language dialog. AlFRESCO is described, an interactive natural language-centered multimodal system that was developed for users interested in frescoes and paintings. (LRW)

  15. Generating Multimodal References

    ERIC Educational Resources Information Center

    van der Sluis, Ielka; Krahmer, Emiel

    2007-01-01

    This article presents a new computational model for the generation of multimodal referring expressions (REs), based on observations in human communication. The algorithm is an extension of the graph-based algorithm proposed by Krahmer, van Erk, and Verleg (2003) and makes use of a so-called Flashlight Model for pointing. The Flashlight Model…

  16. Multimode optical fiber

    DOEpatents

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  17. Measuring Gaussian Quantum Information and Correlations Using the Rényi Entropy of Order 2

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Girolami, Davide; Serafini, Alessio

    2012-11-01

    We demonstrate that the Rényi-2 entropy provides a natural measure of information for any multimode Gaussian state of quantum harmonic systems, operationally linked to the phase-space Shannon sampling entropy of the Wigner distribution of the state. We prove that, in the Gaussian scenario, such an entropy satisfies the strong subadditivity inequality, a key requirement for quantum information theory. This allows us to define and analyze measures of Gaussian entanglement and more general quantum correlations based on such an entropy, which are shown to satisfy relevant properties such as monogamy.

  18. Measuring Gaussian quantum information and correlations using the Rényi entropy of order 2.

    PubMed

    Adesso, Gerardo; Girolami, Davide; Serafini, Alessio

    2012-11-01

    We demonstrate that the Rényi-2 entropy provides a natural measure of information for any multimode Gaussian state of quantum harmonic systems, operationally linked to the phase-space Shannon sampling entropy of the Wigner distribution of the state. We prove that, in the Gaussian scenario, such an entropy satisfies the strong subadditivity inequality, a key requirement for quantum information theory. This allows us to define and analyze measures of Gaussian entanglement and more general quantum correlations based on such an entropy, which are shown to satisfy relevant properties such as monogamy. PMID:23215368

  19. Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review.

    PubMed

    Singh, Gautam; Fisch, Michael; Kumar, Satyendra

    2016-05-01

    Investigations of the mixtures of semiconducting quantum scale particles in anisotropic liquid crystal (LC) medium have become a vibrant area of research primarily due to their very interesting phenomenology. The results of these investigations fall into four groups: (i) Photoluminescent emissive properties of the quantum particles ordinarily depend on the size, shape, and chemical nature of the particles. These undergo important changes in their spectrum, polarization, and isotropy of emission when dissolved in an anisotropic LC phase. Moreover, their response to external stimuli such as mechanical, optical, or electric fields is altered in important ways; (ii) physical properties of LCs such as viscosity, dielectric relaxation, etc are modified by the addition of quantum particles. Their presence in ferroelectric smectic LC is known to give rise to an antiferro- to ferri-electric phase transition and suppresses the paraelectric phase; (iii) switching characteristics of LC devices are altered in important ways by the addition of quantum particles. Their threshold voltage is usually lowered, contrast ratio, and switching speed of nematic, ferroelectric, and cholesteric devices may increase or decrease depending on the concentration, applied field, and particle anisotropy; and (iv) controlled aggregation of quantum particles at the interface between isotropic and LC domains, near added polystyrene beads, and in the vicinity of point defects gives rise to interesting photonic structures, enables studies of photon antibunching and single photon sources. Clearly, there is a need to understand the basic and applied aspects of these systems and find routes to their technological applications including sensors, electrooptical devices, and solar energy harvesting. This review provides an overview of recent work involving liquid crystals and a variety of quantum particles. PMID:27088655

  20. Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review

    NASA Astrophysics Data System (ADS)

    Singh, Gautam; Fisch, Michael; Kumar, Satyendra

    2016-05-01

    Investigations of the mixtures of semiconducting quantum scale particles in anisotropic liquid crystal (LC) medium have become a vibrant area of research primarily due to their very interesting phenomenology. The results of these investigations fall into four groups: (i) Photoluminescent emissive properties of the quantum particles ordinarily depend on the size, shape, and chemical nature of the particles. These undergo important changes in their spectrum, polarization, and isotropy of emission when dissolved in an anisotropic LC phase. Moreover, their response to external stimuli such as mechanical, optical, or electric fields is altered in important ways; (ii) physical properties of LCs such as viscosity, dielectric relaxation, etc are modified by the addition of quantum particles. Their presence in ferroelectric smectic LC is known to give rise to an antiferro- to ferri-electric phase transition and suppresses the paraelectric phase; (iii) switching characteristics of LC devices are altered in important ways by the addition of quantum particles. Their threshold voltage is usually lowered, contrast ratio, and switching speed of nematic, ferroelectric, and cholesteric devices may increase or decrease depending on the concentration, applied field, and particle anisotropy; and (iv) controlled aggregation of quantum particles at the interface between isotropic and LC domains, near added polystyrene beads, and in the vicinity of point defects gives rise to interesting photonic structures, enables studies of photon antibunching and single photon sources. Clearly, there is a need to understand the basic and applied aspects of these systems and find routes to their technological applications including sensors, electrooptical devices, and solar energy harvesting. This review provides an overview of recent work involving liquid crystals and a variety of quantum particles.

  1. Do the cations in clay and the polymer matrix affect quantum dot fluorescent properties?

    PubMed

    Wei, Wenjun; Liu, Cui; Liu, Jiyan; Liu, Xueqing; Zou, Linling; Cai, Shaojun; Shi, Hong; Cao, Yuan-Cheng

    2016-06-01

    This paper studied the effects of cations and polymer matrix on the fluorescent properties of quantum dots (QDs). The results indicated that temperature has a greater impact on fluorescence intensity than clay cations (mainly K(+) and Na(+) ). Combined fluorescence lifetime and steady-state spectrometer tests showed that QD lifetimes all decreased when the cation concentration was increased, but the quantum yields were steady at various cation concentrations of 0, 0.05, 0.5 and 1 M. Poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA) and diepoxy resin were used to study the effects of polymers on QD lifetime and quantum yield. The results showed that the lifetime for QDs 550 nm in PEO and PVA was 17.33 and 17.12 ns, respectively; for the epoxy resin, the lifetime was 0.74 ns, a sharp decrease from 24.47 ns. The quantum yield for QDs 550 nm changed from 34.22% to 7.45% and 7.81% in PEO and PVA, respectively; for the epoxy resin the quantum yield was 2.25%. QDs 580 nm and 620 nm showed the same results as QDs 550 nm. This study provides useful information on the design, synthesis and application of QDs-polymer luminescent materials. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26663530

  2. Polyaniline/carbon nanotube/CdS quantum dot composites with enhanced optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Goswami, Mrinmoy; Ghosh, Ranajit; Maruyama, Takahiro; Meikap, Ajit Kumar

    2016-02-01

    A new kind of polyaniline/carbon nanotube/CdS quantum dot composites have been developed via in-situ polymerization of aniline monomer in the presence of dispersed CdS quantum dots (size: 2.7-4.8 nm) and multi-walled carbon nanotubes (CNT), which exhibits enhanced optical and electrical properties. The existences of 1st order, 2nd order, and 3rd order longitudinal optical phonon modes, strongly indicate the high quality of synthesized CdS quantum dots. The occurrence of red shift of free exciton energy in photoluminescence is due to size dependent quantum confinement effect of CdS. The conductivity of the composites (for example PANI/CNT/CdS (2 wt.% CdS)) is increased by about 7 of magnitude compared to that of pure PANI indicating a charge transfer between CNT and polymer via CdS quantum dots. This advanced material has a great potential for high-performance of electro-optical applications.

  3. Catastrophic degradation in high power multi-mode InGaAs-AlGaAs strained quantum well lasers with intrinsic and irradiation-induced defects

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; LaLumondiere, Stephen; DeIonno, Erica; Foran, Brendan; Presser, Nathan; Lotshaw, William; Moss, Steven C.

    2014-03-01

    A number of groups have studied reliability and degradation processes in GaAs-based lasers, but none of these studies have yielded a reliability model based on the physics of failure. Unsuccessful development of this model originates from the facts that: (i) defects related phenomena responsible for degradation in GaAs-based lasers are difficult to study due to the lack of suitable non-destructive techniques and (ii) degradation process occurs extremely fast after a long period of latency. Therefore, most of laser diode manufacturers perform accelerated multi-cell lifetests to estimate lifetimes of lasers using an empirical model, but this approach is a concern especially for satellite communication systems where high reliability is required of lasers for long-term duration in the space environment. Since it is a challenge to control defects introduced during the growth of laser structures, we studied degradation processes in broad-area InGaAs-AlGaAs strained quantum well (QW) lasers with intrinsic defects as well as those with defects introduced via proton irradiation. For the present study, we investigated the root causes of catastrophic degradation processes in MOCVD-grown broad-area InGaAs-AlGaAs strained QW lasers using various failure mode analysis techniques. A number of lasers were proton irradiated with different energies and fluences. We also studied GaAs double heterostructure (DH) test samples with different amounts of intrinsic defects introduced during MOCVD growth. These samples were proton irradiated as well to introduce additional defects. Deep level transient spectroscopy (DLTS) and time resolved photoluminescence (TR-PL) techniques were employed to study traps (due to point defects) and non-radiative recombination centers (NRCs) in pre- and poststressed lasers, respectively. These characteristics were compared with those in pre- and post-proton irradiated lasers and DHs to study the role that defects and NRCs play in catastrophic degradation

  4. Nanoparticles in Higher-Order Multimodal Imaging

    NASA Astrophysics Data System (ADS)

    Rieffel, James Ki

    Imaging procedures are a cornerstone in our current medical infrastructure. In everything from screening, diagnostics, and treatment, medical imaging is perhaps our greatest tool in evaluating individual health. Recently, there has been tremendous increase in the development of multimodal systems that combine the strengths of complimentary imaging technologies to overcome their independent weaknesses. Clinically, this has manifested in the virtually universal manufacture of combined PET-CT scanners. With this push toward more integrated imaging, new contrast agents with multimodal functionality are needed. Nanoparticle-based systems are ideal candidates based on their unique size, properties, and diversity. In chapter 1, an extensive background on recent multimodal imaging agents capable of enhancing signal or contrast in three or more modalities is presented. Chapter 2 discusses the development and characterization of a nanoparticulate probe with hexamodal imaging functionality. It is my hope that the information contained in this thesis will demonstrate the many benefits of nanoparticles in multimodal imaging, and provide insight into the potential of fully integrated imaging.

  5. Quantum molecular dynamics simulations of thermophysical properties of fluid ethane

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Wang, Cong; Zheng, Fawei; Zhang, Ping

    2012-12-01

    We have performed first-principles molecular-dynamics simulations based on density-functional theory to study the thermophysical properties of ethane under extreme conditions. We present results for the equation of state of fluid ethane in the warm dense region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity and optical reflectivity are derived. The close correlation between the nonmetal-metal transition of ethane and its decomposition, that ethane dissociates significantly into molecular and/or atomic hydrogen and some long alkane chains, has been systematically studied by analyzing the optical conductivity spectra, pair correlation functions, electronic density of states, and charge density distribution of fluid ethane.

  6. Thermodynamical properties of triangular quantum wires: entropy, specific heat, and internal energy

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2016-07-01

    In the present work, thermodynamical properties of a GaAs quantum wire with equilateral triangle cross section are studied. First, the energy levels of the system are obtained by solving the Schrödinger equation. Second, the Tsallis formalism is applied to obtain entropy, internal energy, and specific heat of the system. We have found that the specific heat and entropy have certain physically meaningful values, which mean thermodynamic properties cannot take any continuous value, unlike classical thermodynamics in which they are considered as continuous quantities. Maximum of entropy increases with increasing the wire size. The specific heat is zero at special temperatures. Specific heat decreases with increasing temperature. There are several peaks in specific heat, and these are dependent on quantum wire size.

  7. The Split Property for Locally Covariant Quantum Field Theories in Curved Spacetime

    NASA Astrophysics Data System (ADS)

    Fewster, Christopher J.

    2015-12-01

    The split property expresses the way in which local regions of spacetime define subsystems of a quantum field theory. It is known to hold for general theories in Minkowski space under the hypothesis of nuclearity. Here, the split property is discussed for general locally covariant quantum field theories in arbitrary globally hyperbolic curved spacetimes, using a spacetime deformation argument to transport the split property from one spacetime to another. It is also shown how states obeying both the split and (partial) Reeh-Schlieder properties can be constructed, providing standard split inclusions of certain local von Neumann algebras. Sufficient conditions are given for the theory to admit such states in ultrastatic spacetimes, from which the general case follows. A number of consequences are described, including the existence of local generators for global gauge transformations, and the classification of certain local von Neumann algebras. Similar arguments are applied to the distal split property and circumstances are exhibited under which distal splitting implies the full split property.

  8. Linear and Nonlinear Optical Properties in Spherical Quantum Dots: Generalized Hulthén Potential

    NASA Astrophysics Data System (ADS)

    Onyeaju, M. C.; Idiodi, J. O. A.; Ikot, A. N.; Solaimani, M.; Hassanabadi, H.

    2016-05-01

    In this work, we studied the optical properties of spherical quantum dots confined in Hulthén potential with the appropriate centrifugal term included. The approximate solution of the bound state and wave functions were obtained from the Schrödinger wave equation by applying the factorization method. Also, we have used the density matrix formalism to investigate the linear and third-order nonlinear absorption coefficient and refractive index changes.

  9. A short-wavelength infrared emitting multimodal probe for non-invasive visualization of phagocyte cell migration in living mice.

    PubMed

    Tsukasaki, Y; Komatsuzaki, A; Mori, Y; Ma, Q; Yoshioka, Y; Jin, T

    2014-11-28

    For the non-invasive visualization of cell migration in deep tissues, we synthesized a short-wavelength infrared (SWIR) emitting multimodal probe that contains PbS/CdS quantum dots, rhodamine 6G and iron oxide nanoparticles. This probe enables multimodal (SWIR fluorescence/magnetic resonance) imaging of phagocyte cell migration in living mice. PMID:25296382

  10. Gradual Reduction in Sodium Content in Cooked Ham, with Corresponding Change in Sensorial Properties Measured by Sensory Evaluation and a Multimodal Machine Vision System.

    PubMed

    Greiff, Kirsti; Mathiassen, John Reidar; Misimi, Ekrem; Hersleth, Margrethe; Aursand, Ida G

    2015-01-01

    The European diet today generally contains too much sodium (Na(+)). A partial substitution of NaCl by KCl has shown to be a promising method for reducing sodium content. The aim of this work was to investigate the sensorial changes of cooked ham with reduced sodium content. Traditional sensorial evaluation and objective multimodal machine vision were used. The salt content in the hams was decreased from 3.4% to 1.4%, and 25% of the Na(+) was replaced by K(+). The salt reduction had highest influence on the sensory attributes salty taste, after taste, tenderness, hardness and color hue. The multimodal machine vision system showed changes in lightness, as a function of reduced salt content. Compared to the reference ham (3.4% salt), a replacement of Na(+)-ions by K(+)-ions of 25% gave no significant changes in WHC, moisture, pH, expressed moisture, the sensory profile attributes or the surface lightness and shininess. A further reduction of salt down to 1.7-1.4% salt, led to a decrease in WHC and an increase in expressible moisture. PMID:26422367

  11. Gradual Reduction in Sodium Content in Cooked Ham, with Corresponding Change in Sensorial Properties Measured by Sensory Evaluation and a Multimodal Machine Vision System

    PubMed Central

    Greiff, Kirsti; Mathiassen, John Reidar; Misimi, Ekrem; Hersleth, Margrethe; Aursand, Ida G.

    2015-01-01

    The European diet today generally contains too much sodium (Na+). A partial substitution of NaCl by KCl has shown to be a promising method for reducing sodium content. The aim of this work was to investigate the sensorial changes of cooked ham with reduced sodium content. Traditional sensorial evaluation and objective multimodal machine vision were used. The salt content in the hams was decreased from 3.4% to 1.4%, and 25% of the Na+ was replaced by K+. The salt reduction had highest influence on the sensory attributes salty taste, after taste, tenderness, hardness and color hue. The multimodal machine vision system showed changes in lightness, as a function of reduced salt content. Compared to the reference ham (3.4% salt), a replacement of Na+-ions by K+-ions of 25% gave no significant changes in WHC, moisture, pH, expressed moisture, the sensory profile attributes or the surface lightness and shininess. A further reduction of salt down to 1.7–1.4% salt, led to a decrease in WHC and an increase in expressible moisture. PMID:26422367

  12. Metal colloids and quantum dots: linear and nonlinear optical properties

    SciTech Connect

    Henderson, Don O.

    1997-05-12

    Nanophase materials have found a wide application in a variety of technological areas which include ultrafast optical switching high density information storage and retrieval, electronics, and catalysts, to mention a few. Nanocrystal science has also drawn considerable interest from the fundamental perspective engaging physicists, chemists, and material scientists into this area of rapidly expanding and challenging research. Basic questions concerning how matter evolves from atomic like behavior to molecular and onto bulk lie at the center nanocrystal research. In addition, because of the high surface to volume ratio of the nanocrystals, the interaction potential between a nanocrystal and its surrounding environment becomes an important issue in determining its properties. While significant progress has been made in nanocrystal research, there are many problems concerned with their fabrication. In particular, the difficulty of incorporating nanocrystals into a matrix that is appropriate for ultimate device development has hindered some aspects of nanocrystal research. Ion implantation is a method that is now established as a technique for fabricating metal and semiconductor nanocrystals. It is highly versatile in that one may select nearly any host material for incorporating the nanocrystals of interest. The flexibility of being able to select the host matrix is also interesting from the point of view that it opens the opportunity to investigate matrix-nanocrystal interactions. We summarize in the following sections results on metal and semiconductor nanocrystals formed by ion implantation into dielectric hosts.

  13. Process-Dependent Properties in Colloidally Synthesized “Giant” Core/Shell Nanocrystal Quantum Dots

    SciTech Connect

    Hollingsworth, Jennifer A.; Ghosh, Yagnaseni; Dennis, Allison M.; Mangum, Benjamin D.; Park, Young-Shin; Kundu, Janardan; Htoon, Han

    2012-06-07

    Due to their characteristic bright and stable photoluminescence, semiconductor nanocrystal quantum dots (NQDs) have attracted much interest as efficient light emitters for applications from single-particle tracking to solid-state lighting. Despite their numerous enabling traits, however, NQD optical properties are frustratingly sensitive to their chemical environment, exhibit fluorescence intermittency ('blinking'), and are susceptible to Auger recombination, an efficient nonradiative decay process. Previously, we showed for the first time that colloidal CdSe/CdS core/shell nanocrystal quantum dots (NQDs) comprising ultrathick shells (number of shell monolayers, n, > 10) grown by protracted successive ionic layer adsorption and reaction (SILAR) leads to remarkable photostability and significantly suppressed blinking behavior as a function of increasing shell thickness. We have also shown that these so-called 'giant' NQDs (g-NQDs) afford nearly complete suppression of non-radiative Auger recombination, revealed in our studies as long biexciton lifetimes and efficient multiexciton emission. The unique behavior of this core/shell system prompted us to assess correlations between specific physicochemical properties - beyond shell thickness - and functionality. Here, we demonstrate the ability of particle shape/faceting, crystalline phase, and core size to determine ensemble and single-particle optical properties (quantum yield/brightness, blinking, radiative lifetimes). Significantly, we show how reaction process parameters (surface-stabilizing ligands, ligand:NQD ratio, choice of 'inert' solvent, and modifications to the SILAR method itself) can be tuned to modify these function-dictating NQD physical properties, ultimately leading to an optimized synthetic approach that results in the complete suppression of blinking. We find that the resulting 'guiding principles' can be applied to other NQD compositions, allowing us to achieve non-blinking behavior in the near

  14. Preparation of carbon quantum dots based on starch and their spectral properties.

    PubMed

    Yan, Zhengyu; Shu, Juan; Yu, Yan; Zhang, Zhengwei; Liu, Zhen; Chen, Jianqiu

    2015-06-01

    A simple method for the synthesis of water-soluble carbon quantum dots (CQDs) has been developed based on chemical oxidation of starch. The structures and optical properties of the CQDs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence spectroscopy (PL) and transmission electron microscopy. The CQDs were found to emit bright blue fluorescence and disperse uniformly. The effects of ambient temperature, light and pH on the properties of CQDs were studied. The CQDs exhibited good chemical stability, good photostability and pH sensitivity. Furthermore, the interaction between CQDs and bovine serum albumin (BSA) was investigated. PMID:25044549

  15. Temperature-dependent photoluminescence properties of quaternary ZnAgInS quantum dots.

    PubMed

    Zhou, Ping; Zhang, Xiaosong; Liu, Xiaojuan; Xu, Jianping; Li, Lan

    2016-08-22

    A series of ZnAgInS (ZAIS) quantum dots were synthesized and their optical properties were tuned by adjusting the reaction times from 5 to 30 min. The emission spectra were observed ranging from 619 to 667 nm. The temperature-dependent photoluminescence properties of ZAIS QDs were investigated from 10 K to 300 K that show a blue shift of spectra line with increasing intensity as well as broadening of spectral line owing to the coupling of the carrier to acoustic phonon. We have also discussed and investigated the internal luminescence mechanism of ZAIS QDs. PMID:27557228

  16. Functionalized silicon quantum dots by N-vinylcarbazole: synthesis and spectroscopic properties

    PubMed Central

    2014-01-01

    Silicon quantum dots (Si QDs) attract increasing interest nowadays due to their excellent optical and electronic properties. However, only a few optoelectronic organic molecules were reported as ligands of colloidal Si QDs. In this report, N-vinylcarbazole - a material widely used in the optoelectronics industry - was used for the modification of Si QDs as ligands. This hybrid nanomaterial exhibits different spectroscopic properties from either free ligands or Si QDs alone. Possible mechanisms were discussed. This type of new functional Si QDs may find application potentials in bioimaging, photovoltaic, or optoelectronic devices. PMID:25147489

  17. Multimodal Nonlinear Optical Microscopy

    PubMed Central

    Yue, Shuhua; Slipchenko, Mikhail N.; Cheng, Ji-Xin

    2013-01-01

    Because each nonlinear optical (NLO) imaging modality is sensitive to specific molecules or structures, multimodal NLO imaging capitalizes the potential of NLO microscopy for studies of complex biological tissues. The coupling of multiphoton fluorescence, second harmonic generation, and coherent anti-Stokes Raman scattering (CARS) has allowed investigation of a broad range of biological questions concerning lipid metabolism, cancer development, cardiovascular disease, and skin biology. Moreover, recent research shows the great potential of using CARS microscope as a platform to develop more advanced NLO modalities such as electronic-resonance-enhanced four-wave mixing, stimulated Raman scattering, and pump-probe microscopy. This article reviews the various approaches developed for realization of multimodal NLO imaging as well as developments of new NLO modalities on a CARS microscope. Applications to various aspects of biological and biomedical research are discussed. PMID:24353747

  18. Thermodynamic properties of the one-dimensional extended quantum compass model in the presence of a transverse field

    NASA Astrophysics Data System (ADS)

    Jafari, R.

    2012-05-01

    The presence of a quantum critical point can significantly affect the thermodynamic properties of a material at finite temperatures. This is reflected, e.g., in the entropy landscape S(T, c) in the vicinity of a quantum critical point, yielding particularly strong variations for varying the tuning parameter c such as magnetic field. In this work we have studied the thermodynamic properties of the quantum compass model in the presence of a transverse field. The specific heat, entropy and cooling rate under an adiabatic demagnetization process have been calculated. During an adiabatic (de)magnetization process temperature drops in the vicinity of a field-induced zero-temperature quantum phase transitions. However close to field-induced quantum phase transitions we observe a large magnetocaloric effect.

  19. Effect of gamma-ray irradiation on the size and properties of CdS quantum dots in reverse micelles

    NASA Astrophysics Data System (ADS)

    Bekasova, O. D.; Revina, A. A.; Rusanov, A. L.; Kornienko, E. S.; Kurganov, B. I.

    2013-11-01

    Cadmium sulfide quantum dots 1.3-5.6 nm in size have been synthesized in sodium bis(2-ethylhexy1)sulfosuccinate (AOT)-water-isooctane micellar solutions with various [H2O]/[AOT] molar ratios (w=2.5, 5.0 or 10). Gamma irradiation method has been used to change the size and optical properties of quantum dots. It has been found that γ-irradiation reduces the size polydispersity of quantum dots in the micellar system and alters their fluorescent properties. Fluorescence intensity is enhanced after γ-irradiation. The average fluorescence lifetime of single quantum dots sized 5.2±0.4 nm increases from 5.14 to 6.39 ns after γ-irradiation at a dose of 7.9 kGy. To the best of our knowledge, this is the first report on fluorescence lifetime of single CdS quantum dots in micellar solution.

  20. Multimodal cancer imaging using lanthanide-based upconversion nanoparticles.

    PubMed

    Yang, Dongmei; Li, Chunxia; Lin, Jun

    2015-01-01

    Multimodal nanoprobes that integrate different imaging modalities in one nano-system could offer synergistic effect over any modality alone to satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research. Upconversion nanoparticles (UCNPs), particularly lanthanide (Ln)-based NPs have been regarded as an ideal building block for constructing multimodal bioprobes due to their fascinating properties. In this review, we first summarize recent advances in the optimizations of existing UCNPs. In particular, we highlight the applications of Ln-based UCNPs for multimodal cancer imaging in vitro and in vivo. The explorations of UCNPs-based multimodal nanoprobes for targeting diagnosis and imaging-guided therapeutics are also presented. Finally, the challenges and perspectives of Ln-based UCNPs in this rapid growing field are discussed. PMID:26293416

  1. Synthesis and optical properties of cadmium selenide quantum dots for white light-emitting diode application

    SciTech Connect

    Xu, Xianmei; Wang, Yilin; Gule, Teri; Luo, Qiang; Zhou, Liya; Gong, Fuzhong

    2013-03-15

    Highlights: ► Stable CdSe QDs were synthesized by the one-step and two-level process respectively. ► The fabricated white LEDs show good white balance. ► CdSe QDs present well green to yellow band luminescence. ► CdSe QDs displayed a broad excitation band. - Abstract: Yellow light-emitting cadmium selenide quantum dots were synthesized using one-step and two-step methods in an aqueous medium. The structural luminescent properties of these quantum dots were investigated. The obtained cadmium selenide quantum dots displayed a broad excitation band suitable for blue or near-ultraviolet light-emitting diode applications. White light-emitting diodes were fabricated by coating the cadmium selenide samples onto a 460 nm-emitting indium gallium nitrite chip. Both samples exhibited good white balance. Under a 20 mA working current, the white light-emitting diode fabricated via the one-step and two-step methods showed Commission Internationale de l’Éclairage coordinates at (0.27, 0.23) and (0.27, 0.33), respectively, and a color rendering index equal to 41 and 37, respectively. The one-step approach was simpler, greener, and more effective than the two-step approach. The one-step approach can be enhanced by combining cadmium selenide quantum dots with proper phosphors.

  2. Self-consistent calculations of optical properties of type I and type II quantum heterostructures

    NASA Astrophysics Data System (ADS)

    Shuvayev, Vladimir A.

    In this Thesis the self-consistent computational methods are applied to the study of the optical properties of semiconductor nanostructures with one- and two-dimensional quantum confinements. At first, the self-consistent Schrodinger-Poisson system of equations is applied to the cylindrical core-shell structure with type II band alignment without direct Coulomb interaction between carriers. The electron and hole states and confining potential are obtained from a numerical solution of this system. The photoluminescence kinetics is theoretically analyzed, with the nanostructure size dispersion taken into account. The results are applied to the radiative recombination in the system of ZnTe/ZnSe stacked quantum dots. A good agreement with both continuous wave and time-resolved experimental observations is found. It is shown that size distribution results in the photoluminescence decay that has essentially non-exponential behavior even at the tail of the decay where the carrier lifetime is almost the same due to slowly changing overlap of the electron and hole wavefunctions. Also, a model situation applicable to colloidal core-shell nanowires is investigated and discussed. With respect to the excitons in type I quantum wells, a new computationally efficient and flexible approach of calculating the characteristics of excitons, based on a self-consistent variational treatment of the electron-hole Coulomb interaction, is developed. In this approach, a system of self-consistent equations describing the motion of an electron-hole pair is derived. The motion in the growth direction of the quantum well is separated from the in-plane motion, but each of them occurs in modified potentials found self-consistently. This approach is applied to a shallow quantum well with the delta-potential profile, for which analytical expressions for the exciton binding energy and the ground state eigenfunctions are obtained, and to the quantum well with the square potential profile with several

  3. Ab initio multimode linewidth theory for arbitrary inhomogeneous laser cavities

    NASA Astrophysics Data System (ADS)

    Pick, A.; Cerjan, A.; Liu, D.; Rodriguez, A. W.; Stone, A. D.; Chong, Y. D.; Johnson, S. G.

    2015-06-01

    We present a multimode laser-linewidth theory for arbitrary cavity structures and geometries that contains nearly all previously known effects and also finds new nonlinear and multimode corrections, e.g., a correction to the α factor due to openness of the cavity and a multimode Schawlow-Townes relation (each linewidth is proportional to a sum of inverse powers of all lasing modes). Our theory produces a quantitatively accurate formula for the linewidth, with no free parameters, including the full spatial degrees of freedom of the system. Starting with the Maxwell-Bloch equations, we handle quantum and thermal noise by introducing random currents whose correlations are given by the fluctuation-dissipation theorem. We derive coupled-mode equations for the lasing-mode amplitudes and obtain a formula for the linewidths in terms of simple integrals over the steady-state lasing modes.

  4. Size-dependent optical properties of colloidal PbS quantum dots.

    PubMed

    Moreels, Iwan; Lambert, Karel; Smeets, Dries; De Muynck, David; Nollet, Tom; Martins, José C; Vanhaecke, Frank; Vantomme, André; Delerue, Christophe; Allan, Guy; Hens, Zeger

    2009-10-27

    We quantitatively investigate the size-dependent optical properties of colloidal PbS nanocrystals or quantum dots (Qdots), by combining the Qdot absorbance spectra with detailed elemental analysis of the Qdot suspensions. At high energies, the molar extinction coefficient epsilon increases with the Qdot volume d(3) and agrees with theoretical calculations using the Maxwell-Garnett effective medium theory and bulk values for the Qdot dielectric function. This demonstrates that quantum confinement has no influence on epsilon in this spectral range, and it provides an accurate method to calculate the Qdot concentration. Around the band gap, epsilon only increases with d(1.3), and values are comparable to the epsilon of PbSe Qdots. The data are related to the oscillator strength f(if) of the band gap transition and results agree well with theoretical tight-binding calculations, predicting a linear dependence of f(if) on d. For both PbS and PbSe Qdots, the exciton lifetime tau is calculated from f(if). We find values ranging between 1 and 3 mus, in agreement with experimental literature data from time-resolved luminescence spectroscopy. Our results provide a thorough general framework to calculate and understand the optical properties of suspended colloidal quantum dots. Most importantly, it highlights the significance of the local field factor in these systems. PMID:19780530

  5. Entanglement Properties of a Quantum Lattice-Gas Model on Square and Triangular Ladders

    NASA Astrophysics Data System (ADS)

    Tanaka, Shu; Tamura, Ryo; Katsura, Hosho

    2014-03-01

    In this paper, we review the entanglement properties of a quantum lattice-gas model according to our previous paper [S. Tanaka, R. Tamura, and H. Katsura, Phys. Rev. A 86, 032326 (2012)]. The ground state of the model under consideration can be exactly obtained and expressed by the Rokhsar-Kivelson type quantum superposition. The reduced density matrices of the model on square and triangular ladders are related to the transfer matrices of the classical hard-square and hard-hexagon models, respectively. In our previous paper, we investigated the entanglement properties including the entanglement entropy, the entanglement spectrum, and the nested entanglement entropy. We found that the entanglement spectra are critical when parameters are chosen so that the corresponding classical model is critical. In order to further investigate the entanglement properties, we also considered the nested entanglement entropy. As a result, the entanglement properties of the model on square and triangular ladders are described by the critical phenomena of the Ising model and the three-state ferromagnetic Potts model in two dimension, respectively.

  6. A multimodal parallel architecture: A cognitive framework for multimodal interactions.

    PubMed

    Cohn, Neil

    2016-01-01

    Human communication is naturally multimodal, and substantial focus has examined the semantic correspondences in speech-gesture and text-image relationships. However, visual narratives, like those in comics, provide an interesting challenge to multimodal communication because the words and/or images can guide the overall meaning, and both modalities can appear in complicated "grammatical" sequences: sentences use a syntactic structure and sequential images use a narrative structure. These dual structures create complexity beyond those typically addressed by theories of multimodality where only a single form uses combinatorial structure, and also poses challenges for models of the linguistic system that focus on single modalities. This paper outlines a broad theoretical framework for multimodal interactions by expanding on Jackendoff's (2002) parallel architecture for language. Multimodal interactions are characterized in terms of their component cognitive structures: whether a particular modality (verbal, bodily, visual) is present, whether it uses a grammatical structure (syntax, narrative), and whether it "dominates" the semantics of the overall expression. Altogether, this approach integrates multimodal interactions into an existing framework of language and cognition, and characterizes interactions between varying complexity in the verbal, bodily, and graphic domains. The resulting theoretical model presents an expanded consideration of the boundaries of the "linguistic" system and its involvement in multimodal interactions, with a framework that can benefit research on corpus analyses, experimentation, and the educational benefits of multimodality. PMID:26491835

  7. Fano effect dominance over Coulomb blockade in transport properties of parallel coupled quantum dot system

    SciTech Connect

    Brogi, Bharat Bhushan Ahluwalia, P. K.; Chand, Shyam

    2015-06-24

    Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.

  8. Optical properties of fluorescent zigzag graphene quantum dots derived from multi-walled carbon nanotubes

    SciTech Connect

    Chen, Wei; Li, Fushan Wu, Chaoxing; Guo, Tailiang

    2014-02-10

    Graphene quantum dots (GQDs), which are edge-bound nanometer-size graphene pieces, have fascinating electronic and optical properties due to their quantum confinement and edge effect. In this paper, GQDs were synthesized by using acid treatment and chemical exfoliation of multi-walled carbon nanotubes (MWCNTs). The structure of the GQDs was investigated by transmission electron microscope. The GQDs have a uniform size distribution, zigzag edge structure and two-dimensional morphology. The results indicated that the GQDs have bright blue emission upon UV excitation. The highly fluorescent GQDs exhibited high water solubility and good stability. It is shown that the acid treatment of MWCNTs leads to the formation of the functional group in zigzag sites, which results in the pH-dependent fluorescence of the GQDs.

  9. Anomalous Size Dependence of Optical Properties in Black Phosphorus Quantum Dots.

    PubMed

    Niu, Xianghong; Li, Yunhai; Shu, Huabing; Wang, Jinlan

    2016-02-01

    Understanding electron transitions in black phosphorus nanostructures plays a crucial role in applications in electronics and optoelectronics. In this work, by employing time-dependent density functional theory calculations, we systematically study the size-dependent electronic, optical absorption, and emission properties of black phosphorus quantum dots (BPQDs). Both the electronic gap and the absorption gap follow an inversely proportional law to the diameter of BPQDs in conformity to the quantum confinement effect. In contrast, the emission gap exhibits anomalous size dependence in the range of 0.8-1.8 nm, which is blue-shifted with the increase of size. The anomaly in fact arises from the structure distortion induced by the excited-state relaxation, and it leads to a huge Stokes shift in small BPQDs. PMID:26750430

  10. Effects of Cu Dopant on Lattice and Optical Properties of ZnS Quantum Dots.

    PubMed

    Shuhua, Lu; Aiji, Wang; Tingfang, Chen; Yinshu, Wang

    2016-04-01

    Doped and undoped ZnS colloidal nanocrystals have drawn much attention due to their versatile applications in the fields of optoelectronics and biotechnology. In this paper, Cu doped ZnS quantum dots were synthesized via the simple thermolysis of ethylxanthate salts. The lattice and optical properties of the nanocrystals were then studied in detail. The quantum dot lattice contracted linearly between Cu concentrations of 0.2-2%, while it continued to contract more gradually as Cu concentrations were further increased from 4 to 6%, due in part to the Cu ions located on the surface of the ZnS lattice. Cu incorporation induces a long tail in absorption at long wavelengths. The PL spectrum shows a red shift at first, and then a blue shift with increases in Cu concentration. Cu doped at low concentrations (0.2-1%) enhanced the emission, while high Cu concentrations (2-6%) quenched emissions. PMID:27451716

  11. Synthesis, optical and structural properties of quantum-wells crystals grown into porous alumina

    NASA Astrophysics Data System (ADS)

    Zaghdoudi, W.; Dammak, T.; ElHouichet, H.; Chtourou, R.

