Science.gov

Sample records for multiobjective genetic algorithms

  1. Combinatorial Multiobjective Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Martin. Eric T.

    2002-01-01

    The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.

  2. MULTIOBJECTIVE PARALLEL GENETIC ALGORITHM FOR WASTE MINIMIZATION

    EPA Science Inventory

    In this research we have developed an efficient multiobjective parallel genetic algorithm (MOPGA) for waste minimization problems. This MOPGA integrates PGAPack (Levine, 1996) and NSGA-II (Deb, 2000) with novel modifications. PGAPack is a master-slave parallel implementation of a...

  3. Multiobjective Genetic Algorithm applied to dengue control.

    PubMed

    Florentino, Helenice O; Cantane, Daniela R; Santos, Fernando L P; Bannwart, Bettina F

    2014-12-01

    Dengue fever is an infectious disease caused by a virus of the Flaviridae family and transmitted to the person by a mosquito of the genus Aedes aegypti. This disease has been a global public health problem because a single mosquito can infect up to 300 people and between 50 and 100 million people are infected annually on all continents. Thus, dengue fever is currently a subject of research, whether in the search for vaccines and treatments for the disease or efficient and economical forms of mosquito control. The current study aims to study techniques of multiobjective optimization to assist in solving problems involving the control of the mosquito that transmits dengue fever. The population dynamics of the mosquito is studied in order to understand the epidemic phenomenon and suggest strategies of multiobjective programming for mosquito control. A Multiobjective Genetic Algorithm (MGA_DENGUE) is proposed to solve the optimization model treated here and we discuss the computational results obtained from the application of this technique. PMID:25230238

  4. Optimal design of plasmonic waveguide using multiobjective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jung, Jaehoon

    2016-01-01

    An approach for multiobjective optimal design of a plasmonic waveguide is presented. We use a multiobjective extension of a genetic algorithm to find the Pareto-optimal geometries. The design variables are the geometrical parameters of the waveguide. The objective functions are chosen as the figure of merit defined as the ratio between the propagation distance and effective mode size and the normalized coupling length between adjacent waveguides at the telecom wavelength of 1550 nm.

  5. Design of PID-type controllers using multiobjective genetic algorithms.

    PubMed

    Herreros, Alberto; Baeyens, Enrique; Perán, José R

    2002-10-01

    The design of a PID controller is a multiobjective problem. A plant and a set of specifications to be satisfied are given. The designer has to adjust the parameters of the PID controller such that the feedback interconnection of the plant and the controller satisfies the specifications. These specifications are usually competitive and any acceptable solution requires a tradeoff among them. An approach for adjusting the parameters of a PID controller based on multiobjective optimization and genetic algorithms is presented in this paper. The MRCD (multiobjective robust control design) genetic algorithm has been employed. The approach can be easily generalized to design multivariable coupled and decentralized PID loops and has been successfully validated for a large number of experimental cases. PMID:12398277

  6. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2005-01-01

    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  7. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2004-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  8. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  9. Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.

  10. Distributed Query Plan Generation Using Multiobjective Genetic Algorithm

    PubMed Central

    Panicker, Shina; Vijay Kumar, T. V.

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability. PMID:24963513

  11. A Multi-Objective Genetic Algorithm for Outlier Removal.

    PubMed

    Nahum, Oren E; Yosipof, Abraham; Senderowitz, Hanoch

    2015-12-28

    Quantitative structure activity relationship (QSAR) or quantitative structure property relationship (QSPR) models are developed to correlate activities for sets of compounds with their structure-derived descriptors by means of mathematical models. The presence of outliers, namely, compounds that differ in some respect from the rest of the data set, compromise the ability of statistical methods to derive QSAR models with good prediction statistics. Hence, outliers should be removed from data sets prior to model derivation. Here we present a new multi-objective genetic algorithm for the identification and removal of outliers based on the k nearest neighbors (kNN) method. The algorithm was used to remove outliers from three different data sets of pharmaceutical interest (logBBB, factor 7 inhibitors, and dihydrofolate reductase inhibitors), and its performances were compared with those of five other methods for outlier removal. The results suggest that the new algorithm provides filtered data sets that (1) better maintain the internal diversity of the parent data sets and (2) give rise to QSAR models with much better prediction statistics. Equally good filtered data sets in terms of these metrics were obtained when another objective function was added to the algorithm (termed "preservation"), forcing it to remove certain compounds with low probability only. This option is highly useful when specific compounds should be preferably kept in the final data set either because they have favorable activities or because they represent interesting molecular scaffolds. We expect this new algorithm to be useful in future QSAR applications. PMID:26553402

  12. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    EPA Science Inventory

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  13. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm

    PubMed Central

    Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio

    2016-01-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners. PMID:26778301

  14. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio

    2016-02-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.

  15. Multiobjective genetic algorithm conjunctive use optimization for production, cost, and energy with dynamic return flow

    NASA Astrophysics Data System (ADS)

    Peralta, Richard C.; Forghani, Ali; Fayad, Hala

    2014-04-01

    Many real water resources optimization problems involve conflicting objectives for which the main goal is to find a set of optimal solutions on, or near to the Pareto front. E-constraint and weighting multiobjective optimization techniques have shortcomings, especially as the number of objectives increases. Multiobjective Genetic Algorithms (MGA) have been previously proposed to overcome these difficulties. Here, an MGA derives a set of optimal solutions for multiobjective multiuser conjunctive use of reservoir, stream, and (un)confined groundwater resources. The proposed methodology is applied to a hydraulically and economically nonlinear system in which all significant flows, including stream-aquifer-reservoir-diversion-return flow interactions, are simulated and optimized simultaneously for multiple periods. Neural networks represent constrained state variables. The addressed objectives that can be optimized simultaneously in the coupled simulation-optimization model are: (1) maximizing water provided from sources, (2) maximizing hydropower production, and (3) minimizing operation costs of transporting water from sources to destinations. Results show the efficiency of multiobjective genetic algorithms for generating Pareto optimal sets for complex nonlinear multiobjective optimization problems.

  16. Compromise Approach-Based Genetic Algorithm for Constrained Multiobjective Portfolio Selection Model

    NASA Astrophysics Data System (ADS)

    Li, Jun

    In this paper, fuzzy set theory is incorporated into a multiobjective portfolio selection model for investors’ taking into three criteria: return, risk and liquidity. The cardinality constraint, the buy-in threshold constraint and the round-lots constraints are considered in the proposed model. To overcome the difficulty of evaluation a large set of efficient solutions and selection of the best one on non-dominated surface, a compromise approach-based genetic algorithm is presented to obtain a compromised solution for the proposed constrained multiobjective portfolio selection model.

  17. Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector.

    PubMed

    Mayer, Alexandre; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier

    2014-10-20

    We present a multi-objective genetic algorithm we developed for the optimization of a flat-plate solar thermal collector. This collector consists of a waffle-shaped Al substrate with NiCrOx cermet and SnO(2) anti-reflection conformal coatings. Optimal geometrical parameters are determined in order to (i) maximize the solar absorptance α and (ii) minimize the thermal emittance ε. The multi-objective genetic algorithm eventually provides a whole set of Pareto-optimal solutions for the optimization of α and ε, which turn out to be competitive with record values found in the literature. In particular, a solution that enables α = 97.8% and ε = 4.8% was found. PMID:25607321

  18. Multi-objective optimization of lithium-ion battery model using genetic algorithm approach

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiang; Wang, Lixin; Hinds, Gareth; Lyu, Chao; Zheng, Jun; Li, Junfu

    2014-12-01

    A multi-objective parameter identification method for modeling of Li-ion battery performance is presented. Terminal voltage and surface temperature curves at 15 °C and 30 °C are used as four identification objectives. The Pareto fronts of two types of Li-ion battery are obtained using the modified multi-objective genetic algorithm NSGA-II and the final identification results are selected using the multiple criteria decision making method TOPSIS. The simulated data using the final identification results are in good agreement with experimental data under a range of operating conditions. The validation results demonstrate that the modified NSGA-II and TOPSIS algorithms can be used as robust and reliable tools for identifying parameters of multi-physics models for many types of Li-ion batteries.

  19. Multi-objective optimization in spatial planning: Improving the effectiveness of multi-objective evolutionary algorithms (non-dominated sorting genetic algorithm II)

    NASA Astrophysics Data System (ADS)

    Karakostas, Spiros

    2015-05-01

    The multi-objective nature of most spatial planning initiatives and the numerous constraints that are introduced in the planning process by decision makers, stakeholders, etc., synthesize a complex spatial planning context in which the concept of solid and meaningful optimization is a unique challenge. This article investigates new approaches to enhance the effectiveness of multi-objective evolutionary algorithms (MOEAs) via the adoption of a well-known metaheuristic: the non-dominated sorting genetic algorithm II (NSGA-II). In particular, the contribution of a sophisticated crossover operator coupled with an enhanced initialization heuristic is evaluated against a series of metrics measuring the effectiveness of MOEAs. Encouraging results emerge for both the convergence rate of the evolutionary optimization process and the occupation of valuable regions of the objective space by non-dominated solutions, facilitating the work of spatial planners and decision makers. Based on the promising behaviour of both heuristics, topics for further research are proposed to improve their effectiveness.

  20. A Novel Multi-objective Genetic Algorithms-Based Calculation of Hill's Coefficients

    NASA Astrophysics Data System (ADS)

    Hariharan, Krishnaswamy; Chakraborti, Nirupam; Barlat, Frédéric; Lee, Myoung-Gyu

    2014-06-01

    The anisotropic coefficients of Hill's yield criterion are determined through a novel genetic algorithms-based multi-objective optimization approach. The classical method of determining anisotropic coefficients is sensitive to the effective plastic strain. In the present procedure, that limitation is overcome using a genetically evolved meta-model of the entire stress strain curve, obtained from uniaxial tension tests conducted in the rolling direction and transverse directions, and biaxial tension. Then, an effective strain that causes the least error in terms of two theoretically derived objective functions is chosen. The anisotropic constants evolved through genetic algorithms correlate very well with the classical results. This approach is expected to be successful for more complex constitutive equations as well.

  1. A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.

    PubMed

    Li, Bin-Bin; Wang, Ling

    2007-06-01

    This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA. PMID:17550113

  2. Multi-objective optimization to predict muscle tensions in a pinch function using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bensghaier, Amani; Romdhane, Lotfi; Benouezdou, Fethi

    2012-03-01

    This work is focused on the determination of the thumb and the index finger muscle tensions in a tip pinch task. A biomechanical model of the musculoskeletal system of the thumb and the index finger is developed. Due to the assumptions made in carrying out the biomechanical model, the formulated force analysis problem is indeterminate leading to an infinite number of solutions. Thus, constrained single and multi-objective optimization methodologies are used in order to explore the muscular redundancy and to predict optimal muscle tension distributions. Various models are investigated using the optimization process. The basic criteria to minimize are the sum of the muscle stresses, the sum of individual muscle tensions and the maximum muscle stress. The multi-objective optimization is solved using a Pareto genetic algorithm to obtain non-dominated solutions, defined as the set of optimal distributions of muscle tensions. The results show the advantage of the multi-objective formulation over the single objective one. The obtained solutions are compared to those available in the literature demonstrating the effectiveness of our approach in the analysis of the fingers musculoskeletal systems when predicting muscle tensions.

  3. Multidisciplinary design optimization of vehicle instrument panel based on multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Wu, Guangqiang

    2013-03-01

    Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.

  4. Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul

    2005-01-01

    An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.

  5. Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.

  6. Optimal Solutions of Multiproduct Batch Chemical Process Using Multiobjective Genetic Algorithm with Expert Decision System

    PubMed Central

    Mokeddem, Diab; Khellaf, Abdelhafid

    2009-01-01

    Optimal design problem are widely known by their multiple performance measures that are often competing with each other. In this paper, an optimal multiproduct batch chemical plant design is presented. The design is firstly formulated as a multiobjective optimization problem, to be solved using the well suited non dominating sorting genetic algorithm (NSGA-II). The NSGA-II have capability to achieve fine tuning of variables in determining a set of non dominating solutions distributed along the Pareto front in a single run of the algorithm. The NSGA-II ability to identify a set of optimal solutions provides the decision-maker DM with a complete picture of the optimal solution space to gain better and appropriate choices. Then an outranking with PROMETHEE II helps the decision-maker to finalize the selection of a best compromise. The effectiveness of NSGA-II method with multiojective optimization problem is illustrated through two carefully referenced examples. PMID:19543537

  7. A genetic algorithm based multi-objective shape optimization scheme for cementless femoral implant.

    PubMed

    Chanda, Souptick; Gupta, Sanjay; Kumar Pratihar, Dilip

    2015-03-01

    The shape and geometry of femoral implant influence implant-induced periprosthetic bone resorption and implant-bone interface stresses, which are potential causes of aseptic loosening in cementless total hip arthroplasty (THA). Development of a shape optimization scheme is necessary to achieve a trade-off between these two conflicting objectives. The objective of this study was to develop a novel multi-objective custom-based shape optimization scheme for cementless femoral implant by integrating finite element (FE) analysis and a multi-objective genetic algorithm (GA). The FE model of a proximal femur was based on a subject-specific CT-scan dataset. Eighteen parameters describing the nature of four key sections of the implant were identified as design variables. Two objective functions, one based on implant-bone interface failure criterion, and the other based on resorbed proximal bone mass fraction (BMF), were formulated. The results predicted by the two objective functions were found to be contradictory; a reduction in the proximal bone resorption was accompanied by a greater chance of interface failure. The resorbed proximal BMF was found to be between 23% and 27% for the trade-off geometries as compared to ∼39% for a generic implant. Moreover, the overall chances of interface failure have been minimized for the optimal designs, compared to the generic implant. The adaptive bone remodeling was also found to be minimal for the optimally designed implants and, further with remodeling, the chances of interface debonding increased only marginally. PMID:25392855

  8. Multi-Objective Optimal Design of Switch Reluctance Motors Using Adaptive Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Rashidi, Mehran; Rashidi, Farzan

    In this paper a design methodology based on multi objective genetic algorithm (MOGA) is presented to design the switched reluctance motors with multiple conflicting objectives such as efficiency, power factor, full load torque, and full load current, specified dimension, weight of cooper and iron and also manufacturing cost. The optimally designed motor is compared with an industrial motor having the same ratings. Results verify that the proposed method gives better performance for the multi-objective optimization problems. The results of optimal design show the reduction in the specified dimension, weight and manufacturing cost, and the improvement in the power factor, full load torque, and efficiency of the motor.A major advantage of the method is its quite short response time in obtaining the optimal design.

  9. A Hybrid Cellular Genetic Algorithm for Multi-objective Crew Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Jolai, Fariborz; Assadipour, Ghazal

    Crew scheduling is one of the important problems of the airline industry. This problem aims to cover a number of flights by crew members, such that all the flights are covered. In a robust scheduling the assignment should be so that the total cost, delays, and unbalanced utilization are minimized. As the problem is NP-hard and the objectives are in conflict with each other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic algorithm, is implemented as the optimization method. The proposed algorithm provides the decision maker with a set of non-dominated or Pareto-optimal solutions, and enables them to choose the best one according to their preferences. A set of problems of different sizes is generated and solved using the proposed algorithm. Evaluating the performance of the proposed algorithm, three metrics are suggested, and the diversity and the convergence of the achieved Pareto front are appraised. Finally a comparison is made between CellDE and PAES, another meta-heuristic algorithm. The results show the superiority of CellDE.

  10. Solving multi-objective job shop scheduling problems using a non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Piroozfard, Hamed; Wong, Kuan Yew

    2015-05-01

    The efforts of finding optimal schedules for the job shop scheduling problems are highly important for many real-world industrial applications. In this paper, a multi-objective based job shop scheduling problem by simultaneously minimizing makespan and tardiness is taken into account. The problem is considered to be more complex due to the multiple business criteria that must be satisfied. To solve the problem more efficiently and to obtain a set of non-dominated solutions, a meta-heuristic based non-dominated sorting genetic algorithm is presented. In addition, task based representation is used for solution encoding, and tournament selection that is based on rank and crowding distance is applied for offspring selection. Swapping and insertion mutations are employed to increase diversity of population and to perform intensive search. To evaluate the modified non-dominated sorting genetic algorithm, a set of modified benchmarking job shop problems obtained from the OR-Library is used, and the results are considered based on the number of non-dominated solutions and quality of schedules obtained by the algorithm.

  11. Proposal of Functional-Specialization Multi-Objective Real-Coded Genetic Algorithm: FS-MOGA

    NASA Astrophysics Data System (ADS)

    Hamada, Naoki; Tanaka, Masaharu; Sakuma, Jun; Kobayashi, Shigenobu; Ono, Isao

    This paper presents a Genetic Algorithm (GA) for multi-objective function optimization. To find a precise and widely-distributed set of solutions in difficult multi-objective function optimization problems which have multimodality and curved Pareto-optimal set, a GA would be required conflicting behaviors in the early stage and the last stage of search. That is, in the early stage of search, GA should perform local-Pareto-optima-overcoming search which aims to overcome local Pareto-optima and converge the population to promising areas in the decision variable space. On the other hand, in the last stage of search, GA should perform Pareto-frontier-covering search which aims to spread the population along the Pareto-optimal set. NSGA-II and SPEA2, the most widely used conventional methods, have problems in local-Pareto-optima-overcoming and Pareto-frontier-covering search. In local-Pareto-optima-overcoming search, their selection pressure is too high to maintain the diversity for overcoming local Pareto-optima. In Pareto-frontier-covering search, their abilities of extrapolation-directed sampling are not enough to spread the population and they cannot sample along the Pareto-optimal set properly. To resolve above problems, the proposed method adaptively switches two search strategies, each of which is specialized for local-Pareto-optima-overcoming and Pareto-frontier-covering search, respectively. We examine the effectiveness of the proposed method using two benchmark problems. The experimental results show that our approach outperforms the conventional methods in terms of both local-Pareto-optima-overcoming and Pareto-frontier-covering search.

  12. Multi-Objective Optimization of Heat Load and Run Time for CEBAF Linacs Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Reeves, Cody; Terzic, Balsa; Hofler, Alicia

    2014-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) consists of two linear accelerators (Linacs) connected by arcs. Within each Linac, there are 200 niobium cavities that use superconducting radio frequency (SRF) to accelerate electrons. The gradients for the cavities are selected to optimize two competing objectives: heat load (the energy required to cool the cavities) and trip rate (how often the beam turns off within an hour). This results in a multidimensional, multi-objective, nonlinear system of equations that is not readily solved by analytical methods. This study improved a genetic algorithm (GA), which applies the concept of natural selection. The primary focus was making this GA more efficient to allow for more cost-effective solutions in the same amount of computation time. Two methods used were constraining the maximum value of the ob-jectives and also utilizing previously simulated solutions as the initial generation. A third method of interest involved refining the GA by combining the two objectives into a single weighted-sum objective, which collapses the set of optimal solutions into a single point. By combining these methods, the GA can be made 128 times as effective, reducing computation time from 30 min to 12 sec. This is crucial for when a cavity must be turned off, a new solution needs to be computed quickly. This work is of particular interest since it provides an efficient algorithm that can be easily adapted to any Linac facility.

  13. Multi-objective global optimization of a butterfly valve using genetic algorithms.

    PubMed

    Corbera, Sergio; Olazagoitia, José Luis; Lozano, José Antonio

    2016-07-01

    A butterfly valve is a type of valve typically used for isolating or regulating flow where the closing mechanism takes the form of a disc. For a long time, the attention of many researchers has focused on carrying out structural (FEM) and computational fluid dynamics (CFD) analysis in order to increase the performance of this type of flow-control device. This paper proposes a novel multi-objective approach for the design optimization of a butterfly valve using advanced genetic algorithms based on Pareto dominance. Firstly, after defining the need for this study and analyzing previous papers on the subject, the initial butterfly valve is presented and the initial fluid and structural analysis are carried out. Secondly, the optimization problem is defined and the optimization strategy is presented. The design variables are identified and a parameterization model of the valve is made. Thirdly, initial design candidates are generated by DOE and design optimization using genetic algorithms is performed. In this part of the process structural and CFD analysis are calculated for each candidate simultaneously. The optimization process involves various types of software and Python scripts are needed for their interaction and the connection of all steps. Finally, a set of optimal solutions is obtained and the optimum design that provides a 65.4% stress reduction, a 5% mass reduction and a 11.3% flow increase is selected in accordance with manufacturer preferences. Validation of the results is provided by comparing experimental test results with the values obtained for the initial design. The results demonstrate the capability and potential of the proposed methodology. PMID:27056745

  14. Multi-objective design of vehicle suspension systems via a local diffusion genetic algorithm for disjoint Pareto frontiers

    NASA Astrophysics Data System (ADS)

    Aly, Mohamed F.; Nassef, Ashraf O.; Hamza, Karim

    2015-05-01

    This article presents a multi-objective design optimization study of a vehicle suspension system with passive variable stiffness and active damping. Design of suspension systems is particularly challenging when the effective mass of the vehicle is subject to considerable variation during service. Perfectly maintaining the suspension performance under the variable load typically requires a controlled actuator to emulate variable stiffness. This is typically done through a hydraulic or pneumatic system, which can be too costly for small/medium pick-up trucks. The system in this article employs two springs with an offset to the second spring so that it engages during large deformation only, thereby providing passive variable stiffness without expensive hydraulics. The system damping is assumed to be controlled via variable viscosity magnetizable fluid, which can be implemented in a compact, low-power set-up. Performance indices from the literature are evaluated at minimum and maximum weight, and regarded as objectives in a multi-objective problem. As the individual objectives are prone to having local optima, the multi-objective problem is prone to having a disjointed Pareto-space. To deal with this issue, a modification is proposed to a multi-objective genetic algorithm. The algorithm performance is investigated via analytical test functions as well as the design case of the suspension system.

