Combinatorial Multiobjective Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Crossley, William A.; Martin. Eric T.
2002-01-01
The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.
MULTIOBJECTIVE PARALLEL GENETIC ALGORITHM FOR WASTE MINIMIZATION
In this research we have developed an efficient multiobjective parallel genetic algorithm (MOPGA) for waste minimization problems. This MOPGA integrates PGAPack (Levine, 1996) and NSGA-II (Deb, 2000) with novel modifications. PGAPack is a master-slave parallel implementation of a...
Multiobjective Genetic Algorithm applied to dengue control.
Florentino, Helenice O; Cantane, Daniela R; Santos, Fernando L P; Bannwart, Bettina F
2014-12-01
Dengue fever is an infectious disease caused by a virus of the Flaviridae family and transmitted to the person by a mosquito of the genus Aedes aegypti. This disease has been a global public health problem because a single mosquito can infect up to 300 people and between 50 and 100 million people are infected annually on all continents. Thus, dengue fever is currently a subject of research, whether in the search for vaccines and treatments for the disease or efficient and economical forms of mosquito control. The current study aims to study techniques of multiobjective optimization to assist in solving problems involving the control of the mosquito that transmits dengue fever. The population dynamics of the mosquito is studied in order to understand the epidemic phenomenon and suggest strategies of multiobjective programming for mosquito control. A Multiobjective Genetic Algorithm (MGA_DENGUE) is proposed to solve the optimization model treated here and we discuss the computational results obtained from the application of this technique. PMID:25230238
Optimal design of plasmonic waveguide using multiobjective genetic algorithm
NASA Astrophysics Data System (ADS)
Jung, Jaehoon
2016-01-01
An approach for multiobjective optimal design of a plasmonic waveguide is presented. We use a multiobjective extension of a genetic algorithm to find the Pareto-optimal geometries. The design variables are the geometrical parameters of the waveguide. The objective functions are chosen as the figure of merit defined as the ratio between the propagation distance and effective mode size and the normalized coupling length between adjacent waveguides at the telecom wavelength of 1550 nm.
Design of PID-type controllers using multiobjective genetic algorithms.
Herreros, Alberto; Baeyens, Enrique; Perán, José R
2002-10-01
The design of a PID controller is a multiobjective problem. A plant and a set of specifications to be satisfied are given. The designer has to adjust the parameters of the PID controller such that the feedback interconnection of the plant and the controller satisfies the specifications. These specifications are usually competitive and any acceptable solution requires a tradeoff among them. An approach for adjusting the parameters of a PID controller based on multiobjective optimization and genetic algorithms is presented in this paper. The MRCD (multiobjective robust control design) genetic algorithm has been employed. The approach can be easily generalized to design multivariable coupled and decentralized PID loops and has been successfully validated for a large number of experimental cases. PMID:12398277
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2005-01-01
A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2004-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm
Svečko, Rajko
2014-01-01
This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749
Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)
2002-01-01
We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.
Distributed Query Plan Generation Using Multiobjective Genetic Algorithm
Panicker, Shina; Vijay Kumar, T. V.
2014-01-01
A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability. PMID:24963513
A Multi-Objective Genetic Algorithm for Outlier Removal.
Nahum, Oren E; Yosipof, Abraham; Senderowitz, Hanoch
2015-12-28
Quantitative structure activity relationship (QSAR) or quantitative structure property relationship (QSPR) models are developed to correlate activities for sets of compounds with their structure-derived descriptors by means of mathematical models. The presence of outliers, namely, compounds that differ in some respect from the rest of the data set, compromise the ability of statistical methods to derive QSAR models with good prediction statistics. Hence, outliers should be removed from data sets prior to model derivation. Here we present a new multi-objective genetic algorithm for the identification and removal of outliers based on the k nearest neighbors (kNN) method. The algorithm was used to remove outliers from three different data sets of pharmaceutical interest (logBBB, factor 7 inhibitors, and dihydrofolate reductase inhibitors), and its performances were compared with those of five other methods for outlier removal. The results suggest that the new algorithm provides filtered data sets that (1) better maintain the internal diversity of the parent data sets and (2) give rise to QSAR models with much better prediction statistics. Equally good filtered data sets in terms of these metrics were obtained when another objective function was added to the algorithm (termed "preservation"), forcing it to remove certain compounds with low probability only. This option is highly useful when specific compounds should be preferably kept in the final data set either because they have favorable activities or because they represent interesting molecular scaffolds. We expect this new algorithm to be useful in future QSAR applications. PMID:26553402
A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...
Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio
2016-01-01
Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners. PMID:26778301
NASA Astrophysics Data System (ADS)
Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio
2016-02-01
Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.
NASA Astrophysics Data System (ADS)
Peralta, Richard C.; Forghani, Ali; Fayad, Hala
2014-04-01
Many real water resources optimization problems involve conflicting objectives for which the main goal is to find a set of optimal solutions on, or near to the Pareto front. E-constraint and weighting multiobjective optimization techniques have shortcomings, especially as the number of objectives increases. Multiobjective Genetic Algorithms (MGA) have been previously proposed to overcome these difficulties. Here, an MGA derives a set of optimal solutions for multiobjective multiuser conjunctive use of reservoir, stream, and (un)confined groundwater resources. The proposed methodology is applied to a hydraulically and economically nonlinear system in which all significant flows, including stream-aquifer-reservoir-diversion-return flow interactions, are simulated and optimized simultaneously for multiple periods. Neural networks represent constrained state variables. The addressed objectives that can be optimized simultaneously in the coupled simulation-optimization model are: (1) maximizing water provided from sources, (2) maximizing hydropower production, and (3) minimizing operation costs of transporting water from sources to destinations. Results show the efficiency of multiobjective genetic algorithms for generating Pareto optimal sets for complex nonlinear multiobjective optimization problems.
Compromise Approach-Based Genetic Algorithm for Constrained Multiobjective Portfolio Selection Model
NASA Astrophysics Data System (ADS)
Li, Jun
In this paper, fuzzy set theory is incorporated into a multiobjective portfolio selection model for investors’ taking into three criteria: return, risk and liquidity. The cardinality constraint, the buy-in threshold constraint and the round-lots constraints are considered in the proposed model. To overcome the difficulty of evaluation a large set of efficient solutions and selection of the best one on non-dominated surface, a compromise approach-based genetic algorithm is presented to obtain a compromised solution for the proposed constrained multiobjective portfolio selection model.
Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector.
Mayer, Alexandre; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier
2014-10-20
We present a multi-objective genetic algorithm we developed for the optimization of a flat-plate solar thermal collector. This collector consists of a waffle-shaped Al substrate with NiCrOx cermet and SnO(2) anti-reflection conformal coatings. Optimal geometrical parameters are determined in order to (i) maximize the solar absorptance α and (ii) minimize the thermal emittance ε. The multi-objective genetic algorithm eventually provides a whole set of Pareto-optimal solutions for the optimization of α and ε, which turn out to be competitive with record values found in the literature. In particular, a solution that enables α = 97.8% and ε = 4.8% was found. PMID:25607321
Multi-objective optimization of lithium-ion battery model using genetic algorithm approach
NASA Astrophysics Data System (ADS)
Zhang, Liqiang; Wang, Lixin; Hinds, Gareth; Lyu, Chao; Zheng, Jun; Li, Junfu
2014-12-01
A multi-objective parameter identification method for modeling of Li-ion battery performance is presented. Terminal voltage and surface temperature curves at 15 °C and 30 °C are used as four identification objectives. The Pareto fronts of two types of Li-ion battery are obtained using the modified multi-objective genetic algorithm NSGA-II and the final identification results are selected using the multiple criteria decision making method TOPSIS. The simulated data using the final identification results are in good agreement with experimental data under a range of operating conditions. The validation results demonstrate that the modified NSGA-II and TOPSIS algorithms can be used as robust and reliable tools for identifying parameters of multi-physics models for many types of Li-ion batteries.
NASA Astrophysics Data System (ADS)
Karakostas, Spiros
2015-05-01
The multi-objective nature of most spatial planning initiatives and the numerous constraints that are introduced in the planning process by decision makers, stakeholders, etc., synthesize a complex spatial planning context in which the concept of solid and meaningful optimization is a unique challenge. This article investigates new approaches to enhance the effectiveness of multi-objective evolutionary algorithms (MOEAs) via the adoption of a well-known metaheuristic: the non-dominated sorting genetic algorithm II (NSGA-II). In particular, the contribution of a sophisticated crossover operator coupled with an enhanced initialization heuristic is evaluated against a series of metrics measuring the effectiveness of MOEAs. Encouraging results emerge for both the convergence rate of the evolutionary optimization process and the occupation of valuable regions of the objective space by non-dominated solutions, facilitating the work of spatial planners and decision makers. Based on the promising behaviour of both heuristics, topics for further research are proposed to improve their effectiveness.
A Novel Multi-objective Genetic Algorithms-Based Calculation of Hill's Coefficients
NASA Astrophysics Data System (ADS)
Hariharan, Krishnaswamy; Chakraborti, Nirupam; Barlat, Frédéric; Lee, Myoung-Gyu
2014-06-01
The anisotropic coefficients of Hill's yield criterion are determined through a novel genetic algorithms-based multi-objective optimization approach. The classical method of determining anisotropic coefficients is sensitive to the effective plastic strain. In the present procedure, that limitation is overcome using a genetically evolved meta-model of the entire stress strain curve, obtained from uniaxial tension tests conducted in the rolling direction and transverse directions, and biaxial tension. Then, an effective strain that causes the least error in terms of two theoretically derived objective functions is chosen. The anisotropic constants evolved through genetic algorithms correlate very well with the classical results. This approach is expected to be successful for more complex constitutive equations as well.
A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.
Li, Bin-Bin; Wang, Ling
2007-06-01
This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA. PMID:17550113
NASA Astrophysics Data System (ADS)
Wang, Ping; Wu, Guangqiang
2013-03-01
Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.
Multi-objective optimization to predict muscle tensions in a pinch function using genetic algorithm
NASA Astrophysics Data System (ADS)
Bensghaier, Amani; Romdhane, Lotfi; Benouezdou, Fethi
2012-03-01
This work is focused on the determination of the thumb and the index finger muscle tensions in a tip pinch task. A biomechanical model of the musculoskeletal system of the thumb and the index finger is developed. Due to the assumptions made in carrying out the biomechanical model, the formulated force analysis problem is indeterminate leading to an infinite number of solutions. Thus, constrained single and multi-objective optimization methodologies are used in order to explore the muscular redundancy and to predict optimal muscle tension distributions. Various models are investigated using the optimization process. The basic criteria to minimize are the sum of the muscle stresses, the sum of individual muscle tensions and the maximum muscle stress. The multi-objective optimization is solved using a Pareto genetic algorithm to obtain non-dominated solutions, defined as the set of optimal distributions of muscle tensions. The results show the advantage of the multi-objective formulation over the single objective one. The obtained solutions are compared to those available in the literature demonstrating the effectiveness of our approach in the analysis of the fingers musculoskeletal systems when predicting muscle tensions.
Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul
2005-01-01
An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.
Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.
Mokeddem, Diab; Khellaf, Abdelhafid
2009-01-01
Optimal design problem are widely known by their multiple performance measures that are often competing with each other. In this paper, an optimal multiproduct batch chemical plant design is presented. The design is firstly formulated as a multiobjective optimization problem, to be solved using the well suited non dominating sorting genetic algorithm (NSGA-II). The NSGA-II have capability to achieve fine tuning of variables in determining a set of non dominating solutions distributed along the Pareto front in a single run of the algorithm. The NSGA-II ability to identify a set of optimal solutions provides the decision-maker DM with a complete picture of the optimal solution space to gain better and appropriate choices. Then an outranking with PROMETHEE II helps the decision-maker to finalize the selection of a best compromise. The effectiveness of NSGA-II method with multiojective optimization problem is illustrated through two carefully referenced examples. PMID:19543537
A genetic algorithm based multi-objective shape optimization scheme for cementless femoral implant.
Chanda, Souptick; Gupta, Sanjay; Kumar Pratihar, Dilip
2015-03-01
The shape and geometry of femoral implant influence implant-induced periprosthetic bone resorption and implant-bone interface stresses, which are potential causes of aseptic loosening in cementless total hip arthroplasty (THA). Development of a shape optimization scheme is necessary to achieve a trade-off between these two conflicting objectives. The objective of this study was to develop a novel multi-objective custom-based shape optimization scheme for cementless femoral implant by integrating finite element (FE) analysis and a multi-objective genetic algorithm (GA). The FE model of a proximal femur was based on a subject-specific CT-scan dataset. Eighteen parameters describing the nature of four key sections of the implant were identified as design variables. Two objective functions, one based on implant-bone interface failure criterion, and the other based on resorbed proximal bone mass fraction (BMF), were formulated. The results predicted by the two objective functions were found to be contradictory; a reduction in the proximal bone resorption was accompanied by a greater chance of interface failure. The resorbed proximal BMF was found to be between 23% and 27% for the trade-off geometries as compared to ∼39% for a generic implant. Moreover, the overall chances of interface failure have been minimized for the optimal designs, compared to the generic implant. The adaptive bone remodeling was also found to be minimal for the optimally designed implants and, further with remodeling, the chances of interface debonding increased only marginally. PMID:25392855
Multi-Objective Optimal Design of Switch Reluctance Motors Using Adaptive Genetic Algorithm
NASA Astrophysics Data System (ADS)
Rashidi, Mehran; Rashidi, Farzan
In this paper a design methodology based on multi objective genetic algorithm (MOGA) is presented to design the switched reluctance motors with multiple conflicting objectives such as efficiency, power factor, full load torque, and full load current, specified dimension, weight of cooper and iron and also manufacturing cost. The optimally designed motor is compared with an industrial motor having the same ratings. Results verify that the proposed method gives better performance for the multi-objective optimization problems. The results of optimal design show the reduction in the specified dimension, weight and manufacturing cost, and the improvement in the power factor, full load torque, and efficiency of the motor.A major advantage of the method is its quite short response time in obtaining the optimal design.
A Hybrid Cellular Genetic Algorithm for Multi-objective Crew Scheduling Problem
NASA Astrophysics Data System (ADS)
Jolai, Fariborz; Assadipour, Ghazal
Crew scheduling is one of the important problems of the airline industry. This problem aims to cover a number of flights by crew members, such that all the flights are covered. In a robust scheduling the assignment should be so that the total cost, delays, and unbalanced utilization are minimized. As the problem is NP-hard and the objectives are in conflict with each other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic algorithm, is implemented as the optimization method. The proposed algorithm provides the decision maker with a set of non-dominated or Pareto-optimal solutions, and enables them to choose the best one according to their preferences. A set of problems of different sizes is generated and solved using the proposed algorithm. Evaluating the performance of the proposed algorithm, three metrics are suggested, and the diversity and the convergence of the achieved Pareto front are appraised. Finally a comparison is made between CellDE and PAES, another meta-heuristic algorithm. The results show the superiority of CellDE.
Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm
NASA Astrophysics Data System (ADS)
Piroozfard, Hamed; Wong, Kuan Yew
2015-05-01
The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.
Proposal of Functional-Specialization Multi-Objective Real-Coded Genetic Algorithm: FS-MOGA
NASA Astrophysics Data System (ADS)
Hamada, Naoki; Tanaka, Masaharu; Sakuma, Jun; Kobayashi, Shigenobu; Ono, Isao
This paper presents a Genetic Algorithm (GA) for multi-objective function optimization. To find a precise and widely-distributed set of solutions in difficult multi-objective function optimization problems which have multimodality and curved Pareto-optimal set, a GA would be required conflicting behaviors in the early stage and the last stage of search. That is, in the early stage of search, GA should perform local-Pareto-optima-overcoming search which aims to overcome local Pareto-optima and converge the population to promising areas in the decision variable space. On the other hand, in the last stage of search, GA should perform Pareto-frontier-covering search which aims to spread the population along the Pareto-optimal set. NSGA-II and SPEA2, the most widely used conventional methods, have problems in local-Pareto-optima-overcoming and Pareto-frontier-covering search. In local-Pareto-optima-overcoming search, their selection pressure is too high to maintain the diversity for overcoming local Pareto-optima. In Pareto-frontier-covering search, their abilities of extrapolation-directed sampling are not enough to spread the population and they cannot sample along the Pareto-optimal set properly. To resolve above problems, the proposed method adaptively switches two search strategies, each of which is specialized for local-Pareto-optima-overcoming and Pareto-frontier-covering search, respectively. We examine the effectiveness of the proposed method using two benchmark problems. The experimental results show that our approach outperforms the conventional methods in terms of both local-Pareto-optima-overcoming and Pareto-frontier-covering search.
Multi-Objective Optimization of Heat Load and Run Time for CEBAF Linacs Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Reeves, Cody; Terzic, Balsa; Hofler, Alicia
2014-09-01
The Continuous Electron Beam Accelerator Facility (CEBAF) consists of two linear accelerators (Linacs) connected by arcs. Within each Linac, there are 200 niobium cavities that use superconducting radio frequency (SRF) to accelerate electrons. The gradients for the cavities are selected to optimize two competing objectives: heat load (the energy required to cool the cavities) and trip rate (how often the beam turns off within an hour). This results in a multidimensional, multi-objective, nonlinear system of equations that is not readily solved by analytical methods. This study improved a genetic algorithm (GA), which applies the concept of natural selection. The primary focus was making this GA more efficient to allow for more cost-effective solutions in the same amount of computation time. Two methods used were constraining the maximum value of the ob-jectives and also utilizing previously simulated solutions as the initial generation. A third method of interest involved refining the GA by combining the two objectives into a single weighted-sum objective, which collapses the set of optimal solutions into a single point. By combining these methods, the GA can be made 128 times as effective, reducing computation time from 30 min to 12 sec. This is crucial for when a cavity must be turned off, a new solution needs to be computed quickly. This work is of particular interest since it provides an efficient algorithm that can be easily adapted to any Linac facility.
Multi-objective global optimization of a butterfly valve using genetic algorithms.
Corbera, Sergio; Olazagoitia, José Luis; Lozano, José Antonio
2016-07-01
A butterfly valve is a type of valve typically used for isolating or regulating flow where the closing mechanism takes the form of a disc. For a long time, the attention of many researchers has focused on carrying out structural (FEM) and computational fluid dynamics (CFD) analysis in order to increase the performance of this type of flow-control device. This paper proposes a novel multi-objective approach for the design optimization of a butterfly valve using advanced genetic algorithms based on Pareto dominance. Firstly, after defining the need for this study and analyzing previous papers on the subject, the initial butterfly valve is presented and the initial fluid and structural analysis are carried out. Secondly, the optimization problem is defined and the optimization strategy is presented. The design variables are identified and a parameterization model of the valve is made. Thirdly, initial design candidates are generated by DOE and design optimization using genetic algorithms is performed. In this part of the process structural and CFD analysis are calculated for each candidate simultaneously. The optimization process involves various types of software and Python scripts are needed for their interaction and the connection of all steps. Finally, a set of optimal solutions is obtained and the optimum design that provides a 65.4% stress reduction, a 5% mass reduction and a 11.3% flow increase is selected in accordance with manufacturer preferences. Validation of the results is provided by comparing experimental test results with the values obtained for the initial design. The results demonstrate the capability and potential of the proposed methodology. PMID:27056745
NASA Astrophysics Data System (ADS)
Aly, Mohamed F.; Nassef, Ashraf O.; Hamza, Karim
2015-05-01
This article presents a multi-objective design optimization study of a vehicle suspension system with passive variable stiffness and active damping. Design of suspension systems is particularly challenging when the effective mass of the vehicle is subject to considerable variation during service. Perfectly maintaining the suspension performance under the variable load typically requires a controlled actuator to emulate variable stiffness. This is typically done through a hydraulic or pneumatic system, which can be too costly for small/medium pick-up trucks. The system in this article employs two springs with an offset to the second spring so that it engages during large deformation only, thereby providing passive variable stiffness without expensive hydraulics. The system damping is assumed to be controlled via variable viscosity magnetizable fluid, which can be implemented in a compact, low-power set-up. Performance indices from the literature are evaluated at minimum and maximum weight, and regarded as objectives in a multi-objective problem. As the individual objectives are prone to having local optima, the multi-objective problem is prone to having a disjointed Pareto-space. To deal with this issue, a modification is proposed to a multi-objective genetic algorithm. The algorithm performance is investigated via analytical test functions as well as the design case of the suspension system.
Sathiyamoorthy, V.; Sekar, T.; Elango, N.
2015-01-01
Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm3/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm3/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models. PMID:26167538
Sathiyamoorthy, V; Sekar, T; Elango, N
2015-01-01
Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm(3)/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm(3)/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models. PMID:26167538
NASA Astrophysics Data System (ADS)
Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun
2016-03-01
Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation-optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.
NASA Astrophysics Data System (ADS)
Yi, Pengxing; Dong, Lijian; Shi, Tielin
2014-12-01
To improve the dynamic performance and reduce the weight of the planet carrier in wind turbine gearbox, a multi-objective optimization method, which is driven by the maximum deformation, the maximum stress and the minimum mass of the studied part, is proposed by combining the response surface method and genetic algorithms in this paper. Firstly, the design points' distribution for the design variables of the planet carrier is established with the central composite design (CCD) method. Then, based on the computing results of finite element analysis (FEA), the response surface analysis is conducted to find out the proper sets of design variable values. And a multi-objective genetic algorithm (MOGA) is applied to determine the direction of optimization. As well, this method is applied to design and optimize the planet carrier in a 1.5MW wind turbine gearbox, the results of which are validated by an experimental modal test. Compared with the original design, the mass and the stress of the optimized planet carrier are respectively reduced by 9.3% and 40%. Consequently, the cost of planet carrier is greatly reduced and its stability is also improved.
NASA Astrophysics Data System (ADS)
Yu, Lijun; Liu, Shaoying; Liu, Fanming; Wang, Hui
2015-06-01
Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder roll stabilization can be established. This paper analyzes energy consumption caused by overcoming the resistance and the yaw, which is added to the fin/rudder roll stabilization system as new performance index. In order to achieve the purpose of the roll reduction, ship course keeping and energy optimization, the self-tuning PID controller based on the multi-objective genetic algorithm (MOGA) method is used to optimize performance index. In addition, random weight coefficient is adopted to build a multi-objective genetic algorithm optimization model. The objective function is improved so that the objective function can be normalized to a constant level. Simulation results showed that the control method based on MOGA, compared with the traditional control method, not only improves the efficiency of roll stabilization and yaw control precision, but also optimizes the energy of the system. The proposed methodology can get a better performance at different sea states.
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)
2002-01-01
A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.
Constrained Multiobjective Biogeography Optimization Algorithm
Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping
2014-01-01
Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591
Constrained multiobjective biogeography optimization algorithm.
Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping
2014-01-01
Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591
Zhang, Xuesong; Srinivasan, Raghavan; Van Liew, M.
2010-04-15
With the availability of spatially distributed data, distributed hydrologic models are increasingly used for simulation of spatially varied hydrologic processes to understand and manage natural and human activities that affect watershed systems. Multi-objective optimization methods have been applied to calibrate distributed hydrologic models using observed data from multiple sites. As the time consumed by running these complex models is increasing substantially, selecting efficient and effective multi-objective optimization algorithms is becoming a nontrivial issue. In this study, we evaluated a multi-algorithm, genetically adaptive multi-objective method (AMALGAM) for multi-site calibration of a distributed hydrologic model—Soil and Water Assessment Tool (SWAT), and compared its performance with two widely used evolutionary multi-objective optimization (EMO) algorithms (i.e. Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Non-dominated Sorted Genetic Algorithm II (NSGA-II)). In order to provide insights into each method’s overall performance, these three methods were tested in four watersheds with various characteristics. The test results indicate that the AMALGAM can consistently provide competitive or superior results compared with the other two methods. The multi-method search framework of AMALGAM, which can flexibly and adaptively utilize multiple optimization algorithms, makes it a promising tool for multi-site calibration of the distributed SWAT. For practical use of AMALGAM, it is suggested to implement this method in multiple trials with relatively small number of model runs rather than run it once with long iterations. In addition, incorporating different multiobjective optimization algorithms and multi-mode search operators into AMALGAM deserves further research.
Xiang, Bingren; Wu, Xiaohong; Liu, Dan
2014-01-01
Simultaneous determination of multiple weak chromatographic peaks via stochastic resonance algorithm attracts much attention in recent years. However, the optimization of the parameters is complicated and time consuming, although the single-well potential stochastic resonance algorithm (SSRA) has already reduced the number of parameters to only one and simplified the process significantly. Even worse, it is often difficult to keep amplified peaks with beautiful peak shape. Therefore, multiobjective genetic algorithm was employed to optimize the parameter of SSRA for multiple optimization objectives (i.e., S/N and peak shape) and multiple chromatographic peaks. The applicability of the proposed method was evaluated with an experimental data set of Sudan dyes, and the results showed an excellent quantitative relationship between different concentrations and responses. PMID:24526920
Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms
Malard, Joel M.; Heredia-Langner, Alejandro; Cannon, William R.; Mooney, Ryan W.; Baxter, Douglas J.
2005-12-10
Automatic data-base independent peptide identification from collision-induced dissociation tandem mass spectrometry data is made difficult by large plateaus in the fitness landscapes of scoring functions and the fuzzy nature of the constraints that is due to noise in the data. Two different scoring functions are combined into a parallel multi-objective optimization framework.
NASA Astrophysics Data System (ADS)
Jourdan, Damien B.; de Weck, Olivier L.
2004-09-01
This paper examines the optimal placement of nodes for a Wireless Sensor Network (WSN) designed to monitor a critical facility in a hostile region. The sensors are dropped from an aircraft, and they must be connected (directly or via hops) to a High Energy Communication Node (HECN), which serves as a relay from the ground to a satellite or a high-altitude aircraft. The sensors are assumed to have fixed communication and sensing ranges. The facility is modeled as circular and served by two roads. This simple model is used to benchmark the performance of the optimizer (a Multi-Objective Genetic Algorithm, or MOGA) in creating WSN designs that provide clear assessments of movements in and out of the facility, while minimizing both the likelihood of sensors being discovered and the number of sensors to be dropped. The algorithm is also tested on two other scenarios; in the first one the WSN must detect movements in and out of a circular area, and in the second one it must cover uniformly a square region. The MOGA is shown again to perform well on those scenarios, which shows its flexibility and possible application to more complex mission scenarios with multiple and diverse targets of observation.
Technology Transfer Automated Retrieval System (TEKTRAN)
This study explored the application of a multi-objective evolutionary algorithm (MOEA) and Pareto ordering in the multiple-objective automatic calibration of the Soil and Water Assessment Tool (SWAT). SWAT was calibrated in the Calapooia watershed, Oregon, USA, with two different pairs of objective ...
An Algorithmic Framework for Multiobjective Optimization
Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
An algorithmic framework for multiobjective optimization.
Ganesan, T; Elamvazuthi, I; Shaari, Ku Zilati Ku; Vasant, P
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
NASA Astrophysics Data System (ADS)
Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong
2014-03-01
A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.
NASA Astrophysics Data System (ADS)
Malik, Aimun; Zhang, Zheming; Agarwal, Ramesh K.
2014-08-01
There is need for a battery model that can accurately describe the battery performance for an electrical system, such as the electric drive train of electric vehicles. In this paper, both linear and non-linear equivalent circuit models (ECM) are employed as a means of extracting the battery parameters that can be used to model the performance of a battery. The linear and non-linear equivalent circuit models differ in the numbers of capacitance and resistance; the non-linear model has an added circuit; however their numerical characteristics are equivalent. A multi-objective genetic algorithm is employed to accurately extract the values of the battery model parameters. The battery model parameters are obtained for several existing industrial batteries as well as for two recently proposed high performance batteries. Once the model parameters are optimally determined, the results demonstrate that both linear and non-linear equivalent circuit models can predict with acceptable accuracy the performance of various batteries of different sizes, characteristics, capacities, and materials. However, the comparisons of results with catalog and experimental data shows that the predictions of results using the non-linear equivalent circuit model are slightly better than those predicted by the linear model, calculating voltages that are closer to the manufacturers' values.
NASA Astrophysics Data System (ADS)
Menou, Edern; Ramstein, Gérard; Bertrand, Emmanuel; Tancret, Franck
2016-06-01
A new computational framework for systematic and optimal alloy design is introduced. It is based on a multi-objective genetic algorithm which allows (i) the screening of vast compositional ranges and (ii) the optimisation of the performance of novel alloys. Alloys performance is evaluated on the basis of their predicted constitutional and thermomechanical properties. To this end, the CALPHAD method is used for assessing equilibrium characteristics (such as constitution, stability or processability) while Gaussian processes provide an estimate of thermomechanical properties (such as tensile strength or creep resistance), based on a multi-variable non-linear regression of existing data. These three independently well-assessed tools were unified within a single C++ routine. The method was applied to the design of affordable nickel-base superalloys for service in power plants, providing numerous candidates with superior expected microstructural stability and strength. An overview of the metallurgy of optimised alloys, as well as two detailed examples of optimal alloys, suggest that improvements over current commercial alloys are achievable at lower costs.
Klymenko, M. V.; Remacle, F.
2014-10-28
A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables for the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.
NASA Astrophysics Data System (ADS)
Biswas, Papun; Chakraborti, Debjani
2010-10-01
This paper describes how the genetic algorithms (GAs) can be efficiently used to fuzzy goal programming (FGP) formulation of optimal power flow problems having multiple objectives. In the proposed approach, the different constraints, various relationships of optimal power flow calculations are fuzzily described. In the model formulation of the problem, the membership functions of the defined fuzzy goals are characterized first for measuring the degree of achievement of the aspiration levels of the goals specified in the decision making context. Then, the achievement function for minimizing the regret for under-deviations from the highest membership value (unity) of the defined membership goals to the extent possible on the basis of priorities is constructed for optimal power flow problems. In the solution process, the GA method is employed to the FGP formulation of the problem for achievement of the highest membership value (unity) of the defined membership functions to the extent possible in the decision making environment. In the GA based solution search process, the conventional Roulette wheel selection scheme, arithmetic crossover and random mutation are taken into consideration to reach a satisfactory decision. The developed method has been tested on IEEE 6-generator 30-bus System. Numerical results show that this method is promising for handling uncertain constraints in practical power systems.
Multi-objective optimization of a plain fin-and-tube heat exchanger using genetic algorithm
NASA Astrophysics Data System (ADS)
Juan, Du; Qin, Qian Zuo
2014-04-01
In the present paper, a plate fin-and-tube heat exchanger (PFTHE) is considered for optimization with air and water as working fluid, four geometric variables are taken as parameters for optimization, a Genetic Algorithm (GA) was used to search for the optimal structure sizes of the PFTHE, the maximum total heat transfer rate and the minimum total pressure drop are taken as objective functions in GA, respectively. Performance of the optimized result was evaluated and correspondingly the total heat transfer rate, the total pressure drop, the heat transfer coefficient and the local Nusselt number, j-factor and friction factor ξ are calculated respectively. Results show that the total heat transfer rate of the optimized heat exchanger increased by about 2.1-9.2% comparing with the original one, the heat transfer coefficient increased by about 8.2-14.7% and the total pressure drop decreased by about 4.4-8% in the range of Re = 1200-14000.
Cao, Buwen; Luo, Jiawei; Liang, Cheng; Wang, Shulin; Song, Dan
2015-10-01
The identification of protein complexes in protein-protein interaction (PPI) networks has greatly advanced our understanding of biological organisms. Existing computational methods to detect protein complexes are usually based on specific network topological properties of PPI networks. However, due to the inherent complexity of the network structures, the identification of protein complexes may not be fully addressed by using single network topological property. In this study, we propose a novel MultiObjective Evolutionary Programming Genetic Algorithm (MOEPGA) which integrates multiple network topological features to detect biologically meaningful protein complexes. Our approach first systematically analyzes the multiobjective problem in terms of identifying protein complexes from PPI networks, and then constructs the objective function of the iterative algorithm based on three common topological properties of protein complexes from the benchmark dataset, finally we describe our algorithm, which mainly consists of three steps, population initialization, subgraph mutation and subgraph selection operation. To show the utility of our method, we compared MOEPGA with several state-of-the-art algorithms on two yeast PPI datasets. The experiment results demonstrate that the proposed method can not only find more protein complexes but also achieve higher accuracy in terms of fscore. Moreover, our approach can cover a certain number of proteins in the input PPI network in terms of the normalized clustering score. Taken together, our method can serve as a powerful framework to detect protein complexes in yeast PPI networks, thereby facilitating the identification of the underlying biological functions. PMID:26298638
NASA Astrophysics Data System (ADS)
Gladwin, D.; Stewart, P.; Stewart, J.
2011-02-01
This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
NASA Astrophysics Data System (ADS)
Rabbani, Masoud; Montazeri, Mona; Farrokhi-Asl, Hamed; Rafiei, Hamed
2016-07-01
Mixed-model assembly lines are increasingly accepted in many industrial environments to meet the growing trend of greater product variability, diversification of customer demands, and shorter life cycles. In this research, a new mathematical model is presented considering balancing a mixed-model U-line and human-related issues, simultaneously. The objective function consists of two separate components. The first part of the objective function is related to balance problem. In this part, objective functions are minimizing the cycle time, minimizing the number of workstations, and maximizing the line efficiencies. The second part is related to human issues and consists of hiring cost, firing cost, training cost, and salary. To solve the presented model, two well-known multi-objective evolutionary algorithms, namely non-dominated sorting genetic algorithm and multi-objective particle swarm optimization, have been used. A simple solution representation is provided in this paper to encode the solutions. Finally, the computational results are compared and analyzed.
Martínez-Álvarez, Antonio; Crespo-Cano, Rubén; Díaz-Tahoces, Ariadna; Cuenca-Asensi, Sergio; Ferrández Vicente, José Manuel; Fernández, Eduardo
2016-11-01
The retina is a very complex neural structure, which contains many different types of neurons interconnected with great precision, enabling sophisticated conditioning and coding of the visual information before it is passed via the optic nerve to higher visual centers. The encoding of visual information is one of the basic questions in visual and computational neuroscience and is also of seminal importance in the field of visual prostheses. In this framework, it is essential to have artificial retina systems to be able to function in a way as similar as possible to the biological retinas. This paper proposes an automatic evolutionary multi-objective strategy based on the NSGA-II algorithm for tuning retina models. Four metrics were adopted for guiding the algorithm in the search of those parameters that best approximate a synthetic retinal model output with real electrophysiological recordings. Results show that this procedure exhibits a high flexibility when different trade-offs has to be considered during the design of customized neuro prostheses. PMID:27354187
Fang, Guanghua; Xue, Mengzhu; Su, Mingbo; Hu, Dingyu; Li, Yanlian; Xiong, Bing; Ma, Lanping; Meng, Tao; Chen, Yuelei; Li, Jingya; Li, Jia; Shen, Jingkang
2012-07-15
The introduction of the multi-objective optimization has dramatically changed the virtual combinatorial library design, which can consider many objectives simultaneously, such as synthesis cost and drug-likeness, thus may increase positive rates of biological active compounds. Here we described a software called CCLab (Combinatorial Chemistry Laboratory) for combinatorial library design based on the multi-objective genetic algorithm. Tests of the convergence ability and the ratio to re-take the building blocks in the reference library were conducted to assess the software in silico, and then it was applied to a real case of designing a 5×6 HDAC inhibitor library. Sixteen compounds in the resulted library were synthesized, and the histone deactetylase (HDAC) enzymatic assays proved that 14 compounds showed inhibitory ratios more than 50% against tested 3 HDAC enzymes at concentration of 20 μg/mL, with IC(50) values of 3 compounds comparable to SAHA. These results demonstrated that the CCLab software could enhance the hit rates of the designed library and would be beneficial for medicinal chemists to design focused library in drug development (the software can be downloaded at: http://202.127.30.184:8080/drugdesign.html). PMID:22738629
NASA Astrophysics Data System (ADS)
Rout, Sachindra K.; Choudhury, Balaji K.; Sahoo, Ranjit K.; Sarangi, Sunil K.
2014-07-01
The modeling and optimization of a Pulse Tube Refrigerator is a complicated task, due to its complexity of geometry and nature. The aim of the present work is to optimize the dimensions of pulse tube and regenerator for an Inertance-Type Pulse Tube Refrigerator (ITPTR) by using Response Surface Methodology (RSM) and Non-Sorted Genetic Algorithm II (NSGA II). The Box-Behnken design of the response surface methodology is used in an experimental matrix, with four factors and two levels. The diameter and length of the pulse tube and regenerator are chosen as the design variables where the rest of the dimensions and operating conditions of the ITPTR are constant. The required output responses are the cold head temperature (Tcold) and compressor input power (Wcomp). Computational fluid dynamics (CFD) have been used to model and solve the ITPTR. The CFD results agreed well with those of the previously published paper. Also using the results from the 1-D simulation, RSM is conducted to analyse the effect of the independent variables on the responses. To check the accuracy of the model, the analysis of variance (ANOVA) method has been used. Based on the proposed mathematical RSM models a multi-objective optimization study, using the Non-sorted genetic algorithm II (NSGA-II) has been performed to optimize the responses.
Martins, Maria; Costa, Lino; Frizera, Anselmo; Ceres, Ramón; Santos, Cristina
2014-03-01
Walker devices are often prescribed incorrectly to patients, leading to the increase of dissatisfaction and occurrence of several problems, such as, discomfort and pain. Thus, it is necessary to objectively evaluate the effects that assisted gait can have on the gait patterns of walker users, comparatively to a non-assisted gait. A gait analysis, focusing on spatiotemporal and kinematics parameters, will be issued for this purpose. However, gait analysis yields redundant information that often is difficult to interpret. This study addresses the problem of selecting the most relevant gait features required to differentiate between assisted and non-assisted gait. For that purpose, it is presented an efficient approach that combines evolutionary techniques, based on genetic algorithms, and support vector machine algorithms, to discriminate differences between assisted and non-assisted gait with a walker with forearm supports. For comparison purposes, other classification algorithms are verified. Results with healthy subjects show that the main differences are characterized by balance and joints excursion in the sagittal plane. These results, confirmed by clinical evidence, allow concluding that this technique is an efficient feature selection approach. PMID:24444751
NASA Astrophysics Data System (ADS)
Rahimi, Masoud; Beigzadeh, Reza; Parvizi, Mehdi; Eiamsa-ard, Smith
2016-08-01
The group method of data handling (GMDH) technique was used to predict heat transfer and friction characteristics in heat exchanger tubes equipped with wire-rod bundles. Nusselt number and friction factor were determined as functions of wire-rod bundle geometric parameters and Reynolds number. The performance of the developed GMDH-type neural networks was found to be superior in comparison with the proposed empirical correlations. For optimization, the genetic algorithm-based multi-objective optimization was applied.
NASA Astrophysics Data System (ADS)
Garambois, Pierre; Besset, Sebastien; Jézéquel, Louis
2015-07-01
This paper presents a methodology for the multi-objective (MO) shape optimization of plate structure under stress criteria, based on a mixed Finite Element Model (FEM) enhanced with a sub-structuring method. The optimization is performed with a classical Genetic Algorithm (GA) method based on Pareto-optimal solutions and considers thickness distributions parameters and antagonist objectives among them stress criteria. We implement a displacement-stress Dynamic Mixed FEM (DM-FEM) for plate structure vibrations analysis. Such a model gives a privileged access to the stress within the plate structure compared to primal classical FEM, and features a linear dependence to the thickness parameters. A sub-structuring reduction method is also computed in order to reduce the size of the mixed FEM and split the given structure into smaller ones with their own thickness parameters. Those methods combined enable a fast and stress-wise efficient structure analysis, and improve the performance of the repetitive GA. A few cases of minimizing the mass and the maximum Von Mises stress within a plate structure under a dynamic load put forward the relevance of our method with promising results. It is able to satisfy multiple damage criteria with different thickness distributions, and use a smaller FEM.
NASA Astrophysics Data System (ADS)
Dhingra, Sunil; Bhushan, Gian; Dubey, Kashyap Kumar
2014-03-01
The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NO x , unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NO x , HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NO x , HC, smoke, a multiobjective optimization problem is formulated. Nondominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.
A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms
Díaz-Manríquez, Alan; Toscano, Gregorio; Barron-Zambrano, Jose Hugo; Tello-Leal, Edgar
2016-01-01
Multiobjective evolutionary algorithms have incorporated surrogate models in order to reduce the number of required evaluations to approximate the Pareto front of computationally expensive multiobjective optimization problems. Currently, few works have reviewed the state of the art in this topic. However, the existing reviews have focused on classifying the evolutionary multiobjective optimization algorithms with respect to the type of underlying surrogate model. In this paper, we center our focus on classifying multiobjective evolutionary algorithms with respect to their integration with surrogate models. This interaction has led us to classify similar approaches and identify advantages and disadvantages of each class. PMID:27382366
Flower pollination algorithm: A novel approach for multiobjective optimization
NASA Astrophysics Data System (ADS)
Yang, Xin-She; Karamanoglu, Mehmet; He, Xingshi
2014-09-01
Multiobjective design optimization problems require multiobjective optimization techniques to solve, and it is often very challenging to obtain high-quality Pareto fronts accurately. In this article, the recently developed flower pollination algorithm (FPA) is extended to solve multiobjective optimization problems. The proposed method is used to solve a set of multiobjective test functions and two bi-objective design benchmarks, and a comparison of the proposed algorithm with other algorithms has been made, which shows that the FPA is efficient with a good convergence rate. Finally, the importance for further parametric studies and theoretical analysis is highlighted and discussed.
Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
2005-01-01
This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.
Multiobjective genetic approach for optimal control of photoinduced processes
Bonacina, Luigi; Extermann, Jerome; Rondi, Ariana; Wolf, Jean-Pierre; Boutou, Veronique
2007-08-15
We have applied a multiobjective genetic algorithm to the optimization of multiphoton-excited fluorescence. Our study shows the advantages that this approach can offer to experiments based on adaptive shaping of femtosecond pulses. The algorithm outperforms single-objective optimizations, being totally independent from the bias of user defined parameters and giving simultaneous access to a large set of feasible solutions. The global inspection of their ensemble represents a powerful support to unravel the connections between pulse spectral field features and excitation dynamics of the sample.
A hierarchical evolutionary algorithm for multiobjective optimization in IMRT
Holdsworth, Clay; Kim, Minsun; Liao, Jay; Phillips, Mark H.
2010-01-01
Purpose: The current inverse planning methods for intensity modulated radiation therapy (IMRT) are limited because they are not designed to explore the trade-offs between the competing objectives of tumor and normal tissues. The goal was to develop an efficient multiobjective optimization algorithm that was flexible enough to handle any form of objective function and that resulted in a set of Pareto optimal plans. Methods: A hierarchical evolutionary multiobjective algorithm designed to quickly generate a small diverse Pareto optimal set of IMRT plans that meet all clinical constraints and reflect the optimal trade-offs in any radiation therapy plan was developed. The top level of the hierarchical algorithm is a multiobjective evolutionary algorithm (MOEA). The genes of the individuals generated in the MOEA are the parameters that define the penalty function minimized during an accelerated deterministic IMRT optimization that represents the bottom level of the hierarchy. The MOEA incorporates clinical criteria to restrict the search space through protocol objectives and then uses Pareto optimality among the fitness objectives to select individuals. The population size is not fixed, but a specialized niche effect, domination advantage, is used to control the population and plan diversity. The number of fitness objectives is kept to a minimum for greater selective pressure, but the number of genes is expanded for flexibility that allows a better approximation of the Pareto front. Results: The MOEA improvements were evaluated for two example prostate cases with one target and two organs at risk (OARs). The population of plans generated by the modified MOEA was closer to the Pareto front than populations of plans generated using a standard genetic algorithm package. Statistical significance of the method was established by compiling the results of 25 multiobjective optimizations using each method. From these sets of 12–15 plans, any random plan selected from a MOEA
Mahmoodabadi, M. J.; Taherkhorsandi, M.; Bagheri, A.