    2014-07-01

    In this work, we present the confinement effect of the incorporation of perovskite compounds (C12H25-NH3)2PbI4 quantum wells into different porous anodic aluminum oxide (PAA) matrix via a chemical route. The detailed structure and optical property of the quantum wells in PAA were characterized by FT-IR, UV-Vis absorption and photoluminescence (PL) spectroscopy. The surface topography for the two used PAA matrix has been studied using atomic force microscopy (AFM). The pores diameters (pores spacing) for the two matrix are 15 (35 nm) and 45 (82 nm). UV-visible and photoluminescence spectroscopy of (C12H25-NH3)2PbI4/PAA exhibits a clear blue shift of the fundamental excitonic transition. This effect is attributed to the confinement of the exciton mode in the pore of the PAA matrix.

  12. Photon pair generation in multimode optical fibers via intermodal phase matching

    NASA Astrophysics Data System (ADS)

    Pourbeyram, Hamed; Mafi, Arash

    2016-08-01

    We present a detailed study of photon pair generation in a multimode optical fiber via nonlinear four-wave mixing and intermodal phase matching. We show that in multimode optical fibers, it is possible to generate correlated photon pairs in different fiber modes with large spectral shifts from the pump wavelength, such that the photon pairs are immune to contamination from spontaneous Raman scattering and residual pump photons. We also show that it is possible to generate factorable two-photon states exhibiting minimal spectral correlations between the photon pair components in conventional multimode fibers using commonly available pump lasers. It is also possible to simultaneously generate multiple factorable states from different FWM processes in the same fiber and over a wide range of visible spectrum by varying the pump wavelength without affecting the factorability of the states. Therefore, photon pair generation in multimode optical fibers exhibits considerable potential for producing state engineered photons for quantum communications and quantum information processing applications.

  13. High-contrast qubit interactions using multimode cavity QED.

    PubMed

    McKay, David C; Naik, Ravi; Reinhold, Philip; Bishop, Lev S; Schuster, David I

    2015-02-27

    We introduce a new multimode cavity QED architecture for superconducting circuits that can be used to implement photonic memories, more efficient Purcell filters, and quantum simulations of photonic materials. We show that qubit interactions mediated by multimode cavities can have exponentially improved contrast for two qubit gates without sacrificing gate speed. Using two qubits coupled via a three-mode cavity system we spectroscopically observe multimode strong couplings up to 102 MHz and demonstrate suppressed interactions off resonance of 10 kHz when the qubits are ≈600  MHz detuned from the cavity resonance. We study Landau-Zener transitions in our multimode systems and demonstrate quasiadiabatic loading of single photons into the multimode cavity in 25 ns. We introduce an adiabatic gate protocol to realize a controlled-Z gate between the qubits in 95 ns and create a Bell state with 94.7% fidelity. This corresponds to an on/off ratio (gate contrast) of 1000. PMID:25768741

  14. Investigation of the size-property relationship in CuInS2 quantum dots.

    PubMed

    Akdas, T; Walter, J; Segets, D; Distaso, M; Winter, B; Birajdar, B; Spiecker, E; Peukert, W

    2015-11-21

    In this work we investigated fundamental properties of CuInS2 quantum dots in dependence of the particle size distribution (PSD). Size-selective precipitation (SSP) with acetone as poor solvent was performed as an adequate post-processing step. Our results provide deep insight into the correlation between particle size and various optical characteristics as bandgap energy, absorption and emission features and the broadness of the emission signal. These structure-property relationships are only achieved due to the unique combination of different analytical techniques. Our study reveals that the removal of 10 wt% of smallest particles from the feed results in an enhancement of the emission signal. This improvement is ascribed to a decreased quenching of the emission in larger particles. Our results reveal the impact of PSDs on the properties and the performance of an ensemble of multicomponent QDs and anticipate the high potential of controlling PSDs by well-developed post-processing. PMID:26469399

  15. Variational quantum Monte Carlo calculation of electronic and structural properties of crystals

    SciTech Connect

    Louie, S.G.

    1989-09-01

    Calculation of the electronic and structural properties of solids using a variational quantum Monte Carlo nonlocal pseudopotential approach is described. Ionization potentials and electron affinities for atoms, and binding energies and structural properties for crystals are found to be in very good agreement with experiment. The approach employs a correlated many-electron wavefunction of the Jastrow-Slater form and the exact Coulomb interaction between valence electrons. One- and two-body terms in the Jastrow factor are used and found necessary for an accurate description of the electron-electron energy for the systems considered. The method has further been applied to compute various single-particle properties for solids including the single-particle orbital occupancy, electron pair correlation functions, and quasiparticle excitation energies. 23 refs., 3 figs., 3 tabs.

  16. Multimodality image display station

    NASA Astrophysics Data System (ADS)

    Myers, H. Joseph

    1990-07-01

    The Multi-modality Image Display Station (MIDS) is designed for the use of physicians outside of the radiology department. Connected to a local area network or a host computer, it provides speedy access to digitized radiology images and written diagnostics needed by attending and consulting physicians near the patient bedside. Emphasis has been placed on low cost, high performance and ease of use. The work is being done as a joint study with the University of Texas Southwestern Medical Center at Dallas, and as part of a joint development effort with the Mayo Clinic. MIDS is a prototype, and should not be assumed to be an IBM product.

  17. Ab-Initio Calculations of Electronic Properties and Quantum Transport in U-Shaped Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Cuong, Nguyen Tien; Mizuta, Hiroshi; Cong, Bach Thanh; Otsuka, Nobuo; Chi, Dam Hieu

    2012-09-01

    Graphene is a promising candidate as a material used in nano-scale devices because of recent developments in advanced experimental techniques. Motivated by recent successful fabrications of U-shaped graphene channel transistors by using the gallium focused ion beam technology, we have performed ab-initio calculations to investigate the electronic properties and quantum transport in U-shaped graphene nanoribbons. The electronic properties are calculated using a numerical atomic orbital basis set in the framework of the density functional theory. The transport properties are investigated using the non-equilibrium Green's function method. The transmission spectra of U-shaped graphenes are analyzed in order to reveal the quantum transport of the systems. We found that the graphene nanoribbons tend to open a band gap when U-shaped structures are formed in both armchair and zigzag cases. The geometrical structures of U-shaped GNRs had enormous influences on the electron transport around the Fermi energy due to the formation of quasi-bound states at zigzag edges. The obtained results have provided valuable information for designing potential nano-scale devices based on graphenes.

  18. Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides

    NASA Astrophysics Data System (ADS)

    Sharma, Vinit; Krogel, Jaron T.; Kent, P. R. C.; Reboredo, Fernando A.

    One of the critical scientific challenges of contemporary research is to obtain an accurate theoretical description of the electronic properties of strongly correlated systems such as transition metal oxides and rare-earth compounds, since state-of-art ab-initio methods based on approximate density functionals are not always sufficiently accurate. Quantum Monte Carlo (QMC) methods, which use statistical sampling to evaluate many-body wave functions, have the potential to answer this challenge. Owing to the few fundamental approximations made and the direct treatment of electron correlation, QMC methods are among the most accurate electronic structure methods available to date. We assess the accuracy of the diffusion Monte Carlo method in the case of rocksalt manganese oxide (MnO). We study the electronic properties of this strongly-correlated oxide, which has been identified as a suitable candidate for many applications ranging from catalysts to electronic devices. ``This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.'' Ab initio quantum Monte Carlo calculations of ground-state properties of manganese's oxides.

  19. Electronic and optical properties of single excitons and biexcitons in type-II quantum dot nanocrystals

    SciTech Connect

    Koc, Fatih; Sahin, Mehmet E-mail: mehsahin@gmail.com

    2014-05-21

    In this study, a detailed investigation of the electronic and optical properties (i.e., binding energies, absorption wavelength, overlap of the electron-hole wave functions, recombination oscillator strength, etc.) of an exciton and a biexciton in CdTe/CdSe core/shell type-II quantum dot heterostructures has been carried out in the frame of the single band effective mass approximation. In order to determine the electronic properties, we have self-consistently solved the Poisson-Schrödinger equations in the Hartree approximation. We have considered all probable Coulomb interaction effects on both energy levels and also on the corresponding wave functions for both single exciton and biexciton. In addition, we have taken into account the quantum mechanical exchange-correlation effects in the local density approximation between same kinds of particles for biexciton. Also, we have examined the effect of the ligands and dielectric mismatch on the electronic and optical properties. We have used a different approximation proposed by Sahin and Koc [Appl. Phys. Lett. 102, 183103 (2013)] for the recombination oscillator strength of the biexciton for bound and unbound cases. The results obtained have been presented comparatively as a function of the shell thicknesses and probable physical reasons in behind of the results have been discussed in a detail.

  20. Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy.

    PubMed

    Linares-García, Gabriel; Meza-Montes, Lilia; Stinaff, Eric; Alsolamy, S M; Ware, M E; Mazur, Y I; Wang, Z M; Lee, Jihoon; Salamo, G J

    2016-12-01

    Electronic and optical properties of InAs/GaAs nanostructures grown by the droplet epitaxy method are studied. Carrier states were determined by k · p theory including effects of strain and In gradient concentration for a model geometry. Wavefunctions are highly localized in the dots. Coulomb and exchange interactions are studied and we found the system is in the strong confinement regime. Microphotoluminescence spectra and lifetimes were calculated and compared with measurements performed on a set of quantum rings in a single sample. Some features of spectra are in good agreement. PMID:27342603

  1. Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy

    NASA Astrophysics Data System (ADS)

    Linares-García, Gabriel; Meza-Montes, Lilia; Stinaff, Eric; Alsolamy, S. M.; Ware, M. E.; Mazur, Y. I.; Wang, Z. M.; Lee, Jihoon; Salamo, G. J.

    2016-06-01

    Electronic and optical properties of InAs/GaAs nanostructures grown by the droplet epitaxy method are studied. Carrier states were determined by k · p theory including effects of strain and In gradient concentration for a model geometry. Wavefunctions are highly localized in the dots. Coulomb and exchange interactions are studied and we found the system is in the strong confinement regime. Microphotoluminescence spectra and lifetimes were calculated and compared with measurements performed on a set of quantum rings in a single sample. Some features of spectra are in good agreement.

  2. Electrooptical properties of hybrid liquid crystalline systems containing CdSe quantum dots

    SciTech Connect

    Dradrach, K. Bartkiewicz, S.; Miniewicz, A.

    2014-12-08

    In this paper, we present electrooptical properties of hybrid liquid crystalline systems, which contained CdSe quantum dots (QDs). We have shown by experiments of degenerated two-wave mixing and transverse conductivity measurements that liquid crystal cells filled with nematic and doped with semiconductor nanoparticles exhibit photorefractive effect associated with photoconductivity appearing in the system. We also present the mathematical model, which explains the relationship between the photoconductivity of the layer on which the QDs reside and the generation of holographic gratings. Our research may help to develop better understanding of processes observed in such systems and create more efficient materials for holographic data storage.

  3. Electrooptical properties of hybrid liquid crystalline systems containing CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Dradrach, K.; Bartkiewicz, S.; Miniewicz, A.

    2014-12-01

    In this paper, we present electrooptical properties of hybrid liquid crystalline systems, which contained CdSe quantum dots (QDs). We have shown by experiments of degenerated two-wave mixing and transverse conductivity measurements that liquid crystal cells filled with nematic and doped with semiconductor nanoparticles exhibit photorefractive effect associated with photoconductivity appearing in the system. We also present the mathematical model, which explains the relationship between the photoconductivity of the layer on which the QDs reside and the generation of holographic gratings. Our research may help to develop better understanding of processes observed in such systems and create more efficient materials for holographic data storage.

  4. Charge transport and memristive properties of graphene quantum dots embedded in poly(3-hexylthiophene) matrix

    SciTech Connect

    Cosmin Obreja, Alexandru; Cristea, Dana; Radoi, Antonio; Gavrila, Raluca; Comanescu, Florin; Kusko, Cristian; Mihalache, Iuliana

    2014-08-25

    We show that graphene quantum dots (GQD) embedded in a semiconducting poly(3-hexylthiophene) polymeric matrix act as charge trapping nanomaterials. In plane current-voltage (I-V) measurements of thin films realized from this nanocomposite deposited on gold interdigitated electrodes revealed that the GQD enhanced dramatically the hole transport. I-V characteristics exhibited a strong nonlinear behavior and a pinched hysteresis loop, a signature of a memristive response. The transport properties of this nanocomposite were explained in terms of a trap controlled space charge limited current mechanism.

  5. Time-resolved photoluminescence properties of semiconductor quantum dot superlattices of different microcrystal shapes

    SciTech Connect

    Chae, Weon-Sik Choi, Eunjin; Ku Jung, Yun; Jung, Jin-Seung; Lee, Jin-Kyu

    2014-04-14

    We report time-resolved photoluminescence properties on semiconductor quantum dot (QD) superlattices (SLs) using PL lifetime imaging microscopy at a single particle level. PL lifetime imaging technique clearly reveals that different shaped QD SL microcrystals have different time-resolved PL characteristics. The faceted SL microcrystals consisted of well-organized QDs showed faster recombination rates than those of the spherical microparticles including randomly organized QDs, which can be explained by the different degree of energetic couplings among component QDs due to different packing fraction.

  6. Electronic properties of substitutional impurities in InGaN monolayer quantum wells

    SciTech Connect

    Alfieri, G.; Tsutsumi, T.; Micheletto, R.

    2015-05-11

    InGaN alloys and, in particular, InGaN monolayer quantum wells (MLQWs) are attracting an increasing amount of interest for opto-electronic applications. Impurities, incorporated during growth, can introduce electronic states that can degrade the performance of such devices. For this reason, we present a density functional and group theoretical study of the electronic properties of C, H, or O impurities in an InGaN MLQW. Analysis of the formation energy and symmetry reveals that these impurities are mostly donors and can be held accountable for the reported degradation of InGaN-based devices.

  7. Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells

    SciTech Connect

    Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin E-mail: chenwy@jlu.edu.cn Li, Hao; Shen, Liang; Chen, Weiyou E-mail: chenwy@jlu.edu.cn; Yan, Dawei E-mail: chenwy@jlu.edu.cn

    2014-08-18

    Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.

  8. Nanoscale electrical property studies of individual GeSi quantum rings by conductive scanning probe microscopy

    PubMed Central

    2012-01-01

    The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested. PMID:23194252

  9. Geometry of Gaussian quantum states

    NASA Astrophysics Data System (ADS)

    Link, Valentin; Strunz, Walter T.

    2015-07-01

    We study the Hilbert-Schmidt measure on the manifold of mixed Gaussian states in multi-mode continuous variable quantum systems. An analytical expression for the Hilbert-Schmidt volume element is derived. Its corresponding probability measure can be used to study typical properties of Gaussian states. It turns out that although the manifold of Gaussian states is unbounded, an ensemble of Gaussian states distributed according to this measure still has a normalizable distribution of symplectic eigenvalues, from which unitarily invariant properties can be obtained. By contrast, we find that for an ensemble of one-mode Gaussian states based on the Bures measure the corresponding distribution cannot be normalized. As important applications, we determine the distribution and the mean value of von Neumann entropy and purity for the Hilbert-Schmidt measure.

  10. Growth and properties of Hg-based quantum well structures and superlattices

    NASA Technical Reports Server (NTRS)

    Schetzina, J. F.

    1990-01-01

    An overview of the properties of HgTe-CdTe quantum well structures and superlattices (SL) is presented. These new quantum structures are candidates for use as new long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) detectors, as well as for other optoelectronic applications. Much has been learned within the past two years about the physics of such structures. The valence band offset has been determined to be approx. 350 meV, independent of temperature. The occurrence of electron and hole mobilities in excess of 10(exp 5)cm(exp 2)/V center dot s is now understood on the basis of SL band structure calculations. The in-plane and out-of-plane electron and hole effective masses have been measured and interpreted theoretically for HgTe-CdTe superlattices. Controlled substitutional doping of superlattices has recently been achieved at North Carolina State University (NCSU), and modulation-doped SLs have now been successfully grown and studied. Most recently, a dramatic lowering of the growth temperature of Hg-based quantum well structure and SLs (to approx. 100 C) has been achieved by means of photoassisted molecular beam epitaxy (MBE) at NCSU. A number of new devices have been fabricated from these doped multilayers.

  11. Growth and properties of Hg-based quantum well structures and superlattices

    NASA Astrophysics Data System (ADS)

    Schetzina, J. F.

    1990-07-01

    An overview of the properties of HgTe-CdTe quantum well structures and superlattices (SL) is presented. These new quantum structures are candidates for use as new long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) detectors, as well as for other optoelectronic applications. Much has been learned within the past two years about the physics of such structures. The valence band offset has been determined to be approx. 350 meV, independent of temperature. The occurrence of electron and hole mobilities in excess of 10(exp 5)cm(exp 2)/V center dot s is now understood on the basis of SL band structure calculations. The in-plane and out-of-plane electron and hole effective masses have been measured and interpreted theoretically for HgTe-CdTe superlattices. Controlled substitutional doping of superlattices has recently been achieved at North Carolina State University (NCSU), and modulation-doped SLs have now been successfully grown and studied. Most recently, a dramatic lowering of the growth temperature of Hg-based quantum well structure and SLs (to approx. 100 C) has been achieved by means of photoassisted molecular beam epitaxy (MBE) at NCSU. A number of new devices have been fabricated from these doped multilayers.

  12. [Multimodal pain therapy].

    PubMed

    Böger, A

    2014-06-01

    Chronic pain has both high prevalence and a significant economic impact in Germany. The most common chronic pain types are low back pain and headache. On the one hand, the management of chronic pain patients is incomplete, yet it is often overtreated in orthopaedic surgical settings with interventional procedures. The reason for this is the structure of outpatient management and the way it is paid for in Germany. Pain management of patients with private insurance cover is no better because of "doctor shopping". Medical guidelines could be of some help in improving the situation, but they are widely unknown, and have still to demonstrate whether they have any impact on GP treatment pathways. The "gold standard" multimodal pain therapy shows significant improvement in many studies compared to monomodal therapy regimes and interventional regimes, but is too rarely recommended by the patients' physicians, whether GPs or specialists. Because of the huge number of institutions nowadays that, for the sake of form, offer such multimodal therapies, these need to be differentiated in terms of their structural and process quality. A first step is the "k edoq" project. It is essential to improve knowledge of the principles of modern pain management. This includes better networking and communication between doctors, physiotherapists and psychologists, and at the grassroots level, providing the public with more detailed and better information. PMID:25000627

  13. Learning multimodal latent attributes.

    PubMed

    Fu, Yanwei; Hospedales, Timothy M; Xiang, Tao; Gong, Shaogang

    2014-02-01

    The rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular, we focus on videos of social group activities, which are particularly challenging and topical examples of this task because of their multimodal content and complex and unstructured nature relative to the density of annotations. To solve this problem, we 1) introduce a concept of semilatent attribute space, expressing user-defined and latent attributes in a unified framework, and 2) propose a novel scalable probabilistic topic model for learning multimodal semilatent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches for addressing a variety of realistic multimedia sparse data learning tasks including: multitask learning, learning with label noise, N-shot transfer learning, and importantly zero-shot learning. PMID:24356351

  14. Quantum memory Quantum memory

    NASA Astrophysics Data System (ADS)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    quest for higher efficiency, better fidelity, broader bandwidth, multimode capacity and longer storage lifetime is pursued in all those approaches, as shown in this special issue. The improvement of quantum memory operation specifically requires in-depth study and control of numerous physical processes leading to atomic decoherence. The present issue reflects the development of rare earth ion doped matrices offering long lifetime superposition states, either as bulk crystals or as optical waveguides. The need for quantum sources and high efficiency detectors at the single photon level is also illustrated. Several papers address the networking of quantum memories either in long-haul cryptography or in the prospect of quantum processing. In this context, much attention has been paid recently to interfacing quantum light with superconducting qubits and with nitrogen-vacancy centers in diamond. Finally, the quantum interfacing of light with matter raises questions on entanglement. The last two papers are devoted to the generation of entanglement by dissipative processes. It is shown that long lifetime entanglement may be built in this way. We hope this special issue will help readers to become familiar with the exciting field of ensemble-based quantum memories and will stimulate them to bring deeper insights and new ideas to this area.

  15. Thermodynamic properties of highly frustrated quantum spin ladders: Influence of many-particle bound states

    NASA Astrophysics Data System (ADS)

    Honecker, A.; Wessel, S.; Kerkdyk, R.; Pruschke, T.; Mila, F.; Normand, B.

    2016-02-01

    Quantum antiferromagnets have proven to be some of the cleanest realizations available for theoretical, numerical, and experimental studies of quantum fluctuation effects. At finite temperatures, however, the additional effects of thermal fluctuations in the restricted phase space of a low-dimensional system have received much less attention, particularly the situation in frustrated quantum magnets, where the excitations may be complex collective (bound or even fractionalized) modes. We investigate this problem by studying the thermodynamic properties of the frustrated two-leg S =1/2 spin ladder, with particular emphasis on the fully frustrated case. We present numerical results for the magnetic specific heat and susceptibility, obtained from exact diagonalization and quantum Monte Carlo studies, which we show can be rendered free of the sign problem even in a strongly frustrated system and which allow us to reach unprecedented sizes of L =200 ladder rungs. We find that frustration effects cause an unconventional evolution of the thermodynamic response across the full parameter regime of the model. However, close to the first-order transition they cause a highly anomalous reduction in temperature scales with no concomitant changes in the gap; the specific heat shows a very narrow peak at very low energies and the susceptibility rises abruptly at extremely low temperatures. Unusually, the two quantities have different gaps over an extended region of the parameter space. We demonstrate that these results reflect the presence of large numbers of multiparticle bound-state excitations, whose energies fall below the one-triplon gap in the transition region.

  16. Analytic properties of two-photon scattering matrix in integrated quantum systems determined by the cluster decomposition principle.

    PubMed

    Xu, Shanshan; Rephaeli, Eden; Fan, Shanhui

    2013-11-27

    We consider a general class of integrated quantum systems where photon-photon interaction occurs in a quantum device that is localized in space. Using techniques that are closely related to cluster decomposition principles in quantum field theory, we provide a general constraint on the analytic properties of a two-photon S matrix in this class of systems. We also show that the photon-photon interaction in these systems inevitably leads to frequency mixing and entanglement and that frequencies of the single photons cannot be preserved in these systems. PMID:24329447

  17. Ground-state properties of LiH by reptation quantum Monte Carlo methods.

    PubMed

    Ospadov, Egor; Oblinsky, Daniel G; Rothstein, Stuart M

    2011-05-01

    We apply reptation quantum Monte Carlo to calculate one- and two-electron properties for ground-state LiH, including all tensor components for static polarizabilities and hyperpolarizabilities to fourth-order in the field. The importance sampling is performed with a large (QZ4P) STO basis set single determinant, directly obtained from commercial software, without incurring the overhead of optimizing many-parameter Jastrow-type functions of the inter-electronic and internuclear distances. We present formulas for the electrical response properties free from the finite-field approximation, which can be problematic for the purposes of stochastic estimation. The α, γ, A and C polarizability values are reasonably consistent with recent determinations reported in the literature, where they exist. A sum rule is obeyed for components of the B tensor, but B(zz,zz) as well as β(zzz) differ from what was reported in the literature. PMID:21445452

  18. Multiple Quantum NMR Investigations of Structure- Property Relationships in Synthetic and Aged Silicone Elastomers

    SciTech Connect

    Maxwell, R; Gjersing, E; Chinn, S; Herberg, J; Eastwood, E; Bowen, D; Stephens, T

    2006-09-27

    Complex engineering elastomeric materials are often characterized by a complex network structure obtained by crosslinking network chains with multiple chain lengths. Further, these networks are commonly filled with thixotropic reinforcing agents such as SiO{sub 2} or carbon black. Degradation of such materials often occurs via mechanisms that alter the fundamental network structure. In order to understand the effects of modifications of network structure and filler-polymer interaction on component performance, a series of model compounds have been studied by {sup 1}H multiple quantum NMR analysis and traditional mechanical property assessments. The {sup 1}H NMR data provides insight into the distribution of segmental dynamics that reveals insight into the changes in mechanical properties.

  19. Property and quantum chemical investigation of poly(ethyl α-cyanoacrylate)

    NASA Astrophysics Data System (ADS)

    Zhou, Yahong; Bei, Fengli; Ji, Haiyan; Yang, Xujie; Lu, Lude; Wang, Xin

    2005-03-01

    The poly(ethyl α-cyanoacrylate) (PEtCNA) was synthesized by anionic polymerization. With the composed PEtCNA, its IR spectrum, 1HNMR spectrum and configuration are measured. Meanwhile, molecular geometry, electronic structure, IR spectrum and thermodynamic property of reactant and transition state on the reaction potential energy level of ethyl α-cyanoacrylate with hydroxyl have been completely optimized and calculated for the first time by the density functional theory DFT-B3LYP method and on the level of 6-31+G* group. The order of 10 10 s -1 of initiating rate constant in gas phase was obtained for the reaction. These were reported the quantum chemical calculation results so as to deepen researches on the relationship between structure and properties.

  20. Quantum networks reveal quantum nonlocality.

    PubMed

    Cavalcanti, Daniel; Almeida, Mafalda L; Scarani, Valerio; Acín, Antonio

    2011-01-01

    The results of local measurements on some composite quantum systems cannot be reproduced classically. This impossibility, known as quantum nonlocality, represents a milestone in the foundations of quantum theory. Quantum nonlocality is also a valuable resource for information-processing tasks, for example, quantum communication, quantum key distribution, quantum state estimation or randomness extraction. Still, deciding whether a quantum state is nonlocal remains a challenging problem. Here, we introduce a novel approach to this question: we study the nonlocal properties of quantum states when distributed and measured in networks. We show, using our framework, how any one-way entanglement distillable state leads to nonlocal correlations and prove that quantum nonlocality is a non-additive resource, which can be activated. There exist states, local at the single-copy level, that become nonlocal when taking several copies of them. Our results imply that the nonlocality of quantum states strongly depends on the measurement context. PMID:21304513

  1. Non-linear optical properties of gold quantum clusters. The smaller the better.

    PubMed

    Russier-Antoine, Isabelle; Bertorelle, Franck; Vojkovic, Marin; Rayane, Driss; Salmon, Estelle; Jonin, Christian; Dugourd, Philippe; Antoine, Rodolphe; Brevet, Pierre-François

    2014-11-21

    By developing a new method for synthesizing atomically monodisperse Au15 nanoclusters stabilized with glutathione molecules and using the current state-of-the-art methods for synthesizing monodisperse protected Au25 nanoclusters, we investigated their nonlinear optical (NLO) properties after two-photon absorption. The two-photon emission spectra and the first hyperpolarizabilities of these particles were obtained using, in particular, a hyper-Rayleigh scattering technique. The influence on NLO of the excitation wavelength, the size as well as the nature of the ligands is also explored and discussed. Au15, the smallest stable thiolated gold nanocluster, presents remarkable nonlinear properties with respect to two-photon processes. The two-photon absorption cross-section at 780 nm for Au15 is ∼65,700 GM. This experimental cross-section value points to a quantum yield for two-photon emission of about 3 × 10(-7) at 475 nm for Au15. The first hyperpolarizability β for Au15 clusters (509 × 10(-30) esu), as compared to Au25 clusters (128 × 10(-30) esu), is larger considering the difference in the number of gold atoms. Also, 10(30) β per atom values reported for Au15 and Au25 clusters are more than two orders of magnitude larger than the values reported for Au NPs in the size range 10-50 nm, outlining the quantum cluster regime. PMID:25268982

  2. Electronic and magneto-optical properties of monolayer phosphorene quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Zhou, X. Y.; Zhang, D.; Lou, W. K.; Zhai, F.; Chang, Kai

    2015-12-01

    We theoretically investigate the electronic and magneto-optical properties of rectangular, hexangular, and triangular monolayer phosphorene quantum dots (MPQDs) utilizing the tight-binding method. The electronic states, density of states, electronic density distribution, and Laudau levels as well as the optical absorption spectrum are calculated numerically. Our calculations show that: (1) edge states appear in the band gap in all kinds of MPQDs regardless of their shapes and edge configurations due to the anisotropic electron hopping in monolayer phosphorene (MLP). The charge density of any edge state is only localized in specific edges of a MPQD, which is distinct from that in graphene quantum dots; (2) the magnetic levels of MPQDs exhibit a Hofstadter-butterfly spectrum and approach the Landau levels of MLP as the magnetic field increases. A ‘flat band’ appears in the magneto-energy spectrum which is totally different from that of MLP; (3) the electronic and optical properties can be tuned by the dot size, the types of boundary edges and the external magnetic field.

  3. Photo-physical properties enhancement of bare and core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Mumin, Md Abdul; Akhter, Kazi Farida; Charpentier, Paul A.

    2014-03-01

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC).

  4. Photo-physical properties enhancement of bare and core-shell quantum dots

    SciTech Connect

    Mumin, Md Abdul Akhter, Kazi Farida Charpentier, Paul A.

    2014-03-31

    Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDs with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC)

  5. Observation of the quantum paradox of separation of a single photon from one of its properties

    NASA Astrophysics Data System (ADS)

    Ashby, James M.; Schwarz, Peter D.; Schlosshauer, Maximilian

    2016-07-01

    We report an experimental realization of the quantum paradox of the separation of a single photon from one of its properties (the so-called "quantum Cheshire cat"). We use a modified Sagnac interferometer with displaced paths to produce appropriately pre- and postselected states of heralded single photons. Weak measurements of photon presence and circular polarization are performed in each arm of the interferometer by introducing weak absorbers and small polarization rotations and analyzing changes in the postselected signal. The absorber is found to have an appreciable effect only in one arm of the interferometer, while the polarization rotation significantly affects the signal only when performed in the other arm. We carry out both sequential and simultaneous weak measurements and find good agreement between measured and predicted weak values. In the language of Aharonov et al. and in the sense of the ensemble averages described by weak values, the experiment establishes the separation of a particle from one its properties during the passage through the interferometer.

  6. Effect of Lateral Size of Graphene Quantum Dots on Their Properties and Application.

    PubMed

    Zhang, Fangwei; Liu, Fei; Wang, Chong; Xin, Xiaozhen; Liu, Jingyuan; Guo, Shouwu; Zhang, Jingyan

    2016-01-27

    Well-defined graphene quantum dots (GQDs) are crucial for their biological applications and the construction of nanoscaled optoelectronic and electronic devices. However, as-synthesized GQDs reported in many works assume a very wide lateral size distribution; thus, their apparent properties cannot truthfully reflect intrinsic properties of the well-defined GQDs, and more importantly, the applications of GQDs will be affected and limited as well. In this work, we demonstrated that different sized GQDs with a narrow size distribution could be obtained via gel electrophoresis of the crude GQDs prepared through a photo-Fenton reaction of graphene oxide (GO). It is illustrated that the photoluminesce (PL) emissions of the well-defined GQDs originated mainly from the peripheral carboxylic groups and conjugated carbon backbone planes through fluorescence and UV-vis spectroscopies. More importantly, our findings challenge the notion that the excitation wavelength dependent PL property of the as-synthesized GQDs is the intrinsic property of the size-defined GQDs. Preliminary data at the cellular level indicated that the small sized GQDs exhibit weaker quenching DNA dye ability but higher toxicity to the cells compared to that of the as-synthesized GQDs. This discovery is essential to explore applications of the GQDs in pharmaceutics and to understand the origin of the optoelectronic properties of GQDs. PMID:26725374

  7. Investigation of protein selectivity in multimodal chromatography using in silico designed Fab fragment variants.

    PubMed

    Karkov, Hanne Sophie; Krogh, Berit Olsen; Woo, James; Parimal, Siddharth; Ahmadian, Haleh; Cramer, Steven M

    2015-11-01

    In this study, a unique set of antibody Fab fragments was designed in silico and produced to examine the relationship between protein surface properties and selectivity in multimodal chromatographic systems. We hypothesized that multimodal ligands containing both hydrophobic and charged moieties would interact strongly with protein surface regions where charged groups and hydrophobic patches were in close spatial proximity. Protein surface property characterization tools were employed to identify the potential multimodal ligand binding regions on the Fab fragment of a humanized antibody and to evaluate the impact of mutations on surface charge and hydrophobicity. Twenty Fab variants were generated by site-directed mutagenesis, recombinant expression, and affinity purification. Column gradient experiments were carried out with the Fab variants in multimodal, cation-exchange, and hydrophobic interaction chromatographic systems. The results clearly indicated that selectivity in the multimodal system was different from the other chromatographic modes examined. Column retention data for the reduced charge Fab variants identified a binding site comprising light chain CDR1 as the main electrostatic interaction site for the multimodal and cation-exchange ligands. Furthermore, the multimodal ligand binding was enhanced by additional hydrophobic contributions as evident from the results obtained with hydrophobic Fab variants. The use of in silico protein surface property analyses combined with molecular biology techniques, protein expression, and chromatographic evaluations represents a previously undescribed and powerful approach for investigating multimodal selectivity with complex biomolecules. PMID:25950863

  8. The influence of temperature on the photoluminescence properties of single InAs quantum dots grown on patterned GaAs

    PubMed Central

    2012-01-01

    We report the temperature-dependent photoluminescence of single site-controlled and self-assembled InAs quantum dots. We have used nanoimprint lithography for patterning GaAs(100) templates and molecular beam epitaxy for quantum dot deposition. We show that the influence of the temperature on the photoluminescence properties is similar for quantum dots on etched nanopatterns and randomly positioned quantum dots on planar surfaces. The photoluminescence properties indicate that the prepatterning does not degrade the radiative recombination rate for the site-controlled quantum dots. PMID:22713215

  9. Multimode one-way waveguides of large Chern numbers.

    PubMed

    Skirlo, Scott A; Lu, Ling; Soljačić, Marin

    2014-09-12

    Current experimental realizations of the quantum anomalous Hall phase in both electronic and photonic systems have been limited to a Chern number of one. In photonics, this corresponds to a single-mode one-way edge waveguide. Here, we predict quantum anomalous Hall phases in photonic crystals with large Chern numbers of 2, 3, and 4. These new topological phases were found by simultaneously gapping multiple Dirac and quadratic points. We demonstrate a continuously tunable power splitter as a possible application of multimode one-way waveguides. All our findings are readily realizable at microwave frequencies. PMID:25259982

  10. Quantum noise properties of CT images with anatomical textured backgrounds across reconstruction algorithms: FBP and SAFIRE

    SciTech Connect

    Solomon, Justin; Samei, Ehsan

    2014-09-15

    Purpose: Quantum noise properties of CT images are generally assessed using simple geometric phantoms with uniform backgrounds. Such phantoms may be inadequate when assessing nonlinear reconstruction or postprocessing algorithms. The purpose of this study was to design anatomically informed textured phantoms and use the phantoms to assess quantum noise properties across two clinically available reconstruction algorithms, filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE). Methods: Two phantoms were designed to represent lung and soft-tissue textures. The lung phantom included intricate vessel-like structures along with embedded nodules (spherical, lobulated, and spiculated). The soft tissue phantom was designed based on a three-dimensional clustered lumpy background with included low-contrast lesions (spherical and anthropomorphic). The phantoms were built using rapid prototyping (3D printing) technology and, along with a uniform phantom of similar size, were imaged on a Siemens SOMATOM Definition Flash CT scanner and reconstructed with FBP and SAFIRE. Fifty repeated acquisitions were acquired for each background type and noise was assessed by estimating pixel-value statistics, such as standard deviation (i.e., noise magnitude), autocorrelation, and noise power spectrum. Noise stationarity was also assessed by examining the spatial distribution of noise magnitude. The noise properties were compared across background types and between the two reconstruction algorithms. Results: In FBP and SAFIRE images, noise was globally nonstationary for all phantoms. In FBP images of all phantoms, and in SAFIRE images of the uniform phantom, noise appeared to be locally stationary (within a reasonably small region of interest). Noise was locally nonstationary in SAFIRE images of the textured phantoms with edge pixels showing higher noise magnitude compared to pixels in more homogenous regions. For pixels in uniform regions, noise magnitude was

  11. Diffusive and quantum effects of water properties in different states of matter

    SciTech Connect

    Yeh, Kuan-Yu; Huang, Shao-Nung; Chen, Li-Jen E-mail: stlin@ntu.edu.tw; Lin, Shiang-Tai E-mail: stlin@ntu.edu.tw

    2014-07-28

    The enthalpy, entropy, and free energy of water are important physical quantities for understanding many interesting phenomena in biological systems. However, conventional approaches require different treatments to incorporate quantum and diffusive effects of water in different states of matter. In this work, we demonstrate the use of the two-phase thermodynamic (2PT) model as a unified approach to obtain the properties of water over the whole phase region of water from short (∼20 ps) classical molecular dynamics trajectories. The 2PT model provides an effective way to separate the diffusive modes (gas-like component) from the harmonic vibrational modes (solid-like component) in the vibrational density of states (DoS). Therefore, both diffusive and quantum effect can be properly accounted for water by applying suitable statistical mechanical weighting functions to the DoS components. We applied the 2PT model to systematically examine the enthalpy, entropy, and their temperature dependence of five commonly used rigid water models. The 2PT results are found to be consistent with those obtained from more sophisticated calculations. While the thermodynamic properties determined from different water models are largely similar, the phase boundary determined from the equality of free energy is very sensitive to the small inaccuracy in the values of enthalpy and absolute entropy. The enthalpy, entropy, and diffusivity of water are strongly interrelated, which challenge further improvement of rigid water model via parameter fitting. Our results show that the 2PT is an efficient method for studying the properties of water under various chemical and biological environments.