  15. Optimization of Processing Parameters in ECM of Die Tool Steel Using Nanofluid by Multiobjective Genetic Algorithm

    PubMed Central

    Sathiyamoorthy, V.; Sekar, T.; Elango, N.

    2015-01-01

    Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm3/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm3/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models. PMID:26167538

  16. Optimization of Processing Parameters in ECM of Die Tool Steel Using Nanofluid by Multiobjective Genetic Algorithm.

    PubMed

    Sathiyamoorthy, V; Sekar, T; Elango, N

    2015-01-01

    Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm(3)/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm(3)/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models. PMID:26167538

  17. Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty

    NASA Astrophysics Data System (ADS)

    Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun

    2016-03-01

    Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation-optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.

  18. Energy optimization of the fin/rudder roll stabilization system based on the multi-objective genetic algorithm (MOGA)

    NASA Astrophysics Data System (ADS)

    Yu, Lijun; Liu, Shaoying; Liu, Fanming; Wang, Hui

    2015-06-01

    Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder roll stabilization can be established. This paper analyzes energy consumption caused by overcoming the resistance and the yaw, which is added to the fin/rudder roll stabilization system as new performance index. In order to achieve the purpose of the roll reduction, ship course keeping and energy optimization, the self-tuning PID controller based on the multi-objective genetic algorithm (MOGA) method is used to optimize performance index. In addition, random weight coefficient is adopted to build a multi-objective genetic algorithm optimization model. The objective function is improved so that the objective function can be normalized to a constant level. Simulation results showed that the control method based on MOGA, compared with the traditional control method, not only improves the efficiency of roll stabilization and yaw control precision, but also optimizes the energy of the system. The proposed methodology can get a better performance at different sea states.

  19. Multi-objective genetic algorithms based structural optimization and experimental investigation of the planet carrier in wind turbine gearbox

    NASA Astrophysics Data System (ADS)

    Yi, Pengxing; Dong, Lijian; Shi, Tielin

    2014-12-01

    To improve the dynamic performance and reduce the weight of the planet carrier in wind turbine gearbox, a multi-objective optimization method, which is driven by the maximum deformation, the maximum stress and the minimum mass of the studied part, is proposed by combining the response surface method and genetic algorithms in this paper. Firstly, the design points' distribution for the design variables of the planet carrier is established with the central composite design (CCD) method. Then, based on the computing results of finite element analysis (FEA), the response surface analysis is conducted to find out the proper sets of design variable values. And a multi-objective genetic algorithm (MOGA) is applied to determine the direction of optimization. As well, this method is applied to design and optimize the planet carrier in a 1.5MW wind turbine gearbox, the results of which are validated by an experimental modal test. Compared with the original design, the mass and the stress of the optimized planet carrier are respectively reduced by 9.3% and 40%. Consequently, the cost of planet carrier is greatly reduced and its stability is also improved.

  20. Comparison of Evolutionary (Genetic) Algorithm and Adjoint Methods for Multi-Objective Viscous Airfoil Optimizations

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.

  1. Constrained Multiobjective Biogeography Optimization Algorithm

    PubMed Central

    Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping

    2014-01-01

    Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591

  2. Constrained multiobjective biogeography optimization algorithm.

    PubMed

    Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping

    2014-01-01

    Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591

  3. On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model

    SciTech Connect

    Zhang, Xuesong; Srinivasan, Raghavan; Van Liew, M.

    2010-04-15

    With the availability of spatially distributed data, distributed hydrologic models are increasingly used for simulation of spatially varied hydrologic processes to understand and manage natural and human activities that affect watershed systems. Multi-objective optimization methods have been applied to calibrate distributed hydrologic models using observed data from multiple sites. As the time consumed by running these complex models is increasing substantially, selecting efficient and effective multi-objective optimization algorithms is becoming a nontrivial issue. In this study, we evaluated a multi-algorithm, genetically adaptive multi-objective method (AMALGAM) for multi-site calibration of a distributed hydrologic model—Soil and Water Assessment Tool (SWAT), and compared its performance with two widely used evolutionary multi-objective optimization (EMO) algorithms (i.e. Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Non-dominated Sorted Genetic Algorithm II (NSGA-II)). In order to provide insights into each method’s overall performance, these three methods were tested in four watersheds with various characteristics. The test results indicate that the AMALGAM can consistently provide competitive or superior results compared with the other two methods. The multi-method search framework of AMALGAM, which can flexibly and adaptively utilize multiple optimization algorithms, makes it a promising tool for multi-site calibration of the distributed SWAT. For practical use of AMALGAM, it is suggested to implement this method in multiple trials with relatively small number of model runs rather than run it once with long iterations. In addition, incorporating different multiobjective optimization algorithms and multi-mode search operators into AMALGAM deserves further research.

  4. The Application of Multiobjective Genetic Algorithm to the Parameter Optimization of Single-Well Potential Stochastic Resonance Algorithm Aimed at Simultaneous Determination of Multiple Weak Chromatographic Peaks

    PubMed Central

    Xiang, Bingren; Wu, Xiaohong; Liu, Dan

    2014-01-01

    Simultaneous determination of multiple weak chromatographic peaks via stochastic resonance algorithm attracts much attention in recent years. However, the optimization of the parameters is complicated and time consuming, although the single-well potential stochastic resonance algorithm (SSRA) has already reduced the number of parameters to only one and simplified the process significantly. Even worse, it is often difficult to keep amplified peaks with beautiful peak shape. Therefore, multiobjective genetic algorithm was employed to optimize the parameter of SSRA for multiple optimization objectives (i.e., S/N and peak shape) and multiple chromatographic peaks. The applicability of the proposed method was evaluated with an experimental data set of Sudan dyes, and the results showed an excellent quantitative relationship between different concentrations and responses. PMID:24526920

  5. Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms

    SciTech Connect

    Malard, Joel M.; Heredia-Langner, Alejandro; Cannon, William R.; Mooney, Ryan W.; Baxter, Douglas J.

    2005-12-10

    Automatic data-base independent peptide identification from collision-induced dissociation tandem mass spectrometry data is made difficult by large plateaus in the fitness landscapes of scoring functions and the fuzzy nature of the constraints that is due to noise in the data. Two different scoring functions are combined into a parallel multi-objective optimization framework.

  6. Multi-objective genetic algorithm for the automated planning of a wireless sensor network to monitor a critical facility

    NASA Astrophysics Data System (ADS)

    Jourdan, Damien B.; de Weck, Olivier L.

    2004-09-01

    This paper examines the optimal placement of nodes for a Wireless Sensor Network (WSN) designed to monitor a critical facility in a hostile region. The sensors are dropped from an aircraft, and they must be connected (directly or via hops) to a High Energy Communication Node (HECN), which serves as a relay from the ground to a satellite or a high-altitude aircraft. The sensors are assumed to have fixed communication and sensing ranges. The facility is modeled as circular and served by two roads. This simple model is used to benchmark the performance of the optimizer (a Multi-Objective Genetic Algorithm, or MOGA) in creating WSN designs that provide clear assessments of movements in and out of the facility, while minimizing both the likelihood of sensors being discovered and the number of sensors to be dropped. The algorithm is also tested on two other scenarios; in the first one the WSN must detect movements in and out of a circular area, and in the second one it must cover uniformly a square region. The MOGA is shown again to perform well on those scenarios, which shows its flexibility and possible application to more complex mission scenarios with multiple and diverse targets of observation.

  7. Multi-objective Automatic Calibration of a Semi-distributed Watershed Model Using Pareto Ordering Optimization and Genetic Algorithm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study explored the application of a multi-objective evolutionary algorithm (MOEA) and Pareto ordering in the multiple-objective automatic calibration of the Soil and Water Assessment Tool (SWAT). SWAT was calibrated in the Calapooia watershed, Oregon, USA, with two different pairs of objective ...

  8. An Algorithmic Framework for Multiobjective Optimization

    PubMed Central

    Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.

    2013-01-01

    Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795

  9. An algorithmic framework for multiobjective optimization.

    PubMed

    Ganesan, T; Elamvazuthi, I; Shaari, Ku Zilati Ku; Vasant, P

    2013-01-01

    Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795

  10. Multi-objective optimal design of magnetorheological engine mount based on an improved non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong

    2014-03-01

    A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.

  11. Extraction of battery parameters using a multi-objective genetic algorithm with a non-linear circuit model

    NASA Astrophysics Data System (ADS)

    Malik, Aimun; Zhang, Zheming; Agarwal, Ramesh K.

    2014-08-01

    There is need for a battery model that can accurately describe the battery performance for an electrical system, such as the electric drive train of electric vehicles. In this paper, both linear and non-linear equivalent circuit models (ECM) are employed as a means of extracting the battery parameters that can be used to model the performance of a battery. The linear and non-linear equivalent circuit models differ in the numbers of capacitance and resistance; the non-linear model has an added circuit; however their numerical characteristics are equivalent. A multi-objective genetic algorithm is employed to accurately extract the values of the battery model parameters. The battery model parameters are obtained for several existing industrial batteries as well as for two recently proposed high performance batteries. Once the model parameters are optimally determined, the results demonstrate that both linear and non-linear equivalent circuit models can predict with acceptable accuracy the performance of various batteries of different sizes, characteristics, capacities, and materials. However, the comparisons of results with catalog and experimental data shows that the predictions of results using the non-linear equivalent circuit model are slightly better than those predicted by the linear model, calculating voltages that are closer to the manufacturers' values.

  12. Quantum dot ternary-valued full-adder: Logic synthesis by a multiobjective design optimization based on a genetic algorithm

    SciTech Connect

    Klymenko, M. V.; Remacle, F.

    2014-10-28

    A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables for the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.

  13. Multi-objective constrained design of nickel-base superalloys using data mining- and thermodynamics-driven genetic algorithms

    NASA Astrophysics Data System (ADS)

    Menou, Edern; Ramstein, Gérard; Bertrand, Emmanuel; Tancret, Franck

    2016-06-01

    A new computational framework for systematic and optimal alloy design is introduced. It is based on a multi-objective genetic algorithm which allows (i) the screening of vast compositional ranges and (ii) the optimisation of the performance of novel alloys. Alloys performance is evaluated on the basis of their predicted constitutional and thermomechanical properties. To this end, the CALPHAD method is used for assessing equilibrium characteristics (such as constitution, stability or processability) while Gaussian processes provide an estimate of thermomechanical properties (such as tensile strength or creep resistance), based on a multi-variable non-linear regression of existing data. These three independently well-assessed tools were unified within a single C++ routine. The method was applied to the design of affordable nickel-base superalloys for service in power plants, providing numerous candidates with superior expected microstructural stability and strength. An overview of the metallurgy of optimised alloys, as well as two detailed examples of optimal alloys, suggest that improvements over current commercial alloys are achievable at lower costs.

  14. Multi-objective optimization of a plain fin-and-tube heat exchanger using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Juan, Du; Qin, Qian Zuo

    2014-04-01

    In the present paper, a plate fin-and-tube heat exchanger (PFTHE) is considered for optimization with air and water as working fluid, four geometric variables are taken as parameters for optimization, a Genetic Algorithm (GA) was used to search for the optimal structure sizes of the PFTHE, the maximum total heat transfer rate and the minimum total pressure drop are taken as objective functions in GA, respectively. Performance of the optimized result was evaluated and correspondingly the total heat transfer rate, the total pressure drop, the heat transfer coefficient and the local Nusselt number, j-factor and friction factor ξ are calculated respectively. Results show that the total heat transfer rate of the optimized heat exchanger increased by about 2.1-9.2% comparing with the original one, the heat transfer coefficient increased by about 8.2-14.7% and the total pressure drop decreased by about 4.4-8% in the range of Re = 1200-14000.

  15. A Fuzzy Goal Programming Procedure for Solving Multiobjective Load Flow Problems via Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Biswas, Papun; Chakraborti, Debjani

    2010-10-01

    This paper describes how the genetic algorithms (GAs) can be efficiently used to fuzzy goal programming (FGP) formulation of optimal power flow problems having multiple objectives. In the proposed approach, the different constraints, various relationships of optimal power flow calculations are fuzzily described. In the model formulation of the problem, the membership functions of the defined fuzzy goals are characterized first for measuring the degree of achievement of the aspiration levels of the goals specified in the decision making context. Then, the achievement function for minimizing the regret for under-deviations from the highest membership value (unity) of the defined membership goals to the extent possible on the basis of priorities is constructed for optimal power flow problems. In the solution process, the GA method is employed to the FGP formulation of the problem for achievement of the highest membership value (unity) of the defined membership functions to the extent possible in the decision making environment. In the GA based solution search process, the conventional Roulette wheel selection scheme, arithmetic crossover and random mutation are taken into consideration to reach a satisfactory decision. The developed method has been tested on IEEE 6-generator 30-bus System. Numerical results show that this method is promising for handling uncertain constraints in practical power systems.

  16. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.

    PubMed

    Cao, Buwen; Luo, Jiawei; Liang, Cheng; Wang, Shulin; Song, Dan

    2015-10-01

    The identification of protein complexes in protein-protein interaction (PPI) networks has greatly advanced our understanding of biological organisms. Existing computational methods to detect protein complexes are usually based on specific network topological properties of PPI networks. However, due to the inherent complexity of the network structures, the identification of protein complexes may not be fully addressed by using single network topological property. In this study, we propose a novel MultiObjective Evolutionary Programming Genetic Algorithm (MOEPGA) which integrates multiple network topological features to detect biologically meaningful protein complexes. Our approach first systematically analyzes the multiobjective problem in terms of identifying protein complexes from PPI networks, and then constructs the objective function of the iterative algorithm based on three common topological properties of protein complexes from the benchmark dataset, finally we describe our algorithm, which mainly consists of three steps, population initialization, subgraph mutation and subgraph selection operation. To show the utility of our method, we compared MOEPGA with several state-of-the-art algorithms on two yeast PPI datasets. The experiment results demonstrate that the proposed method can not only find more protein complexes but also achieve higher accuracy in terms of fscore. Moreover, our approach can cover a certain number of proteins in the input PPI network in terms of the normalized clustering score. Taken together, our method can serve as a powerful framework to detect protein complexes in yeast PPI networks, thereby facilitating the identification of the underlying biological functions. PMID:26298638

  17. Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gladwin, D.; Stewart, P.; Stewart, J.

    2011-02-01

    This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control

  18. Genetic algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  19. A multi-objective genetic algorithm for a mixed-model assembly U-line balancing type-I problem considering human-related issues, training, and learning

    NASA Astrophysics Data System (ADS)

    Rabbani, Masoud; Montazeri, Mona; Farrokhi-Asl, Hamed; Rafiei, Hamed

    2016-07-01

    Mixed-model assembly lines are increasingly accepted in many industrial environments to meet the growing trend of greater product variability, diversification of customer demands, and shorter life cycles. In this research, a new mathematical model is presented considering balancing a mixed-model U-line and human-related issues, simultaneously. The objective function consists of two separate components. The first part of the objective function is related to balance problem. In this part, objective functions are minimizing the cycle time, minimizing the number of workstations, and maximizing the line efficiencies. The second part is related to human issues and consists of hiring cost, firing cost, training cost, and salary. To solve the presented model, two well-known multi-objective evolutionary algorithms, namely non-dominated sorting genetic algorithm and multi-objective particle swarm optimization, have been used. A simple solution representation is provided in this paper to encode the solutions. Finally, the computational results are compared and analyzed.

  20. Automatic Tuning of a Retina Model for a Cortical Visual Neuroprosthesis Using a Multi-Objective Optimization Genetic Algorithm.

    PubMed

    Martínez-Álvarez, Antonio; Crespo-Cano, Rubén; Díaz-Tahoces, Ariadna; Cuenca-Asensi, Sergio; Ferrández Vicente, José Manuel; Fernández, Eduardo

    2016-11-01

    The retina is a very complex neural structure, which contains many different types of neurons interconnected with great precision, enabling sophisticated conditioning and coding of the visual information before it is passed via the optic nerve to higher visual centers. The encoding of visual information is one of the basic questions in visual and computational neuroscience and is also of seminal importance in the field of visual prostheses. In this framework, it is essential to have artificial retina systems to be able to function in a way as similar as possible to the biological retinas. This paper proposes an automatic evolutionary multi-objective strategy based on the NSGA-II algorithm for tuning retina models. Four metrics were adopted for guiding the algorithm in the search of those parameters that best approximate a synthetic retinal model output with real electrophysiological recordings. Results show that this procedure exhibits a high flexibility when different trade-offs has to be considered during the design of customized neuro prostheses. PMID:27354187

  1. CCLab--a multi-objective genetic algorithm based combinatorial library design software and an application for histone deacetylase inhibitor design.

    PubMed

    Fang, Guanghua; Xue, Mengzhu; Su, Mingbo; Hu, Dingyu; Li, Yanlian; Xiong, Bing; Ma, Lanping; Meng, Tao; Chen, Yuelei; Li, Jingya; Li, Jia; Shen, Jingkang

    2012-07-15

    The introduction of the multi-objective optimization has dramatically changed the virtual combinatorial library design, which can consider many objectives simultaneously, such as synthesis cost and drug-likeness, thus may increase positive rates of biological active compounds. Here we described a software called CCLab (Combinatorial Chemistry Laboratory) for combinatorial library design based on the multi-objective genetic algorithm. Tests of the convergence ability and the ratio to re-take the building blocks in the reference library were conducted to assess the software in silico, and then it was applied to a real case of designing a 5×6 HDAC inhibitor library. Sixteen compounds in the resulted library were synthesized, and the histone deactetylase (HDAC) enzymatic assays proved that 14 compounds showed inhibitory ratios more than 50% against tested 3 HDAC enzymes at concentration of 20 μg/mL, with IC(50) values of 3 compounds comparable to SAHA. These results demonstrated that the CCLab software could enhance the hit rates of the designed library and would be beneficial for medicinal chemists to design focused library in drug development (the software can be downloaded at: http://202.127.30.184:8080/drugdesign.html). PMID:22738629

  2. Multi-objective parametric optimization of Inertance type pulse tube refrigerator using response surface methodology and non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Rout, Sachindra K.; Choudhury, Balaji K.; Sahoo, Ranjit K.; Sarangi, Sunil K.

    2014-07-01

    The modeling and optimization of a Pulse Tube Refrigerator is a complicated task, due to its complexity of geometry and nature. The aim of the present work is to optimize the dimensions of pulse tube and regenerator for an Inertance-Type Pulse Tube Refrigerator (ITPTR) by using Response Surface Methodology (RSM) and Non-Sorted Genetic Algorithm II (NSGA II). The Box-Behnken design of the response surface methodology is used in an experimental matrix, with four factors and two levels. The diameter and length of the pulse tube and regenerator are chosen as the design variables where the rest of the dimensions and operating conditions of the ITPTR are constant. The required output responses are the cold head temperature (Tcold) and compressor input power (Wcomp). Computational fluid dynamics (CFD) have been used to model and solve the ITPTR. The CFD results agreed well with those of the previously published paper. Also using the results from the 1-D simulation, RSM is conducted to analyse the effect of the independent variables on the responses. To check the accuracy of the model, the analysis of variance (ANOVA) method has been used. Based on the proposed mathematical RSM models a multi-objective optimization study, using the Non-sorted genetic algorithm II (NSGA-II) has been performed to optimize the responses.

  3. Hybridization between multi-objective genetic algorithm and support vector machine for feature selection in walker-assisted gait.