2014-01-01
An optimal robust state feedback tracking controller is introduced to control a biped robot. In the literature, the parameters of the controller are usually determined by a tedious trial and error process. To eliminate this process and design the parameters of the proposed controller, the multiobjective evolutionary algorithms, that is, the proposed method, modified NSGAII, Sigma method, and MATLAB's Toolbox MOGA, are employed in this study. Among the used evolutionary optimization algorithms to design the controller for biped robots, the proposed method operates better in the aspect of designing the controller since it provides ample opportunities for designers to choose the most appropriate point based upon the design criteria. Three points are chosen from the nondominated solutions of the obtained Pareto front based on two conflicting objective functions, that is, the normalized summation of angle errors and normalized summation of control effort. Obtained results elucidate the efficiency of the proposed controller in order to control a biped robot. PMID:24616619
NASA Astrophysics Data System (ADS)
Long, Kim Chenming
Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this
Multi-objective Job Shop Rescheduling with Evolutionary Algorithm
NASA Astrophysics Data System (ADS)
Hao, Xinchang; Gen, Mitsuo
In current manufacturing systems, production processes and management are involved in many unexpected events and new requirements emerging constantly. This dynamic environment implies that operation rescheduling is usually indispensable. A wide variety of procedures and heuristics has been developed to improve the quality of rescheduling. However, most proposed approaches are derived usually with respect to simplified assumptions. As a consequence, these approaches might be inconsistent with the actual requirements in a real production environment, i.e., they are often unsuitable and inflexible to respond efficiently to the frequent changes. In this paper, a multi-objective job shop rescheduling problem (moJSRP) is formulated to improve the practical application of rescheduling. To solve the moJSRP model, an evolutionary algorithm is designed, in which a random key-based representation and interactive adaptive-weight (i-awEA) fitness assignment are embedded. To verify the effectiveness, the proposed algorithm has been compared with other apporaches and benchmarks on the robustness of moJRP optimziation. The comparison results show that iAWGA-A is better than weighted fitness method in terms of effectiveness and stability. Simlarly, iAWGA-A also outperforms other well stability approachessuch as non-dominated sorting genetic algorithm (NSGA-II) and strength Pareto evolutionary algorithm2 (SPEA2).
NASA Astrophysics Data System (ADS)
Venkata Rao, R.; Patel, Vivek
2012-08-01
This study explores the use of teaching-learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms for determining the optimum operating conditions of combined Brayton and inverse Brayton cycles. Maximization of thermal efficiency and specific work of the system are considered as the objective functions and are treated simultaneously for multi-objective optimization. Upper cycle pressure ratio and bottom cycle expansion pressure of the system are considered as design variables for the multi-objective optimization. An application example is presented to demonstrate the effectiveness and accuracy of the proposed algorithms. The results of optimization using the proposed algorithms are validated by comparing with those obtained by using the genetic algorithm (GA) and particle swarm optimization (PSO) on the same example. Improvement in the results is obtained by the proposed algorithms. The results of effect of variation of the algorithm parameters on the convergence and fitness values of the objective functions are reported.
An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.
Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed
2015-10-01
Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front. PMID:25373137
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Song, Zhiming; Wang, Maocai; Dai, Guangming; Vasile, Massimiliano
2015-01-01
As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m − 1)-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA) is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m − 1)-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper. PMID:25874246
NASA Astrophysics Data System (ADS)
Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena
2016-07-01
In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.
Multi-objective evolutionary algorithm for operating parallel reservoir system
NASA Astrophysics Data System (ADS)
Chang, Li-Chiu; Chang, Fi-John
2009-10-01
SummaryThis paper applies a multi-objective evolutionary algorithm, the non-dominated sorting genetic algorithm (NSGA-II), to examine the operations of a multi-reservoir system in Taiwan. The Feitsui and Shihmen reservoirs are the most important water supply reservoirs in Northern Taiwan supplying the domestic and industrial water supply needs for over 7 million residents. A daily operational simulation model is developed to guide the releases of the reservoir system and then to calculate the shortage indices (SI) of both reservoirs over a long-term simulation period. The NSGA-II is used to minimize the SI values through identification of optimal joint operating strategies. Based on a 49 year data set, we demonstrate that better operational strategies would reduce shortage indices for both reservoirs. The results indicate that the NSGA-II provides a promising approach. The pareto-front optimal solutions identified operational compromises for the two reservoirs that would be expected to improve joint operations.
NASA Astrophysics Data System (ADS)
Tang, Y.; Reed, P.; Wagner, T.
2005-12-01
This study provides the first comprehensive assessment of state-of-the-art evolutionary multiobjective optimization (EMO) tools- relative effectiveness in calibrating integrated hydrologic models. The relative computational efficiency, accuracy, and ease-of-use of the following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic Algorithm-II (??-NSGAII), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). This study assesses the performances of these three evolutionary multiobjective algorithms using a formal metrics-based methodology. This study uses two phases of testing to compare the algorithms- performances. In the first phase, this study uses a suite of standard computer science test problems to validate the algorithms- abilities to perform global search effectively, efficiently, and reliably. The second phase of testing compares the algorithms- performances for a computationally intensive multiobjective integrated hydrologic model calibration application for the Shale Hills watershed located within the Valley and Ridge province of the Susquehanna River Basin in north central Pennsylvania. The Shale Hills test case demonstrates the computational challenges posed by the paradigmatic shift in environmental and water resources simulation tools towards highly nonlinear physical models that seek to holistically simulate the water cycle. Specifically, the Shale Hills test case is an excellent test for the three EMO algorithms due to the large number of continuous decision variables, the increased computational demands posed by the simulating fully-coupled hydrologic processes, and the highly multimodal nature of the search space. A challenge and contribution of this work is the development of a comprehensive methodology for comprehensively comparing EMO algorithms that have different search operators and randomization techniques.
NASA Astrophysics Data System (ADS)
Tang, Y.; Reed, P.; Wagener, T.
2005-11-01
This study provides a comprehensive assessment of state-of-the-art evolutionary multiobjective optimization (EMO) tools' relative effectiveness in calibrating hydrologic models. The relative computational efficiency, accuracy, and ease-of-use of the following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic Algorithm-II (ɛ-NSGAII), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). This study uses three test cases to compare the algorithms' performances: (1) a standardized test function suite from the computer science literature, (2) a benchmark hydrologic calibration test case for the Leaf River near Collins, Mississippi, and (3) a computationally intensive integrated model application in the Shale Hills watershed in Pennsylvania. A challenge and contribution of this work is the development of a methodology for comprehensively comparing EMO algorithms that have different search operators and randomization techniques. Overall, SPEA2 is an excellent benchmark algorithm for multiobjective hydrologic model calibration. SPEA2 attained competitive to superior results for most of the problems tested in this study. ɛ-NSGAII appears to be superior to MOSCEM-UA and competitive with SPEA2 for hydrologic model calibration.
Multi-objective nested algorithms for optimal reservoir operation
NASA Astrophysics Data System (ADS)
Delipetrev, Blagoj; Solomatine, Dimitri
2016-04-01
The optimal reservoir operation is in general a multi-objective problem, meaning that multiple objectives are to be considered at the same time. For solving multi-objective optimization problems there exist a large number of optimization algorithms - which result in a generation of a Pareto set of optimal solutions (typically containing a large number of them), or more precisely, its approximation. At the same time, due to the complexity and computational costs of solving full-fledge multi-objective optimization problems some authors use a simplified approach which is generically called "scalarization". Scalarization transforms the multi-objective optimization problem to a single-objective optimization problem (or several of them), for example by (a) single objective aggregated weighted functions, or (b) formulating some objectives as constraints. We are using the approach (a). A user can decide how many multi-objective single search solutions will generate, depending on the practical problem at hand and by choosing a particular number of the weight vectors that are used to weigh the objectives. It is not guaranteed that these solutions are Pareto optimal, but they can be treated as a reasonably good and practically useful approximation of a Pareto set, albeit small. It has to be mentioned that the weighted-sum approach has its known shortcomings because the linear scalar weights will fail to find Pareto-optimal policies that lie in the concave region of the Pareto front. In this context the considered approach is implemented as follows: there are m sets of weights {w1i, …wni} (i starts from 1 to m), and n objectives applied to single objective aggregated weighted sum functions of nested dynamic programming (nDP), nested stochastic dynamic programming (nSDP) and nested reinforcement learning (nRL). By employing the multi-objective optimization by a sequence of single-objective optimization searches approach, these algorithms acquire the multi-objective properties
A Multipopulation Coevolutionary Strategy for Multiobjective Immune Algorithm
Shi, Jiao; Gong, Maoguo; Ma, Wenping; Jiao, Licheng
2014-01-01
How to maintain the population diversity is an important issue in designing a multiobjective evolutionary algorithm. This paper presents an enhanced nondominated neighbor-based immune algorithm in which a multipopulation coevolutionary strategy is introduced for improving the population diversity. In the proposed algorithm, subpopulations evolve independently; thus the unique characteristics of each subpopulation can be effectively maintained, and the diversity of the entire population is effectively increased. Besides, the dynamic information of multiple subpopulations is obtained with the help of the designed cooperation operator which reflects a mutually beneficial relationship among subpopulations. Subpopulations gain the opportunity to exchange information, thereby expanding the search range of the entire population. Subpopulations make use of the reference experience from each other, thereby improving the efficiency of evolutionary search. Compared with several state-of-the-art multiobjective evolutionary algorithms on well-known and frequently used multiobjective and many-objective problems, the proposed algorithm achieves comparable results in terms of convergence, diversity metrics, and running time on most test problems. PMID:24672330
MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and AntColony.
Ke, Liangjun; Zhang, Qingfu; Battiti, Roberto
2013-12-01
Combining ant colony optimization (ACO) and the multiobjective evolutionary algorithm (EA) based on decomposition (MOEA/D), this paper proposes a multiobjective EA, i.e., MOEA/D-ACO. Following other MOEA/D-like algorithms, MOEA/D-ACO decomposes a multiobjective optimization problem into a number of single-objective optimization problems. Each ant (i.e., agent) is responsible for solving one subproblem. All the ants are divided into a few groups, and each ant has several neighboring ants. An ant group maintains a pheromone matrix, and an individual ant has a heuristic information matrix. During the search, each ant also records the best solution found so far for its subproblem. To construct a new solution, an ant combines information from its group's pheromone matrix, its own heuristic information matrix, and its current solution. An ant checks the new solutions constructed by itself and its neighbors, and updates its current solution if it has found a better one in terms of its own objective. Extensive experiments have been conducted in this paper to study and compare MOEA/D-ACO with other algorithms on two sets of test problems. On the multiobjective 0-1 knapsack problem,MOEA/D-ACO outperforms the MOEA/D with conventional genetic operators and local search on all the nine test instances. We also demonstrate that the heuristic information matrices in MOEA/D-ACO are crucial to the good performance of MOEA/D-ACO for the knapsack problem. On the biobjective traveling salesman problem, MOEA/D-ACO performs much better than the BicriterionAnt on all the 12 test instances. We also evaluate the effects of grouping, neighborhood, and the location information of current solutions on the performance of MOEA/D-ACO. The work in this paper shows that reactive search optimization scheme, i.e., the "learning while optimizing" principle, is effective in improving multiobjective optimization algorithms. PMID:23757576
Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2001-01-01
A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.
Multi-Objective Community Detection Based on Memetic Algorithm
2015-01-01
Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646
Constrained Multiobjective Optimization Algorithm Based on Immune System Model.
Qian, Shuqu; Ye, Yongqiang; Jiang, Bin; Wang, Jianhong
2016-09-01
An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The feasible nondominated individuals focus on exploring the nondominated front through clone and hypermutation based on a proposed affinity design approach, while the infeasible/dominated individuals are exploited and improved via the simulated binary crossover and polynomial mutation operations. And then, to accelerate the convergence of the proposed algorithm, a transformation technique is applied to the combined population of the above two offspring populations. Finally, a crowded-comparison strategy is used to create the next generation population. In numerical experiments, a series of benchmark constrained multiobjective optimization problems are considered to evaluate the performance of the proposed algorithm and it is also compared to several state-of-art algorithms in terms of the inverted generational distance and hypervolume indicators. The results indicate that the new method achieves competitive performance and even statistically significant better results than previous algorithms do on most of the benchmark suite. PMID:26285230
NASA Astrophysics Data System (ADS)
Wu, J.; Yang, Y.; Wu, J.
2011-12-01
In this study, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to neighborhood step size. The NPTSGA is developed on the thought of integrating genetic algorithm (GA) with a TS based MOEA, niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arose from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA can balance the tradeoff between the intensification of nondomination and the diversification of near Pareto-optimal solutions and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.
A multiobjective memetic algorithm based on particle swarm optimization.
Liu, Dasheng; Tan, K C; Goh, C K; Ho, W K
2007-02-01
In this paper, a new memetic algorithm (MA) for multiobjective (MO) optimization is proposed, which combines the global search ability of particle swarm optimization with a synchronous local search heuristic for directed local fine-tuning. A new particle updating strategy is proposed based upon the concept of fuzzy global-best to deal with the problem of premature convergence and diversity maintenance within the swarm. The proposed features are examined to show their individual and combined effects in MO optimization. The comparative study shows the effectiveness of the proposed MA, which produces solution sets that are highly competitive in terms of convergence, diversity, and distribution. PMID:17278557
NASA Astrophysics Data System (ADS)
Kourakos, George; Mantoglou, Aristotelis
2013-02-01
SummaryThe demand for fresh water in coastal areas and islands can be very high due to increased local needs and tourism. A multi-objective optimization methodology is developed, involving minimization of economic and environmental costs while satisfying water demand. The methodology considers desalinization of pumped water and injection of treated water into the aquifer. Variable density aquifer models are computationally intractable when integrated in optimization algorithms. In order to alleviate this problem, a multi-objective optimization algorithm is developed combining surrogate models based on Modular Neural Networks [MOSA(MNNs)]. The surrogate models are trained adaptively during optimization based on a genetic algorithm. In the crossover step, each pair of parents generates a pool of offspring which are evaluated using the fast surrogate model. Then, the most promising offspring are evaluated using the exact numerical model. This procedure eliminates errors in Pareto solution due to imprecise predictions of the surrogate model. The method has important advancements compared to previous methods such as precise evaluation of the Pareto set and alleviation of propagation of errors due to surrogate model approximations. The method is applied to an aquifer in the Greek island of Santorini. The results show that the new MOSA(MNN) algorithm offers significant reduction in computational time compared to previous methods (in the case study it requires only 5% of the time required by other methods). Further, the Pareto solution is better than the solution obtained by alternative algorithms.
Transonic Wing Shape Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)
2002-01-01
A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.
NASA Astrophysics Data System (ADS)
Watchareeruetai, Ukrit; Matsumoto, Tetsuya; Takeuchi, Yoshinori; Kudo, Hiroaki; Ohnishi, Noboru
We propose a new multi-objective genetic programming (MOGP) for automatic construction of image feature extraction programs (FEPs). The proposed method was originated from a well known multi-objective evolutionary algorithm (MOEA), i.e., NSGA-II. The key differences are that redundancy-regulation mechanisms are applied in three main processes of the MOGP, i.e., population truncation, sampling, and offspring generation, to improve population diversity as well as convergence rate. Experimental results indicate that the proposed MOGP-based FEP construction system outperforms the two conventional MOEAs (i.e., NSGA-II and SPEA2) for a test problem. Moreover, we compared the programs constructed by the proposed MOGP with four human-designed object recognition programs. The results show that the constructed programs are better than two human-designed methods and are comparable with the other two human-designed methods for the test problem.
NASA Astrophysics Data System (ADS)
Bonissone, Stefano R.
2001-11-01
There are many approaches to solving multi-objective optimization problems using evolutionary algorithms. We need to select methods for representing and aggregating preferences, as well as choosing strategies for searching in multi-dimensional objective spaces. First we suggest the use of linguistic variables to represent preferences and the use of fuzzy rule systems to implement tradeoff aggregations. After a review of alternatives EA methods for multi-objective optimizations, we explore the use of multi-sexual genetic algorithms (MSGA). In using a MSGA, we need to modify certain parts of the GAs, namely the selection and crossover operations. The selection operator groups solutions according to their gender tag to prepare them for crossover. The crossover is modified by appending a gender tag at the end of the chromosome. We use single and double point crossovers. We determine the gender of the offspring by the amount of genetic material provided by each parent. The parent that contributed the most to the creation of a specific offspring determines the gender that the offspring will inherit. This is still a work in progress, and in the conclusion we examine many future extensions and experiments.
A Self-adaptive Evolutionary Algorithm for Multi-objective Optimization
NASA Astrophysics Data System (ADS)
Cao, Ruifen; Li, Guoli; Wu, Yican
Evolutionary algorithm has gained a worldwide popularity among multi-objective optimization. The paper proposes a self-adaptive evolutionary algorithm (called SEA) for multi-objective optimization. In the SEA, the probability of crossover and mutation,P c and P m , are varied depending on the fitness values of the solutions. Fitness assignment of SEA realizes the twin goals of maintaining diversity in the population and guiding the population to the true Pareto Front; fitness value of individual not only depends on improved density estimation but also depends on non-dominated rank. The density estimation can keep diversity in all instances including when scalars of all objectives are much different from each other. SEA is compared against the Non-dominated Sorting Genetic Algorithm (NSGA-II) on a set of test problems introduced by the MOEA community. Simulated results show that SEA is as effective as NSGA-II in most of test functions, but when scalar of objectives are much different from each other, SEA has better distribution of non-dominated solutions.
NASA Astrophysics Data System (ADS)
Tang, Y.; Reed, P.; Wagener, T.
2006-05-01
This study provides a comprehensive assessment of state-of-the-art evolutionary multiobjective optimization (EMO) tools' relative effectiveness in calibrating hydrologic models. The relative computational efficiency, accuracy, and ease-of-use of the following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic Algorithm-II (ɛ-NSGAII), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). This study uses three test cases to compare the algorithms' performances: (1) a standardized test function suite from the computer science literature, (2) a benchmark hydrologic calibration test case for the Leaf River near Collins, Mississippi, and (3) a computationally intensive integrated surface-subsurface model application in the Shale Hills watershed in Pennsylvania. One challenge and contribution of this work is the development of a methodology for comprehensively comparing EMO algorithms that have different search operators and randomization techniques. Overall, SPEA2 attained competitive to superior results for most of the problems tested in this study. The primary strengths of the SPEA2 algorithm lie in its search reliability and its diversity preservation operator. The biggest challenge in maximizing the performance of SPEA2 lies in specifying an effective archive size without a priori knowledge of the Pareto set. In practice, this would require significant trial-and-error analysis, which is problematic for more complex, computationally intensive calibration applications. ɛ-NSGAII appears to be superior to MOSCEM-UA and competitive with SPEA2 for hydrologic model calibration. ɛ-NSGAII's primary strength lies in its ease-of-use due to its dynamic population sizing and archiving which lead to rapid convergence to very high quality solutions with minimal user input. MOSCEM-UA is best suited for hydrologic model calibration applications that have small parameter sets
Identification of IPMC nonlinear model via single and multi-objective optimization algorithms.
Caponetto, Riccardo; Graziani, Salvatore; Pappalardo, Fulvio; Sapuppo, Francesca
2014-03-01
Ionic Polymer-Metal Composites (IPMCs) are electro-active polymers transforming mechanical forces into electric signals and vice versa. This paper proposes an improved electro-mechanical grey-box model for IPMC membrane working as actuator. In particular the IPMC nonlinearity has been characterized through experimentation and included within the electric model. Moreover identification of the model parameters has been performed via optimization algorithms using both single- and multi-objective formulation. Minimization was attained via the Nelder-Mead simplex and the Genetic Algorithms considering as cost functions the error between the experimental and modeled absorbed current and the error between experimental and modeled displacement. The obtained results for the different formulations have been then compared. PMID:24342273
NASA Astrophysics Data System (ADS)
Hemmatian, Hossein; Fereidoon, Abdolhossein; Assareh, Ehsanolah
2014-09-01
The multi-objective gravitational search algorithm (MOGSA) technique is applied to hybrid laminates to achieve minimum weight and cost. The investigated laminate is made of glass-epoxy and carbon-epoxy plies to combine the economical attributes of the first with the light weight and high-stiffness properties of the second in order to make the trade-off between the cost and weight as the objective functions. The first natural flexural frequency was considered as a constraint. The results obtained using the MOGSA, including the Pareto set, optimum stacking sequences and number of plies made of either glass or carbon fibres, were compared with those using the genetic algorithm (GA) and ant colony optimization (ACO) reported in the literature. The comparisons confirmed the advantages of hybridization and showed that the MOGSA outperformed the GA and ACO in terms of the functions' value and constraint accuracy.
NASA Astrophysics Data System (ADS)
Wu, J.; Yang, Y.; Luo, Q.; Wu, J.
2012-12-01
This study presents a new hybrid multi-objective evolutionary algorithm, the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), whereby the global search ability of niched Pareto tabu search (NPTS) is improved by the diversification of candidate solutions arose from the evolving nondominated sorting genetic algorithm II (NSGA-II) population. Also, the NPTSGA coupled with the commonly used groundwater flow and transport codes, MODFLOW and MT3DMS, is developed for multi-objective optimal design of groundwater remediation systems. The proposed methodology is then applied to a large-scale field groundwater remediation system for cleanup of large trichloroethylene (TCE) plume at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. Furthermore, a master-slave (MS) parallelization scheme based on the Message Passing Interface (MPI) is incorporated into the NPTSGA to implement objective function evaluations in distributed processor environment, which can greatly improve the efficiency of the NPTSGA in finding Pareto-optimal solutions to the real-world application. This study shows that the MS parallel NPTSGA in comparison with the original NPTS and NSGA-II can balance the tradeoff between diversity and optimality of solutions during the search process and is an efficient and effective tool for optimizing the multi-objective design of groundwater remediation systems under complicated hydrogeologic conditions.
NASA Astrophysics Data System (ADS)
Reed, P. M.; Kollat, J. B.
2005-12-01
This study demonstrates the effectiveness of a modified version of Deb's Non-Dominated Sorted Genetic Algorithm II (NSGAII), which the authors have named the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (Epsilon-NSGAII), at solving a four objective long-term groundwater monitoring (LTM) design test case. The Epsilon-NSGAII incorporates prior theoretical competent evolutionary algorithm (EA) design concepts and epsilon-dominance archiving to improve the original NSGAII's efficiency, reliability, and ease-of-use. This algorithm eliminates much of the traditional trial-and-error parameterization associated with evolutionary multi-objective optimization (EMO) through epsilon-dominance archiving, dynamic population sizing, and automatic termination. The effectiveness and reliability of the new algorithm is compared to the original NSGAII as well as two other benchmark multi-objective evolutionary algorithms (MOEAs), the Epsilon-Dominance Multi-Objective Evolutionary Algorithm (Epsilon-MOEA) and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). These MOEAs have been selected because they have been demonstrated to be highly effective at solving numerous multi-objective problems. The results presented in this study indicate superior performance of the Epsilon-NSGAII in terms of the hypervolume indicator, unary Epsilon-indicator, and first-order empirical attainment function metrics. In addition, the runtime metric results indicate that the diversity and convergence dynamics of the Epsilon-NSGAII are competitive to superior relative to the SPEA2, with both algorithms greatly outperforming the NSGAII and Epsilon-MOEA in terms of these metrics. The improvements in performance of the Epsilon-NSGAII over its parent algorithm the NSGAII demonstrate that the application of Epsilon-dominance archiving, dynamic population sizing with archive injection, and automatic termination greatly improve algorithm efficiency and reliability. In addition, the usability of
NASA Astrophysics Data System (ADS)
Chen, Jing; Liu, Tundong; Jiang, Hao
2016-01-01
A Pareto-based multi-objective optimization approach is proposed to design multichannel FBG filters. Instead of defining a single optimal objective, the proposed method establishes the multi-objective model by taking two design objectives into account, which are minimizing the maximum index modulation and minimizing the mean dispersion error. To address this optimization problem, we develop a two-stage evolutionary computation approach integrating an elitist non-dominated sorting genetic algorithm (NSGA-II) and technique for order preference by similarity to ideal solution (TOPSIS). NSGA-II is utilized to search for the candidate solutions in terms of both objectives. The obtained results are provided as Pareto front. Subsequently, the best compromise solution is determined by the TOPSIS method from the Pareto front according to the decision maker's preference. The design results show that the proposed approach yields a remarkable reduction of the maximum index modulation and the performance of dispersion spectra of the designed filter can be optimized simultaneously.
A hybrid multi-objective particle swarm algorithm for a mixed-model assembly line sequencing problem
NASA Astrophysics Data System (ADS)
Rahimi-Vahed, A. R.; Mirghorbani, S. M.; Rabbani, M.
2007-12-01
Mixed-model assembly line sequencing is one of the most important strategic problems in the field of production management where diversified customers' demands exist. In this article, three major goals are considered: (i) total utility work, (ii) total production rate variation and (iii) total setup cost. Due to the complexity of the problem, a hybrid multi-objective algorithm based on particle swarm optimization (PSO) and tabu search (TS) is devised to obtain the locally Pareto-optimal frontier where simultaneous minimization of the above-mentioned objectives is desired. In order to validate the performance of the proposed algorithm in terms of solution quality and diversity level, the algorithm is applied to various test problems and its reliability, based on different comparison metrics, is compared with three prominent multi-objective genetic algorithms, PS-NC GA, NSGA-II and SPEA-II. The computational results show that the proposed hybrid algorithm significantly outperforms existing genetic algorithms in large-sized problems.
Effective multi-objective optimization with the coral reefs optimization algorithm
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Pastor-Sánchez, A.; Portilla-Figueras, J. A.; Prieto, L.
2016-06-01
In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor.
General cardinality genetic algorithms
Koehler; Bhattacharyya; Vose
1997-01-01
A complete generalization of the Vose genetic algorithm model from the binary to higher cardinality case is provided. Boolean AND and EXCLUSIVE-OR operators are replaced by multiplication and addition over rings of integers. Walsh matrices are generalized with finite Fourier transforms for higher cardinality usage. Comparison of results to the binary case are provided. PMID:10021767
NASA Astrophysics Data System (ADS)
Luo, Q.; Wu, J.; Qian, J.
2013-12-01
This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation system under uncertainty associated with the hydraulic conductivity of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic Pareto domination ranking and probabilistic niche technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient hydraulic conductivity data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal groundwater remediation system of a two-dimensional hypothetical test problem involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the percentage of mass remaining in the aquifer at the end of the operational period, which uses the Pump-and-Treat (PAT) technology to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is used to demonstrate the effectiveness of the proposed methodology. The MC analysis is taken to each Pareto solutions for every K realization. Then the statistical mean and the upper and lower bounds of uncertainty intervals of 95% confidence level are calculated. The MC analysis results show that all of the Pareto-optimal solutions are located between the upper and lower bounds of the MC analysis. Moreover, the root mean square errors (RMSEs) between the Pareto-optimal solutions by the PMOFHS and the average values of optimal solutions by the MC analysis are 0.0204 for the first objective and 0.0318 for the second objective, quite smaller than those RMSEs between the results by the existing probabilistic multi-objective genetic algorithm (PMOGA) and the MC analysis, 0.0384 and 0.0397, respectively. In
Genetic Algorithms and Local Search
NASA Technical Reports Server (NTRS)
Whitley, Darrell
1996-01-01
The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.
Evaluation of multi-algorithm optimization approach in multi-objective rainfall-runoff calibration
NASA Astrophysics Data System (ADS)
Shafii, M.; de Smedt, F.
2009-04-01
Calibration of rainfall-runoff models is one of the issues in which hydrologists have been interested over past decades. Because of the multi-objective nature of rainfall-runoff calibration, and due to advances in computational power, population-based optimization techniques are becoming increasingly popular to be applied for multi-objective calibration schemes. Over past recent years, such methods have shown to be powerful search methods for this purpose, especially when there are a large number of calibration parameters. However, application of these methods is always criticised based on the fact that it is not possible to develop a single algorithm which is always efficient for different problems. Therefore, more recent efforts have been focused towards development of simultaneous multiple optimization algorithms to overcome this drawback. This paper involves one of the most recent population-based multi-algorithm approaches, named AMALGAM, for application to multi-objective rainfall-runoff calibration in a distributed hydrological model, WetSpa. This algorithm merges the strengths of different optimization algorithms and it, thus, has proven to be more efficient than other methods. In order to evaluate this issue, comparison between results of this paper and those previously reported using a normal multi-objective evolutionary algorithm would be the next step of this study.
A multiobjective evolutionary algorithm to find community structures based on affinity propagation
NASA Astrophysics Data System (ADS)
Shang, Ronghua; Luo, Shuang; Zhang, Weitong; Stolkin, Rustam; Jiao, Licheng
2016-07-01
Community detection plays an important role in reflecting and understanding the topological structure of complex networks, and can be used to help mine the potential information in networks. This paper presents a Multiobjective Evolutionary Algorithm based on Affinity Propagation (APMOEA) which improves the accuracy of community detection. Firstly, APMOEA takes the method of affinity propagation (AP) to initially divide the network. To accelerate its convergence, the multiobjective evolutionary algorithm selects nondominated solutions from the preliminary partitioning results as its initial population. Secondly, the multiobjective evolutionary algorithm finds solutions approximating the true Pareto optimal front through constantly selecting nondominated solutions from the population after crossover and mutation in iterations, which overcomes the tendency of data clustering methods to fall into local optima. Finally, APMOEA uses an elitist strategy, called "external archive", to prevent degeneration during the process of searching using the multiobjective evolutionary algorithm. According to this strategy, the preliminary partitioning results obtained by AP will be archived and participate in the final selection of Pareto-optimal solutions. Experiments on benchmark test data, including both computer-generated networks and eight real-world networks, show that the proposed algorithm achieves more accurate results and has faster convergence speed compared with seven other state-of-art algorithms.
Kwan, Mei-Po; Xiao, Ningchuan; Ding, Guoxiang
2015-01-01
Due to the complexity and multidimensional characteristics of human activities, assessing the similarity of human activity patterns and classifying individuals with similar patterns remains highly challenging. This paper presents a new and unique methodology for evaluating the similarity among individual activity patterns. It conceptualizes multidimensional sequence alignment (MDSA) as a multiobjective optimization problem, and solves this problem with an evolutionary algorithm. The study utilizes sequence alignment to code multiple facets of human activities into multidimensional sequences, and to treat similarity assessment as a multiobjective optimization problem that aims to minimize the alignment cost for all dimensions simultaneously. A multiobjective optimization evolutionary algorithm (MOEA) is used to generate a diverse set of optimal or near-optimal alignment solutions. Evolutionary operators are specifically designed for this problem, and a local search method also is incorporated to improve the search ability of the algorithm. We demonstrate the effectiveness of our method by comparing it with a popular existing method called ClustalG using a set of 50 sequences. The results indicate that our method outperforms the existing method for most of our selected cases. The multiobjective evolutionary algorithm presented in this paper provides an effective approach for assessing activity pattern similarity, and a foundation for identifying distinctive groups of individuals with similar activity patterns. PMID:26190858
Improved multi-objective ant colony optimization algorithm and its application in complex reasoning
NASA Astrophysics Data System (ADS)
Wang, Xinqing; Zhao, Yang; Wang, Dong; Zhu, Huijie; Zhang, Qing
2013-09-01
The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and
NASA Astrophysics Data System (ADS)
Zhou, Xu; Liu, Yanheng; Li, Bin; Sun, Geng
2015-10-01
Identifying community structures in static network misses the opportunity to capture the evolutionary patterns. So community detection in dynamic network has attracted many researchers. In this paper, a multiobjective biogeography based optimization algorithm with decomposition (MBBOD) is proposed to solve community detection problem in dynamic networks. In the proposed algorithm, the decomposition mechanism is adopted to optimize two evaluation objectives named modularity and normalized mutual information simultaneously, which measure the quality of the community partitions and temporal cost respectively. A novel sorting strategy for multiobjective biogeography based optimization is presented for comparing quality of habitats to get species counts. In addition, problem-specific migration and mutation model are introduced to improve the effectiveness of the new algorithm. Experimental results both on synthetic and real networks demonstrate that our algorithm is effective and promising, and it can detect communities more accurately in dynamic networks compared with DYNMOGA and FaceNet.
Aubry, Jean-Francois; Beaulieu, Frederic; Sevigny, Caroline; Beaulieu, Luc; Tremblay, Daniel
2006-12-15
Inverse planning in external beam radiotherapy often requires a scalar objective function that incorporates importance factors to mimic the planner's preferences between conflicting objectives. Defining those importance factors is not straightforward, and frequently leads to an iterative process in which the importance factors become variables of the optimization problem. In order to avoid this drawback of inverse planning, optimization using algorithms more suited to multiobjective optimization, such as evolutionary algorithms, has been suggested. However, much inverse planning software, including one based on simulated annealing developed at our institution, does not include multiobjective-oriented algorithms. This work investigates the performance of a modified simulated annealing algorithm used to drive aperture-based intensity-modulated radiotherapy inverse planning software in a multiobjective optimization framework. For a few test cases involving gastric cancer patients, the use of this new algorithm leads to an increase in optimization speed of a little more than a factor of 2 over a conventional simulated annealing algorithm, while giving a close approximation of the solutions produced by a standard simulated annealing. A simple graphical user interface designed to facilitate the decision-making process that follows an optimization is also presented.
Genetic algorithm for chromaticity correction in diffraction limited storage rings
NASA Astrophysics Data System (ADS)
Ehrlichman, M. P.
2016-04-01
A multiobjective genetic algorithm is developed for optimizing nonlinearities in diffraction limited storage rings. This algorithm determines sextupole and octupole strengths for chromaticity correction that deliver optimized dynamic aperture and beam lifetime. The algorithm makes use of dominance constraints to breed desirable properties into the early generations. The momentum aperture is optimized indirectly by constraining the chromatic tune footprint and optimizing the off-energy dynamic aperture. The result is an effective and computationally efficient technique for correcting chromaticity in a storage ring while maintaining optimal dynamic aperture and beam lifetime.
Integrative systems modeling and multi-objective optimization
This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...
NASA Astrophysics Data System (ADS)
Karakla, Diane M.; Pontoppidan, K.; Shyrokov, A.; Beck, T. L.; Valenti, J. A.; Soderblom, D. R.; Tumlinson, J.; Muzerolle, J.
2014-01-01
Planning observations for the JWST NIRSpec Multi-Object Spectroscopy will be complex because of the fixed-grid nature of the Micro-Shutter Arrays (MSAs) used for this instrument mode. Two algorithms have been incorporated into the 'MSA Planning Tool' (MPT) in the Astronomers Proposal Tools (APT) for this NIRSpec observation planning process. The 'Basic Algorithm' and the 'Constrained Algorithm' both determine a set of on-sky pointing positions which yield an optimal number of science sources observed per MSA shutter configuration, but these algorithms have different strategies for generating their observing plans. The Basic algorithm uses a defined set of fixed dithers specified by the observer, while the Constrained algorithm can more flexibly define dithers by merely constraining offsets from one pointing position to the next. Each algorithm offers advantages for different observing cases. This poster describes the two algorithms and their products, and clarifies observing cases where clear planning advantages are offered by each.
An Evolutionary Algorithm with Double-Level Archives for Multiobjective Optimization.
Chen, Ni; Chen, Wei-Neng; Gong, Yue-Jiao; Zhan, Zhi-Hui; Zhang, Jun; Li, Yun; Tan, Yu-Song
2015-09-01
Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problem-level and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed. PMID:25343775
NASA Astrophysics Data System (ADS)
Huang, Xiaobiao; Safranek, James
2014-09-01
Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.
Frutos, M; Méndez, M; Tohmé, F; Broz, D
2013-01-01
Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502
Frutos, M.; Méndez, M.; Tohmé, F.; Broz, D.
2013-01-01
Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502
NASA Astrophysics Data System (ADS)
Wang, Congzhe; Fang, Yuefa; Guo, Sheng
2015-07-01
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.
Genetic algorithm for investigating flight MH370 in Indian Ocean using remotely sensed data
NASA Astrophysics Data System (ADS)
Marghany, Maged; Mansor, Shattri; Shariff, Abdul Rashid Bin Mohamed
2016-06-01
This study utilized Genetic algorithm (GA) for automatic detection and simulation trajectory movements of flight MH370 debris. In doing so, the Ocean Surface Topography Mission(OSTM) on the Jason- 2 satellite have been used within 1 and half year covers data to simulate the pattern of Flight MH370 debris movements across the southern Indian Ocean. Further, multi-objectives evolutionary algorithm also used to discriminate uncertainty of flight MH370 imagined and detection. The study shows that the ocean surface current speed is 0.5 m/s. This current patterns have developed a large anticlockwise gyre over a water depth of 8,000 m. The multi-objectives evolutionary algorithm suggested that objects are existed on satellite data are not flight MH370 debris. In addition, multiobjectives evolutionary algorithm suggested that the difficulties to acquire the exact location of flight MH370 due to complicated hydrodynamic movements across the southern Indian Ocean.
Scheduling with genetic algorithms
NASA Technical Reports Server (NTRS)
Fennel, Theron R.; Underbrink, A. J., Jr.; Williams, George P. W., Jr.
1994-01-01
In many domains, scheduling a sequence of jobs is an important function contributing to the overall efficiency of the operation. At Boeing, we develop schedules for many different domains, including assembly of military and commercial aircraft, weapons systems, and space vehicles. Boeing is under contract to develop scheduling systems for the Space Station Payload Planning System (PPS) and Payload Operations and Integration Center (POIC). These applications require that we respect certain sequencing restrictions among the jobs to be scheduled while at the same time assigning resources to the jobs. We call this general problem scheduling and resource allocation. Genetic algorithms (GA's) offer a search method that uses a population of solutions and benefits from intrinsic parallelism to search the problem space rapidly, producing near-optimal solutions. Good intermediate solutions are probabalistically recombined to produce better offspring (based upon some application specific measure of solution fitness, e.g., minimum flowtime, or schedule completeness). Also, at any point in the search, any intermediate solution can be accepted as a final solution; allowing the search to proceed longer usually produces a better solution while terminating the search at virtually any time may yield an acceptable solution. Many processes are constrained by restrictions of sequence among the individual jobs. For a specific job, other jobs must be completed beforehand. While there are obviously many other constraints on processes, it is these on which we focussed for this research: how to allocate crews to jobs while satisfying job precedence requirements and personnel, and tooling and fixture (or, more generally, resource) requirements.
Messy genetic algorithms: Recent developments
Kargupta, H.
1996-09-01
Messy genetic algorithms define a rare class of algorithms that realize the need for detecting appropriate relations among members of the search domain in optimization. This paper reviews earlier works in messy genetic algorithms and describes some recent developments. It also describes the gene expression messy GA (GEMGA)--an {Omicron}({Lambda}{sup {kappa}}({ell}{sup 2} + {kappa})) sample complexity algorithm for the class of order-{kappa} delineable problems (problems that can be solved by considering no higher than order-{kappa} relations) of size {ell} and alphabet size {Lambda}. Experimental results are presented to demonstrate the scalability of the GEMGA.
Optimized sound diffusers based on sonic crystals using a multiobjective evolutionary algorithm.
Redondo, J; Sánchez-Pérez, J V; Blasco, X; Herrero, J M; Vorländer, M
2016-05-01
Sonic crystals have been demonstrated to be good candidates to substitute for conventional diffusers in order to overcome the need for extremely thick structures when low frequencies have to be scattered, however, their performance is limited to a narrow band. In this work, multiobjective evolutionary algorithms are used to extend the bandwidth to the whole low frequency range. The results show that diffusion can be significantly increased. Several cost functions are considered in the paper, on the one hand to illustrate the flexibility of the optimization and on the other hand to demonstrate the problems associated with the use of certain cost functions. A study of the robustness of the optimized diffusers is also presented, introducing a parameter that can help to choose among the best candidates. Finally, the advantages of the use of multiobjective optimization in comparison with conventional optimizations are discussed. PMID:27250173
Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng
2014-01-01
Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms. PMID:24723806
NASA Astrophysics Data System (ADS)
Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed
2016-06-01
In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.
Genetic algorithms as discovery programs
Hilliard, M.R.; Liepins, G.
1986-01-01
Genetic algorithms are mathematical counterparts to natural selection and gene recombination. As such, they have provided one of the few significant breakthroughs in machine learning. Used with appropriate reward functions and apportionment of credit, they have been successfully applied to gas pipeline operation, x-ray registration and mathematical optimization problems. This paper discusses the basics of genetic algorithms, describes a few successes, and reports on current progress at Oak Ridge National Laboratory in applications to set covering and simulated robots.
Genetic Algorithm Optimizes Q-LAW Control Parameters
NASA Technical Reports Server (NTRS)
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
NASA Astrophysics Data System (ADS)
Zatarain Salazar, Jazmin; Reed, Patrick M.; Herman, Jonathan D.; Giuliani, Matteo; Castelletti, Andrea
2016-06-01
Globally, the pressures of expanding populations, climate change, and increased energy demands are motivating significant investments in re-operationalizing existing reservoirs or designing operating policies for new ones. These challenges require an understanding of the tradeoffs that emerge across the complex suite of multi-sector demands in river basin systems. This study benchmarks our current capabilities to use Evolutionary Multi-Objective Direct Policy Search (EMODPS), a decision analytic framework in which reservoirs' candidate operating policies are represented using parameterized global approximators (e.g., radial basis functions) then those parameterized functions are optimized using multi-objective evolutionary algorithms to discover the Pareto approximate operating policies. We contribute a comprehensive diagnostic assessment of modern MOEAs' abilities to support EMODPS using the Conowingo reservoir in the Lower Susquehanna River Basin, Pennsylvania, USA. Our diagnostic results highlight that EMODPS can be very challenging for some modern MOEAs and that epsilon dominance, time-continuation, and auto-adaptive search are helpful for attaining high levels of performance. The ɛ-MOEA, the auto-adaptive Borg MOEA, and ɛ-NSGAII all yielded superior results for the six-objective Lower Susquehanna benchmarking test case. The top algorithms show low sensitivity to different MOEA parameterization choices and high algorithmic reliability in attaining consistent results for different random MOEA trials. Overall, EMODPS poses a promising method for discovering key reservoir management tradeoffs; however algorithmic choice remains a key concern for problems of increasing complexity.
Experiments with a Parallel Multi-Objective Evolutionary Algorithm for Scheduling
NASA Technical Reports Server (NTRS)
Brown, Matthew; Johnston, Mark D.
2013-01-01
Evolutionary multi-objective algorithms have great potential for scheduling in those situations where tradeoffs among competing objectives represent a key requirement. One challenge, however, is runtime performance, as a consequence of evolving not just a single schedule, but an entire population, while attempting to sample the Pareto frontier as accurately and uniformly as possible. The growing availability of multi-core processors in end user workstations, and even laptops, has raised the question of the extent to which such hardware can be used to speed up evolutionary algorithms. In this paper we report on early experiments in parallelizing a Generalized Differential Evolution (GDE) algorithm for scheduling long-range activities on NASA's Deep Space Network. Initial results show that significant speedups can be achieved, but that performance does not necessarily improve as more cores are utilized. We describe our preliminary results and some initial suggestions from parallelizing the GDE algorithm. Directions for future work are outlined.
Scheduling Jobs with Genetic Algorithms
NASA Astrophysics Data System (ADS)
Ferrolho, António; Crisóstomo, Manuel
Most scheduling problems are NP-hard, the time required to solve the problem optimally increases exponentially with the size of the problem. Scheduling problems have important applications, and a number of heuristic algorithms have been proposed to determine relatively good solutions in polynomial time. Recently, genetic algorithms (GA) are successfully used to solve scheduling problems, as shown by the growing numbers of papers. GA are known as one of the most efficient algorithms for solving scheduling problems. But, when a GA is applied to scheduling problems various crossovers and mutations operators can be applicable. This paper presents and examines a new concept of genetic operators for scheduling problems. A software tool called hybrid and flexible genetic algorithm (HybFlexGA) was developed to examine the performance of various crossover and mutation operators by computing simulations of job scheduling problems.
A Comparative Study of Multi-Objective Optimization Algorithms for Automatic Calibration
NASA Astrophysics Data System (ADS)
Asadzadeh, M.; Tolson, B.; Maclean, A.
2009-12-01
Hydrologic model calibration is often a computationally expensive problem that aims to find a set of parameters that simulates observations. It has been shown that no single metric can comprehensively evaluate the effectiveness of the calibration. Moreover, many of the proposed metrics are conflicting (e.g., the set of parameters that achieves accurate high flow predictions is different from the set of parameters that achieves accurate low flow predictions). Conflict is even more likely when objectives are based on different fluxes and/or state variables (e.g., streamflow versus Snow Water Equivalent (SWE)). The goal of solving a multi-objective optimization problem is to approximate the tradeoff between objectives (also called the Pareto front) that represents the attained level of each metric in comparison with other metrics and hence helps to decide on the acceptable set of parameters. In this study, a variety of algorithms are applied to solve a multi-objective (MO) model calibration problem and the performance of these algorithms is compared. The calibration case study is the MESH model (a combined land surface and hydrologic model under development by Environment Canada) applied to the Reynolds Creek Experimental Watershed. MESH is calibrated against two objectives to adequately simulate the measured streamflow and SWE. The MO algorithms applied to this calibration problem include NSGAII, SPEA2 and AMALGAM. In addition, a new MO algorithm called the Pareto Archived Dynamically Dimensioned Search (PA-DDS) is also applied. PA-DDS uses DDS as a search engine and archives all the non-dominated solutions during the search. It inherits the parsimonious characteristic of DDS, so it has only one algorithm parameter which does not need tuning. This characteristic makes PA-DDS very suitable for solving multi-objective hydrologic model calibrations, since tuning the algorithm parameters in computationally intensive models is a very time consuming process. Preliminary
Memetic algorithm-based multi-objective coverage optimization for wireless sensor networks.