  12. Diffusive and quantum effects of water properties in different states of matter

    NASA Astrophysics Data System (ADS)

    Yeh, Kuan-Yu; Huang, Shao-Nung; Chen, Li-Jen; Lin, Shiang-Tai

    2014-07-01

    The enthalpy, entropy, and free energy of water are important physical quantities for understanding many interesting phenomena in biological systems. However, conventional approaches require different treatments to incorporate quantum and diffusive effects of water in different states of matter. In this work, we demonstrate the use of the two-phase thermodynamic (2PT) model as a unified approach to obtain the properties of water over the whole phase region of water from short (˜20 ps) classical molecular dynamics trajectories. The 2PT model provides an effective way to separate the diffusive modes (gas-like component) from the harmonic vibrational modes (solid-like component) in the vibrational density of states (DoS). Therefore, both diffusive and quantum effect can be properly accounted for water by applying suitable statistical mechanical weighting functions to the DoS components. We applied the 2PT model to systematically examine the enthalpy, entropy, and their temperature dependence of five commonly used rigid water models. The 2PT results are found to be consistent with those obtained from more sophisticated calculations. While the thermodynamic properties determined from different water models are largely similar, the phase boundary determined from the equality of free energy is very sensitive to the small inaccuracy in the values of enthalpy and absolute entropy. The enthalpy, entropy, and diffusivity of water are strongly interrelated, which challenge further improvement of rigid water model via parameter fitting. Our results show that the 2PT is an efficient method for studying the properties of water under various chemical and biological environments.

  13. Effect of thermal annealing on the emission properties of heterostructures containing a quantum-confined GaAsSb layer

    SciTech Connect

    Dikareva, N. V. Vikhrova, O. V.; Zvonkov, B. N.; Malekhonova, N. V.; Nekorkin, S. M.; Pirogov, A. V.; Pavlov, D. A.

    2015-01-15

    Heterostructures containing single GaAsSb/GaAs quantum wells and bilayer GaAsSb/InGaAs quantum wells are produced by metal-organic vapor-phase epitaxy at atmospheric pressure. The growth temperature of the quantum-confined layers is 500–570°C. The structural quality of the samples and the quality of heterointerfaces of the quantum wells are studied by the high-resolution transmission electron microscopy of cross sections. The emission properties of the heterostructures are studied by photoluminescence measurements. The structures are subjected to thermal annealing under conditions chosen in accordance with the temperature and time of growth of the upper cladding p-InGaP layer during the formation of GaAs/InGaP laser structures with an active region containing quantum-confined GaAsSb layers. It is found that such heat treatment can have a profound effect on the emission properties of the active region, only if a bilayer GaAsSb/InGaAs quantum well is formed.

  14. Change in Child Multimodal Counseling.

    ERIC Educational Resources Information Center

    Keat, Donald B., II

    1990-01-01

    Examines some of the effective ingredients of change in multimodal counseling with children: personal relationships; emotions; guidance of actions, behaviors, and consequences; imagery; health; learning; and need to know. (ABL)

  15. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    SciTech Connect

    Patty, Kira; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Sadeghi, Seyed M.; Mao, Chuanbin

    2014-09-21

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.

  16. Semiconducting ferroelectric SbSI quantum dots in amorphous matrix: preparation and nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Yang, Ligong; Gu, Peifu

    2002-09-01

    Semiconducting ferroelectric antimony sulphoiodide (SbSI) microcrystallite doped organically modified TiO2 thin films were successfully fabricated with the sol-gel process. Ferroelectric SbSI crystallites have some attractive properties, including high dielectric permittivity, high electro-optical coefficient and high photoconductivity. SbSI is also an intrinsic semiconductor with a relatively narrow eneryg gap. The Bohr radius of the SbSI crystal was calculated larger than other semiconductors due to its large dielectric constant. If the crystal size is smaller than its Bohr radius and the microcrystallite are dispersed in a suitable matrix, a dramatic improvement of the nonlinear three-order nonlinearity will be achieved due to the quantum confinement effect. The SbSI quantum dot composites were proved to be good candidates for nonlinear and electro-optical devices. Glycidopropyltrimetroxysilane modified TiO2 was chosen as the matrix and SbSI was synthesized in situ by using SbI3, SC(NH2)2. The materials in thin film were heat-treated in different conditions and the size of the microcrystallite was characterized by the XRD. A value of 3.5pm/V of effective transverse electro-optical coefficient reff for the nano-composite containing 8 wt percent of antimony sulfide iodide was measured. The third-order nonlinear optical susceptibility of the SbSI quantum dot thin film was measured by degenerate four-wave mixing at 532nm using a frequency double Nd:YAG laser beams with a pulse width of around 10ns, the x(3) value of 3 μm sample was measured to be 6 × 10-11 esu.

  17. Surface-treated biocompatible ZnS quantum dots: Synthesis, photo-physical and microstructural properties

    NASA Astrophysics Data System (ADS)

    Taherian, M.; Sabbagh Alvani, A. A.; Shokrgozar, M. A.; Salimi, R.; Moosakhani, S.; Sameie, H.; Tabatabaee, F.

    2014-03-01

    In the present study, the ZnS semiconductor quantum dots were successfully synthesized via an aqueous method utilizing glutathione (GSH), thioglycolic acid (TGA) and polyvinyl pyrrolidone (PVP) as capping agents. The structural, morphological and photo-physical properties and biocompatibility were investigated using comprehensive characterization techniques such as x-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), dynamic light scattering (DLS), Fourier transform infrared spectrometry (FT-IR), UV-Vis optical absorption, photoluminescence (PL) spectrometer and MTT assay. The XRD patterns showed a cubic zinc blende crystal structure and a crystallite size of about 2-3 nm using Scherrer's equation confirmed by the electron micrographs and Effective Mass Approximation (EMA). The DLS and zeta-potential results revealed that GSH capped ZnS nanoparticles have the narrowest size distribution with an average size of 27 nm and relatively good colloidal stability. Also, the FT-IR spectrum confirmed the interaction of the capping agent groups with ZnS nanoparticles. According to the UV-Vis absorption results, optical bandgap of the spherical capped nanoparticles is higher compared to the uncapped sample and could be wider than 3.67 eV (corresponding to the bulk ZnS), which is due to the quantum confinement effect. From photoluminescence spectra, it was found that the emission becomes more intensive and shifts towards the shorter wavelengths in the presence of the capping agent. Moreover, the emission mechanism of uncapped and capped ZnS was discussed in detail. Finally, the MTT results revealed the satisfactory (>94%) biocompatibility of GSH capped ZnS quantum dots which would be a promising candidate applicable in fluorescent biological labels.

  18. Photophysical properties of biologically compatible CdSe quantum dot structures.

    PubMed

    Kloepfer, Jeremiah A; Bradforth, Stephen E; Nadeau, Jay L

    2005-05-26

    The photophysical properties of CdSe and ZnS(CdSe) semiconductor quantum dots in nonpolar and aqueous solutions were examined with steady-state (absorption and emission) and time-resolved (time-correlated single-photon-counting) spectroscopy. The CdSe structures were prepared from a single CdSe synthesis, a portion of which were ZnS-capped, thus any differences observed in the spectral behavior between the two preparations were due to changes in the molecular shell. Quantum dots in nonpolar solvents were surrounded with a trioctylphosphine oxide (TOPO) coating from the initial synthesis solution. ZnS-capped CdSe were initially brighter than bare uncapped CdSe and had overall faster emission decays. The dynamics did not vary when the solvent was changed from hexane to dichloromethane; however, replacement of the TOPO cap by pyridine affected CdSe but not ZnS(CdSe). CdSe was then solubilized in water with mercapto-acetic acid or dihydrolipoic acid, whereas ZnS(CdSe) could be solubilized only with dihydrolipoic acid. Both solubilization agents quenched the nanocrystal emission, though with CdSe the quenching was nearly complete. Additional quenching of the remaining emission was observed when the redox-active molecule adenine was conjugated to the water-soluble CdSe but was not seen with ZnS(CdSe). The emission of aqueous CdSe could be enhanced under prolonged exposure to room light and resulted in a substantial increase of the emission lifetimes; however, the enhancement occurred concurrently with precipitation of the nanocrystals, which was possibly caused by photocatalytic destruction of the mercaptoacetic acid coating. These results are the first presented on aqueous CdSe quantum dot structures and are presented in the context of designing better, more stable biological probes. PMID:16852208

  19. Multimode fiber optic wavelength division multiplexing

    NASA Technical Reports Server (NTRS)

    Spencer, J. L.

    1982-01-01

    Optical wavelength division multiplexing (WDM) systems, with signals transmitted on different wavelengths through a single optical fiber, can have increased bandwidth and fault isolation properties over single wavelength optical systems. Two WDM system designs that might be used with multimode fibers are considered and a general description of the components which could be used to implement the system are given. The components described are sources, multiplexers, demultiplexers, and detectors. Emphasis is given to the demultiplexer technique which is the major developmental component in the WDM system.

  20. Optical nonlinear properties of InAs quantum dots by means of transient absorption measurements

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Nishikawa, S.; Kohmoto, S.; Kanamoto, K.; Asakawa, K.

    2003-07-01

    The optical nonlinear properties of self-assembled InAs/GaAs quantum dots (QDs) were experimentally verified by means of transient absorption measurements. A saturation pulse energy Ps of 13 fJ/μm2 and an absorption recovery time τr of 55 ps were obtained from transmission bleaching and pump/probe measurements for a waveguide sample with ten-layer-stacked QDs. An absorption saturation intensity Is of 2.5×104W/cm2, calculated from Ps and τr, was found. The saturation pulse energy is up to an order of magnitude smaller than, or at least comparable with, the reported values for excitons in quantum wells of III-V compound semiconductors. The dipole length, as calculated from the absorption cross section, is of the same order as the lattice constant of the InAs QDs. The results are expected to experimentally verify that QDs show a delta-function-like density of states.

  1. Quantum properties of a binary bosonic mixture in a double well

    NASA Astrophysics Data System (ADS)

    Mujal, Pere; Juliá-Díaz, Bruno; Polls, Artur

    2016-04-01

    This work contains a detailed analysis of the properties of the ground state of a two-component two-site Bose-Hubbard model, which captures the physics of a binary mixture of Bose-Einstein condensates trapped in a double-well potential. The atom-atom interactions within each species and among the two species are taken as variable parameters, while the hopping terms are kept fixed. To characterize the ground state, we use observables such as the imbalance of population and its quantum uncertainty. The quantum many-body correlations present in the system are further quantified by studying the degree of condensation of each species, the entanglement between the two sites, and the entanglement between the two species. The latter is measured by means of the Schmidt gap, the von Neumann entropy, or the purity obtained after tracing out a part of the system. A number of relevant states are identified, e.g., Schrödinger catlike many-body states, in which the outcome of the population imbalance of both components is completely correlated, and other states with even larger von Neumann entropy which have a large spread in Fock space.

  2. Optical properties of potential-inserted quantum wells in the near infrared and Terahertz ranges

    NASA Astrophysics Data System (ADS)

    Raouafi, F.; Samti, R.; Benchamekh, R.; Heyd, R.; Boyer-Richard, S.; Voisin, P.; Jancu, J.-M.

    2016-06-01

    We propose an engineering of the optical properties of GaAs/AlGaAs quantum wells using AlAs and InAs monolayer insertions. A quantitative study of the effects of the monolayer position and the well thickness on the interband and intersubband transitions, based on the extended-basis sp3d5s* tight-binding model, is presented. The effect of insertion on the interband transitions is compared with existing experimental data. As for intersubband transitions, we show that in a GaAs/AlGaAs quantum well including two AlAs and one InAs insertions, a three level {e1 ,e2 ,e3 } system where the transition energy e3 -e2 is lower and the transition energy e2 -e1 larger than the longitudinal optical phonon energy (36 meV) can be engineered together with a e3 -e2 transition energy widely tunable through the TeraHertz range.

  3. Ge/SiGe quantum wells on Si(111): Growth, structural, and optical properties

    SciTech Connect

    Gatti, E. Pezzoli, F.; Grilli, E.; Isa, F.; Chrastina, D.; Isella, G.; Müller Gubler, E.

    2014-07-28

    The epitaxial growth of Ge/Si{sub 0.15}Ge{sub 0.85} multiple quantum wells (MQWs) on Si(111) substrates is demonstrated. A 3 μm thick reverse, double-step virtual substrate with a final composition of Si{sub 0.10}Ge{sub 0.90} has been employed. High resolution XRD, TEM, AFM and defect etching analysis has been used for the study of the structural properties of the buffer and of the QWs. The QW stack is characterized by a threading dislocation density of about 3 × 10{sup 7 }cm{sup −2} and an interdiffusion layer at the well/barrier interface of 2.1 nm. The quantum confined energy levels of this system have been calculated using the k·p and effective mass approximation methods. The Ge/Si{sub 0.15}Ge{sub 0.85} MQWs have been characterized through absorption and photoluminescence measurements. The optical spectra have been compared with those of Ge/Si{sub 0.15}Ge{sub 0.85} QWs grown on Si(001) through a thick graded virtual substrate.

  4. Surface-state dependent optical properties of OH-, F-, and H-terminated 4H-SiC quantum dots.

    PubMed

    Rashid, Marzaini; Tiwari, Amit K; Goss, J P; Rayson, M J; Briddon, P R; Horsfall, A B

    2016-08-01

    Density functional calculations are performed for OH-, F- and H-terminated 4H-SiC 10-20 Å diameter clusters to investigate the effect of surface species upon the optical absorption properties. H-termination results in a pronounced size-dependent quantum-confinement in the absorption, whereas F- and OH-terminations exhibit much reduced size dependent absorption due to surface states. Our findings are in good agreement with recent experimental studies, and are able to explain the little explored dual-feature photoluminescence spectra of SiC quantum dots. We propose that along with controlling the size, suitable surface termination is the key for optimizing optical properties of 4H-SiC quantum structures, such as might be exploited in optoelectronics, photovoltaics and biological applications. PMID:27430278

  5. Time-evolving photo-induced changes of luminescent and spectral properties of PbS quantum dots sols

    NASA Astrophysics Data System (ADS)

    Evstropiev, S. K.; Kislyakov, I. M.; Bagrov, I. V.; Belousova, I. M.; Kiselev, V. M.

    2016-05-01

    Light irradiation influence on spectral and luminescent properties of PbS sol, stabilized by high-molecular polyvinylpyrrolidone, was studied as a time-evolving process. Uniform and stable for at least three months PbS/PVP suspensions were obtained with an average quantum dots size of 4 nm. Photoluminescent spectra of the suspensions showed wide intensive emission at 1000-1400 nm upon excitation by visible light. Luminescence intensities of all the suspensions demonstrate nonlinear dependences on the exciting radiation intensity. Experimental results show that light irradiation during luminescence measurements even with low excitation power density can significantly change luminescent and spectral properties of PbS quantum dots. The dependences found can be useful in preparation of a variety of quantum dots-containing photonics materials.

  6. Quantum theory of the anisotropy of the magnetic properties of ferrimagnetic holmium iron garnet single crystals.

    PubMed

    Yang, Jiehui; Ma, Shengcan; Xu, You

    2009-03-01

    The pronounced anisotropy of the magnetization caused by the Ho(3+) ions in the ferrimagnetic holmium iron garnet has been investigated based on quantum theory. The strong anisotropy of the magnetization of the Ho(3+) ions originates mainly from the effect of the crystal field upon the Ho(3+) ions and the anisotropic Ho(3+)-Fe(3+) superexchange interaction. Following the expression of the Yb(3+)-Fe(3+) exchange interaction used by Alben, the anisotropy of the Ho(3+)-Fe(3+) exchange interaction is defined by three principal values of the exchange tensor G. Because the six Ho(3+) sublattices are magnetically non-equivalent, we calculate the magnetic quantities of the Ho(3+) at the six sublattices and compare the average value of the so-obtained six quantities with the measured values. The calculated results are in good agreement with experiments. An interpretation on the anisotropy of the magnetic properties of HoIG is given. PMID:21817410

  7. Rough surface electrical contact resistance considering scale dependent properties and quantum effects

    SciTech Connect

    Jackson, Robert L.; Crandall, Erika R.; Bozack, Michael J.

    2015-05-21

    The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness.

  8. Band parameters of InGaAs/GaAs quantum dots: electronic properties study

    NASA Astrophysics Data System (ADS)

    Yahyaoui, M.; Sellami, K.; Boujdaria, K.; Chamarro, M.; Testelin, C.

    2013-12-01

    We have made a systematic investigation of the band diagram calculation of strained and unstrained InxGa1 - xAs alloys in order to extract accurate and adapted parameters which are useful to the electronic properties of InxGa1 - xAs/GaAs quantum dots. As an application, the 40-band k.p model is used to describe the band offsets as well as the band parameters in the strained InxGa1 - xAs/GaAs system. The κ valence band parameter as well as g* Landé factor depending of the indium concentration were estimated. These results are analyzed and compared with experiment.

  9. Optical and Structural Properties of Zn-Cd-Mn-Se Double Quantum Well Systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takashi; Ohmori, Kenta; Kodama, Kazuki; Hishikawa, Masao; Fukasawa, Sakyo; Iwasaki, Fumiaki; Muranaka, Tsutomu; Nabetani, Yoichi

    2011-05-01

    Double quantum well (DQW) structures consisting of a ZnCdSe well and a ZnCdMnSe well separated by a ZnSe barrier are grown with molecular beam epitaxy (MBE). The DQW structures are characterized by using X-ray diffraction measurement and simulation. Thickness of each well layer is designed so that the lowest energy level of ZnCdMnSe well is close to the excited level of the ZnCdSe well. Optical properties of the DQWs are studied with photoluminescence (PL) and reflection spectra in external magnetic fields up to 8 T in the Faraday geometry. Exciton transfer from ZnCdMnSe well to ZnCdSe well is observed in magneto PL with energy selective photoexcitation. Exciton energies in ground and excited states are estimated from PL excitation spectra and reflection spectra.

  10. Optical Properties of Planar Nanostructures Based on Semiconductor Quantum Dots and Plasmonic Metal Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bakanov, A. G.; Toropov, N. A.; Vartanyan, T. A.

    2016-03-01

    The optical properties of a composite material consisting of a thin polymer film, which is activated by semiconductor CdSe/ZnS quantum dots (QDs) and silver nanoparticles, on a transparent dielectric substrate have been investigated. It is revealed that the presence of silver nanoparticles leads to an increase in the QD absorption (by a factor of 4) and in the fluorescence intensity (by a factor of 10), whereas the fluorescence time drops by a factor of about 10. Excitation of the composite medium by a pulsed laser is found to result in narrowing of the fluorescence band and a sublinear dependence of its intensity on the pulse energy. In the absence of silver nanoparticles, the fluorescence spectrum of QDs is independent of the excitation-pulse energy density, and the fluorescence intensity depends linearly on the pulse energy in the entire range of energy densities, up to 75 mJ/cm2.

  11. Multi-modal image matching based on local frequency information

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochun; Lei, Zhihui; Yu, Qifeng; Zhang, Xiaohu; Shang, Yang; Hou, Wang

    2013-12-01

    This paper challenges the issue of matching between multi-modal images with similar physical structures but different appearances. To emphasize the common structural information while suppressing the illumination and sensor-dependent information between multi-modal images, two image representations namely Mean Local Phase Angle (MLPA) and Frequency Spread Phase Congruency (FSPC) are proposed by using local frequency information in Log-Gabor wavelet transformation space. A confidence-aided similarity (CAS) that consists of a confidence component and a similarity component is designed to establish the correspondence between multi-modal images. The two representations are both invariant to contrast reversal and non-homogeneous illumination variation, and without any derivative or thresholding operation. The CAS that integrates MLPA with FSPC tightly instead of treating them separately can more weight the common structures emphasized by FSPC, and therefore further eliminate the influence of different sensor properties. We demonstrate the accuracy and robustness of our method by comparing it with those popular methods of multi-modal image matching. Experimental results show that our method improves the traditional multi-modal image matching, and can work robustly even in quite challenging situations (e.g. SAR & optical image).

  12. Luminescence Properties of Sm3+/Eu3+ Co-Doped ZnO Quantum Dots.

    PubMed

    Liu, Fengyi; Li, Hong; Hu, Yajing; Na, Jin; Mou, Yun; Yang, Kun; Ye, Zuhu; Li, Mingyue; Xie, Ya-Hong

    2016-04-01

    In order to improve luminescence properties of semiconductor ZnO quantum dots (QDs), Sm3+/Eu3+ co-doped ZnO QDs have been controllably synthesized by sol-gel method in this paper. ZnO QDs have a spherical shape with mean diameter at about 5-6 nm, which was characterized by high-resolution transmission electron microscopy (HRTEM). ZnO QDs have hexagonal wurtzite structure with parts of Sm3+ and Eu3+ incorporated into the lattice, which was demonstrated by X-ray Diffraction (XRD). Luminescence properties at room temperature (RT) of different amount of Sm3+ and 2 mol% Eu3+ doped ZnO QDs were examined in-depth by optical spectra. In contrast to the Pr3+/Eu3+ co-doped fluorescent performance researched in our previous study, the photoluminescence (PL) spectra indicates the unique luminescence properties of Sm3+/Eu3+ co-doped ZnO QDs. In addition, fluorescence lifetimes were obtained to illustrate the luminous mechanism. PMID:27451672

  13. The Optical Properties of CdSe Quantum Dots by Using Spray-Atomization Method

    NASA Astrophysics Data System (ADS)

    Rosmani, C. H.; Abdullah, S.; Rusop, M.

    2013-06-01

    Cadmium Selenide (CdSe) quantum dots (QDs) is inorganic material by using spray-atomization method which is the novelty to find out the optical properties for the CdSe QDs. The Selenium (Se) precursor and Cadmium (Cd) precursor were prepared first. Se precursor by using sodium sulfite aqueous was mixed with selenium (Se) powder. For Cd precursor was used cadmium chloride (CdCI) as the Cd precursor. From previous research, CdSe QDs was obtained by using capping agent such as tri-n-octylphosphine oxide (TOPO) and trioctylphosphine (TOP). These capping agent are hazardous to environment and human. By using spray-atomization method it is more safe and economically. The photoluminescence (PL) was used to investigate the optical properties and to investigate the energy band gap from PL result. The field emission scanning electron microscopy (FESEM) was used to know the surface morphology of CdSe QDs. By PL result, the energy band gap was calculate and the comparison was investigate between the size of particle and the energy band gap. This important in this paper is to investigate the optical properties of CdSe QDs by using sprays-atomization method and to relate with the particle size.

  14. Metal organic vapor phase epitaxy of InAsP/InP(001) quantum dots for 1.55 μm applications: Growth, structural, and optical properties

    NASA Astrophysics Data System (ADS)

    Michon, A.; Hostein, R.; Patriarche, G.; Gogneau, N.; Beaudoin, G.; Beveratos, A.; Robert-Philip, I.; Laurent, S.; Sauvage, S.; Boucaud, P.; Sagnes, I.

    2008-08-01

    This contribution reports the metal organic vapor phase epitaxy of InAsP/InP(001) quantum dots with a voluntary V-alloying obtained owing to an additional phosphine flux during InAs quantum dot growth. The quantum dots were studied by photoluminescence and transmission electron microscopy. We show that the additional phosphine flux allows to tune quantum dot emission around 1.55 μm while improving their optical properties. The comparison of the optical and structural properties of the InAsP quantum dots allows to deduce their phosphorus composition, ranging from 0% to 30% when the phosphine/arsine flow ratio is varying between 0 and 50. On the basis of the compositions deduced, we discuss on the effects of the phosphine flow and of the alloying on the quantum dot growth, structural, and optical properties.

  15. [Multimodal iatrogenic apathy].

    PubMed

    Oliveira-Souza, R D; Figueiredo, W M

    1996-06-01

    The present paper reports on five patients who developed apathy as a peculiar side effect of antidepressants. Their behavioral and psychopathological changes were primarily due to the near-absence of emotional experience, a key characteristic that distinguishes apathy from avolition and abulia. The emergence of apathy in the course of an antidepressant treatment should raise the suspicion of an adverse effect of the drug and lead to its prompt withdrawal. A sample of the relevant clinical evidence favoring the distinction of apathy confined to a single sensory domain ("unimodal apathy") from apathy confined to more than one sensory realm ("multimodal apathy") is reviewed. From a pathophysiological standpoint, it would appear that neural nets centered in the amygdala-temporo polar cortex are critical for the integration of sensory perceptions and mental imagery with appropriate emotional tone and quality as well as with their accompanying somatic markers, as they receive afferents from the major projection systems of the prosencephalon and lie in nodes strategic to modify the ongoing activity of multiple parallel brain systems. The fact that one common symptom can be produced by such a heterogeneous family of substances points to a shared neurochemical mechanism of action. At present, discrete cerebral serotoninergic circuits would appear to be suitable candidates for such a role. Cases as these may be critical for the understanding of the cerebral organization of emotions in man, lending support to the notion that distinct neurochemical systems mediate discrete psychopathological symptoms. PMID:8984978

  16. Multimode silicon nanowire transistors.

    PubMed

    Glassner, Sebastian; Zeiner, Clemens; Periwal, Priyanka; Baron, Thierry; Bertagnolli, Emmerich; Lugstein, Alois

    2014-11-12

    The combined capabilities of both a nonplanar design and nonconventional carrier injection mechanisms are subject to recent scientific investigations to overcome the limitations of silicon metal oxide semiconductor field effect transistors. In this Letter, we present a multimode field effect transistors device using silicon nanowires that feature an axial n-type/intrinsic doping junction. A heterostructural device design is achieved by employing a self-aligned nickel-silicide source contact. The polymorph operation of the dual-gate device enabling the configuration of one p- and two n-type transistor modes is demonstrated. Not only the type but also the carrier injection mode can be altered by appropriate biasing of the two gate terminals or by inverting the drain bias. With a combined band-to-band and Schottky tunneling mechanism, in p-type mode a subthreshold swing as low as 143 mV/dec and an ON/OFF ratio of up to 10(4) is found. As the device operates in forward bias, a nonconventional tunneling transistor is realized, enabling an effective suppression of ambipolarity. Depending on the drain bias, two different n-type modes are distinguishable. The carrier injection is dominated by thermionic emission in forward bias with a maximum ON/OFF ratio of up to 10(7) whereas in reverse bias a Schottky tunneling mechanism dominates the carrier transport. PMID:25303290

  17. Quantum robots and quantum computers

    SciTech Connect

    Benioff, P.

    1998-07-01

    Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.

  18. Arbitrary integrated multimode interferometers for the elaboration of photonic qubits

    NASA Astrophysics Data System (ADS)

    Crespi, Andrea; Ramponi, Roberta; Brod, Daniel J.; Galvao, Ernesto F.; Spagnolo, Nicolò; Vitelli, Chiara; Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Osellame, Roberto

    2014-03-01

    Integrated photonic circuits with many input and output modes are essential in applications ranging from conventional optical telecommunication networks, to the elaboration of photonic qubits in the integrated quantum information framework. In particular, the latter field has been object in the recent years of an increasing interest: the compactness and phase stability of integrated waveguide circuits are enabling experiments unconceivable with bulk-optics set-ups. Linear photonic devices for quantum information are based on quantum and classical interference effects: the desired circuit operation can be achieved only with tight fabrication control on both power repartition in splitting elements and phase retardance in the various paths. Here we report on a novel three-dimensional circuit architecture, made possible by the unique capabilities of femtosecond laser waveguide writing, which enables us to realize integrated multimode devices implementing arbitrary linear transformations. Networks of cascaded directional couplers can be built with independent control on the splitting ratios and the phase shifts in each branch. In detail, we show an arbitrarily designed 5×5 integrated interferometer: characterization with one- and two-photon experiments confirms the accuracy of our fabrication technique. We exploit the fabricated circuit to implement a small instance of the boson-sampling experiments with up to three photons, which is one of the most promising approaches to realize phenomena hard to simulate with classical computers. We will further show how, by studying classical and quantum interference in many random multimode circuits, we may gain deeper insight into the bosonic coalescence phenomenon.

  19. An integrated GIS-based data model for multimodal urban public transportation analysis and management

    NASA Astrophysics Data System (ADS)

    Chen, Shaopei; Tan, Jianjun; Ray, C.; Claramunt, C.; Sun, Qinqin

    2008-10-01

    Diversity is one of the main characteristics of transportation data collected from multiple sources or formats, which can be extremely complex and disparate. Moreover, these multimodal transportation data are usually characterised by spatial and temporal properties. Multimodal transportation network data modelling involves both an engineering and research domain that has attracted the design of a number of spatio-temporal data models in the geographic information system (GIS). However, the application of these specific models to multimodal transportation network is still a challenging task. This research addresses this challenge from both integrated multimodal data organization and object-oriented modelling perspectives, that is, how a complex urban transportation network should be organized, represented and modeled appropriately when considering a multimodal point of view, and using object-oriented modelling method. We proposed an integrated GIS-based data model for multimodal urban transportation network that lays a foundation to enhance the multimodal transportation network analysis and management. This modelling method organizes and integrates multimodal transit network data, and supports multiple representations for spatio-temporal objects and relationship as both visual and graphic views. The data model is expressed by using a spatio-temporal object-oriented modelling method, i.e., the unified modelling language (UML) extended to spatial and temporal plug-in for visual languages (PVLs), which provides an essential support to the spatio-temporal data modelling for transportation GIS.

  20. Vinyltrimethoxysilane-modified zinc oxide quantum dots with tuned optical properties

    NASA Astrophysics Data System (ADS)

    Tăbăcaru, Aurel; Muşat, Viorica; Ţigău, Nicolae; Vasile, Bogdan Ştefan; Surdu, Vasile-Adrian

    2015-12-01

    Surface modification of zinc oxide nanoparticles (ZnO NPs) with covalently attachable organosilane species is a promising route for the preparation of hybrid nanomaterials in which optical and physico-chemical properties can be easily tuned. As a continuation of our ongoing studies regarding the surface modification of ZnO NPs with adjustable optical properties, we here report a novel series of hybrid zinc oxide quantum dots (ZnO QDs) modified with vinyltrimethoxysilane (VTMS). The modified ZnO QDs, with sizes spanning the range 3-4 nm, were obtained through a simple and low-cost precipitation method. They were morpho-structurally characterized by means of X-ray diffraction, high-resolution transmission electron microscopy and Fourier transform infrared spectroscopy, while their optical properties were studied by UV-vis spectroscopy. When applied as thin films on glass substrate, the obtained ZnO QDs showed excellent optical transmittance between 85 and 90%, and low reflectance in the visible domain. The photoluminescence spectra showed a significant blue-shift of the emission bands, from 578 nm for unmodified ZnO to 540 nm for ZnO modified with 10% VTMS. A new opposite trend of band gap variation from 3.494 eV for unmodified ZnO to 3.32 eV for ZnO modified with 10% VTMS was detected, while an organosilane loading higher than 10% was found to reincrease both nanoparticles size and band gap energy. These results highlighted the better ability of VTMS to attain a higher degree of nanoparticles size reduction, along with the tuning of the optical properties, with respect to the previously reported ZnO-MPS series.

  1. Metal colloids and semiconductor quantum dots: Linear and nonlinear optical properties

    NASA Technical Reports Server (NTRS)

    Henderson, D. O.; My, R.; Tung, Y.; Ueda, A.; Zhu, J.; Collins, W. E.; Hall, Christopher

    1995-01-01

    One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantion for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. In general the host material is typically a glass such as optical grade silica. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga and As. An emphasis is placed on host guest interactions between the matrix and the implanted ion and how the matrix effects and implantation parameters can be used to obtain designer level optical devices tailored for specific applications. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. In this part of the program, we are particularly interested in characterizing the thermodynamic and optical properties of these non-composite materials. We also address how phase diagram of the confined material is altered by the interfacial properties between the confined material and the pore wall.

  2. Metal colloids and semiconductor quantum dots: Linear and nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Henderson, D. O.; My, R.; Tung, Y.; Ueda, A.; Zhu, J.; Collins, W. E.; Hall, Christopher

    1995-08-01

    One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantion for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. In general the host material is typically a glass such as optical grade silica. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga and As. An emphasis is placed on host guest interactions between the matrix and the implanted ion and how the matrix effects and implantation parameters can be used to obtain designer level optical devices tailored for specific applications. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. In this part of the program, we are particularly interested in characterizing the thermodynamic and optical properties of these non-composite materials. We also address how phase diagram of the confined material is altered by the interfacial properties between the confined material and the pore wall.

  3. Synthesis of Zn-In-S Quantum Dots with Tunable Composition and Optical Properties.

    PubMed

    Wang, Xianliang; Damasco, Jossana; Shao, Wei; Ke, Yujie; Swihart, Mark T

    2016-03-01

    II-III-VI semiconductors are of interest due to their chemical stability and composition-tunable optical properties. Here, we report a methodology for the synthesis of monodisperse zinc-indium-sulfide (ZIS) alloy quantum dots (QDs, mean diameter from ∼2 to 3.5 nm) with an In content substantially below that of the stoichiometric ZnIn2 S4 compound. The effects of indium incorporation on the size, lattice constant, and optical properties of ZIS QDs are elucidated. In contrast to previous reports, we employ sulfur dissolved in oleic acid as the sulfur donor rather than thioacetamide (TAA). The size of the ZIS QDs and their crystal lattice constant increased with increasing In incorporation, but they maintained the cubic sphalerite phase of ZnS, rather than the hexagonal phase typical of ZnIn2 S4 . The QDs' absorbance onset at UV wavelengths red-shifts with increasing In content and the accompanying increase in NC size. The ZIS NCs and related materials, whose synthesis is enabled by the approach presented here, provide new opportunities to apply II-III-VI semiconductors in solution-processed UV optoelectronics. PMID:26541645

  4. Properties of the Katugampola fractional derivative with potential application in quantum mechanics

    SciTech Connect

    Anderson, Douglas R.; Ulness, Darin J.

    2015-06-15

    Katugampola [e-print http://arxiv.org/abs/1410.6535 ] recently introduced a limit based fractional derivative, D{sup α} (referred to in this work as the Katugampola fractional derivative) that maintains many of the familiar properties of standard derivatives such as the product, quotient, and chain rules. Typically, fractional derivatives are handled using an integral representation and, as such, are non-local in character. The current work starts with a key property of the Katugampola fractional derivative, D{sup α}[y]=t{sup 1−α}(dy)/(dt) , and the associated differential operator, D{sup α} = t{sup 1−α}D{sup 1}. These operators, their inverses, commutators, anti-commutators, and several important differential equations are studied. The anti-commutator serves as a basis for the development of a self-adjoint operator which could potentially be useful in quantum mechanics. A Hamiltonian is constructed from this operator and applied to the particle in a box model.

  5. Resonant Bragg quantum wells in hybrid photonic crystals: optical properties and applications

    NASA Astrophysics Data System (ADS)

    Schiumarini, D.; D'Andrea, A.; Tomassini, N.

    2016-03-01

    The exciton-polariton propagation in resonant hybrid periodic stacks of isotropic/anisotropic layers, with misaligned in-plane anisotropy and Bragg photon frequency in resonance with Wannier exciton of 2D quantum wells is studied by self-consistent theory and in the effective mass approximation. The optical tailoring of this new class of resonant Bragg reflectors, where the structural periodicity of a multi-layer drives the in-plane optical \\hat{C}-axis orientation, is computed for symmetric and asymmetric elementary cells by conserving strong radiation-matter coupling and photonic band-gaps. The optical response computation, on a finite cluster of N-asymmetric elementary cells, shows anomalous exciton-polariton propagation and absorbance properties strongly dependent on the incident wave polarizations. Finally, the behaviour of the so-called intermediate dispersion curves, close to the unperturbed exciton resonance, and located between upper and lower branches of the first band gap, is studied as a function of the in-plane \\hat{C}-axis orientation. This latter optical property is promising for storing exciton-polariton impulses in this kind of Bragg reflector.

  6. Effect of graphene on photoluminescence properties of graphene/GeSi quantum dot hybrid structures

    SciTech Connect

    Chen, Y. L.; Ma, Y. J.; Wang, W. Q.; Ding, K.; Wu, Q.; Fan, Y. L.; Yang, X. J.; Zhong, Z. Y.; Jiang, Z. M.; Chen, D. D.; Xu, F.

    2014-07-14

    Graphene has been discovered to have two effects on the photoluminescence (PL) properties of graphene/GeSi quantum dot (QD) hybrid structures, which were formed by covering monolayer graphene sheet on the multilayer ordered GeSi QDs sample surfaces. At the excitation of 488 nm laser line, the hybrid structure had a reduced PL intensity, while at the excitation of 325 nm, it had an enhanced PL intensity. The attenuation in PL intensity can be attributed to the transferring of electrons from the conducting band of GeSi QDs to the graphene sheet. The electron transfer mechanism was confirmed by the time resolved PL measurements. For the PL enhancement, a mechanism called surface-plasmon-polariton (SPP) enhanced absorption mechanism is proposed, in which the excitation of SPP in the graphene is suggested. Due to the resonant excitation of SPP by incident light, the absorption of incident light is much enhanced at the surface region, thus leading to more exciton generation and a PL enhancement in the region. The results may be helpful to provide us a way to improve optical properties of low dimensional surface structures.