    PubMed

    Martins, Maria; Costa, Lino; Frizera, Anselmo; Ceres, Ramón; Santos, Cristina

    2014-03-01

    Walker devices are often prescribed incorrectly to patients, leading to the increase of dissatisfaction and occurrence of several problems, such as, discomfort and pain. Thus, it is necessary to objectively evaluate the effects that assisted gait can have on the gait patterns of walker users, comparatively to a non-assisted gait. A gait analysis, focusing on spatiotemporal and kinematics parameters, will be issued for this purpose. However, gait analysis yields redundant information that often is difficult to interpret. This study addresses the problem of selecting the most relevant gait features required to differentiate between assisted and non-assisted gait. For that purpose, it is presented an efficient approach that combines evolutionary techniques, based on genetic algorithms, and support vector machine algorithms, to discriminate differences between assisted and non-assisted gait with a walker with forearm supports. For comparison purposes, other classification algorithms are verified. Results with healthy subjects show that the main differences are characterized by balance and joints excursion in the sagittal plane. These results, confirmed by clinical evidence, allow concluding that this technique is an efficient feature selection approach. PMID:24444751

  4. GMDH-type neural network modeling and genetic algorithm-based multi-objective optimization of thermal and friction characteristics in heat exchanger tubes with wire-rod bundles

    NASA Astrophysics Data System (ADS)

    Rahimi, Masoud; Beigzadeh, Reza; Parvizi, Mehdi; Eiamsa-ard, Smith

    2016-08-01

    The group method of data handling (GMDH) technique was used to predict heat transfer and friction characteristics in heat exchanger tubes equipped with wire-rod bundles. Nusselt number and friction factor were determined as functions of wire-rod bundle geometric parameters and Reynolds number. The performance of the developed GMDH-type neural networks was found to be superior in comparison with the proposed empirical correlations. For optimization, the genetic algorithm-based multi-objective optimization was applied.

  5. Multi-objective shape optimization of plate structure under stress criteria based on sub-structured mixed FEM and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Garambois, Pierre; Besset, Sebastien; Jézéquel, Louis

    2015-07-01

    This paper presents a methodology for the multi-objective (MO) shape optimization of plate structure under stress criteria, based on a mixed Finite Element Model (FEM) enhanced with a sub-structuring method. The optimization is performed with a classical Genetic Algorithm (GA) method based on Pareto-optimal solutions and considers thickness distributions parameters and antagonist objectives among them stress criteria. We implement a displacement-stress Dynamic Mixed FEM (DM-FEM) for plate structure vibrations analysis. Such a model gives a privileged access to the stress within the plate structure compared to primal classical FEM, and features a linear dependence to the thickness parameters. A sub-structuring reduction method is also computed in order to reduce the size of the mixed FEM and split the given structure into smaller ones with their own thickness parameters. Those methods combined enable a fast and stress-wise efficient structure analysis, and improve the performance of the repetitive GA. A few cases of minimizing the mass and the maximum Von Mises stress within a plate structure under a dynamic load put forward the relevance of our method with promising results. It is able to satisfy multiple damage criteria with different thickness distributions, and use a smaller FEM.

  6. Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting genetic algorithm-II

    NASA Astrophysics Data System (ADS)

    Dhingra, Sunil; Bhushan, Gian; Dubey, Kashyap Kumar

    2014-03-01

    The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NO x , unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NO x , HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NO x , HC, smoke, a multiobjective optimization problem is formulated. Nondominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.

  7. Flower pollination algorithm: A novel approach for multiobjective optimization

    NASA Astrophysics Data System (ADS)

    Yang, Xin-She; Karamanoglu, Mehmet; He, Xingshi

    2014-09-01

    Multiobjective design optimization problems require multiobjective optimization techniques to solve, and it is often very challenging to obtain high-quality Pareto fronts accurately. In this article, the recently developed flower pollination algorithm (FPA) is extended to solve multiobjective optimization problems. The proposed method is used to solve a set of multiobjective test functions and two bi-objective design benchmarks, and a comparison of the proposed algorithm with other algorithms has been made, which shows that the FPA is efficient with a good convergence rate. Finally, the importance for further parametric studies and theoretical analysis is highlighted and discussed.

  8. A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms

    PubMed Central

    Díaz-Manríquez, Alan; Toscano, Gregorio; Barron-Zambrano, Jose Hugo; Tello-Leal, Edgar

    2016-01-01

    Multiobjective evolutionary algorithms have incorporated surrogate models in order to reduce the number of required evaluations to approximate the Pareto front of computationally expensive multiobjective optimization problems. Currently, few works have reviewed the state of the art in this topic. However, the existing reviews have focused on classifying the evolutionary multiobjective optimization algorithms with respect to the type of underlying surrogate model. In this paper, we center our focus on classifying multiobjective evolutionary algorithms with respect to their integration with surrogate models. This interaction has led us to classify similar approaches and identify advantages and disadvantages of each class. PMID:27382366

  9. Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.

  10. Multiobjective genetic approach for optimal control of photoinduced processes

    SciTech Connect

    Bonacina, Luigi; Extermann, Jerome; Rondi, Ariana; Wolf, Jean-Pierre; Boutou, Veronique

    2007-08-15

    We have applied a multiobjective genetic algorithm to the optimization of multiphoton-excited fluorescence. Our study shows the advantages that this approach can offer to experiments based on adaptive shaping of femtosecond pulses. The algorithm outperforms single-objective optimizations, being totally independent from the bias of user defined parameters and giving simultaneous access to a large set of feasible solutions. The global inspection of their ensemble represents a powerful support to unravel the connections between pulse spectral field features and excitation dynamics of the sample.

  11. A hierarchical evolutionary algorithm for multiobjective optimization in IMRT

    PubMed Central

    Holdsworth, Clay; Kim, Minsun; Liao, Jay; Phillips, Mark H.

    2010-01-01

    Purpose: The current inverse planning methods for intensity modulated radiation therapy (IMRT) are limited because they are not designed to explore the trade-offs between the competing objectives of tumor and normal tissues. The goal was to develop an efficient multiobjective optimization algorithm that was flexible enough to handle any form of objective function and that resulted in a set of Pareto optimal plans. Methods: A hierarchical evolutionary multiobjective algorithm designed to quickly generate a small diverse Pareto optimal set of IMRT plans that meet all clinical constraints and reflect the optimal trade-offs in any radiation therapy plan was developed. The top level of the hierarchical algorithm is a multiobjective evolutionary algorithm (MOEA). The genes of the individuals generated in the MOEA are the parameters that define the penalty function minimized during an accelerated deterministic IMRT optimization that represents the bottom level of the hierarchy. The MOEA incorporates clinical criteria to restrict the search space through protocol objectives and then uses Pareto optimality among the fitness objectives to select individuals. The population size is not fixed, but a specialized niche effect, domination advantage, is used to control the population and plan diversity. The number of fitness objectives is kept to a minimum for greater selective pressure, but the number of genes is expanded for flexibility that allows a better approximation of the Pareto front. Results: The MOEA improvements were evaluated for two example prostate cases with one target and two organs at risk (OARs). The population of plans generated by the modified MOEA was closer to the Pareto front than populations of plans generated using a standard genetic algorithm package. Statistical significance of the method was established by compiling the results of 25 multiobjective optimizations using each method. From these sets of 12–15 plans, any random plan selected from a MOEA

  12. Pareto Design of State Feedback Tracking Control of a Biped Robot via Multiobjective PSO in Comparison with Sigma Method and Genetic Algorithms: Modified NSGAII and MATLAB's Toolbox

    PubMed Central

    Mahmoodabadi, M. J.; Taherkhorsandi, M.; Bagheri, A.

    2014-01-01

    An optimal robust state feedback tracking controller is introduced to control a biped robot. In the literature, the parameters of the controller are usually determined by a tedious trial and error process. To eliminate this process and design the parameters of the proposed controller, the multiobjective evolutionary algorithms, that is, the proposed method, modified NSGAII, Sigma method, and MATLAB's Toolbox MOGA, are employed in this study. Among the used evolutionary optimization algorithms to design the controller for biped robots, the proposed method operates better in the aspect of designing the controller since it provides ample opportunities for designers to choose the most appropriate point based upon the design criteria. Three points are chosen from the nondominated solutions of the obtained Pareto front based on two conflicting objective functions, that is, the normalized summation of angle errors and normalized summation of control effort. Obtained results elucidate the efficiency of the proposed controller in order to control a biped robot. PMID:24616619

  13. A tabu search evalutionary algorithm for multiobjective optimization: Application to a bi-criterion aircraft structural reliability problem

    NASA Astrophysics Data System (ADS)

    Long, Kim Chenming

    Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this

  14. Multi-objective Job Shop Rescheduling with Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Hao, Xinchang; Gen, Mitsuo

    In current manufacturing systems, production processes and management are involved in many unexpected events and new requirements emerging constantly. This dynamic environment implies that operation rescheduling is usually indispensable. A wide variety of procedures and heuristics has been developed to improve the quality of rescheduling. However, most proposed approaches are derived usually with respect to simplified assumptions. As a consequence, these approaches might be inconsistent with the actual requirements in a real production environment, i.e., they are often unsuitable and inflexible to respond efficiently to the frequent changes. In this paper, a multi-objective job shop rescheduling problem (moJSRP) is formulated to improve the practical application of rescheduling. To solve the moJSRP model, an evolutionary algorithm is designed, in which a random key-based representation and interactive adaptive-weight (i-awEA) fitness assignment are embedded. To verify the effectiveness, the proposed algorithm has been compared with other apporaches and benchmarks on the robustness of moJRP optimziation. The comparison results show that iAWGA-A is better than weighted fitness method in terms of effectiveness and stability. Simlarly, iAWGA-A also outperforms other well stability approachessuch as non-dominated sorting genetic algorithm (NSGA-II) and strength Pareto evolutionary algorithm2 (SPEA2).

  15. Multi-objective optimization of combined Brayton and inverse Brayton cycles using advanced optimization algorithms

    NASA Astrophysics Data System (ADS)

    Venkata Rao, R.; Patel, Vivek

    2012-08-01

    This study explores the use of teaching-learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms for determining the optimum operating conditions of combined Brayton and inverse Brayton cycles. Maximization of thermal efficiency and specific work of the system are considered as the objective functions and are treated simultaneously for multi-objective optimization. Upper cycle pressure ratio and bottom cycle expansion pressure of the system are considered as design variables for the multi-objective optimization. An application example is presented to demonstrate the effectiveness and accuracy of the proposed algorithms. The results of optimization using the proposed algorithms are validated by comparing with those obtained by using the genetic algorithm (GA) and particle swarm optimization (PSO) on the same example. Improvement in the results is obtained by the proposed algorithms. The results of effect of variation of the algorithm parameters on the convergence and fitness values of the objective functions are reported.

  16. An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.

    PubMed

    Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed

    2015-10-01

    Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front. PMID:25373137

  17. A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis

    PubMed Central

    Song, Zhiming; Wang, Maocai; Dai, Guangming; Vasile, Massimiliano

    2015-01-01

    As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m − 1)-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA) is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m − 1)-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper. PMID:25874246

  18. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    NASA Astrophysics Data System (ADS)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2016-07-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  19. Multi-objective evolutionary algorithm for operating parallel reservoir system

    NASA Astrophysics Data System (ADS)

    Chang, Li-Chiu; Chang, Fi-John

    2009-10-01

    SummaryThis paper applies a multi-objective evolutionary algorithm, the non-dominated sorting genetic algorithm (NSGA-II), to examine the operations of a multi-reservoir system in Taiwan. The Feitsui and Shihmen reservoirs are the most important water supply reservoirs in Northern Taiwan supplying the domestic and industrial water supply needs for over 7 million residents. A daily operational simulation model is developed to guide the releases of the reservoir system and then to calculate the shortage indices (SI) of both reservoirs over a long-term simulation period. The NSGA-II is used to minimize the SI values through identification of optimal joint operating strategies. Based on a 49 year data set, we demonstrate that better operational strategies would reduce shortage indices for both reservoirs. The results indicate that the NSGA-II provides a promising approach. The pareto-front optimal solutions identified operational compromises for the two reservoirs that would be expected to improve joint operations.

  20. Comparison of Evolutionary Multiobjective Algorithms For Calibrating An Integrated Semi-distributed Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Reed, P.; Wagner, T.

    2005-12-01

    This study provides the first comprehensive assessment of state-of-the-art evolutionary multiobjective optimization (EMO) tools- relative effectiveness in calibrating integrated hydrologic models. The relative computational efficiency, accuracy, and ease-of-use of the following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic Algorithm-II (??-NSGAII), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). This study assesses the performances of these three evolutionary multiobjective algorithms using a formal metrics-based methodology. This study uses two phases of testing to compare the algorithms- performances. In the first phase, this study uses a suite of standard computer science test problems to validate the algorithms- abilities to perform global search effectively, efficiently, and reliably. The second phase of testing compares the algorithms- performances for a computationally intensive multiobjective integrated hydrologic model calibration application for the Shale Hills watershed located within the Valley and Ridge province of the Susquehanna River Basin in north central Pennsylvania. The Shale Hills test case demonstrates the computational challenges posed by the paradigmatic shift in environmental and water resources simulation tools towards highly nonlinear physical models that seek to holistically simulate the water cycle. Specifically, the Shale Hills test case is an excellent test for the three EMO algorithms due to the large number of continuous decision variables, the increased computational demands posed by the simulating fully-coupled hydrologic processes, and the highly multimodal nature of the search space. A challenge and contribution of this work is the development of a comprehensive methodology for comprehensively comparing EMO algorithms that have different search operators and randomization techniques.

  1. How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Reed, P.; Wagener, T.

    2005-11-01

    This study provides a comprehensive assessment of state-of-the-art evolutionary multiobjective optimization (EMO) tools' relative effectiveness in calibrating hydrologic models. The relative computational efficiency, accuracy, and ease-of-use of the following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic Algorithm-II (ɛ-NSGAII), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). This study uses three test cases to compare the algorithms' performances: (1) a standardized test function suite from the computer science literature, (2) a benchmark hydrologic calibration test case for the Leaf River near Collins, Mississippi, and (3) a computationally intensive integrated model application in the Shale Hills watershed in Pennsylvania. A challenge and contribution of this work is the development of a methodology for comprehensively comparing EMO algorithms that have different search operators and randomization techniques. Overall, SPEA2 is an excellent benchmark algorithm for multiobjective hydrologic model calibration. SPEA2 attained competitive to superior results for most of the problems tested in this study. ɛ-NSGAII appears to be superior to MOSCEM-UA and competitive with SPEA2 for hydrologic model calibration.

  2. Multi-objective nested algorithms for optimal reservoir operation

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj; Solomatine, Dimitri

    2016-04-01

    The optimal reservoir operation is in general a multi-objective problem, meaning that multiple objectives are to be considered at the same time. For solving multi-objective optimization problems there exist a large number of optimization algorithms - which result in a generation of a Pareto set of optimal solutions (typically containing a large number of them), or more precisely, its approximation. At the same time, due to the complexity and computational costs of solving full-fledge multi-objective optimization problems some authors use a simplified approach which is generically called "scalarization". Scalarization transforms the multi-objective optimization problem to a single-objective optimization problem (or several of them), for example by (a) single objective aggregated weighted functions, or (b) formulating some objectives as constraints. We are using the approach (a). A user can decide how many multi-objective single search solutions will generate, depending on the practical problem at hand and by choosing a particular number of the weight vectors that are used to weigh the objectives. It is not guaranteed that these solutions are Pareto optimal, but they can be treated as a reasonably good and practically useful approximation of a Pareto set, albeit small. It has to be mentioned that the weighted-sum approach has its known shortcomings because the linear scalar weights will fail to find Pareto-optimal policies that lie in the concave region of the Pareto front. In this context the considered approach is implemented as follows: there are m sets of weights {w1i, …wni} (i starts from 1 to m), and n objectives applied to single objective aggregated weighted sum functions of nested dynamic programming (nDP), nested stochastic dynamic programming (nSDP) and nested reinforcement learning (nRL). By employing the multi-objective optimization by a sequence of single-objective optimization searches approach, these algorithms acquire the multi-objective properties

  3. A Multipopulation Coevolutionary Strategy for Multiobjective Immune Algorithm

    PubMed Central

    Shi, Jiao; Gong, Maoguo; Ma, Wenping; Jiao, Licheng

    2014-01-01

    How to maintain the population diversity is an important issue in designing a multiobjective evolutionary algorithm. This paper presents an enhanced nondominated neighbor-based immune algorithm in which a multipopulation coevolutionary strategy is introduced for improving the population diversity. In the proposed algorithm, subpopulations evolve independently; thus the unique characteristics of each subpopulation can be effectively maintained, and the diversity of the entire population is effectively increased. Besides, the dynamic information of multiple subpopulations is obtained with the help of the designed cooperation operator which reflects a mutually beneficial relationship among subpopulations. Subpopulations gain the opportunity to exchange information, thereby expanding the search range of the entire population. Subpopulations make use of the reference experience from each other, thereby improving the efficiency of evolutionary search. Compared with several state-of-the-art multiobjective evolutionary algorithms on well-known and frequently used multiobjective and many-objective problems, the proposed algorithm achieves comparable results in terms of convergence, diversity metrics, and running time on most test problems. PMID:24672330

  4. MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and AntColony.

    PubMed

    Ke, Liangjun; Zhang, Qingfu; Battiti, Roberto

    2013-12-01

    Combining ant colony optimization (ACO) and the multiobjective evolutionary algorithm (EA) based on decomposition (MOEA/D), this paper proposes a multiobjective EA, i.e., MOEA/D-ACO. Following other MOEA/D-like algorithms, MOEA/D-ACO decomposes a multiobjective optimization problem into a number of single-objective optimization problems. Each ant (i.e., agent) is responsible for solving one subproblem. All the ants are divided into a few groups, and each ant has several neighboring ants. An ant group maintains a pheromone matrix, and an individual ant has a heuristic information matrix. During the search, each ant also records the best solution found so far for its subproblem. To construct a new solution, an ant combines information from its group's pheromone matrix, its own heuristic information matrix, and its current solution. An ant checks the new solutions constructed by itself and its neighbors, and updates its current solution if it has found a better one in terms of its own objective. Extensive experiments have been conducted in this paper to study and compare MOEA/D-ACO with other algorithms on two sets of test problems. On the multiobjective 0-1 knapsack problem,MOEA/D-ACO outperforms the MOEA/D with conventional genetic operators and local search on all the nine test instances. We also demonstrate that the heuristic information matrices in MOEA/D-ACO are crucial to the good performance of MOEA/D-ACO for the knapsack problem. On the biobjective traveling salesman problem, MOEA/D-ACO performs much better than the BicriterionAnt on all the 12 test instances. We also evaluate the effects of grouping, neighborhood, and the location information of current solutions on the performance of MOEA/D-ACO. The work in this paper shows that reactive search optimization scheme, i.e., the "learning while optimizing" principle, is effective in improving multiobjective optimization algorithms. PMID:23757576

  5. Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Oyama, Akira; Liou, Meng-Sing

    2001-01-01

    A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.

  6. Multi-Objective Community Detection Based on Memetic Algorithm

    PubMed Central

    2015-01-01

    Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646

  7. Constrained Multiobjective Optimization Algorithm Based on Immune System Model.

    PubMed

    Qian, Shuqu; Ye, Yongqiang; Jiang, Bin; Wang, Jianhong

    2016-09-01

    An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The feasible nondominated individuals focus on exploring the nondominated front through clone and hypermutation based on a proposed affinity design approach, while the infeasible/dominated individuals are exploited and improved via the simulated binary crossover and polynomial mutation operations. And then, to accelerate the convergence of the proposed algorithm, a transformation technique is applied to the combined population of the above two offspring populations. Finally, a crowded-comparison strategy is used to create the next generation population. In numerical experiments, a series of benchmark constrained multiobjective optimization problems are considered to evaluate the performance of the proposed algorithm and it is also compared to several state-of-art algorithms in terms of the inverted generational distance and hypervolume indicators. The results indicate that the new method achieves competitive performance and even statistically significant better results than previous algorithms do on most of the benchmark suite. PMID:26285230

  8. A hybrid multi-objective evolutionary algorithm for optimal groundwater management under variable density conditions

    NASA Astrophysics Data System (ADS)

    Wu, J.; Yang, Y.; Wu, J.

    2011-12-01

    In this study, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to neighborhood step size. The NPTSGA is developed on the thought of integrating genetic algorithm (GA) with a TS based MOEA, niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arose from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA can balance the tradeoff between the intensification of nondomination and the diversification of near Pareto-optimal solutions and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.