Chen, Zhi; Li, Shuai; Yue, Wenjing
2014-01-01
Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms. PMID:25360579
Wang, Yuping; Feng, Junhong
2013-01-01
In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption. PMID:23766683
Memetic Algorithm-Based Multi-Objective Coverage Optimization for Wireless Sensor Networks
Chen, Zhi; Li, Shuai; Yue, Wenjing
2014-01-01
Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms. PMID:25360579
A new multiobjective performance criterion used in PID tuning optimization algorithms
Sahib, Mouayad A.; Ahmed, Bestoun S.
2015-01-01
In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions. PMID:26843978
A new multiobjective performance criterion used in PID tuning optimization algorithms.
Sahib, Mouayad A; Ahmed, Bestoun S
2016-01-01
In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions. PMID:26843978
Multiobjective synchronization of coupled systems
NASA Astrophysics Data System (ADS)
Tang, Yang; Wang, Zidong; Wong, W. K.; Kurths, Jürgen; Fang, Jian-an
2011-06-01
In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.
Ghiasi, Mohammad Sadegh; Arjmand, Navid; Boroushaki, Mehrdad; Farahmand, Farzam
2016-03-01
A six-degree-of-freedom musculoskeletal model of the lumbar spine was developed to predict the activity of trunk muscles during light, moderate and heavy lifting tasks in standing posture. The model was formulated into a multi-objective optimization problem, minimizing the sum of the cubed muscle stresses and maximizing the spinal stability index. Two intelligent optimization algorithms, i.e., the vector evaluated particle swarm optimization (VEPSO) and nondominated sorting genetic algorithm (NSGA), were employed to solve the optimization problem. The optimal solution for each task was then found in the way that the corresponding in vivo intradiscal pressure could be reproduced. Results indicated that both algorithms predicted co-activity in the antagonistic abdominal muscles, as well as an increase in the stability index when going from the light to the heavy task. For all of the light, moderate and heavy tasks, the muscles' activities predictions of the VEPSO and the NSGA were generally consistent and in the same order of the in vivo electromyography data. The proposed methodology is thought to provide improved estimations for muscle activities by considering the spinal stability and incorporating the in vivo intradiscal pressure data. PMID:26088358
Lunar Habitat Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.
An overview of population-based algorithms for multi-objective optimisation
NASA Astrophysics Data System (ADS)
Giagkiozis, Ioannis; Purshouse, Robin C.; Fleming, Peter J.
2015-07-01
In this work we present an overview of the most prominent population-based algorithms and the methodologies used to extend them to multiple objective problems. Although not exact in the mathematical sense, it has long been recognised that population-based multi-objective optimisation techniques for real-world applications are immensely valuable and versatile. These techniques are usually employed when exact optimisation methods are not easily applicable or simply when, due to sheer complexity, such techniques could potentially be very costly. Another advantage is that since a population of decision vectors is considered in each generation these algorithms are implicitly parallelisable and can generate an approximation of the entire Pareto front at each iteration. A critique of their capabilities is also provided.
Simultaneous stabilization using genetic algorithms
Benson, R.W.; Schmitendorf, W.E. . Dept. of Mechanical Engineering)
1991-01-01
This paper considers the problem of simultaneously stabilizing a set of plants using full state feedback. The problem is converted to a simple optimization problem which is solved by a genetic algorithm. Several examples demonstrate the utility of this method. 14 refs., 8 figs.
NASA Astrophysics Data System (ADS)
Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun
2014-11-01
This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation systems under uncertainty associated with the hydraulic conductivity (K) of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic sorting technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient K data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal design of groundwater remediation systems for a two-dimensional hypothetical test problem and a three-dimensional Indiana field application involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the mass remaining in the aquifer at the end of the operational period, whereby the pump-and-treat (PAT) technology is used to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology. Comprehensive analysis indicates that the proposed PMOFHS can find Pareto-optimal solutions with low variability and high reliability and is a potentially effective tool for optimizing multi-objective groundwater remediation problems under uncertainty.
Holdsworth, Clay; Kim, Minsun; Liao, Jay; Phillips, Mark
2012-01-01
Purpose: To evaluate how a more flexible and thorough multiobjective search of feasible IMRT plans affects performance in IMRT optimization. Methods: A multiobjective evolutionary algorithm (MOEA) was used as a tool to investigate how expanding the search space to include a wider range of penalty functions affects the quality of the set of IMRT plans produced. The MOEA uses a population of IMRT plans to generate new IMRT plans through deterministic minimization of recombined penalty functions that are weighted sums of multiple, tissue-specific objective functions. The quality of the generated plans are judged by an independent set of nonconvex, clinically relevant decision criteria, and all dominated plans are eliminated. As this process repeats itself, better plans are produced so that the population of IMRT plans will approach the Pareto front. Three different approaches were used to explore the effects of expanding the search space. First, the evolutionary algorithm used genetic optimization principles to search by simultaneously optimizing both the weights and tissue-specific dose parameters in penalty functions. Second, penalty function parameters were individually optimized for each voxel in all organs at risk (OARs) in the MOEA. Finally, a heuristic voxel-specific improvement (VSI) algorithm that can be used on any IMRT plan was developed that incrementally improves voxel-specific penalty function parameters for all structures (OARs and targets). Different approaches were compared using the concept of domination comparison applied to the sets of plans obtained by multiobjective optimization. Results: MOEA optimizations that simultaneously searched both importance weights and dose parameters generated sets of IMRT plans that were superior to sets of plans produced when either type of parameter was fixed for four example prostate plans. The amount of improvement increased with greater overlap between OARs and targets. Allowing the MOEA to search for voxel
Genetic algorithms and their applications in accelerator physics
Hofler, Alicia S.
2013-12-01
Multi-objective optimization techniques are widely used in an extremely broad range of fields. Genetic optimization for multi-objective optimization was introduced in the accelerator community in relatively recent times and quickly spread becoming a fundamental tool in multi-dimensional optimization problems. This discussion introduces the basics of the technique and reviews applications in accelerator problems.
Integrating GIS and genetic algorithms for automating land partitioning
NASA Astrophysics Data System (ADS)
Demetriou, Demetris; See, Linda; Stillwell, John
2014-08-01
Land consolidation is considered to be the most effective land management planning approach for controlling land fragmentation and hence improving agricultural efficiency. Land partitioning is a basic process of land consolidation that involves the subdivision of land into smaller sub-spaces subject to a number of constraints. This paper explains the development of a module called LandParcelS (Land Parcelling System) that integrates geographical information systems and a genetic algorithm to automate the land partitioning process by designing and optimising land parcels in terms of their shape, size and value. This new module has been applied to two land blocks that are part of a larger case study area in Cyprus. Partitioning is carried out by guiding a Thiessen polygon process within ArcGIS and it is treated as a multiobjective problem. The results suggest that a step forward has been made in solving this complex spatial problem, although further research is needed to improve the algorithm. The contribution of this research extends land partitioning and space partitioning in general, since these approaches may have relevance to other spatial processes that involve single or multi-objective problems that could be solved in the future by spatial evolutionary algorithms.
Problem solving with genetic algorithms and Splicer
NASA Technical Reports Server (NTRS)
Bayer, Steven E.; Wang, Lui
1991-01-01
Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.
Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm
NASA Astrophysics Data System (ADS)
Wu, Xiaolan; Grubesic, Tony H.
2010-12-01
Spatial cluster detection techniques are widely used in criminology, geography, epidemiology, and other fields. In particular, spatial scan statistics are popular and efficient techniques for detecting areas of elevated crime or disease events. The majority of spatial scan approaches attempt to delineate geographic zones by evaluating the significance of clusters using likelihood ratio statistics tested with the Poisson distribution. While this can be effective, many scan statistics give preference to circular clusters, diminishing their ability to identify elongated and/or irregular shaped clusters. Although adjusting the shape of the scan window can mitigate some of these problems, both the significance of irregular clusters and their spatial structure must be accounted for in a meaningful way. This paper utilizes a multiobjective evolutionary algorithm to find clusters with maximum significance while quantitatively tracking their geographic structure. Crime data for the city of Cincinnati are utilized to demonstrate the advantages of the new approach and highlight its benefits versus more traditional scan statistics.
NASA Astrophysics Data System (ADS)
Schütze, Niels; Wöhling, Thomas; de Play, Michael
2010-05-01
Some real-world optimization problems in water resources have a high-dimensional space of decision variables and more than one objective function. In this work, we compare three general-purpose, multi-objective simulation optimization algorithms, namely NSGA-II, AMALGAM, and CMA-ES-MO when solving three real case Multi-objective Optimization Problems (MOPs): (i) a high-dimensional soil hydraulic parameter estimation problem; (ii) a multipurpose multi-reservoir operation problem; and (iii) a scheduling problem in deficit irrigation. We analyze the behaviour of the three algorithms on these test problems considering their formulations ranging from 40 up to 120 decision variables and 2 to 4 objectives. The computational effort required by each algorithm in order to reach the true Pareto front is also analyzed.
NASA Astrophysics Data System (ADS)
Zhang, B.; Ye, Z. F.; Xu, X.
2016-01-01
The data processing procedures currently used on most multi-object fiber spectroscopic telescopes, such as Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), the Sloan Digital Sky Survey (SDSS), the Anglo-Australia Telescope (AAT), etc., are based on one-dimensional (1-D) algorithms. In this paper, LAMOST is taken as an example to display the proposed multi-object fiber spectral data processing procedure. In the using processing procedure on LAMOST, after the pretreatment process, the two-dimensional (2-D) observed raw data are extracted into 1-D intermediate data simply based on 1-D model. Then the subsequent key steps are all done by 1-D algorithms. However, this processing procedure is not in accord with the formation mechanism of the observed spectra. Therefore, it brings a considerable error in each step. To solve the problem, we propose a novel processing procedure that has not been used on LAMOST or other telescopes. The modules of the procedure are reordered, and the main steps are all based on 2-D algorithms. The principles of the core algorithms are explained in detail. Besides, some partial experimental results are shown to prove the effectiveness and superiority of the 2-D algorithms.
The multi-niche crowding genetic algorithm: Analysis and applications
Cedeno, W.
1995-09-01
The ability of organisms to evolve and adapt to the environment has provided mother nature with a rich and diverse set of species. Only organisms well adapted to their environment can survive from one generation to the next, transferring on the traits, that made them successful, to their offspring. Competition for resources and the ever changing environment drives some species to extinction and at the same time others evolve to maintain the delicate balance in nature. In this disertation we present the multi-niche crowding genetic algorithm, a computational metaphor to the survival of species in ecological niches in the face of competition. The multi-niche crowding genetic algorithm maintains stable subpopulations of solutions in multiple niches in multimodal landscapes. The algorithm introduces the concept of crowding selection to promote mating among members with qirnilar traits while allowing many members of the population to participate in mating. The algorithm uses worst among most similar replacement policy to promote competition among members with similar traits while allowing competition among members of different niches as well. We present empirical and theoretical results for the success of the multiniche crowding genetic algorithm for multimodal function optimization. The properties of the algorithm using different parameters are examined. We test the performance of the algorithm on problems of DNA Mapping, Aquifer Management, and the File Design Problem. Applications that combine the use of heuristics and special operators to solve problems in the areas of combinatorial optimization, grouping, and multi-objective optimization. We conclude by presenting the advantages and disadvantages of the algorithm and describing avenues for future investigation to answer other questions raised by this study.
NASA Astrophysics Data System (ADS)
Tom, Brian C.
Intensity Modulated Radiation Therapy (IMRT) has enjoyed success in the clinic by achieving dose escalation to the target while sparing nearby critical structures. For DMLC plans, regularization is introduced in order to smooth the fluence maps. In this dissertation, regularization is used to smooth the fluence profiles. Since SMLC plans have a limited number of intensity levels, smoothing is not a problem. However, in many treatment planning systems, the plans are optimized with beam weights that are continuous. Only after the optimization is complete is when the fluence maps are quantized. This dissertation will study the effects, if any, of quantizing the beam weights. In order to study both smoothing DMLC plans and the quantization of SMLC plans, a multi-objective evolutionary algorithm is employed as the optimization method. The main advantages of using these stochastic algorithms is that the beam weights can be represented either in binary or real strings. Clearly, a binary representation is suited for SMLC delivery (discrete intensity levels), while a real representation is more suited for DMLC. Further, in the case of real beam weights, multi-objective evolutionary algorithms can handle conflicting objective functions very well. In fact, regularization can be thought of as having two competing functions: to maintain fidelity to the data, and smoothing the data. The main disadvantage of regularization is the need to specify the regularization parameter, which controls how important the two objectives are relative to one another. Multi-objective evolutionary algorithms do not need such a parameter. In addition, such algorithms yield a set of solutions, each solution representing differing importance factors of the two (or more) objective functions. Multi-objective evolutionary algorithms can thus be used to study the effects of quantizing the beam weights for SMLC delivery systems as well studying how regularization can reduce the difference between the
Maximizing flexure jointed hexapod vibration isolation using a modified genetic algorithm
NASA Astrophysics Data System (ADS)
Guo, Zhijiang; McInroy, John E.
2004-07-01
In this paper we propose the use of the genetic algorithm (GA) as a tool to solve multi-objective optimization problems in flexure jointed hexapods. Using the concept of heuristic mutation, a modified GA-based multi-objective optimization technique is proposed and the passive parameters' optimization problems in a flexure jointed hexapod system are solved. The passive parameters found include the spring and the damping parameters in each strut of the hexapod. The results produced by this new approach are compared to those produced by other practical selection techniques, proving that this technique is more flexible. Thus, the genetic algorithm can be used as a reliable numerical optimization tool in such problems.
A possibilistic approach to rotorcraft design through a multi-objective evolutionary algorithm
NASA Astrophysics Data System (ADS)
Chae, Han Gil
Most of the engineering design processes in use today in the field may be considered as a series of successive decision making steps. The decision maker uses information at hand, determines the direction of the procedure, and generates information for the next step and/or other decision makers. However, the information is often incomplete, especially in the early stages of the design process of a complex system. As the complexity of the system increases, uncertainties eventually become unmanageable using traditional tools. In such a case, the tools and analysis values need to be "softened" to account for the designer's intuition. One of the methods that deals with issues of intuition and incompleteness is possibility theory. Through the use of possibility theory coupled with fuzzy inference, the uncertainties estimated by the intuition of the designer are quantified for design problems. By involving quantified uncertainties in the tools, the solutions can represent a possible set, instead of a crisp spot, for predefined levels of certainty. From a different point of view, it is a well known fact that engineering design is a multi-objective problem or a set of such problems. The decision maker aims to find satisfactory solutions, sometimes compromising the objectives that conflict with each other. Once the candidates of possible solutions are generated, a satisfactory solution can be found by various decision-making techniques. A number of multi-objective evolutionary algorithms (MOEAs) have been developed, and can be found in the literature, which are capable of generating alternative solutions and evaluating multiple sets of solutions in one single execution of an algorithm. One of the MOEA techniques that has been proven to be very successful for this class of problems is the strength Pareto evolutionary algorithm (SPEA) which falls under the dominance-based category of methods. The Pareto dominance that is used in SPEA, however, is not enough to account for the
Genetic Algorithm for Optimization: Preprocessor and Algorithm
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam A.
2006-01-01
Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.
Application of a multi-objective evolutionary algorithm to the spacecraft stationkeeping problem
NASA Astrophysics Data System (ADS)
Myers, Philip L.; Spencer, David B.
2016-10-01
Satellite operations are becoming an increasingly private industry, requiring increased profitability. Efficient and safe operation of satellites in orbit will ensure longer lasting and more profitable satellite services. This paper focuses on the use of a multi-objective evolutionary algorithm to schedule the maneuvers of a hypothetical satellite operating at geosynchronous altitude, by seeking to minimize the propellant consumed through the execution of stationkeeping maneuvers and the time the satellite is displaced from its desired orbital plane. Minimization of the time out of place increases the operational availability and minimizing the propellant usage which allows the spacecraft to operate longer. North-South stationkeeping was studied in this paper, through the use of a set of orbit inclination change maneuvers each year. Two cases for the maximum number of maneuvers to be executed were considered, with four and five maneuvers per year. The results delivered by the algorithm provide maneuver schedules which require 40-100 m/s of total Δv for two years of operation, with the satellite maintaining the satellite's orbital plane to within 0.1° between 84% and 96% of the two years being modeled.
NASA Astrophysics Data System (ADS)
Xiao, Zhongliang
2012-04-01
In this paper, we set up a mathematical model to solve the problem of airport ground services. In this model, we set objective function of cost and time, and the purpose is making it minimized. Base on the analysis of scheduling characteristic, we use the multi-population co-evolutionary Memetic algorithm (MAMC) which is with the elitist strategy to realize the model. From the result we can see that our algorithm is better than the genetic algorithm in this problem and we can see that our algorithm is convergence. So we can summarize that it can be a better optimization to airport ground services problem.
NASA Astrophysics Data System (ADS)
Clarkin, T. J.; Kasprzyk, J. R.; Raseman, W. J.; Herman, J. D.
2015-12-01
This study contributes a diagnostic assessment of multiobjective evolutionary algorithm (MOEA) search on a set of water resources problem formulations with different configurations of constraints. Unlike constraints in classical optimization modeling, constraints within MOEA simulation-optimization represent limits on acceptable performance that delineate whether solutions within the search problem are feasible. Constraints are relevant because of the emergent pressures on water resources systems: increasing public awareness of their sustainability, coupled with regulatory pressures on water management agencies. In this study, we test several state-of-the-art MOEAs that utilize restricted tournament selection for constraint handling on varying configurations of water resources planning problems. For example, a problem that has no constraints on performance levels will be compared with a problem with several severe constraints, and a problem with constraints that have less severe values on the constraint thresholds. One such problem, Lower Rio Grande Valley (LRGV) portfolio planning, has been solved with a suite of constraints that ensure high reliability, low cost variability, and acceptable performance in a single year severe drought. But to date, it is unclear whether or not the constraints are negatively affecting MOEAs' ability to solve the problem effectively. Two categories of results are explored. The first category uses control maps of algorithm performance to determine if the algorithm's performance is sensitive to user-defined parameters. The second category uses run-time performance metrics to determine the time required for the algorithm to reach sufficient levels of convergence and diversity on the solution sets. Our work exploring the effect of constraints will better enable practitioners to define MOEA problem formulations for real-world systems, especially when stakeholders are concerned with achieving fixed levels of performance according to one or
NASA Astrophysics Data System (ADS)
Lahanas, Michael; Schreibmann, Eduard; Baltas, Dimos
2003-09-01
We consider the behaviour of the limited memory L-BFGS algorithm as a representative constraint-free gradient-based algorithm which is used for multiobjective (MO) dose optimization for intensity modulated radiotherapy (IMRT). Using a parameter transformation, the positivity constraint problem of negative beam fluences is entirely eliminated: a feature which to date has not been fully understood by all investigators. We analyse the global convergence properties of L-BFGS by searching for the existence and the influence of possible local minima. With a fast simulated annealing (FSA) algorithm we examine whether the L-BFGS solutions are globally Pareto optimal. The three examples used in our analysis are a brain tumour, a prostate tumour and a test case with a C-shaped PTV. In 1% of the optimizations global convergence is violated. A simple mechanism practically eliminates the influence of this failure and the obtained solutions are globally optimal. A single-objective dose optimization requires less than 4 s for 5400 parameters and 40 000 sampling points. The elimination of the problem of negative beam fluences and the high computational speed permit constraint-free gradient-based optimization algorithms to be used for MO dose optimization. In this situation, a representative spectrum of possible solutions is obtained which contains information such as the trade-off between the objectives and range of dose values. Using simple decision making tools the best of all the possible solutions can be chosen. We perform an MO dose optimization for the three examples and compare the spectra of solutions, firstly using recommended critical dose values for the organs at risk and secondly, setting these dose values to zero.
New Results in Astrodynamics Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.
1998-01-01
Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.
Learning Intelligent Genetic Algorithms Using Japanese Nonograms
ERIC Educational Resources Information Center
Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen
2012-01-01
An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…
NASA Astrophysics Data System (ADS)
Rodrigo, Deepal
2007-12-01
This dissertation introduces a novel approach for optimally operating a day-ahead electricity market not only by economically dispatching the generation resources but also by minimizing the influences of market manipulation attempts by the individual generator-owning companies while ensuring that the power system constraints are not violated. Since economic operation of the market conflicts with the individual profit maximization tactics such as market manipulation by generator-owning companies, a methodology that is capable of simultaneously optimizing these two competing objectives has to be selected. Although numerous previous studies have been undertaken on the economic operation of day-ahead markets and other independent studies have been conducted on the mitigation of market power, the operation of a day-ahead electricity market considering these two conflicting objectives simultaneously has not been undertaken previously. These facts provided the incentive and the novelty for this study. A literature survey revealed that many of the traditional solution algorithms convert multi-objective functions into either a single-objective function using weighting schemas or undertake optimization of one function at a time. Hence, these approaches do not truly optimize the multi-objectives concurrently. Due to these inherent deficiencies of the traditional algorithms, the use of alternative non-traditional solution algorithms for such problems has become popular and widely used. Of these, multi-objective evolutionary algorithms (MOEA) have received wide acceptance due to their solution quality and robustness. In the present research, three distinct algorithms were considered: a non-dominated sorting genetic algorithm II (NSGA II), a multi-objective tabu search algorithm (MOTS) and a hybrid of multi-objective tabu search and genetic algorithm (MOTS/GA). The accuracy and quality of the results from these algorithms for applications similar to the problem investigated here
Excursion-Set-Mediated Genetic Algorithm
NASA Technical Reports Server (NTRS)
Noever, David; Baskaran, Subbiah
1995-01-01
Excursion-set-mediated genetic algorithm (ESMGA) is embodiment of method of searching for and optimizing computerized mathematical models. Incorporates powerful search and optimization techniques based on concepts analogous to natural selection and laws of genetics. In comparison with other genetic algorithms, this one achieves stronger condition for implicit parallelism. Includes three stages of operations in each cycle, analogous to biological generation.
Employing multi-objective Genetic Programming to the downscaling of near-surface atmospheric fields
NASA Astrophysics Data System (ADS)
Zerenner, Tanja; Venema, Victor; Friederichs, Petra; Simmer, Clemens
2015-04-01
The coupling of models for the different components of the Soil-Vegetation-Atmosphere-System is required to investigate component interactions and feedback processes. However, the component models for atmosphere, land-surface and subsurface are usually operated at different resolutions in space and time owing to the dominant processes. The computationally expensive atmospheric models are typically employed at a coarser resolution than land-surface and subsurface models. Thus up- and downscaling procedures are required at the interface between the atmospheric model and the land-surface/subsurface models. We apply multi-objective Genetic Programming (GP) to a training data set of high-resolution atmospheric model runs to learn downscaling rules, i. e., equations or short programs that reconstruct the fine-scale fields of the near-surface atmospheric state variables from the coarse atmospheric model output. Like artificial neural networks, GP can flexibly incorporate multivariate and nonlinear relations, but offers the advantage that the solutions are human readable and thus can be checked for physical consistency. Further, the Strength Pareto Approach for multi-objective fitness assignment allows to consider multiple characteristics of the fine-scale fields during the learning procedure. We have applied the described machine learning methodology to a training data set of 400 m resolution COSMO model runs to learn downscaling rules which recover realistic fine-scale structures from the coarsened fields at 2.8 km resolution. Hence we are currently downscaling by a factor of 7. The COSMO model is the weather forecast model developed and maintained by the German Weather Service and is contained in the Terrestrial Systems Modeling Platform (TerrSysMP), which couples the atmospheric COSMO model to land-surface model CLM and subsurface hydrological model ParFlow. Finally we aim at implementing the learned downscaling rules in the TerrSysMP to achieve scale
NASA Astrophysics Data System (ADS)
Zhou, Xu; Liu, Yanheng; Li, Bin
2016-03-01
Detecting community is a challenging task in analyzing networks. Solving community detection problem by evolutionary algorithm is a heated topic in recent years. In this paper, a multi-objective discrete cuckoo search algorithm with local search (MDCL) for community detection is proposed. To the best of our knowledge, it is first time to apply cuckoo search algorithm for community detection. Two objective functions termed as negative ratio association and ratio cut are to be minimized. These two functions can break through the modularity limitation. In the proposed algorithm, the nest location updating strategy and abandon operator of cuckoo are redefined in discrete form. A local search strategy and a clone operator are proposed to obtain the optimal initial population. The experimental results on synthetic and real-world networks show that the proposed algorithm has better performance than other algorithms and can discover the higher quality community structure without prior information.
NASA Astrophysics Data System (ADS)
Holdsworth, C. H.; Corwin, D.; Stewart, R. D.; Rockne, R.; Trister, A. D.; Swanson, K. R.; Phillips, M.
2012-12-01
We demonstrate a patient-specific method of adaptive IMRT treatment for glioblastoma using a multiobjective evolutionary algorithm (MOEA). The MOEA generates spatially optimized dose distributions using an iterative dialogue between the MOEA and a mathematical model of tumor cell proliferation, diffusion and response. Dose distributions optimized on a weekly basis using biological metrics have the potential to substantially improve and individualize treatment outcomes. Optimized dose distributions were generated using three different decision criteria for the tumor and compared with plans utilizing standard dose of 1.8 Gy/fraction to the CTV (T2-visible MRI region plus a 2.5 cm margin). The sets of optimal dose distributions generated using the MOEA approach the Pareto Front (the set of IMRT plans that delineate optimal tradeoffs amongst the clinical goals of tumor control and normal tissue sparing). MOEA optimized doses demonstrated superior performance as judged by three biological metrics according to simulated results. The predicted number of reproductively viable cells 12 weeks after treatment was found to be the best target objective for use in the MOEA.
Ren, Kun; Jihong, Qu
2014-01-01
Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663
Jihong, Qu
2014-01-01
Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663
Genetic Algorithms with Local Minimum Escaping Technique
NASA Astrophysics Data System (ADS)
Tamura, Hiroki; Sakata, Kenichiro; Tang, Zheng; Ishii, Masahiro
In this paper, we propose a genetic algorithm(GA) with local minimum escaping technique. This proposed method uses the local minimum escaping techique. It can escape from the local minimum by correcting parameters when genetic algorithm falls into a local minimum. Simulations are performed to scheduling problem without buffer capacity using this proposed method, and its validity is shown.
A multiobjective scatter search algorithm for fault-tolerant NoC mapping optimisation
NASA Astrophysics Data System (ADS)
Le, Qianqi; Yang, Guowu; Hung, William N. N.; Zhang, Xinpeng; Fan, Fuyou
2014-08-01
Mapping IP cores to an on-chip network is an important step in Network-on-Chip (NoC) design and affects the performance of NoC systems. A mapping optimisation algorithm and a fault-tolerant mechanism are proposed in this article. The fault-tolerant mechanism and the corresponding routing algorithm can recover NoC communication from switch failures, while preserving high performance. The mapping optimisation algorithm is based on scatter search (SS), which is an intelligent algorithm with a powerful combinatorial search ability. To meet the requests of the NoC mapping application, the standard SS is improved for multiple objective optimisation. This method helps to obtain high-performance mapping layouts. The proposed algorithm was implemented on the Embedded Systems Synthesis Benchmarks Suite (E3S). Experimental results show that this optimisation algorithm achieves low-power consumption, little communication time, balanced link load and high reliability, compared to particle swarm optimisation and genetic algorithm.
NASA Astrophysics Data System (ADS)
Ward, V. L.; Singh, R.; Reed, P. M.; Keller, K.
2014-12-01
As water resources problems typically involve several stakeholders with conflicting objectives, multi-objective evolutionary algorithms (MOEAs) are now key tools for understanding management tradeoffs. Given the growing complexity of water planning problems, it is important to establish if an algorithm can consistently perform well on a given class of problems. This knowledge allows the decision analyst to focus on eliciting and evaluating appropriate problem formulations. This study proposes a multi-objective adaptation of the classic environmental economics "Lake Problem" as a computationally simple but mathematically challenging MOEA benchmarking problem. The lake problem abstracts a fictional town on a lake which hopes to maximize its economic benefit without degrading the lake's water quality to a eutrophic (polluted) state through excessive phosphorus loading. The problem poses the challenge of maintaining economic activity while confronting the uncertainty of potentially crossing a nonlinear and potentially irreversible pollution threshold beyond which the lake is eutrophic. Objectives for optimization are maximizing economic benefit from lake pollution, maximizing water quality, maximizing the reliability of remaining below the environmental threshold, and minimizing the probability that the town will have to drastically change pollution policies in any given year. The multi-objective formulation incorporates uncertainty with a stochastic phosphorus inflow abstracting non-point source pollution. We performed comprehensive diagnostics using 6 algorithms: Borg, MOEAD, eMOEA, eNSGAII, GDE3, and NSGAII to ascertain their controllability, reliability, efficiency, and effectiveness. The lake problem abstracts elements of many current water resources and climate related management applications where there is the potential for crossing irreversible, nonlinear thresholds. We show that many modern MOEAs can fail on this test problem, indicating its suitability as a
Wen, Tingxi; Zhang, Zhongnan; Wong, Kelvin K L
2016-01-01
Unmanned aerial vehicle (UAV) has been widely used in many industries. In the medical environment, especially in some emergency situations, UAVs play an important role such as the supply of medicines and blood with speed and efficiency. In this paper, we study the problem of multi-objective blood supply by UAVs in such emergency situations. This is a complex problem that includes maintenance of the supply blood's temperature model during transportation, the UAVs' scheduling and routes' planning in case of multiple sites requesting blood, and limited carrying capacity. Most importantly, we need to study the blood's temperature change due to the external environment, the heating agent (or refrigerant) and time factor during transportation, and propose an optimal method for calculating the mixing proportion of blood and appendage in different circumstances and delivery conditions. Then, by introducing the idea of transportation appendage into the traditional Capacitated Vehicle Routing Problem (CVRP), this new problem is proposed according to the factors of distance and weight. Algorithmically, we use the combination of decomposition-based multi-objective evolutionary algorithm and local search method to perform a series of experiments on the CVRP public dataset. By comparing our technique with the traditional ones, our algorithm can obtain better optimization results and time performance. PMID:27163361
Wen, Tingxi; Zhang, Zhongnan; Wong, Kelvin K. L.
2016-01-01
Unmanned aerial vehicle (UAV) has been widely used in many industries. In the medical environment, especially in some emergency situations, UAVs play an important role such as the supply of medicines and blood with speed and efficiency. In this paper, we study the problem of multi-objective blood supply by UAVs in such emergency situations. This is a complex problem that includes maintenance of the supply blood’s temperature model during transportation, the UAVs’ scheduling and routes’ planning in case of multiple sites requesting blood, and limited carrying capacity. Most importantly, we need to study the blood’s temperature change due to the external environment, the heating agent (or refrigerant) and time factor during transportation, and propose an optimal method for calculating the mixing proportion of blood and appendage in different circumstances and delivery conditions. Then, by introducing the idea of transportation appendage into the traditional Capacitated Vehicle Routing Problem (CVRP), this new problem is proposed according to the factors of distance and weight. Algorithmically, we use the combination of decomposition-based multi-objective evolutionary algorithm and local search method to perform a series of experiments on the CVRP public dataset. By comparing our technique with the traditional ones, our algorithm can obtain better optimization results and time performance. PMID:27163361
Robust Multiobjective Controllability of Complex Neuronal Networks.
Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen
2016-01-01
This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc. PMID:26441452
Genetic algorithms at UC Davis/LLNL
Vemuri, V.R.
1993-12-31
A tutorial introduction to genetic algorithms is given. This brief tutorial should serve the purpose of introducing the subject to the novice. The tutorial is followed by a brief commentary on the term project reports that follow.
Genetic algorithms and supernovae type Ia analysis
Bogdanos, Charalampos; Nesseris, Savvas E-mail: nesseris@nbi.dk
2009-05-15
We introduce genetic algorithms as a means to analyze supernovae type Ia data and extract model-independent constraints on the evolution of the Dark Energy equation of state w(z) {identical_to} P{sub DE}/{rho}{sub DE}. Specifically, we will give a brief introduction to the genetic algorithms along with some simple examples to illustrate their advantages and finally we will apply them to the supernovae type Ia data. We find that genetic algorithms can lead to results in line with already established parametric and non-parametric reconstruction methods and could be used as a complementary way of treating SNIa data. As a non-parametric method, genetic algorithms provide a model-independent way to analyze data and can minimize bias due to premature choice of a dark energy model.
Self-adaptive parameters in genetic algorithms
NASA Astrophysics Data System (ADS)
Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain
2004-04-01
Genetic algorithms are powerful search algorithms that can be applied to a wide range of problems. Generally, parameter setting is accomplished prior to running a Genetic Algorithm (GA) and this setting remains unchanged during execution. The problem of interest to us here is the self-adaptive parameters adjustment of a GA. In this research, we propose an approach in which the control of a genetic algorithm"s parameters can be encoded within the chromosome of each individual. The parameters" values are entirely dependent on the evolution mechanism and on the problem context. Our preliminary results show that a GA is able to learn and evaluate the quality of self-set parameters according to their degree of contribution to the resolution of the problem. These results are indicative of a promising approach to the development of GAs with self-adaptive parameter settings that do not require the user to pre-adjust parameters at the outset.
Adaptive sensor fusion using genetic algorithms
Fitzgerald, D.S.; Adams, D.G.
1994-08-01
Past attempts at sensor fusion have used some form of Boolean logic to combine the sensor information. As an alteniative, an adaptive ``fuzzy`` sensor fusion technique is described in this paper. This technique exploits the robust capabilities of fuzzy logic in the decision process as well as the optimization features of the genetic algorithm. This paper presents a brief background on fuzzy logic and genetic algorithms and how they are used in an online implementation of adaptive sensor fusion.
NASA Astrophysics Data System (ADS)
Marghany, M.
2015-06-01
Oil spill pollution has a substantial role in damaging the marine ecosystem. Oil spill that floats on top of water, as well as decreasing the fauna populations, affects the food chain in the ecosystem. In fact, oil spill is reducing the sunlight penetrates the water, limiting the photosynthesis of marine plants and phytoplankton. Moreover, marine mammals for instance, disclosed to oil spills their insulating capacities are reduced, and so making them more vulnerable to temperature variations and much less buoyant in the seawater. This study has demonstrated a design tool for oil spill detection in SAR satellite data using optimization of Entropy based Multi-Objective Evolutionary Algorithm (E-MMGA) which based on Pareto optimal solutions. The study also shows that optimization entropy based Multi-Objective Evolutionary Algorithm provides an accurate pattern of oil slick in SAR data. This shown by 85 % for oil spill, 10 % look-alike and 5 % for sea roughness using the receiver-operational characteristics (ROC) curve. The E-MMGA also shows excellent performance in SAR data. In conclusion, E-MMGA can be used as optimization for entropy to perform an automatic detection of oil spill in SAR satellite data.
Solving molecular docking problems with multi-objective metaheuristics.
García-Godoy, María Jesús; López-Camacho, Esteban; García-Nieto, José; Aldana-Montes, Antonio J Nebroand José F
2015-01-01
Molecular docking is a hard optimization problem that has been tackled in the past with metaheuristics, demonstrating new and challenging results when looking for one objective: the minimum binding energy. However, only a few papers can be found in the literature that deal with this problem by means of a multi-objective approach, and no experimental comparisons have been made in order to clarify which of them has the best overall performance. In this paper, we use and compare, for the first time, a set of representative multi-objective optimization algorithms applied to solve complex molecular docking problems. The approach followed is focused on optimizing the intermolecular and intramolecular energies as two main objectives to minimize. Specifically, these algorithms are: two variants of the non-dominated sorting genetic algorithm II (NSGA-II), speed modulation multi-objective particle swarm optimization (SMPSO), third evolution step of generalized differential evolution (GDE3), multi-objective evolutionary algorithm based on decomposition (MOEA/D) and S-metric evolutionary multi-objective optimization (SMS-EMOA). We assess the performance of the algorithms by applying quality indicators intended to measure convergence and the diversity of the generated Pareto front approximations. We carry out a comparison with another reference mono-objective algorithm in the problem domain (Lamarckian genetic algorithm (LGA) provided by the AutoDock tool). Furthermore, the ligand binding site and molecular interactions of computed solutions are analyzed, showing promising results for the multi-objective approaches. In addition, a case study of application for aeroplysinin-1 is performed, showing the effectiveness of our multi-objective approach in drug discovery. PMID:26042856
Reactive power optimization by genetic algorithm
Iba, Kenji )
1994-05-01
This paper presents a new approach to optimal reactive power planning based on a genetic algorithm. Many outstanding methods to this problem have been proposed in the past. However, most of these approaches have the common defect of being caught to a local minimum solution. The integer problem which yields integer value solutions for discrete controllers/banks still remains as a difficult one. The genetic algorithm is a kind of search algorithm based on the mechanics of natural selection and genetics. This algorithm can search for a global solution using multiple paths and treat integer problems naturally. The proposed method was applied to practical 51-bus and 224-bus systems to show its feasibility and capabilities. Although this method is not as fast as sophisticated traditional methods, the concept is quite promising and useful.
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that that schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solution and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
NASA Astrophysics Data System (ADS)
Lin, Wenwen; Yu, D. Y.; Wang, S.; Zhang, Chaoyong; Zhang, Sanqiang; Tian, Huiyu; Luo, Min; Liu, Shengqiang
2015-07-01
In addition to energy consumption, the use of cutting fluids, deposition of worn tools and certain other manufacturing activities can have environmental impacts. All these activities cause carbon emission directly or indirectly; therefore, carbon emission can be used as an environmental criterion for machining systems. In this article, a direct method is proposed to quantify the carbon emissions in turning operations. To determine the coefficients in the quantitative method, real experimental data were obtained and analysed in MATLAB. Moreover, a multi-objective teaching-learning-based optimization algorithm is proposed, and two objectives to minimize carbon emissions and operation time are considered simultaneously. Cutting parameters were optimized by the proposed algorithm. Finally, the analytic hierarchy process was used to determine the optimal solution, which was found to be more environmentally friendly than the cutting parameters determined by the design of experiments method.
NASA Astrophysics Data System (ADS)
Mahmoodabadi, M. J.; Bagheri, A.; Nariman-zadeh, N.; Jamali, A.
2012-10-01
Particle swarm optimization (PSO) is a randomized and population-based optimization method that was inspired by the flocking behaviour of birds and human social interactions. In this work, multi-objective PSO is modified in two stages. In the first stage, PSO is combined with convergence and divergence operators. Here, this method is named CDPSO. In the second stage, to produce a set of Pareto optimal solutions which has good convergence, diversity and distribution, two mechanisms are used. In the first mechanism, a new leader selection method is defined, which uses the periodic iteration and the concept of the particle's neighbour number. This method is named periodic multi-objective algorithm. In the second mechanism, an adaptive elimination method is employed to limit the number of non-dominated solutions in the archive, which has influences on computational time, convergence and diversity of solution. Single-objective results show that CDPSO performs very well on the complex test functions in terms of solution accuracy and convergence speed. Furthermore, some benchmark functions are used to evaluate the performance of periodic multi-objective CDPSO. This analysis demonstrates that the proposed algorithm operates better in three metrics through comparison with three well-known elitist multi-objective evolutionary algorithms. Finally, the algorithm is used for Pareto optimal design of a two-degree of freedom vehicle vibration model. The conflicting objective functions are sprung mass acceleration and relative displacement between sprung mass and tyre. The feasibility and efficiency of periodic multi-objective CDPSO are assessed in comparison with multi-objective modified NSGAII.
Dynamic multiobjective optimization algorithm based on average distance linear prediction model.
Li, Zhiyong; Chen, Hengyong; Xie, Zhaoxin; Chen, Chao; Sallam, Ahmed
2014-01-01
Many real-world optimization problems involve objectives, constraints, and parameters which constantly change with time. Optimization in a changing environment is a challenging task, especially when multiple objectives are required to be optimized simultaneously. Nowadays the common way to solve dynamic multiobjective optimization problems (DMOPs) is to utilize history information to guide future search, but there is no common successful method to solve different DMOPs. In this paper, we define a kind of dynamic multiobjectives problem with translational Paretooptimal set (DMOP-TPS) and propose a new prediction model named ADLM for solving DMOP-TPS. We have tested and compared the proposed prediction model (ADLM) with three traditional prediction models on several classic DMOP-TPS test problems. The simulation results show that our proposed prediction model outperforms other prediction models for DMOP-TPS. PMID:24616625
Research on Routing Selection Algorithm Based on Genetic Algorithm
NASA Astrophysics Data System (ADS)
Gao, Guohong; Zhang, Baojian; Li, Xueyong; Lv, Jinna
The hereditary algorithm is a kind of random searching and method of optimizing based on living beings natural selection and hereditary mechanism. In recent years, because of the potentiality in solving complicate problems and the successful application in the fields of industrial project, hereditary algorithm has been widely concerned by the domestic and international scholar. Routing Selection communication has been defined a standard communication model of IP version 6.This paper proposes a service model of Routing Selection communication, and designs and implements a new Routing Selection algorithm based on genetic algorithm.The experimental simulation results show that this algorithm can get more resolution at less time and more balanced network load, which enhances search ratio and the availability of network resource, and improves the quality of service.
An investigation of messy genetic algorithms
NASA Technical Reports Server (NTRS)
Goldberg, David E.; Deb, Kalyanmoy; Korb, Bradley
1990-01-01
Genetic algorithms (GAs) are search procedures based on the mechanics of natural selection and natural genetics. They combine the use of string codings or artificial chromosomes and populations with the selective and juxtapositional power of reproduction and recombination to motivate a surprisingly powerful search heuristic in many problems. Despite their empirical success, there has been a long standing objection to the use of GAs in arbitrarily difficult problems. A new approach was launched. Results to a 30-bit, order-three-deception problem were obtained using a new type of genetic algorithm called a messy genetic algorithm (mGAs). Messy genetic algorithms combine the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to effect a solution to the fixed-coding problem of standard simple GAs. The results of the study of mGAs in problems with nonuniform subfunction scale and size are presented. The mGA approach is summarized, both its operation and the theory of its use. Experiments on problems of varying scale, varying building-block size, and combined varying scale and size are presented.
NASA Astrophysics Data System (ADS)
Jin, Yi; Gu, Yonggang; Zhai, Chao
2012-09-01
Multi-Object Fiber Spectroscopic sky surveys are now booming, such as LAMOST already built by China, BIGBOSS project put forward by the U.S. Lawrence Berkeley National Lab and GTC (Gran Telescopio Canarias) telescope developed by the United States, Mexico and Spain. They all use or will use this approach and each fiber can be moved within a certain area for one astrology target, so observation planning is particularly important for this Sky Surveys. One observation planning algorithm used in multi-objective astronomical observations is developed. It can avoid the collision and interference between the fiber positioning units in the focal plane during the observation in one field of view, and the interested objects can be ovserved in a limited round with the maximize efficiency. Also, the observation simulation can be made for wide field of view through multi-FOV observation. After the observation planning is built ,the simulation is made in COSMOS field using GTC telescope. Interested galaxies, stars and high-redshift LBG galaxies are selected after the removal of the mask area, which may be bright stars. Then 9 FOV simulation is completed and observation efficiency and fiber utilization ratio for every round are given. Otherwise,allocating a certain number of fibers for background sky, giving different weights for different objects and how to move the FOV to improve the overall observation efficiency are discussed.
Genetic Algorithm Approaches for Actuator Placement
NASA Technical Reports Server (NTRS)
Crossley, William A.
2000-01-01
This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.
Equilibrium stellar systems with genetic algorithms
NASA Astrophysics Data System (ADS)
Gularte, E.; Carpintero, D. D.
In 1979, M Schwarzschild showed that it is possible to build an equilibrium triaxial stellar system. However, the linear programmation used to that goal was not able to determine the uniqueness of the solution, nor even if that solution was the optimum one. Genetic algorithms are ideal tools to find a solution to this problem. In this work, we use a genetic algorithm to reproduce an equilibrium spherical stellar system from a suitable set of predefined orbits, obtaining the best solution attainable with the provided set. FULL TEXT IN SPANISH
Genetic Algorithms for Digital Quantum Simulations
NASA Astrophysics Data System (ADS)
Las Heras, U.; Alvarez-Rodriguez, U.; Solano, E.; Sanz, M.
2016-06-01
We propose genetic algorithms, which are robust optimization techniques inspired by natural selection, to enhance the versatility of digital quantum simulations. In this sense, we show that genetic algorithms can be employed to increase the fidelity and optimize the resource requirements of digital quantum simulation protocols while adapting naturally to the experimental constraints. Furthermore, this method allows us to reduce not only digital errors but also experimental errors in quantum gates. Indeed, by adding ancillary qubits, we design a modular gate made out of imperfect gates, whose fidelity is larger than the fidelity of any of the constituent gates. Finally, we prove that the proposed modular gates are resilient against different gate errors.