  7. Optical and Electronic Properties of Nonconcentric PbSe/CdSe Colloidal Quantum Dots.

    PubMed

    Zaiats, Gary; Shapiro, Arthur; Yanover, Diana; Kauffmann, Yaron; Sashchiuk, Aldona; Lifshitz, Efrat

    2015-07-01

    Lead chalcogenide colloidal quantum dots are attractive candidates for applications operating in the near infrared spectral range. However, their function is forestalled by limited stability under ambient conditions. Prolonged temperature-activated cation-exchange of Cd(2+) for Pb(2+) forms PbSe/CdSe core/shell heterostructures, unveiling a promising surface passivation route and a method to modify the dots' electronic properties. Here, we follow early stages of an-exchange process, using spectroscopic and structural characterization tools, as well as numerical calculations. We illustrate that preliminary-exchange stages involve the formation of nonconcentric heterostructures, presumably due to a facet selective reaction, showing a pronounced change in the optical properties upon the increase of the degree of nonconcentricity or/and plausible creation of core/shell interfacial alloying. However, progressive-exchange stages lead to rearrangement of the shell segment into uniform coverage, providing tolerance to oxygen exposure with a spectral steadiness already on the formation of a monolayer shell. PMID:26266716

  8. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods.

    PubMed

    Kan, Shihai; Mokari, Taleb; Rothenberg, Eli; Banin, Uri

    2003-03-01

    Dimensionality and size are two factors that govern the properties of semiconductor nanostructures. In nanocrystals, dimensionality is manifested by the control of shape, which presents a key challenge for synthesis. So far, the growth of rod-shaped nanocrystals using a surfactant-controlled growth mode, has been limited to semiconductors with wurtzite crystal structures, such as CdSe (ref. 3). Here, we report on a general method for the growth of soluble nanorods applied to semiconductors with the zinc-blende cubic lattice structure. InAs quantum rods with controlled lengths and diameters were synthesized using the solution-liquid-solid mechanism with gold nanocrystals as catalysts. This provides an unexpected link between two successful strategies for growing high-quality nanomaterials, the vapour-liquid-solid approach for growing nanowires, and the colloidal approach for synthesizing soluble nanocrystals. The rods exhibit both length- and shape-dependent optical properties, manifested in a red-shift of the bandgap with increased length, and in the observation of polarized emission covering the near-infrared spectral range relevant for telecommunications devices. PMID:12612671

  9. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods

    NASA Astrophysics Data System (ADS)

    Kan, Shihai; Mokari, Taleb; Rothenberg, Eli; Banin, Uri

    2003-03-01

    Dimensionality and size are two factors that govern the properties of semiconductor nanostructures. In nanocrystals, dimensionality is manifested by the control of shape, which presents a key challenge for synthesis. So far, the growth of rod-shaped nanocrystals using a surfactant-controlled growth mode, has been limited to semiconductors with wurtzite crystal structures, such as CdSe (ref. 3). Here, we report on a general method for the growth of soluble nanorods applied to semiconductors with the zinc-blende cubic lattice structure. InAs quantum rods with controlled lengths and diameters were synthesized using the solution-liquid-solid mechanism with gold nanocrystals as catalysts. This provides an unexpected link between two successful strategies for growing high-quality nanomaterials, the vapour-liquid-solid approach for growing nanowires, and the colloidal approach for synthesizing soluble nanocrystals. The rods exhibit both length- and shape-dependent optical properties, manifested in a red-shift of the bandgap with increased length, and in the observation of polarized emission covering the near-infrared spectral range relevant for telecommunications devices.

  10. Measure of the non-Gaussian character of a quantum state

    SciTech Connect

    Genoni, Marco G.; Paris, Matteo G. A.; Banaszek, Konrad

    2007-10-15

    We address the issue of quantifying the non-Gaussian character of a bosonic quantum state and introduce a non-Gaussianity measure based on the Hilbert-Schmidt distance between the state under examination and a reference Gaussian state. We analyze in detail the properties of the proposed measure and exploit it to evaluate the non-Gaussianity of some relevant single-mode and multimode quantum states. The evolution of non-Gaussianity is also analyzed for quantum states undergoing the processes of Gaussification by loss and de-Gaussification by photon-subtraction. The suggested measure is easily computable for any state of a bosonic system and allows one to define a corresponding measure for the non-Gaussian character of a quantum operation.

  11. Matrix product state approach to the finite-size scaling properties of the one-dimensional critical quantum Ising model

    NASA Astrophysics Data System (ADS)

    Park, Sung-Been; Cha, Min-Chul

    2015-11-01

    We investigate the finite-size scaling properties of the quantum phase transition in the one-dimensional quantum Ising model with periodic boundary conditions by representing the ground state in matrix product state forms. The infinite time-evolving block decimation technique is used to optimize the states. A trace over a product of the matrices multiplied as many times as the number of sites yields the finite-size effects. For sufficiently large Schmidt ranks, the finite-size scaling behavior determines the critical point and the critical exponents whose values are consistent with the analytical results.

  12. Multimodal Friction Ignition Tester

    NASA Technical Reports Server (NTRS)

    Davis, Eddie; Howard, Bill; Herald, Stephen

    2009-01-01

    The multimodal friction ignition tester (MFIT) is a testbed for experiments on the thermal and mechanical effects of friction on material specimens in pressurized, oxygen-rich atmospheres. In simplest terms, a test involves recording sensory data while rubbing two specimens against each other at a controlled normal force, with either a random stroke or a sinusoidal stroke having controlled amplitude and frequency. The term multimodal in the full name of the apparatus refers to a capability for imposing any combination of widely ranging values of the atmospheric pressure, atmospheric oxygen content, stroke length, stroke frequency, and normal force. The MFIT was designed especially for studying the tendency toward heating and combustion of nonmetallic composite materials and the fretting of metals subjected to dynamic (vibrational) friction forces in the presence of liquid oxygen or pressurized gaseous oxygen test conditions approximating conditions expected to be encountered in proposed composite material oxygen tanks aboard aircraft and spacecraft in flight. The MFIT includes a stainless-steel pressure vessel capable of retaining the required test atmosphere. Mounted atop the vessel is a pneumatic cylinder containing a piston for exerting the specified normal force between the two specimens. Through a shaft seal, the piston shaft extends downward into the vessel. One of the specimens is mounted on a block, denoted the pressure block, at the lower end of the piston shaft. This specimen is pressed down against the other specimen, which is mounted in a recess in another block, denoted the slip block, that can be moved horizontally but not vertically. The slip block is driven in reciprocating horizontal motion by an electrodynamic vibration exciter outside the pressure vessel. The armature of the electrodynamic exciter is connected to the slip block via a horizontal shaft that extends into the pressure vessel via a second shaft seal. The reciprocating horizontal

  13. Thermophysical properties of hydrogen-helium mixtures: re-examination of the mixing rules via quantum molecular dynamics simulations.

    PubMed

    Wang, Cong; He, Xian-Tu; Zhang, Ping

    2013-09-01

    Thermophysical properties of hydrogen, helium, and hydrogen-helium mixtures have been investigated in the warm dense matter regime at electron number densities ranging from 6.02 × 10^{29} ∼ 2.41 × 10^{30} m^{-3} and temperatures from 4000 to 20000 K via quantum molecular dynamics simulations. We focus on the dynamical properties such as the equation of states, diffusion coefficients, and viscosity. Mixing rules (density matching, pressure matching, and binary ionic mixing rules) have been validated by checking composite properties of pure species against that of the fully interacting mixture derived from quantum molecular dynamics simulations. These mixing rules reproduce pressures within 10% accuracy, while it is 75% and 50% for the diffusion and viscosity, respectively. The binary ionic mixing rule moves the results into better agreement. Predictions from one component plasma model are also provided and discussed. PMID:24125370

  14. Thermophysical properties of hydrogen-helium mixtures: Re-examination of the mixing rules via quantum molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wang, Cong; He, Xian-Tu; Zhang, Ping

    2013-09-01

    Thermophysical properties of hydrogen, helium, and hydrogen-helium mixtures have been investigated in the warm dense matter regime at electron number densities ranging from 6.02×1029˜2.41×1030 m-3 and temperatures from 4000 to 20000 K via quantum molecular dynamics simulations. We focus on the dynamical properties such as the equation of states, diffusion coefficients, and viscosity. Mixing rules (density matching, pressure matching, and binary ionic mixing rules) have been validated by checking composite properties of pure species against that of the fully interacting mixture derived from quantum molecular dynamics simulations. These mixing rules reproduce pressures within 10% accuracy, while it is 75% and 50% for the diffusion and viscosity, respectively. The binary ionic mixing rule moves the results into better agreement. Predictions from one component plasma model are also provided and discussed.

  15. Notes on Translational and Rotational Properties of Tensor Fields in Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Dvoeglazov, V. V.

    Recently, several discussions on the possible observability of 4-vector fields have been published in literature. Furthermore, several authors recently claimed existence of the helicity=0 fundamental field. We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We study the massless limits. In fact, a theoretical motivation for this venture is the old papers of Ogievetskiĭ and Polubarinov, Hayashi, and Kalb and Ramond. Ogievetskiĭ and Polubarinov proposed the concept of the notoph, whose helicity properties are complementary to those of the photon. We analyze the quantum field theory with taking into account mass dimensions of the notoph and the photon. It appears to be possible to describe both photon and notoph degrees of freedom on the basis of the modified Bargmann-Wigner formalism for the symmetric second-rank spinor. Next, we proceed to derive equations for the symmetric tensor of the second rank on the basis of the Bargmann-Wigner formalism in a straightforward way. The symmetric multispinor of the fourth rank is used. Due to serious problems with the interpretation of the results obtained on using the standard procedure we generalize it and obtain the spin-2 relativistic equations, which are consistent with the general relativity. Thus, in fact we deduced the gravitational field equations from relativistic quantum mechanics. The relations of this theory with the scalar-tensor theories of gravitation and f(R) are discussed. Particular attention has been paid to the correct definitions of the energy-momentum tensor and other Nöther currents in the electromagnetic theory, the relativistic theory of gravitation, the general relativity, and their generalizations. We estimate possible interactions, fermion-notoph, graviton-notoph, photon-notoph, and we conclude that they can probably be seen in experiments in the next few years.

  16. Chaotic quantum ratchets and filters with cold atoms in optical lattices: Properties of Floquet states

    NASA Astrophysics Data System (ADS)

    Hur, Gwang-Ok

    The -kicked rotor is a paradigm of quantum chaos. Its realisation with clouds of cold atoms in pulsed optical lattices demonstrated the well-known quantum chaos phenomenon of 'dynamical localisation'. In those experi ments by several groups world-wide, the £-kicks were applied at equal time intervals. However, recent theoretical and experimental work by the cold atom group at UCL Monteiro et al 2002, Jonckheere et al 2003, Jones et al 2004 showed that novel quantum and classical dynamics arises if the atomic cloud is pulsed with repeating sequences of unequally spaced kicks. In Mon teiro et al 2002 it was found that the energy absorption rates depend on the momentum of the atoms relative to the optical lattice hence a type of chaotic ratchet was proposed. In Jonckheere et al and Jones et al, a possible mechanism for selecting atoms according to their momenta (velocity filter) was investigated. The aim of this thesis was to study the properties of the underlying eigen values and eigenstates. Despite the unequally-spaced kicks, these systems are still time-periodic, so we in fact investigated the Floquet states, which are eigenstates of U(T), the one-period time evolution operator. The Floquet states and corresponding eigenvalues were obtained by diagonalising a ma trix representation of the operator U(T). It was found that the form of the eigenstates enables us to analyse qual itatively the atomic momentum probability distributions, N(p) measured experimentally. In particular, the momentum width of the individual eigen states varies strongly with < p > as expected from the theoretical and ex- perimental results obtained previously. In addition, at specific < p > close to values which in the experiment yield directed motion (ratchet transport), the probability distribution of the individual Floquet states is asymmetric, mirroring the asymmetric N(p) measured in clouds of cesium atoms. In the penultimate chapter, the spectral fluctuations (eigenvalue statis tics) are

  17. Multimodal integration of time.

    PubMed

    Bausenhart, Karin M; de la Rosa, Maria Dolores; Ulrich, Rolf

    2014-01-01

    Recent studies suggest that the accuracy of duration discrimination for visually presented intervals is strongly impaired by concurrently presented auditory intervals of different duration, but not vice versa. Because these studies rely mostly on accuracy measures, it remains unclear whether this impairment results from changes in perceived duration or rather from a decrease in perceptual sensitivity. We therefore assessed complete psychometric functions in a duration discrimination task to disentangle effects on perceived duration and sensitivity. Specifically, participants compared two empty intervals marked by either visual or auditory pulses. These pulses were either presented unimodally, or accompanied by task-irrelevant pulses in the respective other modality, which defined conflicting intervals of identical, shorter, or longer duration. Participants were instructed to base their temporal judgments solely on the task-relevant modality. Despite this instruction, perceived duration was clearly biased toward the duration of the intervals marked in the task-irrelevant modality. This was not only found for the discrimination of visual intervals, but also, to a lesser extent, for the discrimination of auditory intervals. Discrimination sensitivity, however, was similar between all multimodal conditions, and only improved compared to the presentation of unimodal visual intervals. In a second experiment, evidence for multisensory integration was even found when the task-irrelevant modality did not contain any duration information, thus excluding noncompliant attention allocation as a basis of our results. Our results thus suggest that audiovisual integration of temporally discrepant signals does not impair discrimination sensitivity but rather alters perceived duration, presumably by means of a temporal ventriloquism effect. PMID:24351985

  18. Multimodal Neuroelectric Interface Development

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Wheeler, Kevin R.; Jorgensen, Charles C.; Totah, Joseph (Technical Monitor)

    2001-01-01

    This project aims to improve performance of NASA missions by developing multimodal neuroelectric technologies for augmented human-system interaction. Neuroelectric technologies will add completely new modes of interaction that operate in parallel with keyboards, speech, or other manual controls, thereby increasing the bandwidth of human-system interaction. We recently demonstrated the feasibility of real-time electromyographic (EMG) pattern recognition for a direct neuroelectric human-computer interface. We recorded EMG signals from an elastic sleeve with dry electrodes, while a human subject performed a range of discrete gestures. A machine-teaming algorithm was trained to recognize the EMG patterns associated with the gestures and map them to control signals. Successful applications now include piloting two Class 4 aircraft simulations (F-15 and 757) and entering data with a "virtual" numeric keyboard. Current research focuses on on-line adaptation of EMG sensing and processing and recognition of continuous gestures. We are also extending this on-line pattern recognition methodology to electroencephalographic (EEG) signals. This will allow us to bypass muscle activity and draw control signals directly from the human brain. Our system can reliably detect P-rhythm (a periodic EEG signal from motor cortex in the 10 Hz range) with a lightweight headset containing saline-soaked sponge electrodes. The data show that EEG p-rhythm can be modulated by real and imaginary motions. Current research focuses on using biofeedback to train of human subjects to modulate EEG rhythms on demand, and to examine interactions of EEG-based control with EMG-based and manual control. Viewgraphs on these neuroelectric technologies are also included.

  19. Multimodal Hip Hop Productions as Media Literacies

    ERIC Educational Resources Information Center

    Turner, K. C. Nat

    2012-01-01

    This study draws on ethnographic data from a year-long multimodal media production (MMP) course and the experience of an African American female adolescent who used the production of multimodal Hip Hop texts to express her creativity and growing socially conscious view of the world. The study demonstrates how students made meaning multimodally and…

  20. Developing Multimodal Academic Literacies among College Freshmen

    ERIC Educational Resources Information Center

    Jacobs, Gloria E.

    2012-01-01

    In this article, the author draws on a semester long freshmen learning community in which multimodal texts were used as primary texts along with traditional texts to support students' academic literacy skills. Analysis shows that a multimodal text created by students contain elements of academic literacies and qualities of multimodal texts. An…

  1. Locating the Semiotic Power of Multimodality

    ERIC Educational Resources Information Center

    Hull, Glynda A.; Nelson, Mark Evan

    2005-01-01

    This article reports research that attempts to characterize what is powerful about digital multimodal texts. Building from recent theoretical work on understanding the workings and implications of multimodal communication, the authors call for a continuing empirical investigation into the roles that digital multimodal texts play in real-world…

  2. Multimodal Career Education for Nursing Students.

    ERIC Educational Resources Information Center

    Southern, Stephen; Smith, Robert L.

    A multimodal career education model entitled BEST IDEA was field tested as an approach to the problem of retaining skilled nurses in the work force. Using multimodal assessment and intervention strategies derived from the multimodal behavior therapy of Arnold Lazarus, researchers developed an individualized career development assessment and…

  3. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory

    PubMed Central

    Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can

    2015-01-01

    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996

  4. Towards prediction of correlated material properties using quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Wagner, Lucas

    Correlated electron systems offer a richness of physics far beyond noninteracting systems. If we would like to pursue the dream of designer correlated materials, or, even to set a more modest goal, to explain in detail the properties and effective physics of known materials, then accurate simulation methods are required. Using modern computational resources, quantum Monte Carlo (QMC) techniques offer a way to directly simulate electron correlations. I will show some recent results on a few extremely challenging materials including the metal-insulator transition of VO2, the ground state of the doped cuprates, and the pressure dependence of magnetic properties in FeSe. By using a relatively simple implementation of QMC, at least some properties of these materials can be described truly from first principles, without any adjustable parameters. Using the QMC platform, we have developed a way of systematically deriving effective lattice models from the simulation. This procedure is particularly attractive for correlated electron systems because the QMC methods treat the one-body and many-body components of the wave function and Hamiltonian on completely equal footing. I will show some examples of using this downfolding technique and the high accuracy of QMC to connect our intuitive ideas about interacting electron systems with high fidelity simulations. The work in this presentation was supported in part by NSF DMR 1206242, the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program under Award Number FG02-12ER46875, and the Center for Emergent Superconductivity, Department of Energy Frontier Research Center under Grant No. DEAC0298CH1088. Computing resources were provided by a Blue Waters Illinois grant and INCITE PhotSuper and SuperMatSim allocations.

  5. Unusual entanglement transformation properties of the quantum radiation through one-dimensional random system containing left-handed-materials.

    PubMed

    Dong, Yunxia; Zhang, Xiangdong

    2008-10-13

    The quantum radiation through the multilayer structures containing the left-handed materials is investigated based on the Green-function approach to the quantization of the phenomenological Maxwell theory. Emphasis is placed on the effect of randomness on the generation and transmission of entangled-states. It is shown that some unusual properties appear for the present systems in comparison with those of the conventional dielectric structures. The quantum relative entropy is always enhanced with the increase of random degree due to the existence of nonlocalized mode in the present systems, while the maximal entanglement can be observed only at some certain randomness for the conventional dielectric structures. In contrast to exponential decrease in the conventional systems, the entanglement degrades slowly with the increase of disorder and thickness of the sample near the nonlocalized mode after transmission through the present systems. This will benefit the quantum communication for long distances. PMID:18852803

  6. Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells

    PubMed Central

    2010-01-01

    As an important step towards the realisation of silicon-based tandem solar cells using silicon quantum dots embedded in a silicon dioxide (SiO2) matrix, single-junction silicon quantum dot (Si QD) solar cells on quartz substrates have been fabricated. The total thickness of the solar cell material is 420 nm. The cells contain 4 nm diameter Si quantum dots. The impacts of post-metallisation treatments such as phosphoric acid (H3PO4) etching, nitrogen (N2) gas anneal and forming gas (Ar: H2) anneal on the cells’ electrical and photovoltaic properties are investigated. The Si QD solar cells studied in this work have achieved an open circuit voltage of 410 mV after various processes. Parameters extracted from dark I–V, light I–V and circular transfer length measurement (CTLM) suggest limiting mechanism in the Si QD solar cell operation and possible approaches for further improvement. PMID:21124642

  7. Optical properties of stacked InGaAs sidewall quantum wires in InGaAsP/InP

    SciTech Connect

    Zhou, D.; Noetzel, R.; Otten, F.W.M. van; Eijkemans, T.J.; Wolter, J.H.

    2006-05-15

    We report on the optical properties of threefold stacked InGaAs sidewall quantum wires (QWires) with quaternary InGaAsP barriers grown on shallow-patterned InP (311)A substrates by chemical beam epitaxy. Temperature dependent photoluminescence (PL) reveals efficient carrier transfer from the adjacent quantum wells (QWells) into the QWires at low temperature, thermally activated repopulation of the QWells at higher temperature, and negligible localization of carriers along the QWires. Strong broadening of power dependent PL indicates enhanced state filling in the QWires compared to that in the QWells. Clear linear polarization of the PL from the QWires confirms the lateral quantum confinement of carriers. These results demonstrate excellent optical quality of the sidewall QWire structures with room temperature PL peak wavelength at 1.55 {mu}m for applications in fiber-based optical telecommunication systems.

  8. Control of physical and optical properties of II-VI quantum dots

    NASA Astrophysics Data System (ADS)

    Sooklal, Kelly Sonja

    This thesis primarily concentrates on two semiconductors, CdS and ZnS, both of which have been widely used in the fabrication of electrical devices. Nanoparticles of CdS and ZnS have both been prepared using a variety of synthetic methods. These "quantum confined" particles exhibit a wide range of size dependent properties which can be modified by either altering their size and/or surface chemistry. In one set of experiments, it was found that the location of Mn 2+ profoundly affects the photophysics of ZnS nanoclusters. Mn 2+ substituted for Zn2+ in the ZnS lattice produced orange emission with lifetimes that were intermediate between those found for micron clusters and smaller nanoclusters. The addition of Mn2+ to the outside of the preformed ZnS nanoclusters showed near-band gap emission in the ultraviolet with even shorter lifetimes. We have also used these Mn2+ doped nanoclusters to fabricate electroluminescent devices. In another set of experiments, the effects of different ions on the photophysics of ZnS nanoclusters was investigated. Depending on the cation, we have been able to produce ZnS nanoclusters that emit in the blue, green, yellow and orange regions of the visible spectrum by incorporating Cu2+, Pb2+ and Mn2+. Quantum dots of CdS have also been prepared using several different stabilizing agents. CdS nanoparticles that have been synthesized using dendrimers as hosts exhibit striking optical and electronic features. Intense blue-green emission is observed when the CdS-dendrimer nanocomposites are formed in methanol and/or acidified methanol solutions. Bright yellow emission is observed when the semiconductor-dendrimer nanocomposites are prepared in water and/or basic methanol solutions. One additional experiment was performed using capping groups to modify the photophysics of CdS. Nanometer-sized CdS were prepared using a series of 4-substituted thiophenols as capping agents. The 4-substituents included both electron-donating and electron

  9. Carbon quantum dots with photo-generated proton property as efficient visible light controlled acid catalyst

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Liu, Ruihua; Kong, Weiqian; Liu, Juan; Liu, Yang; Zhou, Lei; Zhang, Xing; Lee, Shuit-Tong; Kang, Zhenhui

    2013-12-01

    Developing light-driven acid catalyst will be very meaningful for the controlled-acid catalytic processes towards a green chemical industry. Here, based on scanning electrochemical microscopy (SECM) and ΔpH testing, we demonstrate that the 5-10 nm carbon quantum dots (CQDs) synthesized by electrochemical ablation of graphite have strong light-induced proton properties under visible light in solution, which can be used as an acid catalyst. The 5-10 nm CQDs' catalytic activity is strongly dependent on the illumination intensity and the temperature of the reaction system. As an effective visible light driven and controlled acid-catalyst, 5-10 nm CQDs can catalyze a series of organic reactions (esterification, Beckmann rearrangement and aldol condensation) with high conversion (34.7-46.2%, respectively) in water solution under visible light, while the 1-4 nm CQDs and 10-2000 nm graphite do not have such excellent catalytic activity. The use of 5-10 nm CQDs as a light responsive and controllable photocatalyst is truly a novel application of carbon-based nanomaterials, which may significantly push research in the current catalytic industry, environmental pollution and energy issues.Developing light-driven acid catalyst will be very meaningful for the controlled-acid catalytic processes towards a green chemical industry. Here, based on scanning electrochemical microscopy (SECM) and ΔpH testing, we demonstrate that the 5-10 nm carbon quantum dots (CQDs) synthesized by electrochemical ablation of graphite have strong light-induced proton properties under visible light in solution, which can be used as an acid catalyst. The 5-10 nm CQDs' catalytic activity is strongly dependent on the illumination intensity and the temperature of the reaction system. As an effective visible light driven and controlled acid-catalyst, 5-10 nm CQDs can catalyze a series of organic reactions (esterification, Beckmann rearrangement and aldol condensation) with high conversion (34

  10. Correlation between the structural and cathodoluminescence properties in InGaN/GaN multiple quantum wells with large number of quantum wells

    SciTech Connect

    Yang, Jing; Zhao, Degang Jiang, Desheng; Chen, Ping; Zhu, Jianjun; Liu, Zongshun; Le, Lingcong; He, Xiaoguang; Li, Xiaojing; Wang, Hui; Yang, Hui; Jahn, Uwe

    2014-09-01

    Cathodoluminescence (CL) characteristics on 30-period InGaN/GaN multiple quantum well (MQW) solar cell structures are investigated, revealing the relationship between optical and structural properties of the MQW structures with a large number of quantum wells. In the bottom MQW layers, a blueshift of CL peak along the growth direction is found and attributed to the decrease of indium content due to the compositional pulling effect. An obvious split of emission peak and a redshift of the main emission energy are found in the top MQW layers when the MQW grows above the critical layer thickness. They are attributed to the segregation of In-rich InGaN clusters rather than the increase of indium content in quantum well layer. The MQW structure is identified to consist of two regions: a strained one in the bottom, where the indium content is gradually decreased, and a partly relaxed one in the top with segregated In-rich InGaN clusters.

  11. Atomistic Simulation of Electronic and Optical Properties of (100), (110) and (111) Oriented InAs/GaAs Quantum Dots

    NASA Astrophysics Data System (ADS)

    Chimalgi, Vinay; Ahmed, Shaikh

    2014-03-01

    Recent advances in growth techniques and increasing number of experimental studies have made semiconducting InAs/GaAs quantum dots (QDs) grown along different crystallographic directions a reality and promising systems for applications in infrared detection, optical memories, laser, and in quantum cryptography as single photon sources and quantum computation. However, only few theoretical investigations have been performed on these QDs due to the complex nature of the coupling of atomicity, structural fields, polarization, and quantum size-quantization, all strong function of the crystallographic direction. The objective of this paper is to integrate a computational framework employing a combination of fully atomistic valence force-field molecular mechanics and 20-band sp3 s *d5 -SO tight-binding based electronic bandstructure models, and numerically investigate the effects of internal fields on the electronic and optical properties of InAs/GaAs quantum dots grown on (100), (110), and (111) orientated substrates. It is found that, while piezoelectricity has largest effects on lowering the symmetry of (100) oriented QDs, its effect is minimum in (111) orientated QDs. Supported by the U.S. National Science Foundation Grant No. 1102192.

  12. Counting statistics of many-particle quantum walks

    SciTech Connect

    Mayer, Klaus; Tichy, Malte C.; Buchleitner, Andreas; Mintert, Florian; Konrad, Thomas

    2011-06-15

    We study quantum walks of many noninteracting particles on a beam splitter array as a paradigmatic testing ground for the competition of single- and many-particle interference in a multimode system. We derive a general expression for multimode particle-number correlation functions, valid for bosons and fermions, and infer pronounced signatures of many-particle interferences in the counting statistics.

  13. Quantum paradoxes originating from the nonclassical statistics of physical properties related to each other by half-periodic transformations

    NASA Astrophysics Data System (ADS)

    Hofmann, Holger F.

    2015-06-01

    Quantum paradoxes show that quantum statistics can exceed the limits of positive joint probabilities for physical properties that cannot be measured jointly. It is therefore impossible to describe the relations between the different physical properties of a quantum system by assigning joint realities to their observable values. Instead, recent experimental results obtained by weak measurements suggest that nonclassical correlations could be expressed by complex valued quasiprobabilities, where the phases of the complex probabilities express the action of transformations between the noncommuting properties [H. F. Hofmann, New J. Phys. 13, 103009 (2011), 10.1088/1367-2630/13/10/103009]. In these relations, negative probabilities necessarily emerge whenever the physical properties involved are related to each other by half-periodic transformations, since such transformations are characterized by action phases of π in their complex probabilities. It is therefore possible to trace the failure of realist assumptions back to a fundamental and universally valid relation between statistics and dynamics that associates half-periodic transformations with negative probabilities.

  14. The Effect of the Berry Phase on the Quantum Critical Properties of the Bose-Fermi Kondo model

    NASA Astrophysics Data System (ADS)

    Kirchner, Stefan; Si, Qimiao

    2006-03-01

    The theory of the quantum critical point of a T=0 transition is traditionally formulated in terms of a quantum-to-classical mapping, leading to a theory of its classical counterpart in elevated dimensions. Recently, it has been shown that this mapping breaks down in an SU(N)xSU(N/2) Bose-Fermi Kondo model (BFKM) [1], a BFKM with Ising anisotropy [2] and the spin-boson model [3]. Here we report the Quantum Monte Carlo results for the scaling properties of the quantum critical point of the BFKM with Ising anisotropy. In addition, using the Lagrangian formulation of the BFKM, we study the critical properties in the presence and absence of the spin Berry phase term. The results of the two cases are compared with the numerical results.[1] L. Zhu, S. Kirchner, Q. Si, and A. Georges, Phys. Rev. Lett. 93,267201 (2004). [2] M. Glossop and K. Ingersent, Phys. Rev. Lett. 95, 067202 (2005). [3] M. Vojta, N-H Tong, and R. Bulla, Phys. Rev. Lett. 94, 070604 (2005).

  15. Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging

    NASA Astrophysics Data System (ADS)

    Ananthanarayanan, Arundithi; Wang, Yue; Routh, Parimal; Sk, Mahasin Alam; Than, Aung; Lin, Ming; Zhang, Jie; Chen, Jie; Sun, Handong; Chen, Peng

    2015-04-01

    Graphene quantum dots (GQDs) are emerging zero-dimensional materials promising a wide spectrum of applications, particularly, as superior fluorescent reporters for bio-imaging and optical sensing. Heteroatom doping can endow GQDs with new or improved photoluminescence properties. Here, we demonstrate a simple strategy for the synthesis of nitrogen and phosphorus co-doped GQDs from a single biomolecule precursor (adenosine triphosphate - ATP). Such ATP-GQDs exhibit high fluorescence quantum yield, strong two-photon upconversion, small molecular weight, high photostability, and good biocompatibility. Furthermore, transferrin conjugated ATP-GQDs have been used for imaging and real-time tracking of transferrin receptors in live cells.Graphene quantum dots (GQDs) are emerging zero-dimensional materials promising a wide spectrum of applications, particularly, as superior fluorescent reporters for bio-imaging and optical sensing. Heteroatom doping can endow GQDs with new or improved photoluminescence properties. Here, we demonstrate a simple strategy for the synthesis of nitrogen and phosphorus co-doped GQDs from a single biomolecule precursor (adenosine triphosphate - ATP). Such ATP-GQDs exhibit high fluorescence quantum yield, strong two-photon upconversion, small molecular weight, high photostability, and good biocompatibility. Furthermore, transferrin conjugated ATP-GQDs have been used for imaging and real-time tracking of transferrin receptors in live cells. Electronic supplementary information (ESI) available: Supplementary figures related to characterization, computational studies and protein conjugation. See DOI: 10.1039/c5nr01519g

  16. Creating Tangible Interfaces by Augmenting Physical Objects with Multimodal Language

    SciTech Connect

    McGee, David R. ); Cohen, Philip R.

    2001-01-01

    Rasa is a tangible augmented reality environment that digitally enhances the existing paper-based command and control capability in a military command post. By observing and understanding the users' speech, pen, and touch-based multimodal language, Rasa computationally augments the physical objects on a command post map, linking these items to digital representations of the same; for example, linking a paper map to the world and Post-it notes to military units. Herein, we give a thorough account of Rasa's underlying multiagent framework, and its recognition, understanding, and multimodal integration components. Moreover, we examine five properties of language: generativity, comprehensibility, compositionality, referentiality, and, at times, persistence--that render it suitable as an augmentation approach, contrasting these properties to those of other augmentation methods. It is these properties of language that allow users of Rasa to augment physical objects, transforming them into tangible interfaces.

  17. Quantum description and properties of electrons emitted from pulsed nanotip electron sources

    SciTech Connect

    Lougovski, Pavel; Batelaan, Herman

    2011-08-15

    We present a quantum calculation of the electron degeneracy for electron sources. We explore quantum interference of electrons in the temporal and spatial domain and demonstrate how it can be utilized to characterize a pulsed electron source. We estimate effects of Coulomb repulsion on two-electron interference and show that currently available pulsed nanotip electron sources operate in the regime where the quantum nature of electrons can be made dominant.

  18. Some properties of correlations of quantum lattice systems in thermal equilibrium

    SciTech Connect

    Fröhlich, Jürg; Ueltschi, Daniel

    2015-05-15

    Simple proofs of uniqueness of the thermodynamic limit of KMS states and of the decay of equilibrium correlations are presented for a large class of quantum lattice systems at high temperatures. New quantum correlation inequalities for general Heisenberg models are described. Finally, a simplified derivation of a general result on power-law decay of correlations in 2D quantum lattice systems with continuous symmetries is given, extending results of McBryan and Spencer for the 2D classical XY model.

  19. The ground state properties of In(Ga)As/GaAs low strain quantum dots

    NASA Astrophysics Data System (ADS)

    Pieczarka, Maciej; Sęk, Grzegorz

    2016-08-01

    We present theoretical studies on the confined states in low-strain In(Ga)As quantum dots (QDs). The 8-band k·p model together with the continuum elasticity theory and piezoelectric fields were employed to calculate the potential and confined electron and hole eigenstates. We focused on low-indium-content QDs with distinct in-plane asymmetry, which are naturally formed in the low strain regime of the Stranski-Krastanow growth mode. It has been found that the naturally thick wetting layer together with piezoelectric potential affect the total confinement potential to such extent that the hole eigenstates can get the spatial in-plane orientation orthogonal to the main axis of the dot elongation. This can influence both, qualitatively and quantitatively, many of the electronic and optical properties, as e.g. the polarization selection rules for the optical transition or the transitions oscillator strength. Eventually, importance of the degree of the shape asymmetry or the dots' size, and differences between the low-strain (low-In-content) QDs and pure InAs dots formed in high strain conditions are discussed.

  20. Modeling of magnetic polaron properties in (Zn,Mn)Te quantum dots

    NASA Astrophysics Data System (ADS)

    Pientka, James; Barman, B.; Schweidenback, L.; Russ, A. H.; Tsai, Y.; Murphy, J. R.; Cartwright, A. N.; Zutic, I.; McCombe, B. D.; Petrou, A.; Chou, W.-C.; Fan, W. C.; Sellers, I. R.; Petukhov, A. G.; Oszwaldowski, R.

    Magnetic polarons in (Zn,Mn)Te quantum dots (QD) show unconventional behavior. These structures exhibit a small red shift of the photoluminescence peak energy in the presence of a magnetic field B and they also have a weak dependence of the polaron energy EMP on temperature T and B. We attribute these properties to a large molecular field Bm that is proportional to the heavy holes spin density. We have calculated Bm using the QD diameter and height as adjustable parameters. Assuming hole localization, this calculation yields values of Bm >20 T. The assumption that the hole localization diameter can be smaller than the QD diameter is justified due to alloy and spin disorder scattering. Using the magnetic polaron free energy, we calculate EMP as function of T and B for a variety of Bm values. To get a weak dependence of EMP on T and Bwe must assume that the polaron temperature is higher than T. This work was supported by U.S. DOE BES, Award DE-SC0004890, NSF DMR-1305770 and U.S. ONR N000141310754.

  1. Electronic and optical properties of exciton, trions and biexciton in II-VI parabolic quantum dot

    NASA Astrophysics Data System (ADS)

    Sujanah, P.; John Peter, A.; Woo Lee, Chang

    2015-08-01

    Binding energies of exciton, trions and biexciton and their interband optical transition energies are studied in a CdTe/ZnTe quantum dot nanostructure taking into consideration the geometrical confinement effect. The radial spread of the wavefunctions, binding energies, optical transition energies, oscillator strength, radiative life time and the absorption coefficients of exciton, positively and negatively charged excitons and biexciton are carried out. It is found that the ratio of the radiative life time of exciton with the trions and biexciton enhances with the reduction of geometrical confinement. The results show that (i) the binding energies of exciton, positive and negative trions and the biexciton have strong influence on the reduction of geometrical confinement effect, (ii) the binding energy is found to decrease from the binding energies of exciton to positive trion through biexciton and negative trion binding energies, (iii) the oscillator strength of trions is found to be lesser than exciton and the biexciton and (iv) the electronic and optical properties of exciton, trions and the biexciton are considerably dependent on the spatial confinement, incident photon energy and the radiative life time. The obtained results are in good agreement with the other existing literature.