  9. A multiobjective memetic algorithm based on particle swarm optimization.

    PubMed

    Liu, Dasheng; Tan, K C; Goh, C K; Ho, W K

    2007-02-01

    In this paper, a new memetic algorithm (MA) for multiobjective (MO) optimization is proposed, which combines the global search ability of particle swarm optimization with a synchronous local search heuristic for directed local fine-tuning. A new particle updating strategy is proposed based upon the concept of fuzzy global-best to deal with the problem of premature convergence and diversity maintenance within the swarm. The proposed features are examined to show their individual and combined effects in MO optimization. The comparative study shows the effectiveness of the proposed MA, which produces solution sets that are highly competitive in terms of convergence, diversity, and distribution. PMID:17278557

  10. Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management

    NASA Astrophysics Data System (ADS)

    Kourakos, George; Mantoglou, Aristotelis

    2013-02-01

    SummaryThe demand for fresh water in coastal areas and islands can be very high due to increased local needs and tourism. A multi-objective optimization methodology is developed, involving minimization of economic and environmental costs while satisfying water demand. The methodology considers desalinization of pumped water and injection of treated water into the aquifer. Variable density aquifer models are computationally intractable when integrated in optimization algorithms. In order to alleviate this problem, a multi-objective optimization algorithm is developed combining surrogate models based on Modular Neural Networks [MOSA(MNNs)]. The surrogate models are trained adaptively during optimization based on a genetic algorithm. In the crossover step, each pair of parents generates a pool of offspring which are evaluated using the fast surrogate model. Then, the most promising offspring are evaluated using the exact numerical model. This procedure eliminates errors in Pareto solution due to imprecise predictions of the surrogate model. The method has important advancements compared to previous methods such as precise evaluation of the Pareto set and alleviation of propagation of errors due to surrogate model approximations. The method is applied to an aquifer in the Greek island of Santorini. The results show that the new MOSA(MNN) algorithm offers significant reduction in computational time compared to previous methods (in the case study it requires only 5% of the time required by other methods). Further, the Pareto solution is better than the solution obtained by alternative algorithms.

  11. Transonic Wing Shape Optimization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  12. Multi-Objective Genetic Programming with Redundancy-Regulations for Automatic Construction of Image Feature Extractors

    NASA Astrophysics Data System (ADS)

    Watchareeruetai, Ukrit; Matsumoto, Tetsuya; Takeuchi, Yoshinori; Kudo, Hiroaki; Ohnishi, Noboru

    We propose a new multi-objective genetic programming (MOGP) for automatic construction of image feature extraction programs (FEPs). The proposed method was originated from a well known multi-objective evolutionary algorithm (MOEA), i.e., NSGA-II. The key differences are that redundancy-regulation mechanisms are applied in three main processes of the MOGP, i.e., population truncation, sampling, and offspring generation, to improve population diversity as well as convergence rate. Experimental results indicate that the proposed MOGP-based FEP construction system outperforms the two conventional MOEAs (i.e., NSGA-II and SPEA2) for a test problem. Moreover, we compared the programs constructed by the proposed MOGP with four human-designed object recognition programs. The results show that the constructed programs are better than two human-designed methods and are comparable with the other two human-designed methods for the test problem.

  13. Evolutionary algorithms for multi-objective optimization: fuzzy preference aggregation and multisexual EAs

    NASA Astrophysics Data System (ADS)

    Bonissone, Stefano R.

    2001-11-01

    There are many approaches to solving multi-objective optimization problems using evolutionary algorithms. We need to select methods for representing and aggregating preferences, as well as choosing strategies for searching in multi-dimensional objective spaces. First we suggest the use of linguistic variables to represent preferences and the use of fuzzy rule systems to implement tradeoff aggregations. After a review of alternatives EA methods for multi-objective optimizations, we explore the use of multi-sexual genetic algorithms (MSGA). In using a MSGA, we need to modify certain parts of the GAs, namely the selection and crossover operations. The selection operator groups solutions according to their gender tag to prepare them for crossover. The crossover is modified by appending a gender tag at the end of the chromosome. We use single and double point crossovers. We determine the gender of the offspring by the amount of genetic material provided by each parent. The parent that contributed the most to the creation of a specific offspring determines the gender that the offspring will inherit. This is still a work in progress, and in the conclusion we examine many future extensions and experiments.

  14. A Self-adaptive Evolutionary Algorithm for Multi-objective Optimization

    NASA Astrophysics Data System (ADS)

    Cao, Ruifen; Li, Guoli; Wu, Yican

    Evolutionary algorithm has gained a worldwide popularity among multi-objective optimization. The paper proposes a self-adaptive evolutionary algorithm (called SEA) for multi-objective optimization. In the SEA, the probability of crossover and mutation,P c and P m , are varied depending on the fitness values of the solutions. Fitness assignment of SEA realizes the twin goals of maintaining diversity in the population and guiding the population to the true Pareto Front; fitness value of individual not only depends on improved density estimation but also depends on non-dominated rank. The density estimation can keep diversity in all instances including when scalars of all objectives are much different from each other. SEA is compared against the Non-dominated Sorting Genetic Algorithm (NSGA-II) on a set of test problems introduced by the MOEA community. Simulated results show that SEA is as effective as NSGA-II in most of test functions, but when scalar of objectives are much different from each other, SEA has better distribution of non-dominated solutions.

  15. How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Reed, P.; Wagener, T.

    2006-05-01

    This study provides a comprehensive assessment of state-of-the-art evolutionary multiobjective optimization (EMO) tools' relative effectiveness in calibrating hydrologic models. The relative computational efficiency, accuracy, and ease-of-use of the following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic Algorithm-II (ɛ-NSGAII), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). This study uses three test cases to compare the algorithms' performances: (1) a standardized test function suite from the computer science literature, (2) a benchmark hydrologic calibration test case for the Leaf River near Collins, Mississippi, and (3) a computationally intensive integrated surface-subsurface model application in the Shale Hills watershed in Pennsylvania. One challenge and contribution of this work is the development of a methodology for comprehensively comparing EMO algorithms that have different search operators and randomization techniques. Overall, SPEA2 attained competitive to superior results for most of the problems tested in this study. The primary strengths of the SPEA2 algorithm lie in its search reliability and its diversity preservation operator. The biggest challenge in maximizing the performance of SPEA2 lies in specifying an effective archive size without a priori knowledge of the Pareto set. In practice, this would require significant trial-and-error analysis, which is problematic for more complex, computationally intensive calibration applications. ɛ-NSGAII appears to be superior to MOSCEM-UA and competitive with SPEA2 for hydrologic model calibration. ɛ-NSGAII's primary strength lies in its ease-of-use due to its dynamic population sizing and archiving which lead to rapid convergence to very high quality solutions with minimal user input. MOSCEM-UA is best suited for hydrologic model calibration applications that have small parameter sets

  16. Identification of IPMC nonlinear model via single and multi-objective optimization algorithms.

    PubMed

    Caponetto, Riccardo; Graziani, Salvatore; Pappalardo, Fulvio; Sapuppo, Francesca

    2014-03-01

    Ionic Polymer-Metal Composites (IPMCs) are electro-active polymers transforming mechanical forces into electric signals and vice versa. This paper proposes an improved electro-mechanical grey-box model for IPMC membrane working as actuator. In particular the IPMC nonlinearity has been characterized through experimentation and included within the electric model. Moreover identification of the model parameters has been performed via optimization algorithms using both single- and multi-objective formulation. Minimization was attained via the Nelder-Mead simplex and the Genetic Algorithms considering as cost functions the error between the experimental and modeled absorbed current and the error between experimental and modeled displacement. The obtained results for the different formulations have been then compared. PMID:24342273

  17. Optimization of hybrid laminated composites using the multi-objective gravitational search algorithm (MOGSA)

    NASA Astrophysics Data System (ADS)

    Hemmatian, Hossein; Fereidoon, Abdolhossein; Assareh, Ehsanolah

    2014-09-01

    The multi-objective gravitational search algorithm (MOGSA) technique is applied to hybrid laminates to achieve minimum weight and cost. The investigated laminate is made of glass-epoxy and carbon-epoxy plies to combine the economical attributes of the first with the light weight and high-stiffness properties of the second in order to make the trade-off between the cost and weight as the objective functions. The first natural flexural frequency was considered as a constraint. The results obtained using the MOGSA, including the Pareto set, optimum stacking sequences and number of plies made of either glass or carbon fibres, were compared with those using the genetic algorithm (GA) and ant colony optimization (ACO) reported in the literature. The comparisons confirmed the advantages of hybridization and showed that the MOGSA outperformed the GA and ACO in terms of the functions' value and constraint accuracy.

  18. A master-slave parallel hybrid multi-objective evolutionary algorithm for groundwater remediation design under general hydrogeological conditions

    NASA Astrophysics Data System (ADS)

    Wu, J.; Yang, Y.; Luo, Q.; Wu, J.

    2012-12-01

    This study presents a new hybrid multi-objective evolutionary algorithm, the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), whereby the global search ability of niched Pareto tabu search (NPTS) is improved by the diversification of candidate solutions arose from the evolving nondominated sorting genetic algorithm II (NSGA-II) population. Also, the NPTSGA coupled with the commonly used groundwater flow and transport codes, MODFLOW and MT3DMS, is developed for multi-objective optimal design of groundwater remediation systems. The proposed methodology is then applied to a large-scale field groundwater remediation system for cleanup of large trichloroethylene (TCE) plume at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. Furthermore, a master-slave (MS) parallelization scheme based on the Message Passing Interface (MPI) is incorporated into the NPTSGA to implement objective function evaluations in distributed processor environment, which can greatly improve the efficiency of the NPTSGA in finding Pareto-optimal solutions to the real-world application. This study shows that the MS parallel NPTSGA in comparison with the original NPTS and NSGA-II can balance the tradeoff between diversity and optimality of solutions during the search process and is an efficient and effective tool for optimizing the multi-objective design of groundwater remediation systems under complicated hydrogeologic conditions.

  19. Comparing State-of-the-Art Evolutionary Multi-Objective Algorithms for Long-Term Groundwater Monitoring Design

    NASA Astrophysics Data System (ADS)

    Reed, P. M.; Kollat, J. B.

    2005-12-01

    This study demonstrates the effectiveness of a modified version of Deb's Non-Dominated Sorted Genetic Algorithm II (NSGAII), which the authors have named the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (Epsilon-NSGAII), at solving a four objective long-term groundwater monitoring (LTM) design test case. The Epsilon-NSGAII incorporates prior theoretical competent evolutionary algorithm (EA) design concepts and epsilon-dominance archiving to improve the original NSGAII's efficiency, reliability, and ease-of-use. This algorithm eliminates much of the traditional trial-and-error parameterization associated with evolutionary multi-objective optimization (EMO) through epsilon-dominance archiving, dynamic population sizing, and automatic termination. The effectiveness and reliability of the new algorithm is compared to the original NSGAII as well as two other benchmark multi-objective evolutionary algorithms (MOEAs), the Epsilon-Dominance Multi-Objective Evolutionary Algorithm (Epsilon-MOEA) and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). These MOEAs have been selected because they have been demonstrated to be highly effective at solving numerous multi-objective problems. The results presented in this study indicate superior performance of the Epsilon-NSGAII in terms of the hypervolume indicator, unary Epsilon-indicator, and first-order empirical attainment function metrics. In addition, the runtime metric results indicate that the diversity and convergence dynamics of the Epsilon-NSGAII are competitive to superior relative to the SPEA2, with both algorithms greatly outperforming the NSGAII and Epsilon-MOEA in terms of these metrics. The improvements in performance of the Epsilon-NSGAII over its parent algorithm the NSGAII demonstrate that the application of Epsilon-dominance archiving, dynamic population sizing with archive injection, and automatic termination greatly improve algorithm efficiency and reliability. In addition, the usability of

  20. Optimal design of multichannel fiber Bragg grating filters using Pareto multi-objective optimization algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Liu, Tundong; Jiang, Hao

    2016-01-01

    A Pareto-based multi-objective optimization approach is proposed to design multichannel FBG filters. Instead of defining a single optimal objective, the proposed method establishes the multi-objective model by taking two design objectives into account, which are minimizing the maximum index modulation and minimizing the mean dispersion error. To address this optimization problem, we develop a two-stage evolutionary computation approach integrating an elitist non-dominated sorting genetic algorithm (NSGA-II) and technique for order preference by similarity to ideal solution (TOPSIS). NSGA-II is utilized to search for the candidate solutions in terms of both objectives. The obtained results are provided as Pareto front. Subsequently, the best compromise solution is determined by the TOPSIS method from the Pareto front according to the decision maker's preference. The design results show that the proposed approach yields a remarkable reduction of the maximum index modulation and the performance of dispersion spectra of the designed filter can be optimized simultaneously.

  1. A hybrid multi-objective particle swarm algorithm for a mixed-model assembly line sequencing problem

    NASA Astrophysics Data System (ADS)

    Rahimi-Vahed, A. R.; Mirghorbani, S. M.; Rabbani, M.

    2007-12-01

    Mixed-model assembly line sequencing is one of the most important strategic problems in the field of production management where diversified customers' demands exist. In this article, three major goals are considered: (i) total utility work, (ii) total production rate variation and (iii) total setup cost. Due to the complexity of the problem, a hybrid multi-objective algorithm based on particle swarm optimization (PSO) and tabu search (TS) is devised to obtain the locally Pareto-optimal frontier where simultaneous minimization of the above-mentioned objectives is desired. In order to validate the performance of the proposed algorithm in terms of solution quality and diversity level, the algorithm is applied to various test problems and its reliability, based on different comparison metrics, is compared with three prominent multi-objective genetic algorithms, PS-NC GA, NSGA-II and SPEA-II. The computational results show that the proposed hybrid algorithm significantly outperforms existing genetic algorithms in large-sized problems.

  2. Effective multi-objective optimization with the coral reefs optimization algorithm

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.; Pastor-Sánchez, A.; Portilla-Figueras, J. A.; Prieto, L.

    2016-06-01

    In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor.

  3. General cardinality genetic algorithms

    PubMed

    Koehler; Bhattacharyya; Vose

    1997-01-01

    A complete generalization of the Vose genetic algorithm model from the binary to higher cardinality case is provided. Boolean AND and EXCLUSIVE-OR operators are replaced by multiplication and addition over rings of integers. Walsh matrices are generalized with finite Fourier transforms for higher cardinality usage. Comparison of results to the binary case are provided. PMID:10021767

  4. Optimal design of groundwater remediation systems using a probabilistic multi-objective fast harmony search algorithm under uncertainty

    NASA Astrophysics Data System (ADS)

    Luo, Q.; Wu, J.; Qian, J.

    2013-12-01

    This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation system under uncertainty associated with the hydraulic conductivity of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic Pareto domination ranking and probabilistic niche technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient hydraulic conductivity data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal groundwater remediation system of a two-dimensional hypothetical test problem involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the percentage of mass remaining in the aquifer at the end of the operational period, which uses the Pump-and-Treat (PAT) technology to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is used to demonstrate the effectiveness of the proposed methodology. The MC analysis is taken to each Pareto solutions for every K realization. Then the statistical mean and the upper and lower bounds of uncertainty intervals of 95% confidence level are calculated. The MC analysis results show that all of the Pareto-optimal solutions are located between the upper and lower bounds of the MC analysis. Moreover, the root mean square errors (RMSEs) between the Pareto-optimal solutions by the PMOFHS and the average values of optimal solutions by the MC analysis are 0.0204 for the first objective and 0.0318 for the second objective, quite smaller than those RMSEs between the results by the existing probabilistic multi-objective genetic algorithm (PMOGA) and the MC analysis, 0.0384 and 0.0397, respectively. In

  5. Genetic Algorithms and Local Search

    NASA Technical Reports Server (NTRS)

    Whitley, Darrell

    1996-01-01

    The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.

  6. Evaluation of multi-algorithm optimization approach in multi-objective rainfall-runoff calibration

    NASA Astrophysics Data System (ADS)

    Shafii, M.; de Smedt, F.

    2009-04-01

    Calibration of rainfall-runoff models is one of the issues in which hydrologists have been interested over past decades. Because of the multi-objective nature of rainfall-runoff calibration, and due to advances in computational power, population-based optimization techniques are becoming increasingly popular to be applied for multi-objective calibration schemes. Over past recent years, such methods have shown to be powerful search methods for this purpose, especially when there are a large number of calibration parameters. However, application of these methods is always criticised based on the fact that it is not possible to develop a single algorithm which is always efficient for different problems. Therefore, more recent efforts have been focused towards development of simultaneous multiple optimization algorithms to overcome this drawback. This paper involves one of the most recent population-based multi-algorithm approaches, named AMALGAM, for application to multi-objective rainfall-runoff calibration in a distributed hydrological model, WetSpa. This algorithm merges the strengths of different optimization algorithms and it, thus, has proven to be more efficient than other methods. In order to evaluate this issue, comparison between results of this paper and those previously reported using a normal multi-objective evolutionary algorithm would be the next step of this study.

  7. A multiobjective evolutionary algorithm to find community structures based on affinity propagation

    NASA Astrophysics Data System (ADS)

    Shang, Ronghua; Luo, Shuang; Zhang, Weitong; Stolkin, Rustam; Jiao, Licheng

    2016-07-01

    Community detection plays an important role in reflecting and understanding the topological structure of complex networks, and can be used to help mine the potential information in networks. This paper presents a Multiobjective Evolutionary Algorithm based on Affinity Propagation (APMOEA) which improves the accuracy of community detection. Firstly, APMOEA takes the method of affinity propagation (AP) to initially divide the network. To accelerate its convergence, the multiobjective evolutionary algorithm selects nondominated solutions from the preliminary partitioning results as its initial population. Secondly, the multiobjective evolutionary algorithm finds solutions approximating the true Pareto optimal front through constantly selecting nondominated solutions from the population after crossover and mutation in iterations, which overcomes the tendency of data clustering methods to fall into local optima. Finally, APMOEA uses an elitist strategy, called "external archive", to prevent degeneration during the process of searching using the multiobjective evolutionary algorithm. According to this strategy, the preliminary partitioning results obtained by AP will be archived and participate in the final selection of Pareto-optimal solutions. Experiments on benchmark test data, including both computer-generated networks and eight real-world networks, show that the proposed algorithm achieves more accurate results and has faster convergence speed compared with seven other state-of-art algorithms.

  8. Assessing Activity Pattern Similarity with Multidimensional Sequence Alignment based on a Multiobjective Optimization Evolutionary Algorithm

    PubMed Central

    Kwan, Mei-Po; Xiao, Ningchuan; Ding, Guoxiang

    2015-01-01

    Due to the complexity and multidimensional characteristics of human activities, assessing the similarity of human activity patterns and classifying individuals with similar patterns remains highly challenging. This paper presents a new and unique methodology for evaluating the similarity among individual activity patterns. It conceptualizes multidimensional sequence alignment (MDSA) as a multiobjective optimization problem, and solves this problem with an evolutionary algorithm. The study utilizes sequence alignment to code multiple facets of human activities into multidimensional sequences, and to treat similarity assessment as a multiobjective optimization problem that aims to minimize the alignment cost for all dimensions simultaneously. A multiobjective optimization evolutionary algorithm (MOEA) is used to generate a diverse set of optimal or near-optimal alignment solutions. Evolutionary operators are specifically designed for this problem, and a local search method also is incorporated to improve the search ability of the algorithm. We demonstrate the effectiveness of our method by comparing it with a popular existing method called ClustalG using a set of 50 sequences. The results indicate that our method outperforms the existing method for most of our selected cases. The multiobjective evolutionary algorithm presented in this paper provides an effective approach for assessing activity pattern similarity, and a foundation for identifying distinctive groups of individuals with similar activity patterns. PMID:26190858

  9. Improved multi-objective ant colony optimization algorithm and its application in complex reasoning

    NASA Astrophysics Data System (ADS)

    Wang, Xinqing; Zhao, Yang; Wang, Dong; Zhu, Huijie; Zhang, Qing

    2013-09-01

    The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and

  10. Multiobjective biogeography based optimization algorithm with decomposition for community detection in dynamic networks

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Liu, Yanheng; Li, Bin; Sun, Geng

    2015-10-01

    Identifying community structures in static network misses the opportunity to capture the evolutionary patterns. So community detection in dynamic network has attracted many researchers. In this paper, a multiobjective biogeography based optimization algorithm with decomposition (MBBOD) is proposed to solve community detection problem in dynamic networks. In the proposed algorithm, the decomposition mechanism is adopted to optimize two evaluation objectives named modularity and normalized mutual information simultaneously, which measure the quality of the community partitions and temporal cost respectively. A novel sorting strategy for multiobjective biogeography based optimization is presented for comparing quality of habitats to get species counts. In addition, problem-specific migration and mutation model are introduced to improve the effectiveness of the new algorithm. Experimental results both on synthetic and real networks demonstrate that our algorithm is effective and promising, and it can detect communities more accurately in dynamic networks compared with DYNMOGA and FaceNet.

  11. Genetic algorithm for chromaticity correction in diffraction limited storage rings

    NASA Astrophysics Data System (ADS)

    Ehrlichman, M. P.