Applying a Genetic Algorithm to Reconfigurable Hardware
NASA Technical Reports Server (NTRS)
Wells, B. Earl; Weir, John; Trevino, Luis; Patrick, Clint; Steincamp, Jim
2004-01-01
This paper investigates the feasibility of applying genetic algorithms to solve optimization problems that are implemented entirely in reconfgurable hardware. The paper highlights the pe$ormance/design space trade-offs that must be understood to effectively implement a standard genetic algorithm within a modem Field Programmable Gate Array, FPGA, reconfgurable hardware environment and presents a case-study where this stochastic search technique is applied to standard test-case problems taken from the technical literature. In this research, the targeted FPGA-based platform and high-level design environment was the Starbridge Hypercomputing platform, which incorporates multiple Xilinx Virtex II FPGAs, and the Viva TM graphical hardware description language.
Facial Composite System Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Zahradníková, Barbora; Duchovičová, Soňa; Schreiber, Peter
2014-12-01
The article deals with genetic algorithms and their application in face identification. The purpose of the research is to develop a free and open-source facial composite system using evolutionary algorithms, primarily processes of selection and breeding. The initial testing proved higher quality of the final composites and massive reduction in the composites processing time. System requirements were specified and future research orientation was proposed in order to improve the results.
The Applications of Genetic Algorithms in Medicine.
Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin
2015-11-01
A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.]. PMID:26676060
The Applications of Genetic Algorithms in Medicine
Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin
2015-01-01
A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.] PMID:26676060
NASA Astrophysics Data System (ADS)
Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu
2015-12-01
For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.
Predicting complex mineral structures using genetic algorithms.
Mohn, Chris E; Kob, Walter
2015-10-28
We show that symmetry-adapted genetic algorithms are capable of finding the ground state of a range of complex crystalline phases including layered- and incommensurate super-structures. This opens the way for the atomistic prediction of complex crystal structures of functional materials and mineral phases. PMID:26441052
Genetic Algorithms for Multiple-Choice Problems
NASA Astrophysics Data System (ADS)
Aickelin, Uwe
2010-04-01
This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.
Evolutionary Multiobjective Query Workload Optimization of Cloud Data Warehouses
Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan
2014-01-01
With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048
Evolutionary multiobjective query workload optimization of Cloud data warehouses.
Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan
2014-01-01
With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048
NASA Astrophysics Data System (ADS)
Ong, Zhiyang; Lo, Andy Hao-Wei; Berryman, Matthew; Abbott, Derek
2005-12-01
The trade-off between pleiotropy and redundancy in telecommunications networks is analyzed in this paper. They are optimized to reduce installation costs and propagation delays. Pleiotropy of a server in a telecommunications network is defined as the number of clients and servers that it can service whilst redundancy is described as the number of servers servicing a client. Telecommunications networks containing many servers with large pleiotropy are cost-effective but vulnerable to network failures and attacks. Conversely, those networks containing many servers with high redundancy are reliable but costly. Several key issues regarding the choice of cost functions and techniques in evolutionary computation (such as the modeling of Darwinian evolution, and mutualism and commensalism) will be discussed, and a future research agenda is outlined. Experimental results indicate that the pleiotropy of servers in the optimum network does improve, whilst the redundancy of clients do not vary significantly, as expected, with evolving networks. This is due to the controlled evolution of networks that is modeled by the steady-state genetic algorithm; changes in telecommunications networks that occur drastically over a very short period of time are rare.
NASA Astrophysics Data System (ADS)
An, Zhao; Zhounian, Lai; Peng, Wu; Linlin, Cao; Dazhuan, Wu
2016-07-01
This paper describes the shape optimization of a low specific speed centrifugal pump at the design point. The target pump has already been manually modified on the basis of empirical knowledge. A genetic algorithm (NSGA-II) with certain enhancements is adopted to improve its performance further with respect to two goals. In order to limit the number of design variables without losing geometric information, the impeller is parametrized using the Bézier curve and a B-spline. Numerical simulation based on a Reynolds averaged Navier-Stokes (RANS) turbulent model is done in parallel to evaluate the flow field. A back-propagating neural network is constructed as a surrogate for performance prediction to save computing time, while initial samples are selected according to an orthogonal array. Then global Pareto-optimal solutions are obtained and analysed. The results manifest that unexpected flow structures, such as the secondary flow on the meridian plane, have diminished or vanished in the optimized pump.
NASA Astrophysics Data System (ADS)
Fourment, Lionel; Ducloux, Richard; Marie, Stéphane; Ejday, Mohsen; Monnereau, Dominique; Massé, Thomas; Montmitonnet, Pierre
2010-06-01
The use of material processing numerical simulation allows a strategy of trial and error to improve virtual processes without incurring material costs or interrupting production and therefore save a lot of money, but it requires user time to analyze the results, adjust the operating conditions and restart the simulation. Automatic optimization is the perfect complement to simulation. Evolutionary Algorithm coupled with metamodelling makes it possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. Ten industrial partners have been selected to cover the different area of the mechanical forging industry and provide different examples of the forming simulation tools. It aims to demonstrate that it is possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. The large computational time is handled by a metamodel approach. It allows interpolating the objective function on the entire parameter space by only knowing the exact function values at a reduced number of "master points". Two algorithms are used: an evolution strategy combined with a Kriging metamodel and a genetic algorithm combined with a Meshless Finite Difference Method. The later approach is extended to multi-objective optimization. The set of solutions, which corresponds to the best possible compromises between the different objectives, is then computed in the same way. The population based approach allows using the parallel capabilities of the utilized computer with a high efficiency. An optimization module, fully embedded within the Forge2009 IHM, makes possible to cover all the defined examples, and the use of new multi-core hardware to compute several simulations at the same time reduces the needed time dramatically. The presented examples
Genetic algorithms for the vehicle routing problem
NASA Astrophysics Data System (ADS)
Volna, Eva
2016-06-01
The Vehicle Routing Problem (VRP) is one of the most challenging combinatorial optimization tasks. This problem consists in designing the optimal set of routes for fleet of vehicles in order to serve a given set of customers. Evolutionary algorithms are general iterative algorithms for combinatorial optimization. These algorithms have been found to be very effective and robust in solving numerous problems from a wide range of application domains. This problem is known to be NP-hard; hence many heuristic procedures for its solution have been suggested. For such problems it is often desirable to obtain approximate solutions, so they can be found fast enough and are sufficiently accurate for the purpose. In this paper we have performed an experimental study that indicates the suitable use of genetic algorithms for the vehicle routing problem.
Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms
NASA Astrophysics Data System (ADS)
Severino, Bernardo; Gana, Felipe; Palma-Behnke, Rodrigo; Estévez, Pablo A.; Calderón-Muñoz, Williams R.; Orchard, Marcos E.; Reyes, Jorge; Cortés, Marcelo
2014-12-01
Lithium-battery energy storage systems (LiBESS) are increasingly being used on electric mobility and stationary applications. Despite its increasing use and improvements of the technology there are still challenges associated with cost reduction, increasing lifetime and capacity, and higher safety. A correct battery thermal management system (BTMS) design is critical to achieve these goals. In this paper, a general framework for obtaining optimal BTMS designs is proposed. Due to the trade-off between the BTMS's design goals and the complex modeling of thermal response inside the battery pack, this paper proposes to solve this problem using a novel Multi-Objective Particle Swarm Optimization (MOPSO) approach. A theoretical case of a module with 6 cells and a real case of a pack used in a Solar Race Car are presented. The results show the capabilities of the proposal methodology, in which improved designs for battery packs are obtained.
Production scheduling and rescheduling with genetic algorithms.
Bierwirth, C; Mattfeld, D C
1999-01-01
A general model for job shop scheduling is described which applies to static, dynamic and non-deterministic production environments. Next, a Genetic Algorithm is presented which solves the job shop scheduling problem. This algorithm is tested in a dynamic environment under different workload situations. Thereby, a highly efficient decoding procedure is proposed which strongly improves the quality of schedules. Finally, this technique is tested for scheduling and rescheduling in a non-deterministic environment. It is shown by experiment that conventional methods of production control are clearly outperformed at reasonable run-time costs. PMID:10199993
Application of Genetic Algorithms in Seismic Tomography
NASA Astrophysics Data System (ADS)
Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet; Papazachos, Constantinos
2010-05-01
In the earth sciences several inverse problems that require data fitting and parameter estimation are nonlinear and can involve a large number of unknown parameters. Consequently, the application of analytical inversion or optimization techniques may be quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem in question, adopting an iterative procedure using partial derivatives to improve an initial model. This approach can lead to a dependence of the final model solution on the starting model and is prone to entrapment in local misfit minima. Moreover, the calculation of derivatives can be computationally inefficient and create instabilities when numerical approximations are used. In contrast to these local minimization methods, global techniques that do not rely on partial derivatives, are independent of the form of the data misfit criterion, and are computationally robust. Such methods often use random processes to sample a selected wider span of the model space. In this situation, randomly generated models are assessed in terms of their data-fitting quality and the process may be stopped after a certain number of acceptable models is identified or continued until a satisfactory data fit is achieved. A new class of methods known as genetic algorithms achieves the aforementioned approximation through novel model representation and manipulations. Genetic algorithms (GAs) were originally developed in the field of artificial intelligence by John Holland more than 20 years ago, but even in this field it is less than a decade that the methodology has been more generally applied and only recently did the methodology attract the attention of the earth sciences community. Applications have been generally concentrated in geophysics and in particular seismology. As awareness of genetic algorithms grows there surely will be many more and varied applications to earth science problems. In the present work, the
Genetic algorithms for minimal source reconstructions
Lewis, P.S.; Mosher, J.C.
1993-12-01
Under-determined linear inverse problems arise in applications in which signals must be estimated from insufficient data. In these problems the number of potentially active sources is greater than the number of observations. In many situations, it is desirable to find a minimal source solution. This can be accomplished by minimizing a cost function that accounts from both the compatibility of the solution with the observations and for its ``sparseness``. Minimizing functions of this form can be a difficult optimization problem. Genetic algorithms are a relatively new and robust approach to the solution of difficult optimization problems, providing a global framework that is not dependent on local continuity or on explicit starting values. In this paper, the authors describe the use of genetic algorithms to find minimal source solutions, using as an example a simulation inspired by the reconstruction of neural currents in the human brain from magnetoencephalographic (MEG) measurements.
The genetic algorithms for trajectory optimization
NASA Astrophysics Data System (ADS)
Janin, G.; Gomez-Tierno, M. A.
1985-10-01
Possible difficulties encountered when solving space flight trajectory optimization problems are recalled. The need of a global optimization scheme is realized. Nondeterministic methods, called here stochastic methods, seem to be good candidates for solving these types of problems. A particular class of such methods, modelled upon search strategies employed in natural adaptation, is proposed here: the genetic algorithms. Two models, the mutation-selection and the crossover-selection, are discussed and remarks resulting from applications to test problems and space flight problems are made. It is concluded that a considerable effort is still needed for developing efficient schemes using genetic algorithms. However, they appear to offer an entirely original way for solving a large class of global optimization problems and they are particularly well-suited for parallel processing to be used in the fifth generation computers.
Fashion sketch design by interactive genetic algorithms
NASA Astrophysics Data System (ADS)
Mok, P. Y.; Wang, X. X.; Xu, J.; Kwok, Y. L.
2012-11-01
Computer aided design is vitally important for the modern industry, particularly for the creative industry. Fashion industry faced intensive challenges to shorten the product development process. In this paper, a methodology is proposed for sketch design based on interactive genetic algorithms. The sketch design system consists of a sketch design model, a database and a multi-stage sketch design engine. First, a sketch design model is developed based on the knowledge of fashion design to describe fashion product characteristics by using parameters. Second, a database is built based on the proposed sketch design model to define general style elements. Third, a multi-stage sketch design engine is used to construct the design. Moreover, an interactive genetic algorithm (IGA) is used to accelerate the sketch design process. The experimental results have demonstrated that the proposed method is effective in helping laypersons achieve satisfied fashion design sketches.
PSS Parameters Tuning Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Abdulrahim, M.; Almoula, Zakaria Fadl; Al-Hafid, Hafid
2008-10-01
Optimal tuning of power system stabilizer (PSS) parameters using genetic algorithm with single objective function is presented in this paper. A Single Machine Infinite Bus (SMIB) system is considered. The main objective of this research paper is to investigate the suitability of genetic algorithm for effective tuning of parameters of the power system stabilizer in a single machine infinite bus system. A conventional speed based lead-lag PSS is used. A simple and effective method of tuning the parameters of PSS is proposed which is posed as an optimization formulation by maximizing the damping of modes of oscillations of the SMIB system over a wide range of loading conditions and different system configurations. It is found that GA based PSS with single objective design shows improved dynamic performance over Conventional PSS over a wide range of operating conditions and different system parameters.
Efficient genetic algorithms using discretization scheduling.
McLay, Laura A; Goldberg, David E
2005-01-01
In many applications of genetic algorithms, there is a tradeoff between speed and accuracy in fitness evaluations when evaluations use numerical methods with varying discretization. In these types of applications, the cost and accuracy vary from discretization errors when implicit or explicit quadrature is used to estimate the function evaluations. This paper examines discretization scheduling, or how to vary the discretization within the genetic algorithm in order to use the least amount of computation time for a solution of a desired quality. The effectiveness of discretization scheduling can be determined by comparing its computation time to the computation time of a GA using a constant discretization. There are three ingredients for the discretization scheduling: population sizing, estimated time for each function evaluation and predicted convergence time analysis. Idealized one- and two-dimensional experiments and an inverse groundwater application illustrate the computational savings to be achieved from using discretization scheduling. PMID:16156928
Allocating Railway Platforms Using A Genetic Algorithm
NASA Astrophysics Data System (ADS)
Clarke, M.; Hinde, C. J.; Withall, M. S.; Jackson, T. W.; Phillips, I. W.; Brown, S.; Watson, R.
This paper describes an approach to automating railway station platform allocation. The system uses a Genetic Algorithm (GA) to find how a station’s resources should be allocated. Real data is used which needs to be transformed to be suitable for the automated system. Successful or ‘fit’ allocations provide a solution that meets the needs of the station schedule including platform re-occupation and various other constraints. The system associates the train data to derive the station requirements. The Genetic Algorithm is used to derive platform allocations. Finally, the system may be extended to take into account how further parameters that are external to the station have an effect on how an allocation should be applied. The system successfully allocates around 1000 trains to platforms in around 30 seconds requiring a genome of around 1000 genes to achieve this.
Genetic algorithms in adaptive fuzzy control
NASA Technical Reports Server (NTRS)
Karr, C. Lucas; Harper, Tony R.
1992-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.
Medical image segmentation using genetic algorithms.
Maulik, Ujjwal
2009-03-01
Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation. PMID:19272859
Genetic Algorithms for Digital Quantum Simulations.
Las Heras, U; Alvarez-Rodriguez, U; Solano, E; Sanz, M
2016-06-10
We propose genetic algorithms, which are robust optimization techniques inspired by natural selection, to enhance the versatility of digital quantum simulations. In this sense, we show that genetic algorithms can be employed to increase the fidelity and optimize the resource requirements of digital quantum simulation protocols while adapting naturally to the experimental constraints. Furthermore, this method allows us to reduce not only digital errors but also experimental errors in quantum gates. Indeed, by adding ancillary qubits, we design a modular gate made out of imperfect gates, whose fidelity is larger than the fidelity of any of the constituent gates. Finally, we prove that the proposed modular gates are resilient against different gate errors. PMID:27341220
Predicting mining activity with parallel genetic algorithms
Talaie, S.; Leigh, R.; Louis, S.J.; Raines, G.L.
2005-01-01
We explore several different techniques in our quest to improve the overall model performance of a genetic algorithm calibrated probabilistic cellular automata. We use the Kappa statistic to measure correlation between ground truth data and data predicted by the model. Within the genetic algorithm, we introduce a new evaluation function sensitive to spatial correctness and we explore the idea of evolving different rule parameters for different subregions of the land. We reduce the time required to run a simulation from 6 hours to 10 minutes by parallelizing the code and employing a 10-node cluster. Our empirical results suggest that using the spatially sensitive evaluation function does indeed improve the performance of the model and our preliminary results also show that evolving different rule parameters for different regions tends to improve overall model performance. Copyright 2005 ACM.
NASA Astrophysics Data System (ADS)
Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.
2015-09-01
The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.
Modeling a magnetostrictive transducer using genetic algorithm
NASA Astrophysics Data System (ADS)
Almeida, L. A. L.; Deep, G. S.; Lima, A. M. N.; Neff, H.
2001-05-01
This work reports on the applicability of the genetic algorithm (GA) to the problem of parameter determination of magnetostrictive transducers. A combination of the Jiles-Atherton hysteresis model with a quadratic moment rotation model is simulated using known parameters of a sensor. The simulated sensor data are then used as input data for the GA parameter calculation method. Taking the previously known parameters, the accuracy of the GA parameter calculation method can be evaluated.
Quantum-Inspired Genetic Algorithm or Quantum Genetic Algorithm: Which Is It?
NASA Astrophysics Data System (ADS)
Jones, Erika
2015-04-01
Our everyday work focuses on genetic algorithms (GAs) related to quantum computing where we call ``related'' algorithms those falling into one of two classes: (1) GAs run on classical computers but making use of quantum mechanical (QM) constructs and (2) GAs run on quantum hardware. Though convention has yet to be set with respect to usage of the accepted terms quantum-inspired genetic algorithm (QIGA) and quantum genetic algorithm (QGA), we find the two terms highly suitable respectively as labels for the aforementioned classes. With these specific definitions in mind, the difference between the QIGA and QGA is greater than might first be appreciated, particularly by those coming from a perspective emphasizing GA use as a general computational tool irrespective of QM aspects (1) suggested by QIGAs and (2) inherent in QGAs. We offer a theoretical standpoint highlighting key differences-both obvious, and more significantly, subtle-to be considered in general design of a QIGA versus that of a QGA.
A hybrid genetic algorithm for resolving closely spaced objects
NASA Technical Reports Server (NTRS)
Abbott, R. J.; Lillo, W. E.; Schulenburg, N.
1995-01-01
A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.
Genetic algorithm optimization of atomic clusters
Morris, J.R.; Deaven, D.M.; Ho, K.M.; Wang, C.Z.; Pan, B.C.; Wacker, J.G.; Turner, D.E. |
1996-12-31
The authors have been using genetic algorithms to study the structures of atomic clusters and related problems. This is a problem where local minima are easy to locate, but barriers between the many minima are large, and the number of minima prohibit a systematic search. They use a novel mating algorithm that preserves some of the geometrical relationship between atoms, in order to ensure that the resultant structures are likely to inherit the best features of the parent clusters. Using this approach, they have been able to find lower energy structures than had been previously obtained. Most recently, they have been able to turn around the building block idea, using optimized structures from the GA to learn about systematic structural trends. They believe that an effective GA can help provide such heuristic information, and (conversely) that such information can be introduced back into the algorithm to assist in the search process.
Fuzzy multiobjective models for optimal operation of a hydropower system
NASA Astrophysics Data System (ADS)
Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.
2013-06-01
Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.
Yu, Yang; Wang, Sihan; Tang, Jiafu; Kaku, Ikou; Sun, Wei
2016-01-01
Productivity can be greatly improved by converting the traditional assembly line to a seru system, especially in the business environment with short product life cycles, uncertain product types and fluctuating production volumes. Line-seru conversion includes two decision processes, i.e., seru formation and seru load. For simplicity, however, previous studies focus on the seru formation with a given scheduling rule in seru load. We select ten scheduling rules usually used in seru load to investigate the influence of different scheduling rules on the performance of line-seru conversion. Moreover, we clarify the complexities of line-seru conversion for ten different scheduling rules from the theoretical perspective. In addition, multi-objective decisions are often used in line-seru conversion. To obtain Pareto-optimal solutions of multi-objective line-seru conversion, we develop two improved exact algorithms based on reducing time complexity and space complexity respectively. Compared with the enumeration based on non-dominated sorting to solve multi-objective problem, the two improved exact algorithms saves computation time greatly. Several numerical simulation experiments are performed to show the performance improvement brought by the two proposed exact algorithms. PMID:27390649
Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing
2015-01-01
Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840
Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing
2015-01-01
Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840
Saving Resources with Plagues in Genetic Algorithms
de Vega, F F; Cantu-Paz, E; Lopez, J I; Manzano, T
2004-06-15
The population size of genetic algorithms (GAs) affects the quality of the solutions and the time required to find them. While progress has been made in estimating the population sizes required to reach a desired solution quality for certain problems, in practice the sizing of populations is still usually performed by trial and error. These trials might lead to find a population that is large enough to reach a satisfactory solution, but there may still be opportunities to optimize the computational cost by reducing the size of the population. This paper presents a technique called plague that periodically removes a number of individuals from the population as the GA executes. Recently, the usefulness of the plague has been demonstrated for genetic programming. The objective of this paper is to extend the study of plagues to genetic algorithms. We experiment with deceptive trap functions, a tunable difficult problem for GAs, and the experiments show that plagues can save computational time while maintaining solution quality and reliability.
NASA Astrophysics Data System (ADS)
Smith, R.; Kasprzyk, J. R.; Zagona, E. A.
2015-12-01
Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.
NASA Astrophysics Data System (ADS)
Xu, Shuo; Ji, Ze; Truong Pham, Duc; Yu, Fan
2011-11-01
The simultaneous mission assignment and home allocation for hospital service robots studied is a Multidimensional Assignment Problem (MAP) with multiobjectives and multiconstraints. A population-based metaheuristic, the Binary Bees Algorithm (BBA), is proposed to optimize this NP-hard problem. Inspired by the foraging mechanism of honeybees, the BBA's most important feature is an explicit functional partitioning between global search and local search for exploration and exploitation, respectively. Its key parts consist of adaptive global search, three-step elitism selection (constraint handling, non-dominated solutions selection, and diversity preservation), and elites-centred local search within a Hamming neighbourhood. Two comparative experiments were conducted to investigate its single objective optimization, optimization effectiveness (indexed by the S-metric and C-metric) and optimization efficiency (indexed by computational burden and CPU time) in detail. The BBA outperformed its competitors in almost all the quantitative indices. Hence, the above overall scheme, and particularly the searching history-adapted global search strategy was validated.
Using a genetic algorithm to solve fluid-flow problems
Pryor, R.J. )
1990-06-01
Genetic algorithms are based on the mechanics of the natural selection and natural genetics processes. These algorithms are finding increasing application to a wide variety of engineering optimization and machine learning problems. In this paper, the authors demonstrate the use of a genetic algorithm to solve fluid flow problems. Specifically, the authors use the algorithm to solve the one-dimensional flow equations for a pipe.
Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories
NASA Technical Reports Server (NTRS)
Burchett, Bradley T.
2003-01-01
The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.
Del Moro, G; Barca, E; De Sanctis, M; Mascolo, G; Di Iaconi, C
2016-03-01
The Artificial Neural Networks by Multi-objective Genetic Algorithms (ANN-MOGA) model has been applied to gross parameters data of a Sequencing Batch Biofilter Granular Reactor (SBBGR) with the aim of providing an effective tool for predicting the fluctuations coming from touristic pressure. Six independent multivariate models, which were able to predict the dynamics of raw chemical oxygen demand (COD), soluble chemical oxygen demand (CODsol), total suspended solid (TSS), total nitrogen (TN), ammoniacal nitrogen (N-NH4 (+)) and total phosphorus (Ptot), were developed. The ANN-MOGA software application has shown to be suitable for addressing the SBBGR reactor modelling. The R (2) found are very good, with values equal to 0.94, 0.92, 0.88, 0.88, 0.98 and 0.91 for COD, CODsol, N-NH4 (+), TN, Ptot and TSS, respectively. A comparison was made between SBBGR and traditional activated sludge treatment plant modelling. The results showed the better performance of the ANN-MOGA application with respect to a wide selection of scientific literature cases. PMID:26573316
Comparison of genetic algorithms with conjugate gradient methods
NASA Technical Reports Server (NTRS)
Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.
1972-01-01
Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.
Fuzzy controller design by parallel genetic algorithms
NASA Astrophysics Data System (ADS)
Mondelli, G.; Castellano, G.; Attolico, Giovanni; Distante, Arcangelo
1998-03-01
Designing a fuzzy system involves defining membership functions and constructing rules. Carrying out these two steps manually often results in a poorly performing system. Genetic Algorithms (GAs) has proved to be a useful tool for designing optimal fuzzy controller. In order to increase the efficiency and effectiveness of their application, parallel GAs (PAGs), evolving synchronously several populations with different balances between exploration and exploitation, have been implemented using a SIMD machine (APE100/Quadrics). The parameters to be identified are coded in such a way that the algorithm implicitly provides a compact fuzzy controller, by finding only necessary rules and removing useless inputs from them. Early results, working on a fuzzy controller implementing the wall-following task for a real vehicle as a test case, provided better fitness values in less generations with respect to previous experiments made using a sequential implementation of GAs.
Genetic algorithm for disassembly process planning
NASA Astrophysics Data System (ADS)
Kongar, Elif; Gupta, Surendra M.
2002-02-01
When a product reaches its end of life, there are several options available for processing it including reuse, remanufacturing, recycling, and disposing (the least desirable option). In almost all cases, a certain level of disassembly may be necessary. Thus, finding an optimal (or near optimal) disassembly sequence is crucial to increasing the efficiency of the process. Disassembly operations are labor intensive, can be costly, have unique characteristics and cannot be considered as reverse of assembly operations. Since the complexity of determining the best disassembly sequence increases with the increase in the number of parts of the product, it is extremely crucial that an efficient methodology for disassembly process planning be developed. In this paper, we present a genetic algorithm for disassembly process planning. A case example is considered to demonstrate the functionality of the algorithm.
Dominant takeover regimes for genetic algorithms
NASA Technical Reports Server (NTRS)
Noever, David; Baskaran, Subbiah
1995-01-01
The genetic algorithm (GA) is a machine-based optimization routine which connects evolutionary learning to natural genetic laws. The present work addresses the problem of obtaining the dominant takeover regimes in the GA dynamics. Estimated GA run times are computed for slow and fast convergence in the limits of high and low fitness ratios. Using Euler's device for obtaining partial sums in closed forms, the result relaxes the previously held requirements for long time limits. Analytical solution reveal that appropriately accelerated regimes can mark the ascendancy of the most fit solution. In virtually all cases, the weak (logarithmic) dependence of convergence time on problem size demonstrates the potential for the GA to solve large N-P complete problems.
Designing conducting polymers using genetic algorithms
NASA Astrophysics Data System (ADS)
Giro, R.; Cyrillo, M.; Galvão, D. S.
2002-11-01
We have developed a new methodology to design conducting polymers with pre-specified properties. The methodology is based on the use of genetic algorithms (GAs) coupled to Negative Factor Counting technique. We present the results for a case study of polyanilines, one of the most important families of conducting polymers. The methodology proved to be able of generating automatic solutions for the problem of determining the optimum relative concentration for binary and ternary disordered polyaniline alloys exhibiting metallic properties. The methodology is completely general and can be used to design new classes of materials.
Modeling of Nonlinear Systems using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Hayashi, Kayoko; Yamamoto, Toru; Kawada, Kazuo
In this paper, a newly modeling system by using Genetic Algorithm (GA) is proposed. The GA is an evolutionary computational method that simulates the mechanisms of heredity or evolution of living things, and it is utilized in optimization and in searching for optimized solutions. Most process systems have nonlinearities, so it is necessary to anticipate exactly such systems. However, it is difficult to make a suitable model for nonlinear systems, because most nonlinear systems have a complex structure. Therefore the newly proposed method of modeling for nonlinear systems uses GA. Then, according to the newly proposed scheme, the optimal structure and parameters of the nonlinear model are automatically generated.
Genetic algorithms for modelling and optimisation
NASA Astrophysics Data System (ADS)
McCall, John
2005-12-01
Genetic algorithms (GAs) are a heuristic search and optimisation technique inspired by natural evolution. They have been successfully applied to a wide range of real-world problems of significant complexity. This paper is intended as an introduction to GAs aimed at immunologists and mathematicians interested in immunology. We describe how to construct a GA and the main strands of GA theory before speculatively identifying possible applications of GAs to the study of immunology. An illustrative example of using a GA for a medical optimal control problem is provided. The paper also includes a brief account of the related area of artificial immune systems.
Adaptive sensor tasking using genetic algorithms
NASA Astrophysics Data System (ADS)
Shea, Peter J.; Kirk, Joe; Welchons, Dave
2007-04-01
Today's battlefield environment contains a large number of sensors, and sensor types, onboard multiple platforms. The set of sensor types includes SAR, EO/IR, GMTI, AMTI, HSI, MSI, and video, and for each sensor type there may be multiple sensing modalities to select from. In an attempt to maximize sensor performance, today's sensors employ either static tasking approaches or require an operator to manually change sensor tasking operations. In a highly dynamic environment this leads to a situation whereby the sensors become less effective as the sensing environments deviates from the assumed conditions. Through a Phase I SBIR effort we developed a system architecture and a common tasking approach for solving the sensor tasking problem for a multiple sensor mix. As part of our sensor tasking effort we developed a genetic algorithm based task scheduling approach and demonstrated the ability to automatically task and schedule sensors in an end-to-end closed loop simulation. Our approach allows for multiple sensors as well as system and sensor constraints. This provides a solid foundation for our future efforts including incorporation of other sensor types. This paper will describe our approach for scheduling using genetic algorithms to solve the sensor tasking problem in the presence of resource constraints and required task linkage. We will conclude with a discussion of results for a sample problem and of the path forward.
Instrument design and optimization using genetic algorithms
Hoelzel, Robert; Bentley, Phillip M.; Fouquet, Peter
2006-10-15
This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of 'nonstandard' magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods.
Optimisation of nonlinear motion cueing algorithm based on genetic algorithm
NASA Astrophysics Data System (ADS)
Asadi, Houshyar; Mohamed, Shady; Rahim Zadeh, Delpak; Nahavandi, Saeid
2015-04-01
Motion cueing algorithms (MCAs) are playing a significant role in driving simulators, aiming to deliver the most accurate human sensation to the simulator drivers compared with a real vehicle driver, without exceeding the physical limitations of the simulator. This paper provides the optimisation design of an MCA for a vehicle simulator, in order to find the most suitable washout algorithm parameters, while respecting all motion platform physical limitations, and minimising human perception error between real and simulator driver. One of the main limitations of the classical washout filters is that it is attuned by the worst-case scenario tuning method. This is based on trial and error, and is effected by driving and programmers experience, making this the most significant obstacle to full motion platform utilisation. This leads to inflexibility of the structure, production of false cues and makes the resulting simulator fail to suit all circumstances. In addition, the classical method does not take minimisation of human perception error and physical constraints into account. Production of motion cues and the impact of different parameters of classical washout filters on motion cues remain inaccessible for designers for this reason. The aim of this paper is to provide an optimisation method for tuning the MCA parameters, based on nonlinear filtering and genetic algorithms. This is done by taking vestibular sensation error into account between real and simulated cases, as well as main dynamic limitations, tilt coordination and correlation coefficient. Three additional compensatory linear blocks are integrated into the MCA, to be tuned in order to modify the performance of the filters successfully. The proposed optimised MCA is implemented in MATLAB/Simulink software packages. The results generated using the proposed method show increased performance in terms of human sensation, reference shape tracking and exploiting the platform more efficiently without reaching
NASA Astrophysics Data System (ADS)
Qiu, J. P.; Niu, D. X.
Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.
Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru
The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.
Multidisciplinary design optimization using genetic algorithms
NASA Astrophysics Data System (ADS)
Unal, Resit
1994-12-01
Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared
Multidisciplinary design optimization using genetic algorithms
NASA Technical Reports Server (NTRS)
Unal, Resit
1994-01-01
Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared
The study on gear transmission multi-objective optimum design based on SQP algorithm
NASA Astrophysics Data System (ADS)
Li, Quancai; Qiao, Xuetao; Wu, Cuirong; Wang, Xingxing
2011-12-01
Gear mechanism is the most popular transmission mechanism; however, the traditional design method is complex and not accurate. Optimization design is the effective method to solve the above problems, used in gear design method. In many of the optimization software MATLAB, there are obvious advantage projects and numerical calculation. There is a single gear transmission as example, the mathematical model of gear transmission system, based on the analysis of the objective function, and on the basis of design variables and confirmation of choice restrictive conditions. The results show that the algorithm through MATLAB, the optimization designs, efficient, reliable, simple.
Training product unit neural networks with genetic algorithms
NASA Technical Reports Server (NTRS)
Janson, D. J.; Frenzel, J. F.; Thelen, D. C.
1991-01-01
The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.
NASA Astrophysics Data System (ADS)
Luo, Yugong; Chen, Tao; Li, Keqiang
2015-12-01
The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.
Genetic algorithm and particle swarm optimization combined with Powell method
NASA Astrophysics Data System (ADS)
Bento, David; Pinho, Diana; Pereira, Ana I.; Lima, Rui
2013-10-01
In recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context.
Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure
NASA Astrophysics Data System (ADS)
Cheng, Chun-Tian; Zhao, Ming-Yan; Chau, K. W.; Wu, Xin-Yu
2006-01-01
Genetic Algorithm (GA) is globally oriented in searching and thus useful in optimizing multiobjective problems, especially where the objective functions are ill-defined. Conceptual rainfall-runoff models that aim at predicting streamflow from the knowledge of precipitation over a catchment have become a basic tool for flood forecasting. The parameter calibration of a conceptual model usually involves the multiple criteria for judging the performances of observed data. However, it is often difficult to derive all objective functions for the parameter calibration problem of a conceptual model. Thus, a new method to the multiple criteria parameter calibration problem, which combines GA with TOPSIS (technique for order performance by similarity to ideal solution) for Xinanjiang model, is presented. This study is an immediate further development of authors' previous research (Cheng, C.T., Ou, C.P., Chau, K.W., 2002. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration. Journal of Hydrology, 268, 72-86), whose obvious disadvantages are to split the whole procedure into two parts and to become difficult to integrally grasp the best behaviors of model during the calibration procedure. The current method integrates the two parts of Xinanjiang rainfall-runoff model calibration together, simplifying the procedures of model calibration and validation and easily demonstrated the intrinsic phenomenon of observed data in integrity. Comparison of results with two-step procedure shows that the current methodology gives similar results to the previous method, is also feasible and robust, but simpler and easier to apply in practice.
Inversion for seismic anisotropy using genetic algorithms
Horne, S. Univ. of Edinburgh . Dept. of Geology and Geophysics); MacBeth, C. . Dept. of Geology and Geophysics)
1994-11-01
A general inversion scheme based on a genetic algorithm is developed to invert seismic observations for anisotropic parameters. The technique is applied to the inversion of shear-wave observations from two azimuthal VSP data sets from the Conoco test site in Oklahoma. Horizontal polarizations and time-delays are inverted for hexagonal and orthorhombic symmetries. The model solutions are consistent with previous studies using trial and error matching of full waveform synthetics. The shear-wave splitting observations suggest the presence of a shear-wave line singularity and are consistent with a dipping fracture system which is known to exist at the test site. Application of the inversion scheme prior to full waveform modeling demonstrates that a considerable saving in time is possible while retaining the same degree of accuracy.
Genetic Algorithm Approaches to Prebiobiotic Chemistry Modeling
NASA Technical Reports Server (NTRS)
Lohn, Jason; Colombano, Silvano
1997-01-01
We model an artificial chemistry comprised of interacting polymers by specifying two initial conditions: a distribution of polymers and a fixed set of reversible catalytic reactions. A genetic algorithm is used to find a set of reactions that exhibit a desired dynamical behavior. Such a technique is useful because it allows an investigator to determine whether a specific pattern of dynamics can be produced, and if it can, the reaction network found can be then analyzed. We present our results in the context of studying simplified chemical dynamics in theorized protocells - hypothesized precursors of the first living organisms. Our results show that given a small sample of plausible protocell reaction dynamics, catalytic reaction sets can be found. We present cases where this is not possible and also analyze the evolved reaction sets.
PDE Nozzle Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Billings, Dana; Turner, James E. (Technical Monitor)
2000-01-01
Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.
Birefringent filter design by use of a modified genetic algorithm.
Wen, Mengtao; Yao, Jianping
2006-06-10
A modified genetic algorithm is proposed for the optimization of fiber birefringent filters. The orientation angles and the element lengths are determined by the genetic algorithm to minimize the sidelobe levels of the filters. Being different from the normal genetic algorithm, the algorithm proposed reduces the problem space of the birefringent filter design to achieve faster speed and better performance. The design of 4-, 8-, and 14-section birefringent filters with an improved sidelobe suppression ratio is realized. A 4-section birefringent filter designed with the algorithm is experimentally realized. PMID:16761031
Multiobjective optimization approach: thermal food processing.
Abakarov, A; Sushkov, Y; Almonacid, S; Simpson, R
2009-01-01
The objective of this study was to utilize a multiobjective optimization technique for the thermal sterilization of packaged foods. The multiobjective optimization approach used in this study is based on the optimization of well-known aggregating functions by an adaptive random search algorithm. The applicability of the proposed approach was illustrated by solving widely used multiobjective test problems taken from the literature. The numerical results obtained for the multiobjective test problems and for the thermal processing problem show that the proposed approach can be effectively used for solving multiobjective optimization problems arising in the food engineering field. PMID:20492109
On the scalability of parallel genetic algorithms.
Cantú-Paz, E; Goldberg, D E
1999-01-01
This paper examines the scalability of several types of parallel genetic algorithms (GAs). The objective is to determine the optimal number of processors that can be used by each type to minimize the execution time. The first part of the paper considers algorithms with a single population. The investigation focuses on an implementation where the population is distributed to several processors, but the results are applicable to more common master-slave implementations, where the population is entirely stored in a master processor and multiple slaves are used to evaluate the fitness. The second part of the paper deals with parallel GAs with multiple populations. It first considers a bounding case where the connectivity, the migration rate, and the frequency of migrations are set to their maximal values. Then, arbitrary regular topologies with lower migration rates are considered and the frequency of migrations is set to its lowest value. The investigationis mainly theoretical, but experimental evidence with an additively-decomposable function is included to illustrate the accuracy of the theory. In all cases, the calculations show that the optimal number of processors that minimizes the execution time is directly proportional to the square root of the population size and the fitness evaluation time. Since these two factors usually increase as the domain becomes more difficult, the results of the paper suggest that parallel GAs can integrate large numbers of processors and significantly reduce the execution time of many practical applications. PMID:10578030
Spacecraft Attitude Maneuver Planning Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Kornfeld, Richard P.
2004-01-01
A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used as is or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.
A Multistage Method for Multiobjective Route Selection
NASA Astrophysics Data System (ADS)
Wen, Feng; Gen, Mitsuo
The multiobjective route selection problem (m-RSP) is a key research topic in the car navigation system (CNS) for ITS (Intelligent Transportation System). In this paper, we propose an interactive multistage weight-based Dijkstra genetic algorithm (mwD-GA) to solve it. The purpose of the proposed approach is to create enough Pareto-optimal routes with good distribution for the car driver depending on his/her preference. At the same time, the routes can be recalculated according to the driver's preferences by the multistage framework proposed. In the solution approach proposed, the accurate route searching ability of the Dijkstra algorithm and the exploration ability of the Genetic algorithm (GA) are effectively combined together for solving the m-RSP problems. Solutions provided by the proposed approach are compared with the current research to show the effectiveness and practicability of the solution approach proposed.
Ravindran, Sindhu; Jambek, Asral Bahari; Muthusamy, Hariharan; Neoh, Siew-Chin
2015-01-01
A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm. PMID:25793009
Jambek, Asral Bahari; Neoh, Siew-Chin
2015-01-01
A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm. PMID:25793009
NASA Astrophysics Data System (ADS)
Jamali, A.; Khaleghi, E.; Gholaminezhad, I.; Nariman-zadeh, N.
2016-05-01
In this paper, a new multi-objective genetic programming (GP) with a diversity preserving mechanism and a real number alteration operator is presented and successfully used for Pareto optimal modelling of some complex non-linear systems using some input-output data. In this study, two different input-output data-sets of a non-linear mathematical model and of an explosive cutting process are considered separately in three-objective optimisation processes. The pertinent conflicting objective functions that have been considered for such Pareto optimisations are namely, training error (TE), prediction error (PE), and the length of tree (complexity of the network) (TL) of the GP models. Such three-objective optimisation implementations leads to some non-dominated choices of GP-type models for both cases representing the trade-offs among those objective functions. Therefore, optimal Pareto fronts of such GP models exhibit the trade-off among the corresponding conflicting objectives and, thus, provide different non-dominated optimal choices of GP-type models. Moreover, the results show that no significant optimality in TE and PE may occur when the TL of the corresponding GP model exceeds some values.
A Test of Genetic Algorithms in Relevance Feedback.
ERIC Educational Resources Information Center
Lopez-Pujalte, Cristina; Guerrero Bote, Vicente P.; Moya Anegon, Felix de
2002-01-01
Discussion of information retrieval, query optimization techniques, and relevance feedback focuses on genetic algorithms, which are derived from artificial intelligence techniques. Describes an evaluation of different genetic algorithms using a residual collection method and compares results with the Ide dec-hi method (Salton and Buckley, 1990…
Specific optimization of genetic algorithm on special algebras
NASA Astrophysics Data System (ADS)
Habiballa, Hashim; Novak, Vilem; Dyba, Martin; Schenk, Jiri
2016-06-01
Searching for complex finite algebras can be succesfully done by the means of genetic algorithm as we showed in former works. This genetic algorithm needs specific optimization of crossover and mutation. We present details about these optimizations which are already implemented in software application for this task - EQCreator.
A "Hands on" Strategy for Teaching Genetic Algorithms to Undergraduates
ERIC Educational Resources Information Center
Venables, Anne; Tan, Grace
2007-01-01
Genetic algorithms (GAs) are a problem solving strategy that uses stochastic search. Since their introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that are "intractable" using classical methods. The language of genetic algorithms (GAs) is heavily laced with biological metaphors from evolutionary…
A Multiobjective Optimal Design of a Hybrid Power Source System for a Railway Vehicle
NASA Astrophysics Data System (ADS)
Ogawa, Tomoyuki; Wakao, Shinji; Kondo, Keiichiro
In this paper, we study an optimal design for a hybrid power source railway vehicle as an alternative to diesel railway vehicles. The hybrid power source railway vehicle is assumed to be composed of the fuel cell and the electric double layer capacitor. We apply the multiobjective optimization based on the genetic algorithm for the vehicle design, aiming at reduction of both initial cost and energy consumption. The pareto optimal solutions are obtained using the multiobjective optimization. First we develop a simulation model of the hybrid power source railway vehicle and its electric power control methods. Next we derive the pareto optimal solutions as a result of the multiobjective optimization. Finally, we categorize the pareto optimal solutions to some groups, which enables us to elucidate characteristics of the pareto optimal solutions. Consequently, using the multiobjective optimization approach we effectively comprehend the problem characteristics and can obtain the plural valuable solutions.
Advanced optimization of permanent magnet wigglers using a genetic algorithm
Hajima, Ryoichi
1995-12-31
In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.
NASA Astrophysics Data System (ADS)
Sastry, Kumara Narasimha
2007-03-01
Effective and efficient rnultiscale modeling is essential to advance both the science and synthesis in a, wide array of fields such as physics, chemistry, materials science; biology, biotechnology and pharmacology. This study investigates the efficacy and potential of rising genetic algorithms for rnultiscale materials modeling and addresses some of the challenges involved in designing competent algorithms that solve hard problems quickly, reliably and accurately. In particular, this thesis demonstrates the use of genetic algorithms (GAs) and genetic programming (GP) in multiscale modeling with the help of two non-trivial case studies in materials science and chemistry. The first case study explores the utility of genetic programming (GP) in multi-timescaling alloy kinetics simulations. In essence, GP is used to bridge molecular dynamics and kinetic Monte Carlo methods to span orders-of-magnitude in simulation time. Specifically, GP is used to regress symbolically an inline barrier function from a limited set of molecular dynamics simulations to enable kinetic Monte Carlo that simulate seconds of real time. Results on a non-trivial example of vacancy-assisted migration on a surface of a face-centered cubic (fcc) Copper-Cobalt (CuxCo 1-x) alloy show that GP predicts all barriers with 0.1% error from calculations for less than 3% of active configurations, independent of type of potentials used to obtain the learning set of barriers via molecular dynamics. The resulting method enables 2--9 orders-of-magnitude increase in real-time dynamics simulations taking 4--7 orders-of-magnitude less CPU time. The second case study presents the application of multiobjective genetic algorithms (MOGAs) in multiscaling quantum chemistry simulations. Specifically, MOGAs are used to bridge high-level quantum chemistry and semiempirical methods to provide accurate representation of complex molecular excited-state and ground-state behavior. Results on ethylene and benzene---two common
Multiobjective optimization in integrated photonics design.