  2. The Influence of Doping on the Optoelectronic Properties of PbS Colloidal Quantum Dot Solids

    PubMed Central

    Papagiorgis, P.; Stavrinadis, A.; Othonos, A.; Konstantatos, G.; Itskos, G.

    2016-01-01

    We report on an extensive spectroscopic investigation of the impact of substitutional doping on the optoelectronic properties of PbS colloidal quantum dot (CQD) solids. N-doping is provided by Bi incorporation during CQD synthesis as well as post-synthetically via cation exchange reactions. The spectroscopic data indicate a systematic quenching of the excitonic absorption and luminescence and the appearance of two dopant-induced contributions at lower energies to the CQD free exciton. Temperature-dependent photoluminescence indicates the presence of temperature-activated detrapping and trapping processes of photoexcitations for the films doped during and after synthesis, respectively. The data are consistent with a preferential incorporation of the dopants at the QDs surface in the case of the cation-exchange treated films versus a more uniform doping profile in the case of in-situ Bi incorporation during synthesis. Time-resolved experiments indicate the presence of fast dopant- and excitation-dependent recombination channels attributed to Auger recombination of negatively charged excitons, formed due to excess of dopant electrons. The data indicate that apart from dopant compensation and filling of dopant induced trap states, a fraction of the Bi ionized electrons feeds the QD core states resulting in n-doping of the semiconductor, confirming reported work on devices based on such doped CQD material. PMID:26743934

  3. Unusual corrections to scaling and convergence of universal Renyi properties at quantum critical points

    NASA Astrophysics Data System (ADS)

    Sahoo, Sharmistha; Stoudenmire, E. Miles; Stéphan, Jean-Marie; Devakul, Trithep; Singh, Rajiv R. P.; Melko, Roger G.

    2016-02-01

    At a quantum critical point, bipartite entanglement entropies have universal quantities which are subleading to the ubiquitous area law. For Renyi entropies, these terms are known to be similar to the von Neumann entropy, while being much more amenable to numerical and even experimental measurement. We show here that when calculating universal properties of Renyi entropies, it is important to account for unusual corrections to scaling that arise from relevant local operators present at the conical singularity in the multisheeted Riemann surface. These corrections grow in importance with increasing Renyi index. We present studies of Renyi correlation functions in the 1 +1 transverse-field Ising model (TFIM) using conformal field theory, mapping to free fermions, and series expansions, and the logarithmic entropy singularity at a corner in 2 +1 for both free bosonic field theory and the TFIM, using numerical linked cluster expansions. In all numerical studies, accurate results are only obtained when unusual corrections to scaling are taken into account. In the worst case, an analysis ignoring these corrections can get qualitatively incorrect answers, such as predicting a decrease in critical exponents with the Renyi index, when they are actually increasing. We discuss a two-step extrapolation procedure that can be used to account for the unusual corrections to scaling.

  4. The vibration properties of the (n,0) boron nitride nanotubes from ab initio quantum chemical simulations

    NASA Astrophysics Data System (ADS)

    Erba, A.; Ferrabone, M.; Baima, J.; Orlando, R.; Rérat, M.; Dovesi, R.

    2013-02-01

    The vibration spectrum of single-walled zigzag boron nitride (BN) nanotubes is simulated with an ab initio periodic quantum chemical method. The trend towards the hexagonal monolayer (h-BN) in the limit of large tube radius R is explored for a variety of properties related to the vibrational spectrum: vibration frequencies, infrared intensities, oscillator strengths, and vibration contributions to the polarizability tensor. The (n,0) family is investigated in the range from n = 6 (24 atoms in the unit cell and tube radius R = 2.5 Å) to n = 60 (240 atoms in the cell and R = 24.0 Å). Simulations are performed using the CRYSTAL program which fully exploits the rich symmetry of this class of one-dimensional periodic systems: 4n symmetry operators for the general (n,0) tube. Three sets of infrared active phonon bands are found in the spectrum. The first one lies in the 0-600 cm-1 range and goes regularly to zero when R increases; the connection between these normal modes and the elastic and piezoelectric constants of h-BN is discussed. The second (600-800 cm-1) and third (1300-1600 cm-1) sets tend regularly, but with quite different speed, to the optical modes of the h-BN layer. The vibrational contribution of these modes to the two components (parallel and perpendicular) of the polarizability tensor is also discussed.

  5. Analytic nuclear forces and molecular properties from full configuration interaction quantum Monte Carlo

    SciTech Connect

    Thomas, Robert E.; Overy, Catherine; Opalka, Daniel; Alavi, Ali; Knowles, Peter J.; Booth, George H.

    2015-08-07

    Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, “replica” ensemble of walkers, whose population evolves in imaginary time independently from the first and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the Hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, the present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments, and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where sufficiently large basis sets are available, achieve close agreement with experimental values, expanding the scope of the method to new areas of investigation.

  6. The Influence of Doping on the Optoelectronic Properties of PbS Colloidal Quantum Dot Solids.

    PubMed

    Papagiorgis, P; Stavrinadis, A; Othonos, A; Konstantatos, G; Itskos, G

    2016-01-01

    We report on an extensive spectroscopic investigation of the impact of substitutional doping on the optoelectronic properties of PbS colloidal quantum dot (CQD) solids. N-doping is provided by Bi incorporation during CQD synthesis as well as post-synthetically via cation exchange reactions. The spectroscopic data indicate a systematic quenching of the excitonic absorption and luminescence and the appearance of two dopant-induced contributions at lower energies to the CQD free exciton. Temperature-dependent photoluminescence indicates the presence of temperature-activated detrapping and trapping processes of photoexcitations for the films doped during and after synthesis, respectively. The data are consistent with a preferential incorporation of the dopants at the QDs surface in the case of the cation-exchange treated films versus a more uniform doping profile in the case of in-situ Bi incorporation during synthesis. Time-resolved experiments indicate the presence of fast dopant- and excitation-dependent recombination channels attributed to Auger recombination of negatively charged excitons, formed due to excess of dopant electrons. The data indicate that apart from dopant compensation and filling of dopant induced trap states, a fraction of the Bi ionized electrons feeds the QD core states resulting in n-doping of the semiconductor, confirming reported work on devices based on such doped CQD material. PMID:26743934

  7. The Influence of Doping on the Optoelectronic Properties of PbS Colloidal Quantum Dot Solids

    NASA Astrophysics Data System (ADS)

    Papagiorgis, P.; Stavrinadis, A.; Othonos, A.; Konstantatos, G.; Itskos, G.

    2016-01-01

    We report on an extensive spectroscopic investigation of the impact of substitutional doping on the optoelectronic properties of PbS colloidal quantum dot (CQD) solids. N-doping is provided by Bi incorporation during CQD synthesis as well as post-synthetically via cation exchange reactions. The spectroscopic data indicate a systematic quenching of the excitonic absorption and luminescence and the appearance of two dopant-induced contributions at lower energies to the CQD free exciton. Temperature-dependent photoluminescence indicates the presence of temperature-activated detrapping and trapping processes of photoexcitations for the films doped during and after synthesis, respectively. The data are consistent with a preferential incorporation of the dopants at the QDs surface in the case of the cation-exchange treated films versus a more uniform doping profile in the case of in-situ Bi incorporation during synthesis. Time-resolved experiments indicate the presence of fast dopant- and excitation-dependent recombination channels attributed to Auger recombination of negatively charged excitons, formed due to excess of dopant electrons. The data indicate that apart from dopant compensation and filling of dopant induced trap states, a fraction of the Bi ionized electrons feeds the QD core states resulting in n-doping of the semiconductor, confirming reported work on devices based on such doped CQD material.

  8. Effect of atomic-scale defects and dopants on phosphorene electronic structure and quantum transport properties

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro

    2016-01-01

    By means of a multiscale first-principles approach, a description of the local electronic structure of two-dimensional and narrow phosphorene sheets with various types of modifications is presented. First, a rational argument based on the geometry of the pristine and modified P network, and supported by the Wannier functions formalism, is introduced to describe a hybridization model of the P atomic orbitals. Ab initio calculations show that nonisoelectronic foreign atoms form quasibound states at varying energy levels and create different polarization states depending on the number of valence electrons between P and the doping atom. The quantum transport properties of modified phosphorene ribbons are further described with great accuracy. The distortions on the electronic bands induced by the external species lead to strong backscattering effects on the propagating charge carriers. Depending on the energy of the charge carrier and the type of doping, the conduction may range from the diffusive to the localized regime. Interstitial defects at vacant sites lead to homogeneous transport fingerprints across different types of doping atoms. We suggest that the relatively low values of charge mobility reported in experimental measurements may have their origin in the presence of defects.

  9. Magnon-induced nonanalyticities in thermodynamic and transport properties of quantum ferromagnets

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Sripoorna; Belitz, Dietrich; Kirkpatrick, Theodore R.

    Soft modes and their effects on thermodynamic and transport properties are of great interest. An example of a nonanalyticity induced by Goldstone modes is the divergence of the longitudinal susceptibility, χL (k) ~ 1 /k 4 - d , in a classical isotropic Heisenberg ferromagnet in 2 < d < 4 dimensions everywhere in the ordered phase. Here we investigate the fate of this nonanalyticity in a quantum ferromagnet. Power counting at T = 0 suggests a weaker singularity, χL (k) ~k d - 2 , due to the additional frequency integration. We find that this term has a zero prefactor due to spin conservation. Consistent with this, a corresponding term in an antiferromagnet has a nonzero prefactor. A small but nonzero temperature restores the nonanalyticity in a ferromagnet, and the prefactor vanishes linearly with T. Similarly, magnetic impurities violate the spin conservation and lead to a nonanalytic term even at T = 0 . We explore all of these effects by means of nonlinear sigma models for both ferromagnets and antiferromagnets, and by an effective field theory for itinerant ferromagnets, and discuss the crossover from the classical result to the T = 0 limit in detail. Supported by the National Science Foundation under Grants No. DMR-140410 and DMR-140449.

  10. Ground-state properties of linear-exchange quantum spin models

    NASA Astrophysics Data System (ADS)

    Danu, Bimla; Kumar, Brijesh; Pai, Ramesh V.

    2012-10-01

    We study a class of one-dimensional antiferromagnetic quantum spin-1/2 models using DMRG. The exchange interaction in these models decreases linearly with the separation between the spins, Jij = R - |i - j| for |i - j| < R, where R is a positive integer ⩾2. For |i - j| ⩾ R, the interaction is zero. It is known that all the odd-R models have the same exact dimer ground state as the Majumdar-Ghosh (MG) model. In fact, R = 3 is the MG model. However, for an even R, the exact ground state is not known in general, except for R = 2 (the integrable nearest-neighbor Heisenberg chain) and the asymptotic limit of R in which the MG dimer state emerges as the exact ground state. Therefore, we numerically study the ground-state properties of the finite even-R ≠ 2 models, particularly for R = 4, 6 and 8. We find that, unlike R = 2, the higher even-R models are spin-gapped, and exhibit robust dimer order of the MG type in the ground state. The spin-spin correlations decay rapidly to zero, albeit showing weak periodic revivals.

  11. Topological Hunds rules and the electronic properties of a triple lateral quantum dot molecule

    NASA Astrophysics Data System (ADS)

    Hawrylak, P.; Korkusinski, M.; Delgado, F.; Gaudreau, L.; Studenikin, S.; Kam, A.; Sachrajda, A.

    2007-03-01

    We analyze theoretically and experimentally the electronic structure and charging diagram of three coupled lateral quantum dots in a magnetic field filled with electrons. Using the Hubbard model and real-space exact diagonalization techniques we show that the electronic properties of this artificial molecule can be understood using a set of topological Hunds rules[1]. These rules relate the multi-electron energy levels to spin and the inter-dot tunneling t, and control charging energies. We map out the charging diagram for up to N=6 electrons and predict a spin singlet for two electrons, spin-polarized phase for two holes, and a magnetically frustrated ground state for three electrons. We show that spin polarization can be tuned by magnetic field perpendicular to the triple dot device. The theoretical charging diagram is compared with the measured charging diagram of the gated triple-dot device[1]. [1] P. Hawrylak and M. Korkusinski, Solid State Commun. 136, 508 (2005). [2] L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, P. Zawadzki, A. Kam, J. Lapointe, M. Korkusinski, and P. Hawrylak, Phys. Rev. Lett. 97, 036807 (2006).

  12. Multimodal Revision Techniques in Webtexts

    ERIC Educational Resources Information Center

    Ball, Cheryl E.

    2014-01-01

    This article examines how an online scholarly journal, "Kairos: Rhetoric, Technology, Pedagogy," mentors authors to revise their webtexts (interactive, digital media scholarship) for publication. Using an editorial pedagogy in which multimodal and rhetorical genre theories are merged with revision techniques found in process-based…

  13. Multimodal imaging of ischemic wounds

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwu; Gnyawali, Surya; Huang, Jiwei; Liu, Peng; Gordillo, Gayle; Sen, Chandan K.; Xu, Ronald

    2012-12-01

    The wound healing process involves the reparative phases of inflammation, proliferation, and remodeling. Interrupting any of these phases may result in chronically unhealed wounds, amputation, or even patient death. Quantitative assessment of wound tissue ischemia, perfusion, and inflammation provides critical information for appropriate detection, staging, and treatment of chronic wounds. However, no method is available for noninvasive, simultaneous, and quantitative imaging of these tissue parameters. We integrated hyperspectral, laser speckle, and thermographic imaging modalities into a single setup for multimodal assessment of tissue oxygenation, perfusion, and inflammation characteristics. Advanced algorithms were developed for accurate reconstruction of wound oxygenation and appropriate co-registration between different imaging modalities. The multimodal wound imaging system was validated by an ongoing clinical trials approved by OSU IRB. In the clinical trial, a wound of 3mm in diameter was introduced on a healthy subject's lower extremity and the healing process was serially monitored by the multimodal imaging setup. Our experiments demonstrated the clinical usability of multimodal wound imaging.

  14. Multi-Modality Phantom Development

    SciTech Connect

    Huber, Jennifer S.; Peng, Qiyu; Moses, William W.

    2009-03-20

    Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe both our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.

  15. Creating Multimodal Metalanguage with Teachers

    ERIC Educational Resources Information Center

    Cloonan, Anne

    2011-01-01

    Curriculum guidelines, including the emergent Australian curriculum (Australian Curriculum, Assessment and Reporting Authority [ACARA], 2009-10), indicate expectations that teachers will support their students' interpretation and creation of multimodal texts. However, English curriculum guidelines are yet to advise on a detailed metalanguage to…

  16. Multimodality as a Sociolinguistic Resource

    ERIC Educational Resources Information Center

    Collister, Lauren Brittany

    2013-01-01

    This work explores the use of multimodal communication in a community of expert "World of Warcraft"® players and its impact on politeness, identity, and relationships. Players in the community regularly communicated using three linguistic modes quasi-simultaneously: text chat, voice chat, and face-to-face interaction. Using the…

  17. Brief Psychotherapy: The Multimodal Model.

    ERIC Educational Resources Information Center

    Lazarus, Arnold A.

    1989-01-01

    Outlines tenets of multimodal therapy (MMT) and argues for its cost-effective yet comprehensive value as a brief psychotherapy model. Describes MMT as an integrated, seven-modality model of personality and provides clinical examples of its use. Argues that MMT approach will be an important future alternative to more expensive, time-consuming, and…

  18. Multimode Entanglement Generation in a Parametric Superconducting Cavity

    NASA Astrophysics Data System (ADS)

    Chang, C. W. S.; Simoen, M.; Vadiraj, A. M.; Delsing, P.; Wilson, C. M.

    Parametric microwave resonators implemented with superconducting circuits have become increasingly important in various application within quantum information processing. For example, quantum-limited parametric amplifiers based on these devices have now become commonplace as first-stage amplifiers for qubit experiments. Here we study the generation of multimode entangled states of propagating microwave photons, which can be used a resource in quantum computing and communication applications. We use a CPW resonator with a low fundamental resonance frequency that than has a number of modes in the common frequency band of 4-12 GHz. These modes are all parametrically coupled by a single SQUID that terminates the resonator. When parametrically pumping the system at the sum of two mode frequencies, we observe parametric downconversion and two-mode squeezing. By pumping at the difference frequency, we observe a beamsplitter-like mode conversion. By using multiple pump tones that combine these different processes, theory predicts we can construct multimode entangled states with a well-controlled entanglement structure, e.g., cluster states. Preliminary measurements will be presented.

  19. Optical properties of nearly lattice-matched GaN/(Al,In)N quantum wells

    NASA Astrophysics Data System (ADS)

    Liaugaudas, Gediminas; Jacopin, Gwénolé; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas

    2016-05-01

    We report a systematic study of the photoluminescence (PL) properties of a series of nearly lattice-matched (LM) GaN/(Al,In)N single quantum well (SQW) samples, with well thickness ranging from 1.5 to 5 nm, grown by metalorganic vapor phase epitaxy. Temperature dependent PL and time-resolved PL measurements reveal similar trends among the studied SQW samples, which also indicate strong localization effects. The observed PL energy behavior, akin to the S-shape, accompanied first by a narrowing and then a broadening of the PL line width with increasing temperature, closely resemble previous observations made on the more established (In,Ga)N/GaN QW system. The similar trends observed in the PL features of those two QW systems imply that the PL properties of LM GaN/(Al,In)N SQW samples are also governed by localized states. The effects of carrier transfer among these localization sites are clearly observed for the 3 nm thick QW, evidenced by an increasing PL intensity in the lower energy spectral window and a concomitant increase in the corresponding PL decay time. Time-resolved data corroborate the picture of strongly localized carriers and also indicate that above a well thickness dependent delocalization temperature carrier distribution across the localized sites reaches thermal equilibrium, as the PL decay times over different spectral regions converge to the same value. Based on the difference between the calculated QW ground state transition energy, obtained using the envelope wave function formalism, and the measured PL energy, a localization energy of at least a few hundreds of meV has been extracted for all of the studied SQW samples. This rather large value also implies that In-related localization effects are more pronounced in the GaN/(Al,In)N system with respect to those in the (In,Ga)N/GaN one for a similar In content.

  20. Influence of the spatial arrangement of the Si δ layer on the optoelectronic properties of InGaAs/GaAs quantum-well nanoheterostructures

    SciTech Connect

    Volkova, N. S. Gorshkov, A. P.; Tikhov, S. V.; Baidus, N. V.; Khazanova, S. V.; Degtyarev, V. E.; Filatov, D. O.

    2015-02-15

    The photosensitivity, photoluminescence, and electroluminescence spectra of InGaAs/GaAs diode nanoheterostructures with a Si δ layer formed at a distance of 10 nm from the InGaAs quantum well are studied. The influence of the arrangement of the δ layer with respect to the quantum well on the optoelectronic properties of the structures is established.

  1. Structure-Triggered High Quantum Yield Luminescence and Switchable Dielectric Properties in Manganese(II) Based Hybrid Compounds.

    PubMed

    Wang, Zhong-Xia; Li, Peng-Fei; Liao, Wei-Qiang; Tang, Yuanyuan; Ye, Heng-Yun; Zhang, Yi

    2016-04-01

    Two new manganese(II) based organic-inorganic hybrid compounds, C11 H21 Cl3 MnN2 (1) and C11 H22 Cl4 MnN2 (2), with prominent photoluminescence and dielectric properties were synthesized by solvent modulation. Compound 1 with novel trigonal bipyramidal geometry exhibits bright red luminescence with a lifetime of 2.47 ms and high quantum yield of 35.8 %. Compound 2 with tetrahedral geometry displays intense long-lived (1.54 ms) green light emission with higher quantum yield of 92.3 %, accompanied by reversible solid-state phase transition at 170 K and a distinct switchable dielectric property. The better performance of 2 results from the structure, including a discrete organic cation moiety and inorganic metal anion framework, which gives the cations large freedom of motion. PMID:26864910

  2. Deterministic control of the quantum properties of single indium arsenide artificial atoms with indium phosphide nanoscale architectures

    NASA Astrophysics Data System (ADS)

    Kim, Danny

    This thesis presents optical spectra of single InAs quantum dots on InP with an unprecedented signal-to-noise ratio and spectral resolution that has facilitated comprehensive characterization and made a significant contribution to their understanding. InAs quantum dots on InP are the leading contenders for a variety of quantum electrooptic devices that require wavelengths in the 1.5 mum range, most notably triggered single/entangled photon sources for quantum key distribution. As of yet, spectroscopic data for InAs on InP has only provided proof of emission, but no high quality data has been available, preventing any conclusive understanding of their properties. The work presented in this thesis dramatically improves upon previous reports by key optimizations at each experimental stage: growth, processing, and optical setup. The spectra clearly resolve, for the first time, the structure within the s-shell and p-shell, with fine resolution, allowing quantitative evaluation of exciton complexes such as trions, biexcitons, and triplet states. By measuring numerous dots, the behavioral trends of these species with respect to dot geometry is deduced. Also, for the first time, magnetic-field dependent spectra are obtained for individual InAs/InP dots. A remarkable discovery was the strong relation of the exciton g-factor to dot height. This thesis also demonstrates deterministic nanometer-scale control of the quantum dot dimensions---with the goal being to exploit the structure/quantum property relation in these dots. This was accomplished by using the apex of an in-situ grown nanoscale InP pyramid as a nucleation site. The dimension of this top (001) surface on which the dot nucleates is responsive to manometer-scale changes in the pyramid base dimensions, which can be precisely controlled with lithography. The InAs grown on top of these mesas then conform to the size, where the available area can be purposely relaxed or constrained. For similar height, the resulting

  3. Quantum optics of lossy asymmetric beam splitters.

    PubMed

    Uppu, Ravitej; Wolterink, Tom A W; Tentrup, Tristan B H; Pinkse, Pepijn W H

    2016-07-25

    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2×2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers. PMID:27464096

  4. Quantum communication with macroscopically bright nonclassical states.

    PubMed

    Usenko, Vladyslav C; Ruppert, Laszlo; Filip, Radim

    2015-11-30

    We analyze homodyne detection of macroscopically bright multimode nonclassical states of light and propose their application in quantum communication. We observe that the homodyne detection is sensitive to a mode-matching of the bright light to the highly intense local oscillator. Unmatched bright modes of light result in additional noise which technically limits detection of Gaussian entanglement at macroscopic level. When the mode-matching is sufficient, we show that multimode quantum key distribution with bright beams is feasible. It finally merges the quantum communication with classical optical technology of visible beams of light. PMID:26698776

  5. Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems

    NASA Astrophysics Data System (ADS)

    Lau, Wayne Heung

    This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton

  6. Effects of annealing temperature on shape transformation and optical properties of germanium quantum dots

    NASA Astrophysics Data System (ADS)

    Alireza, Samavati; Othaman, Z.; K. Ghoshal, S.; K. Mustafa, M.

    2015-02-01

    The influences of thermal annealing on the structural and optical features of radio frequency (rf) magnetron sputtered self-assembled Ge quantum dots (QDs) on Si (100) are investigated. Preferentially oriented structures of Ge along the (220) and (111) directions together with peak shift and reduced strain (4.9% to 2.7%) due to post-annealing at 650 °C are discerned from x-ray differaction (XRD) measurement. Atomic force microscopy (AFM) images for both pre-annealed and post-annealed (650 °C) samples reveal pyramidal-shaped QDs (density ˜ 0.26× 1011 cm-2) and dome-shape morphologies with relatively high density ˜ 0.92 × 1011 cm-2, respectively. This shape transformation is attributed to the mechanism of inter-diffusion of Si in Ge interfacial intermixing and strain non-uniformity. The annealing temperature assisted QDs structural evolution is explained using the theory of nucleation and growth kinetics where free energy minimization plays a pivotal role. The observed red-shift ˜ 0.05 eV in addition to the narrowing of the photoluminescence peaks results from thermal annealing, and is related to the effect of quantum confinement. Furthermore, the appearance of a blue-violet emission peak is ascribed to the recombination of the localized electrons in the Ge-QDs/SiO2 or GeOx and holes in the ground state of Ge dots. Raman spectra of both samples exhibit an intense Ge-Ge optical phonon mode which shifts towards higher frequency compared with those of the bulk counterpart. An experimental Raman profile is fitted to the models of phonon confinement and size distribution combined with phonon confinement to estimate the mean dot sizes. A correlation between thermal annealing and modifications of the structural and optical behavior of Ge QDs is established. Tunable growth of Ge QDs with superior properties suitable for optoelectronic applications is demonstrated. Project supported by Ibnu Sina Institute for Fundamental Science Study, Universiti Teknologi Malaysia

  7. An analysis of quantum effects on the thermodynamic properties of cryogenic hydrogen using the path integral method.

    PubMed

    Nagashima, H; Tsuda, S; Tsuboi, N; Koshi, M; Hayashi, K A; Tokumasu, T

    2014-04-01

    In this paper, we describe the analysis of the thermodynamic properties of cryogenic hydrogen using classical molecular dynamics (MD) and path integral MD (PIMD) method to understand the effects of the quantum nature of hydrogen molecules. We performed constant NVE MD simulations across a wide density-temperature region to establish an equation of state (EOS). Moreover, the quantum effect on the difference of molecular mechanism of pressure-volume-temperature relationship was addressed. The EOS was derived based on the classical mechanism idea only using the MD simulation results. Simulation results were compared with each MD method and experimental data. As a result, it was confirmed that although the EOS on the basis of classical MD cannot reproduce the experimental data of saturation property of hydrogen in the high-density region, the EOS on the basis of PIMD well reproduces those thermodynamic properties of hydrogen. Moreover, it was clarified that taking quantum effects into account makes the repulsion force larger and the potential well shallower. Because of this mechanism, the intermolecular interaction of hydrogen molecules diminishes and the virial pressure increases. PMID:24712800

  8. An analysis of quantum effects on the thermodynamic properties of cryogenic hydrogen using the path integral method

    SciTech Connect

    Nagashima, H.; Tsuda, S.; Tsuboi, N.; Koshi, M.; Hayashi, K. A.; Tokumasu, T.

    2014-04-07

    In this paper, we describe the analysis of the thermodynamic properties of cryogenic hydrogen using classical molecular dynamics (MD) and path integral MD (PIMD) method to understand the effects of the quantum nature of hydrogen molecules. We performed constant NVE MD simulations across a wide density–temperature region to establish an equation of state (EOS). Moreover, the quantum effect on the difference of molecular mechanism of pressure–volume–temperature relationship was addressed. The EOS was derived based on the classical mechanism idea only using the MD simulation results. Simulation results were compared with each MD method and experimental data. As a result, it was confirmed that although the EOS on the basis of classical MD cannot reproduce the experimental data of saturation property of hydrogen in the high-density region, the EOS on the basis of PIMD well reproduces those thermodynamic properties of hydrogen. Moreover, it was clarified that taking quantum effects into account makes the repulsion force larger and the potential well shallower. Because of this mechanism, the intermolecular interaction of hydrogen molecules diminishes and the virial pressure increases.

  9. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots.

    PubMed

    Makarov, Nikolay S; Guo, Shaojun; Isaienko, Oleksandr; Liu, Wenyong; Robel, István; Klimov, Victor I

    2016-04-13

    Organic-inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs-Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral and dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton-exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs-Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the "universal volume scaling" previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. This points toward the need for the development of approaches for effective suppression of Auger

  10. Optical properties of colloidal aqueous synthesized 3 mercaptopropionic acid stabilized CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Sumanth Kumar, D.; Jai Kumar, B.; Mahesh H., M.

    2016-05-01

    We have explored an easiest and simplest aqueous route to synthesize bright green luminescent CdS QDs using 3-Mercaptopropionic acid (MPA) as a stabilizer in air ambient for solar cell applications. The CdS quantum dots showed a strong quantum confinement effect with good stability, size and excellent photoluminescence. MPA Capping on CdS QDs was confirmed through FTIR. The Optical absorption spectrum revealed the CdS quantum dots are highly transparent in the visible region with absorption peak at 380 nm, confirming the quantum confinement. Photoluminescence showed an emission peak at 525 nm wavelength. The optical band gap energy was found to be 3.19 eV and CdS quantum dots radius calculated using Brus equation is 1.5 nm. The results are presented and discussed in detail.

  11. Electron properties in directed self-assembly Ge/SiC/Si quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Dongyue

    Artificially ordered semiconductor quantum dot (QD) patterns may be used to implement functionalities such as spintronic bandgap systems, quantum simulation and quantum computing, by manipulating the interaction between confined carriers via direct exchange coupling. In this dissertation, magnetotransport measurements have been conducted to investigate the electronic orbital and spin states of directed self-assembly single- and few-Ge/SiC/Si QD devices, fabricated by a directed self-assembly QD growth technique developed by our group. Diamagnetic and Zeeman energy shifts of electrons confined around the QD have been observed from the magnetotransport experiments. A triple-barrier resonant tunneling model has been proposed to describe the electron and spin transport. The strength of the Coulomb interaction between electrons confined at neighboring QDs has been observed dependent on the dot separation, and represents an important parameter for fabricating QD-based molecules and artificial arrays, which may be implemented as building blocks for future quantum simulation and quantum computing architectures.

  12. Improved optical properties of InAs quantum dots for intermediate band solar cells by suppression of misfit strain relaxation

    NASA Astrophysics Data System (ADS)

    Xie, H.; Prioli, R.; Fischer, A. M.; Ponce, F. A.; Kawabata, R. M. S.; Pinto, L. D.; Jakomin, R.; Pires, M. P.; Souza, P. L.

    2016-07-01

    The properties of InAs quantum dots (QDs) have been studied for application in intermediate band solar cells. It is found that suppression of plastic relaxation in the QDs has a significant effect on the optoelectronic properties. Partial capping plus annealing is shown to be effective in controlling the height of the QDs and in suppressing plastic relaxation. A force balancing model is used to explain the relationship between plastic relaxation and QD height. A strong luminescence has been observed from strained QDs, indicating the presence of localized states in the desired energy range. No luminescence has been observed from plastically relaxed QDs.

  13. Optical properties of parabolic quantum dots with dressed impurity: Combined effects of pressure, temperature and laser intensity

    NASA Astrophysics Data System (ADS)

    Vaseghi, B.; Rezaei, G.; Sajadi, T.

    2015-01-01

    In this paper simultaneous effects of pressure, temperature and laser radiation on the optical absorption coefficient and refractive index of a spherical quantum dot with parabolic confinement and dressed impurity are studied. By means of matrix diagonalization technique, energy eigenvalues and functions are evaluated and used to find the optical properties of the system via density operator method. It is shown that linear and nonlinear optical properties strongly depend on pressure, temperature and dressing laser intensity. The interesting point is that the influence of laser radiation depends on pressure and temperature.

  14. Electric field and shape effect on the linear and nonlinear optical properties of multi-shell ellipsoidal quantum dots

    NASA Astrophysics Data System (ADS)

    Shi, L.; Yan, Z. W.

    2016-06-01

    In the present work, the optical properties of GaAs/AlxGa1-xAs/GaAs multi-shell ellipsoidal quantum dot heterostructures with a shallow hydrogenic impurity in the presence of an external electric field have been studied. The results show how the linear and nonlinear optical absorption coefficients and refraction index changes are changed by the variations of the size and shape of the multi-shell structure. Moreover, how the optical properties of this structure are affected by the electric field has also been shown. The physical reasons for the results have been discussed in detail.

  15. Quantum molecular dynamics simulations of the thermophysical properties of shocked liquid ammonia for pressures up to 1.3 TPa.

    PubMed

    Li, Dafang; Zhang, Ping; Yan, Jun

    2013-10-01

    We investigate via quantum molecular-dynamics simulations the thermophysical properties of shocked liquid ammonia up to the pressure 1.3 TPa and temperature 120,000 K. The principal Hugoniot is predicted from the wide-range equation of state, which agrees well with the available experimental measurements up to 64 GPa. Our systematic study of the structural properties demonstrates that the liquid ammonia undergoes a gradual phase transition along the Hugoniot. At about 4800 K, the system transforms into a metallic, complex mixture state consisting of NH3, N2, H2, N, and H. Furthermore, we discuss the implications for the interiors of Uranus and Neptune. PMID:24116573

  16. Practical quantum repeaters with parametric down-conversion sources

    NASA Astrophysics Data System (ADS)

    Krovi, Hari; Guha, Saikat; Dutton, Zachary; Slater, Joshua A.; Simon, Christoph; Tittel, Wolfgang

    2016-03-01

    Conventional wisdom suggests that realistic quantum repeaters will require quasi-deterministic sources of entangled photon pairs. In contrast, we here study a quantum repeater architecture that uses simple parametric down-conversion sources, as well as frequency-multiplexed multimode quantum memories and photon-number-resolving detectors. We show that this approach can significantly extend quantum communication distances compared to direct transmission. This shows that important trade-offs are possible between the different components of quantum repeater architectures.

  17. BOOK REVIEW: Quantum Squeezing

    NASA Astrophysics Data System (ADS)

    Zubairy, Suhail

    2005-05-01

    Quantum squeezed states are a consequence of uncertainty relations; a state is squeezed when the noise in one variable is reduced below the symmetric limit at the expense of the increased noise in the conjugate variable such that the Heisenberg uncertainty relation is not violated. Such states have been known since the earliest days of quantum mechanics. The realization in the early 80's that quantum squeezed states of the radiation field can have important applications in high precision Michelson interferometry for detecting gravitational waves led to a tremendous amount of activity, both in theoretical and experimental quantum optics. The present volume, edited by two eminent scientists, is a collection of papers by leading experts in the field of squeezed states on different aspects of the field as it stands today. The book is divided into three parts. In the first part, there are three articles that review the fundamentals. The first paper by Knight and Buzek presents an introductory account of squeezed states and their properties. The chapter, which opens with the quantization of the radiation field, goes on to discuss the quantum optical properties of single mode and multimode squeezed states. The second article by Hillery provides a detailed description of field quantization in the presence of a nonlinear dielectric medium, thus providing a rigorous treatment of squeezing in nonlinear media. The third article by Yurke presents a comprehensive discussion of the input-output theory of the squeezed radiation at the dielectric boundaries. The second part of the book, comprising of three articles, deals with the generation of squeezed states. In the first article, Drummond reviews the squeezing properties of light in nonlinear systems such as parametric oscillators. He also discusses squeezed light propagation through waveguides and optical fibers. In the second article, Ralph concentrates on active laser sources of squeezing and presents an analysis based on the

  18. Optical properties of multi-layer type II InP/GaAs quantum dots studied by surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Ivanov, Ts.; Donchev, V.; Germanova, K.; Gomes, P. F.; Iikawa, F.; Brasil, M. J. S. P.; Cotta, M. A.

    2011-09-01

    We present a low-temperature (73 K) study of the optical properties of multi-layer type II InP/GaAs self-assembled quantum dots by means of surface photovoltage (SPV) spectroscopy, taking advantage of its high sensitivity and contactless nature. The samples contain 10 periods of InP quantum dot planes separated by 5 nm GaAs spacers. The SPV amplitude spectra reveal two major broad peaks, situated at low and high energies, respectively. These features are analyzed taking into account the type II character of the structure, the quantum coupling effects, the spectral behavior of the SPV phase, and the photoluminescence spectra. As a result they have been attributed to optical transitions in the quantum dots and the wetting layers, respectively. The main mechanism for carrier separation in the SPV generation process is clarified via the analysis of the SPV phase spectra. The influence of the substrate absorption on the SPV spectra is discussed in details.

  19. Investigation of size dependent structural and optical properties of thin films of CdSe quantum dots

    SciTech Connect

    Sharma, Madhulika; Sharma, A.B.; Mishra, N.; Pandey, R.K.

    2011-03-15

    Research highlights: {yields} CdSe q-dots have been synthesized using simple chemical synthesis route. {yields} Thin film of CdSe quantum dots exhibited self-organized growth. {yields} Size dependent blue shift observed in the absorption edge of CdSe nanocrystallites. {yields} PL emission band corresponds to band edge luminescence and defect luminescence. {yields} Organized growth led to enhancement in luminescence yield of smaller size Q-dots. -- Abstract: Cadmium selenide (CdSe) quantum dots were grown on indium tin oxide substrate using wet chemical technique for possible application as light emitting devices. The structural, morphological and luminescence properties of the as deposited thin films of CdSe Q-dot have been investigated, using X-ray diffraction, transmission electron microscopy, atomic force microscopy and optical and luminescence spectroscopy. The quantum dots have been shown to deposit in an organized array on ITO/glass substrate. The as grown Q-dots exhibited size dependent blue shift in the absorption edge. The effect of quantum confinement also manifested as a blue shift of photoluminescence emission. It is shown that the nanocrystalline CdSe exhibits intense photoluminescence as compared to the large grained polycrystalline CdSe films.

  20. Preparation of graphene oxide and polymer-like quantum dots and their one- and two-photon induced fluorescence properties.