    2016-04-01

    A multiobjective genetic algorithm is developed for optimizing nonlinearities in diffraction limited storage rings. This algorithm determines sextupole and octupole strengths for chromaticity correction that deliver optimized dynamic aperture and beam lifetime. The algorithm makes use of dominance constraints to breed desirable properties into the early generations. The momentum aperture is optimized indirectly by constraining the chromatic tune footprint and optimizing the off-energy dynamic aperture. The result is an effective and computationally efficient technique for correcting chromaticity in a storage ring while maintaining optimal dynamic aperture and beam lifetime.

  12. Multiobjective optimization with a modified simulated annealing algorithm for external beam radiotherapy treatment planning

    SciTech Connect

    Aubry, Jean-Francois; Beaulieu, Frederic; Sevigny, Caroline; Beaulieu, Luc; Tremblay, Daniel

    2006-12-15

    Inverse planning in external beam radiotherapy often requires a scalar objective function that incorporates importance factors to mimic the planner's preferences between conflicting objectives. Defining those importance factors is not straightforward, and frequently leads to an iterative process in which the importance factors become variables of the optimization problem. In order to avoid this drawback of inverse planning, optimization using algorithms more suited to multiobjective optimization, such as evolutionary algorithms, has been suggested. However, much inverse planning software, including one based on simulated annealing developed at our institution, does not include multiobjective-oriented algorithms. This work investigates the performance of a modified simulated annealing algorithm used to drive aperture-based intensity-modulated radiotherapy inverse planning software in a multiobjective optimization framework. For a few test cases involving gastric cancer patients, the use of this new algorithm leads to an increase in optimization speed of a little more than a factor of 2 over a conventional simulated annealing algorithm, while giving a close approximation of the solutions produced by a standard simulated annealing. A simple graphical user interface designed to facilitate the decision-making process that follows an optimization is also presented.

  13. Integrative systems modeling and multi-objective optimization

    EPA Science Inventory

    This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...

  14. Algorithms for Planning Multi-Object Spectroscopy Observations with the JWST Near-Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Karakla, Diane M.; Pontoppidan, K.; Shyrokov, A.; Beck, T. L.; Valenti, J. A.; Soderblom, D. R.; Tumlinson, J.; Muzerolle, J.

    2014-01-01

    Planning observations for the JWST NIRSpec Multi-Object Spectroscopy will be complex because of the fixed-grid nature of the Micro-Shutter Arrays (MSAs) used for this instrument mode. Two algorithms have been incorporated into the 'MSA Planning Tool' (MPT) in the Astronomers Proposal Tools (APT) for this NIRSpec observation planning process. The 'Basic Algorithm' and the 'Constrained Algorithm' both determine a set of on-sky pointing positions which yield an optimal number of science sources observed per MSA shutter configuration, but these algorithms have different strategies for generating their observing plans. The Basic algorithm uses a defined set of fixed dithers specified by the observer, while the Constrained algorithm can more flexibly define dithers by merely constraining offsets from one pointing position to the next. Each algorithm offers advantages for different observing cases. This poster describes the two algorithms and their products, and clarifies observing cases where clear planning advantages are offered by each.

  15. An Evolutionary Algorithm with Double-Level Archives for Multiobjective Optimization.

    PubMed

    Chen, Ni; Chen, Wei-Neng; Gong, Yue-Jiao; Zhan, Zhi-Hui; Zhang, Jun; Li, Yun; Tan, Yu-Song

    2015-09-01

    Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problem-level and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed. PMID:25343775

  16. Nonlinear dynamics optimization with particle swarm and genetic algorithms for SPEAR3 emittance upgrade

    NASA Astrophysics Data System (ADS)

    Huang, Xiaobiao; Safranek, James

    2014-09-01

    Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.

  17. Comparison of multiobjective evolutionary algorithms for operations scheduling under machine availability constraints.

    PubMed

    Frutos, M; Méndez, M; Tohmé, F; Broz, D

    2013-01-01

    Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502

  18. Comparison of Multiobjective Evolutionary Algorithms for Operations Scheduling under Machine Availability Constraints

    PubMed Central

    Frutos, M.; Méndez, M.; Tohmé, F.; Broz, D.

    2013-01-01

    Many of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier. PMID:24489502

  19. Multi-objective optimization of a parallel ankle rehabilitation robot using modified differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Congzhe; Fang, Yuefa; Guo, Sheng

    2015-07-01

    Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.

  20. Genetic algorithm for investigating flight MH370 in Indian Ocean using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Marghany, Maged; Mansor, Shattri; Shariff, Abdul Rashid Bin Mohamed

    2016-06-01

    This study utilized Genetic algorithm (GA) for automatic detection and simulation trajectory movements of flight MH370 debris. In doing so, the Ocean Surface Topography Mission(OSTM) on the Jason- 2 satellite have been used within 1 and half year covers data to simulate the pattern of Flight MH370 debris movements across the southern Indian Ocean. Further, multi-objectives evolutionary algorithm also used to discriminate uncertainty of flight MH370 imagined and detection. The study shows that the ocean surface current speed is 0.5 m/s. This current patterns have developed a large anticlockwise gyre over a water depth of 8,000 m. The multi-objectives evolutionary algorithm suggested that objects are existed on satellite data are not flight MH370 debris. In addition, multiobjectives evolutionary algorithm suggested that the difficulties to acquire the exact location of flight MH370 due to complicated hydrodynamic movements across the southern Indian Ocean.

  1. Scheduling with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Fennel, Theron R.; Underbrink, A. J., Jr.; Williams, George P. W., Jr.

    1994-01-01

    In many domains, scheduling a sequence of jobs is an important function contributing to the overall efficiency of the operation. At Boeing, we develop schedules for many different domains, including assembly of military and commercial aircraft, weapons systems, and space vehicles. Boeing is under contract to develop scheduling systems for the Space Station Payload Planning System (PPS) and Payload Operations and Integration Center (POIC). These applications require that we respect certain sequencing restrictions among the jobs to be scheduled while at the same time assigning resources to the jobs. We call this general problem scheduling and resource allocation. Genetic algorithms (GA's) offer a search method that uses a population of solutions and benefits from intrinsic parallelism to search the problem space rapidly, producing near-optimal solutions. Good intermediate solutions are probabalistically recombined to produce better offspring (based upon some application specific measure of solution fitness, e.g., minimum flowtime, or schedule completeness). Also, at any point in the search, any intermediate solution can be accepted as a final solution; allowing the search to proceed longer usually produces a better solution while terminating the search at virtually any time may yield an acceptable solution. Many processes are constrained by restrictions of sequence among the individual jobs. For a specific job, other jobs must be completed beforehand. While there are obviously many other constraints on processes, it is these on which we focussed for this research: how to allocate crews to jobs while satisfying job precedence requirements and personnel, and tooling and fixture (or, more generally, resource) requirements.

  2. Messy genetic algorithms: Recent developments

    SciTech Connect

    Kargupta, H.

    1996-09-01

    Messy genetic algorithms define a rare class of algorithms that realize the need for detecting appropriate relations among members of the search domain in optimization. This paper reviews earlier works in messy genetic algorithms and describes some recent developments. It also describes the gene expression messy GA (GEMGA)--an {Omicron}({Lambda}{sup {kappa}}({ell}{sup 2} + {kappa})) sample complexity algorithm for the class of order-{kappa} delineable problems (problems that can be solved by considering no higher than order-{kappa} relations) of size {ell} and alphabet size {Lambda}. Experimental results are presented to demonstrate the scalability of the GEMGA.

  3. Optimized sound diffusers based on sonic crystals using a multiobjective evolutionary algorithm.

    PubMed

    Redondo, J; Sánchez-Pérez, J V; Blasco, X; Herrero, J M; Vorländer, M

    2016-05-01

    Sonic crystals have been demonstrated to be good candidates to substitute for conventional diffusers in order to overcome the need for extremely thick structures when low frequencies have to be scattered, however, their performance is limited to a narrow band. In this work, multiobjective evolutionary algorithms are used to extend the bandwidth to the whole low frequency range. The results show that diffusion can be significantly increased. Several cost functions are considered in the paper, on the one hand to illustrate the flexibility of the optimization and on the other hand to demonstrate the problems associated with the use of certain cost functions. A study of the robustness of the optimized diffusers is also presented, introducing a parameter that can help to choose among the best candidates. Finally, the advantages of the use of multiobjective optimization in comparison with conventional optimizations are discussed. PMID:27250173

  4. Decomposition-Based Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Social Networks

    PubMed Central

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms. PMID:24723806

  5. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs

    NASA Astrophysics Data System (ADS)

    Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed

    2016-06-01

    In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.

  6. Genetic algorithms as discovery programs

    SciTech Connect

    Hilliard, M.R.; Liepins, G.

    1986-01-01

    Genetic algorithms are mathematical counterparts to natural selection and gene recombination. As such, they have provided one of the few significant breakthroughs in machine learning. Used with appropriate reward functions and apportionment of credit, they have been successfully applied to gas pipeline operation, x-ray registration and mathematical optimization problems. This paper discusses the basics of genetic algorithms, describes a few successes, and reports on current progress at Oak Ridge National Laboratory in applications to set covering and simulated robots.

  7. Genetic Algorithm Optimizes Q-LAW Control Parameters

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  8. A diagnostic assessment of evolutionary algorithms for multi-objective surface water reservoir control

    NASA Astrophysics Data System (ADS)

    Zatarain Salazar, Jazmin; Reed, Patrick M.; Herman, Jonathan D.; Giuliani, Matteo; Castelletti, Andrea

    2016-06-01

    Globally, the pressures of expanding populations, climate change, and increased energy demands are motivating significant investments in re-operationalizing existing reservoirs or designing operating policies for new ones. These challenges require an understanding of the tradeoffs that emerge across the complex suite of multi-sector demands in river basin systems. This study benchmarks our current capabilities to use Evolutionary Multi-Objective Direct Policy Search (EMODPS), a decision analytic framework in which reservoirs' candidate operating policies are represented using parameterized global approximators (e.g., radial basis functions) then those parameterized functions are optimized using multi-objective evolutionary algorithms to discover the Pareto approximate operating policies. We contribute a comprehensive diagnostic assessment of modern MOEAs' abilities to support EMODPS using the Conowingo reservoir in the Lower Susquehanna River Basin, Pennsylvania, USA. Our diagnostic results highlight that EMODPS can be very challenging for some modern MOEAs and that epsilon dominance, time-continuation, and auto-adaptive search are helpful for attaining high levels of performance. The ɛ-MOEA, the auto-adaptive Borg MOEA, and ɛ-NSGAII all yielded superior results for the six-objective Lower Susquehanna benchmarking test case. The top algorithms show low sensitivity to different MOEA parameterization choices and high algorithmic reliability in attaining consistent results for different random MOEA trials. Overall, EMODPS poses a promising method for discovering key reservoir management tradeoffs; however algorithmic choice remains a key concern for problems of increasing complexity.

  9. Experiments with a Parallel Multi-Objective Evolutionary Algorithm for Scheduling

    NASA Technical Reports Server (NTRS)

    Brown, Matthew; Johnston, Mark D.

    2013-01-01

    Evolutionary multi-objective algorithms have great potential for scheduling in those situations where tradeoffs among competing objectives represent a key requirement. One challenge, however, is runtime performance, as a consequence of evolving not just a single schedule, but an entire population, while attempting to sample the Pareto frontier as accurately and uniformly as possible. The growing availability of multi-core processors in end user workstations, and even laptops, has raised the question of the extent to which such hardware can be used to speed up evolutionary algorithms. In this paper we report on early experiments in parallelizing a Generalized Differential Evolution (GDE) algorithm for scheduling long-range activities on NASA's Deep Space Network. Initial results show that significant speedups can be achieved, but that performance does not necessarily improve as more cores are utilized. We describe our preliminary results and some initial suggestions from parallelizing the GDE algorithm. Directions for future work are outlined.

  10. Scheduling Jobs with Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ferrolho, António; Crisóstomo, Manuel

    Most scheduling problems are NP-hard, the time required to solve the problem optimally increases exponentially with the size of the problem. Scheduling problems have important applications, and a number of heuristic algorithms have been proposed to determine relatively good solutions in polynomial time. Recently, genetic algorithms (GA) are successfully used to solve scheduling problems, as shown by the growing numbers of papers. GA are known as one of the most efficient algorithms for solving scheduling problems. But, when a GA is applied to scheduling problems various crossovers and mutations operators can be applicable. This paper presents and examines a new concept of genetic operators for scheduling problems. A software tool called hybrid and flexible genetic algorithm (HybFlexGA) was developed to examine the performance of various crossover and mutation operators by computing simulations of job scheduling problems.

  11. A Comparative Study of Multi-Objective Optimization Algorithms for Automatic Calibration

    NASA Astrophysics Data System (ADS)

    Asadzadeh, M.; Tolson, B.; Maclean, A.

    2009-12-01

    Hydrologic model calibration is often a computationally expensive problem that aims to find a set of parameters that simulates observations. It has been shown that no single metric can comprehensively evaluate the effectiveness of the calibration. Moreover, many of the proposed metrics are conflicting (e.g., the set of parameters that achieves accurate high flow predictions is different from the set of parameters that achieves accurate low flow predictions). Conflict is even more likely when objectives are based on different fluxes and/or state variables (e.g., streamflow versus Snow Water Equivalent (SWE)). The goal of solving a multi-objective optimization problem is to approximate the tradeoff between objectives (also called the Pareto front) that represents the attained level of each metric in comparison with other metrics and hence helps to decide on the acceptable set of parameters. In this study, a variety of algorithms are applied to solve a multi-objective (MO) model calibration problem and the performance of these algorithms is compared. The calibration case study is the MESH model (a combined land surface and hydrologic model under development by Environment Canada) applied to the Reynolds Creek Experimental Watershed. MESH is calibrated against two objectives to adequately simulate the measured streamflow and SWE. The MO algorithms applied to this calibration problem include NSGAII, SPEA2 and AMALGAM. In addition, a new MO algorithm called the Pareto Archived Dynamically Dimensioned Search (PA-DDS) is also applied. PA-DDS uses DDS as a search engine and archives all the non-dominated solutions during the search. It inherits the parsimonious characteristic of DDS, so it has only one algorithm parameter which does not need tuning. This characteristic makes PA-DDS very suitable for solving multi-objective hydrologic model calibrations, since tuning the algorithm parameters in computationally intensive models is a very time consuming process. Preliminary

  12. Memetic Algorithm-Based Multi-Objective Coverage Optimization for Wireless Sensor Networks

    PubMed Central

    Chen, Zhi; Li, Shuai; Yue, Wenjing

    2014-01-01

    Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms. PMID:25360579

  13. Memetic algorithm-based multi-objective coverage optimization for wireless sensor networks.

    PubMed

    Chen, Zhi; Li, Shuai; Yue, Wenjing

    2014-01-01

    Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms. PMID:25360579

  14. Attribute Index and Uniform Design Based Multiobjective Association Rule Mining with Evolutionary Algorithm

    PubMed Central

    Wang, Yuping; Feng, Junhong

    2013-01-01

    In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption. PMID:23766683

  15. A new multiobjective performance criterion used in PID tuning optimization algorithms.

    PubMed

    Sahib, Mouayad A; Ahmed, Bestoun S

    2016-01-01

    In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions. PMID:26843978

  16. A new multiobjective performance criterion used in PID tuning optimization algorithms

    PubMed Central

    Sahib, Mouayad A.; Ahmed, Bestoun S.

    2015-01-01

    In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions. PMID:26843978

  17. Multiobjective synchronization of coupled systems

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Wang, Zidong; Wong, W. K.; Kurths, Jürgen; Fang, Jian-an

    2011-06-01

    In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.

  18. Investigation of trunk muscle activities during lifting using a multi-objective optimization-based model and intelligent optimization algorithms.

    PubMed

    Ghiasi, Mohammad Sadegh; Arjmand, Navid; Boroushaki, Mehrdad; Farahmand, Farzam

    2016-03-01

    A six-degree-of-freedom musculoskeletal model of the lumbar spine was developed to predict the activity of trunk muscles during light, moderate and heavy lifting tasks in standing posture. The model was formulated into a multi-objective optimization problem, minimizing the sum of the cubed muscle stresses and maximizing the spinal stability index. Two intelligent optimization algorithms, i.e., the vector evaluated particle swarm optimization (VEPSO) and nondominated sorting genetic algorithm (NSGA), were employed to solve the optimization problem. The optimal solution for each task was then found in the way that the corresponding in vivo intradiscal pressure could be reproduced. Results indicated that both algorithms predicted co-activity in the antagonistic abdominal muscles, as well as an increase in the stability index when going from the light to the heavy task. For all of the light, moderate and heavy tasks, the muscles' activities predictions of the VEPSO and the NSGA were generally consistent and in the same order of the in vivo electromyography data. The proposed methodology is thought to provide improved estimations for muscle activities by considering the spinal stability and incorporating the in vivo intradiscal pressure data. PMID:26088358

  19. Lunar Habitat Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.

    2007-01-01

    Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.

  20. Simultaneous stabilization using genetic algorithms

    SciTech Connect

    Benson, R.W.; Schmitendorf, W.E. . Dept. of Mechanical Engineering)

    1991-01-01

    This paper considers the problem of simultaneously stabilizing a set of plants using full state feedback. The problem is converted to a simple optimization problem which is solved by a genetic algorithm. Several examples demonstrate the utility of this method. 14 refs., 8 figs.

  1. An overview of population-based algorithms for multi-objective optimisation

    NASA Astrophysics Data System (ADS)

    Giagkiozis, Ioannis; Purshouse, Robin C.; Fleming, Peter J.

    2015-07-01

    In this work we present an overview of the most prominent population-based algorithms and the methodologies used to extend them to multiple objective problems. Although not exact in the mathematical sense, it has long been recognised that population-based multi-objective optimisation techniques for real-world applications are immensely valuable and versatile. These techniques are usually employed when exact optimisation methods are not easily applicable or simply when, due to sheer complexity, such techniques could potentially be very costly. Another advantage is that since a population of decision vectors is considered in each generation these algorithms are implicitly parallelisable and can generate an approximation of the entire Pareto front at each iteration. A critique of their capabilities is also provided.

  2. Optimal design of groundwater remediation system using a probabilistic multi-objective fast harmony search algorithm under uncertainty

    NASA Astrophysics Data System (ADS)

    Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun

    2014-11-01

    This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation systems under uncertainty associated with the hydraulic conductivity (K) of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic sorting technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient K data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal design of groundwater remediation systems for a two-dimensional hypothetical test problem and a three-dimensional Indiana field application involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the mass remaining in the aquifer at the end of the operational period, whereby the pump-and-treat (PAT) technology is used to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology. Comprehensive analysis indicates that the proposed PMOFHS can find Pareto-optimal solutions with low variability and high reliability and is a potentially effective tool for optimizing multi-objective groundwater remediation problems under uncertainty.

  3. The use of a multiobjective evolutionary algorithm to increase flexibility in the search for better IMRT plans

    PubMed Central

    Holdsworth, Clay; Kim, Minsun; Liao, Jay; Phillips, Mark

    2012-01-01

    Purpose: To evaluate how a more flexible and thorough multiobjective search of feasible IMRT plans affects performance in IMRT optimization. Methods: A multiobjective evolutionary algorithm (MOEA) was used as a tool to investigate how expanding the search space to include a wider range of penalty functions affects the quality of the set of IMRT plans produced. The MOEA uses a population of IMRT plans to generate new IMRT plans through deterministic minimization of recombined penalty functions that are weighted sums of multiple, tissue-specific objective functions. The quality of the generated plans are judged by an independent set of nonconvex, clinically relevant decision criteria, and all dominated plans are eliminated. As this process repeats itself, better plans are produced so that the population of IMRT plans will approach the Pareto front. Three different approaches were used to explore the effects of expanding the search space. First, the evolutionary algorithm used genetic optimization principles to search by simultaneously optimizing both the weights and tissue-specific dose parameters in penalty functions. Second, penalty function parameters were individually optimized for each voxel in all organs at risk (OARs) in the MOEA. Finally, a heuristic voxel-specific improvement (VSI) algorithm that can be used on any IMRT plan was developed that incrementally improves voxel-specific penalty function parameters for all structures (OARs and targets). Different approaches were compared using the concept of domination comparison applied to the sets of plans obtained by multiobjective optimization. Results: MOEA optimizations that simultaneously searched both importance weights and dose parameters generated sets of IMRT plans that were superior to sets of plans produced when either type of parameter was fixed for four example prostate plans. The amount of improvement increased with greater overlap between OARs and targets. Allowing the MOEA to search for voxel

  4. Genetic algorithms and their applications in accelerator physics

    SciTech Connect

    Hofler, Alicia S.