Gagnon, Denis; Dumont, Joey; Dubé, Louis J
2013-07-01
We propose the use of the parallel tabu search algorithm (PTS) to solve combinatorial inverse design problems in integrated photonics. To assess the potential of this algorithm, we consider the problem of beam shaping using a two-dimensional arrangement of dielectric scatterers. The performance of PTS is compared to one of the most widely used optimization algorithms in photonics design, the genetic algorithm (GA). We find that PTS can produce comparable or better solutions than the GA, while requiring less computation time and fewer adjustable parameters. For the coherent beam shaping problem as a case study, we demonstrate how PTS can tackle multiobjective optimization problems and represent a robust and efficient alternative to GA. PMID:23811870
A New Challenge for Compression Algorithms: Genetic Sequences.
ERIC Educational Resources Information Center
Grumbach, Stephane; Tahi, Fariza
1994-01-01
Analyzes the properties of genetic sequences that cause the failure of classical algorithms used for data compression. A lossless algorithm, which compresses the information contained in DNA and RNA sequences by detecting regularities such as palindromes, is presented. This algorithm combines substitutional and statistical methods and appears to…
Genetic algorithm-based form error evaluation
NASA Astrophysics Data System (ADS)
Cui, Changcai; Li, Bing; Huang, Fugui; Zhang, Rencheng
2007-07-01
Form error evaluation of geometrical products is a nonlinear optimization problem, for which a solution has been attempted by different methods with some complexity. A genetic algorithm (GA) was developed to deal with the problem, which was proved simple to understand and realize, and its key techniques have been investigated in detail. Firstly, the fitness function of GA was discussed emphatically as a bridge between GA and the concrete problems to be solved. Secondly, the real numbers-based representation of the desired solutions in the continual space optimization problem was discussed. Thirdly, many improved evolutionary strategies of GA were described on emphasis. These evolutionary strategies were the selection operation of 'odd number selection plus roulette wheel selection', the crossover operation of 'arithmetic crossover between near relatives and far relatives' and the mutation operation of 'adaptive Gaussian' mutation. After evolutions from generation to generation with the evolutionary strategies, the initial population produced stochastically around the least-squared solutions of the problem would be updated and improved iteratively till the best chromosome or individual of GA appeared. Finally, some examples were given to verify the evolutionary method. Experimental results show that the GA-based method can find desired solutions that are superior to the least-squared solutions except for a few examples in which the GA-based method can obtain similar results to those by the least-squared method. Compared with other optimization techniques, the GA-based method can obtain almost equal results but with less complicated models and computation time.
Random Volumetric MRI Trajectories via Genetic Algorithms
Curtis, Andrew Thomas; Anand, Christopher Kumar
2008-01-01
A pseudorandom, velocity-insensitive, volumetric k-space sampling trajectory is designed for use with balanced steady-state magnetic resonance imaging. Individual arcs are designed independently and do not fit together in the way that multishot spiral, radial or echo-planar trajectories do. Previously, it was shown that second-order cone optimization problems can be defined for each arc independent of the others, that nulling of zeroth and higher moments can be encoded as constraints, and that individual arcs can be optimized in seconds. For use in steady-state imaging, sampling duty cycles are predicted to exceed 95 percent. Using such pseudorandom trajectories, aliasing caused by under-sampling manifests itself as incoherent noise. In this paper, a genetic algorithm (GA) is formulated and numerically evaluated. A large set of arcs is designed using previous methods, and the GA choses particular fit subsets of a given size, corresponding to a desired acquisition time. Numerical simulations of 1 second acquisitions show good detail and acceptable noise for large-volume imaging with 32 coils. PMID:18604305
Robot path planning using a genetic algorithm
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu
1988-01-01
Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.
Closed Loop System Identification with Genetic Algorithms
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2004-01-01
High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.
Liu, Yaolin; Wang, Hua; Ji, Yingli; Liu, Zhongqiu; Zhao, Xiang
2012-08-01
Comprehensive land-use planning (CLUP) at the county level in China must include land-use zoning. This is specifically stipulated by the China Land Management Law and aims to achieve strict control on the usages of land. The land-use zoning problem is treated as a multi-objective optimization problem (MOOP) in this article, which is different from the traditional treatment. A particle swarm optimization (PSO) based model is applied to the problem and is developed to maximize the attribute differences between land-use zones, the spatial compactness, the degree of spatial harmony and the ecological benefits of the land-use zones. This is subject to some constraints such as: the quantity limitations for varying land-use zones, regulations assigning land units to a certain land-use zone, and the stipulation of a minimum parcel area in a land-use zoning map. In addition, a crossover and mutation operator from a genetic algorithm is adopted to avoid the prematurity of PSO. The results obtained for Yicheng, a county in central China, using different objective weighting schemes, are compared and suggest that: (1) the fundamental demand for attribute difference between land-use zones leads to a mass of fragmentary land-use zones; (2) the spatial pattern of land-use zones is remarkably optimized when a weight is given to the sub-objectives of spatial compactness and the degree of spatial harmony, simultaneously, with a reduction of attribute difference between land-use zones; (3) when a weight is given to the sub-objective of ecological benefits of the land-use zones, the ecological benefits get a slight increase also at the expense of a reduction in attribute difference between land-use zones; (4) the pursuit of spatial harmony or spatial compactness may have a negative effect on each other; (5) an increase in the ecological benefits may improve the spatial compactness and spatial harmony of the land-use zones; (6) adjusting the weights assigned to each sub-objective can
Liu, Yaolin; Wang, Hua; Ji, Yingli; Liu, Zhongqiu; Zhao, Xiang
2012-01-01
Comprehensive land-use planning (CLUP) at the county level in China must include land-use zoning. This is specifically stipulated by the China Land Management Law and aims to achieve strict control on the usages of land. The land-use zoning problem is treated as a multi-objective optimization problem (MOOP) in this article, which is different from the traditional treatment. A particle swarm optimization (PSO) based model is applied to the problem and is developed to maximize the attribute differences between land-use zones, the spatial compactness, the degree of spatial harmony and the ecological benefits of the land-use zones. This is subject to some constraints such as: the quantity limitations for varying land-use zones, regulations assigning land units to a certain land-use zone, and the stipulation of a minimum parcel area in a land-use zoning map. In addition, a crossover and mutation operator from a genetic algorithm is adopted to avoid the prematurity of PSO. The results obtained for Yicheng, a county in central China, using different objective weighting schemes, are compared and suggest that: (1) the fundamental demand for attribute difference between land-use zones leads to a mass of fragmentary land-use zones; (2) the spatial pattern of land-use zones is remarkably optimized when a weight is given to the sub-objectives of spatial compactness and the degree of spatial harmony, simultaneously, with a reduction of attribute difference between land-use zones; (3) when a weight is given to the sub-objective of ecological benefits of the land-use zones, the ecological benefits get a slight increase also at the expense of a reduction in attribute difference between land-use zones; (4) the pursuit of spatial harmony or spatial compactness may have a negative effect on each other; (5) an increase in the ecological benefits may improve the spatial compactness and spatial harmony of the land-use zones; (6) adjusting the weights assigned to each sub-objective can
Genetic algorithm for bundle adjustment in aerial panoramic stitching
NASA Astrophysics Data System (ADS)
Zhang, Chunxiao; Wen, Gaojin; Wu, Chunnan; Wang, Hongmin; Shang, Zhiming; Zhang, Qian
2015-03-01
This paper presents a genetic algorithm for bundle adjustment in aerial panoramic stitching. Compared with the conventional LM (Levenberg-Marquardt) algorithm for bundle adjustment, the proposed bundle adjustment combining the genetic algorithm optimization eliminates the possibility of sticking into the local minimum, and not requires the initial estimation of desired parameters, naturally avoiding the associated steps, that includes the normalization of matches, the computation of homography transformation, the calculations of rotation transformation and the focal length. Since the proposed bundle adjustment is composed of the directional vectors of matches, taking the advantages of genetic algorithm (GA), the Jacobian matrix and the normalization of residual error are not involved in the searching process. The experiment verifies that the proposed bundle adjustment based on the genetic algorithm can yield the global solution even in the unstable aerial imaging condition.
Genetic Algorithm Based Neural Networks for Nonlinear Optimization
Energy Science and Technology Software Center (ESTSC)
1994-09-28
This software develops a novel approach to nonlinear optimization using genetic algorithm based neural networks. To our best knowledge, this approach represents the first attempt at applying both neural network and genetic algorithm techniques to solve a nonlinear optimization problem. The approach constructs a neural network structure and an appropriately shaped energy surface whose minima correspond to optimal solutions of the problem. A genetic algorithm is employed to perform a parallel and powerful search ofmore » the energy surface.« less
Aerodynamic optimum design of transonic turbine cascades using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Li, Jun; Feng, Zhenping; Chang, Jianzhong; Shen, Zuda
1997-06-01
This paper presents an aerodynamic optimum design method for transonic turbine cascades based on the Genetic Algorithms coupled to the inviscid flow Euler solver and the boundary-layer calculation. The Genetic Algorithms control the evolution of a population of cascades towards an optimum design. The fitness value of each string is evaluated using the flow solver. The design procedure has been developed and the behavior of the genetic algorithms has been tested. The objective functions of the design examples are the minimum mean-square deviation between the aimed pressure and computed pressure and the minimum amount of user expertise.
Multiobjective training of artificial neural networks for rainfall-runoff modeling
NASA Astrophysics Data System (ADS)
de Vos, N. J.; Rientjes, T. H. M.
2008-08-01
This paper presents results on the application of various optimization algorithms for the training of artificial neural network rainfall-runoff models. Multilayered feed-forward networks for forecasting discharge from two mesoscale catchments in different climatic regions have been developed for this purpose. The performances of the multiobjective algorithms Multi Objective Shuffled Complex Evolution Metropolis-University of Arizona (MOSCEM-UA) and Nondominated Sorting Genetic Algorithm II (NSGA-II) have been compared to the single-objective Levenberg-Marquardt and Genetic Algorithm for training of these models. Performance has been evaluated by means of a number of commonly applied objective functions and also by investigating the internal weights of the networks. Additionally, the effectiveness of a new objective function called mean squared derivative error, which penalizes models for timing errors and noisy signals, has been explored. The results show that the multiobjective algorithms give competitive results compared to the single-objective ones. Performance measures and posterior weight distributions of the various algorithms suggest that multiobjective algorithms are more consistent in finding good optima than are single-objective algorithms. However, results also show that it is difficult to conclude if any of the algorithms is superior in terms of accuracy, consistency, and reliability. Besides the training algorithm, network performance is also shown to be sensitive to the choice of objective function(s), and including more than one objective function proves to be helpful in constraining the neural network training.
Dun, Cai-xia
2013-01-01
As a practical inventory and transportation problem, it is important to synthesize several objectives for the joint replenishment and delivery (JRD) decision. In this paper, a new multiobjective stochastic JRD (MSJRD) of the one-warehouse and n-retailer systems considering the balance of service level and total cost simultaneously is proposed. The goal of this problem is to decide the reasonable replenishment interval, safety stock factor, and traveling routing. Secondly, two approaches are designed to handle this complex multi-objective optimization problem. Linear programming (LP) approach converts the multi-objective to single objective, while a multi-objective evolution algorithm (MOEA) solves a multi-objective problem directly. Thirdly, three intelligent optimization algorithms, differential evolution algorithm (DE), hybrid DE (HDE), and genetic algorithm (GA), are utilized in LP-based and MOEA-based approaches. Results of the MSJRD with LP-based and MOEA-based approaches are compared by a contrastive numerical example. To analyses the nondominated solution of MOEA, a metric is also used to measure the distribution of the last generation solution. Results show that HDE outperforms DE and GA whenever LP or MOEA is adopted. PMID:24302880
Investigation of image feature extraction by a genetic algorithm
NASA Astrophysics Data System (ADS)
Brumby, Steven P.; Theiler, James P.; Perkins, Simon J.; Harvey, Neal R.; Szymanski, John J.; Bloch, Jeffrey J.; Mitchell, Melanie
1999-11-01
We describe the implementation and performance of a genetic algorithm which generates image feature extraction algorithms for remote sensing applications. We describe our basis set of primitive image operators and present our chromosomal representation of a complete algorithm. Our initial application has been geospatial feature extraction using publicly available multi-spectral aerial-photography data sets. We present the preliminary results of our analysis of the efficiency of the classic genetic operations of crossover and mutation for our application, and discuss our choice of evolutionary control parameters. We exhibit some of our evolved algorithms, and discuss possible avenues for future progress.
Abedini, Mohammad; Moradi, Mohammad H; Hosseinian, S M
2016-03-01
This paper proposes a novel method to address reliability and technical problems of microgrids (MGs) based on designing a number of self-adequate autonomous sub-MGs via adopting MGs clustering thinking. In doing so, a multi-objective optimization problem is developed where power losses reduction, voltage profile improvement and reliability enhancement are considered as the objective functions. To solve the optimization problem a hybrid algorithm, named HS-GA, is provided, based on genetic and harmony search algorithms, and a load flow method is given to model different types of DGs as droop controller. The performance of the proposed method is evaluated in two case studies. The results provide support for the performance of the proposed method. PMID:26767800
An algorithm for genetic testing of frontotemporal lobar degeneration
Rademakers, R.; Huey, E.D.; Boxer, A.L.; Mayeux, R.; Miller, B.L.; Boeve, B.F.
2011-01-01
Objective: To derive an algorithm for genetic testing of patients with frontotemporal lobar degeneration (FTLD). Methods: A literature search was performed to review the clinical and pathologic phenotypes and family history associated with each FTLD gene. Results: Based on the literature review, an algorithm was developed to allow clinicians to use the clinical and neuroimaging phenotypes of the patient and the family history and autopsy information to decide whether or not genetic testing is warranted, and if so, the order for appropriate tests. Conclusions: Recent findings in genetics, pathology, and imaging allow clinicians to use the clinical presentation of the patient with FTLD to inform genetic testing decisions. PMID:21282594
NASA Astrophysics Data System (ADS)
Cody, B. M.; Gonzalez-Nicolas, A.; Bau, D. A.
2011-12-01
Carbon capture and storage (CCS) has been proposed as a method of reducing global carbon dioxide (CO2) emissions. Although CCS has the potential to greatly retard greenhouse gas loading to the atmosphere while cleaner, more sustainable energy solutions are developed, there is a possibility that sequestered CO2 may leak and intrude into and adversely affect groundwater resources. It has been reported [1] that, while CO2 intrusion typically does not directly threaten underground drinking water resources, it may cause secondary effects, such as the mobilization of hazardous inorganic constituents present in aquifer minerals and changes in pH values. These risks must be fully understood and minimized before CCS project implementation. Combined management of project resources and leakage risk is crucial for the implementation of CCS. In this work, we present a method of: (a) minimizing the total CCS cost, the summation of major project costs with the cost associated with CO2 leakage; and (b) maximizing the mass of injected CO2, for a given proposed sequestration site. Optimization decision variables include the number of CO2 injection wells, injection rates, and injection well locations. The capital and operational costs of injection wells are directly related to injection well depth, location, injection flow rate, and injection duration. The cost of leakage is directly related to the mass of CO2 leaked through weak areas, such as abandoned oil wells, in the cap rock layers overlying the injected formation. Additional constraints on fluid overpressure caused by CO2 injection are imposed to maintain predefined effective stress levels that prevent cap rock fracturing. Here, both mass leakage and fluid overpressure are estimated using two semi-analytical models based upon work by [2,3]. A multi-objective evolutionary algorithm coupled with these semi-analytical leakage flow models is used to determine Pareto-optimal trade-off sets giving minimum total cost vs. maximum mass
Improved genetic algorithm for fast path planning of USV
NASA Astrophysics Data System (ADS)
Cao, Lu
2015-12-01
Due to the complex constraints, more uncertain factors and critical real-time demand of path planning for USV(Unmanned Surface Vehicle), an approach of fast path planning based on voronoi diagram and improved Genetic Algorithm is proposed, which makes use of the principle of hierarchical path planning. First the voronoi diagram is utilized to generate the initial paths and then the optimal path is searched by using the improved Genetic Algorithm, which use multiprocessors parallel computing techniques to improve the traditional genetic algorithm. Simulation results verify that the optimal time is greatly reduced and path planning based on voronoi diagram and the improved Genetic Algorithm is more favorable in the real-time operation.
Optimization of computer-generated binary holograms using genetic algorithms
NASA Astrophysics Data System (ADS)
Cojoc, Dan; Alexandrescu, Adrian
1999-11-01
The aim of this paper is to compare genetic algorithms against direct point oriented coding in the design of binary phase Fourier holograms, computer generated. These are used as fan-out elements for free space optical interconnection. Genetic algorithms are optimization methods which model the natural process of genetic evolution. The configuration of the hologram is encoded to form a chromosome. To start the optimization, a population of different chromosomes randomly generated is considered. The chromosomes compete, mate and mutate until the best chromosome is obtained according to a cost function. After explaining the operators that are used by genetic algorithms, this paper presents two examples with 32 X 32 genes in a chromosome. The crossover type and the number of mutations are shown to be important factors which influence the convergence of the algorithm. GA is demonstrated to be a useful tool to design namely binary phase holograms of complicate structures.
Genetic-algorithm-based tri-state neural networks
NASA Astrophysics Data System (ADS)
Uang, Chii-Maw; Chen, Wen-Gong; Horng, Ji-Bin
2002-09-01
A new method, using genetic algorithms, for constructing a tri-state neural network is presented. The global searching features of the genetic algorithms are adopted to help us easily find the interconnection weight matrix of a bipolar neural network. The construction method is based on the biological nervous systems, which evolve the parameters encoded in genes. Taking the advantages of conventional (binary) genetic algorithms, a two-level chromosome structure is proposed for training the tri-state neural network. A Matlab program is developed for simulating the network performances. The results show that the proposed genetic algorithms method not only has the features of accurate of constructing the interconnection weight matrix, but also has better network performance.
Internal quantum efficiency analysis of solar cell by genetic algorithm
Xiong, Kanglin; Yang, Hui; Lu, Shulong; Zhou, Taofei; Wang, Rongxin; Qiu, Kai; Dong, Jianrong; Jiang, Desheng
2010-11-15
To investigate factors limiting the performance of a GaAs solar cell, genetic algorithm is employed to fit the experimentally measured internal quantum efficiency (IQE) in the full spectra range. The device parameters such as diffusion lengths and surface recombination velocities are extracted. Electron beam induced current (EBIC) is performed in the base region of the cell with obtained diffusion length agreeing with the fit result. The advantage of genetic algorithm is illustrated. (author)
Genetic-Algorithm Tool For Search And Optimization
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven
1995-01-01
SPLICER computer program used to solve search and optimization problems. Genetic algorithms adaptive search procedures (i.e., problem-solving methods) based loosely on processes of natural selection and Darwinian "survival of fittest." Algorithms apply genetically inspired operators to populations of potential solutions in iterative fashion, creating new populations while searching for optimal or nearly optimal solution to problem at hand. Written in Think C.
Superscattering of light optimized by a genetic algorithm
Mirzaei, Ali Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.
2014-07-07
We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.
Genetic optimization of the HSTAMIDS landmine detection algorithm
NASA Astrophysics Data System (ADS)
Konduri, Ravi K.; Solomon, Geoff Z.; DeJong, Keith; Duvoisin, Herbert A.; Bartosz, Elizabeth E.
2004-09-01
CyTerra's dual sensor HSTAMIDS system has demonstrated exceptional landmine detection capabilities in extensive government-run field tests. Further optimization of the highly successful PentAD-class algorithms for Humanitarian Demining (HD) use (to enhance detection (Pd) and to lower the false alarm rate (FAR)) may be possible. PentAD contains several input parameters, making such optimization computationally intensive. Genetic algorithm techniques, which formerly provided substantial improvement in the detection performance of the metal detector sensor algorithm alone, have been applied to optimize the numerical values of the dual-sensor algorithm parameters. Genetic algorithm techniques have also been applied to choose among several sub-models and fusion techniques to potentially train the HSTAMIDS HD system in new ways. In this presentation we discuss the performance of the resulting algorithm as applied to field data.
Application of genetic algorithms to autopiloting in aerial combat simulation
NASA Astrophysics Data System (ADS)
Kim, Dai Hyun; Erwin, Daniel A.; Kostrzewski, Andrew A.; Kim, Jeongdal; Savant, Gajendra D.
1998-10-01
An autopilot algorithm that controls a fighter aircraft in simulated aerial combat is presented. A fitness function, whose arguments are the control settings of the simulated fighter, is continuously maximized by a fuzzied genetic algorithm. Results are presented for one-to-one combat simulated on a personal computer. Generalization to many-to-many combat is discussed.
Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.
ERIC Educational Resources Information Center
Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand
2003-01-01
Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…
Optimization of genomic selection training populations with a genetic algorithm
Technology Transfer Automated Retrieval System (TEKTRAN)
In this article, we derive a computationally efficient statistic to measure the reliability of estimates of genetic breeding values for a fixed set of genotypes based on a given training set of genotypes and phenotypes. We adopt a genetic algorithm scheme to find a training set of certain size from ...
Fuzzy Information Retrieval Using Genetic Algorithms and Relevance Feedback.
ERIC Educational Resources Information Center
Petry, Frederick E.; And Others
1993-01-01
Describes an approach that combines concepts from information retrieval, fuzzy set theory, and genetic programing to improve weighted Boolean query formulation via relevance feedback. Highlights include background on information retrieval systems; genetic algorithms; subproblem formulation; and preliminary results based on a testbed. (Contains 12…
Research on Laser Marking Speed Optimization by Using Genetic Algorithm
Wang, Dongyun; Yu, Qiwei; Zhang, Yu
2015-01-01
Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%. PMID:25955831
A Parallel Approach To Optimum Actuator Selection With a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Rogers, James L.
2000-01-01
Recent discoveries in smart technologies have created a variety of aerodynamic actuators which have great potential to enable entirely new approaches to aerospace vehicle flight control. For a revolutionary concept such as a seamless aircraft with no moving control surfaces, there is a large set of candidate locations for placing actuators, resulting in a substantially larger number of combinations to examine in order to find an optimum placement satisfying the mission requirements. The placement of actuators on a wing determines the control effectiveness of the airplane. One approach to placement Maximizes the moments about the pitch, roll, and yaw axes, while minimizing the coupling. Genetic algorithms have been instrumental in achieving good solutions to discrete optimization problems, such as the actuator placement problem. As a proof of concept, a genetic has been developed to find the minimum number of actuators required to provide uncoupled pitch, roll, and yaw control for a simplified, untapered, unswept wing model. To find the optimum placement by searching all possible combinations would require 1,100 hours. Formulating the problem and as a multi-objective problem and modifying it to take advantage of the parallel processing capabilities of a multi-processor computer, reduces the optimization time to 22 hours.
Genetic algorithm and the application for job shop group scheduling
NASA Astrophysics Data System (ADS)
Mao, Jianzhong; Wu, Zhiming
1995-08-01
Genetic algorithm (GA) is a heuristic and random search technique mimicking nature. This paper first presents the basic principle of GA, the definition and the function of the genetic operators, and the principal character of GA. On the basis of these, the paper proposes using GA as a new solution method of the job-shop group scheduling problem, discusses the coded representation method of the feasible solution, and the particular limitation to the genetic operators.
Immune allied genetic algorithm for Bayesian network structure learning
NASA Astrophysics Data System (ADS)
Song, Qin; Lin, Feng; Sun, Wei; Chang, KC
2012-06-01
Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.
A Multiobjective Approach to Homography Estimation.
Osuna-Enciso, Valentín; Cuevas, Erik; Oliva, Diego; Zúñiga, Virgilio; Pérez-Cisneros, Marco; Zaldívar, Daniel
2016-01-01
In several machine vision problems, a relevant issue is the estimation of homographies between two different perspectives that hold an extensive set of abnormal data. A method to find such estimation is the random sampling consensus (RANSAC); in this, the goal is to maximize the number of matching points given a permissible error (Pe), according to a candidate model. However, those objectives are in conflict: a low Pe value increases the accuracy of the model but degrades its generalization ability that refers to the number of matching points that tolerate noisy data, whereas a high Pe value improves the noise tolerance of the model but adversely drives the process to false detections. This work considers the estimation process as a multiobjective optimization problem that seeks to maximize the number of matching points whereas Pe is simultaneously minimized. In order to solve the multiobjective formulation, two different evolutionary algorithms have been explored: the Nondominated Sorting Genetic Algorithm II (NSGA-II) and the Nondominated Sorting Differential Evolution (NSDE). Results considering acknowledged quality measures among original and transformed images over a well-known image benchmark show superior performance of the proposal than Random Sample Consensus algorithm. PMID:26839532
A Multiobjective Approach to Homography Estimation
Osuna-Enciso, Valentín; Oliva, Diego; Zúñiga, Virgilio; Pérez-Cisneros, Marco; Zaldívar, Daniel
2016-01-01
In several machine vision problems, a relevant issue is the estimation of homographies between two different perspectives that hold an extensive set of abnormal data. A method to find such estimation is the random sampling consensus (RANSAC); in this, the goal is to maximize the number of matching points given a permissible error (Pe), according to a candidate model. However, those objectives are in conflict: a low Pe value increases the accuracy of the model but degrades its generalization ability that refers to the number of matching points that tolerate noisy data, whereas a high Pe value improves the noise tolerance of the model but adversely drives the process to false detections. This work considers the estimation process as a multiobjective optimization problem that seeks to maximize the number of matching points whereas Pe is simultaneously minimized. In order to solve the multiobjective formulation, two different evolutionary algorithms have been explored: the Nondominated Sorting Genetic Algorithm II (NSGA-II) and the Nondominated Sorting Differential Evolution (NSDE). Results considering acknowledged quality measures among original and transformed images over a well-known image benchmark show superior performance of the proposal than Random Sample Consensus algorithm. PMID:26839532
Generating Alternative Engineering Designs by Integrating Desktop VR with Genetic Algorithms
ERIC Educational Resources Information Center
Chandramouli, Magesh; Bertoline, Gary; Connolly, Patrick
2009-01-01
This study proposes an innovative solution to the problem of multiobjective engineering design optimization by integrating desktop VR with genetic computing. Although, this study considers the case of construction design as an example to illustrate the framework, this method can very much be extended to other engineering design problems as well.…
An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Weir, John M.; Wells, B. Earl
2003-01-01
Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.
A parallel genetic algorithm for the set partitioning problem
Levine, D.
1994-05-01
In this dissertation the author reports on his efforts to develop a parallel genetic algorithm and apply it to the solution of set partitioning problem -- a difficult combinatorial optimization problem used by many airlines as a mathematical model for flight crew scheduling. He developed a distributed steady-state genetic algorithm in conjunction with a specialized local search heuristic for solving the set partitioning problem. The genetic algorithm is based on an island model where multiple independent subpopulations each run a steady-state genetic algorithm on their subpopulation and occasionally fit strings migrate between the subpopulations. Tests on forty real-world set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel computer. The authors found that performance, as measured by the quality of the solution found and the iteration on which it was found, improved as additional subpopulation found and the iteration on which it was found, improved as additional subpopulations were added to the computation. With larger numbers of subpopulations the genetic algorithm was regularly able to find the optimal solution to problems having up to a few thousand integer variables. In two cases, high-quality integer feasible solutions were found for problems with 36,699 and 43,749 integer variables, respectively. A notable limitation they found was the difficulty solving problems with many constraints.
Liu, Dong-sheng; Fan, Shu-jiang
2014-01-01
In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389
A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem
Liu, Dong-sheng; Fan, Shu-jiang
2014-01-01
In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389
Forecasting the solar cycle with genetic algorithms
NASA Astrophysics Data System (ADS)
Orfila, A.; Ballester, J. L.; Oliver, R.; Alvarez, A.; Tintoré, J.
2002-04-01
In the past, it has been postulated that the irregular dynamics of the solar cycle may embed a low order chaotic process (Weiss 1988, 1994; Spiegel 1994) which, if true, implies that the future behaviour of solar activity should be predictable. Here, starting from the historical record of Zürich sunspot numbers, we build a dynamical model of the solar cycle which allows us to make a long-term forecast of its behaviour. Firstly, the deterministic part of the time series has been reconstructed using the Singular Spectrum Analysis and then an evolutionary algorithm (Alvarez et al. 2001), based on Darwinian theories of natural selection and survival and ideally suited for non-linear time series, has been applied. Then, the predictive capability of the algorithm has been tested by comparing the behaviour of solar cycles 19-22 with forecasts made with the algorithm, obtaining results which show reasonable agreement with the known behaviour of those cycles. Next, the forecast of the future behaviour of solar cycle 23 has been performed and the results point out that the level of activity during this cycle will be somewhat smaller than in the two previous ones.
Community detection based on modularity and an improved genetic algorithm
NASA Astrophysics Data System (ADS)
Shang, Ronghua; Bai, Jing; Jiao, Licheng; Jin, Chao
2013-03-01
Complex networks are widely applied in every aspect of human society, and community detection is a research hotspot in complex networks. Many algorithms use modularity as the objective function, which can simplify the algorithm. In this paper, a community detection method based on modularity and an improved genetic algorithm (MIGA) is put forward. MIGA takes the modularity Q as the objective function, which can simplify the algorithm, and uses prior information (the number of community structures), which makes the algorithm more targeted and improves the stability and accuracy of community detection. Meanwhile, MIGA takes the simulated annealing method as the local search method, which can improve the ability of local search by adjusting the parameters. Compared with the state-of-art algorithms, simulation results on computer-generated and four real-world networks reflect the effectiveness of MIGA.
Distributed genetic algorithms for the floorplan design problem
NASA Technical Reports Server (NTRS)
Cohoon, James P.; Hegde, Shailesh U.; Martin, Worthy N.; Richards, Dana S.
1991-01-01
Designing a VLSI floorplan calls for arranging a given set of modules in the plane to minimize the weighted sum of area and wire-length measures. A method of solving the floorplan design problem using distributed genetic algorithms is presented. Distributed genetic algorithms, based on the paleontological theory of punctuated equilibria, offer a conceptual modification to the traditional genetic algorithms. Experimental results on several problem instances demonstrate the efficacy of this method and indicate the advantages of this method over other methods, such as simulated annealing. The method has performed better than the simulated annealing approach, both in terms of the average cost of the solutions found and the best-found solution, in almost all the problem instances tried.
A genetic algorithm approach in interface and surface structure optimization
Zhang, Jian
2010-01-01
The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the material structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.
NASA Technical Reports Server (NTRS)
Rogers, David
1991-01-01
G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.
A systematic study of genetic algorithms with genotype editing
Huang, C. F.; Rocha, L. M.
2004-01-01
This paper presents our systematic study on an RNA-editing computational model of Genetic Algorithms (GA). This model is constructed based on several genetic editing characteristics that are gleaned from the RNA editing system as observed in several organisms. We have expanded the traditional Genetic Algorithm with artificial editing mechanisms as proposed by [15]. The incorporation of editing mechanisms provides a means for artificial agents with genetic descriptions to gain greater phenotypic plasticity, which may be environmentally regulated. The systematic study of this RNA-editing model has shed some light into the evolutionary implications of RNA editing and how to select proper RNA editors for design of more robust GAS. The results will also show promising applications to complex real-world problems. We expect that the framework proposed will both facilitate determining the evolutionary role of RNA editing in biology, and advance the current state of research in Evolutionary Computation.
Algorithmic Trading with Developmental and Linear Genetic Programming
NASA Astrophysics Data System (ADS)
Wilson, Garnett; Banzhaf, Wolfgang
A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.
Genetic algorithm dose minimization for an operational layout.
McLawhorn, S. L.; Kornreich, D. E.; Dudziak, Donald J.
2002-01-01
In an effort to reduce the dose to operating technicians performing fixed-time procedures on encapsulated source material, a program has been developed to optimize the layout of workstations within a facility by use of a genetic algorithm. Taking into account the sources present at each station and the time required to complete each procedure, the program utilizes a point kernel dose calculation tool for dose estimates. The genetic algorithm driver employs the dose calculation code as a cost function to determine the optimal spatial arrangement of workstations to minimize the total worker dose.
Acoustic design of rotor blades using a genetic algorithm
NASA Technical Reports Server (NTRS)
Wells, V. L.; Han, A. Y.; Crossley, W. A.
1995-01-01
A genetic algorithm coupled with a simplified acoustic analysis was used to generate low-noise rotor blade designs. The model includes thickness, steady loading and blade-vortex interaction noise estimates. The paper presents solutions for several variations in the fitness function, including thickness noise only, loading noise only, and combinations of the noise types. Preliminary results indicate that the analysis provides reasonable assessments of the noise produced, and that genetic algorithm successfully searches for 'good' designs. The results show that, for a given required thrust coefficient, proper blade design can noticeably reduce the noise produced at some expense to the power requirements.
Use of a genetic algorithm to analyze robust stability problems
Murdock, T.M.; Schmitendorf, W.E.; Forrest, S.
1990-01-01
This note resents a genetic algorithm technique for testing the stability of a characteristic polynomial whose coefficients are functions of unknown but bounded parameters. This technique is fast and can handle a large number of parametric uncertainties. We also use this method to determine robust stability margins for uncertain polynomials. Several benchmark examples are included to illustrate the two uses of the algorithm. 27 refs., 4 figs.
Constrained minimization of smooth functions using a genetic algorithm
NASA Technical Reports Server (NTRS)
Moerder, Daniel D.; Pamadi, Bandu N.
1994-01-01
The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions for a constrained minimum into an unconstrained function minimization. This technique is extended as a global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control settings for an energy state model of an aerospace plane.
Genetic algorithm for extracting rules in discrete domain
Neruda, R.
1995-09-20
We propose a genetic algorithm that evolves families of rules from a set of examples. Inputs and outputs of the problem are discrete and nominal values which makes it difficult to use alternative learning methods that implicitly regard a metric space. A way how to encode sets of rules is presented together with special variants of genetic operators suitable for this encoding. The solution found by means of this process can be used as a core of a rule-based expert system.
Stochastic search in structural optimization - Genetic algorithms and simulated annealing
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1993-01-01
An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.
RNA-RNA interaction prediction using genetic algorithm
2014-01-01
Background RNA-RNA interaction plays an important role in the regulation of gene expression and cell development. In this process, an RNA molecule prohibits the translation of another RNA molecule by establishing stable interactions with it. In the RNA-RNA interaction prediction problem, two RNA sequences are given as inputs and the goal is to find the optimal secondary structure of two RNAs and between them. Some different algorithms have been proposed to predict RNA-RNA interaction structure. However, most of them suffer from high computational time. Results In this paper, we introduce a novel genetic algorithm called GRNAs to predict the RNA-RNA interaction. The proposed algorithm is performed on some standard datasets with appropriate accuracy and lower time complexity in comparison to the other state-of-the-art algorithms. In the proposed algorithm, each individual is a secondary structure of two interacting RNAs. The minimum free energy is considered as a fitness function for each individual. In each generation, the algorithm is converged to find the optimal secondary structure (minimum free energy structure) of two interacting RNAs by using crossover and mutation operations. Conclusions This algorithm is properly employed for joint secondary structure prediction. The results achieved on a set of known interacting RNA pairs are compared with the other related algorithms and the effectiveness and validity of the proposed algorithm have been demonstrated. It has been shown that time complexity of the algorithm in each iteration is as efficient as the other approaches. PMID:25114714
Structural pattern recognition using genetic algorithms with specialized operators.
Khoo, K G; Suganthan, P N
2003-01-01
This paper presents a genetic algorithm (GA)-based optimization procedure for structural pattern recognition in a model-based recognition system using attributed relational graph (ARG) matching technique. The objective of our work is to improve the GA-based ARG matching procedures leading to a faster convergence rate and better quality mapping between a scene ARG and a set of given model ARGs. In this study, potential solutions are represented by integer strings indicating the mapping between scene and model vertices. The fitness of each solution string is computed by accumulating the similarity between the unary and binary attributes of the matched vertex pairs. We propose novel crossover and mutation operators, specifically for this problem. With these specialized genetic operators, the proposed algorithm converges to better quality solutions at a faster rate than the standard genetic algorithm (SGA). In addition, the proposed algorithm is also capable of recognizing multiple instances of any model object. An efficient pose-clustering algorithm is used to eliminate occasional wrong mappings and to determine the presence/pose of the model in the scene. We demonstrate the superior performance of our proposed algorithm using extensive experimental results. PMID:18238167
Towards the optimal design of an uncemented acetabular component using genetic algorithms
NASA Astrophysics Data System (ADS)
Ghosh, Rajesh; Pratihar, Dilip Kumar; Gupta, Sanjay
2015-12-01
Aseptic loosening of the acetabular component (hemispherical socket of the pelvic bone) has been mainly attributed to bone resorption and excessive generation of wear particle debris. The aim of this study was to determine optimal design parameters for the acetabular component that would minimize bone resorption and volumetric wear. Three-dimensional finite element models of intact and implanted pelvises were developed using data from computed tomography scans. A multi-objective optimization problem was formulated and solved using a genetic algorithm. A combination of suitable implant material and corresponding set of optimal thicknesses of the component was obtained from the Pareto-optimal front of solutions. The ultra-high-molecular-weight polyethylene (UHMWPE) component generated considerably greater volumetric wear but lower bone density loss compared to carbon-fibre reinforced polyetheretherketone (CFR-PEEK) and ceramic. CFR-PEEK was located in the range between ceramic and UHMWPE. Although ceramic appeared to be a viable alternative to cobalt-chromium-molybdenum alloy, CFR-PEEK seems to be the most promising alternative material.
Co-ordinated Design of AVR-PSS Using Multi Objective Genetic Algorithm
NASA Astrophysics Data System (ADS)
Selvabala, B.; Devaraj, D.
Automatic Voltage Regulator (AVR) regulates the generator terminal voltage by controlling the amount of current supplied to the generator field winding by the exciter. Power system stabilizer (PSS) is installed with AVR to damp the low frequency oscillations in power system by providing a supplementary signal to the excitation system. Optimal tuning of AVR controller and PSS parameters is necessary for the satisfactory operation of the power system. When applying tuning method to obtain the optimal controller parameters individually, AVR improves the voltage regulation of the system and PSS improves the damping of the system. Simultaneous tuning of AVR and PSS is necessary to obtain better both voltage regulation and oscillation damping in the system. This paper deals with the optimal tuning of AVR controller and PSS parameters in the synchronous machine. The problem of obtaining the optimal controller parameters is formulated as an optimization problem and Multi-Objective Genetic Algorithm (MOGA) is applied to solve the optimization problem. The suitability of the proposed approach has been demonstrated through computer simulation in a Single Machine Infinite Bus (SMIB) system.
Genetic algorithms, path relinking, and the flowshop sequencing problem.
Reeves, C R; Yamada, T
1998-01-01
In a previous paper, a simple genetic algorithm (GA) was developed for finding (approximately) the minimum makespan of the n-job, m-machine permutation flowshop sequencing problem (PFSP). The performance of the algorithm was comparable to that of a naive neighborhood search technique and a proven simulated annealing algorithm. However, recent results have demonstrated the superiority of a tabu search method in solving the PFSP. In this paper, we reconsider the implementation of a GA for this problem and show that by taking into account the features of the landscape generated by the operators used, we are able to improve its performance significantly. PMID:10021740
Genetic-Annealing Algorithm in Grid Environment for Scheduling Problems
NASA Astrophysics Data System (ADS)
Cruz-Chávez, Marco Antonio; Rodríguez-León, Abelardo; Ávila-Melgar, Erika Yesenia; Juárez-Pérez, Fredy; Cruz-Rosales, Martín H.; Rivera-López, Rafael
This paper presents a parallel hybrid evolutionary algorithm executed in a grid environment. The algorithm executes local searches using simulated annealing within a Genetic Algorithm to solve the job shop scheduling problem. Experimental results of the algorithm obtained in the "Tarantula MiniGrid" are shown. Tarantula was implemented by linking two clusters from different geographic locations in Mexico (Morelos-Veracruz). The technique used to link the two clusters and configure the Tarantula MiniGrid is described. The effects of latency in communication between the two clusters are discussed. It is shown that the evolutionary algorithm presented is more efficient working in Grid environments because it can carry out major exploration and exploitation of the solution space.
Genetic algorithms: What computers can learn from Darwin
Walbridge, C.T. )
1989-01-01
In this article the author posits a field of computing based on the genetic algorithm. This approach to programming mimics evolution by utilizing a computer to solve problems on a trial and error basis and ascertain the best answer through natural selection of the best of the computer's guesses. The author discusses the viability of this system in comparison to that of artificial intelligence.
Hybrid methods using genetic algorithms for global optimization.
Renders, J M; Flasse, S P
1996-01-01
This paper discusses the trade-off between accuracy, reliability and computing time in global optimization. Particular compromises provided by traditional methods (Quasi-Newton and Nelder-Mead's simplex methods) and genetic algorithms are addressed and illustrated by a particular application in the field of nonlinear system identification. Subsequently, new hybrid methods are designed, combining principles from genetic algorithms and "hill-climbing" methods in order to find a better compromise to the trade-off. Inspired by biology and especially by the manner in which living beings adapt themselves to their environment, these hybrid methods involve two interwoven levels of optimization, namely evolution (genetic algorithms) and individual learning (Quasi-Newton), which cooperate in a global process of optimization. One of these hybrid methods appears to join the group of state-of-the-art global optimization methods: it combines the reliability properties of the genetic algorithms with the accuracy of Quasi-Newton method, while requiring a computation time only slightly higher than the latter. PMID:18263027
Experiences with the PGAPack Parallel Genetic Algorithm library
Levine, D.; Hallstrom, P.; Noelle, D.; Walenz, B.
1997-07-01
PGAPack is the first widely distributed parallel genetic algorithm library. Since its release, several thousand copies have been distributed worldwide to interested users. In this paper we discuss the key components of the PGAPack design philosophy and present a number of application examples that use PGAPack.
USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES
Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...
Optimization of reliability allocation strategies through use of genetic algorithms
Campbell, J.E.; Painton, L.A.
1996-08-01
This paper examines a novel optimization technique called genetic algorithms and its application to the optimization of reliability allocation strategies. Reliability allocation should occur in the initial stages of design, when the objective is to determine an optimal breakdown or allocation of reliability to certain components or subassemblies in order to meet system specifications. The reliability allocation optimization is applied to the design of a cluster tool, a highly complex piece of equipment used in semiconductor manufacturing. The problem formulation is presented, including decision variables, performance measures and constraints, and genetic algorithm parameters. Piecewise ``effort curves`` specifying the amount of effort required to achieve a certain level of reliability for each component of subassembly are defined. The genetic algorithm evolves or picks those combinations of ``effort`` or reliability levels for each component which optimize the objective of maximizing Mean Time Between Failures while staying within a budget. The results show that the genetic algorithm is very efficient at finding a set of robust solutions. A time history of the optimization is presented, along with histograms or the solution space fitness, MTBF, and cost for comparative purposes.
Crossover Improvement for the Genetic Algorithm in Information Retrieval.
ERIC Educational Resources Information Center
Vrajitoru, Dana
1998-01-01
In information retrieval (IR), the aim of genetic algorithms (GA) is to help a system to find, in a huge documents collection, a good reply to a query expressed by the user. Analysis of phenomena seen during the implementation of a GA for IR has led to a new crossover operation, which is introduced and compared to other learning methods.…
Applying Genetic Algorithms To Query Optimization in Document Retrieval.
ERIC Educational Resources Information Center
Horng, Jorng-Tzong; Yeh, Ching-Chang
2000-01-01
Proposes a novel approach to automatically retrieve keywords and then uses genetic algorithms to adapt the keyword weights. Discusses Chinese text retrieval, term frequency rating formulas, vector space models, bigrams, the PAT-tree structure for information retrieval, query vectors, and relevance feedback. (Author/LRW)
A Parallel Genetic Algorithm for Automated Electronic Circuit Design
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris; Norvig, Peter (Technical Monitor)
2000-01-01
We describe a parallel genetic algorithm (GA) that automatically generates circuit designs using evolutionary search. A circuit-construction programming language is introduced and we show how evolution can generate practical analog circuit designs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. We present experimental results as applied to analog filter and amplifier design tasks.
A parallel genetic algorithm for the set partitioning problem
Levine, D.
1996-12-31
This paper describes a parallel genetic algorithm developed for the solution of the set partitioning problem- a difficult combinatorial optimization problem used by many airlines as a mathematical model for flight crew scheduling. The genetic algorithm is based on an island model where multiple independent subpopulations each run a steady-state genetic algorithm on their own subpopulation and occasionally fit strings migrate between the subpopulations. Tests on forty real-world set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel computer. We found that performance, as measured by the quality of the solution found and the iteration on which it was found, improved as additional subpopulations were added to the computation. With larger numbers of subpopulations the genetic algorithm was regularly able to find the optimal solution to problems having up to a few thousand integer variables. In two cases, high- quality integer feasible solutions were found for problems with 36, 699 and 43,749 integer variables, respectively. A notable limitation we found was the difficulty solving problems with many constraints.