    PubMed

    Huang, Jia Jia; Rong, Min Zhi; Zhang, Ming Qiu

    2016-02-14

    A simple, effective and green bottom-up method for the synthesis of highly fluorescent N doped graphene oxide quantum dots (GOQDs) and polymer-like quantum dots (PQDs) was developed on the basis of rapid one-step microwave assisted pyrolysis of citric acid (CA) and diethylenetriamine (DETA) in different reaction solvents. Both one-photon-induced and two-photon-induced photoluminescence (PL) properties of the resultant GOQDs and PQDs were characterized and analyzed. The one-photon-induced PL quantum yields (QY) of GOQDs and PQDs reached 39.8 and 74.0%, respectively, which are high enough to exhibit strong photoluminescence (PL) emission even under daylight excitation. The origin of the PL behavior and PL quenching mechanism was explored in terms of the interaction between the functional groups on the surfaces of GOQDs or PQDs and Hg(2+). Furthermore, due to the excellent selectivity and sensitivity of the GOQDs and PQDs to Hg(2+), the quantum dots might be used for quantitative detection of Hg(2+) in aqueous solution. PMID:26806530

  1. Quantum Calculations on Salt Bridges with Water: Potentials, Structure, and Properties

    SciTech Connect

    Liao, Sing; Green, Michael E.

    2011-01-01

    Salt bridges are electrostatic links between acidic and basic amino acids in a protein; quantum calculations are used here to determine the energetics and other properties of one form of these species, in the presence of water molecules. The acidic groups are carboxylic acids (aspartic and glutamic acids); proteins have two bases with pK above physiological pH: one, arginine, with a guanidinium basic group, the other lysine, which is a primary amine. Only arginine is modeled here, by ethyl guanidinium, while propionic acid is used as a model for either carboxylic acid. The salt bridges are accompanied by 0-12 water molecules; for each of the 13 systems, the energy-bond distance relation, natural bond orbitals (NBO), frequency calculations allowing thermodynamic corrections to room temperature, and dielectric constant dependence, were all calculated. The water molecules were found to arrange themselves in hydrogen bonded rings anchored to the oxygens of the salt bridge components. This was not surprising in itself, but it was found that the rings lead to a periodicity in the energy, and to a 'water addition' rule. The latter shows that the initial rings, with four oxygen atoms, become five member rings when an additional water molecule becomes available, with the additional water filling in at the bond with the lowest Wiberg index, as calculated using NBO. The dielectric constant dependence is the expected hyperbola, and the fit of the energy to the inverse dielectric constant is determined. There is an energy periodicity related to ring formation upon addition of water molecules. When 10 water molecules have been added, all spaces near the salt bridge are filled, completing the first hydration shell, and a second shell starts to form. The potentials associated with salt bridges depend on their hydration, and potentials assigned without regard to local hydration are likely to cause errors as large as or larger than kBT, thus suggesting a serious problem if these

  2. Quantum Monte Carlo calculations of structural and electronic properties in the correlated oxide NiO

    NASA Astrophysics Data System (ADS)

    Mitra, Chandrima; Krogel, Jaron; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2015-03-01

    Transition metal oxides pose difficulties for condensed matter theories due to the presence of strong electronic correlations. The complex interplay among correlation and exchange in d subshells, crystal field effects, p-d hybridization and charge transfer gives rise to a rich variety of structural and electronic phases. NiO is one such challenging d system, where conventional band theory fails. Compared to the experimental value, the cohesive energy of bulk NiO computed within DFT-LDA differs by almost a factor of 18 %. Band gap computed within standard local or semi-local functionals are off by a factor of 80 %. A quasi-particle correction like the G0W0 approach cannot correct the band gap and is still by far too low. In this work we adopt the Diffusion Quantum Monte (DMC) approach to study the structural and electronic properties of NiO. Trial wave-functions were self consistently generated in a Slater-Jastrow form. To test pseudopotentials used, DMC calculations were done on atomic Ni and O and their computed ionization potentials showed excellent agreement with experiments (within 0.04%). The equilibrium bond length and binding energy of the NiO dimer were also computed that were 0.001% and 0.03%, respectively, from experimental values. DMC calculations of equation of state and band gap of bulk NiO will be presented. We gratefully acknowledge support from U.S Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division.

  3. Evaluation of selectivity in homologous multimodal chromatographic systems using in silico designed antibody fragment libraries.

    PubMed

    Karkov, Hanne Sophie; Woo, James; Krogh, Berit Olsen; Ahmadian, Haleh; Cramer, Steven M

    2015-12-24

    This study describes the in silico design, surface property analyses, production and chromatographic evaluations of a diverse set of antibody Fab fragment variants. Based on previous findings, we hypothesized that the complementarity-determining regions (CDRs) constitute important binding sites for multimodal chromatographic ligands. Given that antibodies are highly diversified molecules and in particular the CDRs, we set out to examine the generality of this result. For this purpose, four different Fab fragments with different CDRs and/or framework regions of the variable domains were identified and related variants were designed in silico. The four Fab variant libraries were subsequently generated by site-directed mutagenesis and produced by recombinant expression and affinity purification to enable examination of their chromatographic retention behavior. The effects of geometric re-arrangement of the functional moieties on the multimodal resin ligands were also investigated with respect to Fab variant retention profiles by comparing two commercially available multimodal cation-exchange ligands, Capto MMC and Nuvia cPrime, and two novel multimodal ligand prototypes. Interestingly, the chromatographic data demonstrated distinct selectivity trends between the four Fab variant libraries. For three of the Fab libraries, the CDR regions appeared as major binding sites for all multimodal ligands. In contrast, the fourth Fab library displayed a distinctly different chromatographic behavior, where Nuvia cPrime and related multimodal ligand prototypes provided markedly improved selectivity over Capto MMC. Clearly, the results illustrate that the discriminating power of multimodal ligands differs between different Fab fragments. The results are promising indications that multimodal chromatography using the appropriate multimodal ligands can be employed in downstream bioprocessing for challenging selective separation of product related variants. PMID:26654254

  4. Experimental verification of MMI by singlemode-multimode-singlemode and multimode-singlemode structures

    NASA Astrophysics Data System (ADS)

    Majumder, Saikat; Ghosh, Amarnath; Roy, Bapita; Chakraborty, Rajib

    2015-06-01

    Multimode Interference (MMI) based on self imaging phenomenon is investigated using matrix approach. Experimentally MMI is verified using singlemode-multimode-singlemode and multimodesinglemode structures of optical fiber. The results obtained are also verified by BPM technique.

  5. Continuous verification using multimodal biometrics.

    PubMed

    Sim, Terence; Zhang, Sheng; Janakiraman, Rajkumar; Kumar, Sandeep

    2007-04-01

    Conventional verification systems, such as those controlling access to a secure room, do not usually require the user to reauthenticate himself for continued access to the protected resource. This may not be sufficient for high-security environments in which the protected resource needs to be continuously monitored for unauthorized use. In such cases, continuous verification is needed. In this paper, we present the theory, architecture, implementation, and performance of a multimodal biometrics verification system that continuously verifies the presence of a logged-in user. Two modalities are currently used--face and fingerprint--but our theory can be readily extended to include more modalities. We show that continuous verification imposes additional requirements on multimodal fusion when compared to conventional verification systems. We also argue that the usual performance metrics of false accept and false reject rates are insufficient yardsticks for continuous verification and propose new metrics against which we benchmark our system. PMID:17299225

  6. A method to efficiently simulate the thermodynamic properties of the Fermi-Hubbard model on a quantum computer

    NASA Astrophysics Data System (ADS)

    Dallaire-Demers, Pierre-Luc; Wilhelm-Mauch, Frank

    Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model whose thermodynamic properties can be computed from its grand canonical potential. In general, there is no closed form expression of the grand canonical potential for lattices of more than one spatial dimension, but solutions can be approximated with cluster perturbation theory. To model long-range effects such as order parameters, a powerful method to compute the cluster's Green's function consists in finding its self-energy through a variational principle. This opens the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model. However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation variables. Here it is shown theoretically that that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory scales as the number of orbitals in the simulated cluster. A quantum computer with a few tens of qubits could therefore simulate the thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.

  7. Method to efficiently simulate the thermodynamic properties of the Fermi-Hubbard model on a quantum computer

    NASA Astrophysics Data System (ADS)

    Dallaire-Demers, Pierre-Luc; Wilhelm, Frank K.

    2016-03-01

    Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model whose thermodynamic properties can be computed from its grand-canonical potential. In general, there is no closed-form expression of the grand-canonical potential for lattices of more than one spatial dimension, but solutions can be numerically approximated using cluster methods. To model long-range effects such as order parameters, a powerful method to compute the cluster's Green's function consists of finding its self-energy through a variational principle. This allows the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model. However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation variables. Here it is shown theoretically that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory usage scales linearly with the number of orbitals in the simulated cluster and the number of measurements scales quadratically. A quantum computer with a few tens of qubits could therefore simulate the thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.

  8. Reprint of : Thermodynamic properties of a quantum Hall anti-dot interferometer

    NASA Astrophysics Data System (ADS)

    Levy Schreier, Sarah; Stern, Ady; Rosenow, Bernd; Halperin, Bertrand I.

    2016-08-01

    We study quantum Hall interferometers in which the interference loop encircles a quantum anti-dot. We base our study on thermodynamic considerations, which we believe reflect the essential aspects of interference transport phenomena. We find that similar to the more conventional Fabry-Perot quantum Hall interferometers, in which the interference loop forms a quantum dot, the anti-dot interferometer is affected by the electro-static Coulomb interaction between the edge modes defining the loop. We show that in the Aharonov-Bohm regime, in which effects of fractional statistics should be visible, is easier to access in interferometers based on anti-dots than in those based on dots. We discuss the relevance of our results to recent measurements on anti-dots interferometers.

  9. Universal Property of Quantum Measurements of Equilibrium Fluctuations and Violation of the Fluctuation-Dissipation Theorem

    NASA Astrophysics Data System (ADS)

    Fujikura, Kyota; Shimizu, Akira

    2016-07-01

    For macroscopic quantum systems, we study what is measured when equilibrium fluctuations of macrovariables are measured in an ideal way that mimics classical ideal measurements as closely as possible. We find that the symmetrized time correlation is always obtained for such measurements. As an important consequence, we show that the fluctuation-dissipation theorem is partially violated as a relation between observed quantities in macroscopic quantum systems even if measurements are made in such an ideal way.

  10. The effect of Coulomb interactions on thermoelectric properties of quantum dots

    SciTech Connect

    Zimbovskaya, Natalya A.

    2014-03-14

    Thermoelectric effects in a quantum dot coupled to the source and drain charge reservoirs are explored using a nonequilibrium Green's functions formalism beyond the Hartree-Fock approximation. Thermal transport is analyzed within a linear response regime. A transition from Coulomb blockade regime to Kondo regime in thermoelectric transport through a single-level quantum dot is traced using unified approximations for the relevant Green's functions.

  11. Universal Property of Quantum Measurements of Equilibrium Fluctuations and Violation of the Fluctuation-Dissipation Theorem.

    PubMed

    Fujikura, Kyota; Shimizu, Akira

    2016-07-01

    For macroscopic quantum systems, we study what is measured when equilibrium fluctuations of macrovariables are measured in an ideal way that mimics classical ideal measurements as closely as possible. We find that the symmetrized time correlation is always obtained for such measurements. As an important consequence, we show that the fluctuation-dissipation theorem is partially violated as a relation between observed quantities in macroscopic quantum systems even if measurements are made in such an ideal way. PMID:27419546

  12. Nonlinear absorption properties of AlGaAs/GaAs multiple quantum wells grown by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Lee, Hsing-Chung; Kost, A.; Kawase, M.; Hariz, A.; Dapkus, P. Daniel

    1988-01-01

    The nonlinear absorption properties of the excitonic resonances associated with multiple quantum wells (MQWs) in AlGaAs/GaAs grown by metalorganic chemical vapor deposition are reported. The dependence of the saturation properties on growth parameters, especially growth temperature, and the well width are described. The minimum measured saturation intensity for these materials is 250 W/sq cm, the lowest reported value to date. The low saturation intensities are the result of excellent minority carrier properties. A systematic study of minority carrier lifetimes in quantum wells are reported. Lifetimes range from 50-350 ns depending on growth temperature and well width. When corrected for lateral diffusion effects and the measured minority carrier lifetime, the saturation data suggest that saturation intensities as low as 2.3 W/sq cm can be achieved in this system. The first measurements of the dependence of the exciton area and the magnitude of the excitonic absorption on well width are prsented. The growth of MQW structures on transparent GaP substrates is demonstrated and the electroabsorption properties of these structures are reviewed.

  13. Radioactive Nanomaterials for Multimodality Imaging

    PubMed Central

    Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao

    2016-01-01

    Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167

  14. Advances in multimodality molecular imaging

    PubMed Central

    Zaidi, Habib; Prasad, Rameshwar

    2009-01-01

    Multimodality molecular imaging using high resolution positron emission tomography (PET) combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a “one-stop shop” and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed. PMID:20098557

  15. Multi-Mode Broadband Patch Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor)

    2001-01-01

    A multi-mode broad band patch antenna is provided that allows for the same aperture to be used at independent frequencies such as reception at 19 GHz and transmission at 29 GHz. Furthermore, the multi-mode broadband patch antenna provides a ferroelectric film that allows for tuning capability of the multi-mode broadband patch antenna over a relatively large tuning range. The alternative use of a semiconductor substrate permits reduced control voltages since the semiconductor functions as a counter electrode.

  16. Optical properties of water soluble CdSe quantum dots modified by a novel biopolymer based on sodium alginate

    NASA Astrophysics Data System (ADS)

    Bardajee, Ghasem Rezanejade; Hooshyar, Zari

    2013-10-01

    Water soluble CdSe quantum dots (QDs) were modified using a novel biopolymer based on the graft copolymerization of poly (acrylic acid) as a monomer onto sodium alginate as a backbone at room temperature. The obtained CdSe QDs were characterized by Fourier transform infrared spectrometer, thermo-gravimetry analysis, transmission electron microscopy, and dynamic light scattering. Optical properties of the prepared CdSe QDs were investigated by absorption and fluorescence spectra. It was found that the resultant QDs incredibly exhibited high fluorescence intensity and quantum yields. Lastly, the influence of the aging time on the fluorescence intensity of the modified CdSe QDs was studied by their fluorescence spectra. Due to the optical behavior of this modified QDs; it could be of potential interest in biological systems.

  17. Thermodynamic properties of gold nanoparticles described by Sutton-Chen potential and Quantum Sutton-Chen potential

    NASA Astrophysics Data System (ADS)

    Park, Yongjin; Carri, Gustavo

    2009-10-01

    Thermodynamic properties of gold nanoparticles (<1.6nm) have been investigated by atomistic Monte Carlo simulations with three different potential functions/parameterizations (Sutton-Chen potential, Sutton-Chen potential with Pawluk's parameterization, and Quantum Sutton-Chen potential). The melting temperature of gold nanoparticles is predicted and compared to other theoretical and experimental values. The agreement between the predicted melting temperatures and the experimental values was not satisfactory for any of the three potentials in the studied range of sizes. However, the Sutton-Chen potential showed very good agreement for nanoparticles larger than 1.3nm while the Quantum Sutton-Chen potential exhibited a trend of melting temperatures similar to the experimental one although it consistently overestimated the melting temperatures.

  18. Microwave multimode memory with an erbium spin ensemble

    NASA Astrophysics Data System (ADS)

    Probst, S.; Rotzinger, H.; Ustinov, A. V.; Bushev, P. A.

    2015-07-01

    Hybrid quantum systems combining circuit QED with spin-doped solids are an attractive platform for distributed quantum information processing. There, the magnetic ions serve as coherent memory elements and reversible conversion elements of microwave to optical qubits. Among many possible spin-doped solids, erbium ions offer the unique opportunity for a coherent conversion of microwave photons into the telecom C band at 1.54 μ m employed for long distance communication. In our work, we perform a time-resolved electron spin resonance study of an Er3 +:Y2SiO5 spin ensemble at millidegrees Kelvin temperatures and demonstrate multimode storage and retrieval of up to 16 coherent microwave pulses. The memory efficiency is measured to be 10-4 at a coherence time of T2=5.6 μ s . We observe a saturation of the spin coherence time below 50 mK due to full polarization of the surrounding electronic spin bath.

  19. Electronic structure and quantum transport properties of metallic and semiconducting nanowires

    NASA Astrophysics Data System (ADS)

    Simbeck, Adam J.

    The future of the semiconductor industry hinges upon new developments to combat the scaling issues that currently afflict two main chip components: transistors and interconnects. For transistors this means investigating suitable materials to replace silicon for both the insulating gate and the semiconducting channel in order to maintain device performance with decreasing size. For interconnects this equates to overcoming the challenges associated with copper when the wire dimensions approach the confinement limit, as well as continuing to develop low-k dielectric materials that can assure minimal cross-talk between lines. In addition, such challenges make it increasingly clear that device design must move from a top-down to a bottom-up approach in which the desired electronic characteristics are tailored from first-principles. It is with such fundamental hurdles in mind that ab initio calculations on the electronic and quantum transport properties of nanoscale metallic and semiconducting wires have been performed. More specifically, this study seeks to elaborate on the role played by confinement, contacts, dielectric environment, edge decoration, and defects in altering the electronic and transport characteristics of such systems. As experiments continue to achieve better control over the synthesis and design of nanowires, these results are expected to become increasingly more important for not only the interpretation of electronic and transport trends, but also in engineering the electronic structure of nanowires for the needs of the devices of the future. For the metallic atomic wires, the quantum transport properties are first investigated by considering finite, single-atom chains of aluminum, copper, gold, and silver sandwiched between gold contacts. Non-equilibrium Green's function based transport calculations reveal that even in the presence of the contact the conductivity of atomic-scale aluminum is greater than that of the other metals considered. This is

  20. Electron Spectroscopy of Single Quantum Objects To Directly Correlate the Local Structure to Their Electronic Transport and Optical Properties.

    PubMed

    Senga, Ryosuke; Pichler, Thomas; Suenaga, Kazu

    2016-06-01

    Physical property of a single quantum object is governed by its precise atomic arrangement. The direct correlation of localized physical properties with the atomic structures has been therefore strongly desired but still limited in the theoretical studies. Here, we have successfully examined the localized electronic properties of individual carbon nanotubes by means of high-resolution electron energy-loss spectroscopy combined with high-resolution transmission electron microscopy. Well-separated sharp peaks at the carbon K(1s) absorption edge and in the valence-loss spectra are obtained from a single freestanding carbon nanotube with the local chiral index and unambiguously identified as the transitions between the van Hove singularities. The spectra features clearly vary upon the different areas even in the individual carbon nanotube. Variations in interband transitions, plasmonic behaviors, and unoccupied electronic structures are clearly attributed to the local irregular atomic arrangement such as topological defect and/or elastic bond stretching. PMID:27171894

  1. Exact quantum scattering calculations of transport properties for the H{sub 2}O–H system

    SciTech Connect

    Dagdigian, Paul J.; Alexander, Millard H.

    2013-11-21

    Transport properties for collisions of water with hydrogen atoms are computed by means of exact quantum scattering calculations. For this purpose, a potential energy surface (PES) was computed for the interaction of rigid H{sub 2}O, frozen at its equilibrium geometry, with a hydrogen atom, using a coupled-cluster method that includes all singles and doubles excitations, as well as perturbative contributions of connected triple excitations. To investigate the importance of the anisotropy of the PES on transport properties, calculations were performed with the full potential and with the spherical average of the PES. We also explored the determination of the spherical average of the PES from radial cuts in six directions parallel and perpendicular to the C{sub 2} axis of the molecule. Finally, the computed transport properties were compared with those computed with a Lennard-Jones 12-6 potential.

  2. Binding Energies and Linear and Nonlinear Optical Properties of a Donor Impurity in a Three-Dimensional Quantum Pseudodot

    NASA Astrophysics Data System (ADS)

    Kirak, Muharrem; Yilmaz, Sait

    2013-12-01

    A theoretical study of the electronic properties of the ground state and excited states and the linear and the third-order nonlinear optical properties (i. e., absorption coefficients and refractive indices) in a spherical GaAs pseudodot system is reported. The variational procedure has been employed in determining sublevel energy eigenvalues and their wave functions within the effective mass approximation. Our results indicate that the chemical potential of the electron gas and the minimum value of the pseudoharmonic potential have a great influence on the electrical and optical properties of hydrogenic impurity states. Also, we have found that the magnitudes of the absorption coefficient and the refractive index change of the spherical quantum dot increase for transitions between higher levels.

  3. Polarization properties of single and ensembles of InAs/InP quantum rod nanowires emitting in the telecom wavelengths

    NASA Astrophysics Data System (ADS)

    Anufriev, R.; Chauvin, N.; Khmissi, H.; Naji, K.; Barakat, J.-B.; Penuelas, J.; Patriarche, G.; Gendry, M.; Bru-Chevallier, C.

    2013-05-01

    The absorption and emission polarization properties of InAs quantum rods embedded in InP nanowires (NWs) are investigated by mean of (micro-)photoluminescence spectroscopy. It is shown that the degree of linear polarization of emission (0.94) and absorption (0.5) of a single NW can be explained by the photonic nature of the NW structure. Knowing these parameters, optical properties of single NWs and ordered ensembles of these NWs can be correlated one to another via proposed model, so that polarization properties of NWs can be studied using ordered ensembles on as-grown samples. As an example, the polarization anisotropy is investigated as a function of the excitation wavelength on a NW ensemble and found to be in agreement with theoretical prediction.

  4. Fabrication and optical properties of multishell InAs quantum dots on GaAs nanowires

    SciTech Connect

    Yan, Xin; Zhang, Xia Li, Junshuai; Cui, Jiangong; Ren, Xiaomin

    2015-02-07

    Hybrid nanostructures combining nanowires with quantum dots promote the development of nanoelectronic and nanophotonic devices with integrated functionalities. In this work, we present a complex nanostructure with multishell quantum dots grown on nanowires. 1–4 shells of Stranski-Krastanov InAs quantum dots are grown on the sidewalls of GaAs nanowires by metal organic chemical vapor deposition. Different dot shells are separated by 8 nm GaAs spacer shells. With increasing the number of shells, the quantum dots become sparser and tend to align in one array, which is caused by the shrinkage of facets on which dots prefer to grow as well as the strain fields produced by the lower set of dots which influences the migration of In adatoms. The size of quantum dots increases with the increase of shell number due to enhanced strain fields coupling. The spectra of multishell dots exhibit multiwavelength emission, and each peak corresponds to a dot shell. This hybrid structure may serve as a promising element in nanowire intermediate band solar cells, infrared nanolasers, and photodetectors.

  5. Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field

    NASA Astrophysics Data System (ADS)

    Xu-Fang, Bai; Ying, Zhang; Wuyunqimuge; Eerdunchaolu

    2016-07-01

    Based on the variational method of Pekar type, we study the energies and the wave-functions of the ground and the first-excited states of magneto-bipolaron, which is strongly coupled to the LO phonon in a parabolic potential quantum dot under an applied magnetic field, thus built up a quantum dot magneto-bipolaron qubit. The results show that the oscillation period of the probability density of the two electrons in the qubit decreases with increasing electron–phonon coupling strength α, resonant frequency of the magnetic field ω c, confinement strength of the quantum dot ω 0, and dielectric constant ratio of the medium η the probability density of the two electrons in the qubit oscillates periodically with increasing time t, angular coordinate φ 2, and dielectric constant ratio of the medium η the probability of electron appearing near the center of the quantum dot is larger, and the probability of electron appearing away from the center of the quantum dot is much smaller. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2013407119) and the Items of Institution of Higher Education Scientific Research of Hebei Province and Inner Mongolia, China (Grant Nos. ZD20131008, Z2015149, Z2015219, and NJZY14189).

  6. Quantum Groupoids

    NASA Astrophysics Data System (ADS)

    Xu, Ping

    We introduce a general notion of quantum universal enveloping algebroids (QUE algebroids), or quantum groupoids, as a unification of quantum groups and star-products. Some basic properties are studied including the twist construction and the classical limits. In particular, we show that a quantum groupoid naturally gives rise to a Lie bialgebroid as a classical limit. Conversely, we formulate a conjecture on the existence of a quantization for any Lie bialgebroid, and prove this conjecture for the special case of regular triangular Lie bialgebroids. As an application of this theory, we study the dynamical quantum groupoid , which gives an interpretation of the quantum dynamical Yang-Baxter equation in terms of Hopf algebroids.

  7. Quantifying Quantumness

    NASA Astrophysics Data System (ADS)

    Braun, Daniel; Giraud, Olivier; Braun, Peter A.

    2010-03-01

    We introduce and study a measure of ``quantumness'' of a quantum state based on its Hilbert-Schmidt distance from the set of classical states. ``Classical states'' were defined earlier as states for which a positive P-function exists, i.e. they are mixtures of coherent states [1]. We study invariance properties of the measure, upper bounds, and its relation to entanglement measures. We evaluate the quantumness of a number of physically interesting states and show that for any physical system in thermal equilibrium there is a finite critical temperature above which quantumness vanishes. We then use the measure for identifying the ``most quantum'' states. Such states are expected to be potentially most useful for quantum information theoretical applications. We find these states explicitly for low-dimensional spin-systems, and show that they possess beautiful, highly symmetric Majorana representations. [4pt] [1] Classicality of spin states, Olivier Giraud, Petr Braun, and Daniel Braun, Phys. Rev. A 78, 042112 (2008)

  8. Electronic properties of Hg1-xCdxSe lens-shaped quantum dots under external fields

    NASA Astrophysics Data System (ADS)

    Herrera, J. R.; Gutierrez, W.; Miranda, D. A.

    2016-02-01

    Hg1-xCdxSe are II-VI semiconductors alloys with optoelectronic properties that depend upon the molar fraction x, which can be further controlled by nanostructuring. In this work one electron confined in a zero-dimensional lens-shaped nanostructure of Hg1-xCdxSe surrounded by a matrix of different molar fraction is analyzed and its electronic properties are studied under external magnetic and electric fields. Our system was modeled by means of the 3D Schrodinger equation in the framework of the effective mass approximation, which was solved using a finite element method. The model is described by a discontinuous space with Ben Daniel-Duke boundary conditions. We calculated the energy spectrum and the corresponding probability density of the electron for some low-lying energy levels as a function of: electric field strength on plane and magnetic field strength applied along the growth direction. Also, the effect of finite confinement potential was studied in presence of a uniform magnetic field. Our results shown that the electronic properties of Hg1-xCdxSe quantum dots are highly sensitive to a threading magnetic field because the degenerate energy levels are split. On the other hand, the effect of electric and magnetic fields applied simultaneously on a quantum dot can increase the system stability against external perturbation, e.g. thermal interactions.

  9. The spectrum and properties of the scattering cross section of electrons in open spherical quantum dots

    SciTech Connect

    Tkach, N. V. Seti, Ju.

    2009-03-15

    In the effective mass approximation in the model of rectangular potentials, the scattering cross section of electrons in an open spherical quantum dot is calculated for the first time. It is shown that, for such a nanosystem with a barrier of several monolayers, the experimental measurements of the scattering cross section allow adequate identification of the resonance energies and the widths of resonance states in the low-energy region of the quasi-stationary electron spectrum. It is also shown that, for an open spherical quantum dot with a low-strength potential barrier, the adequate spectral parameters of the quasi-stationary spectrum are the generalized resonance energies and widths determined via the probability of an electron being inside the quantum dot.

  10. Fidelity spectrum: A tool to probe the property of a quantum phase

    NASA Astrophysics Data System (ADS)

    Wing, Chi Yu; Shi-Jian, Gu

    2016-03-01

    Fidelity measures the similarity between two states and is widely adapted by the condensed matter community as a probe of quantum phase transitions in many-body systems. Despite its success in witnessing quantum critical points, information about the fine structure of a quantum phase one can get from this approach is still limited. Here, we proposed a scheme called fidelity spectrum. By studying the fidelity spectrum, one can obtain information about the characteristics of a phase. In particular, we investigated the spectra in the one-dimensional transverse-field Ising model and the two-dimensional Kitaev model on a honeycomb lattice. It was found that the spectra have qualitative differences in the critical and non-critical regions of the two models. From the distributions of them, the dominating k modes in a particular phase could also be captured. Project supported by the Earmarked Research Grant from the Research Grants Council of HKSAR, China (Grant No. CUHK 401212).

  11. Tunable Quantum Dot Solids: Impact of Interparticle Interactions on Bulk Properties

    SciTech Connect

    Sinclair, Michael B.; Fan, Hongyou; Brener, Igal; Liu, Sheng; Luk, Ting S.; Li, Binsong

    2015-09-01

    QD-solids comprising self-assembled semiconductor nanocrystals such as CdSe are currently under investigation for use in a wide array of applications including light emitting diodes, solar cells, field effect transistors, photodetectors, and biosensors. The goal of this LDRD project was develop a fundamental understanding of the relationship between nanoparticle interactions and the different regimes of charge and energy transport in semiconductor quantum dot (QD) solids. Interparticle spacing was tuned through the application of hydrostatic pressure in a diamond anvil cell, and the impact on interparticle interactions was probed using x-ray scattering and a variety of static and transient optical spectroscopies. During the course of this LDRD, we discovered a new, previously unknown, route to synthesize semiconductor quantum wires using high pressure sintering of self-assembled quantum dot crystals. We believe that this new, pressure driven synthesis approach holds great potential as a new tool for nanomaterials synthesis and engineering.

  12. Investigating properties of a family of quantum Rényi divergences

    NASA Astrophysics Data System (ADS)

    Lin, Simon M.; Tomamichel, Marco

    2015-04-01

    Audenaert and Datta recently introduced a two-parameter family of relative Rényi entropies, known as the --relative Rényi entropies. The definition of the --relative Rényi entropy unifies all previously proposed definitions of the quantum Rényi divergence of order under a common framework. Here, we will prove that the --relative Rényi entropies are a proper generalization of the quantum relative entropy by computing the limit of the - divergence as approaches one and is an arbitrary function of . We also show that certain operationally relevant families of Rényi divergences are differentiable at . Finally, our analysis reveals that the derivative at evaluates to half the relative entropy variance, a quantity that has attained operational significance in second-order quantum hypothesis testing and channel coding for finite block lengths.

  13. Role of Quantum Vibrations on the Structural, Electronic, and Optical Properties of 9-Methylguanine.

    PubMed

    Law, Yu Kay; Hassanali, Ali A

    2015-11-01

    In this work, we report theoretical predictions of the UV-absorption spectra of 9-methylguanine using time dependent density functional theory (TDDFT). Molecular dynamics simulations of the hydrated DNA base are peformed using an empirical force field, Born-Oppenheimer ab initio molecular dynamics (AIMD), and finally path-integral AIMD to understand the role of the underlying electronic potential, solvation, and nuclear quantum vibrations on the absorption spectra. It is shown that the conformational distributions, including hydrogen bonding interactions, are perturbed by the inclusion of nuclear quantum effects, leading to significant changes in the total charge and dipole fluctuations of the DNA base. The calculated absorption spectra using the different sampling protocols shows that the inclusion of nuclear quantum effects causes a significant broadening and red shift of the spectra bringing it into closer agreement with experiments. PMID:26444383

  14. Characterization of the diffraction properties of quantum-dot-array diffraction grating

    NASA Astrophysics Data System (ADS)

    Wang, Chuanke; Kuang, Longyu; Wang, Zhebin; Liu, Shenye; Ding, Yongkun; Cao, Leifeng; Foerster, Eckhart; Wang, Deqiang; Xie, Changqing; Ye, Tianchun

    2007-05-01

    A new dispersive element named as quantum-dot-array diffraction grating [L. F. Cao, China patent No. 200410081499 (August 10, 2004)] for visible light has been developed and characterized experimentally. A large number of quantum dots distributed on a substrate as sinusoidal function can be used to diffract x rays without higher-order diffraction. The experimental patterns show that the higher-order diffractions which inevitably exist in the spectrum recorded using traditional diffraction gratings can be eliminated effectively by this newly designed element. It indicates that quantum-dot-array diffraction grating could be an attractive alternative of presently used diffraction grating in soft x-ray spectroscopy application to get rid of the higher-order diffraction distortions.

  15. Quantum size effects on chemisorption properties: CO on ultrathin Cu films from first principles

    NASA Astrophysics Data System (ADS)

    Mouketo, L.; Binggeli, N.; M'passi-Mabiala, B.

    2011-11-01

    We address, by means of ab initio calculations, the origin of the correlation that has been observed experimentally between the chemisorption energy of CO on nanoscale Cu(001) supported films and quantum-size effects. The calculated chemisorption energy shows systematic oscillations, as a function of film thickness, with a periodicity corresponding to that of quantum-well states at Γ¯ crossing the Fermi energy. We explain this trend based on the oscillations, with film thickness, of the decay length on the vacuum side of the quantum-well states at the Fermi energy. Contrary to previous suggestions, we find that the actual oscillations with film thickness of the density of states per atom of the film at the Fermi energy cannot account for the observed trend in the chemisorption energy.

  16. Characterization of the diffraction properties of quantum-dot-array diffraction grating

    SciTech Connect

    Wang Chuanke; Kuang Longyu; Wang Zhebin; Liu Shenye; Ding Yongkun; Cao Leifeng; Foerster, Eckhart; Wang Deqiang; Xie Changqing; Ye Tianchun

    2007-05-15

    A new dispersive element named as quantum-dot-array diffraction grating [L. F. Cao, China patent No. 200410081499 (August 10, 2004)] for visible light has been developed and characterized experimentally. A large number of quantum dots distributed on a substrate as sinusoidal function can be used to diffract x rays without higher-order diffraction. The experimental patterns show that the higher-order diffractions which inevitably exist in the spectrum recorded using traditional diffraction gratings can be eliminated effectively by this newly designed element. It indicates that quantum-dot-array diffraction grating could be an attractive alternative of presently used diffraction grating in soft x-ray spectroscopy application to get rid of the higher-order diffraction distortions.

  17. Pulse and noise properties of a two section passively mode-locked quantum dot laser under long delay feedback

    NASA Astrophysics Data System (ADS)

    Simos, Christos; Simos, Hercules; Mesaritakis, Charis; Kapsalis, Alexandros; Syvridis, Dimitris

    2014-02-01

    We present a numerical analysis that focuses on the temporal pulse properties of a monolithic two-section passively mode locked quantum dot laser subject to optical feedback from a very long external cavity. Pulse duration, shape and intensity noise are studied for the first time to our knowledge versus feedback delay and strength for the case of a passively mode locked semiconductor laser. These temporal characteristics are correlated to the previously observed dependence of repetition rate and timing jitter on cavity parameters in order to highlight the dynamics and complete the corresponding theoretical explanations.

  18. Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites

    SciTech Connect

    Singh, U. B.; Pandey, M. B.; Dhar, R; Pandey, A. S.; Kumar, S.; Dabrowski, R.

    2014-11-15

    We have prepared the composites of a room temperature nematic liquid crystal namely 4-(trans-4-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT) and Cadmium Selenide Quantum Dots (CdSe-QDs) and investigated their electro-optical and dielectric properties. Effect of dispersion of CdSe-QDs on various electro-optical and display parameters of host liquid crystalline material have been studied. Physical parameters, such as switching threshold voltage and splay elastic constant have been altered drastically for composites. Dispersion of QDs in a liquid crystals medium destabilizes nematic ordering of the host and decreases the nematic-to-isotropic transition temperature.

  19. Investigation of multimodal waveguides to determine parameters of covering layer

    NASA Astrophysics Data System (ADS)

    Auguściuk, Elżbieta; Zieliński, Jarosław

    2006-02-01

    Investigation of liquid thin layers deposited on multimodal waveguide with gradient - index profile has been presented. Properties of the layers have been studied by the generalized m-line spectroscopy method. Deposited on the planar waveguide thin liquid layers have been investigated on the range refractive index 1.0002 - 1.5300. The profile of refractive index of waveguide has not been deformed because of depositing of the thin layer. Depositing of the thin layer on multimodal planar waveguide has caused the change of coupling angle to the waveguide but proportionately to successive modes of the waveguide structure. This study will be helpful to determine, for instance, illness changes of diabetic patients (sugar level in blood).

  20. Angular momentum effects in multimodal fission of {sup 226}Th

    SciTech Connect

    Chubarian, G. G.; Hurst, B. J.; O'Kelly, D.; Schmitt, R. P.; Itkis, M. G.; Kondratiev, N. A.; Kozulin, E. M.; Oganessian, Yu. Ts.; Pashkevich, V. V.; Pokrovsky, I. V.; Salamatin, V. S.; Rusanov, A. Ya.; Calabretta, L.; Maiolino, C.; Lukashin, K.; Agodi, C.; Bellia, G.; Hanappe, F.; Liatard, E.; Huck, A.

    1998-12-21

    The {gamma}-rays from the multimodal fission of the {sup 226}Th formed in {sup 18}O+{sup 208}Pb was investigated at the near- and sub-barrier energies. The corresponding excitation energies at the saddle point, E{sub sp}*, ranged from 23 to 26 MeV. The average {gamma}-ray multiplicities and relative {gamma}-ray energies as a function of the mass of the fission fragments exhibits a complex structure and strong variations. Such strong variations have never been previously observed in heavy ion-induced fusion-fission reactions. Obtained results may be explained with the influence of shell effects on the properties of the fission fragments. Present work is the one in series of investigation of the multimodal fission phenomena in At-Th region.