    2013-12-01

    Multi-objective optimization techniques are widely used in an extremely broad range of fields. Genetic optimization for multi-objective optimization was introduced in the accelerator community in relatively recent times and quickly spread becoming a fundamental tool in multi-dimensional optimization problems. This discussion introduces the basics of the technique and reviews applications in accelerator problems.

  5. Integrating GIS and genetic algorithms for automating land partitioning

    NASA Astrophysics Data System (ADS)

    Demetriou, Demetris; See, Linda; Stillwell, John

    2014-08-01

    Land consolidation is considered to be the most effective land management planning approach for controlling land fragmentation and hence improving agricultural efficiency. Land partitioning is a basic process of land consolidation that involves the subdivision of land into smaller sub-spaces subject to a number of constraints. This paper explains the development of a module called LandParcelS (Land Parcelling System) that integrates geographical information systems and a genetic algorithm to automate the land partitioning process by designing and optimising land parcels in terms of their shape, size and value. This new module has been applied to two land blocks that are part of a larger case study area in Cyprus. Partitioning is carried out by guiding a Thiessen polygon process within ArcGIS and it is treated as a multiobjective problem. The results suggest that a step forward has been made in solving this complex spatial problem, although further research is needed to improve the algorithm. The contribution of this research extends land partitioning and space partitioning in general, since these approaches may have relevance to other spatial processes that involve single or multi-objective problems that could be solved in the future by spatial evolutionary algorithms.

  6. Problem solving with genetic algorithms and Splicer

    NASA Technical Reports Server (NTRS)

    Bayer, Steven E.; Wang, Lui

    1991-01-01

    Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.

  7. Identifying irregularly shaped crime hot-spots using a multiobjective evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Xiaolan; Grubesic, Tony H.

    2010-12-01

    Spatial cluster detection techniques are widely used in criminology, geography, epidemiology, and other fields. In particular, spatial scan statistics are popular and efficient techniques for detecting areas of elevated crime or disease events. The majority of spatial scan approaches attempt to delineate geographic zones by evaluating the significance of clusters using likelihood ratio statistics tested with the Poisson distribution. While this can be effective, many scan statistics give preference to circular clusters, diminishing their ability to identify elongated and/or irregular shaped clusters. Although adjusting the shape of the scan window can mitigate some of these problems, both the significance of irregular clusters and their spatial structure must be accounted for in a meaningful way. This paper utilizes a multiobjective evolutionary algorithm to find clusters with maximum significance while quantitatively tracking their geographic structure. Crime data for the city of Cincinnati are utilized to demonstrate the advantages of the new approach and highlight its benefits versus more traditional scan statistics.

  8. A comparative study of three simulation optimization algorithms for solving high dimensional multi-objective optimization problems in water resources

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wöhling, Thomas; de Play, Michael

    2010-05-01

    Some real-world optimization problems in water resources have a high-dimensional space of decision variables and more than one objective function. In this work, we compare three general-purpose, multi-objective simulation optimization algorithms, namely NSGA-II, AMALGAM, and CMA-ES-MO when solving three real case Multi-objective Optimization Problems (MOPs): (i) a high-dimensional soil hydraulic parameter estimation problem; (ii) a multipurpose multi-reservoir operation problem; and (iii) a scheduling problem in deficit irrigation. We analyze the behaviour of the three algorithms on these test problems considering their formulations ranging from 40 up to 120 decision variables and 2 to 4 objectives. The computational effort required by each algorithm in order to reach the true Pareto front is also analyzed.

  9. A Novel Spectral Data Processing Procedure on Multi-Object Fiber Spectral Data Based on 2-D Algorithms

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Ye, Z. F.; Xu, X.

    2016-01-01

    The data processing procedures currently used on most multi-object fiber spectroscopic telescopes, such as Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), the Sloan Digital Sky Survey (SDSS), the Anglo-Australia Telescope (AAT), etc., are based on one-dimensional (1-D) algorithms. In this paper, LAMOST is taken as an example to display the proposed multi-object fiber spectral data processing procedure. In the using processing procedure on LAMOST, after the pretreatment process, the two-dimensional (2-D) observed raw data are extracted into 1-D intermediate data simply based on 1-D model. Then the subsequent key steps are all done by 1-D algorithms. However, this processing procedure is not in accord with the formation mechanism of the observed spectra. Therefore, it brings a considerable error in each step. To solve the problem, we propose a novel processing procedure that has not been used on LAMOST or other telescopes. The modules of the procedure are reordered, and the main steps are all based on 2-D algorithms. The principles of the core algorithms are explained in detail. Besides, some partial experimental results are shown to prove the effectiveness and superiority of the 2-D algorithms.

  10. The multi-niche crowding genetic algorithm: Analysis and applications

    SciTech Connect

    Cedeno, W.

    1995-09-01

    The ability of organisms to evolve and adapt to the environment has provided mother nature with a rich and diverse set of species. Only organisms well adapted to their environment can survive from one generation to the next, transferring on the traits, that made them successful, to their offspring. Competition for resources and the ever changing environment drives some species to extinction and at the same time others evolve to maintain the delicate balance in nature. In this disertation we present the multi-niche crowding genetic algorithm, a computational metaphor to the survival of species in ecological niches in the face of competition. The multi-niche crowding genetic algorithm maintains stable subpopulations of solutions in multiple niches in multimodal landscapes. The algorithm introduces the concept of crowding selection to promote mating among members with qirnilar traits while allowing many members of the population to participate in mating. The algorithm uses worst among most similar replacement policy to promote competition among members with similar traits while allowing competition among members of different niches as well. We present empirical and theoretical results for the success of the multiniche crowding genetic algorithm for multimodal function optimization. The properties of the algorithm using different parameters are examined. We test the performance of the algorithm on problems of DNA Mapping, Aquifer Management, and the File Design Problem. Applications that combine the use of heuristics and special operators to solve problems in the areas of combinatorial optimization, grouping, and multi-objective optimization. We conclude by presenting the advantages and disadvantages of the algorithm and describing avenues for future investigation to answer other questions raised by this study.

  11. Optimization of IMRT using multi-objective evolutionary algorithms with regularization: A study of complexity vs. deliverability

    NASA Astrophysics Data System (ADS)

    Tom, Brian C.

    Intensity Modulated Radiation Therapy (IMRT) has enjoyed success in the clinic by achieving dose escalation to the target while sparing nearby critical structures. For DMLC plans, regularization is introduced in order to smooth the fluence maps. In this dissertation, regularization is used to smooth the fluence profiles. Since SMLC plans have a limited number of intensity levels, smoothing is not a problem. However, in many treatment planning systems, the plans are optimized with beam weights that are continuous. Only after the optimization is complete is when the fluence maps are quantized. This dissertation will study the effects, if any, of quantizing the beam weights. In order to study both smoothing DMLC plans and the quantization of SMLC plans, a multi-objective evolutionary algorithm is employed as the optimization method. The main advantages of using these stochastic algorithms is that the beam weights can be represented either in binary or real strings. Clearly, a binary representation is suited for SMLC delivery (discrete intensity levels), while a real representation is more suited for DMLC. Further, in the case of real beam weights, multi-objective evolutionary algorithms can handle conflicting objective functions very well. In fact, regularization can be thought of as having two competing functions: to maintain fidelity to the data, and smoothing the data. The main disadvantage of regularization is the need to specify the regularization parameter, which controls how important the two objectives are relative to one another. Multi-objective evolutionary algorithms do not need such a parameter. In addition, such algorithms yield a set of solutions, each solution representing differing importance factors of the two (or more) objective functions. Multi-objective evolutionary algorithms can thus be used to study the effects of quantizing the beam weights for SMLC delivery systems as well studying how regularization can reduce the difference between the

  12. Maximizing flexure jointed hexapod vibration isolation using a modified genetic algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Zhijiang; McInroy, John E.

    2004-07-01

    In this paper we propose the use of the genetic algorithm (GA) as a tool to solve multi-objective optimization problems in flexure jointed hexapods. Using the concept of heuristic mutation, a modified GA-based multi-objective optimization technique is proposed and the passive parameters' optimization problems in a flexure jointed hexapod system are solved. The passive parameters found include the spring and the damping parameters in each strut of the hexapod. The results produced by this new approach are compared to those produced by other practical selection techniques, proving that this technique is more flexible. Thus, the genetic algorithm can be used as a reliable numerical optimization tool in such problems.

  13. A possibilistic approach to rotorcraft design through a multi-objective evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Chae, Han Gil

    Most of the engineering design processes in use today in the field may be considered as a series of successive decision making steps. The decision maker uses information at hand, determines the direction of the procedure, and generates information for the next step and/or other decision makers. However, the information is often incomplete, especially in the early stages of the design process of a complex system. As the complexity of the system increases, uncertainties eventually become unmanageable using traditional tools. In such a case, the tools and analysis values need to be "softened" to account for the designer's intuition. One of the methods that deals with issues of intuition and incompleteness is possibility theory. Through the use of possibility theory coupled with fuzzy inference, the uncertainties estimated by the intuition of the designer are quantified for design problems. By involving quantified uncertainties in the tools, the solutions can represent a possible set, instead of a crisp spot, for predefined levels of certainty. From a different point of view, it is a well known fact that engineering design is a multi-objective problem or a set of such problems. The decision maker aims to find satisfactory solutions, sometimes compromising the objectives that conflict with each other. Once the candidates of possible solutions are generated, a satisfactory solution can be found by various decision-making techniques. A number of multi-objective evolutionary algorithms (MOEAs) have been developed, and can be found in the literature, which are capable of generating alternative solutions and evaluating multiple sets of solutions in one single execution of an algorithm. One of the MOEA techniques that has been proven to be very successful for this class of problems is the strength Pareto evolutionary algorithm (SPEA) which falls under the dominance-based category of methods. The Pareto dominance that is used in SPEA, however, is not enough to account for the

  14. Genetic Algorithm for Optimization: Preprocessor and Algorithm

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Shaykhian, Gholam A.

    2006-01-01

    Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.

  15. Application of a multi-objective evolutionary algorithm to the spacecraft stationkeeping problem

    NASA Astrophysics Data System (ADS)

    Myers, Philip L.; Spencer, David B.

    2016-10-01

    Satellite operations are becoming an increasingly private industry, requiring increased profitability. Efficient and safe operation of satellites in orbit will ensure longer lasting and more profitable satellite services. This paper focuses on the use of a multi-objective evolutionary algorithm to schedule the maneuvers of a hypothetical satellite operating at geosynchronous altitude, by seeking to minimize the propellant consumed through the execution of stationkeeping maneuvers and the time the satellite is displaced from its desired orbital plane. Minimization of the time out of place increases the operational availability and minimizing the propellant usage which allows the spacecraft to operate longer. North-South stationkeeping was studied in this paper, through the use of a set of orbit inclination change maneuvers each year. Two cases for the maximum number of maneuvers to be executed were considered, with four and five maneuvers per year. The results delivered by the algorithm provide maneuver schedules which require 40-100 m/s of total Δv for two years of operation, with the satellite maintaining the satellite's orbital plane to within 0.1° between 84% and 96% of the two years being modeled.

  16. An improved multi-objective evolutionary memetic algorithm based on multi-population and its application

    NASA Astrophysics Data System (ADS)

    Xiao, Zhongliang

    2012-04-01

    In this paper, we set up a mathematical model to solve the problem of airport ground services. In this model, we set objective function of cost and time, and the purpose is making it minimized. Base on the analysis of scheduling characteristic, we use the multi-population co-evolutionary Memetic algorithm (MAMC) which is with the elitist strategy to realize the model. From the result we can see that our algorithm is better than the genetic algorithm in this problem and we can see that our algorithm is convergence. So we can summarize that it can be a better optimization to airport ground services problem.

  17. New Results in Astrodynamics Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.

    1998-01-01

    Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.

  18. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    ERIC Educational Resources Information Center

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…

  19. How Do Severe Constraints Affect the Search Ability of Multiobjective Evolutionary Algorithms in Water Resources?

    NASA Astrophysics Data System (ADS)

    Clarkin, T. J.; Kasprzyk, J. R.; Raseman, W. J.; Herman, J. D.

    2015-12-01

    This study contributes a diagnostic assessment of multiobjective evolutionary algorithm (MOEA) search on a set of water resources problem formulations with different configurations of constraints. Unlike constraints in classical optimization modeling, constraints within MOEA simulation-optimization represent limits on acceptable performance that delineate whether solutions within the search problem are feasible. Constraints are relevant because of the emergent pressures on water resources systems: increasing public awareness of their sustainability, coupled with regulatory pressures on water management agencies. In this study, we test several state-of-the-art MOEAs that utilize restricted tournament selection for constraint handling on varying configurations of water resources planning problems. For example, a problem that has no constraints on performance levels will be compared with a problem with several severe constraints, and a problem with constraints that have less severe values on the constraint thresholds. One such problem, Lower Rio Grande Valley (LRGV) portfolio planning, has been solved with a suite of constraints that ensure high reliability, low cost variability, and acceptable performance in a single year severe drought. But to date, it is unclear whether or not the constraints are negatively affecting MOEAs' ability to solve the problem effectively. Two categories of results are explored. The first category uses control maps of algorithm performance to determine if the algorithm's performance is sensitive to user-defined parameters. The second category uses run-time performance metrics to determine the time required for the algorithm to reach sufficient levels of convergence and diversity on the solution sets. Our work exploring the effect of constraints will better enable practitioners to define MOEA problem formulations for real-world systems, especially when stakeholders are concerned with achieving fixed levels of performance according to one or

  20. Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms

    NASA Astrophysics Data System (ADS)

    Lahanas, Michael; Schreibmann, Eduard; Baltas, Dimos

    2003-09-01

    We consider the behaviour of the limited memory L-BFGS algorithm as a representative constraint-free gradient-based algorithm which is used for multiobjective (MO) dose optimization for intensity modulated radiotherapy (IMRT). Using a parameter transformation, the positivity constraint problem of negative beam fluences is entirely eliminated: a feature which to date has not been fully understood by all investigators. We analyse the global convergence properties of L-BFGS by searching for the existence and the influence of possible local minima. With a fast simulated annealing (FSA) algorithm we examine whether the L-BFGS solutions are globally Pareto optimal. The three examples used in our analysis are a brain tumour, a prostate tumour and a test case with a C-shaped PTV. In 1% of the optimizations global convergence is violated. A simple mechanism practically eliminates the influence of this failure and the obtained solutions are globally optimal. A single-objective dose optimization requires less than 4 s for 5400 parameters and 40 000 sampling points. The elimination of the problem of negative beam fluences and the high computational speed permit constraint-free gradient-based optimization algorithms to be used for MO dose optimization. In this situation, a representative spectrum of possible solutions is obtained which contains information such as the trade-off between the objectives and range of dose values. Using simple decision making tools the best of all the possible solutions can be chosen. We perform an MO dose optimization for the three examples and compare the spectra of solutions, firstly using recommended critical dose values for the organs at risk and secondly, setting these dose values to zero.

  1. Excursion-Set-Mediated Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    Excursion-set-mediated genetic algorithm (ESMGA) is embodiment of method of searching for and optimizing computerized mathematical models. Incorporates powerful search and optimization techniques based on concepts analogous to natural selection and laws of genetics. In comparison with other genetic algorithms, this one achieves stronger condition for implicit parallelism. Includes three stages of operations in each cycle, analogous to biological generation.

  2. Optimal operational strategies for a day-ahead electricity market in the presence of market power using multi-objective evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Rodrigo, Deepal

    2007-12-01

    This dissertation introduces a novel approach for optimally operating a day-ahead electricity market not only by economically dispatching the generation resources but also by minimizing the influences of market manipulation attempts by the individual generator-owning companies while ensuring that the power system constraints are not violated. Since economic operation of the market conflicts with the individual profit maximization tactics such as market manipulation by generator-owning companies, a methodology that is capable of simultaneously optimizing these two competing objectives has to be selected. Although numerous previous studies have been undertaken on the economic operation of day-ahead markets and other independent studies have been conducted on the mitigation of market power, the operation of a day-ahead electricity market considering these two conflicting objectives simultaneously has not been undertaken previously. These facts provided the incentive and the novelty for this study. A literature survey revealed that many of the traditional solution algorithms convert multi-objective functions into either a single-objective function using weighting schemas or undertake optimization of one function at a time. Hence, these approaches do not truly optimize the multi-objectives concurrently. Due to these inherent deficiencies of the traditional algorithms, the use of alternative non-traditional solution algorithms for such problems has become popular and widely used. Of these, multi-objective evolutionary algorithms (MOEA) have received wide acceptance due to their solution quality and robustness. In the present research, three distinct algorithms were considered: a non-dominated sorting genetic algorithm II (NSGA II), a multi-objective tabu search algorithm (MOTS) and a hybrid of multi-objective tabu search and genetic algorithm (MOTS/GA). The accuracy and quality of the results from these algorithms for applications similar to the problem investigated here

  3. Employing multi-objective Genetic Programming to the downscaling of near-surface atmospheric fields

    NASA Astrophysics Data System (ADS)

    Zerenner, Tanja; Venema, Victor; Friederichs, Petra; Simmer, Clemens

    2015-04-01

    The coupling of models for the different components of the Soil-Vegetation-Atmosphere-System is required to investigate component interactions and feedback processes. However, the component models for atmosphere, land-surface and subsurface are usually operated at different resolutions in space and time owing to the dominant processes. The computationally expensive atmospheric models are typically employed at a coarser resolution than land-surface and subsurface models. Thus up- and downscaling procedures are required at the interface between the atmospheric model and the land-surface/subsurface models. We apply multi-objective Genetic Programming (GP) to a training data set of high-resolution atmospheric model runs to learn downscaling rules, i. e., equations or short programs that reconstruct the fine-scale fields of the near-surface atmospheric state variables from the coarse atmospheric model output. Like artificial neural networks, GP can flexibly incorporate multivariate and nonlinear relations, but offers the advantage that the solutions are human readable and thus can be checked for physical consistency. Further, the Strength Pareto Approach for multi-objective fitness assignment allows to consider multiple characteristics of the fine-scale fields during the learning procedure. We have applied the described machine learning methodology to a training data set of 400 m resolution COSMO model runs to learn downscaling rules which recover realistic fine-scale structures from the coarsened fields at 2.8 km resolution. Hence we are currently downscaling by a factor of 7. The COSMO model is the weather forecast model developed and maintained by the German Weather Service and is contained in the Terrestrial Systems Modeling Platform (TerrSysMP), which couples the atmospheric COSMO model to land-surface model CLM and subsurface hydrological model ParFlow. Finally we aim at implementing the learned downscaling rules in the TerrSysMP to achieve scale

  4. A multi-objective discrete cuckoo search algorithm with local search for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Liu, Yanheng; Li, Bin

    2016-03-01

    Detecting community is a challenging task in analyzing networks. Solving community detection problem by evolutionary algorithm is a heated topic in recent years. In this paper, a multi-objective discrete cuckoo search algorithm with local search (MDCL) for community detection is proposed. To the best of our knowledge, it is first time to apply cuckoo search algorithm for community detection. Two objective functions termed as negative ratio association and ratio cut are to be minimized. These two functions can break through the modularity limitation. In the proposed algorithm, the nest location updating strategy and abandon operator of cuckoo are redefined in discrete form. A local search strategy and a clone operator are proposed to obtain the optimal initial population. The experimental results on synthetic and real-world networks show that the proposed algorithm has better performance than other algorithms and can discover the higher quality community structure without prior information.

  5. Adaptive IMRT using a multiobjective evolutionary algorithm integrated with a diffusion-invasion model of glioblastoma

    NASA Astrophysics Data System (ADS)

    Holdsworth, C. H.; Corwin, D.; Stewart, R. D.; Rockne, R.; Trister, A. D.; Swanson, K. R.; Phillips, M.

    2012-12-01

    We demonstrate a patient-specific method of adaptive IMRT treatment for glioblastoma using a multiobjective evolutionary algorithm (MOEA). The MOEA generates spatially optimized dose distributions using an iterative dialogue between the MOEA and a mathematical model of tumor cell proliferation, diffusion and response. Dose distributions optimized on a weekly basis using biological metrics have the potential to substantially improve and individualize treatment outcomes. Optimized dose distributions were generated using three different decision criteria for the tumor and compared with plans utilizing standard dose of 1.8 Gy/fraction to the CTV (T2-visible MRI region plus a 2.5 cm margin). The sets of optimal dose distributions generated using the MOEA approach the Pareto Front (the set of IMRT plans that delineate optimal tradeoffs amongst the clinical goals of tumor control and normal tissue sparing). MOEA optimized doses demonstrated superior performance as judged by three biological metrics according to simulated results. The predicted number of reproductively viable cells 12 weeks after treatment was found to be the best target objective for use in the MOEA.