Concurrent genetic algorithms for optimization of large structures
Adeli, H.; Cheng, N. )
1994-07-01
In a recent article, the writers presented an augmented Lagrangian genetic algorithm for optimization of structures. The optimization of large structures such as high-rise building structures and space stations with several hundred members by the hybrid genetic algorithm requires the creation of thousands of strings in the population and the corresponding large number of structural analyses. In this paper, the writers extend their previous work by presenting two concurrent augmented Lagrangian genetic algorithms for optimization of large structures utilizing the multiprocessing capabilities of high-performance computers such as the Cray Y-MP 8/864 supercomputer. Efficiency of the algorithms has been investigated by applying them to four space structures including two high-rise building structures. It is observed that the performance of both algorithms improves with the size of the structure, making them particularly suitable for optimization of large structures. A maximum parallel processing speed of 7.7 is achieved for a 35-story tower (with 1,262 elements and 936 degrees of freedom), using eight processors. 9 refs.
Economic Dispatch Using Genetic Algorithm Based Hybrid Approach
Tahir Nadeem Malik; Aftab Ahmad; Shahab Khushnood
2006-07-01
Power Economic Dispatch (ED) is vital and essential daily optimization procedure in the system operation. Present day large power generating units with multi-valves steam turbines exhibit a large variation in the input-output characteristic functions, thus non-convexity appears in the characteristic curves. Various mathematical and optimization techniques have been developed, applied to solve economic dispatch (ED) problem. Most of these are calculus-based optimization algorithms that are based on successive linearization and use the first and second order differentiations of objective function and its constraint equations as the search direction. They usually require heat input, power output characteristics of generators to be of monotonically increasing nature or of piecewise linearity. These simplifying assumptions result in an inaccurate dispatch. Genetic algorithms have used to solve the economic dispatch problem independently and in conjunction with other AI tools and mathematical programming approaches. Genetic algorithms have inherent ability to reach the global minimum region of search space in a short time, but then take longer time to converge the solution. GA based hybrid approaches get around this problem and produce encouraging results. This paper presents brief survey on hybrid approaches for economic dispatch, an architecture of extensible computational framework as common environment for conventional, genetic algorithm and hybrid approaches based solution for power economic dispatch, the implementation of three algorithms in the developed framework. The framework tested on standard test systems for its performance evaluation. (authors)
Optimization of phononic filters via genetic algorithms
NASA Astrophysics Data System (ADS)
Hussein, M. I.; El-Beltagy, M. A.
2007-12-01
A phononic crystal is commonly characterized by its dispersive frequency spectrum. With appropriate spatial distribution of the constituent material phases, spectral stop bands could be generated. Moreover, it is possible to control the number, the width, and the location of these bands within a frequency range of interest. This study aims at exploring the relationship between unit cell configuration and frequency spectrum characteristics. Focusing on 1D layered phononic crystals, and longitudinal wave propagation in the direction normal to the layering, the unit cell features of interest are the number of layers and the material phase and relative thickness of each layer. An evolutionary search for binary- and ternary-phase cell designs exhibiting a series of stop bands at predetermined frequencies is conducted. A specially formulated representation and set of genetic operators that break the symmetries in the problem are developed for this purpose. An array of optimal designs for a range of ratios in Young's modulus and density are obtained and the corresponding objective values (the degrees to which the resulting bands match the predetermined targets) are examined as a function of these ratios. It is shown that a rather complex filtering objective could be met with a high degree of success. Structures composed of the designed phononic crystals are excellent candidates for use in a wide range of applications including sound and vibration filtering.
An Adaptive Immune Genetic Algorithm for Edge Detection
NASA Astrophysics Data System (ADS)
Li, Ying; Bai, Bendu; Zhang, Yanning
An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.
Virus evolutionary genetic algorithm for task collaboration of logistics distribution
NASA Astrophysics Data System (ADS)
Ning, Fanghua; Chen, Zichen; Xiong, Li
2005-12-01
In order to achieve JIT (Just-In-Time) level and clients' maximum satisfaction in logistics collaboration, a Virus Evolutionary Genetic Algorithm (VEGA) was put forward under double constraints of logistics resource and operation sequence. Based on mathematic description of a multiple objective function, the algorithm was designed to schedule logistics tasks with different due dates and allocate them to network members. By introducing a penalty item, make span and customers' satisfaction were expressed in fitness function. And a dynamic adaptive probability of infection was used to improve performance of local search. Compared to standard Genetic Algorithm (GA), experimental result illustrates the performance superiority of VEGA. So the VEGA can provide a powerful decision-making technique for optimizing resource configuration in logistics network.
Study of genetic direct search algorithms for function optimization
NASA Technical Reports Server (NTRS)
Zeigler, B. P.
1974-01-01
The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.
Global structual optimizations of surface systems with a genetic algorithm
Chuang, Feng-Chuan
2005-05-01
Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al{sub n} (n up to 23) were performed using a genetic algorithm coupled with a tight-binding potential. Second, a genetic algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of {radical}3 x {radical}3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems.
JavaGenes and Condor: Cycle-Scavenging Genetic Algorithms
NASA Technical Reports Server (NTRS)
Globus, Al; Langhirt, Eric; Livny, Miron; Ramamurthy, Ravishankar; Soloman, Marvin; Traugott, Steve
2000-01-01
A genetic algorithm code, JavaGenes, was written in Java and used to evolve pharmaceutical drug molecules and digital circuits. JavaGenes was run under the Condor cycle-scavenging batch system managing 100-170 desktop SGI workstations. Genetic algorithms mimic biological evolution by evolving solutions to problems using crossover and mutation. While most genetic algorithms evolve strings or trees, JavaGenes evolves graphs representing (currently) molecules and circuits. Java was chosen as the implementation language because the genetic algorithm requires random splitting and recombining of graphs, a complex data structure manipulation with ample opportunities for memory leaks, loose pointers, out-of-bound indices, and other hard to find bugs. Java garbage-collection memory management, lack of pointer arithmetic, and array-bounds index checking prevents these bugs from occurring, substantially reducing development time. While a run-time performance penalty must be paid, the only unacceptable performance we encountered was using standard Java serialization to checkpoint and restart the code. This was fixed by a two-day implementation of custom checkpointing. JavaGenes is minimally integrated with Condor; in other words, JavaGenes must do its own checkpointing and I/O redirection. A prototype Java-aware version of Condor was developed using standard Java serialization for checkpointing. For the prototype to be useful, standard Java serialization must be significantly optimized. JavaGenes is approximately 8700 lines of code and a few thousand JavaGenes jobs have been run. Most jobs ran for a few days. Results include proof that genetic algorithms can evolve directed and undirected graphs, development of a novel crossover operator for graphs, a paper in the journal Nanotechnology, and another paper in preparation.
An enhanced algorithm for multiple sequence alignment of protein sequences using genetic algorithm
Kumar, Manish
2015-01-01
One of the most fundamental operations in biological sequence analysis is multiple sequence alignment (MSA). The basic of multiple sequence alignment problems is to determine the most biologically plausible alignments of protein or DNA sequences. In this paper, an alignment method using genetic algorithm for multiple sequence alignment has been proposed. Two different genetic operators mainly crossover and mutation were defined and implemented with the proposed method in order to know the population evolution and quality of the sequence aligned. The proposed method is assessed with protein benchmark dataset, e.g., BALIBASE, by comparing the obtained results to those obtained with other alignment algorithms, e.g., SAGA, RBT-GA, PRRP, HMMT, SB-PIMA, CLUSTALX, CLUSTAL W, DIALIGN and PILEUP8 etc. Experiments on a wide range of data have shown that the proposed algorithm is much better (it terms of score) than previously proposed algorithms in its ability to achieve high alignment quality. PMID:27065770
An enhanced algorithm for multiple sequence alignment of protein sequences using genetic algorithm.
Kumar, Manish
2015-01-01
One of the most fundamental operations in biological sequence analysis is multiple sequence alignment (MSA). The basic of multiple sequence alignment problems is to determine the most biologically plausible alignments of protein or DNA sequences. In this paper, an alignment method using genetic algorithm for multiple sequence alignment has been proposed. Two different genetic operators mainly crossover and mutation were defined and implemented with the proposed method in order to know the population evolution and quality of the sequence aligned. The proposed method is assessed with protein benchmark dataset, e.g., BALIBASE, by comparing the obtained results to those obtained with other alignment algorithms, e.g., SAGA, RBT-GA, PRRP, HMMT, SB-PIMA, CLUSTALX, CLUSTAL W, DIALIGN and PILEUP8 etc. Experiments on a wide range of data have shown that the proposed algorithm is much better (it terms of score) than previously proposed algorithms in its ability to achieve high alignment quality. PMID:27065770
Evaluation of algorithms used to order markers on genetic maps.
Mollinari, M; Margarido, G R A; Vencovsky, R; Garcia, A A F
2009-12-01
When building genetic maps, it is necessary to choose from several marker ordering algorithms and criteria, and the choice is not always simple. In this study, we evaluate the efficiency of algorithms try (TRY), seriation (SER), rapid chain delineation (RCD), recombination counting and ordering (RECORD) and unidirectional growth (UG), as well as the criteria PARF (product of adjacent recombination fractions), SARF (sum of adjacent recombination fractions), SALOD (sum of adjacent LOD scores) and LHMC (likelihood through hidden Markov chains), used with the RIPPLE algorithm for error verification, in the construction of genetic linkage maps. A linkage map of a hypothetical diploid and monoecious plant species was simulated containing one linkage group and 21 markers with fixed distance of 3 cM between them. In all, 700 F(2) populations were randomly simulated with 100 and 400 individuals with different combinations of dominant and co-dominant markers, as well as 10 and 20% of missing data. The simulations showed that, in the presence of co-dominant markers only, any combination of algorithm and criteria may be used, even for a reduced population size. In the case of a smaller proportion of dominant markers, any of the algorithms and criteria (except SALOD) investigated may be used. In the presence of high proportions of dominant markers and smaller samples (around 100), the probability of repulsion linkage increases between them and, in this case, use of the algorithms TRY and SER associated to RIPPLE with criterion LHMC would provide better results. PMID:19639011
A simple algorithm for optimization and model fitting: AGA (asexual genetic algorithm)
NASA Astrophysics Data System (ADS)
Cantó, J.; Curiel, S.; Martínez-Gómez, E.
2009-07-01
Context: Mathematical optimization can be used as a computational tool to obtain the optimal solution to a given problem in a systematic and efficient way. For example, in twice-differentiable functions and problems with no constraints, the optimization consists of finding the points where the gradient of the objective function is zero and using the Hessian matrix to classify the type of each point. Sometimes, however it is impossible to compute these derivatives and other type of techniques must be employed such as the steepest descent/ascent method and more sophisticated methods such as those based on the evolutionary algorithms. Aims: We present a simple algorithm based on the idea of genetic algorithms (GA) for optimization. We refer to this algorithm as AGA (asexual genetic algorithm) and apply it to two kinds of problems: the maximization of a function where classical methods fail and model fitting in astronomy. For the latter case, we minimize the chi-square function to estimate the parameters in two examples: the orbits of exoplanets by taking a set of radial velocity data, and the spectral energy distribution (SED) observed towards a YSO (Young Stellar Object). Methods: The algorithm AGA may also be called genetic, although it differs from standard genetic algorithms in two main aspects: a) the initial population is not encoded; and b) the new generations are constructed by asexual reproduction. Results: Applying our algorithm in optimizing some complicated functions, we find the global maxima within a few iterations. For model fitting to the orbits of exoplanets and the SED of a YSO, we estimate the parameters and their associated errors.
Packing Boxes into Multiple Containers Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Menghani, Deepak; Guha, Anirban
2016-07-01
Container loading problems have been studied extensively in the literature and various analytical, heuristic and metaheuristic methods have been proposed. This paper presents two different variants of a genetic algorithm framework for the three-dimensional container loading problem for optimally loading boxes into multiple containers with constraints. The algorithms are designed so that it is easy to incorporate various constraints found in real life problems. The algorithms are tested on data of standard test cases from literature and are found to compare well with the benchmark algorithms in terms of utilization of containers. This, along with the ability to easily incorporate a wide range of practical constraints, makes them attractive for implementation in real life scenarios.
Selection Intensity in Genetic Algorithms with Generation Gaps
Cantu-Paz, E.
2000-01-19
This paper presents calculations of the selection intensity of common selection and replacement methods used in genetic algorithms (GAs) with generation gaps. The selection intensity measures the increase of the average fitness of the population after selection, and it can be used to predict the average fitness of the population at each iteration as well as the number of steps until the population converges to a unique solution. In addition, the theory explains the fast convergence of some algorithms with small generation gaps. The accuracy of the calculations was verified experimentally with a simple test function. The results of this study facilitate comparisons between different algorithms, and provide a tool to adjust the selection pressure, which is indispensable to obtain robust algorithms.
The ordered clustered travelling salesman problem: a hybrid genetic algorithm.
Ahmed, Zakir Hussain
2014-01-01
The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances. PMID:24701148
Genetic algorithms for optimal reactive power compensation planning on the national grid system
NASA Astrophysics Data System (ADS)
Pilgrim, J. D.
This work investigates the use of Genetic Algorithms (GAs) for optimal Reactive power Compensation Planning (RCP) of practical power systems. In particular, RCP of the transmission system of England and Wales as owned and operated by National Grid is considered. The GA is used to simultaneously solve both the siting problem---optimisation of the installation of new devices---and the operational problem---optimisation of preventive transformer taps and the controller characteristics of dynamic compensation devices. A computer package called Genetic Compensation Placement (GCP) has been developed which uses an Integer coded GA (IGA) to solve the RCP problem. The RCP problem is implemented as a multi-objective optimisation: in the interests of security, the number of system and operational constraint violations and the deviation of the busbar voltages from the ideal are all minimised for the base (intact) case and the contingent cases. In the interests of cost reduction, the reactive power cost is minimised for the base case. The reactive power cost encompasses the costs incurred from the installation of reactive power sources and the utilisation of new and existing dynamic reactive power compensation devices. GCP is compared to SCORPION (a planning program currently being used by National Grid) which uses a combination of linear programming and heuristic back-tracking. Results are presented for a practical test system developed with the cooperation of National Grid, and it is found that GCP produces solutions that are cheaper than solutions found by SCORPION and perform extremely well: an improvement in voltage profiles, a decrease in complex power mismatches, and a reduction in MVolt Amps-reactive (VAr) utilisation were observed.
NASA Astrophysics Data System (ADS)
Paton, F. L.; Maier, H. R.; Dandy, G. C.
2014-08-01
Cities around the world are increasingly involved in climate action and mitigating greenhouse gas (GHG) emissions. However, in the context of responding to climate pressures in the water sector, very few studies have investigated the impacts of changing water use on GHG emissions, even though water resource adaptation often requires greater energy use. Consequently, reducing GHG emissions, and thus focusing on both mitigation and adaptation responses to climate change in planning and managing urban water supply systems, is necessary. Furthermore, the minimization of GHG emissions is likely to conflict with other objectives. Thus, applying a multiobjective evolutionary algorithm (MOEA), which can evolve an approximation of entire trade-off (Pareto) fronts of multiple objectives in a single run, would be beneficial. Consequently, the main aim of this paper is to incorporate GHG emissions into a MOEA framework to take into consideration both adaptation and mitigation responses to climate change for a city's water supply system. The approach is applied to a case study based on Adelaide's southern water supply system to demonstrate the framework's practical management implications. Results indicate that trade-offs exist between GHG emissions and risk-based performance, as well as GHG emissions and economic cost. Solutions containing rainwater tanks are expensive, while GHG emissions greatly increase with increased desalinated water supply. Consequently, while desalination plants may be good adaptation options to climate change due to their climate-independence, rainwater may be a better mitigation response, albeit more expensive.
A novel pipeline based FPGA implementation of a genetic algorithm
NASA Astrophysics Data System (ADS)
Thirer, Nonel
2014-05-01
To solve problems when an analytical solution is not available, more and more bio-inspired computation techniques have been applied in the last years. Thus, an efficient algorithm is the Genetic Algorithm (GA), which imitates the biological evolution process, finding the solution by the mechanism of "natural selection", where the strong has higher chances to survive. A genetic algorithm is an iterative procedure which operates on a population of individuals called "chromosomes" or "possible solutions" (usually represented by a binary code). GA performs several processes with the population individuals to produce a new population, like in the biological evolution. To provide a high speed solution, pipelined based FPGA hardware implementations are used, with a nstages pipeline for a n-phases genetic algorithm. The FPGA pipeline implementations are constraints by the different execution time of each stage and by the FPGA chip resources. To minimize these difficulties, we propose a bio-inspired technique to modify the crossover step by using non identical twins. Thus two of the chosen chromosomes (parents) will build up two new chromosomes (children) not only one as in classical GA. We analyze the contribution of this method to reduce the execution time in the asynchronous and synchronous pipelines and also the possibility to a cheaper FPGA implementation, by using smaller populations. The full hardware architecture for a FPGA implementation to our target ALTERA development card is presented and analyzed.
Strain gage selection in loads equations using a genetic algorithm
NASA Technical Reports Server (NTRS)
1994-01-01
Traditionally, structural loads are measured using strain gages. A loads calibration test must be done before loads can be accurately measured. In one measurement method, a series of point loads is applied to the structure, and loads equations are derived via the least squares curve fitting algorithm using the strain gage responses to the applied point loads. However, many research structures are highly instrumented with strain gages, and the number and selection of gages used in a loads equation can be problematic. This paper presents an improved technique using a genetic algorithm to choose the strain gages used in the loads equations. Also presented are a comparison of the genetic algorithm performance with the current T-value technique and a variant known as the Best Step-down technique. Examples are shown using aerospace vehicle wings of high and low aspect ratio. In addition, a significant limitation in the current methods is revealed. The genetic algorithm arrived at a comparable or superior set of gages with significantly less human effort, and could be applied in instances when the current methods could not.
Using genetic algorithms to construct a network for financial prediction
NASA Astrophysics Data System (ADS)
Patel, Devesh
1996-03-01
Traditional forecasting models such as the Box-Jenkins ARIMA model are almost all based on models that assume a linear relationship amongst variables and cannot approximate the non- linear relationship that exists amongst variables in real-world data such as stock-price data. Artificial neural networks, on the other hand, consist of two or more levels of nonlinearity that have been successfully used to approximate the underlying relationships of time series data. Neural networks however, pose a design problem: their optimum topology and training rule parameters including learning rate and momentum, for the problem at hand need to be determined. In this paper, we use genetic algorithms to determine these design parameters. In general genetic algorithms are an optimization method that find solutions to a problem by an evolutionary process based on natural selection. The genetic algorithm searches through the network parameter space and the neural network learning algorithm evaluates the selected parameters. We then use the optimally configured network to predict the stock market price of a blue-chip company on the UK market.
Scope of Gradient and Genetic Algorithms in Multivariable Function Optimization
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali; Sen, S. K.
2007-01-01
Global optimization of a multivariable function - constrained by bounds specified on each variable and also unconstrained - is an important problem with several real world applications. Deterministic methods such as the gradient algorithms as well as the randomized methods such as the genetic algorithms may be employed to solve these problems. In fact, there are optimization problems where a genetic algorithm/an evolutionary approach is preferable at least from the quality (accuracy) of the results point of view. From cost (complexity) point of view, both gradient and genetic approaches are usually polynomial-time; there are no serious differences in this regard, i.e., the computational complexity point of view. However, for certain types of problems, such as those with unacceptably erroneous numerical partial derivatives and those with physically amplified analytical partial derivatives whose numerical evaluation involves undesirable errors and/or is messy, a genetic (stochastic) approach should be a better choice. We have presented here the pros and cons of both the approaches so that the concerned reader/user can decide which approach is most suited for the problem at hand. Also for the function which is known in a tabular form, instead of an analytical form, as is often the case in an experimental environment, we attempt to provide an insight into the approaches focusing our attention toward accuracy. Such an insight will help one to decide which method, out of several available methods, should be employed to obtain the best (least error) output. *
Optimization of solar air collector using genetic algorithm and artificial bee colony algorithm
NASA Astrophysics Data System (ADS)
Şencan Şahin, Arzu
2012-11-01
Thermal performance of solar air collector depends on many parameters as inlet air temperature, air velocity, collector slope and properties related to collector. In this study, the effect of the different parameters which affect the performance of the solar air collector are investigated. In order to maximize the thermal performance of a solar air collector genetic algorithm (GA) and artificial bee colony algorithm (ABC) have been used. The results obtained indicate that GA and ABC algorithms can be applied successfully for the optimization of the thermal performance of solar air collector.
NASA Astrophysics Data System (ADS)
Salami, M. J. E.; Tijani, I. B.; Abdullateef, A. I.; Aibinu, M. A.
2013-12-01
A hybrid optimization algorithm using Differential Evolution (DE) and Genetic Algorithm (GA) is proposed in this study to address the problem of network parameters determination associated with the Nonlinear Autoregressive with eXogenous inputs Network (NARX-network). The proposed algorithm involves a two level optimization scheme to search for both optimal network architecture and weights. The DE at the upper level is formulated as combinatorial optimization to search for the network architecture while the associated network weights that minimize the prediction error is provided by the GA at the lower level. The performance of the algorithm is evaluated on identification of a laboratory rotary motion system. The system identification results show the effectiveness of the proposed algorithm for nonparametric model development.
Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun
2014-01-01
A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031
Genetic algorithms and their use in Geophysical Problems
Parker, Paul B.
1999-04-01
Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free
A Dedicated Genetic Algorithm for Localization of Moving Magnetic Objects
Alimi, Roger; Weiss, Eyal; Ram-Cohen, Tsuriel; Geron, Nir; Yogev, Idan
2015-01-01
A dedicated Genetic Algorithm (GA) has been developed to localize the trajectory of ferromagnetic moving objects within a bounded perimeter. Localization of moving ferromagnetic objects is an important tool because it can be employed in situations when the object is obscured. This work is innovative for two main reasons: first, the GA has been tuned to provide an accurate and fast solution to the inverse magnetic field equations problem. Second, the algorithm has been successfully tested using real-life experimental data. Very accurate trajectory localization estimations were obtained over a wide range of scenarios. PMID:26393598
Detection of parametric curves based on genetic algorithm
NASA Astrophysics Data System (ADS)
Li, Haimin; Wu, Chengke
1998-09-01
Detection of curves with special shapes has been put on great interest in the fields of image processing and recognition. Some commonly used algorithms such as Hough Transform and Generalized Radon Transform are global search methods. When the number of parameters increases, their efficiencies decrease rapidly because of the expansion of parameter space. To solve this problem, a new method based on Genetic Algorithm is presented which combines a local search procedure to improve its performance. Experimental results show that the proposed method improves search efficiency greatly.
Mass spectrometry cancer data classification using wavelets and genetic algorithm.
Nguyen, Thanh; Nahavandi, Saeid; Creighton, Douglas; Khosravi, Abbas
2015-12-21
This paper introduces a hybrid feature extraction method applied to mass spectrometry (MS) data for cancer classification. Haar wavelets are employed to transform MS data into orthogonal wavelet coefficients. The most prominent discriminant wavelets are then selected by genetic algorithm (GA) to form feature sets. The combination of wavelets and GA yields highly distinct feature sets that serve as inputs to classification algorithms. Experimental results show the robustness and significant dominance of the wavelet-GA against competitive methods. The proposed method therefore can be applied to cancer classification models that are useful as real clinical decision support systems for medical practitioners. PMID:26611346
a Genetic Algorithm for Urban Transit Routing Problem
NASA Astrophysics Data System (ADS)
Chew, Joanne Suk Chun; Lee, Lai Soon
The Urban Transit Routing Problem (UTRP) involves solving a set of transit route networks, which proved to be a highly complex multi-constrained problem. In this study, a bus route network to find an efficient network to meet customer demands given information on link travel times is considered. An evolutionary optimization technique, called Genetic Algorithm is proposed to solve the UTRP. The main objective is to minimize the passenger costs where the quality of the route sets is evaluated by a set of parameters. Initial computational experiments show that the proposed algorithm performs better than the benchmark results for Mandl's problems.
Optimization of multilayer cylindrical cloaks using genetic algorithms and NEWUOA
NASA Astrophysics Data System (ADS)
Sakr, Ahmed A.; Abdelmageed, Alaa K.
2016-06-01
The problem of minimizing the scattering from a multilayer cylindrical cloak is studied. Both TM and TE polarizations are considered. A two-stage optimization procedure using genetic algorithms and NEWUOA (new unconstrained optimization algorithm) is adopted for realizing the cloak using homogeneous isotropic layers. The layers are arranged such that they follow a repeated pattern of alternating DPS and DNG materials. The results show that a good level of invisibility can be realized using a reasonable number of layers. Maintaining the cloak performance over a finite range of frequencies without sacrificing the level of invisibility is achieved.
Jia Yuxi; Sun Sheng; Liu Lili; Mu Yue; An Lijia
2004-08-16
The explicit expression between composition and mechanical properties of silicone rubber was derived from the physics of polymer elasticity, the implicit expression among material composition, reaction conditions and reaction efficiency was obtained from chemical thermodynamics and kinetics, and then an implicit multi-objective optimization model was constructed. Genetic algorithm was applied to optimize material composition and reaction conditions, and the finite element method of cross-linking reaction processes was used to solve multi-objective functions, on the basis of which a new optimization methodology of cross-linking reaction processes was established. Using this methodology, rubber materials can be designed according to pre-specified requirements.
Genetic Algorithm for Initial Orbit Determination with Too Short Arc
NASA Astrophysics Data System (ADS)
Li, X. R.; Wang, X.
2016-01-01
The sky surveys of space objects have obtained a huge quantity of too-short-arc (TSA) observation data. However, the classical method of initial orbit determination (IOD) can hardly get reasonable results for the TSAs. The IOD is reduced to a two-stage hierarchical optimization problem containing three variables for each stage. Using the genetic algorithm, a new method of the IOD for TSAs is established, through the selection of optimizing variables as well as the corresponding genetic operator for specific problems. Numerical experiments based on the real measurements show that the method can provide valid initial values for the follow-up work.
NASA Astrophysics Data System (ADS)
Windarto, Indratno, S. W.; Nuraini, N.; Soewono, E.
2014-02-01
Genetic algorithm is an optimization method based on the principles of genetics and natural selection in life organisms. The algorithm begins by defining the optimization variables, defining the cost function (in a minimization problem) or the fitness function (in a maximization problem) and selecting genetic algorithm parameters. The main procedures in genetic algorithm are generating initial population, selecting some chromosomes (individual) as parent's individual, mating, and mutation. In this paper, binary and continuous genetic algorithms were implemented to estimate growth rate and carrying capacity parameter from poultry data cited from literature. For simplicity, all genetic algorithm parameters (selection rate and mutation rate) are set to be constant along implementation of the algorithm. It was found that by selecting suitable mutation rate, both algorithms can estimate these parameters well. Suitable range for mutation rate in continuous genetic algorithm is wider than the binary one.
Optimal Design of Geodetic Network Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Vajedian, Sanaz; Bagheri, Hosein
2010-05-01
A geodetic network is a network which is measured exactly by techniques of terrestrial surveying based on measurement of angles and distances and can control stability of dams, towers and their around lands and can monitor deformation of surfaces. The main goals of an optimal geodetic network design process include finding proper location of control station (First order Design) as well as proper weight of observations (second order observation) in a way that satisfy all the criteria considered for quality of the network with itself is evaluated by the network's accuracy, reliability (internal and external), sensitivity and cost. The first-order design problem, can be dealt with as a numeric optimization problem. In this designing finding unknown coordinates of network stations is an important issue. For finding these unknown values, network geodetic observations that are angle and distance measurements must be entered in an adjustment method. In this regard, using inverse problem algorithms is needed. Inverse problem algorithms are methods to find optimal solutions for given problems and include classical and evolutionary computations. The classical approaches are analytical methods and are useful in finding the optimum solution of a continuous and differentiable function. Least squares (LS) method is one of the classical techniques that derive estimates for stochastic variables and their distribution parameters from observed samples. The evolutionary algorithms are adaptive procedures of optimization and search that find solutions to problems inspired by the mechanisms of natural evolution. These methods generate new points in the search space by applying operators to current points and statistically moving toward more optimal places in the search space. Genetic algorithm (GA) is an evolutionary algorithm considered in this paper. This algorithm starts with definition of initial population, and then the operators of selection, replication and variation are applied
A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm
NASA Astrophysics Data System (ADS)
Thirer, Nonel
2013-05-01
With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.
A genetic algorithm solution to the unit commitment problem
Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V.
1996-02-01
This paper presents a Genetic Algorithm (GA) solution to the Unit Commitment problem. GAs are general purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms such as natural selection, genetic recombination and survival of the fittest. A simple Ga algorithm implementation using the standard crossover and mutation operators could locate near optimal solutions but in most cases failed to converge to the optimal solution. However, using the Varying Quality Function technique and adding problem specific operators, satisfactory solutions to the Unit Commitment problem were obtained. Test results for systems of up to 100 units and comparisons with results obtained using Lagrangian Relaxation and Dynamic Programming are also reported.
Genetic algorithm application in optimization of wireless sensor networks.
Norouzi, Ali; Zaim, A Halim
2014-01-01
There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
A sustainable genetic algorithm for satellite resource allocation
NASA Technical Reports Server (NTRS)
Abbott, R. J.; Campbell, M. L.; Krenz, W. C.
1995-01-01
A hybrid genetic algorithm is used to schedule tasks for 8 satellites, which can be modelled as a robot whose task is to retrieve objects from a two dimensional field. The objective is to find a schedule that maximizes the value of objects retrieved. Typical of the real-world tasks to which this corresponds is the scheduling of ground contacts for a communications satellite. An important feature of our application is that the amount of time available for running the scheduler is not necessarily known in advance. This requires that the scheduler produce reasonably good results after a short period but that it also continue to improve its results if allowed to run for a longer period. We satisfy this requirement by developing what we call a sustainable genetic algorithm.
Designing a competent simple genetic algorithm for search and optimization
NASA Astrophysics Data System (ADS)
Reed, Patrick; Minsker, Barbara; Goldberg, David E.
2000-12-01
Simple genetic algorithms have been used to solve many water resources problems, but specifying the parameters that control how adaptive search is performed can be a difficult and time-consuming trial-and-error process. However, theoretical relationships for population sizing and timescale analysis have been developed that can provide pragmatic tools for vastly limiting the number of parameter combinations that must be considered. The purpose of this technical note is to summarize these relationships for the water resources community and to illustrate their practical utility in a long-term groundwater monitoring design application. These relationships, which model the effects of the primary operators of a simple genetic algorithm (selection, recombination, and mutation), provide a highly efficient method for ensuring convergence to near-optimal or optimal solutions. Application of the method to a monitoring design test case identified robust parameter values using only three trial runs.
Genetic Algorithm Application in Optimization of Wireless Sensor Networks
Norouzi, Ali; Zaim, A. Halim
2014-01-01
There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235
Optimum Actuator Selection with a Genetic Algorithm for Aircraft Control
NASA Technical Reports Server (NTRS)
Rogers, James L.
2004-01-01
The placement of actuators on a wing determines the control effectiveness of the airplane. One approach to placement maximizes the moments about the pitch, roll, and yaw axes, while minimizing the coupling. For example, the desired actuators produce a pure roll moment without at the same time causing much pitch or yaw. For a typical wing, there is a large set of candidate locations for placing actuators, resulting in a substantially larger number of combinations to examine in order to find an optimum placement satisfying the mission requirements and mission constraints. A genetic algorithm has been developed for finding the best placement for four actuators to produce an uncoupled pitch moment. The genetic algorithm has been extended to find the minimum number of actuators required to provide uncoupled pitch, roll, and yaw control. A simplified, untapered, unswept wing is the model for each application.
GAz: a genetic algorithm for photometric redshift estimation
NASA Astrophysics Data System (ADS)
Hogan, Robert; Fairbairn, Malcolm; Seeburn, Navin
2015-05-01
We present a new approach to the problem of estimating the redshift of galaxies from photometric data. The approach uses a genetic algorithm combined with non-linear regression to model the 2SLAQ LRG data set with SDSS DR7 photometry. The genetic algorithm explores the very large space of high order polynomials while only requiring optimization of a small number of terms. We find a σrms = 0.0408 ± 0.0006 for redshifts in the range 0.4 < z < 0.7. These results are competitive with the current state-of-the-art but can be presented simply as a polynomial which does not require the user to run any code. We demonstrate that the method generalizes well to other data sets and redshift ranges by testing it on SDSS DR11 and on simulated data. For other data sets or applications the code has been made available at https://github.com/rbrthogan/GAz.
Calibration of FRESIM for Singapore expressway using genetic algorithm
Cheu, R.L.; Jin, X.; Srinivasa, D.; Ng, K.C.; Ng, Y.L.
1998-11-01
FRESIM is a microscopic time-stepping simulation model for freeway corridor traffic operations. To enable FRESIM to realistically simulate expressway traffic flow in Singapore, parameters that govern the movement of vehicles needed to be recalibrated for local traffic conditions. This paper presents the application of a genetic algorithm as an optimization method for finding a suitable combination of FRESIM parameter values. The calibration is based on field data collected on weekdays over a 5.8 km segment of the Ayer Rajar Expressway. Independent calibrations have been made for evening peak and midday off-peak traffic. The results show that the genetic algorithm is able to search for two sets of parameter values that enable FRESIM to produce 30-s loop-detector volume and speed (averaged across all lanes) closely matching the field data under two different traffic conditions. The two sets of parameter values are found to produce a consistently good match for data collected in different days.
Optical design with the aid of a genetic algorithm.
van Leijenhorst, D C; Lucasius, C B; Thijssen, J M
1996-01-01
Natural evolution is widely accepted as being the process underlying the design and optimization of the sensory functions of biological organisms. Using a genetic algorithm, this process is extended to the automatic optimization and design of optical systems, e.g. as used in astronomical telescopes. The results of this feasibility study indicate that various types of aberrations can be corrected quickly and simultaneously, even on small computers. PMID:8924643
Solving a multistage partial inspection problem using genetic algorithms
Heredia-Langner, Alejandro ); Montgomery, D C.; Carlyle, W M.
2002-01-01
Traditionally, the multistage inspection problem has been formulated as consisting of a decision schedule where some manufacturing stages receive full inspection and the rest none. Dynamic programming and heuristic methods (like local search) are the most commonly used solution techniques. A highly constrained multistage inspection problem is presented where all stages must receive partial rectifying inspection and it is solved using a real-valued genetic algorithm. This solution technique can handle multiple objectives and quality constraints effectively.
Investigation of range extension with a genetic algorithm
Austin, A. S., LLNL
1998-03-04
Range optimization is one of the tasks associated with the development of cost- effective, stand-off, air-to-surface munitions systems. The search for the optimal input parameters that will result in the maximum achievable range often employ conventional Monte Carlo techniques. Monte Carlo approaches can be time-consuming, costly, and insensitive to mutually dependent parameters and epistatic parameter effects. An alternative search and optimization technique is available in genetic algorithms. In the experiments discussed in this report, a simplified platform motion simulator was the fitness function for a genetic algorithm. The parameters to be optimized were the inputs to this motion generator and the simulator`s output (terminal range) was the fitness measure. The parameters of interest were initial launch altitude, initial launch speed, wing angle-of-attack, and engine ignition time. The parameter values the GA produced were validated by Monte Carlo investigations employing a full-scale six-degree-of-freedom (6 DOF) simulation. The best results produced by Monte Carlo processes using values based on the GA derived parameters were within - 1% of the ranges generated by the simplified model using the evolved parameter values. This report has five sections. Section 2 discusses the motivation for the range extension investigation and reviews the surrogate flight model developed as a fitness function for the genetic algorithm tool. Section 3 details the representation and implementation of the task within the genetic algorithm framework. Section 4 discusses the results. Section 5 concludes the report with a summary and suggestions for further research.
A genetic algorithm for ground-based telescope observation scheduling
NASA Astrophysics Data System (ADS)
Mahoney, William; Veillet, Christian; Thanjavur, Karun
2012-09-01
A prototype genetic algorithm (GA) is being developed to provide assisted and ultimately automated observation scheduling functionality. Harnessing the logic developed for manual queue preparation, the GA can build suitable sets of queues for the potential combinations of environmental and atmospheric conditions. Evolving one step further, the GA can select the most suitable observation for any moment in time, based on allocated priorities, agency balances, and realtime availability of the skies' condition.
OPTIMIZATION OF LONG RURAL FEEDERS USING A GENETIC ALGORITHM
Wishart, Michael; Ledwich, Gerard; Ghosh, Arindam; Ivanovich, Grujica
2010-06-15
This paper describes the optimization of conductor size and the voltage regulator location and magnitude of long rural distribution lines. The optimization minimizes the lifetime cost of the lines, including capital costs and losses while observing voltage drop and operational constraints using a Genetic Algorithm (GA). The GA optimization is applied to a real Single Wire Earth Return (SWER) network in regional Queensland and results are presented.
NASA Astrophysics Data System (ADS)
Wang, Hongfeng; Fu, Yaping; Huang, Min; Wang, Junwei
2016-03-01
The operation process design is one of the key issues in the manufacturing and service sectors. As a typical operation process, the scheduling with consideration of the deteriorating effect has been widely studied; however, the current literature only studied single function requirement and rarely considered the multiple function requirements which are critical for a real-world scheduling process. In this article, two function requirements are involved in the design of a scheduling process with consideration of the deteriorating effect and then formulated into two objectives of a mathematical programming model. A novel multiobjective evolutionary algorithm is proposed to solve this model with combination of three strategies, i.e. a multiple population scheme, a rule-based local search method and an elitist preserve strategy. To validate the proposed model and algorithm, a series of randomly-generated instances are tested and the experimental results indicate that the model is effective and the proposed algorithm can achieve the satisfactory performance which outperforms the other state-of-the-art multiobjective evolutionary algorithms, such as nondominated sorting genetic algorithm II and multiobjective evolutionary algorithm based on decomposition, on all the test instances.
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
Neural-network-biased genetic algorithms for materials design
NASA Astrophysics Data System (ADS)
Patra, Tarak; Meenakshisundaram, Venkatesh; Simmons, David
Machine learning tools have been progressively adopted by the materials science community to accelerate design of materials with targeted properties. However, in the search for new materials exhibiting properties and performance beyond that previously achieved, machine learning approaches are frequently limited by two major shortcomings. First, they are intrinsically interpolative. They are therefore better suited to the optimization of properties within the known range of accessible behavior than to the discovery of new materials with extremal behavior. Second, they require the availability of large datasets, which in some fields are not available and would be prohibitively expensive to produce. Here we describe a new strategy for combining genetic algorithms, neural networks and other machine learning tools, and molecular simulation to discover materials with extremal properties in the absence of pre-existing data. Predictions from progressively constructed machine learning tools are employed to bias the evolution of a genetic algorithm, with fitness evaluations performed via direct molecular dynamics simulation. We survey several initial materials design problems we have addressed with this framework and compare its performance to that of standard genetic algorithm approaches. We acknowledge the W. M. Keck Foundation for support of this work.
MAC protocol for ad hoc networks using a genetic algorithm.
Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L; Reyna, Alberto
2014-01-01
The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339
MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm
Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L.
2014-01-01
The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339
Edge detection in medical images using a genetic algorithm.
Gudmundsson, M; El-Kwae, E A; Kabuka, M R
1998-06-01
An algorithm is developed that detects well-localized, unfragmented, thin edges in medical images based on optimization of edge configurations using a genetic algorithm (GA). Several enhancements were added to improve the performance of the algorithm over a traditional GA. The edge map is split into connected subregions to reduce the solution space and simplify the problem. The edge-map is then optimized in parallel using incorporated genetic operators that perform transforms on edge structures. Adaptation is used to control operator probabilities based on their participation. The GA was compared to the simulated annealing (SA) approach using ideal and actual medical images from different modalities including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound. Quantitative comparisons were provided based on the Pratt figure of merit and on the cost-function minimization. The detected edges were thin, continuous, and well localized. Most of the basic edge features were detected. Results for different medical image modalities are promising and encourage further investigation to improve the accuracy and experiment with different cost functions and genetic operators. PMID:9735910
A genetic algorithm to reduce stream channel cross section data
Berenbrock, C.
2006-01-01
A genetic algorithm (GA) was used to reduce cross section data for a hypothetical example consisting of 41 data points and for 10 cross sections on the Kootenai River. The number of data points for the Kootenai River cross sections ranged from about 500 to more than 2,500. The GA was applied to reduce the number of data points to a manageable dataset because most models and other software require fewer than 100 data points for management, manipulation, and analysis. Results indicated that the program successfully reduced the data. Fitness values from the genetic algorithm were lower (better) than those in a previous study that used standard procedures of reducing the cross section data. On average, fitnesses were 29 percent lower, and several were about 50 percent lower. Results also showed that cross sections produced by the genetic algorithm were representative of the original section and that near-optimal results could be obtained in a single run, even for large problems. Other data also can be reduced in a method similar to that for cross section data.
Genetic algorithm testbed for expert system testing. Final report
Roache, E.
1996-01-01
In recent years, the electric utility industry has developed advisory and control software that makes use of expert system technology. The validation of the underlying knowledge representation in these expert systems is critical to their success. Most expert systems currently deployed have been validated by certifying that the expert system provides appropriate conclusions for specific test cases. While this type of testing is important, it does not test cases where unexpected inputs are presented to the expert system and potential errors are exposed. Exhaustive testing is not typically an option due to the complexity of the knowledge representation and the combinatorial effects associated with checking all possible inputs through all possible execution paths. Genetic algorithms are general purpose search techniques modeled on natural adaptive systems and selective breeding methods. Genetic algorithms have been used successfully for parameter optimization and efficient search. The goal of this project was to confirm or reject the hypothesis that genetic algorithms (GAs) are useful in expert system validation. The GA system specifically targeted errors in the study`s expert system that would be exposed by unexpected input cases. The GA system found errors in the expert system and the hypothesis was confirmed. This report describes the process and results of the project.
An Airborne Conflict Resolution Approach Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Mondoloni, Stephane; Conway, Sheila
2001-01-01
An airborne conflict resolution approach is presented that is capable of providing flight plans forecast to be conflict-free with both area and traffic hazards. This approach is capable of meeting constraints on the flight plan such as required times of arrival (RTA) at a fix. The conflict resolution algorithm is based upon a genetic algorithm, and can thus seek conflict-free flight plans meeting broader flight planning objectives such as minimum time, fuel or total cost. The method has been applied to conflicts occurring 6 to 25 minutes in the future in climb, cruise and descent phases of flight. The conflict resolution approach separates the detection, trajectory generation and flight rules function from the resolution algorithm. The method is capable of supporting pilot-constructed resolutions, cooperative and non-cooperative maneuvers, and also providing conflict resolution on trajectories forecast by an onboard FMC.
NASA Astrophysics Data System (ADS)
Jiang, Tianzi; Cui, Qinghua; Shi, Guihua; Ma, Songde
2003-08-01
In this paper, a novel hybrid algorithm combining genetic algorithms and tabu search is presented. In the proposed hybrid algorithm, the idea of tabu search is applied to the crossover operator. We demonstrate that the hybrid algorithm can be applied successfully to the protein folding problem based on a hydrophobic-hydrophilic lattice model. The results show that in all cases the hybrid algorithm works better than a genetic algorithm alone. A comparison with other methods is also made.
A Parallel Genetic Algorithm for Automated Electronic Circuit Design
NASA Technical Reports Server (NTRS)
Long, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris
2000-01-01
Parallelized versions of genetic algorithms (GAs) are popular primarily for three reasons: the GA is an inherently parallel algorithm, typical GA applications are very compute intensive, and powerful computing platforms, especially Beowulf-style computing clusters, are becoming more affordable and easier to implement. In addition, the low communication bandwidth required allows the use of inexpensive networking hardware such as standard office ethernet. In this paper we describe a parallel GA and its use in automated high-level circuit design. Genetic algorithms are a type of trial-and-error search technique that are guided by principles of Darwinian evolution. Just as the genetic material of two living organisms can intermix to produce offspring that are better adapted to their environment, GAs expose genetic material, frequently strings of 1s and Os, to the forces of artificial evolution: selection, mutation, recombination, etc. GAs start with a pool of randomly-generated candidate solutions which are then tested and scored with respect to their utility. Solutions are then bred by probabilistically selecting high quality parents and recombining their genetic representations to produce offspring solutions. Offspring are typically subjected to a small amount of random mutation. After a pool of offspring is produced, this process iterates until a satisfactory solution is found or an iteration limit is reached. Genetic algorithms have been applied to a wide variety of problems in many fields, including chemistry, biology, and many engineering disciplines. There are many styles of parallelism used in implementing parallel GAs. One such method is called the master-slave or processor farm approach. In this technique, slave nodes are used solely to compute fitness evaluations (the most time consuming part). The master processor collects fitness scores from the nodes and performs the genetic operators (selection, reproduction, variation, etc.). Because of dependency
Optimizing scheduling problem using an estimation of distribution algorithm and genetic algorithm
NASA Astrophysics Data System (ADS)
Qun, Jiang; Yang, Ou; Dong, Shi-Du
2007-12-01
This paper presents a methodology for using heuristic search methods to optimize scheduling problem. Specifically, an Estimation of Distribution Algorithm (EDA)- Population Based Incremental Learning (PBIL), and Genetic Algorithm (GA) have been applied to finding effective arrangement of curriculum schedule of Universities. To our knowledge, EDAs have been applied to fewer real world problems compared to GAs, and the goal of the present paper is to expand the application domain of this technique. The experimental results indicate a good applicability of PBIL to optimize scheduling problem.