  1. Angular momentum effects in multimodal fission of {sup 226}Th

    SciTech Connect

    Chubarian, G.G.; Hurst, B.J.; OKelly, D.; Schmitt, R.P.; Itkis, M.G.; Kondratiev, N.A.; Kozulin, E.M.; Oganessian, Y.T.; Pashkevich, V.V.; Pokrovsky, I.V.; Salamatin, V.S.; Rusanov, A.Y.; Calabretta, L.; Maiolino, C.; Lukashin, K.; Agodi, C.; Bellia, G.; Hanappe, F.; Liatard, E.; Huck, A.; Stuttge, L.

    1998-12-01

    The {gamma}-rays from the multimodal fission of the {sup 226}Th formed in {sup 18}O+{sup 208}Pb was investigated at the near- and sub-barrier energies. The corresponding excitation energies at the saddle point, E{sub sp}{sup {asterisk}}, ranged from 23 to 26 MeV. The average {gamma}-ray multiplicities and relative {gamma}-ray energies as a function of the mass of the fission fragments exhibits a complex structure and strong variations. Such strong variations have never been previously observed in heavy ion-induced fusion-fission reactions. Obtained results may be explained with the influence of shell effects on the properties of the fission fragments. Present work is the one in series of investigation of the multimodal fission phenomena in At-Th region. {copyright} {ital 1998 American Institute of Physics.}

  2. Quantum dot-polypeptide hybrid assemblies: Synthesis, fundamental properties, and application

    NASA Astrophysics Data System (ADS)

    Thedjoisworo, Bayu Atmaja

    We report the development of a multifunctional system that has the capability to target cancer cells, as well as simultaneously image and deliver therapeutics to these targeted cells. Such a "three-in-one" technology that has integrated targeting, imaging, and drug delivery capabilities is highly desirable in the field of cancer therapy. The material that we have developed for this application is a quantum dot (QD)-polypeptide hybrid assembly system that is spontaneously formed through the self-assembly of carboxyl-functionalized QDs and poly(diethylene glycol L-lysine)-poly(L-lysine) (PEGLL-PLL) diblock copolypeptide molecules. The hybrid assemblies could be modified to target a great variety of cancer biomarkers and have potential ability to carry therapeutic agents with diverse chemical and physical properties. In addition, the QD-polypeptide assemblies have the advantage of extensive tunability and versatility that allow their properties to be tailored and optimized for a broad range of applications. Cancer targeting can be achieved by modifying the QD-polypeptide hybrid assemblies with ligands that have affinity for certain biomarkers, which are overexpressed on cancer cells. Upon binding and uptake by the target cells through specific ligand-receptor mediated interactions, the assemblies could then allow for the simultaneous imaging of the cells and delivery of therapeutic agents to these cells. Imaging of the cells is done through detection of the QD fluorescence, and drug-delivery can be effected by loading the assembly with therapeutic agents and releasing them by means that disrupt the self-assembly. When compared to other dual imaging and drug-delivery systems, our QD-polypeptide hybrid assemblies have the advantage of extensive tunability and versatility. To showcase the tunability of the assembly, we demonstrated how its tumor-cell binding characteristics could be modulated and optimized by changing the PEGLL x-PLLy, architecture and the self

  3. Temperature dependency of the emission properties from positioned In(Ga)As/GaAs quantum dots

    SciTech Connect

    Braun, T.; Schneider, C.; Maier, S.; Forchel, A.; Höfling, S.; Kamp, M.; Igusa, R.; Iwamoto, S.; Arakawa, Y.

    2014-09-15

    In this letter we study the influence of temperature and excitation power on the emission linewidth from site-controlled InGaAs/GaAs quantum dots grown on nanoholes defined by electron beam lithography and wet chemical etching. We identify thermal electron activation as well as direct exciton loss as the dominant intensity quenching channels. Additionally, we carefully analyze the effects of optical and acoustic phonons as well as close-by defects on the emission linewidth by means of temperature and power dependent micro-photoluminescence on single quantum dots with large pitches.

  4. Optical properties of GaAsBi/GaAs quantum wells: Photoreflectance, photoluminescence and time-resolved photoluminescence study

    NASA Astrophysics Data System (ADS)

    Kopaczek, J.; Linhart, W. M.; Baranowski, M.; Richards, R. D.; Bastiman, F.; David, J. P. R.; Kudrawiec, R.

    2015-09-01

    Photoreflectance (PR), photoluminescence (PL) and time-resolved PL were applied to study the optical properties, particularly the localized and delocalized states and carrier dynamics, in GaAs1-xBix/GaAs quantum wells. With increasing Bi concentration the ground state transition (i.e., the transition between the first heavy hole and the first electron subband) red shifts due to Bi-related reduction of the GaAs1-xBix energy gap. Additionally, the transition related to the excited states in the quantum wells is clearly observed for the sample with high Bi concentration of 5.6%, confirming these quantum wells are type I. The PL measurements show the S-shape behavior and indicate the strong localization effect below 150 K for all measured samples, while the PL emission above 150 K is related to delocalized states. The localized character of emission at low temperatures is confirmed by time-resolved PL studies. At 10 K the decay time has strong spectral dispersion (i.e. the decay time increases from ˜10 ns to ˜400 ns going from the high to low energy side of the PL peak). This dispersion disappears above 190 K. At room temperature the decay time is in the order of a few ns.

  5. Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties

    SciTech Connect

    Stránský, Pavel; Macek, Michal; Cejnar, Pavel

    2014-06-15

    Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies.

  6. Molecular beam epitaxy and properties of GaAsBi/GaAs quantum wells grown by molecular beam epitaxy: effect of thermal annealing.

    PubMed

    Makhloufi, Hajer; Boonpeng, Poonyasiri; Mazzucato, Simone; Nicolai, Julien; Arnoult, Alexandre; Hungria, Teresa; Lacoste, Guy; Gatel, Christophe; Ponchet, Anne; Carrère, Hélène; Marie, Xavier; Fontaine, Chantal

    2014-01-01

    We have grown GaAsBi quantum wells by molecular beam epitaxy. We have studied the properties of a 7% Bi GaAsBi quantum well and their variation with thermal annealing. High-resolution X-ray diffraction, secondary ion mass spectrometry, and transmission electron microscopy have been employed to get some insight into its structural properties. Stationary and time-resolved photoluminescence shows that the quantum well emission, peaking at 1.23 μm at room temperature, can be improved by a rapid annealing at 650°C, while the use of a higher annealing temperature leads to emission degradation and blue-shifting due to the activation of non-radiative centers and bismuth diffusion from the quantum well. PMID:24636335

  7. Molecular beam epitaxy and properties of GaAsBi/GaAs quantum wells grown by molecular beam epitaxy: effect of thermal annealing

    PubMed Central

    2014-01-01

    We have grown GaAsBi quantum wells by molecular beam epitaxy. We have studied the properties of a 7% Bi GaAsBi quantum well and their variation with thermal annealing. High-resolution X-ray diffraction, secondary ion mass spectrometry, and transmission electron microscopy have been employed to get some insight into its structural properties. Stationary and time-resolved photoluminescence shows that the quantum well emission, peaking at 1.23 μm at room temperature, can be improved by a rapid annealing at 650°C, while the use of a higher annealing temperature leads to emission degradation and blue-shifting due to the activation of non-radiative centers and bismuth diffusion from the quantum well. PMID:24636335

  8. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots

    DOE PAGESBeta

    Makarov, Nikolay Sergeevich; Guo, Shaojun; Isaienko, Oleksandr; Liu, Wenyong; Robel, Istvan; Klimov, Victor Ivanovich

    2016-02-16

    Organic–inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs–Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral andmore » dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton–exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs–Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the “universal volume scaling” previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. Furthermore, this points toward the need for the development of approaches for effective

  9. The BEST IDEA: Multimodal Career Education.

    ERIC Educational Resources Information Center

    Southern, Stephen; Smith, Robert L.

    The BEST IDEA or Multimodal Career Education Model has been proposed as a viable approach for integrating personal and environmental variables in career development programs. An extension of Lazarus' Multimodal Behavior Therapy, the model contains eight factors that make up the acronym: behavior, emotion, self-talk, thought, interpersonal…

  10. A Cuckoo Search Algorithm for Multimodal Optimization

    PubMed Central

    2014-01-01

    Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration. PMID:25147850

  11. Evaluating Multimodal Literacies in Student Blogs

    ERIC Educational Resources Information Center

    O'Byrne, Barbara; Murrell, Stacey

    2014-01-01

    This research presents ways in which high school students used the multimodal and interactive affordances of blogs to create, organize, communicate and participate on an educational blog. Their actions demonstrated how plural modes of literacy are infiltrating digital environments and reshaping literacy and learning. Multimodal blogging practices…

  12. Multimodality, Literacy and Texts: Developing a Discourse

    ERIC Educational Resources Information Center

    Bearne, Eve

    2009-01-01

    This article argues for the development of a framework through which to describe children's multimodal texts. Such a shared discourse should be capable of including different modes and media and the ways in which children integrate and combine them for their own meaning-making purposes. It should also acknowledge that multimodal texts are not…

  13. A cuckoo search algorithm for multimodal optimization.

    PubMed

    Cuevas, Erik; Reyna-Orta, Adolfo

    2014-01-01

    Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration. PMID:25147850

  14. Filter. Remix. Make.: Cultivating Adaptability through Multimodality

    ERIC Educational Resources Information Center

    Dusenberry, Lisa; Hutter, Liz; Robinson, Joy

    2015-01-01

    This article establishes traits of adaptable communicators in the 21st century, explains why adaptability should be a goal of technical communication educators, and shows how multimodal pedagogy supports adaptability. Three examples of scalable, multimodal assignments (infographics, research interviews, and software demonstrations) that evidence…

  15. Drusen Characterization with Multimodal Imaging

    PubMed Central

    Spaide, Richard F.; Curcio, Christine A.

    2010-01-01

    Summary Multimodal imaging findings and histological demonstration of soft drusen, cuticular drusen, and subretinal drusenoid deposits provided information used to develop a model explaining their imaging characteristics. Purpose To characterize the known appearance of cuticular drusen, subretinal drusenoid deposits (reticular pseudodrusen), and soft drusen as revealed by multimodal fundus imaging; to create an explanatory model that accounts for these observations. Methods Reported color, fluorescein angiographic, autofluorescence, and spectral domain optical coherence tomography (SD-OCT) images of patients with cuticular drusen, soft drusen, and subretinal drusenoid deposits were reviewed, as were actual images from affected eyes. Representative histological sections were examined. The geometry, location, and imaging characteristics of these lesions were evaluated. A hypothesis based on the Beer-Lambert Law of light absorption was generated to fit these observations. Results Cuticular drusen appear as numerous uniform round yellow-white punctate accumulations under the retinal pigment epithelium (RPE). Soft drusen are larger yellow-white dome-shaped mounds of deposit under the RPE. Subretinal drusenoid deposits are polymorphous light-grey interconnected accumulations above the RPE. Based on the model, both cuticular and soft drusen appear yellow due to the removal of shorter wavelength light by a double pass through the RPE. Subretinal drusenoid deposits, which are located on the RPE, are not subjected to short wavelength attenuation and therefore are more prominent when viewed with blue light. The location and morphology of extracellular material in relationship to the RPE, and associated changes to RPE morphology and pigmentation, appeared to be primary determinants of druse appearance in different imaging modalities. Conclusion Although cuticular drusen, subretinal drusenoid deposits, and soft drusen are composed of common components, they are distinguishable

  16. Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths.

    PubMed

    Zhang, Lei; Zhang, Yu; Kershaw, Steve V; Zhao, Yanhui; Wang, Yu; Jiang, Yongheng; Zhang, Tieqiang; Yu, William W; Gu, Pengfei; Wang, Yiding; Zhang, Hanzhuang; Rogach, Andrey L

    2014-03-14

    We have studied the optical properties of PbSe colloidal quantum dot-solution filled hollow core multimode silica waveguides as a function of quantum dot-solution concentration, waveguide length, optical pump power and choice of organic solvent in order to establish the conditions to maximize near infrared spontaneous emission intensities. The optical performance was compared and showed good agreement with a simple three level system model for the quantum dots confined in an optical waveguide. Near infrared absorption-free solvent of tetrachlorethylene was confirmed to be a good candidate for the waveguide medium due to the enhancement of output intensity from the liquid-core fiber compared to the performance in toluene-based fiber. This approach demonstrates a useful method for early characterization of quantum dot materials in a waveguide test-bed with minimal material processing on the colloidal nanoparticles. PMID:24532174

  17. Colloidal PbSe quantum dot-solution-filled liquid-core optical fiber for 1.55 μm telecommunication wavelengths

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhang, Yu; Kershaw, Steve V.; Zhao, Yanhui; Wang, Yu; Jiang, Yongheng; Zhang, Tieqiang; Yu, William W.; Gu, Pengfei; Wang, Yiding; Zhang, Hanzhuang; Rogach, Andrey L.

    2014-03-01

    We have studied the optical properties of PbSe colloidal quantum dot-solution filled hollow core multimode silica waveguides as a function of quantum dot-solution concentration, waveguide length, optical pump power and choice of organic solvent in order to establish the conditions to maximize near infrared spontaneous emission intensities. The optical performance was compared and showed good agreement with a simple three level system model for the quantum dots confined in an optical waveguide. Near infrared absorption-free solvent of tetrachlorethylene was confirmed to be a good candidate for the waveguide medium due to the enhancement of output intensity from the liquid-core fiber compared to the performance in toluene-based fiber. This approach demonstrates a useful method for early characterization of quantum dot materials in a waveguide test-bed with minimal material processing on the colloidal nanoparticles.

  18. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    NASA Astrophysics Data System (ADS)

    Barettin, Daniele; Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-01

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In0.48Ga0.52P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k →.p → bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  19. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    SciTech Connect

    Barettin, Daniele Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-07

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In{sub 0.48}Ga{sub 0.52 }P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k{sup →}·p{sup →} bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  20. Ultrasmall Magnetically Engineered Ag2Se Quantum Dots for Instant Efficient Labeling and Whole-Body High-Resolution Multimodal Real-Time Tracking of Cell-Derived Microvesicles.

    PubMed

    Zhao, Jing-Ya; Chen, Gang; Gu, Yi-Ping; Cui, Ran; Zhang, Zhi-Ling; Yu, Zi-Li; Tang, Bo; Zhao, Yi-Fang; Pang, Dai-Wen

    2016-02-17

    Cell-derived microvesicles (MVs) are natural carriers that can transport biological molecules between cells, which are expected to be promising delivery vehicles for therapeutic purposes. Strategies to label MVs are very important for investigation and application of MVs. Herein, ultrasmall Mn-magnetofunctionalized Ag2Se quantum dots (Ag2Se@Mn QDs) integrated with excellent near-infrared (NIR) fluorescence and magnetic resonance (MR) imaging capabilities have been developed for instant efficient labeling of MVs for their in vivo high-resolution dual-mode tracking. The Ag2Se@Mn QDs were fabricated by controlling the reaction of Mn(2+) with the Ag2Se nanocrystals having been pretreated in 80 °C NaOH solution, with an ultrasmall size of ca. 1.8 nm, water dispersibility, high NIR fluorescence quantum yield of 13.2%, and high longitudinal relaxivity of 12.87 mM(-1) s(-1) (almost four times that of the commercial contrast agent Gd-DTPA). The ultrasmall size of the Ag2Se@Mn QDs enables them to be directly and efficiently loaded into MVs by electroporation, instantly and reliably conferring both NIR fluorescence and MR traceability on MVs. Our method for labeling MVs of different origins is universal and free of unfavorable influence on intrinsic behaviors of MVs. The complementary imaging capabilities of the Ag2Se@Mn QDs have made the long-term noninvasive whole-body high-resolution dual-mode tracking of MVs in vivo realized, by which the dynamic biodistribution of MVs has been revealed in a real-time and in situ quantitative manner. This work not only opens a new window for labeling with QDs, but also facilitates greatly the investigation and application of MVs. PMID:26804745

  1. Metawidgets in the multimodal interface

    SciTech Connect

    Blattner, M.M. Anderson Cancer Center, Houston, TX ); Glinert, E.P.; Jorge, J.A.; Ormsby, G.R. . Dept. of Computer Science)

    1991-01-01

    We analyze two intertwined and fundamental issues concerning computer-to-human communication in the multimodal interfaces: the interplay between sound and graphics, and the role of object persistence. Our observations lead us to introduce metawidgets as abstract entities capable of manifesting themselves to users as image, as sound, or as various combinations and/or sequences of the two media. We show examples of metawidgets in action, and discuss mechanisms for choosing among alternative media for metawidget instantiation. Finally, we describe a couple of experimental microworlds we have implemented to test out some of our ideas. 17 refs., 7 figs.

  2. Quantum games as quantum types

    NASA Astrophysics Data System (ADS)

    Delbecque, Yannick

    In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other

  3. Quantum properties of an atom in a cavity constructed by topological insulators

    NASA Astrophysics Data System (ADS)

    Fang, Wei; Yang, Zi-xin; Li, Gao-xiang

    2015-12-01

    We investigate the spontaneous decay of an atom in a cavity constructed by topological insulators. The method of Green’s function in stratified cavities has been used and expressions of atomic decay rates in two directions parallel and perpendicular to cavity mirrors are derived. It is shown that when an atom is embedded closely to a topological insulator with a strong axion field, the spontaneous decay of the dipole parallel to the surface will be suppressed due to the high anisotropy of the vacuum. The appearance of indirect quantum interference of two orthogonal dipoles representing the different decay channels of a Zeeman atom has also been revealed. It is found that when the cavity length is less than half the wave length in a vacuum—wherever the Zeeman atom is located in the cavity—spontaneous decay of the dipole parallel to the mirror is deeply suppressed while decay through the dipole perpendicular to the mirror is enhanced. As expected, strong quantum interference between the two decay channels is observed. In particular, when the axion field is strong enough, the maximum quantum interference can be generated between two orthogonal dipoles, which is consistent with the phenomenon that appears in cavities constructed by perfect mirrors. By taking loss of material into account, the results show that atomic decay through dissipation dominates when the atom is quite close to the mirror and leads to the destruction of quantum interference in a small region.

  4. PHYSICAL FOUNDATIONS OF QUANTUM ELECTRONICS: Interference properties of coherent photons selectively reflected from resonance media

    NASA Astrophysics Data System (ADS)

    Veklenko, B. A.

    2002-05-01

    It is shown that, according to the quantum theory of light, the spatial period of an interference pattern formed by light incident on a medium and reflected from it is determined both by the wavelength of light and the number of coherent photons in a scattered mode. The scattered signal is assumed arbitrarily weak.

  5. Investigation of Transmission Resonances with Specific Properties in Rectangular Semiconductor Quantum Wells

    ERIC Educational Resources Information Center

    Niketic, Nemanja; Milanovic, Vitomir; Radovanovic, Jelena

    2012-01-01

    In this paper we provide a detailed analysis of the energy position and type of transmission maxima in rectangular quantum wells (QWs), taking into consideration the difference of electron effective masses in the barrier and well layers. Particular attention is given to transmission maxima that are less than unity and the implications of effective…

  6. Synthesis and optical properties of quantum-size metal sulfide particles in aqueous solution

    SciTech Connect

    Nedeljkovic, J.M.; Patel, R.C.; Kaufman, P.; Joyce-Pruden, C.; O'Leary, N. )

    1993-04-01

    During the past decade, small-particle' research has become quite popular in various fields of chemistry and physics. The recognition of quantum-size effects in very small colloidal particles has led to renewed interest in this area. Small particles' are clusters of atoms or molecules ranging in size from 1 nm to almost 10 nm or having agglomeration numbers from 10 up to a few hundred. In other words, small particles fall in size between single atoms or molecules and bulk materials. The agglomeration number specifies the number of individual atoms or molecules in a given cluster. The research in this area is interdisciplinary, and it links colloidal science and molecular chemistry. The symbiosis of these two areas of research has revealed some intriguing characteristics of small particles. This experiment illustrates the following: simple colloidal techniques for the preparation of two different types of quantum-size metal sulfide particles; the blue shift of the measured optical absorption spectra when the particle size is decreased in the quantum-size regime; and use of a simple quantum mechanical model to calculate the particle size from the absorption onset measured for CdS.

  7. Some geometric properties of quantum phases and calculation of phase formulas

    NASA Astrophysics Data System (ADS)

    Bracken, Paul

    An introduction to several geometrical ideas which are of use to quantum mechanics is presented. The Aharonov-Anandan phase is introduced and without reference to any dynamical equation, this phase is formulated by defining an appropriate connection on a specific fiber bundle. The holonomy element gives the phase. By introducing another connection, the Pancharatnam phase formula is derived following a different procedure.

  8. Comparisons of electronic transport properties computed via classical and quantum molecular dynamics

    NASA Astrophysics Data System (ADS)

    Whitley, Heather; Scullard, Christian; Benedict, Lorin; Desjarlais, Michael; Graziani, Frank; Cimarron Collaboration

    2013-10-01

    We have applied the ddcMD molecular dynamics (MD) code to the computation of the electrical conductivity and thermal conductivity of hydrogen plasmas at several points in phase space. Quantum mechanical effects on the electronic degrees of freedom are incorporated through the use of temperature-dependent statistical potentials. In order to examine the validity of this approach, we make comparisons with results from quantum MD simulations. We find that, while the electrical conductivities computed via classical MD are in reasonably good agreement with the quantum MD calculations, the thermal conductivity computed via classical MD is lower than the quantum MD result by a factor of 2-3. The Lorenz number determined from the classical MD is a factor of 2-3 lower than the Spitzer prediction. Similar discrepancies with Spitzer were also observed by Bernu and Hansen. LLNL-ABS-640881 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  9. Quantum Locality?

    NASA Astrophysics Data System (ADS)

    Stapp, Henry P.

    2012-05-01

    Robert Griffiths has recently addressed, within the framework of a `consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are not entailed by the precepts of quantum mechanics. Thus whatever is proved is not a feature of quantum mechanics, but is a property of a theory that tries to combine quantum theory with quasi-classical features that go beyond what is entailed by quantum theory itself. One cannot logically prove properties of a system by establishing, instead, properties of a system modified by adding properties alien to the original system. Hence Griffiths' rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his `consistent quantum theory' shows that the cited proof is valid within that restrictive version of quantum theory. An added section responds to Griffiths' reply, which cites general possibilities of ambiguities that might make what is to be proved ill-defined, and hence render the pertinent `consistent framework' ill defined. But the vagaries that he cites do not upset the proof in question, which, both by its physical formulation and by explicit identification, specify the framework to be used. Griffiths confirms the validity of the proof insofar as that pertinent framework is used. The section also shows

  10. Quantum Fidelity for Arbitrary Gaussian States

    NASA Astrophysics Data System (ADS)

    Banchi, Leonardo; Braunstein, Samuel L.; Pirandola, Stefano

    2015-12-01

    We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.

  11. Quantum Fidelity for Arbitrary Gaussian States.

    PubMed

    Banchi, Leonardo; Braunstein, Samuel L; Pirandola, Stefano

    2015-12-31

    We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources. PMID:26764978

  12. A theoretical analysis of the optical absorption properties in one-dimensional InAs/GaAs quantum dot superlattices

    SciTech Connect

    Kotani, Teruhisa; Birner, Stefan; Lugli, Paolo; Hamaguchi, Chihiro

    2014-04-14

    We present theoretical investigations of miniband structures and optical properties of InAs/GaAs one-dimensional quantum dot superlattices (1D-QDSLs). The calculation is based on the multi-band k·p theory, including the conduction and valence band mixing effects, the strain effect, and the piezoelectric effect; all three effects have periodic boundary conditions. We find that both the electronic and optical properties of the 1D-QDSLs show unique states which are different from those of well known single quantum dots (QDs) or quantum wires. We predict that the optical absorption spectra of the 1D-QDSLs strongly depend on the inter-dot spacing because of the inter-dot carrier coupling and changing strain states, which strongly influence the conduction and valence band potentials. The inter-miniband transitions form the absorption bands. Those absorption bands can be tuned from almost continuous (closely stacked QD case) to spike-like shape (almost isolated QD case) by changing the inter-dot spacing. The polarization of the lowest absorption peak for the 1D-QDSLs changes from being parallel to the stacking direction to being perpendicular to the stacking direction as the inter-dot spacing increases. In the case of closely stacked QDs, in-plane anisotropy, especially [110] and [11{sup ¯}0] directions also depend on the inter-dot spacing. Our findings and predictions will provide an additional degree of freedom for the design of QD-based optoelectronic devices.

  13. Rashba spin-orbit coupling effects on the optical properties of double quantum wire under magnetic field

    NASA Astrophysics Data System (ADS)

    Karaaslan, Y.; Gisi, B.; Sakiroglu, S.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2016-05-01

    We investigate the effects of Rashba spin-orbit interaction on the optical absorption coefficients and refractive index changes associated with transitions between the first two lower-lying electronic levels in double quantum wire. The wire system represented by a symmetric, double quartic-well confinement potential is subjected to a perpendicular magnetic field. The analytical expressions of the linear and third-order nonlinear optical absorption coefficients and refractive index changes are obtained by using the compact-density matrix formalism and iterative scheme. Optical properties are investigated as a function of structural parameter, magnetic field, Rashba spin-orbit interaction and photon energies. Numerical results reveal that competing effects between spin-orbit interaction and magnetic field modify strongly the optical properties and can be altered by these parameters.

  14. Estimation of the thermodynamic properties of functional groups and biomolecules using quantum chemical/statistical thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Chai, Weisin

    The scarcity and sustainability of energy sources have always been a concern while seeking for alternative fuels. Biofuels have drawn the attention of various researchers due to their abundancy and renewability. Understanding the physical and chemical properties of these molecules is essential to determining their potential as alternative fuels or fuel additives. In this work, the properties of these molecules are predicted through methods developed from quantum mechanics and statistical mechanics theories. The heats of formations are calculated with the Gaussian program and combined with the Benson group contribution method to predict the Benson parameters of unknown functional groups in a molecule. The methods developed are used to expand the Benson database and improve the practicability of the group contribution method. The heats of formations are also used to predict and correlate heat capacities across a range of temperatures and energy densities in this study.

  15. Size-dependent properties of single InAs quantum dots grown in nanoimprint lithography patterned GaAs pits.

    PubMed

    Tommila, J; Schramm, A; Hakkarainen, T V; Dumitrescu, M; Guina, M

    2013-06-14

    We report on the structural and optical properties of single InAs quantum dots (QDs) formed in etched GaAs pits with different dimensions. The site-controlled QDs were fabricated by molecular beam epitaxy on GaAs(001) surfaces patterned by nanoimprint lithography. We show that the properties of the QDs can be modified by varying the dimensions of the etched GaAs pits. Increasing the pit size resulted in larger QDs and thus in longer photoluminescence wavelengths. However, the fine structure splitting remained unaffected. A photoluminescence linewidth of 41 μeV and average fine structure splitting of 15.7 μeV were obtained for exciton recombination in the single site-controlled QDs. PMID:23676532

  16. Intense laser effects on the optical properties of asymmetric GaAs double quantum dots under applied electric field

    NASA Astrophysics Data System (ADS)

    Bejan, Doina; Niculescu, Ecaterina Cornelia

    2016-06-01

    We investigated the combined effects of a non-resonant intense laser field and a static electric field on the electronic structure and the nonlinear optical properties (absorption, optical rectification) of a GaAs asymmetric double quantum dot under a strong probe field excitation. The calculations were performed within the compact density-matrix formalism under steady state conditions using the effective mass approximation. Our results show that: (i) the electronic structure and optical properties are sensitive to the dressed potential; (ii) under applied electric fields, an increase of the laser intensity induces a redshift of the optical absorption and rectification spectra; (iii) the augment of the electric field strength leads to a blueshift of the spectra; (iv) for high electric fields the optical spectra show a shoulder-like feature, related with the occurrence of an anti-crossing between the two first excited levels.

  17. Generation of multi-mode squeezed vacuum using pulse pumped fiber optical parametric amplifiers.

    PubMed

    Liu, Nannan; Liu, Yuhong; Li, Jiamin; Yang, Lei; Li, Xiaoying

    2016-02-01

    Multimode squeezed states are essential resources in quantum information processing and quantum metrology with continuous variables. Here we present the experimental generation of squeezed vacuum via the degenerate four wave mixing realized by pumping a piece of dispersion shifted fiber with mode-locked ultrafast pulse trains. The noise fluctuation is lower than the shot noise limit by 1.1 ± 0.08 dB (1.95 ± 0.17 dB after correction for detection losses). The detailed investigation illustrates that the results can be further improved by suppressing Raman scattering and by reshaping the spectrum of the local oscillator to achieve the required mode-matching of the homodyne detection system. Our study is useful for developing a compact fiber source of multi-mode squeezed vacuum. PMID:26906788

  18. Optical Properties of Gold Nanoclusters Functionalized with a Small Organic Compound: Modeling by an Integrated Quantum-Classical Approach.

    PubMed

    Li, Xin; Carravetta, Vincenzo; Li, Cui; Monti, Susanna; Rinkevicius, Zilvinas; Ågren, Hans

    2016-07-12

    Motivated by the growing importance of organometallic nanostructured materials and nanoparticles as microscopic devices for diagnostic and sensing applications, and by the recent considerable development in the simulation of such materials, we here choose a prototype system - para-nitroaniline (pNA) on gold nanoparticles - to demonstrate effective strategies for designing metal nanoparticles with organic conjugates from fundamental principles. We investigated the motion, adsorption mode, and physical chemistry properties of gold-pNA particles, increasing in size, through classical molecular dynamics (MD) simulations in connection with quantum chemistry (QC) calculations. We apply the quantum mechanics-capacitance molecular mechanics method [Z. Rinkevicius et al. J. Chem. Theory Comput. 2014, 10, 989] for calculations of the properties of the conjugate nanoparticles, where time dependent density functional theory is used for the QM part and a capacitance-polarizability parametrization of the MM part, where induced dipoles and charges by metallic charge transfer are considered. Dispersion and short-range repulsion forces are included as well. The scheme is applied to one- and two-photon absorption of gold-pNA clusters increasing in size toward the nanometer scale. Charge imaging of the surface introduces red-shifts both because of altered excitation energy dependence and variation of the relative intensity of the inherent states making up for the total band profile. For the smaller nanoparticles the difference in the crystal facets are important for the spectral outcome which is also influenced by the surrounding MM environment. PMID:27224666

  19. Quantum-size effect on the electronic and optical properties of hybrid TiO{sub 2}/Au clusters

    SciTech Connect

    Liu, Chun-Sheng E-mail: yexiaojuan1980@gmail.com; Wang, Xiangfu; Yan, Xiaohong; Ye, Xiaojuan E-mail: yexiaojuan1980@gmail.com; Zeng, Zhi

    2014-08-07

    Although TiO{sub 2}/Au nanosystems exhibit high photocatalytic activities under solar radiation in the experiment, the quantum-size effect of TiO{sub 2} on the growth, electronic properties, and reactivity of Au clusters remains elusive. Using (time dependent) density functional theory, it is found that Au atoms attach to low-coordinated Ti and O atoms and serve as seeds for the growth of Au clusters, and the electronic (optical) properties of hybrid Au-TiO{sub 2} nano-clusters depend strongly upon the type of supported Au clusters. Interestingly, decorating TiO{sub 2} nano-particles with even-numbered Au clusters (Au{sub 8} or Au{sub 10}) can enhance the photocatalytic activity by: (i) spatially separating electron and hole states and (ii) balancing redox strength and visible light absorption. Furthermore, the interactions between the Au-TiO{sub 2} clusters and a single water molecule have been studied. It will open up new avenues for exploring controlled photocatalysts in semiconductor-based quantum-confined systems.

  20. Influence of pressure on the properties of GaN/AlN multi-quantum wells - Ab initio study

    NASA Astrophysics Data System (ADS)

    Strak, Pawel; Sakowski, Konrad; Kaminska, Agata; Krukowski, Stanislaw

    2016-06-01

    Pressure dependence of physical properties of GaN/AlN multi-quantum wells (MQWs) was investigated using ab intio calculations. The influence of pressure was divided into two main contributions: pressure affecting the properties of GaN and AlN bulk semiconductors and an influence on systems of polar quantum wells deposited on various substrates. An influence of hydrostatic, uniaxial, and tetragonal strain on the crystallographic structure, polarization (piezoelectricity), and the bandgap of the bulk systems is assessed using ab initio calculations. It was shown that when a partial relaxation of the structure is assumed, the tetragonal strain may explain an experimentally observed reduction of pressure coefficients for polar GaN/AlN MQWs. The MQWs were also simulated directly using density functional theory (DFT) calculations. A comparison of these two approaches confirmed that nonlinear effects induced by the tetragonal strain related to lattice mismatch between the substrates and the polar MQWs systems are responsible for a drastic decrease of the pressure coefficients of photoluminescence (PL) energy experimentally observed in polar GaN/AlGaN MQWs.

  1. Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy.

    PubMed

    Jovanović, Svetlana P; Syrgiannis, Zois; Marković, Zoran M; Bonasera, Aurelio; Kepić, Dejan P; Budimir, Milica D; Milivojević, Dušan D; Spasojević, Vuk D; Dramićanin, Miroslav D; Pavlović, Vladimir B; Todorović Marković, Biljana M

    2015-11-25

    Herein, the ability of gamma irradiation to enhance the photoluminescence properties of graphene quantum dots (GQDs) was investigated. Different doses of γ-irradiation were used on GQDs to examine the way in which their structure and optical properties can be affected. The photoluminescence quantum yield was increased six times for the GQDs irradiated with high doses compared to the nonirradiated material. Both photoluminescence lifetime and values of optical band gap were increased with the dose of applied gamma irradiation. In addition, the exploitation of the gamma-irradiated GQDs as photosensitizers was examined by monitoring the production of singlet oxygen under UV illumination. The main outcome was that the GQDs irradiated at lower doses act as better photoproducers than the ones irradiated at higher doses. These results corroborate that the structural changes caused by gamma irradiation have a direct impact on GQD ability to produce singlet oxygen and their photostability under prolonged UV illumination. This makes low-dose irradiated GQDs promising candidates for photodynamic therapy. PMID:26540316

  2. First-principles study of quantum confinement and surface effects on the electronic properties of InAs nanowires

    SciTech Connect

    Ning, Feng; Tang, Li-Ming Zhang, Yong; Chen, Ke-Qiu

    2013-12-14

    We have used first principles methods to systematically investigate the quantum confinement effect on the electronic properties of zinc-blende (ZB) and wurtzite (WZ) InAs nanowires (NWs) with different orientations and diameters, and compared their electronic properties before and after pseudo-hydrogen passivation. The results show that the calculated carrier effective masses are dependent on the NW diameter, except for [110] ZB NWs, and the hole effective masses of [111] ZB NWs are larger than the electron effective masses when the NW diameter is ≥26 Å. The band alignments of [111] ZB and [0001] WZ NWs reveal that the effect of quantum confinement on the conduction bands is greater than on the valence bands, and the position of the valence band maximum level changes little with increasing NW diameter. The pseudo-hydrogen passivated NWs have larger band gaps than the corresponding unpassivated NWs. The carrier effective masses and mobilities can be adjusted by passivating the surface dangling bonds.

  3. Bound to continuum intersubband transition optical properties in the strain reducing layer-assisted InAs quantum dot structure

    NASA Astrophysics Data System (ADS)

    Parvizi, R.; Rezaei, G.

    2016-01-01

    In this paper, the impact of wetting layer, strain reducing layer and dot height on the electronic, linear and nonlinear optical properties of bound to continuum states transitions are investigated in a system of InAs truncated conical shaped quantum dot covered with the InxGa1-x As strain reducing layer. The electronic structure, containing two main states of S and wetting layer states (WL), was calculated by solving one electronic band Hamiltonian with effective-mass approximation. The results reveal that the presence of the strain reducing layer in the structure extends the quantum dot emission to longer wavelength which is reported as a red-shift of the photoluminescence (PL) peak in the experimental measurement. This study also highlights the possibility of improving the intersubband optical properties based on the significant size-dependence of the three layer dot matrix by employing the strain reducing and wetting layers. According to this simulation, relatively tall dots on the thick wetting layer introduce the optimized structure size for practical applications to meet the SRL assisted enhanced dot structure.

  4. Seed-mediated synthesis, properties and application of γ-Fe 2O 3-CdSe magnetic quantum dots

    NASA Astrophysics Data System (ADS)

    Lin, Alex W. H.; Yen Ang, Chung; Patra, Pranab K.; Han, Yu; Gu, Hongwei; Le Breton, Jean-Marie; Juraszek, Jean; Chiron, Hubert; Papaefthymiou, Georgia C.; Tamil Selvan, Subramanian; Ying, Jackie Y.

    2011-08-01

    Seed-mediated growth of fluorescent CdSe quantum dots (QDs) around γ-Fe 2O 3 magnetic cores was performed at high temperature (300 °C) in the presence of organic surfactants. Bi-functional magnetic quantum dots (MQDs) with tunable emission properties were successfully prepared. The as-synthesized MQDs were characterized by high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS), which confirmed the assembly of heterodimers. When a longer growth period was employed, a homogeneous dispersion of QDs around a magnetic nanoparticle was obtained. The magnetic properties of these nanocomposites were examined. The MQDs were superparamagnetic with a saturation magnetization of 0.40 emu/g and a coercivity of 138 Oe at 5 K. To demonstrate their potential application in bio-labeling, these MQDs were coated with a thin silica shell, and functionalized with a polyethylene glycol (PEG) derivative. The functionalized MQDs were effectively used for the labeling of live cell membranes of 4T1 mouse breast cancer cells and HepG2 human liver cancer cells.