  6. A multiobjective interval programming model for wind-hydrothermal power system dispatching using 2-step optimization algorithm.

    PubMed

    Ren, Kun; Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663

  7. A Multiobjective Interval Programming Model for Wind-Hydrothermal Power System Dispatching Using 2-Step Optimization Algorithm

    PubMed Central

    Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663

  8. Genetic Algorithms with Local Minimum Escaping Technique

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroki; Sakata, Kenichiro; Tang, Zheng; Ishii, Masahiro

    In this paper, we propose a genetic algorithm(GA) with local minimum escaping technique. This proposed method uses the local minimum escaping techique. It can escape from the local minimum by correcting parameters when genetic algorithm falls into a local minimum. Simulations are performed to scheduling problem without buffer capacity using this proposed method, and its validity is shown.

  9. A multiobjective scatter search algorithm for fault-tolerant NoC mapping optimisation

    NASA Astrophysics Data System (ADS)

    Le, Qianqi; Yang, Guowu; Hung, William N. N.; Zhang, Xinpeng; Fan, Fuyou

    2014-08-01

    Mapping IP cores to an on-chip network is an important step in Network-on-Chip (NoC) design and affects the performance of NoC systems. A mapping optimisation algorithm and a fault-tolerant mechanism are proposed in this article. The fault-tolerant mechanism and the corresponding routing algorithm can recover NoC communication from switch failures, while preserving high performance. The mapping optimisation algorithm is based on scatter search (SS), which is an intelligent algorithm with a powerful combinatorial search ability. To meet the requests of the NoC mapping application, the standard SS is improved for multiple objective optimisation. This method helps to obtain high-performance mapping layouts. The proposed algorithm was implemented on the Embedded Systems Synthesis Benchmarks Suite (E3S). Experimental results show that this optimisation algorithm achieves low-power consumption, little communication time, balanced link load and high reliability, compared to particle swarm optimisation and genetic algorithm.

  10. Confronting Decision Cliffs: Diagnostic Assessment of Multi-Objective Evolutionary Algorithms' Performance for Addressing Uncertain Environmental Thresholds

    NASA Astrophysics Data System (ADS)

    Ward, V. L.; Singh, R.; Reed, P. M.; Keller, K.

    2014-12-01

    As water resources problems typically involve several stakeholders with conflicting objectives, multi-objective evolutionary algorithms (MOEAs) are now key tools for understanding management tradeoffs. Given the growing complexity of water planning problems, it is important to establish if an algorithm can consistently perform well on a given class of problems. This knowledge allows the decision analyst to focus on eliciting and evaluating appropriate problem formulations. This study proposes a multi-objective adaptation of the classic environmental economics "Lake Problem" as a computationally simple but mathematically challenging MOEA benchmarking problem. The lake problem abstracts a fictional town on a lake which hopes to maximize its economic benefit without degrading the lake's water quality to a eutrophic (polluted) state through excessive phosphorus loading. The problem poses the challenge of maintaining economic activity while confronting the uncertainty of potentially crossing a nonlinear and potentially irreversible pollution threshold beyond which the lake is eutrophic. Objectives for optimization are maximizing economic benefit from lake pollution, maximizing water quality, maximizing the reliability of remaining below the environmental threshold, and minimizing the probability that the town will have to drastically change pollution policies in any given year. The multi-objective formulation incorporates uncertainty with a stochastic phosphorus inflow abstracting non-point source pollution. We performed comprehensive diagnostics using 6 algorithms: Borg, MOEAD, eMOEA, eNSGAII, GDE3, and NSGAII to ascertain their controllability, reliability, efficiency, and effectiveness. The lake problem abstracts elements of many current water resources and climate related management applications where there is the potential for crossing irreversible, nonlinear thresholds. We show that many modern MOEAs can fail on this test problem, indicating its suitability as a

  11. Multi-Objective Algorithm for Blood Supply via Unmanned Aerial Vehicles to the Wounded in an Emergency Situation.

    PubMed

    Wen, Tingxi; Zhang, Zhongnan; Wong, Kelvin K L

    2016-01-01

    Unmanned aerial vehicle (UAV) has been widely used in many industries. In the medical environment, especially in some emergency situations, UAVs play an important role such as the supply of medicines and blood with speed and efficiency. In this paper, we study the problem of multi-objective blood supply by UAVs in such emergency situations. This is a complex problem that includes maintenance of the supply blood's temperature model during transportation, the UAVs' scheduling and routes' planning in case of multiple sites requesting blood, and limited carrying capacity. Most importantly, we need to study the blood's temperature change due to the external environment, the heating agent (or refrigerant) and time factor during transportation, and propose an optimal method for calculating the mixing proportion of blood and appendage in different circumstances and delivery conditions. Then, by introducing the idea of transportation appendage into the traditional Capacitated Vehicle Routing Problem (CVRP), this new problem is proposed according to the factors of distance and weight. Algorithmically, we use the combination of decomposition-based multi-objective evolutionary algorithm and local search method to perform a series of experiments on the CVRP public dataset. By comparing our technique with the traditional ones, our algorithm can obtain better optimization results and time performance. PMID:27163361

  12. Multi-Objective Algorithm for Blood Supply via Unmanned Aerial Vehicles to the Wounded in an Emergency Situation

    PubMed Central

    Wen, Tingxi; Zhang, Zhongnan; Wong, Kelvin K. L.

    2016-01-01

    Unmanned aerial vehicle (UAV) has been widely used in many industries. In the medical environment, especially in some emergency situations, UAVs play an important role such as the supply of medicines and blood with speed and efficiency. In this paper, we study the problem of multi-objective blood supply by UAVs in such emergency situations. This is a complex problem that includes maintenance of the supply blood’s temperature model during transportation, the UAVs’ scheduling and routes’ planning in case of multiple sites requesting blood, and limited carrying capacity. Most importantly, we need to study the blood’s temperature change due to the external environment, the heating agent (or refrigerant) and time factor during transportation, and propose an optimal method for calculating the mixing proportion of blood and appendage in different circumstances and delivery conditions. Then, by introducing the idea of transportation appendage into the traditional Capacitated Vehicle Routing Problem (CVRP), this new problem is proposed according to the factors of distance and weight. Algorithmically, we use the combination of decomposition-based multi-objective evolutionary algorithm and local search method to perform a series of experiments on the CVRP public dataset. By comparing our technique with the traditional ones, our algorithm can obtain better optimization results and time performance. PMID:27163361

  13. Robust Multiobjective Controllability of Complex Neuronal Networks.

    PubMed

    Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen

    2016-01-01

    This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc. PMID:26441452

  14. Genetic algorithms and supernovae type Ia analysis

    SciTech Connect

    Bogdanos, Charalampos; Nesseris, Savvas E-mail: nesseris@nbi.dk

    2009-05-15

    We introduce genetic algorithms as a means to analyze supernovae type Ia data and extract model-independent constraints on the evolution of the Dark Energy equation of state w(z) {identical_to} P{sub DE}/{rho}{sub DE}. Specifically, we will give a brief introduction to the genetic algorithms along with some simple examples to illustrate their advantages and finally we will apply them to the supernovae type Ia data. We find that genetic algorithms can lead to results in line with already established parametric and non-parametric reconstruction methods and could be used as a complementary way of treating SNIa data. As a non-parametric method, genetic algorithms provide a model-independent way to analyze data and can minimize bias due to premature choice of a dark energy model.

  15. Genetic algorithms at UC Davis/LLNL

    SciTech Connect

    Vemuri, V.R.

    1993-12-31

    A tutorial introduction to genetic algorithms is given. This brief tutorial should serve the purpose of introducing the subject to the novice. The tutorial is followed by a brief commentary on the term project reports that follow.

  16. Self-adaptive parameters in genetic algorithms

    NASA Astrophysics Data System (ADS)

    Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain

    2004-04-01

    Genetic algorithms are powerful search algorithms that can be applied to a wide range of problems. Generally, parameter setting is accomplished prior to running a Genetic Algorithm (GA) and this setting remains unchanged during execution. The problem of interest to us here is the self-adaptive parameters adjustment of a GA. In this research, we propose an approach in which the control of a genetic algorithm"s parameters can be encoded within the chromosome of each individual. The parameters" values are entirely dependent on the evolution mechanism and on the problem context. Our preliminary results show that a GA is able to learn and evaluate the quality of self-set parameters according to their degree of contribution to the resolution of the problem. These results are indicative of a promising approach to the development of GAs with self-adaptive parameter settings that do not require the user to pre-adjust parameters at the outset.

  17. Adaptive sensor fusion using genetic algorithms

    SciTech Connect

    Fitzgerald, D.S.; Adams, D.G.

    1994-08-01

    Past attempts at sensor fusion have used some form of Boolean logic to combine the sensor information. As an alteniative, an adaptive ``fuzzy`` sensor fusion technique is described in this paper. This technique exploits the robust capabilities of fuzzy logic in the decision process as well as the optimization features of the genetic algorithm. This paper presents a brief background on fuzzy logic and genetic algorithms and how they are used in an online implementation of adaptive sensor fusion.

  18. Multi-objective entropy evolutionary algorithm for marine oil spill detection using cosmo-skymed satellite data

    NASA Astrophysics Data System (ADS)

    Marghany, M.

    2015-06-01

    Oil spill pollution has a substantial role in damaging the marine ecosystem. Oil spill that floats on top of water, as well as decreasing the fauna populations, affects the food chain in the ecosystem. In fact, oil spill is reducing the sunlight penetrates the water, limiting the photosynthesis of marine plants and phytoplankton. Moreover, marine mammals for instance, disclosed to oil spills their insulating capacities are reduced, and so making them more vulnerable to temperature variations and much less buoyant in the seawater. This study has demonstrated a design tool for oil spill detection in SAR satellite data using optimization of Entropy based Multi-Objective Evolutionary Algorithm (E-MMGA) which based on Pareto optimal solutions. The study also shows that optimization entropy based Multi-Objective Evolutionary Algorithm provides an accurate pattern of oil slick in SAR data. This shown by 85 % for oil spill, 10 % look-alike and 5 % for sea roughness using the receiver-operational characteristics (ROC) curve. The E-MMGA also shows excellent performance in SAR data. In conclusion, E-MMGA can be used as optimization for entropy to perform an automatic detection of oil spill in SAR satellite data.

  19. Solving molecular docking problems with multi-objective metaheuristics.

    PubMed

    García-Godoy, María Jesús; López-Camacho, Esteban; García-Nieto, José; Aldana-Montes, Antonio J Nebroand José F

    2015-01-01

    Molecular docking is a hard optimization problem that has been tackled in the past with metaheuristics, demonstrating new and challenging results when looking for one objective: the minimum binding energy. However, only a few papers can be found in the literature that deal with this problem by means of a multi-objective approach, and no experimental comparisons have been made in order to clarify which of them has the best overall performance. In this paper, we use and compare, for the first time, a set of representative multi-objective optimization algorithms applied to solve complex molecular docking problems. The approach followed is focused on optimizing the intermolecular and intramolecular energies as two main objectives to minimize. Specifically, these algorithms are: two variants of the non-dominated sorting genetic algorithm II (NSGA-II), speed modulation multi-objective particle swarm optimization (SMPSO), third evolution step of generalized differential evolution (GDE3), multi-objective evolutionary algorithm based on decomposition (MOEA/D) and S-metric evolutionary multi-objective optimization (SMS-EMOA). We assess the performance of the algorithms by applying quality indicators intended to measure convergence and the diversity of the generated Pareto front approximations. We carry out a comparison with another reference mono-objective algorithm in the problem domain (Lamarckian genetic algorithm (LGA) provided by the AutoDock tool). Furthermore, the ligand binding site and molecular interactions of computed solutions are analyzed, showing promising results for the multi-objective approaches. In addition, a case study of application for aeroplysinin-1 is performed, showing the effectiveness of our multi-objective approach in drug discovery. PMID:26042856

  20. Genetic algorithms as global random search methods

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that that schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solution and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  1. Genetic algorithms as global random search methods

    NASA Technical Reports Server (NTRS)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  2. Reactive power optimization by genetic algorithm

    SciTech Connect

    Iba, Kenji )

    1994-05-01

    This paper presents a new approach to optimal reactive power planning based on a genetic algorithm. Many outstanding methods to this problem have been proposed in the past. However, most of these approaches have the common defect of being caught to a local minimum solution. The integer problem which yields integer value solutions for discrete controllers/banks still remains as a difficult one. The genetic algorithm is a kind of search algorithm based on the mechanics of natural selection and genetics. This algorithm can search for a global solution using multiple paths and treat integer problems naturally. The proposed method was applied to practical 51-bus and 224-bus systems to show its feasibility and capabilities. Although this method is not as fast as sophisticated traditional methods, the concept is quite promising and useful.

  3. Multi-objective teaching-learning-based optimization algorithm for reducing carbon emissions and operation time in turning operations

    NASA Astrophysics Data System (ADS)

    Lin, Wenwen; Yu, D. Y.; Wang, S.; Zhang, Chaoyong; Zhang, Sanqiang; Tian, Huiyu; Luo, Min; Liu, Shengqiang

    2015-07-01

    In addition to energy consumption, the use of cutting fluids, deposition of worn tools and certain other manufacturing activities can have environmental impacts. All these activities cause carbon emission directly or indirectly; therefore, carbon emission can be used as an environmental criterion for machining systems. In this article, a direct method is proposed to quantify the carbon emissions in turning operations. To determine the coefficients in the quantitative method, real experimental data were obtained and analysed in MATLAB. Moreover, a multi-objective teaching-learning-based optimization algorithm is proposed, and two objectives to minimize carbon emissions and operation time are considered simultaneously. Cutting parameters were optimized by the proposed algorithm. Finally, the analytic hierarchy process was used to determine the optimal solution, which was found to be more environmentally friendly than the cutting parameters determined by the design of experiments method.

  4. A new optimization algorithm based on a combination of particle swarm optimization, convergence and divergence operators for single-objective and multi-objective problems

    NASA Astrophysics Data System (ADS)

    Mahmoodabadi, M. J.; Bagheri, A.; Nariman-zadeh, N.; Jamali, A.

    2012-10-01

    Particle swarm optimization (PSO) is a randomized and population-based optimization method that was inspired by the flocking behaviour of birds and human social interactions. In this work, multi-objective PSO is modified in two stages. In the first stage, PSO is combined with convergence and divergence operators. Here, this method is named CDPSO. In the second stage, to produce a set of Pareto optimal solutions which has good convergence, diversity and distribution, two mechanisms are used. In the first mechanism, a new leader selection method is defined, which uses the periodic iteration and the concept of the particle's neighbour number. This method is named periodic multi-objective algorithm. In the second mechanism, an adaptive elimination method is employed to limit the number of non-dominated solutions in the archive, which has influences on computational time, convergence and diversity of solution. Single-objective results show that CDPSO performs very well on the complex test functions in terms of solution accuracy and convergence speed. Furthermore, some benchmark functions are used to evaluate the performance of periodic multi-objective CDPSO. This analysis demonstrates that the proposed algorithm operates better in three metrics through comparison with three well-known elitist multi-objective evolutionary algorithms. Finally, the algorithm is used for Pareto optimal design of a two-degree of freedom vehicle vibration model. The conflicting objective functions are sprung mass acceleration and relative displacement between sprung mass and tyre. The feasibility and efficiency of periodic multi-objective CDPSO are assessed in comparison with multi-objective modified NSGAII.

  5. Dynamic multiobjective optimization algorithm based on average distance linear prediction model.

    PubMed

    Li, Zhiyong; Chen, Hengyong; Xie, Zhaoxin; Chen, Chao; Sallam, Ahmed

    2014-01-01

    Many real-world optimization problems involve objectives, constraints, and parameters which constantly change with time. Optimization in a changing environment is a challenging task, especially when multiple objectives are required to be optimized simultaneously. Nowadays the common way to solve dynamic multiobjective optimization problems (DMOPs) is to utilize history information to guide future search, but there is no common successful method to solve different DMOPs. In this paper, we define a kind of dynamic multiobjectives problem with translational Paretooptimal set (DMOP-TPS) and propose a new prediction model named ADLM for solving DMOP-TPS. We have tested and compared the proposed prediction model (ADLM) with three traditional prediction models on several classic DMOP-TPS test problems. The simulation results show that our proposed prediction model outperforms other prediction models for DMOP-TPS. PMID:24616625

  6. Research on Routing Selection Algorithm Based on Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Gao, Guohong; Zhang, Baojian; Li, Xueyong; Lv, Jinna

    The hereditary algorithm is a kind of random searching and method of optimizing based on living beings natural selection and hereditary mechanism. In recent years, because of the potentiality in solving complicate problems and the successful application in the fields of industrial project, hereditary algorithm has been widely concerned by the domestic and international scholar. Routing Selection communication has been defined a standard communication model of IP version 6.This paper proposes a service model of Routing Selection communication, and designs and implements a new Routing Selection algorithm based on genetic algorithm.The experimental simulation results show that this algorithm can get more resolution at less time and more balanced network load, which enhances search ratio and the availability of network resource, and improves the quality of service.

  7. An investigation of messy genetic algorithms

    NASA Technical Reports Server (NTRS)

    Goldberg, David E.; Deb, Kalyanmoy; Korb, Bradley

    1990-01-01

    Genetic algorithms (GAs) are search procedures based on the mechanics of natural selection and natural genetics. They combine the use of string codings or artificial chromosomes and populations with the selective and juxtapositional power of reproduction and recombination to motivate a surprisingly powerful search heuristic in many problems. Despite their empirical success, there has been a long standing objection to the use of GAs in arbitrarily difficult problems. A new approach was launched. Results to a 30-bit, order-three-deception problem were obtained using a new type of genetic algorithm called a messy genetic algorithm (mGAs). Messy genetic algorithms combine the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to effect a solution to the fixed-coding problem of standard simple GAs. The results of the study of mGAs in problems with nonuniform subfunction scale and size are presented. The mGA approach is summarized, both its operation and the theory of its use. Experiments on problems of varying scale, varying building-block size, and combined varying scale and size are presented.

  8. An observation planning algorithm applied to multi-objective astronomical observations and its simulation in COSMOS field

    NASA Astrophysics Data System (ADS)

    Jin, Yi; Gu, Yonggang; Zhai, Chao

    2012-09-01

    Multi-Object Fiber Spectroscopic sky surveys are now booming, such as LAMOST already built by China, BIGBOSS project put forward by the U.S. Lawrence Berkeley National Lab and GTC (Gran Telescopio Canarias) telescope developed by the United States, Mexico and Spain. They all use or will use this approach and each fiber can be moved within a certain area for one astrology target, so observation planning is particularly important for this Sky Surveys. One observation planning algorithm used in multi-objective astronomical observations is developed. It can avoid the collision and interference between the fiber positioning units in the focal plane during the observation in one field of view, and the interested objects can be ovserved in a limited round with the maximize efficiency. Also, the observation simulation can be made for wide field of view through multi-FOV observation. After the observation planning is built ,the simulation is made in COSMOS field using GTC telescope. Interested galaxies, stars and high-redshift LBG galaxies are selected after the removal of the mask area, which may be bright stars. Then 9 FOV simulation is completed and observation efficiency and fiber utilization ratio for every round are given. Otherwise,allocating a certain number of fibers for background sky, giving different weights for different objects and how to move the FOV to improve the overall observation efficiency are discussed.

  9. Genetic Algorithm Approaches for Actuator Placement

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  10. Applying a Genetic Algorithm to Reconfigurable Hardware

    NASA Technical Reports Server (NTRS)

    Wells, B. Earl; Weir, John; Trevino, Luis; Patrick, Clint; Steincamp, Jim

    2004-01-01

    This paper investigates the feasibility of applying genetic algorithms to solve optimization problems that are implemented entirely in reconfgurable hardware. The paper highlights the pe$ormance/design space trade-offs that must be understood to effectively implement a standard genetic algorithm within a modem Field Programmable Gate Array, FPGA, reconfgurable hardware environment and presents a case-study where this stochastic search technique is applied to standard test-case problems taken from the technical literature. In this research, the targeted FPGA-based platform and high-level design environment was the Starbridge Hypercomputing platform, which incorporates multiple Xilinx Virtex II FPGAs, and the Viva TM graphical hardware description language.

  11. Equilibrium stellar systems with genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gularte, E.; Carpintero, D. D.