Zhao, Xiujuan; Xu, Wei; Ma, Yunjia; Hu, Fuyu
2015-01-01
The correct location of earthquake emergency shelters and their allocation to residents can effectively reduce the number of casualties by providing safe havens and efficient evacuation routes during the chaotic period of the unfolding disaster. However, diverse and strict constraints and the discrete feasible domain of the required models make the problem of shelter location and allocation more difficult. A number of models have been developed to solve this problem, but there are still large differences between the models and the actual situation because the characteristics of the evacuees and the construction costs of the shelters have been excessively simplified. We report here the development of a multi-objective model for the allocation of residents to earthquake shelters by considering these factors using the Chaoyang district, Beijing, China as a case study. The two objectives of this model were to minimize the total weighted evacuation time from residential areas to a specified shelter and to minimize the total area of all the shelters. The two constraints were the shelter capacity and the service radius. Three scenarios were considered to estimate the number of people who would need to be evacuated. The particle swarm optimization algorithm was first modified by applying the von Neumann structure in former loops and global structure in later loops, and then used to solve this problem. The results show that increasing the shelter area can result in a large decrease in the total weighted evacuation time from scheme 1 to scheme 9 in scenario A, from scheme 1 to scheme 9 in scenario B, from scheme 1 to scheme 19 in scenario C. If the funding were not a limitation, then the final schemes of each scenario are the best solutions, otherwise the earlier schemes are more reasonable. The modified model proved to be useful for the optimization of shelter allocation, and the result can be used as a scientific reference for planning shelters in the Chaoyang district
Automatic Data Filter Customization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Mandrake, Lukas
2013-01-01
This work predicts whether a retrieval algorithm will usefully determine CO2 concentration from an input spectrum of GOSAT (Greenhouse Gases Observing Satellite). This was done to eliminate needless runtime on atmospheric soundings that would never yield useful results. A space of 50 dimensions was examined for predictive power on the final CO2 results. Retrieval algorithms are frequently expensive to run, and wasted effort defeats requirements and expends needless resources. This algorithm could be used to help predict and filter unneeded runs in any computationally expensive regime. Traditional methods such as the Fischer discriminant analysis and decision trees can attempt to predict whether a sounding will be properly processed. However, this work sought to detect a subsection of the dimensional space that can be simply filtered out to eliminate unwanted runs. LDAs (linear discriminant analyses) and other systems examine the entire data and judge a "best fit," giving equal weight to complex and problematic regions as well as simple, clear-cut regions. In this implementation, a genetic space of "left" and "right" thresholds outside of which all data are rejected was defined. These left/right pairs are created for each of the 50 input dimensions. A genetic algorithm then runs through countless potential filter settings using a JPL computer cluster, optimizing the tossed-out data s yield (proper vs. improper run removal) and number of points tossed. This solution is robust to an arbitrary decision boundary within the data and avoids the global optimization problem of whole-dataset fitting using LDA or decision trees. It filters out runs that would not have produced useful CO2 values to save needless computation. This would be an algorithmic preprocessing improvement to any computationally expensive system.
An implementation of continuous genetic algorithm in parameter estimation of predator-prey model
NASA Astrophysics Data System (ADS)
Windarto
2016-03-01
Genetic algorithm is an optimization method based on the principles of genetics and natural selection in life organisms. The main components of this algorithm are chromosomes population (individuals population), parent selection, crossover to produce new offspring, and random mutation. In this paper, continuous genetic algorithm was implemented to estimate parameters in a predator-prey model of Lotka-Volterra type. For simplicity, all genetic algorithm parameters (selection rate and mutation rate) are set to be constant along implementation of the algorithm. It was found that by selecting suitable mutation rate, the algorithms can estimate these parameters well.
EVOLVING RETRIEVAL ALGORITHMS WITH A GENETIC PROGRAMMING SCHEME
J. THEILER; ET AL
1999-06-01
The retrieval of scene properties (surface temperature, material type, vegetation health, etc.) from remotely sensed data is the ultimate goal of many earth observing satellites. The algorithms that have been developed for these retrievals are informed by physical models of how the raw data were generated. This includes models of radiation as emitted and/or rejected by the scene, propagated through the atmosphere, collected by the optics, detected by the sensor, and digitized by the electronics. To some extent, the retrieval is the inverse of this ''forward'' modeling problem. But in contrast to this forward modeling, the practical task of making inferences about the original scene usually requires some ad hoc assumptions, good physical intuition, and a healthy dose of trial and error. The standard MTI data processing pipeline will employ algorithms developed with this traditional approach. But we will discuss some preliminary research on the use of a genetic programming scheme to ''evolve'' retrieval algorithms. Such a scheme cannot compete with the physical intuition of a remote sensing scientist, but it may be able to automate some of the trial and error. In this scenario, a training set is used, which consists of multispectral image data and the associated ''ground truth;'' that is, a registered map of the desired retrieval quantity. The genetic programming scheme attempts to combine a core set of image processing primitives to produce an IDL (Interactive Data Language) program which estimates this retrieval quantity from the raw data.
Evolving retrieval algorithms with a genetic programming scheme
NASA Astrophysics Data System (ADS)
Theiler, James P.; Harvey, Neal R.; Brumby, Steven P.; Szymanski, John J.; Alferink, Steve; Perkins, Simon J.; Porter, Reid B.; Bloch, Jeffrey J.
1999-10-01
The retrieval of scene properties (surface temperature, material type, vegetation health, etc.) from remotely sensed data is the ultimate goal of many earth observing satellites. The algorithms that have been developed for these retrievals are informed by physical models of how the raw data were generated. This includes models of radiation as emitted and/or reflected by the scene, propagated through the atmosphere, collected by the optics, detected by the sensor, and digitized by the electronics. To some extent, the retrieval is the inverse of this 'forward' modeling problem. But in contrast to this forward modeling, the practical task of making inferences about the original scene usually requires some ad hoc assumptions, good physical intuition, and a healthy dose of trial and error. The standard MTI data processing pipeline will employ algorithms developed with this traditional approach. But we will discuss some preliminary research on the use of a genetic programming scheme to 'evolve' retrieval algorithms. Such a scheme cannot compete with the physical intuition of a remote sensing scientist, but it may be able to automate some of the trial and error. In this scenario, a training set is used, which consists of multispectral image data and the associated 'ground truth;' that is, a registered map of the desired retrieval quantity. The genetic programming scheme attempts to combine a core set of image processing primitives to produce an IDL (Interactive Data Language) program which estimates this retrieval quantity from the raw data.
High-Speed General Purpose Genetic Algorithm Processor.
Hoseini Alinodehi, Seyed Pourya; Moshfe, Sajjad; Saber Zaeimian, Masoumeh; Khoei, Abdollah; Hadidi, Khairollah
2016-07-01
In this paper, an ultrafast steady-state genetic algorithm processor (GAP) is presented. Due to the heavy computational load of genetic algorithms (GAs), they usually take a long time to find optimum solutions. Hardware implementation is a significant approach to overcome the problem by speeding up the GAs procedure. Hence, we designed a digital CMOS implementation of GA in [Formula: see text] process. The proposed processor is not bounded to a specific application. Indeed, it is a general-purpose processor, which is capable of performing optimization in any possible application. Utilizing speed-boosting techniques, such as pipeline scheme, parallel coarse-grained processing, parallel fitness computation, parallel selection of parents, dual-population scheme, and support for pipelined fitness computation, the proposed processor significantly reduces the processing time. Furthermore, by relying on a built-in discard operator the proposed hardware may be used in constrained problems that are very common in control applications. In the proposed design, a large search space is achievable through the bit string length extension of individuals in the genetic population by connecting the 32-bit GAPs. In addition, the proposed processor supports parallel processing, in which the GAs procedure can be run on several connected processors simultaneously. PMID:26241984
NASA Astrophysics Data System (ADS)
Selvam, Kayalvizhi; Vinod Kumar, D. M.; Siripuram, Ramakanth
2016-06-01
In this paper, an optimization technique called peer enhanced teaching learning based optimization (PeTLBO) algorithm is used in multi-objective problem domain. The PeTLBO algorithm is parameter less so it reduced the computational burden. The proposed peer enhanced multi-objective based TLBO (PeMOTLBO) algorithm has been utilized to find a set of non-dominated optimal solutions [distributed generation (DG) location and sizing in distribution network]. The objectives considered are: real power loss and the voltage deviation subjected to voltage limits and maximum penetration level of DG in distribution network. Since the DG considered is capable of injecting real and reactive power to the distribution network the power factor is considered as 0.85 lead. The proposed peer enhanced multi-objective optimization technique provides different trade-off solutions in order to find the best compromise solution a fuzzy set theory approach has been used. The effectiveness of this proposed PeMOTLBO is tested on IEEE 33-bus and Indian 85-bus distribution system. The performance is validated with Pareto fronts and two performance metrics (C-metric and S-metric) by comparing with robust multi-objective technique called non-dominated sorting genetic algorithm-II and also with the basic TLBO.
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2011-12-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2012-01-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
A Hybrid Metaheuristic for Biclustering Based on Scatter Search and Genetic Algorithms
NASA Astrophysics Data System (ADS)
Nepomuceno, Juan A.; Troncoso, Alicia; Aguilar–Ruiz, Jesús S.
In this paper a hybrid metaheuristic for biclustering based on Scatter Search and Genetic Algorithms is presented. A general scheme of Scatter Search has been used to obtain high-quality biclusters, but a way of generating the initial population and a method of combination based on Genetic Algorithms have been chosen. Experimental results from yeast cell cycle and human B-cell lymphoma are reported. Finally, the performance of the proposed hybrid algorithm is compared with a genetic algorithm recently published.
Ebtehaj, Isa; Bonakdari, Hossein
2014-01-01
The existence of sediments in wastewater greatly affects the performance of the sewer and wastewater transmission systems. Increased sedimentation in wastewater collection systems causes problems such as reduced transmission capacity and early combined sewer overflow. The article reviews the performance of the genetic algorithm (GA) and imperialist competitive algorithm (ICA) in minimizing the target function (mean square error of observed and predicted Froude number). To study the impact of bed load transport parameters, using four non-dimensional groups, six different models have been presented. Moreover, the roulette wheel selection method is used to select the parents. The ICA with root mean square error (RMSE) = 0.007, mean absolute percentage error (MAPE) = 3.5% show better results than GA (RMSE = 0.007, MAPE = 5.6%) for the selected model. All six models return better results than the GA. Also, the results of these two algorithms were compared with multi-layer perceptron and existing equations. PMID:25429460
Fringe Pattern Demodulation by Independent Windows Fitting Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Toledo, L. E.; Cuevas, F. J.
2008-04-01
It is presented a new method to retrieve the phase map from a fringe pattern with closed and sub-sampled fringes. The Fringe Processing on Independent Windows method (FPIW) find a parametric function that estimate the phase of a given segmented region that comes from the fringe pattern. FPIW method is a modification of the Window Fringe Pattern Demodulation technique (WFPD), that uses a genetic algorithm to find the parametric function. A population of randomly generated chromosomes, that codifies different parametric functions, is used by the genetic algorithm to simulate natural selection. A fitness value is associated to all chromosomes by a function that uses two criterion in FPIW method: fringe similarity between the segmented interferogram and the fringe pattern generated by the cosine of the phase given by the parametric function, and the smoothness of these function. The best chromosome produced by the evolution is decoded to obtain the parametric function that estimates the phase in a given region. The genetic algorithm is applied on a set of partially overlapped windows extracted from the original fringe pattern. The independent phases obtained by the GA's, are used to reconstruct the whole phase field. A given window is chosen to be the reference. Phase in adjacent windows is spliced with the phase in the reference window to form a phase map of the joined regions. The RMS value between reference phase and adjacent phase is minimized in the overlapped area to find the DC bias and the correct concavity of the adjacent phase, so continuity between reference and adjacent spliced phase is assured. The new phase map is used as the new reference. This process is repeated until the whole phase map is reconstructed.
Self-adaptive genetic algorithms with simulated binary crossover.
Deb, K; Beyer, H G
2001-01-01
Self-adaptation is an essential feature of natural evolution. However, in the context of function optimization, self-adaptation features of evolutionary search algorithms have been explored mainly with evolution strategy (ES) and evolutionary programming (EP). In this paper, we demonstrate the self-adaptive feature of real-parameter genetic algorithms (GAs) using a simulated binary crossover (SBX) operator and without any mutation operator. The connection between the working of self-adaptive ESs and real-parameter GAs with the SBX operator is also discussed. Thereafter, the self-adaptive behavior of real-parameter GAs is demonstrated on a number of test problems commonly used in the ES literature. The remarkable similarity in the working principle of real-parameter GAs and self-adaptive ESs shown in this study suggests the need for emphasizing further studies on self-adaptive GAs. PMID:11382356
Genetic algorithms for the construction of D-optimal designs
Heredia-Langner, Alejandro; Carlyle, W M.; Montgomery, D C.; Borror, Connie M.; Runger, George C.
2003-01-01
Computer-generated designs are useful for situations where standard factorial, fractional factorial or response surface designs cannot be easily employed. Alphabetically-optimal designs are the most widely used type of computer-generated designs, and of these, the D-optimal (or D-efficient) class of designs are extremely popular. D-optimal designs are usually constructed by algorithms that sequentially add and delete points from a potential design based using a candidate set of points spaced over the region of interest. We present a technique to generate D-efficient designs using genetic algorithms (GA). This approach eliminates the need to explicitly consider a candidate set of experimental points and it can handle highly constrained regions while maintaining a level of performance comparable to more traditional design construction techniques.
Genetic Algorithms: A New Method for Neutron Beam Spectral Characterization
David W. Freeman
2000-06-04
A revolutionary new concept for solving the neutron spectrum unfolding problem using genetic algorithms (GAs) has recently been introduced. GAs are part of a new field of evolutionary solution techniques that mimic living systems with computer-simulated chromosome solutions that mate, mutate, and evolve to create improved solutions. The original motivation for the research was to improve spectral characterization of neutron beams associated with boron neutron capture therapy (BNCT). The GA unfolding technique has been successfully applied to problems with moderate energy resolution (up to 47 energy groups). Initial research indicates that the GA unfolding technique may well be superior to popular unfolding methods in common use. Research now under way at Kansas State University is focused on optimizing the unfolding algorithm and expanding its energy resolution to unfold detailed beam spectra based on multiple foil measurements. Indications are that the final code will significantly outperform current, state-of-the-art codes in use by the scientific community.
A genetic algorithm based method for docking flexible molecules
Judson, R.S.; Jaeger, E.P.; Treasurywala, A.M.
1993-11-01
The authors describe a computational method for docking flexible molecules into protein binding sites. The method uses a genetic algorithm (GA) to search the combined conformation/orientation space of the molecule to find low energy conformation. Several techniques are described that increase the efficiency of the basic search method. These include the use of several interacting GA subpopulations or niches; the use of a growing algorithm that initially docks only a small part of the molecule; and the use of gradient minimization during the search. To illustrate the method, they dock Cbz-GlyP-Leu-Leu (ZGLL) into thermolysin. This system was chosen because a well refined crystal structure is available and because another docking method had previously been tested on this system. Their method is able to find conformations that lie physically close to and in some cases lower in energy than the crystal conformation in reasonable periods of time on readily available hardware.
Genetic algorithm for multiple bus line coordination on urban arterial.
Yang, Zhen; Wang, Wei; Chen, Shuyan; Ding, Haoyang; Li, Xiaowei
2015-01-01
Bus travel time on road section is defined and analyzed with the effect of multiple bus lines. An analytical model is formulated to calculate the total red time a bus encounters when travelling along the arterial. Genetic algorithm is used to optimize the offset scheme of traffic signals to minimize the total red time that all bus lines encounter in two directions of the arterial. The model and algorithm are applied to the major part of Zhongshan North Street in the city of Nanjing. The results show that the methods in this paper can reduce total red time of all the bus lines by 31.9% on the object arterial and thus improve the traffic efficiency of the whole arterial and promote public transport priority. PMID:25663837
An Island Grouping Genetic Algorithm for Fuzzy Partitioning Problems
Salcedo-Sanz, S.; Del Ser, J.; Geem, Z. W.
2014-01-01
This paper presents a novel fuzzy clustering technique based on grouping genetic algorithms (GGAs), which are a class of evolutionary algorithms especially modified to tackle grouping problems. Our approach hinges on a GGA devised for fuzzy clustering by means of a novel encoding of individuals (containing elements and clusters sections), a new fitness function (a superior modification of the Davies Bouldin index), specially tailored crossover and mutation operators, and the use of a scheme based on a local search and a parallelization process, inspired from an island-based model of evolution. The overall performance of our approach has been assessed over a number of synthetic and real fuzzy clustering problems with different objective functions and distance measures, from which it is concluded that the proposed approach shows excellent performance in all cases. PMID:24977235
Application of genetic algorithms to tuning fuzzy control systems
NASA Technical Reports Server (NTRS)
Espy, Todd; Vombrack, Endre; Aldridge, Jack
1993-01-01
Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.
Autosegmentation of ultrasonic images by the genetic algorithm
NASA Astrophysics Data System (ADS)
Jiang, Ching-Fen
2001-07-01
The textural-feature-based segmentation methods were widely applied to the segmentation problems of ultrasonic images. However the manual selection of textural features in the previous approaches not only makes these segmentation methods inadaptable but could lead to the results with bias. Herein we propose an auto-feature-selection algorithm to solve the problems. This algorithm includes three steps: The feature library composed of 32 textural features was established at first. The genetic algorithm was then used to auto-select the features and give each of them different weight according to their importance. The fitness of each gene was evaluated by five factors including region dissimilarity, number of edge points, edge fragmentation, edge thickness, and curvature. Finally, K-means process classified the image into 3 different tissues using the selected features with different weights. The segmentation outcomes of various ultrasonic images by this auto-feature selection algorithm have shown better correspondence with human comprehension in comparison with the results of previous works. In addition, it provides a more adaptive way to adjust the weight of the features used for clustering process and therefore to avoid takeover by the big-value features. This problem has been paid little attention in the traditional K-means process in which all the features have the same weight.
Eliciting spatial statistics from geological experts using genetic algorithms
NASA Astrophysics Data System (ADS)
Walker, Matthew; Curtis, Andrew
2014-07-01
A new method to obtain the statistics of a geostatistical model is introduced. The method elicits the statistical information from a geological expert directly, by iteratively updating a population of vectors of statistics, based on the expert's subjective opinion of the corresponding geological simulations. Thus, it does not require the expert to have knowledge of the mathematical and statistical details of the model. The process uses a genetic algorithm to generate new vectors. We demonstrate the methodology for a particular geostatistical model used to model rock pore-space, which simulates the spatial distribution of matrix and pores over a 2-D grid, using multipoint statistics specified by conditional probabilities. Experts were asked to use the algorithm to estimate the statistics of a given target pore-space image with known statistics; thus, their numerical rates of convergence could be calculated. Convergence was measured for all experts, showing that the algorithm can be used to find appropriate probabilities given the expert's subjective input. However, considerable and apparently irreducible residual misfit was found between the true statistics and the estimates of statistics obtained by the experts, with the root-mean-square error on the conditional probabilities typically >0.1. This is interpreted as the limit of the experts' abilities to distinguish between realizations of different spatial statistics using the algorithm. More accurate discrimination is therefore likely to require complementary elicitation techniques or sources of information independent of expert opinion.
Optimization in optical systems revisited: Beyond genetic algorithms
NASA Astrophysics Data System (ADS)
Gagnon, Denis; Dumont, Joey; Dubé, Louis
2013-05-01
Designing integrated photonic devices such as waveguides, beam-splitters and beam-shapers often requires optimization of a cost function over a large solution space. Metaheuristics - algorithms based on empirical rules for exploring the solution space - are specifically tailored to those problems. One of the most widely used metaheuristics is the standard genetic algorithm (SGA), based on the evolution of a population of candidate solutions. However, the stochastic nature of the SGA sometimes prevents access to the optimal solution. Our goal is to show that a parallel tabu search (PTS) algorithm is more suited to optimization problems in general, and to photonics in particular. PTS is based on several search processes using a pool of diversified initial solutions. To assess the performance of both algorithms (SGA and PTS), we consider an integrated photonics design problem, the generation of arbitrary beam profiles using a two-dimensional waveguide-based dielectric structure. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).
Full design of fuzzy controllers using genetic algorithms
NASA Technical Reports Server (NTRS)
Homaifar, Abdollah; Mccormick, ED
1992-01-01
This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.
Genetic Algorithm based Decentralized PI Type Controller: Load Frequency Control
NASA Astrophysics Data System (ADS)
Dwivedi, Atul; Ray, Goshaidas; Sharma, Arun Kumar
2016-05-01
This work presents a design of decentralized PI type Linear Quadratic (LQ) controller based on genetic algorithm (GA). The proposed design technique allows considerable flexibility in defining the control objectives and it does not consider any knowledge of the system matrices and moreover it avoids the solution of algebraic Riccati equation. To illustrate the results of this work, a load-frequency control problem is considered. Simulation results reveal that the proposed scheme based on GA is an alternative and attractive approach to solve load-frequency control problem from both performance and design point of views.
Optimal brushless DC motor design using genetic algorithms
NASA Astrophysics Data System (ADS)
Rahideh, A.; Korakianitis, T.; Ruiz, P.; Keeble, T.; Rothman, M. T.
2010-11-01
This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using a genetic algorithm. Characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. Electrical and mechanical requirements (i.e. voltage, torque and speed) and other limitations (e.g. upper and lower limits of the motor geometries) are cast into constraints of the optimization problem. One sample case is used to illustrate the design and optimization technique.
Evaluation of Mechanical Losses in Piezoelectric Plates using Genetic algorithm
NASA Astrophysics Data System (ADS)
Arnold, F. J.; Gonçalves, M. S.; Massaro, F. R.; Martins, P. S.
Numerical methods are used for the characterization of piezoelectric ceramics. A procedure based on genetic algorithm is applied to find the physical coefficients and mechanical losses. The coefficients are estimated from a minimum scoring of cost function. Electric impedances are calculated from Mason's model including mechanical losses constant and dependent on frequency as a linear function. The results show that the electric impedance percentage error in the investigated interval of frequencies decreases when mechanical losses depending on frequency are inserted in the model. A more accurate characterization of the piezoelectric ceramics mechanical losses should be considered as frequency dependent.
Simulating and Synthesizing Substructures Using Neural Network and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Liu, Youhua; Kapania, Rakesh K.; VanLandingham, Hugh F.
1997-01-01
The feasibility of simulating and synthesizing substructures by computational neural network models is illustrated by investigating a statically indeterminate beam, using both a 1-D and a 2-D plane stress modelling. The beam can be decomposed into two cantilevers with free-end loads. By training neural networks to simulate the cantilever responses to different loads, the original beam problem can be solved as a match-up between two subsystems under compatible interface conditions. The genetic algorithms are successfully used to solve the match-up problem. Simulated results are found in good agreement with the analytical or FEM solutions.
Application of Genetic Algorithms in Nonlinear Heat Conduction Problems
Khan, Waqar A.
2014-01-01
Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry. PMID:24695517
Random search optimization based on genetic algorithm and discriminant function
NASA Technical Reports Server (NTRS)
Kiciman, M. O.; Akgul, M.; Erarslanoglu, G.
1990-01-01
The general problem of optimization with arbitrary merit and constraint functions, which could be convex, concave, monotonic, or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control phase were utilized. The validity of the technique is demonstrated by comparing the results to published test problem results. Numerical experimentation indicated that for cases where a quick near optimum solution is desired, a general, user-friendly optimization code can be developed without serious penalties in both total computer time and accuracy.
Parameterization of interatomic potential by genetic algorithms: A case study
Ghosh, Partha S. Arya, A.; Dey, G. K.; Ranawat, Y. S.
2015-06-24
A framework for Genetic Algorithm based methodology is developed to systematically obtain and optimize parameters for interatomic force field functions for MD simulations by fitting to a reference data base. This methodology is applied to the fitting of ThO{sub 2} (CaF{sub 2} prototype) – a representative of ceramic based potential fuel for nuclear applications. The resulting GA optimized parameterization of ThO{sub 2} is able to capture basic structural, mechanical, thermo-physical properties and also describes defect structures within the permissible range.
Applications of genetic algorithms and neural networks to interatomic potentials
NASA Astrophysics Data System (ADS)
Hobday, Steven; Smith, Roger; BelBruno, Joe
1999-06-01
Applications of two modern artificial intelligence (AI) techniques, genetic algorithms (GA) and neural networks (NN) to computer simulations are reported. It is shown that the GA are very useful tools for determining the minimum energy structures of clusters of atoms described by interatomic potential functions and generally outperform other optimisation methods for this task. A number of applications are given including covalent, and close packed structures of single or multi-component atomic species. It is also shown that (many body) interatomic potential functions for multi-component systems can be derived by training a specially constructed NN on a variety of structural data.
Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.
2015-01-01
The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
Echoed time series predictions, neural networks and genetic algorithms
NASA Astrophysics Data System (ADS)
Conway, A.
This work aims to illustrate a potentially serious and previously unrecognised problem in using Neural Networks (NNs), and possibly other techniques, to predict Time Series (TS). It also demonstrates how a new training scheme using a genetic algorithm can alleviate this problem. Although it is already established that NNs can predict TS such as Sunspot Number (SSN) with reasonable success, the accuracy of these predictions is often judged solely by an RMS or related error. The use of this type of error overlooks the presence of what we have termed echoing, where the NN outputs its most recent input as its prediction. Therefore, a method of detecting echoed predictions is introduced, called time-shifting. Reasons for the presence of echo are discussed and then related to the choice of TS sampling. Finally, a new specially designed training scheme is described, which is a hybrid of a genetic algorithm search and back propagation. With this method we have successfully trained NNs to predict without any echo.
Internal Lattice Reconfiguration for Diversity Tuning in Cellular Genetic Algorithms
Morales-Reyes, Alicia; Erdogan, Ahmet T.
2012-01-01
Cellular Genetic Algorithms (cGAs) have attracted the attention of researchers due to their high performance, ease of implementation and massive parallelism. Maintaining an adequate balance between exploitative and explorative search is essential when studying evolutionary optimization techniques. In this respect, cGAs inherently possess a number of structural configuration parameters that are able to sustain diversity during evolution. In this study, the internal reconfiguration of the lattice is proposed to constantly or adaptively control the exploration-exploitation trade-off. Genetic operators are characterized in their simplest form since algorithmic performance is assessed on implemented reconfiguration mechanisms. Moreover, internal reconfiguration allows the adjacency of individuals to be maintained. Hence, any improvement in performance is only a consequence of topological changes. Two local selection methods presenting opposite selection pressures are used in order to evaluate the influence of the proposed techniques. Problems ranging from continuous to real world and combinatorial are tackled. Empirical results are supported statistically in terms of efficiency and efficacy. PMID:22859973
Generation of Compliant Mechanisms using Hybrid Genetic Algorithm
NASA Astrophysics Data System (ADS)
Sharma, D.; Deb, K.
2014-10-01
Compliant mechanism is a single piece elastic structure which can deform to perform the assigned task. In this work, compliant mechanisms are evolved using a constraint based bi-objective optimization formulation which requires one user defined parameter ( η). This user defined parameter limits a gap between a desired path and an actual path traced by the compliant mechanism. The non-linear and discrete optimization problems are solved using the hybrid Genetic Algorithm (GA) wherein domain specific initialization, two-dimensional crossover operator and repairing techniques are adopted. A bit-wise local search method is used with elitist non-dominated sorting genetic algorithm to further refine the compliant mechanisms. Parallel computations are performed on the master-slave architecture to reduce the computation time. A parametric study is carried out for η value which suggests a range to evolve topologically different compliant mechanisms. The applied and boundary conditions to the compliant mechanisms are considered the variables that are evolved by the hybrid GA. The post-analysis of results unveils that the complaint mechanisms are always supported at unique location that can evolve the non-dominated solutions.
A genetic algorithm approach to recognition and data mining
Punch, W.F.; Goodman, E.D.; Min, Pei
1996-12-31
We review here our use of genetic algorithm (GA) and genetic programming (GP) techniques to perform {open_quotes}data mining,{close_quotes} the discovery of particular/important data within large datasets, by finding optimal data classifications using known examples. Our first experiments concentrated on the use of a K-nearest neighbor algorithm in combination with a GA. The GA selected weights for each feature so as to optimize knn classification based on a linear combination of features. This combined GA-knn approach was successfully applied to both generated and real-world data. We later extended this work by substituting a GP for the GA. The GP-knn could not only optimize data classification via linear combinations of features but also determine functional relationships among the features. This allowed for improved performance and new information on important relationships among features. We review the effectiveness of the overall approach on examples from biology and compare the effectiveness of the GA and GP.
Road Detection by Neural and Genetic Algorithm in Urban Environment
NASA Astrophysics Data System (ADS)
Barsi, A.
2012-07-01
In the urban object detection challenge organized by the ISPRS WG III/4 high geometric and radiometric resolution aerial images about Vaihingen/Stuttgart, Germany are distributed. The acquired data set contains optical false color, near infrared images and airborne laserscanning data. The presented research focused exclusively on the optical image, so the elevation information was ignored. The road detection procedure has been built up of two main phases: a segmentation done by neural networks and a compilation made by genetic algorithms. The applied neural networks were support vector machines with radial basis kernel function and self-organizing maps with hexagonal network topology and Euclidean distance function for neighborhood management. The neural techniques have been compared by hyperbox classifier, known from the statistical image classification practice. The compilation of the segmentation is realized by a novel application of the common genetic algorithm and by differential evolution technique. The genes were implemented to detect the road elements by evaluating a special binary fitness function. The results have proven that the evolutional technique can automatically find major road segments.
Feature Subset Selection, Class Separability, and Genetic Algorithms
Cantu-Paz, E
2004-01-21
The performance of classification algorithms in machine learning is affected by the features used to describe the labeled examples presented to the inducers. Therefore, the problem of feature subset selection has received considerable attention. Genetic approaches to this problem usually follow the wrapper approach: treat the inducer as a black box that is used to evaluate candidate feature subsets. The evaluations might take a considerable time and the traditional approach might be unpractical for large data sets. This paper describes a hybrid of a simple genetic algorithm and a method based on class separability applied to the selection of feature subsets for classification problems. The proposed hybrid was compared against each of its components and two other feature selection wrappers that are used widely. The objective of this paper is to determine if the proposed hybrid presents advantages over the other methods in terms of accuracy or speed in this problem. The experiments used a Naive Bayes classifier and public-domain and artificial data sets. The experiments suggest that the hybrid usually finds compact feature subsets that give the most accurate results, while beating the execution time of the other wrappers.
Actuator Placement Via Genetic Algorithm for Aircraft Morphing
NASA Technical Reports Server (NTRS)
Crossley, William A.; Cook, Andrea M.
2001-01-01
This research continued work that began under the support of NASA Grant NAG1-2119. The focus of this effort was to continue investigations of Genetic Algorithm (GA) approaches that could be used to solve an actuator placement problem by treating this as a discrete optimization problem. In these efforts, the actuators are assumed to be "smart" devices that change the aerodynamic shape of an aircraft wing to alter the flow past the wing, and, as a result, provide aerodynamic moments that could provide flight control. The earlier work investigated issued for the problem statement, developed the appropriate actuator modeling, recognized the importance of symmetry for this problem, modified the aerodynamic analysis routine for more efficient use with the genetic algorithm, and began a problem size study to measure the impact of increasing problem complexity. The research discussed in this final summary further investigated the problem statement to provide a "combined moment" problem statement to simultaneously address roll, pitch and yaw. Investigations of problem size using this new problem statement provided insight into performance of the GA as the number of possible actuator locations increased. Where previous investigations utilized a simple wing model to develop the GA approach for actuator placement, this research culminated with application of the GA approach to a high-altitude unmanned aerial vehicle concept to demonstrate that the approach is valid for an aircraft configuration.
An Introduction to Genetic Algorithms and to Their Use in Information Retrieval.
ERIC Educational Resources Information Center
Jones, Gareth; And Others
1994-01-01
Genetic algorithms, a class of nondeterministic algorithms in which the role of chance makes the precise nature of a solution impossible to guarantee, seem to be well suited to combinatorial-optimization problems in information retrieval. Provides an introduction to techniques and characteristics of genetic algorithms and illustrates their…
Combining neural networks and genetic algorithms for hydrological flow forecasting
NASA Astrophysics Data System (ADS)
Neruda, Roman; Srejber, Jan; Neruda, Martin; Pascenko, Petr
2010-05-01
We present a neural network approach to rainfall-runoff modeling for small size river basins based on several time series of hourly measured data. Different neural networks are considered for short time runoff predictions (from one to six hours lead time) based on runoff and rainfall data observed in previous time steps. Correlation analysis shows that runoff data, short time rainfall history, and aggregated API values are the most significant data for the prediction. Neural models of multilayer perceptron and radial basis function networks with different numbers of units are used and compared with more traditional linear time series predictors. Out of possible 48 hours of relevant history of all the input variables, the most important ones are selected by means of input filters created by a genetic algorithm. The genetic algorithm works with population of binary encoded vectors defining input selection patterns. Standard genetic operators of two-point crossover, random bit-flipping mutation, and tournament selection were used. The evaluation of objective function of each individual consists of several rounds of building and testing a particular neural network model. The whole procedure is rather computational exacting (taking hours to days on a desktop PC), thus a high-performance mainframe computer has been used for our experiments. Results based on two years worth data from the Ploucnice river in Northern Bohemia suggest that main problems connected with this approach to modeling are ovetraining that can lead to poor generalization, and relatively small number of extreme events which makes it difficult for a model to predict the amplitude of the event. Thus, experiments with both absolute and relative runoff predictions were carried out. In general it can be concluded that the neural models show about 5 per cent improvement in terms of efficiency coefficient over liner models. Multilayer perceptrons with one hidden layer trained by back propagation algorithm and
An Evolved Wavelet Library Based on Genetic Algorithm
Vaithiyanathan, D.; Seshasayanan, R.; Kunaraj, K.; Keerthiga, J.
2014-01-01
As the size of the images being captured increases, there is a need for a robust algorithm for image compression which satiates the bandwidth limitation of the transmitted channels and preserves the image resolution without considerable loss in the image quality. Many conventional image compression algorithms use wavelet transform which can significantly reduce the number of bits needed to represent a pixel and the process of quantization and thresholding further increases the compression. In this paper the authors evolve two sets of wavelet filter coefficients using genetic algorithm (GA), one for the whole image portion except the edge areas and the other for the portions near the edges in the image (i.e., global and local filters). Images are initially separated into several groups based on their frequency content, edges, and textures and the wavelet filter coefficients are evolved separately for each group. As there is a possibility of the GA settling in local maximum, we introduce a new shuffling operator to prevent the GA from this effect. The GA used to evolve filter coefficients primarily focuses on maximizing the peak signal to noise ratio (PSNR). The evolved filter coefficients by the proposed method outperform the existing methods by a 0.31 dB improvement in the average PSNR and a 0.39 dB improvement in the maximum PSNR. PMID:25405225
Experience with a Genetic Algorithm Implemented on a Multiprocessor Computer
NASA Technical Reports Server (NTRS)
Plassman, Gerald E.; Sobieszczanski-Sobieski, Jaroslaw
2000-01-01
Numerical experiments were conducted to find out the extent to which a Genetic Algorithm (GA) may benefit from a multiprocessor implementation, considering, on one hand, that analyses of individual designs in a population are independent of each other so that they may be executed concurrently on separate processors, and, on the other hand, that there are some operations in a GA that cannot be so distributed. The algorithm experimented with was based on a gaussian distribution rather than bit exchange in the GA reproductive mechanism, and the test case was a hub frame structure of up to 1080 design variables. The experimentation engaging up to 128 processors confirmed expectations of radical elapsed time reductions comparing to a conventional single processor implementation. It also demonstrated that the time spent in the non-distributable parts of the algorithm and the attendant cross-processor communication may have a very detrimental effect on the efficient utilization of the multiprocessor machine and on the number of processors that can be used effectively in a concurrent manner. Three techniques were devised and tested to mitigate that effect, resulting in efficiency increasing to exceed 99 percent.
Optimization of an antenna array using genetic algorithms
Kiehbadroudinezhad, Shahideh; Noordin, Nor Kamariah; Sali, A.; Abidin, Zamri Zainal
2014-06-01
An array of antennas is usually used in long distance communication. The observation of celestial objects necessitates a large array of antennas, such as the Giant Metrewave Radio Telescope (GMRT). Optimizing this kind of array is very important when observing a high performance system. The genetic algorithm (GA) is an optimization solution for these kinds of problems that reconfigures the position of antennas to increase the u-v coverage plane or decrease the sidelobe levels (SLLs). This paper presents how to optimize a correlator antenna array using the GA. A brief explanation about the GA and operators used in this paper (mutation and crossover) is provided. Then, the results of optimization are discussed. The results show that the GA provides efficient and optimum solutions among a pool of candidate solutions in order to achieve the desired array performance for the purposes of radio astronomy. The proposed algorithm is able to distribute the u-v plane more efficiently than GMRT with a more than 95% distribution ratio at snapshot, and to fill the u-v plane from a 20% to more than 68% filling ratio as the number of generations increases in the hour tracking observations. Finally, the algorithm is able to reduce the SLL to –21.75 dB.
Bardsiri, Mahshid Khatibi; Eftekhari, Mahdi; Mousavi, Reza
2015-01-01
In this study the problem of protein fold recognition, that is a classification task, is solved via a hybrid of evolutionary algorithms namely multi-gene Genetic Programming (GP) and Genetic Algorithm (GA). Our proposed method consists of two main stages and is performed on three datasets taken from the literature. Each dataset contains different feature groups and classes. In the first step, multi-gene GP is used for producing binary classifiers based on various feature groups for each class. Then, different classifiers obtained for each class are combined via weighted voting so that the weights are determined through GA. At the end of the first step, there is a separate binary classifier for each class. In the second stage, the obtained binary classifiers are combined via GA weighting in order to generate the overall classifier. The final obtained classifier is superior to the previous works found in the literature in terms of classification accuracy. PMID:25786796
A method for aircraft concept exploration using multicriteria interactive genetic algorithms
NASA Astrophysics Data System (ADS)
Buonanno, Michael Alexander
2005-08-01
as a crude measure of un-modeled quantitative criteria. Other contributions of the work include a modified Structured Genetic Algorithm that enables the efficient search of large combinatorial design hierarchies and an improved multi-objective optimization procedure that can effectively optimize several objectives simultaneously. A new conceptual design method has been created by drawing upon each of these new capabilities and aspects of more traditional design methods. The ability of this new technique to assist in the design of revolutionary vehicles has been demonstrated using a problem of contemporary interest: the concept exploration of a supersonic business jet. This problem was found to be a good demonstration case because of its novelty and unique requirements, and the results of this proof of concept exercise indicate that the new method is effective at providing additional insight into the relationship between a vehicle's requirements and its favorable attributes.
NASA Astrophysics Data System (ADS)
Carpinelli, Guido; Noce, Christian; Russo, Angela; Varilone, Pietro
2014-12-01
Capacitors and series voltage regulators are used extensively in distribution systems to reduce power losses and improve the voltage profile along the feeders. This paper deals with the problem of contemporaneously choosing optimal locations and sizes for both capacitors and series voltage regulators in three-phase, unbalanced distribution systems. This is a mixed, non-linear, constrained, multi-objective optimization problem that usually is solved in deterministic scenarios. However, distribution systems are stochastic in nature, which can lead to inaccurate deterministic solutions. To take into account the unavoidable uncertainties that affect the input data related to the problem, in this paper, we have formulated and solved the multi-objective optimization problem in probabilistic scenarios. To address the multi-objective optimization problem, algorithms were used in which all the objective functions were combined to form a single function. These algorithms allow us to transform the original multi-objective optimization problem into an equivalent, single-objective, optimization problem, an approach that appeared to be particularly suitable since computational time was an important issue. To further reduce the computational efforts, a linearized form of the equality constraints of the optimization model was used, and a micro-genetic algorithm-based procedure was applied in the solution method.
Ancestral genome inference using a genetic algorithm approach.
Gao, Nan; Yang, Ning; Tang, Jijun
2013-01-01
Recent advancement of technologies has now made it routine to obtain and compare gene orders within genomes. Rearrangements of gene orders by operations such as reversal and transposition are rare events that enable researchers to reconstruct deep evolutionary histories. An important application of genome rearrangement analysis is to infer gene orders of ancestral genomes, which is valuable for identifying patterns of evolution and for modeling the evolutionary processes. Among various available methods, parsimony-based methods (including GRAPPA and MGR) are the most widely used. Since the core algorithms of these methods are solvers for the so called median problem, providing efficient and accurate median solver has attracted lots of attention in this field. The "double-cut-and-join" (DCJ) model uses the single DCJ operation to account for all genome rearrangement events. Because mathematically it is much simpler than handling events directly, parsimony methods using DCJ median solvers has better speed and accuracy. However, the DCJ median problem is NP-hard and although several exact algorithms are available, they all have great difficulties when given genomes are distant. In this paper, we present a new algorithm that combines genetic algorithm (GA) with genomic sorting to produce a new method which can solve the DCJ median problem in limited time and space, especially in large and distant datasets. Our experimental results show that this new GA-based method can find optimal or near optimal results for problems ranging from easy to very difficult. Compared to existing parsimony methods which may severely underestimate the true number of evolutionary events, the sorting-based approach can infer ancestral genomes which are much closer to their true ancestors. The code is available at http://phylo.cse.sc.edu. PMID:23658708
A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem
NASA Astrophysics Data System (ADS)
Rahimi-Vahed, A. R.; Javadi, B.; Rabbani, M.; Tavakkoli-Moghaddam, R.
2008-04-01
The flow shop problem as a typical manufacturing challenge has gained wide attention in academic fields. This article considers a bi-criteria no-wait flow shop scheduling problem (FSSP) in which weighted mean completion time and weighted mean tardiness are to be minimized simultaneously. Since a FSSP has been proved to be NP-hard in a strong sense, a new multi-objective scatter search (MOSS) is designed for finding the locally Pareto-optimal frontier of the problem. To prove the efficiency of the proposed algorithm, various test problems are solved and the reliability of the proposed algorithm, based on some comparison metrics, is compared with a distinguished multi-objective genetic algorithm (GA), i.e. SPEA-II. The computational results show that the proposed MOSS performs better than the above GA, especially for the large-sized problems.
Bornholdt, S.; Graudenz, D.
1993-07-01
A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.
Application of a genetic algorithm to wind turbine design
Selig, M.S.; Coverstone-Carroll, V.L.
1995-09-01
This paper presents an optimization procedure for stall-regulated horizontal-axis wind-turbines. A hybrid approach is used that combines the advantages of a genetic algorithm and an inverse design method. This method is used to determine the optimum blade pitch and blade chord and twist distributions that maximize the annual energy production. To illustrate the method, a family of 25 wind turbines was designed to examine the sensitivity of annual energy production to changes in the rotor blade length and peak rotor power. Trends are revealed that should aid in the design of new rotors for existing turbines. In the second application, a series of five wind turbines was designed to determine the benefits of specifically tailoring wind turbine blades for the average wind speed at a particular site. The results have important practical implications related to rotors designed for the Midwest versus those where the average wind speed may be greater.
An Intelligent Model for Pairs Trading Using Genetic Algorithms
Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An
2015-01-01
Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice. PMID:26339236
Improving ecological forecasts of copepod community dynamics using genetic algorithms
NASA Astrophysics Data System (ADS)
Record, N. R.; Pershing, A. J.; Runge, J. A.; Mayo, C. A.; Monger, B. C.; Chen, C.
2010-08-01
The validity of computational models is always in doubt. Skill assessment and validation are typically done by demonstrating that output is in agreement with empirical data. We test this approach by using a genetic algorithm to parameterize a biological-physical coupled copepod population dynamics computation. The model is applied to Cape Cod Bay, Massachusetts, and is designed for operational forecasting. By running twin experiments on terms in this dynamical system, we demonstrate that a good fit to data does not necessarily imply a valid parameterization. An ensemble of good fits, however, provides information on the accuracy of parameter values, on the functional importance of parameters, and on the ability to forecast accurately with an incorrect set of parameters. Additionally, we demonstrate that the technique is a useful tool for operational forecasting.