  5. Composition-dependent photoluminescence properties of CuInS2/ZnS core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Hua, Jie; Du, Yuwei; Wei, Qi; Yuan, Xi; Wang, Jin; Zhao, Jialong; Li, Haibo

    2016-06-01

    CuInS2/ZnS (CIS/ZnS) core/shell quantum dots (QDs) with various Cu/In ratios were synthesized using the hot-injection method, and their photoluminescence (PL) properties were investigated by measuring steady-state and time-resolved PL spectroscopy. The emission peak of the CIS/ZnS QDs were tuned from 680 to 580 nm by decreasing the Cu/In precursor ratio from 1/1 to 1/9. As the Cu/In ratio decreases, the PL lifetimes and PL quantum yields (QYs) of CIS/ZnS core/shell QDs increased firstly and then decreased. Two dominant radiative recombination processes were postulated to analyze composition-dependent PL properties, including the recombination from a quantized conduction band to deep defects state and donor-acceptor pair (DAP) recombination. The decrease of PL efficiency resulted from high density defects and traps, which formed at the interface between CIS core and ZnS shell due to the large off-stoichiometry composition. The PL intensity and peak energy for CIS/ZnS core/shell QDs as a function of temperature were also provided. The thermal quenching further confirmed that the PL emission of CIS/ZnS QDs did not come from the recombination of excitons but from the recombination of many kinds of intrinsic defects inside the QDs as emission centers.

  6. Synthesis, COSMO-RS analysis and optical properties of surface modified ZnS quantum dots using ionic liquids

    NASA Astrophysics Data System (ADS)

    Shahid, Robina; Muhammad, Nawshad; Gonfa, Girma; Toprak, Muhammet S.; Muhammed, Mamoun

    2015-10-01

    Zinc sulfide (ZnS) quantum dots (QDs) were synthesized using the microwave assisted ionic liquid (MAIL) route. Three ionic liquids (ILs), namely, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4]), trihexyl(tetradecyl) phosphonium bis(trifluoromethanesulfonyl) amide ([P6,6,6,14][TSFA]) and trihexyl(tetradecyl) phosphonium chloride ([P6,6,6,14][Cl]) were used in this study. The size and structure of the QDs were characterized by high-resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) pattern, respectively. The synthesized QDs were of wurtzite crystalline structure with size less than 5 nm. The QDs were more uniformly distributed while using the phosponium based ILs as a reaction medium during synthesis. The optical properties were investigated by UV-vis absorption and photoluminescence (PL) emission spectroscopy. The optical properties of QDs showed the quantum confinement effect in their absorption and the effect of cation and anion structural moiety was observed on their bandedge emission. The QDs emission intensity was measured higher for [P6,6,6,14][Cl] due to their better dispersion as well as high charge density of Cl anion. The capability of the ILs in stabilizing the QDs was interpreted by density functional theory (DFT) computations. The obtained results are in good agreement with the theoretical prediction.

  7. Magnetic properties of copper pyrazine bridged quasi two dimensional quantum Heisenberg antiferromagnetic (QHAF) compounds

    NASA Astrophysics Data System (ADS)

    Xiao, Fan

    The magnetic properties of a family of molecular-based quasi-two-dimensional S=1/2 Heisenberg antiferromagnets (2D QHAF) are studied. Three compounds, Cu(pz)2 (ClO4)2, Cu(pz)2(BF 4)2, and [Cu(pz)2(NO3)](PF6) contain similar planes of Cu2+ ions linked into magnetically square lattices by bridging pyrazine molecules (pz =C4H4N 2). The anions provide charge balance as well as isolation between the layers. Low field single crystal measurements of susceptibility and magnetization reveal low ratios of Neel temperatures to exchange strengths (4.25/17.5 = 0.243, 3.80/15.3 = 0.248, and 3.05/10.8 = 0.282, respectively) while the ratio of the anisotropy fields HA(kOe) to the saturation field HSAT(kOe) are small (2.6/490 = 5.3x10-3, 2.4/430 = 5.5x10-3, and 0.07/300 = 2.3x10-4, respectively), demonstrating close approximations to a two-dimensional Heisenberg model. The susceptibilities of Cu(pz)2(ClO4)2 and Cu(pz)2(BF4)2 show evidence of a spin crossover (Heisenberg to XY) at low temperatures; their zero-field ordering transitions are primarily driven by the XY behavior with the ultimate three-dimensional transition appearing parasitically. The [Cu(pz)2(NO 3)](PF6) compound remains Heisenberg-like at all temperatures, with its transition to the Neel state due to the inter- layer interactions. High field single crystal measurements of Cu(pz)2(ClO 4)2 indicates that both spin crossover transition temperature and ordering temperature increase as the external field increases up to 5 T. The results suggests a field-induced XY anisotropy is produced by the external field and the ordering temperature vs field follows a Berezinskii-Kosterlitz-Thouless (BKT)-like transition trend predicted by quantum Monte Carlo simulation. Calorimetry measurements were performed to verify the hypothesis with external fields up to 33 T. The results successfully confirmed our prediction. The transition temperature shows a rounded maximum at 16 T and starts dropping as the field gets stronger. The

  8. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs

    NASA Astrophysics Data System (ADS)

    Caspani, Lucia; Reimer, Christian; Kues, Michael; Roztocki, Piotr; Clerici, Matteo; Wetzel, Benjamin; Jestin, Yoann; Ferrera, Marcello; Peccianti, Marco; Pasquazi, Alessia; Razzari, Luca; Little, Brent E.; Chu, Sai T.; Moss, David J.; Morandotti, Roberto

    2016-06-01

    Recent developments in quantum photonics have initiated the process of bringing photonic-quantumbased systems out-of-the-lab and into real-world applications. As an example, devices to enable the exchange of a cryptographic key secured by the laws of quantum mechanics are already commercially available. In order to further boost this process, the next step is to transfer the results achieved by means of bulky and expensive setups into miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper, we briefly review the most recent advancements in the generation of quantum states of light on-chip. In particular, we focus on optical microcavities, as they can offer a solution to the problem of low efficiency that is characteristic of the materials typically used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with telecom standards (for exploiting existing fibre networks) and quantum memories (necessary to extend the communication distance), as well as giving a longitudinal multimode character for larger information transfer and processing. This last property (i.e., the increased dimensionality of the photon quantum state) is achieved through the ability to generate multiple photon pairs on a frequency comb, corresponding to the microcavity resonances. Further achievements include the possibility of fully exploiting the polarization degree of freedom, even for integrated devices. These results pave the way for the generation of integrated quantum frequency combs that, in turn, may find important applications toward the realization of a compact quantum-computing platform.

  9. Untangled modes in multimode waveguides

    NASA Astrophysics Data System (ADS)

    Plöschner, Martin; Tyc, TomáÅ.¡; Čižmár, TomáÅ.¡

    2016-03-01

    Small, fibre-based endoscopes have already improved our ability to image deep within the human body. A novel approach introduced recently utilised disordered light within a standard multimode optical fibre for lensless imaging. Importantly, this approach brought very significant reduction of the instruments footprint to dimensions below 100 μm. The most important limitations of this exciting technology is the lack of bending flexibility - imaging is only possible as long as the fibre remains stationary. The only route to allow flexibility of such endoscopes is in trading-in all the knowledge about the optical system we have, particularly the cylindrical symmetry of refractive index distribution. In perfect straight step-index cylindrical waveguides we can find optical modes that do not change their spatial distribution as they propagate through. In this paper we present a theoretical background that provides description of such modes in more realistic model of real-life step-index multimode fibre taking into account common deviations in distribution of the refractive index from its ideal step-index profile. Separately, we discuss how to include the influence of fibre bending.

  10. Multimodal signature modeling of humans

    NASA Astrophysics Data System (ADS)

    Cathcart, J. Michael; Kocher, Brian; Prussing, Keith; Lane, Sarah; Thomas, Alan

    2010-04-01

    Georgia Tech been investigating method for the detection of covert personnel in traditionally difficult environments (e.g., urban, caves). This program focuses on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. Both aspects are needed to support the development of personnel detection and tracking algorithms. The difficult nature of these personnel-related problems dictates a multimodal sensing approach. Human signature data of sufficient and accurate quality and quantity do not exist, thus the development of an accurate signature model for a human is needed. This model should also simulate various human activities to allow motion-based observables to be exploited. This paper will describe a multimodal signature modeling approach that incorporates human physiological aspects, thermoregulation, and dynamics into the signature calculation. This approach permits both passive and active signatures to be modeled. The focus of the current effort involved the computation of signatures in urban environments. This paper will discuss the development of a human motion model for use in simulating both electro-optical signatures and radar-based signatures. Video sequences of humans in a simulated urban environment will also be presented; results using these sequences for personnel tracking will be presented.

  11. Correlation of the nanostructure with optoelectronic properties during rapid thermal annealing of Ga(NAsP) quantum wells grown on Si(001) substrates

    NASA Astrophysics Data System (ADS)

    Wegele, Tatjana; Beyer, Andreas; Gies, Sebastian; Zimprich, Martin; Heimbrodt, Wolfram; Stolz, Wolfgang; Volz, Kerstin

    2016-01-01

    Ga(NAsP) quantum wells grown pseudomorphically on Si substrate are promising candidates for optically active light sources in future optoelectronically integrated circuits on Si substrates. As the material is typically grown at low temperatures, it has to be thermally annealed after growth to remove defects and optimize optoelectronic properties. Here we show by quantitative transmission electron microscopy that two different kinds of structural development are associated with the annealing. First of all, the quantum well homogeneity improves with increasing annealing temperature. For annealing temperatures above 925 °C the composition becomes less homogeneous again. Second, voids form in the quantum well for annealing temperatures above 850 °C. Their density and size increase continuously with increasing annealing temperature. These results are correlated to the optical properties of the samples, where we find from temperature-dependent photoluminescence measurements two scales of disorder, which show the same temperature dependence as the structural properties.

  12. Laser and Optical Properties of Green-Emitting ZnCdSe Quantum Dot Based Heterostructures

    NASA Astrophysics Data System (ADS)

    Vainilovich, Aliaksei G.; Lutsenko, E. V.; Yablonskii, G. P.; Sedova, I. V.; Sorokin, S. V.; Gronin, S. V.; Ivanov, S. V.; Kop'ev, P. S.

    Green-emitting laser diodes are in great demand for mobile projection media (pico-projector), navigation, underwater communication but they are still absent on the market. InGaN/GaN-based quantum well structures are approaching green spectral region by use of polar, semipolar as well as free-standing GaN substrates. However such heterostructures suffer from high laser thresholds with increase of indium content. A promising alternative way is the use of highly efficient green-emitting undoped ZnCdSe based quantum dot (QD) laser heterostructures optically pumped by blue InGaN laser diodes. Operation of blue-green laser converter based on MBE grown heterostructure with two ZnCdSe QD layers was shown for the first time in [1].

  13. A potential from quantum chemistry for thermodynamic property predictions for methanethiol

    NASA Astrophysics Data System (ADS)

    Garrison, Stephen L.; Sandler, Stanley I.

    2005-08-01

    An ab initio potential for methanethiol is determined by computing quantum-chemical interaction energies for a range of orientations and center-of-mass separation distances. These energies are initially fitted to a pairwise-additive, site-site Morse-C6 intermolecular potential. Additional interaction energies were then calculated at separation distances determined to be important from the angle-averaged Mayer f function calculated with the initial potential. This expanded set of interaction energies is then fitted using Boltzmann-type weighting to obtain the final intermolecular potential. Although there are some discrepancies in the fit for a particular type of orientation, the phase behavior calculated from Gibbs ensemble Monte Carlo simulations using this final potential is in very good agreement with experimental data. The prescription used here for obtaining the optimum potential from quantum-chemical methods should be applicable to other systems.

  14. Dynamical properties of spin and subbands populations in 1D quantum wire

    NASA Astrophysics Data System (ADS)

    Vaseghi, B.; Khordad, R.; Golshan, M. M.

    2006-10-01

    In this paper we study the spin and subbands populations, as functions of time, for electrons in a quasi-1D quantum wire, with spin-orbit coupling (SOC), to which a perpendicular magnetic field is applied. The system is governed by the Hamiltonian which, in the strong magnetic field limit, resembles the Jaynes-Cummings model (JCM) in quantum optics (QO). Using a procedure similar to that in QO, we explicitly present the time-evolution operator, thereby calculating the spin states and subbands populations as functions of time. We show that the populations exhibit oscillations, depending on the interaction parameters, scale lengths and, particularly, the initial states of the system. Specifically, if the electrons are initially prepared in a maximal coherent superposition of spin states, the expectation values periodically collapse and revive. The collapse-revivals are most profound for the spin along the magnetic field and subbands populations.

  15. Equilibrium properties of quantum water clusters by the variational Gaussian wavepacket method.

    PubMed

    Frantsuzov, Pavel A; Mandelshtam, Vladimir A

    2008-03-01

    The variational Gaussian wavepacket (VGW) method in combination with the replica-exchange Monte Carlo is applied to calculations of the heat capacities of quantum water clusters, (H(2)O)(8) and (H(2)O)(10). The VGW method is most conveniently formulated in Cartesian coordinates. These in turn require the use of a flexible (i.e., unconstrained) water potential. When the latter is fitted as a linear combination of Gaussians, all the terms involved in the numerical solution of the VGW equations of motion are analytic. When a flexible water model is used, a large difference in the timescales of the inter- and intramolecular degrees of freedom generally makes the system very difficult to simulate numerically. Yet, given this difficulty, we demonstrate that our methodology is still practical. We compare the computed heat capacities to those for the corresponding classical systems. As expected, the quantum effects shift the melting temperatures toward the lower values. PMID:18331090

  16. Assembly and Calcium Binding Properties of Quantum Dot-Calmodulin Calcium Sensor.

    PubMed

    Eun, Su-yong; Nguyen-ta, Kim; Yoo, Hoon; Silva, Gabriel A; Kim, Soon-jong

    2016-02-01

    We have developed the first nanoengineered quantum dot molecular complex designed to measure changes of calcium ion (Ca2+) concentration at high spatial and temporal resolutions in real time. The sensor is ratiometric and composed of three components: a quantum dot (QD) emitting at 620 nm as a fluorescence donor, an organic dye (Alexa Fluor 647) as a fluorescence acceptor, and a calmodulin-M13 (CaM-M13) protein part as a calcium sensing component. In this work, we have determined the maximal number of CaM-M13 required for saturating a single QD particle to be approximately 16. The dissociation constant, Kd of the QD-based calcium ion sensor was also estimated to be around 30 microM. PMID:27433729

  17. Quantum-chemical investigations of spectroscopic properties of a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Titova, T. Yu.; Morozova, Yu. P.; Zharkova, O. M.; Artyukhov, V. Ya.; Korolev, B. V.

    2012-09-01

    The prodan molecule (6-propionyl-2-dimethylamino naphthalene) - fluorescence probe - is investigated by quantum-chemical methods of intermediate neglect of differential overlap (INDO) and molecular electrostatic potential (MEP). The dipole moments of the ground and excited states, the nature and position of energy levels, the centers of specific solvation, the rate constants of photoprocesses, and the fluorescence quantum yield are estimated. To elucidate the role of the dimethylamino group in the formation of bands and spectral characteristics, the molecule only with the propionyl group (pron) is investigated. The long-wavelength absorption bands of prodan and pron molecules are interpreted. The results obtained for the prodan molecule by the INDO method with original spectroscopic parameterization are compared with the literature data obtained by the DFT/CIS, ZINDO/S, and AM1/CISD methods.

  18. The integration of emotional and symbolic components in multimodal communication

    PubMed Central

    Mehu, Marc

    2015-01-01

    Human multimodal communication can be said to serve two main purposes: information transfer and social influence. In this paper, I argue that different components of multimodal signals play different roles in the processes of information transfer and social influence. Although the symbolic components of communication (e.g., verbal and denotative signals) are well suited to transfer conceptual information, emotional components (e.g., non-verbal signals that are difficult to manipulate voluntarily) likely take a function that is closer to social influence. I suggest that emotion should be considered a property of communicative signals, rather than an entity that is transferred as content by non-verbal signals. In this view, the effect of emotional processes on communication serve to change the quality of social signals to make them more efficient at producing responses in perceivers, whereas symbolic components increase the signals’ efficiency at interacting with the cognitive processes dedicated to the assessment of relevance. The interaction between symbolic and emotional components will be discussed in relation to the need for perceivers to evaluate the reliability of multimodal signals. PMID:26217280

  19. In vivo detection of cervical intraepithelial neoplasia by multimodal colposcopy

    NASA Astrophysics Data System (ADS)

    Ren, Wenqi; Qu, Yingjie; Pei, Jiaojiao; Xiao, Linlin; Zhang, Shiwu; Chang, Shufang; Smith, Zachary J.; Xu, Ronald X.

    2016-03-01

    Cervical cancer is the leading cause of cancer death for women in developing countries. Colposcopy plays an important role in early screening and detection of cervical intraepithelial neoplasia (CIN). In this paper, we developed a multimodal colposcopy system that combines multispectral reflectance, autofluorescence, and RGB imaging for in vivo detection of CIN, which is capable of dynamically recording multimodal data of the same region of interest (ROI). We studied the optical properties of cervical tissue to determine multi-wavelengths for different imaging modalities. Advanced algorithms based on the second derivative spectrum and the fluorescence intensity were developed to differentiate cervical tissue into two categories: squamous normal (SN) and high grade (HG) dysplasia. In the results, the kinetics of cervical reflectance and autofluorescence characteristics pre and post acetic acid application were observed and analyzed, and the image segmentation revealed good consistency with the gold standard of histopathology. Our pilot study demonstrated the clinical potential of this multimodal colposcopic system for in vivo detection of cervical cancer.

  20. Spectral properties of a confined nonlinear quantum oscillator in one and three dimensions

    SciTech Connect

    Schulze-Halberg, Axel; Gordon, Christopher R.

    2013-04-15

    We analyze the spectral behaviour of a nonlinear quantum oscillator model under confinement. The underlying potential is given by a harmonic oscillator interaction plus a nonlinear term that can be weakened or strengthened through a parameter. Numerical eigenvalues of the model in one and three dimensions are presented. The asymptotic behaviour of the eigenvalues for confinement relaxation and for vanishing nonlinear term in the potential is investigated. Our findings are compared with existing results.

  1. On topological properties of solution sets of non Lipschitzian quantum stochastic differential inclusions

    NASA Astrophysics Data System (ADS)

    Bishop, S. A.; Ayoola, E. O.

    2016-03-01

    In this paper, we establish results on continuous mappings of the space of the matrix elements of an arbitrary nonempty set of pseudo solutions of non Lipschitz quantum Stochastic differential inclusion (QSDI) into the space of the matrix elements of its solutions. we show that under the non Lipschitz condition, the space of the matrix elements of solutions is still an absolute retract, contractible, locally and integrally connected in an arbitrary dimension. The results here generalize existing results in the literature.

  2. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  3. The Use of Ultrashort Picosecond Laser Pulses to Generate Quantum Optical Properties of Single Molecules in Biophysics

    NASA Astrophysics Data System (ADS)

    Ly, Sonny

    Generation of quantum optical states from ultrashort laser-molecule interactions have led to fascinating discoveries in physics and chemistry. In recent years, these interactions have been extended to probe phenomena in single molecule biophysics. Photons emitted from a single fluorescent molecule contains important properties about how the molecule behave and function in that particular environment. Analysis of the second order coherence function through fluorescence correlation spectroscopy plays a pivotal role in quantum optics. At very short nanosecond timescales, the coherence function predicts photon antibunching, a purely quantum optical phenomena which states that a single molecule can only emit one photon at a time. Photon antibunching is the only direct proof of single molecule emission. From the nanosecond to microsecond timescale, the coherence function gives information about rotational diffusion coefficients, and at longer millisecond timescales, gives information regarding the translational diffusion coefficients. In addition, energy transfer between molecules from dipole-dipole interaction results in FRET, a highly sensitive method to probe conformational dynamics at nanometer distances. Here I apply the quantum optical techniques of photon antibunching, fluorescence correlation spectroscopy and FRET to probe how lipid nanodiscs form and function at the single molecule level. Lipid nanodiscs are particles that contain two apolipoprotein (apo) A-I circumventing a lipid bilayer in a belt conformation. From a technological point of view, nanodiscs mimics a patch of cell membrane that have recently been used to reconstitute a variety of membrane proteins including cytochrome P450 and bacteriorhodopsin. They are also potential drug transport vehicles due to its small and stable 10nm diameter size. Biologically, nanodiscs resemble to high degree, high density lipoproteins (HDL) in our body and provides a model platform to study lipid-protein interactions

  4. Quantum Feynman Ratchet

    NASA Astrophysics Data System (ADS)

    Goyal, Ketan; Kawai, Ryoichi

    As nanotechnology advances, understanding of the thermodynamic properties of small systems becomes increasingly important. Such systems are found throughout physics, biology, and chemistry manifesting striking properties that are a direct result of their small dimensions where fluctuations become predominant. The standard theory of thermodynamics for macroscopic systems is powerless for such ever fluctuating systems. Furthermore, as small systems are inherently quantum mechanical, influence of quantum effects such as discreteness and quantum entanglement on their thermodynamic properties is of great interest. In particular, the quantum fluctuations due to quantum uncertainty principles may play a significant role. In this talk, we investigate thermodynamic properties of an autonomous quantum heat engine, resembling a quantum version of the Feynman Ratchet, in non-equilibrium condition based on the theory of open quantum systems. The heat engine consists of multiple subsystems individually contacted to different thermal environments.

  5. Quantum Stochastic Processes

    SciTech Connect

    Spring, William Joseph

    2009-04-13

    We consider quantum analogues of n-parameter stochastic processes, associated integrals and martingale properties extending classical results obtained in [1, 2, 3], and quantum results in [4, 5, 6, 7, 8, 9, 10].

  6. Effective improvement in optical properties of colloidal CdTe@ZnS quantum dots synthesized from aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Yongbo; Si, Boni; Lu, Siwu; Ma, Xuan; Liu, Enzhou; Fan, Jun; Li, Xinghua; Hu, Xiaoyun

    2016-09-01

    Efficient synthesis of high-quality quantum dots (QDs) with excellent optical properties by aqueous synthesis is still of great significance for extended optical applications. Herein we highlight the advantages in optical properties of colloidal CdTe@ZnS QDs prepared by a facile and highly effective aqueous synthesis method. These achievements were realized by delicate manipulation of the conditions involved in nucleation and the growth process. Transmission electron microscopy (TEM) images indicated the QDs were uniform size and well dispersible. The emission peaks of the as-prepared QDs could shift from 496 to 698 nm with narrow full width at half maximum (FWHM), and the corresponding fluorescent color changed from green to red. Moreover, the emission could even reach to the near-infrared (NIR) region (706–796 nm) by extending the reaction time. The highest photoluminescence (PL) quantum yield (QY) of the QDs could reach to 60%, and the average of FWHM was about 55 nm. To address the problem of wide size-distribution in PL QY decrease and FWHM broadening, the colloids of QDs prepared at long reaction time (above 3 h) were centrifuged (12 000 r min‑1). In addition, the assessment of QD cytotoxicity indicated the CdTe@ZnS QDs were much less cytotoxic and showed good biocompatibility. Compared with organic synthesis, our aqueous synthesis of QDs could be carried out efficiently on a large scale and showed good batch-to-batch reproducibility. The as-prepared CdTe@ZnS QDs exhibited excellent optical properties and hold a good potential to be applied in optoelectronic and biological applications.

  7. Quantum coherence and correlations in quantum system

    PubMed Central

    Xi, Zhengjun; Li, Yongming; Fan, Heng

    2015-01-01

    Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795

  8. Measuring Bragg gratings in multimode optical fibers.

    PubMed

    Schmid, Markus J; Müller, Mathias S

    2015-03-23

    Fiber Bragg gratings (FBG) in multimode optical fibers provide a means for cost-effictive devices resulting in simplified and robust optic sensor systems. Parasitic mode effects in optical components of the entire measurement system strongly influence the measured multi-resonance reflection spectrum. Using a mode transfer matrix formalism we can describe these complex mode coupling effects in multimode optical systems in more detail. We demonstrate the accordance of the theory by two experiments. With this formalism it is possible to understand and optimize mode effects in multimode fiber optic systems. PMID:25837146

  9. Intrinsic entanglement degradation by multimode detection

    SciTech Connect

    Aiello, A.; Woerdman, J.P.

    2004-08-01

    Relations between photon scattering, entanglement, and multimode detection are investigated. We first establish a general framework in which one- and two-photon elastic scattering processes can be discussed; then, we focus on the study of the intrinsic entanglement degradation caused by a multimode detection. We show that any multimode scattered state cannot maximally violate the Bell-Clauser-Horne-Shimony-Holt inequality because of the momentum spread. The results presented here have general validity and can be applied to both deterministic and random scattering processes.

  10. Electronic and Magnetic Properties of Encapsulated MoS2 Quantum Dots: The Case of Noble Metal Nanoparticle Dopants.

    PubMed

    Loh, Guan Chee

    2016-04-18

    With the rise of 2D materials, such as graphene and transition metal dichalcogenides, as viable materials for numerous experimental applications, it becomes more necessary to maintain fine control of their properties. One expedient and efficacious technique to regulate their properties is surface functionalization. In this study, DFT calculations are performed on triangular MoS2 quantum dots (QDs) either partially or completely doped with nanoparticles (NPs) of the noble metals Au, Ag, and Pt. The effects of these dopants on the geometry, electronic properties, magnetic properties, and chemical bonding of the QDs are investigated. The calculations show that the structural stability of the QDs is reduced by Au or Ag dopants, whereas Pt dopants have a contrasting effect. The NPs diminish the metallicity of the QD, the extent of which is contingent on the number of NPs adsorbed on the QD. However, these NPs exert distinctly disparate charge transfer effects-Ag NPs n-dope the QDs, whereas Au and Pt NPs either n- or p-dope. The molecular electrostatic potential maps of the occupied states show that metallic states are removed from the doping sites. Notwithstanding the decrease of magnetization in all three types of hybrid QD, the distribution of spin density in the Pt-doped QD is inherently different from that in the other QDs. Bond analyses using the quantum theory of atoms in molecules and the crystal orbital Hamilton population suggest that bonds between the Pt NPs and the QDs are the most covalent and the strongest, followed by the Au-QD bonds, and then Ag-QD bonds. The versatility of these hybrid QDs is further examined by applying an external electric field in the three orthogonal orientations, and comparing their properties with those in the absence of the electric field. There are two primary observations: 1) dopants at the tail, head and tail, and in the fully encased configuration are most effective in modifying the distribution of metallic states if the

  11. Implications of orbital hybridization on the electronic properties of doped quantum dots: the case of Cu:CdSe

    NASA Astrophysics Data System (ADS)

    Wright, Joshua T.; Forsythe, Kyle; Hutchins, Jamie; Meulenberg, Robert W.

    2016-04-01

    This paper investigates how chemical dopants affect the electronic properties of CdSe quantum dots (QDs) and why a model that incorporates the concepts of orbital hybridization must be used to understand these properties. Extended X-ray absorption fine structure spectroscopy measurements show that copper dopants in CdSe QDs occur primarily through a statistical doping mechanism. Ultraviolet photoemission spectroscopy (UPS) experiments provide a detailed insight on the valence band (VB) structure of doped and undoped QDs. Using UPS measurements, we are able to observe photoemission from the Cu d-levels above VB maximum of the QDs which allows a complete picture of the energy band landscape of these materials. This information provides insights into many of the physical properties of doped QDs, including the highly debated near-infrared photoluminescence in Cu doped CdSe QDs. We show that all our results point to a common theme of orbital hybridization in Cu doped CdSe QDs which leads to optically and electronically active states below the conduction band minimum. Our model is supported from current-voltage measurements of doped and undoped materials, which exhibit Schottky to Ohmic behavior with Cu doping, suggestive of a tuning of the lowest energy states near the Fermi level.This paper investigates how chemical dopants affect the electronic properties of CdSe quantum dots (QDs) and why a model that incorporates the concepts of orbital hybridization must be used to understand these properties. Extended X-ray absorption fine structure spectroscopy measurements show that copper dopants in CdSe QDs occur primarily through a statistical doping mechanism. Ultraviolet photoemission spectroscopy (UPS) experiments provide a detailed insight on the valence band (VB) structure of doped and undoped QDs. Using UPS measurements, we are able to observe photoemission from the Cu d-levels above VB maximum of the QDs which allows a complete picture of the energy band landscape of

  12. Quantum-network generation based on four-wave mixing

    NASA Astrophysics Data System (ADS)

    Cai, Yin; Feng, Jingliang; Wang, Hailong; Ferrini, Giulia; Xu, Xinye; Jing, Jietai; Treps, Nicolas

    2015-01-01

    We present a scheme to realize versatile quantum networks by cascading several four-wave mixing (FWM) processes in warm rubidium vapors. FWM is an efficient χ(3 ) nonlinear process, already used as a resource for multimode quantum state generation and which has been proved to be a promising candidate for applications to quantum information processing. We analyze theoretically the multimode output of cascaded FWM systems, derive its independent squeezed modes, and show how, with phase controlled homodyne detection and digital postprocessing, they can be turned into a versatile source of continuous variable cluster states.

  13. Quantum interference of independently generated telecom-band single photons

    SciTech Connect

    Patel, Monika; Altepeter, Joseph B.; Huang, Yu-Ping; Oza, Neal N.; Kumar, Prem

    2014-12-04

    We report on high-visibility quantum interference of independently generated telecom O-band (1310 nm) single photons using standard single-mode fibers. The experimental data are shown to agree well with the results of simulations using a comprehensive quantum multimode theory without the need for any fitting parameter.

  14. Multimode waveguide based directional coupler

    NASA Astrophysics Data System (ADS)

    Ahmed, Rajib; Rifat, Ahmmed A.; Sabouri, Aydin; Al-Qattan, Bader; Essa, Khamis; Butt, Haider

    2016-07-01

    The Silicon-on-Insulator (SOI) based platform overcomes limitations of the previous copper and fiber based technologies. Due to its high index difference, SOI waveguide (WG) and directional couplers (DC) are widely used for high speed optical networks and hybrid Electro-Optical inter-connections; TE00-TE01, TE00-TE00 and TM00-TM00 SOI direction couplers are designed with symmetrical and asymmetrical configurations to couple with TE00, TE01 and TM00 in a multi-mode semi-triangular ring-resonator configuration which will be applicable for multi-analyte sensing. Couplers are designed with effective index method and their structural parameters are optimized with consideration to coupler length, wavelength and polarization dependence. Lastly, performance of the couplers are analyzed in terms of cross-talk, mode overlap factor, coupling length and coupling efficiency.

  15. Brain Multimodality Monitoring: Updated Perspectives.

    PubMed

    Roh, David; Park, Soojin

    2016-06-01

    The challenges posed by acute brain injury (ABI) involve the management of the initial insult in addition to downstream inflammation, edema, and ischemia that can result in secondary brain injury (SBI). SBI is often subclinical, but can be detected through physiologic changes. These changes serve as a surrogate for tissue injury/cell death and are captured by parameters measured by various monitors that measure intracranial pressure (ICP), cerebral blood flow (CBF), brain tissue oxygenation (PbtO2), cerebral metabolism, and electrocortical activity. In the ideal setting, multimodality monitoring (MMM) integrates these neurological monitoring parameters with traditional hemodynamic monitoring and the physical exam, presenting the information needed to clinicians who can intervene before irreversible damage occurs. There are now consensus guidelines on the utilization of MMM, and there continue to be new advances and questions regarding its use. In this review, we examine these recommendations, recent evidence for MMM, and future directions for MMM. PMID:27095434

  16. DBSAR's First Multimode Flight Campaign

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Vega, Manuel; Buenfil, Manuel; Geist, Alessandro; Hilliard, Lawrence; Racette, Paul

    2010-01-01

    The Digital Beamforming SAR (DBSAR) is an airborne imaging radar system that combines phased array technology, reconfigurable on-board processing and waveform generation, and advances in signal processing to enable techniques not possible with conventional SARs. The system exploits the versatility inherently in phased-array technology with a state-of-the-art data acquisition and real-time processor in order to implement multi-mode measurement techniques in a single radar system. Operational modes include scatterometry over multiple antenna beams, Synthetic Aperture Radar (SAR) over several antenna beams, or Altimetry. The radar was flight tested in October 2008 on board of the NASA P3 aircraft over the Delmarva Peninsula, MD. The results from the DBSAR system performance is presented.

  17. [Multimodal pain therapy. Current situation].

    PubMed

    Kaiser, U; Sabatowski, R; Azad, S C

    2015-10-01

    A multidisciplinary approach for the management of patients with chronic pain is now well-established in many countries, especially in situations involving a complex disease process in the sense of a biopsychosocial model. Both the efficacy and cost-effectiveness of multidisciplinary pain treatment programs and their superiority compared to unimodal therapy has been documented in a number of studies, reviews and meta-analyses, in particular for patients suffering from chronic low back pain. Nevertheless, there are still major shortcomings concerning the definition of multimodal and multidisciplinary treatment and the quality of structures and processes, compared for example to the standards defined by the German Pain Society (Deutsche Schmerzgesellschaft). Furthermore, there is still no consensus on specific therapeutic approaches, the differentiation between responders and non-responders as well as on the tools required for measurement. All these questions will have to be answered by concerted efforts in a multicenter setting. PMID:26271912

  18. Brain Multimodality Monitoring: Updated Perspectives

    PubMed Central

    Roh, David

    2016-01-01

    The challenges posed by acute brain injury (ABI) involve the management of the initial insult in addition to downstream inflammation, edema, and ischemia that can result in secondary brain injury (SBI). SBI is often subclinical, but can be detected through physiologic changes. These changes serve as a surrogate for tissue injury/cell death and are captured by parameters measured by various monitors that measure intracranial pressure (ICP), cerebral blood flow (CBF), brain tissue oxygenation (PbtO2), cerebral metabolism, and electrocortical activity. In the ideal setting, multimodality monitoring (MMM) integrates these neurological monitoring parameters with traditional hemodynamic monitoring and the physical exam, presenting the information needed to clinicians who can intervene before irreversible damage occurs. There are now consensus guidelines on the utilization of MMM, and there continue to be new advances and questions regarding its use. In this review, we examine these recommendations, recent evidence for MMM, and future directions for MMM. PMID:27095434

  19. Minibodies and Multimodal Chromatography Methods

    PubMed Central

    Cheung, Chia-Wei; Lepin, Eric J.; Wu, Anna M.; Sherman, Mark A.; Raubitschek, Andrew A.; Yazaki, Paul J.

    2011-01-01

    This case study describes early phase purification process development for a recombinant anticancer minibody produced in mammalian cell culture. The minibody did not bind to protein A. Cation-exchange, anion-exchange, hydrophobic-interaction, and hydroxyapatite (eluted by phosphate gradient) chromatographic methods were scouted, but the minibody coeluted with BSA to a substantial degree on each. Hydroxyapatite eluted with a sodium chloride gradient separated BSA and also removed a dimeric contaminant, but BSA consumed so much binding capacity that this proved impractical as a capture tool. Capto MMC media proved capable of supporting adequate capture and significant dimer removal, although both loading and elution selectivity varied dramatically with the amount of supernatant applied to the column. An anion-exchange step was included to fortify overall virus and DNA removal. These results illustrate the value of multimodal chromatography methods when affinity chromatography methods are lacking and conventional alternatives prove inadequate. PMID:21984873

  20. Nonlinear processes in multi-mode optical fibers

    NASA Astrophysics Data System (ADS)

    Pourbeyram Kaleibar, Hamed

    Nonlinear processes in optical fibers can affect data transmission and power carried by optical fibers and can limit the bandwidth and the capacity of optical communications. On the other hand nonlinear phenomena could be utilized to build in-fiber all-optical light sources and amplifiers. In this thesis new peaks inside an optical fiber have been generated using nonlinear processes. An intense green pump laser has been launched into a short fiber and specific modes have been excited to generate two new peaks in red and blue wavelengths, where two pump photons are annihilated to create two new photons in red and blue. The generated peaks are shifted far from pump; therefore they are less polluted by pump and Raman induced noises. The phase matching condition and the photon-flux rate for spontaneous and stimulated FWM have been studied both theoretically and experimentally for a commercial grade SMF-28 fiber. In low power and spontaneous regime new peaks are generated from quantum vacuum noise. Using the same pump laser for a long fiber, up to 21 new peaks spanning from green to Infrared have been generated. These peaks are equally spaced by 13THz. Generation of a Raman cascade spanning the wavelength range of 523 to 1750 nm wavelength range, in a standard telecommunication graded-index multimode optical fiber has been reported. Despite the highly multimode nature of the pump, the Raman peaks are generated in specific modes of the fiber, confirming substantial beam cleanup during the stimulated Raman scattering process.