An adaptive genetic algorithm for crystal structure prediction
Wu, Shunqing; Ji, Min; Wang, Cai-Zhuang; Nguyen, Manh Cuong; Zhao, Xin; Umemoto, K.; Wentzcovitch, R. M.; Ho, Kai-Ming
2013-12-18
We present a genetic algorithm (GA) for structural search that combines the speed of structure exploration by classical potentials with the accuracy of density functional theory (DFT) calculations in an adaptive and iterative way. This strategy increases the efficiency of the DFT-based GA by several orders of magnitude. This gain allows a considerable increase in the size and complexity of systems that can be studied by first principles. The performance of the method is illustrated by successful structure identifications of complex binary and ternary intermetallic compounds with 36 and 54 atoms per cell, respectively. The discovery of a multi-TPa Mg-silicate phase with unit cell containing up to 56 atoms is also reported. Such a phase is likely to be an essential component of terrestrial exoplanetary mantles.
Merging of synchrotron serial crystallographic data by a genetic algorithm.
Zander, Ulrich; Cianci, Michele; Foos, Nicolas; Silva, Catarina S; Mazzei, Luca; Zubieta, Chloe; de Maria, Alejandro; Nanao, Max H
2016-09-01
Recent advances in macromolecular crystallography have made it practical to rapidly collect hundreds of sub-data sets consisting of small oscillations of incomplete data. This approach, generally referred to as serial crystallography, has many uses, including an increased effective dose per data set, the collection of data from crystals without harvesting (in situ data collection) and studies of dynamic events such as catalytic reactions. However, selecting which data sets from this type of experiment should be merged can be challenging and new methods are required. Here, it is shown that a genetic algorithm can be used for this purpose, and five case studies are presented in which the merging statistics are significantly improved compared with conventional merging of all data. PMID:27599735
Optimization of Power Coefficient of Wind Turbine Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Rajakumar, Sappani; Ravindran, Durairaj; Sivakumar, Mahalingam; Venkatachalam, Gopalan; Muthukumar, Shunmugavelu
2016-06-01
In the design of a wind turbine, the goal is to attain the highest possible power output under specified atmospheric conditions. The optimization of power coefficient of horizontal axis wind turbine has been carried out by integration of blade element momentum method and genetic algorithm (GA). The design variables considered are wind velocity, angle of attack and tip speed ratio. The objective function is power coefficient of wind turbine. The different combination of design variables are optimized using GA and then the Power coefficient is optimized. The optimized design variables are validated with the experimental results available in the literature. By this optimization work the optimum design variables of wind turbine can be found economically than experimental work. NACA44XX series airfoils are considered for this optimization work.
An Intelligent Model for Pairs Trading Using Genetic Algorithms.
Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An
2015-01-01
Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice. PMID:26339236
Alien Genetic Algorithm for Exploration of Search Space
NASA Astrophysics Data System (ADS)
Patel, Narendra; Padhiyar, Nitin
2010-10-01
Genetic Algorithm (GA) is a widely accepted population based stochastic optimization technique used for single and multi objective optimization problems. Various versions of modifications in GA have been proposed in last three decades mainly addressing two issues, namely increasing convergence rate and increasing probability of global minima. While both these. While addressing the first issue, GA tends to converge to a local optima and addressing the second issue corresponds the large computational efforts. Thus, to reduce the contradictory effects of these two aspects, we propose a modification in GA by adding an alien member in the population at every generation. Addition of an Alien member in the current population at every generation increases the probability of obtaining global minima at the same time maintaining higher convergence rate. With two test cases, we have demonstrated the efficacy of the proposed GA by comparing with the conventional GA.
Evolutionary Design of Rule Changing Artificial Society Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Wu, Yun; Kanoh, Hitoshi
Socioeconomic phenomena, cultural progress and political organization have recently been studied by creating artificial societies consisting of simulated agents. In this paper we propose a new method to design action rules of agents in artificial society that can realize given requests using genetic algorithms (GAs). In this paper we propose an efficient method for designing the action rules of agents that will constitute an artificial society that meets a specified demand by using a GAs. In the proposed method, each chromosome in the GA population represents a candidate set of action rules and the number of rule iterations. While a conventional method applies distinct rules in order of precedence, the present method applies a set of rules repeatedly for a certain period. The present method is aiming at both firm evolution of agent population and continuous action by that. Experimental results using the artificial society proved that the present method can generate artificial society which fills a demand in high probability.
Genetic Algorithms and Nucleation in VIH-AIDS transition.
NASA Astrophysics Data System (ADS)
Barranon, Armando
2003-03-01
VIH to AIDS transition has been modeled via a genetic algorithm that uses boom-boom principle and where population evolution is simulated with a cellular automaton based on SIR model. VIH to AIDS transition is signed by nucleation of infected cells and low probability of infection are obtained for different mutation rates in agreement with clinical results. A power law is obtained with a critical exponent close to the critical exponent of cubic, spherical percolation, colossal magnetic resonance, Ising Model and liquid-gas phase transition in heavy ion collisions. Computations were carried out at UAM-A Supercomputing Lab and author acknowledges financial support from Division of CBI at UAM-A.
Strawberry Maturity Neural Network Detectng System Based on Genetic Algorithm
NASA Astrophysics Data System (ADS)
Xu, Liming
The quick and non-detective detection of agriculture product is one of the measures to increase the precision and productivity of harvesting and grading. Having analyzed H frequency of different maturities in different light intensities, the results show that H frequency for the same maturity has little influence in different light intensities; Under the same light intensity, three strawberry maturities are changing in order. After having confirmed the H frequency section to distinguish the different strawberry maturity, the triplelayer feed-forward neural network system to detect strawberry maturity was designed by using genetic algorithm. The test results show that the detecting precision ratio is 91.7%, it takes 160ms to distinguish one strawberry. Therefore, the online non-detective detecting the strawberry maturity could be realized.
Tuning of active vibration controllers for ACTEX by genetic algorithm
NASA Astrophysics Data System (ADS)
Kwak, Moon K.; Denoyer, Keith K.
1999-06-01
This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.
Optimizing the controllability of arbitrary networks with genetic algorithm
NASA Astrophysics Data System (ADS)
Li, Xin-Feng; Lu, Zhe-Ming
2016-04-01
Recently, as the controllability of complex networks attracts much attention, how to optimize networks' controllability has become a common and urgent problem. In this paper, we develop an efficient genetic algorithm oriented optimization tool to optimize the controllability of arbitrary networks consisting of both state nodes and control nodes under Popov-Belevitch-Hautus rank condition. The experimental results on a number of benchmark networks show the effectiveness of this method and the evolution of network topology is captured. Furthermore, we explore how network structure affects its controllability and find that the sparser a network is, the more control nodes are needed to control it and the larger the differences between node degrees, the more control nodes are needed to achieve the full control. Our framework provides an alternative to controllability optimization and can be applied to arbitrary networks without any limitations.
Optimal Design of RF Energy Harvesting Device Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Mori, T.; Sato, Y.; Adriano, R.; Igarashi, H.
2015-11-01
This paper presents optimal design of an RF energy harvesting device using genetic algorithm (GA). In the present RF harvester, a planar spiral antenna (PSA) is loaded with matching and rectifying circuits. On the first stage of the optimal design, the shape parameters of PSA are optimized using . Then, the equivalent circuit of the optimized PSA is derived for optimization of the circuits. Finally, the parameters of RF energy harvesting circuit are optimized to maximize the output power using GA. It is shown that the present optimization increases the output power by a factor of five. The manufactured energy harvester starts working when the input electric field is greater than 0.5 V/m.
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster
NASA Technical Reports Server (NTRS)
Story, George
2014-01-01
Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and later on solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. A remaining issue is the cost of hybrids vs the existing launch propulsion systems. This paper will review the known state of the art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster
NASA Technical Reports Server (NTRS)
Story, George
2015-01-01
Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. One remaining issue is the cost of hybrids versus the existing launch propulsion systems. This paper will review the known state-of-the-art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.
Cloud identification using genetic algorithms and massively parallel computation
NASA Technical Reports Server (NTRS)
Buckles, Bill P.; Petry, Frederick E.
1996-01-01
As a Guest Computational Investigator under the NASA administered component of the High Performance Computing and Communication Program, we implemented a massively parallel genetic algorithm on the MasPar SIMD computer. Experiments were conducted using Earth Science data in the domains of meteorology and oceanography. Results obtained in these domains are competitive with, and in most cases better than, similar problems solved using other methods. In the meteorological domain, we chose to identify clouds using AVHRR spectral data. Four cloud speciations were used although most researchers settle for three. Results were remarkedly consistent across all tests (91% accuracy). Refinements of this method may lead to more timely and complete information for Global Circulation Models (GCMS) that are prevalent in weather forecasting and global environment studies. In the oceanographic domain, we chose to identify ocean currents from a spectrometer having similar characteristics to AVHRR. Here the results were mixed (60% to 80% accuracy). Given that one is willing to run the experiment several times (say 10), then it is acceptable to claim the higher accuracy rating. This problem has never been successfully automated. Therefore, these results are encouraging even though less impressive than the cloud experiment. Successful conclusion of an automated ocean current detection system would impact coastal fishing, naval tactics, and the study of micro-climates. Finally we contributed to the basic knowledge of GA (genetic algorithm) behavior in parallel environments. We developed better knowledge of the use of subpopulations in the context of shared breeding pools and the migration of individuals. Rigorous experiments were conducted based on quantifiable performance criteria. While much of the work confirmed current wisdom, for the first time we were able to submit conclusive evidence. The software developed under this grant was placed in the public domain. An extensive user
A new perspective on dark energy modeling via genetic algorithms
Nesseris, Savvas; García-Bellido, Juan E-mail: juan.garciabellido@uam.es
2012-11-01
We use Genetic Algorithms to extract information from several cosmological probes, such as the type Ia supernovae (SnIa), the Baryon Acoustic Oscillations (BAO) and the growth rate of matter perturbations. This is done by implementing a model independent and bias-free reconstruction of the various scales and distances that characterize the data, like the luminosity d{sub L}(z) and the angular diameter distance d{sub A}(z) in the SnIa and BAO data, respectively, or the dependence with redshift of the matter density Ω{sub m}(a) in the growth rate data, fσ{sub 8}(z). These quantities can then be used to reconstruct the expansion history of the Universe, and the resulting Dark Energy (DE) equation of state w(z) in the context of FRW models, or the mass radial function Ω{sub M}(r) in LTB models. In this way, the reconstruction is completely independent of our prior bias. Furthermore, we use this method to test the Etherington relation, ie the well-known relation between the luminosity and the angular diameter distance, η≡d{sub L}(z)/(1+z){sup 2}d{sub A}(z), which is equal to 1 in metric theories of gravity. We find that the present data seem to suggest a 3-σ deviation from one at redshifts z ∼ 0.5. Finally, we present a novel way, within the Genetic Algorithm paradigm, to analytically estimate the errors on the reconstructed quantities by calculating a Path Integral over all possible functions that may contribute to the likelihood. We show that this can be done regardless of the data being correlated or uncorrelated with each other and we also explicitly demonstrate that our approach is in good agreement with other error estimation techniques like the Fisher Matrix approach and the Bootstrap Monte Carlo.
A test sheet generating algorithm based on intelligent genetic algorithm and hierarchical planning
NASA Astrophysics Data System (ADS)
Gu, Peipei; Niu, Zhendong; Chen, Xuting; Chen, Wei
2013-03-01
In recent years, computer-based testing has become an effective method to evaluate students' overall learning progress so that appropriate guiding strategies can be recommended. Research has been done to develop intelligent test assembling systems which can automatically generate test sheets based on given parameters of test items. A good multisubject test sheet depends on not only the quality of the test items but also the construction of the sheet. Effective and efficient construction of test sheets according to multiple subjects and criteria is a challenging problem. In this paper, a multi-subject test sheet generation problem is formulated and a test sheet generating approach based on intelligent genetic algorithm and hierarchical planning (GAHP) is proposed to tackle this problem. The proposed approach utilizes hierarchical planning to simplify the multi-subject testing problem and adopts genetic algorithm to process the layered criteria, enabling the construction of good test sheets according to multiple test item requirements. Experiments are conducted and the results show that the proposed approach is capable of effectively generating multi-subject test sheets that meet specified requirements and achieve good performance.
A test sheet generating algorithm based on intelligent genetic algorithm and hierarchical planning
NASA Astrophysics Data System (ADS)
Gu, Peipei; Niu, Zhendong; Chen, Xuting; Chen, Wei
2012-04-01
In recent years, computer-based testing has become an effective method to evaluate students' overall learning progress so that appropriate guiding strategies can be recommended. Research has been done to develop intelligent test assembling systems which can automatically generate test sheets based on given parameters of test items. A good multisubject test sheet depends on not only the quality of the test items but also the construction of the sheet. Effective and efficient construction of test sheets according to multiple subjects and criteria is a challenging problem. In this paper, a multi-subject test sheet generation problem is formulated and a test sheet generating approach based on intelligent genetic algorithm and hierarchical planning (GAHP) is proposed to tackle this problem. The proposed approach utilizes hierarchical planning to simplify the multi-subject testing problem and adopts genetic algorithm to process the layered criteria, enabling the construction of good test sheets according to multiple test item requirements. Experiments are conducted and the results show that the proposed approach is capable of effectively generating multi-subject test sheets that meet specified requirements and achieve good performance.
NASA Astrophysics Data System (ADS)
Padhi, Amit; Mallick, Subhashis
2014-03-01
Inversion of band- and offset-limited single component (P wave) seismic data does not provide robust estimates of subsurface elastic parameters and density. Multicomponent seismic data can, in principle, circumvent this limitation but adds to the complexity of the inversion algorithm because it requires simultaneous optimization of multiple objective functions, one for each data component. In seismology, these multiple objectives are typically handled by constructing a single objective given as a weighted sum of the objectives of individual data components and sometimes with additional regularization terms reflecting their interdependence; which is then followed by a single objective optimization. Multi-objective problems, inclusive of the multicomponent seismic inversion are however non-linear. They have non-unique solutions, known as the Pareto-optimal solutions. Therefore, casting such problems as a single objective optimization provides one out of the entire set of the Pareto-optimal solutions, which in turn, may be biased by the choice of the weights. To handle multiple objectives, it is thus appropriate to treat the objective as a vector and simultaneously optimize each of its components so that the entire Pareto-optimal set of solutions could be estimated. This paper proposes such a novel multi-objective methodology using a non-dominated sorting genetic algorithm for waveform inversion of multicomponent seismic data. The applicability of the method is demonstrated using synthetic data generated from multilayer models based on a real well log. We document that the proposed method can reliably extract subsurface elastic parameters and density from multicomponent seismic data both when the subsurface is considered isotropic and transversely isotropic with a vertical symmetry axis. We also compute approximate uncertainty values in the derived parameters. Although we restrict our inversion applications to horizontally stratified models, we outline a practical
Li, Yongqiang; Abbaspour, Mohammadreza R; Grootendorst, Paul V; Rauth, Andrew M; Wu, Xiao Yu
2015-08-01
This study was performed to optimize the formulation of polymer-lipid hybrid nanoparticles (PLN) for the delivery of an ionic water-soluble drug, verapamil hydrochloride (VRP) and to investigate the roles of formulation factors. Modeling and optimization were conducted based on a spherical central composite design. Three formulation factors, i.e., weight ratio of drug to lipid (X1), and concentrations of Tween 80 (X2) and Pluronic F68 (X3), were chosen as independent variables. Drug loading efficiency (Y1) and mean particle size (Y2) of PLN were selected as dependent variables. The predictive performance of artificial neural networks (ANN) and the response surface methodology (RSM) were compared. As ANN was found to exhibit better recognition and generalization capability over RSM, multi-objective optimization of PLN was then conducted based upon the validated ANN models and continuous genetic algorithms (GA). The optimal PLN possess a high drug loading efficiency (92.4%, w/w) and a small mean particle size (∼100nm). The predicted response variables matched well with the observed results. The three formulation factors exhibited different effects on the properties of PLN. ANN in coordination with continuous GA represent an effective and efficient approach to optimize the PLN formulation of VRP with desired properties. PMID:25986587
Use of genetic algorithm for the selection of EEG features
NASA Astrophysics Data System (ADS)
Asvestas, P.; Korda, A.; Kostopoulos, S.; Karanasiou, I.; Ouzounoglou, A.; Sidiropoulos, K.; Ventouras, E.; Matsopoulos, G.
2015-09-01
Genetic Algorithm (GA) is a popular optimization technique that can detect the global optimum of a multivariable function containing several local optima. GA has been widely used in the field of biomedical informatics, especially in the context of designing decision support systems that classify biomedical signals or images into classes of interest. The aim of this paper is to present a methodology, based on GA, for the selection of the optimal subset of features that can be used for the efficient classification of Event Related Potentials (ERPs), which are recorded during the observation of correct or incorrect actions. In our experiment, ERP recordings were acquired from sixteen (16) healthy volunteers who observed correct or incorrect actions of other subjects. The brain electrical activity was recorded at 47 locations on the scalp. The GA was formulated as a combinatorial optimizer for the selection of the combination of electrodes that maximizes the performance of the Fuzzy C Means (FCM) classification algorithm. In particular, during the evolution of the GA, for each candidate combination of electrodes, the well-known (Σ, Φ, Ω) features were calculated and were evaluated by means of the FCM method. The proposed methodology provided a combination of 8 electrodes, with classification accuracy 93.8%. Thus, GA can be the basis for the selection of features that discriminate ERP recordings of observations of correct or incorrect actions.
South American foF2 database using genetic algorithms
NASA Astrophysics Data System (ADS)
Gularte, Erika; Bilitza, Dieter; Carpintero, Daniel; Jaen, Juliana
2016-07-01
We present the first step towards a new database of the ionospheric parameter foF2 for the South American region. The foF2 parameter, being the maximum of the ionospheric electronic density profile and its main sculptor, is of great interest not only in atmospheric studies but also in the realm of radio propagation. Due to its importance, its large variability and the difficulty to model it in time and space, it was the subject of an intense study since decades ago. The current databases, used by the IRI (International Reference Ionosphere) model, and based on Fourier expansions, has been built in the 60s from the available ionosondes at that time; therefore, it is still short of South American data. The main goal of this work is to upgrade the database, incorporating the now available data compiled by the RAPEAS (Red Argentina para el Estudio de la Atmósfera Superior, Argentine Network for the Study of the Upper Atmosphere) network. Also, we developed an algorithm to study the foF2 variability, based on the modern technique of genetic algorithms, which has been successfully applied on other disciplines. One of the main advantages of this technique is its ability in working with many variables and with unfavorable samples. The results are compared with the IRI databases, and improvements to the latter are suggested. Finally, it is important to notice that the new database is designed so that new available data can be easily incorporated.
Human emotion detector based on genetic algorithm using lip features
NASA Astrophysics Data System (ADS)
Brown, Terrence; Fetanat, Gholamreza; Homaifar, Abdollah; Tsou, Brian; Mendoza-Schrock, Olga
2010-04-01
We predicted human emotion using a Genetic Algorithm (GA) based lip feature extractor from facial images to classify all seven universal emotions of fear, happiness, dislike, surprise, anger, sadness and neutrality. First, we isolated the mouth from the input images using special methods, such as Region of Interest (ROI) acquisition, grayscaling, histogram equalization, filtering, and edge detection. Next, the GA determined the optimal or near optimal ellipse parameters that circumvent and separate the mouth into upper and lower lips. The two ellipses then went through fitness calculation and were followed by training using a database of Japanese women's faces expressing all seven emotions. Finally, our proposed algorithm was tested using a published database consisting of emotions from several persons. The final results were then presented in confusion matrices. Our results showed an accuracy that varies from 20% to 60% for each of the seven emotions. The errors were mainly due to inaccuracies in the classification, and also due to the different expressions in the given emotion database. Detailed analysis of these errors pointed to the limitation of detecting emotion based on the lip features alone. Similar work [1] has been done in the literature for emotion detection in only one person, we have successfully extended our GA based solution to include several subjects.
Genetic algorithm parameter optimization: applied to sensor coverage
NASA Astrophysics Data System (ADS)
Sahin, Ferat; Abbate, Giuseppe
2004-08-01
Genetic Algorithms are powerful tools, which when set upon a solution space will search for the optimal answer. These algorithms though have some associated problems, which are inherent to the method such as pre-mature convergence and lack of population diversity. These problems can be controlled with changes to certain parameters such as crossover, selection, and mutation. This paper attempts to tackle these problems in GA by having another GA controlling these parameters. The values for crossover parameter are: one point, two point, and uniform. The values for selection parameters are: best, worst, roulette wheel, inside 50%, outside 50%. The values for the mutation parameter are: random and swap. The system will include a control GA whose population will consist of different parameters settings. While this GA is attempting to find the best parameters it will be advancing into the search space of the problem and refining the population. As the population changes due to the search so will the optimal parameters. For every control GA generation each of the individuals in the population will be tested for fitness by being run through the problem GA with the assigned parameters. During these runs the population used in the next control generation is compiled. Thus, both the issue of finding the best parameters and the solution to the problem are attacked at the same time. The goal is to optimize the sensor coverage in a square field. The test case used was a 30 by 30 unit field with 100 sensor nodes. Each sensor node had a coverage area of 3 by 3 units. The algorithm attempts to optimize the sensor coverage in the field by moving the nodes. The results show that the control GA will provide better results when compared to a system with no parameter changes.
NASA Astrophysics Data System (ADS)
Xu, Dexiang
This dissertation presents a novel method of designing finite word length Finite Impulse Response (FIR) digital filters using a Real Parameter Parallel Genetic Algorithm (RPPGA). This algorithm is derived from basic Genetic Algorithms which are inspired by natural genetics principles. Both experimental results and theoretical studies in this work reveal that the RPPGA is a suitable method for determining the optimal or near optimal discrete coefficients of finite word length FIR digital filters. Performance of RPPGA is evaluated by comparing specifications of filters designed by other methods with filters designed by RPPGA. The parallel and spatial structures of the algorithm result in faster and more robust optimization than basic genetic algorithms. A filter designed by RPPGA is implemented in hardware to attenuate high frequency noise in a data acquisition system for collecting seismic signals. These studies may lead to more applications of the Real Parameter Parallel Genetic Algorithms in Electrical Engineering.
A genetic-based algorithm for personalized resistance training
Kiely, J; Suraci, B; Collins, DJ; de Lorenzo, D; Pickering, C; Grimaldi, KA
2016-01-01
Association studies have identified dozens of genetic variants linked to training responses and sport-related traits. However, no intervention studies utilizing the idea of personalised training based on athlete's genetic profile have been conducted. Here we propose an algorithm that allows achieving greater results in response to high- or low-intensity resistance training programs by predicting athlete's potential for the development of power and endurance qualities with the panel of 15 performance-associated gene polymorphisms. To develop and validate such an algorithm we performed two studies in independent cohorts of male athletes (study 1: athletes from different sports (n = 28); study 2: soccer players (n = 39)). In both studies athletes completed an eight-week high- or low-intensity resistance training program, which either matched or mismatched their individual genotype. Two variables of explosive power and aerobic fitness, as measured by the countermovement jump (CMJ) and aerobic 3-min cycle test (Aero3) were assessed pre and post 8 weeks of resistance training. In study 1, the athletes from the matched groups (i.e. high-intensity trained with power genotype or low-intensity trained with endurance genotype) significantly increased results in CMJ (P = 0.0005) and Aero3 (P = 0.0004). Whereas, athletes from the mismatched group (i.e. high-intensity trained with endurance genotype or low-intensity trained with power genotype) demonstrated non-significant improvements in CMJ (P = 0.175) and less prominent results in Aero3 (P = 0.0134). In study 2, soccer players from the matched group also demonstrated significantly greater (P < 0.0001) performance changes in both tests compared to the mismatched group. Among non- or low responders of both studies, 82% of athletes (both for CMJ and Aero3) were from the mismatched group (P < 0.0001). Our results indicate that matching the individual's genotype with the appropriate training modality leads to more effective
A genetic-based algorithm for personalized resistance training.
Jones, N; Kiely, J; Suraci, B; Collins, D J; de Lorenzo, D; Pickering, C; Grimaldi, K A
2016-06-01
Association studies have identified dozens of genetic variants linked to training responses and sport-related traits. However, no intervention studies utilizing the idea of personalised training based on athlete's genetic profile have been conducted. Here we propose an algorithm that allows achieving greater results in response to high- or low-intensity resistance training programs by predicting athlete's potential for the development of power and endurance qualities with the panel of 15 performance-associated gene polymorphisms. To develop and validate such an algorithm we performed two studies in independent cohorts of male athletes (study 1: athletes from different sports (n = 28); study 2: soccer players (n = 39)). In both studies athletes completed an eight-week high- or low-intensity resistance training program, which either matched or mismatched their individual genotype. Two variables of explosive power and aerobic fitness, as measured by the countermovement jump (CMJ) and aerobic 3-min cycle test (Aero3) were assessed pre and post 8 weeks of resistance training. In study 1, the athletes from the matched groups (i.e. high-intensity trained with power genotype or low-intensity trained with endurance genotype) significantly increased results in CMJ (P = 0.0005) and Aero3 (P = 0.0004). Whereas, athletes from the mismatched group (i.e. high-intensity trained with endurance genotype or low-intensity trained with power genotype) demonstrated non-significant improvements in CMJ (P = 0.175) and less prominent results in Aero3 (P = 0.0134). In study 2, soccer players from the matched group also demonstrated significantly greater (P < 0.0001) performance changes in both tests compared to the mismatched group. Among non- or low responders of both studies, 82% of athletes (both for CMJ and Aero3) were from the mismatched group (P < 0.0001). Our results indicate that matching the individual's genotype with the appropriate training modality leads to more effective
Multiobjective optimization of temporal processes.
Song, Zhe; Kusiak, Andrew
2010-06-01
This paper presents a dynamic predictive-optimization framework of a nonlinear temporal process. Data-mining (DM) and evolutionary strategy algorithms are integrated in the framework for solving the optimization model. DM algorithms learn dynamic equations from the process data. An evolutionary strategy algorithm is then applied to solve the optimization problem guided by the knowledge extracted by the DM algorithm. The concept presented in this paper is illustrated with the data from a power plant, where the goal is to maximize the boiler efficiency and minimize the limestone consumption. This multiobjective optimization problem can be either transformed into a single-objective optimization problem through preference aggregation approaches or into a Pareto-optimal optimization problem. The computational results have shown the effectiveness of the proposed optimization framework. PMID:19900853
Multiobjective sensitivity analysis and optimization of distributed hydrologic model MOBIDIC
NASA Astrophysics Data System (ADS)
Yang, J.; Castelli, F.; Chen, Y.
2014-10-01
Calibration of distributed hydrologic models usually involves how to deal with the large number of distributed parameters and optimization problems with multiple but often conflicting objectives that arise in a natural fashion. This study presents a multiobjective sensitivity and optimization approach to handle these problems for the MOBIDIC (MOdello di Bilancio Idrologico DIstribuito e Continuo) distributed hydrologic model, which combines two sensitivity analysis techniques (the Morris method and the state-dependent parameter (SDP) method) with multiobjective optimization (MOO) approach ɛ-NSGAII (Non-dominated Sorting Genetic Algorithm-II). This approach was implemented to calibrate MOBIDIC with its application to the Davidson watershed, North Carolina, with three objective functions, i.e., the standardized root mean square error (SRMSE) of logarithmic transformed discharge, the water balance index, and the mean absolute error of the logarithmic transformed flow duration curve, and its results were compared with those of a single objective optimization (SOO) with the traditional Nelder-Mead simplex algorithm used in MOBIDIC by taking the objective function as the Euclidean norm of these three objectives. Results show that (1) the two sensitivity analysis techniques are effective and efficient for determining the sensitive processes and insensitive parameters: surface runoff and evaporation are very sensitive processes to all three objective functions, while groundwater recession and soil hydraulic conductivity are not sensitive and were excluded in the optimization. (2) Both MOO and SOO lead to acceptable simulations; e.g., for MOO, the average Nash-Sutcliffe value is 0.75 in the calibration period and 0.70 in the validation period. (3) Evaporation and surface runoff show similar importance for watershed water balance, while the contribution of baseflow can be ignored. (4) Compared to SOO, which was dependent on the initial starting location, MOO provides more
Orbit design and estimation for surveillance missions using genetic algorithms
NASA Astrophysics Data System (ADS)
Abdelkhalik, Osama Mohamed Omar
2005-11-01
The problem of observing a given set of Earth target sites within an assigned time frame is examined. Attention is given mainly to visiting these sites as sub-satellite nadir points. Solutions to this problem in the literature require thrusters to continuously maneuver the satellite from one site to another. A natural solution is proposed. A natural solution is a gravitational orbit that enables the spacecraft to satisfy the mission requirements without maneuvering. Optimization of a penalty function is performed to find natural solutions for satellite orbit configurations. This penalty function depends on the mission objectives. Two mission objectives are considered: maximum observation time and maximum resolution. The penalty function poses multi minima and a genetic algorithm technique is used to solve this problem. In the case that there is no one orbit satisfying the mission requirements, a multi-orbit solution is proposed. In a multi-orbit solution, the set of target sites is split into two groups. Then the developed algorithm is used to search for a natural solution for each group. The satellite has to be maneuvered between the two solution orbits. Genetic algorithms are used to find the optimal orbit transfer between the two orbits using impulsive thrusters. A new formulation for solving the orbit maneuver problem using genetic algorithms is developed. The developed formulation searches for a minimum fuel consumption maneuver and guarantees that the satellite will be transferred exactly to the final orbit even if the solution is non-optimal. The results obtained demonstrate the feasibility of finding natural solutions for many case studies. The problem of the design of suitable satellite constellation for Earth observing applications is addressed. Two cases are considered. The first is the remote sensing missions for a particular region with high frequency and small swath width. The second is the interferometry radar Earth observation missions. In satellite
Empirical study of self-configuring genetic programming algorithm performance and behaviour
NASA Astrophysics Data System (ADS)
Semenkin, E.; Semenkina, M.
2015-01-01
The behaviour of the self-configuring genetic programming algorithm with a modified uniform crossover operator that implements a selective pressure on the recombination stage, is studied over symbolic programming problems. The operator's probabilistic rates interplay is studied and the role of operator variants on algorithm performance is investigated. Algorithm modifications based on the results of investigations are suggested. The performance improvement of the algorithm is demonstrated by the comparative analysis of suggested algorithms on the benchmark and real world problems.
Genetic algorithms for adaptive real-time control in space systems
NASA Technical Reports Server (NTRS)
Vanderzijp, J.; Choudry, A.
1988-01-01
Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.
User-Based Document Clustering by Redescribing Subject Descriptions with a Genetic Algorithm.
ERIC Educational Resources Information Center
Gordon, Michael D.
1991-01-01
Discussion of clustering of documents and queries in information retrieval systems focuses on the use of a genetic algorithm to adapt subject descriptions so that documents become more effective in matching relevant queries. Various types of clustering are explained, and simulation experiments used to test the genetic algorithm are described. (27…
Order-Based Fitness Functions for Genetic Algorithms Applied to Relevance Feedback.
ERIC Educational Resources Information Center
Lopez-Pujalte, Cristina; Guerrero-Bote, Vicente P.; de Moya-Anegon, Felix
2003-01-01
Discusses genetic algorithms in information retrieval, especially for relevance feedback, and evaluates the efficacy of a genetic algorithm with various order-based fitness functions for relevance feedback in a test database. Compares results with the Ide dec-hi method, one of the best traditional methods. (Contains 56 references.) (Author/LRW)
Using genetic algorithms to select and create features for pattern classification. Technical report
Chang, E.I.; Lippmann, R.P.
1991-03-11
Genetic algorithms were used to select and create features and to select reference exemplar patterns for machine vision and speech pattern classification tasks. On a 15-feature machine-vision inspection task, it was found that genetic algorithms performed no better than conventional approaches to feature selection but required much more computation. For a speech recognition task, genetic algorithms required no more computation time than traditional approaches but reduced the number of features required by a factor of five (from 153 to 33 features). On a difficult artificial machine-vision task, genetic algorithms were able to create new features (polynomial functions of the original features) that reduced classification error rates from 10 to almost 0 percent. Neural net and nearest-neighbor classifiers were unable to provide such low error rates using only the original features. Genetic algorithms were also used to reduce the number of reference exemplar patterns and to select the value of k for a k-nearest-neighbor classifier. On a .338 training pattern vowel recognition problem with 10 classes, genetic algorithms simultaneously reduced the number of stored exemplars from 338 to 63 and selected k without significantly decreasing classification accuracy. In all applications, genetic algorithms were easy to apply and found good solutions in many fewer trials than would be required by an exhaustive search. Run times were long but not unreasonable. These results suggest that genetic algorithms may soon be practical for pattern classification problems as faster serial and parallel computers are developed.
NASA Astrophysics Data System (ADS)
Yang, Y.; Wu, J.
2011-12-01
The previous work in the field of multi-objective optimization under uncertainty has concerned with the probabilistic multi-objective algorithm itself, how to effectively evaluate an estimate of uncertain objectives and identify a set of reliable Pareto optimal solutions. However, the design of a robust and reliable groundwater remediation system encounters major difficulties owing to the inherent uncertainty of hydrogeological parameters such as hydraulic conductivity (K). Thus, we need to make reduction of uncertainty associated with the site characteristics of the contaminated aquifers. In this study, we first use the Sequential Gaussian Simulation (SGSIM) to generate 1000 conditional realizations of lnK based on the sampled conditioning data acquired by field test. It is worthwhile to note that the cost for field test often weighs heavily upon the remediation cost and must thus be taken into account in the tradeoff between the solution reliability and remedial cost optimality. In this situation, we perform Monte Carlo simulation to make an uncertainty analysis of lnK realizations associated with the different number of conditioning data points. The results indicate that the uncertainty of the site characteristics and the contaminant concentration output from transport model is decreasing and then tends toward stabilization with the increase of conditioning data. This study presents a probabilistic multi-objective evolutionary algorithm (PMOEA) that integrates noisy genetic algorithm (NGA) and probabilistic multi-objective genetic algorithm (MOGA). The evident difference between deterministic MOGA and probabilistic MOGA is the use of probabilistic Pareto domination ranking and niche technique to ensure that each solution found is most reliable and robust. The proposed algorithm is then evaluated through a synthetic pump-and-treat (PAT) groundwater remediation test case. The 1000 lnK realizations generated by SGSIM with appropriate number of conditioning data (30
Efficient Improvement of Silage Additives by Using Genetic Algorithms
Davies, Zoe S.; Gilbert, Richard J.; Merry, Roger J.; Kell, Douglas B.; Theodorou, Michael K.; Griffith, Gareth W.
2000-01-01
The enormous variety of substances which may be added to forage in order to manipulate and improve the ensilage process presents an empirical, combinatorial optimization problem of great complexity. To investigate the utility of genetic algorithms for designing effective silage additive combinations, a series of small-scale proof of principle silage experiments were performed with fresh ryegrass. Having established that significant biochemical changes occur over an ensilage period as short as 2 days, we performed a series of experiments in which we used 50 silage additive combinations (prepared by using eight bacterial and other additives, each of which was added at six different levels, including zero [i.e., no additive]). The decrease in pH, the increase in lactate concentration, and the free amino acid concentration were measured after 2 days and used to calculate a “fitness” value that indicated the quality of the silage (compared to a control silage made without additives). This analysis also included a “cost” element to account for different total additive levels. In the initial experiment additive levels were selected randomly, but subsequently a genetic algorithm program was used to suggest new additive combinations based on the fitness values determined in the preceding experiments. The result was very efficient selection for silages in which large decreases in pH and high levels of lactate occurred along with low levels of free amino acids. During the series of five experiments, each of which comprised 50 treatments, there was a steady increase in the amount of lactate that accumulated; the best treatment combination was that used in the last experiment, which produced 4.6 times more lactate than the untreated silage. The additive combinations that were found to yield the highest fitness values in the final (fifth) experiment were assessed to determine a range of biochemical and microbiological quality parameters during full-term silage
GenMin: An enhanced genetic algorithm for global optimization
NASA Astrophysics Data System (ADS)
Tsoulos, Ioannis G.; Lagaris, I. E.
2008-06-01
A new method that employs grammatical evolution and a stopping rule for finding the global minimum of a continuous multidimensional, multimodal function is considered. The genetic algorithm used is a hybrid genetic algorithm in conjunction with a local search procedure. We list results from numerical experiments with a series of test functions and we compare with other established global optimization methods. The accompanying software accepts objective functions coded either in Fortran 77 or in C++. Program summaryProgram title: GenMin Catalogue identifier: AEAR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 810 No. of bytes in distributed program, including test data, etc.: 436 613 Distribution format: tar.gz Programming language: GNU-C++, GNU-C, GNU Fortran 77 Computer: The tool is designed to be portable in all systems running the GNU C++ compiler Operating system: The tool is designed to be portable in all systems running the GNU C++ compiler RAM: 200 KB Word size: 32 bits Classification: 4.9 Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a least squares type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Solution method: Grammatical evolution and a stopping rule. Running time: Depending on the
Genetic algorithms applied to nonlinear and complex domains
Barash, D; Woodin, A E
1999-06-01
The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a ''final'' result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, the dissertation also examines the use of GAS in modeling decision making problems. It compares GAS with traditional techniques to solve a class of problems known as Markov Decision Processes. The conclusion of the dissertation should give a clear idea of where GAS are applicable, especially in the physical sciences, in problems which are nonlinear and complex, i.e. difficult to analyze by other means.
Genetic algorithms applied to nonlinear and complex domains
Barash, D; Woodin, A E
1999-06-01
The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a final result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, the dissertation also examines the use of GAS in modeling decision making problems. It compares GAS with traditional techniques to solve a class of problems known as Markov Decision Processes. The conclusion of the dissertation should give a clear idea of where GAS are applicable, especially in the physical sciences, in problems which are nonlinear and complex, i.e. difficult to analyze by other means.
A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems
NASA Astrophysics Data System (ADS)
Thammano, Arit; Teekeng, Wannaporn
2015-05-01
The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.
Genetic algorithms approach for the extraction of the polygonal approximation of planar objects
NASA Astrophysics Data System (ADS)
Erives, Hector; Parra-Loera, Ramon
1996-06-01
A new approach to the extraction of the polygonal approximation is presented. The method obtains a smaller set of the important features by means of an evolutionary algorithm. A genetic approach with some heuristics, improves contour approximation search by starting with a parallel search at various points in the contour. The algorithm uses genetic algorithms to encode a polygonal approximation as a chromosome and evolve it to provide a polygonal approximation. Experimental results are provided.
Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2001-01-01
A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.
NASA Astrophysics Data System (ADS)
Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie
2015-12-01
The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.
User Profile Creation Using Genetic Algorithm with Kullback Leibler Divergence
NASA Astrophysics Data System (ADS)
Hidekazu, Yanagimoto; Sigeru, Omatu
In this paper we propose a user profile creation method using the Kullback Leibler divergence. To cope with information flood, many information filtering systems have been developed up to now. In the information filtering systems it is important to create a user profile which represents user's interests correctly. Since almost all information filtering systems are developed with techniques of information retrieval, machine learning, and pattern recognition, they often use a linear function as a discriminant function. To classify information in the field of document classification more precisely, the systems have been reported which use a non-linear function as a discriminant function. The proposed method is to use the Kullback Leibler divergence as a discriminant function which denotes to user's interest in the information filtering system. To identify an optimal discriminat function with documents which a user evaluates, we use the real-coded genetic algorithm. We compare the present method with the other one using a linear discriminant function and confirm the effectiveness of the proposing method.
Genetic algorithm optimized triply compensated pulses in NMR spectroscopy
NASA Astrophysics Data System (ADS)
Manu, V. S.; Veglia, Gianluigi
2015-11-01
Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π / 2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-13C, 15N NAVL peptide as well as U-13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.
Robust Sparse Matching and Motion Estimation Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Shahbazi, M.; Sohn, G.; Théau, J.; Ménard, P.
2015-03-01
In this paper, we propose a robust technique using genetic algorithm for detecting inliers and estimating accurate motion parameters from putative correspondences containing any percentage of outliers. The proposed technique aims to increase computational efficiency and modelling accuracy in comparison with the state-of-the-art via the following contributions: i) guided generation of initial populations for both avoiding degenerate solutions and increasing the rate of useful hypotheses, ii) replacing random search with evolutionary search, iii) possibility of evaluating the individuals of every population by parallel computation, iv) being performable on images with unknown internal orientation parameters, iv) estimating the motion model via detecting a minimum, however more than enough, set of inliers, v) ensuring the robustness of the motion model against outliers, degeneracy and poorperspective camera models, vi) making no assumptions about the probability distribution of inliers and/or outliers residuals from the estimated motion model, vii) detecting all the inliers by setting the threshold on their residuals adaptively with regard to the uncertainty of the estimated motion model and the position of the matches. The proposed method was evaluated both on synthetic data and real images. The results were compared with the most popular techniques from the state-of-the-art, including RANSAC, MSAC, MLESAC, Least Trimmed Squares and Least Median of Squares. Experimental results proved that the proposed approach perform better than others in terms of accuracy of motion estimation, accuracy of inlier detection and the computational efficiency.
Reducing aerodynamic vibration with piezoelectric actuators: a genetic algorithm optimization
NASA Astrophysics Data System (ADS)
Hu, Zhenning; Jakiela, Mark; Pitt, Dale M.; Burnham, Jay K.
2004-07-01
Modern high performance aircraft fly at high speeds and high angles of attack. This can result in "buffet" aerodynamics, an unsteady turbulent flow that causes vibrations of the wings, tails, and body of the aircraft. This can result in decreased performance and ride quality, and fatigue failures. We are experimenting with controlling these vibrations by using piezoceramic actuators attached to the inner and outer skin of the aircraft. In this project, a tail or wing is investigated. A "generic" tail finite element model is studied in which individual actuators are assumed to exactly cover individual finite elements. Various optimizations of the orientations and power consumed by these actuators are then performed. Real coded genetic algorithms are used to perform the optimizations and a design space approximation technique is used to minimize costly finite element runs. An important result is the identification of a power consumption threshold for the entire system. Below the threshold, vibration control performance of optimized systems decreases with decreasing values of power supplied to the entire system.
Constrained genetic algorithms for optimizing multi-use reservoir operation
NASA Astrophysics Data System (ADS)
Chang, Li-Chiu; Chang, Fi-John; Wang, Kuo-Wei; Dai, Shin-Yi
2010-08-01
To derive an optimal strategy for reservoir operations to assist the decision-making process, we propose a methodology that incorporates the constrained genetic algorithm (CGA) where the ecological base flow requirements are considered as constraints to water release of reservoir operation when optimizing the 10-day reservoir storage. Furthermore, a number of penalty functions designed for different types of constraints are integrated into reservoir operational objectives to form the fitness function. To validate the applicability of this proposed methodology for reservoir operations, the Shih-Men Reservoir and its downstream water demands are used as a case study. By implementing the proposed CGA in optimizing the operational performance of the Shih-Men Reservoir for the last 20 years, we find this method provides much better performance in terms of a small generalized shortage index (GSI) for human water demands and greater ecological base flows for most of the years than historical operations do. We demonstrate the CGA approach can significantly improve the efficiency and effectiveness of water supply capability to both human and ecological base flow requirements and thus optimize reservoir operations for multiple water users. The CGA can be a powerful tool in searching for the optimal strategy for multi-use reservoir operations in water resources management.
Sequence-Specific Copolymer Compatibilizers designed via a Genetic Algorithm
NASA Astrophysics Data System (ADS)
Meenakshisundaram, Venkatesh; Patra, Tarak; Hung, Jui-Hsiang; Simmons, David
For several decades, block copolymers have been employed as surfactants to reduce interfacial energy for applications from emulsification to surface adhesion. While the simplest approach employs symmetric diblocks, studies have examined asymmetric diblocks, multiblock copolymers, gradient copolymers, and copolymer-grafted nanoparticles. However, there exists no established approach to determining the optimal copolymer compatibilizer sequence for a given application. Here we employ molecular dynamics simulations within a genetic algorithm to identify copolymer surfactant sequences yielding maximum reductions the interfacial energy of model immiscible polymers. The optimal copolymer sequence depends significantly on surfactant concentration. Most surprisingly, at high surface concentrations, where the surfactant achieves the greatest interfacial energy reduction, specific non-periodic sequences are found to significantly outperform any regularly blocky sequence. This emergence of polymer sequence-specificity within a non-sequenced environment adds to a recent body of work suggesting that specific sequence may have the potential to play a greater role in polymer properties than previously understood. We acknowledge the W. M. Keck Foundation for financial support of this research.