    In 1979, M Schwarzschild showed that it is possible to build an equilibrium triaxial stellar system. However, the linear programmation used to that goal was not able to determine the uniqueness of the solution, nor even if that solution was the optimum one. Genetic algorithms are ideal tools to find a solution to this problem. In this work, we use a genetic algorithm to reproduce an equilibrium spherical stellar system from a suitable set of predefined orbits, obtaining the best solution attainable with the provided set. FULL TEXT IN SPANISH

  12. Genetic Algorithms for Digital Quantum Simulations

    NASA Astrophysics Data System (ADS)

    Las Heras, U.; Alvarez-Rodriguez, U.; Solano, E.; Sanz, M.

    2016-06-01

    We propose genetic algorithms, which are robust optimization techniques inspired by natural selection, to enhance the versatility of digital quantum simulations. In this sense, we show that genetic algorithms can be employed to increase the fidelity and optimize the resource requirements of digital quantum simulation protocols while adapting naturally to the experimental constraints. Furthermore, this method allows us to reduce not only digital errors but also experimental errors in quantum gates. Indeed, by adding ancillary qubits, we design a modular gate made out of imperfect gates, whose fidelity is larger than the fidelity of any of the constituent gates. Finally, we prove that the proposed modular gates are resilient against different gate errors.

  13. Facial Composite System Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Zahradníková, Barbora; Duchovičová, Soňa; Schreiber, Peter

    2014-12-01

    The article deals with genetic algorithms and their application in face identification. The purpose of the research is to develop a free and open-source facial composite system using evolutionary algorithms, primarily processes of selection and breeding. The initial testing proved higher quality of the final composites and massive reduction in the composites processing time. System requirements were specified and future research orientation was proposed in order to improve the results.

  14. The Applications of Genetic Algorithms in Medicine

    PubMed Central

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-01-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.] PMID:26676060

  15. The Applications of Genetic Algorithms in Medicine.

    PubMed

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-11-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.]. PMID:26676060

  16. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    NASA Astrophysics Data System (ADS)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  17. Predicting complex mineral structures using genetic algorithms.

    PubMed

    Mohn, Chris E; Kob, Walter

    2015-10-28

    We show that symmetry-adapted genetic algorithms are capable of finding the ground state of a range of complex crystalline phases including layered- and incommensurate super-structures. This opens the way for the atomistic prediction of complex crystal structures of functional materials and mineral phases. PMID:26441052

  18. Genetic Algorithms for Multiple-Choice Problems

    NASA Astrophysics Data System (ADS)

    Aickelin, Uwe

    2010-04-01

    This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.

  19. Evolutionary multiobjective query workload optimization of Cloud data warehouses.

    PubMed

    Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan

    2014-01-01

    With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048

  20. Evolutionary Multiobjective Query Workload Optimization of Cloud Data Warehouses

    PubMed Central

    Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan

    2014-01-01

    With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048

  1. Multi-objective evolutionary algorithm for investigating the trade-off between pleiotropy and redundancy

    NASA Astrophysics Data System (ADS)

    Ong, Zhiyang; Lo, Andy Hao-Wei; Berryman, Matthew; Abbott, Derek

    2005-12-01

    The trade-off between pleiotropy and redundancy in telecommunications networks is analyzed in this paper. They are optimized to reduce installation costs and propagation delays. Pleiotropy of a server in a telecommunications network is defined as the number of clients and servers that it can service whilst redundancy is described as the number of servers servicing a client. Telecommunications networks containing many servers with large pleiotropy are cost-effective but vulnerable to network failures and attacks. Conversely, those networks containing many servers with high redundancy are reliable but costly. Several key issues regarding the choice of cost functions and techniques in evolutionary computation (such as the modeling of Darwinian evolution, and mutualism and commensalism) will be discussed, and a future research agenda is outlined. Experimental results indicate that the pleiotropy of servers in the optimum network does improve, whilst the redundancy of clients do not vary significantly, as expected, with evolving networks. This is due to the controlled evolution of networks that is modeled by the steady-state genetic algorithm; changes in telecommunications networks that occur drastically over a very short period of time are rare.

  2. Multi-objective optimization of a low specific speed centrifugal pump using an evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    An, Zhao; Zhounian, Lai; Peng, Wu; Linlin, Cao; Dazhuan, Wu

    2016-07-01

    This paper describes the shape optimization of a low specific speed centrifugal pump at the design point. The target pump has already been manually modified on the basis of empirical knowledge. A genetic algorithm (NSGA-II) with certain enhancements is adopted to improve its performance further with respect to two goals. In order to limit the number of design variables without losing geometric information, the impeller is parametrized using the Bézier curve and a B-spline. Numerical simulation based on a Reynolds averaged Navier-Stokes (RANS) turbulent model is done in parallel to evaluate the flow field. A back-propagating neural network is constructed as a surrogate for performance prediction to save computing time, while initial samples are selected according to an orthogonal array. Then global Pareto-optimal solutions are obtained and analysed. The results manifest that unexpected flow structures, such as the secondary flow on the meridian plane, have diminished or vanished in the optimized pump.

  3. Mono and multi-objective optimization techniques applied to a large range of industrial test cases using Metamodel assisted Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Fourment, Lionel; Ducloux, Richard; Marie, Stéphane; Ejday, Mohsen; Monnereau, Dominique; Massé, Thomas; Montmitonnet, Pierre

    2010-06-01

    The use of material processing numerical simulation allows a strategy of trial and error to improve virtual processes without incurring material costs or interrupting production and therefore save a lot of money, but it requires user time to analyze the results, adjust the operating conditions and restart the simulation. Automatic optimization is the perfect complement to simulation. Evolutionary Algorithm coupled with metamodelling makes it possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. Ten industrial partners have been selected to cover the different area of the mechanical forging industry and provide different examples of the forming simulation tools. It aims to demonstrate that it is possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. The large computational time is handled by a metamodel approach. It allows interpolating the objective function on the entire parameter space by only knowing the exact function values at a reduced number of "master points". Two algorithms are used: an evolution strategy combined with a Kriging metamodel and a genetic algorithm combined with a Meshless Finite Difference Method. The later approach is extended to multi-objective optimization. The set of solutions, which corresponds to the best possible compromises between the different objectives, is then computed in the same way. The population based approach allows using the parallel capabilities of the utilized computer with a high efficiency. An optimization module, fully embedded within the Forge2009 IHM, makes possible to cover all the defined examples, and the use of new multi-core hardware to compute several simulations at the same time reduces the needed time dramatically. The presented examples

  4. Genetic algorithms for the vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Volna, Eva

    2016-06-01

    The Vehicle Routing Problem (VRP) is one of the most challenging combinatorial optimization tasks. This problem consists in designing the optimal set of routes for fleet of vehicles in order to serve a given set of customers. Evolutionary algorithms are general iterative algorithms for combinatorial optimization. These algorithms have been found to be very effective and robust in solving numerous problems from a wide range of application domains. This problem is known to be NP-hard; hence many heuristic procedures for its solution have been suggested. For such problems it is often desirable to obtain approximate solutions, so they can be found fast enough and are sufficiently accurate for the purpose. In this paper we have performed an experimental study that indicates the suitable use of genetic algorithms for the vehicle routing problem.

  5. Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Severino, Bernardo; Gana, Felipe; Palma-Behnke, Rodrigo; Estévez, Pablo A.; Calderón-Muñoz, Williams R.; Orchard, Marcos E.; Reyes, Jorge; Cortés, Marcelo

    2014-12-01

    Lithium-battery energy storage systems (LiBESS) are increasingly being used on electric mobility and stationary applications. Despite its increasing use and improvements of the technology there are still challenges associated with cost reduction, increasing lifetime and capacity, and higher safety. A correct battery thermal management system (BTMS) design is critical to achieve these goals. In this paper, a general framework for obtaining optimal BTMS designs is proposed. Due to the trade-off between the BTMS's design goals and the complex modeling of thermal response inside the battery pack, this paper proposes to solve this problem using a novel Multi-Objective Particle Swarm Optimization (MOPSO) approach. A theoretical case of a module with 6 cells and a real case of a pack used in a Solar Race Car are presented. The results show the capabilities of the proposal methodology, in which improved designs for battery packs are obtained.

  6. Production scheduling and rescheduling with genetic algorithms.

    PubMed

    Bierwirth, C; Mattfeld, D C

    1999-01-01

    A general model for job shop scheduling is described which applies to static, dynamic and non-deterministic production environments. Next, a Genetic Algorithm is presented which solves the job shop scheduling problem. This algorithm is tested in a dynamic environment under different workload situations. Thereby, a highly efficient decoding procedure is proposed which strongly improves the quality of schedules. Finally, this technique is tested for scheduling and rescheduling in a non-deterministic environment. It is shown by experiment that conventional methods of production control are clearly outperformed at reasonable run-time costs. PMID:10199993

  7. Genetic Algorithms for Digital Quantum Simulations.

    PubMed

    Las Heras, U; Alvarez-Rodriguez, U; Solano, E; Sanz, M

    2016-06-10

    We propose genetic algorithms, which are robust optimization techniques inspired by natural selection, to enhance the versatility of digital quantum simulations. In this sense, we show that genetic algorithms can be employed to increase the fidelity and optimize the resource requirements of digital quantum simulation protocols while adapting naturally to the experimental constraints. Furthermore, this method allows us to reduce not only digital errors but also experimental errors in quantum gates. Indeed, by adding ancillary qubits, we design a modular gate made out of imperfect gates, whose fidelity is larger than the fidelity of any of the constituent gates. Finally, we prove that the proposed modular gates are resilient against different gate errors. PMID:27341220

  8. Application of Genetic Algorithms in Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet; Papazachos, Constantinos

    2010-05-01

    In the earth sciences several inverse problems that require data fitting and parameter estimation are nonlinear and can involve a large number of unknown parameters. Consequently, the application of analytical inversion or optimization techniques may be quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem in question, adopting an iterative procedure using partial derivatives to improve an initial model. This approach can lead to a dependence of the final model solution on the starting model and is prone to entrapment in local misfit minima. Moreover, the calculation of derivatives can be computationally inefficient and create instabilities when numerical approximations are used. In contrast to these local minimization methods, global techniques that do not rely on partial derivatives, are independent of the form of the data misfit criterion, and are computationally robust. Such methods often use random processes to sample a selected wider span of the model space. In this situation, randomly generated models are assessed in terms of their data-fitting quality and the process may be stopped after a certain number of acceptable models is identified or continued until a satisfactory data fit is achieved. A new class of methods known as genetic algorithms achieves the aforementioned approximation through novel model representation and manipulations. Genetic algorithms (GAs) were originally developed in the field of artificial intelligence by John Holland more than 20 years ago, but even in this field it is less than a decade that the methodology has been more generally applied and only recently did the methodology attract the attention of the earth sciences community. Applications have been generally concentrated in geophysics and in particular seismology. As awareness of genetic algorithms grows there surely will be many more and varied applications to earth science problems. In the present work, the

  9. Genetic algorithms for minimal source reconstructions

    SciTech Connect

    Lewis, P.S.; Mosher, J.C.

    1993-12-01

    Under-determined linear inverse problems arise in applications in which signals must be estimated from insufficient data. In these problems the number of potentially active sources is greater than the number of observations. In many situations, it is desirable to find a minimal source solution. This can be accomplished by minimizing a cost function that accounts from both the compatibility of the solution with the observations and for its ``sparseness``. Minimizing functions of this form can be a difficult optimization problem. Genetic algorithms are a relatively new and robust approach to the solution of difficult optimization problems, providing a global framework that is not dependent on local continuity or on explicit starting values. In this paper, the authors describe the use of genetic algorithms to find minimal source solutions, using as an example a simulation inspired by the reconstruction of neural currents in the human brain from magnetoencephalographic (MEG) measurements.

  10. The genetic algorithms for trajectory optimization

    NASA Astrophysics Data System (ADS)

    Janin, G.; Gomez-Tierno, M. A.

    1985-10-01

    Possible difficulties encountered when solving space flight trajectory optimization problems are recalled. The need of a global optimization scheme is realized. Nondeterministic methods, called here stochastic methods, seem to be good candidates for solving these types of problems. A particular class of such methods, modelled upon search strategies employed in natural adaptation, is proposed here: the genetic algorithms. Two models, the mutation-selection and the crossover-selection, are discussed and remarks resulting from applications to test problems and space flight problems are made. It is concluded that a considerable effort is still needed for developing efficient schemes using genetic algorithms. However, they appear to offer an entirely original way for solving a large class of global optimization problems and they are particularly well-suited for parallel processing to be used in the fifth generation computers.

  11. Fashion sketch design by interactive genetic algorithms

    NASA Astrophysics Data System (ADS)

    Mok, P. Y.; Wang, X. X.; Xu, J.; Kwok, Y. L.

    2012-11-01

    Computer aided design is vitally important for the modern industry, particularly for the creative industry. Fashion industry faced intensive challenges to shorten the product development process. In this paper, a methodology is proposed for sketch design based on interactive genetic algorithms. The sketch design system consists of a sketch design model, a database and a multi-stage sketch design engine. First, a sketch design model is developed based on the knowledge of fashion design to describe fashion product characteristics by using parameters. Second, a database is built based on the proposed sketch design model to define general style elements. Third, a multi-stage sketch design engine is used to construct the design. Moreover, an interactive genetic algorithm (IGA) is used to accelerate the sketch design process. The experimental results have demonstrated that the proposed method is effective in helping laypersons achieve satisfied fashion design sketches.

  12. Genetic algorithms in adaptive fuzzy control

    NASA Technical Reports Server (NTRS)

    Karr, C. Lucas; Harper, Tony R.

    1992-01-01

    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.

  13. Medical image segmentation using genetic algorithms.

    PubMed

    Maulik, Ujjwal

    2009-03-01

    Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation. PMID:19272859

  14. Predicting mining activity with parallel genetic algorithms

    USGS Publications Warehouse

    Talaie, S.; Leigh, R.; Louis, S.J.; Raines, G.L.

    2005-01-01

    We explore several different techniques in our quest to improve the overall model performance of a genetic algorithm calibrated probabilistic cellular automata. We use the Kappa statistic to measure correlation between ground truth data and data predicted by the model. Within the genetic algorithm, we introduce a new evaluation function sensitive to spatial correctness and we explore the idea of evolving different rule parameters for different subregions of the land. We reduce the time required to run a simulation from 6 hours to 10 minutes by parallelizing the code and employing a 10-node cluster. Our empirical results suggest that using the spatially sensitive evaluation function does indeed improve the performance of the model and our preliminary results also show that evolving different rule parameters for different regions tends to improve overall model performance. Copyright 2005 ACM.

  15. PSS Parameters Tuning Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Abdulrahim, M.; Almoula, Zakaria Fadl; Al-Hafid, Hafid

    2008-10-01

    Optimal tuning of power system stabilizer (PSS) parameters using genetic algorithm with single objective function is presented in this paper. A Single Machine Infinite Bus (SMIB) system is considered. The main objective of this research paper is to investigate the suitability of genetic algorithm for effective tuning of parameters of the power system stabilizer in a single machine infinite bus system. A conventional speed based lead-lag PSS is used. A simple and effective method of tuning the parameters of PSS is proposed which is posed as an optimization formulation by maximizing the damping of modes of oscillations of the SMIB system over a wide range of loading conditions and different system configurations. It is found that GA based PSS with single objective design shows improved dynamic performance over Conventional PSS over a wide range of operating conditions and different system parameters.

  16. Efficient genetic algorithms using discretization scheduling.

    PubMed

    McLay, Laura A; Goldberg, David E

    2005-01-01

    In many applications of genetic algorithms, there is a tradeoff between speed and accuracy in fitness evaluations when evaluations use numerical methods with varying discretization. In these types of applications, the cost and accuracy vary from discretization errors when implicit or explicit quadrature is used to estimate the function evaluations. This paper examines discretization scheduling, or how to vary the discretization within the genetic algorithm in order to use the least amount of computation time for a solution of a desired quality. The effectiveness of discretization scheduling can be determined by comparing its computation time to the computation time of a GA using a constant discretization. There are three ingredients for the discretization scheduling: population sizing, estimated time for each function evaluation and predicted convergence time analysis. Idealized one- and two-dimensional experiments and an inverse groundwater application illustrate the computational savings to be achieved from using discretization scheduling. PMID:16156928

  17. Allocating Railway Platforms Using A Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Clarke, M.; Hinde, C. J.; Withall, M. S.; Jackson, T. W.; Phillips, I. W.; Brown, S.; Watson, R.

    This paper describes an approach to automating railway station platform allocation. The system uses a Genetic Algorithm (GA) to find how a station’s resources should be allocated. Real data is used which needs to be transformed to be suitable for the automated system. Successful or ‘fit’ allocations provide a solution that meets the needs of the station schedule including platform re-occupation and various other constraints. The system associates the train data to derive the station requirements. The Genetic Algorithm is used to derive platform allocations. Finally, the system may be extended to take into account how further parameters that are external to the station have an effect on how an allocation should be applied. The system successfully allocates around 1000 trains to platforms in around 30 seconds requiring a genome of around 1000 genes to achieve this.

  18. Robust design of multiple trailing edge flaps for helicopter vibration reduction: A multi-objective bat algorithm approach

    NASA Astrophysics Data System (ADS)

    Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.

    2015-09-01

    The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.

  19. Modeling a magnetostrictive transducer using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Almeida, L. A. L.; Deep, G. S.; Lima, A. M. N.; Neff, H.

    2001-05-01

    This work reports on the applicability of the genetic algorithm (GA) to the problem of parameter determination of magnetostrictive transducers. A combination of the Jiles-Atherton hysteresis model with a quadratic moment rotation model is simulated using known parameters of a sensor. The simulated sensor data are then used as input data for the GA parameter calculation method. Taking the previously known parameters, the accuracy of the GA parameter calculation method can be evaluated.

  20. Quantum-Inspired Genetic Algorithm or Quantum Genetic Algorithm: Which Is It?

    NASA Astrophysics Data System (ADS)

    Jones, Erika

    2015-04-01

    Our everyday work focuses on genetic algorithms (GAs) related to quantum computing where we call ``related'' algorithms those falling into one of two classes: (1) GAs run on classical computers but making use of quantum mechanical (QM) constructs and (2) GAs run on quantum hardware. Though convention has yet to be set with respect to usage of the accepted terms quantum-inspired genetic algorithm (QIGA) and quantum genetic algorithm (QGA), we find the two terms highly suitable respectively as labels for the aforementioned classes. With these specific definitions in mind, the difference between the QIGA and QGA is greater than might first be appreciated, particularly by those coming from a perspective emphasizing GA use as a general computational tool irrespective of QM aspects (1) suggested by QIGAs and (2) inherent in QGAs. We offer a theoretical standpoint highlighting key differences-both obvious, and more significantly, subtle-to be considered in general design of a QIGA versus that of a QGA.

  1. A hybrid genetic algorithm for resolving closely spaced objects

    NASA Technical Reports Server (NTRS)

    Abbott, R. J.; Lillo, W. E.; Schulenburg, N.

    1995-01-01

    A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.

  2. Genetic algorithm optimization of atomic clusters

    SciTech Connect

    Morris, J.R.; Deaven, D.M.; Ho, K.M.; Wang, C.Z.; Pan, B.C.; Wacker, J.G.; Turner, D.E. |

    1996-12-31

    The authors have been using genetic algorithms to study the structures of atomic clusters and related problems. This is a problem where local minima are easy to locate, but barriers between the many minima are large, and the number of minima prohibit a systematic search. They use a novel mating algorithm that preserves some of the geometrical relationship between atoms, in order to ensure that the resultant structures are likely to inherit the best features of the parent clusters. Using this approach, they have been able to find lower energy structures than had been previously obtained. Most recently, they have been able to turn around the building block idea, using optimized structures from the GA to learn about systematic structural trends. They believe that an effective GA can help provide such heuristic information, and (conversely) that such information can be introduced back into the algorithm to assist in the search process.

  3. Fuzzy multiobjective models for optimal operation of a hydropower system

    NASA Astrophysics Data System (ADS)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  4. Complexity of line-seru conversion for different scheduling rules and two improved exact algorithms for the multi-objective optimization.

    PubMed

    Yu, Yang; Wang, Sihan; Tang, Jiafu; Kaku, Ikou; Sun, Wei

    2016-01-01

    Productivity can be greatly improved by converting the traditional assembly line to a seru system, especially in the business environment with short product life cycles, uncertain product types and fluctuating production volumes. Line-seru conversion includes two decision processes, i.e., seru formation and seru load. For simplicity, however, previous studies focus on the seru formation with a given scheduling rule in seru load. We select ten scheduling rules usually used in seru load to investigate the influence of different scheduling rules on the performance of line-seru conversion. Moreover, we clarify the complexities of line-seru conversion for ten different scheduling rules from the theoretical perspective. In addition, multi-objective decisions are often used in line-seru conversion. To obtain Pareto-optimal solutions of multi-objective line-seru conversion, we develop two improved exact algorithms based on reducing time complexity and space complexity respectively. Compared with the enumeration based on non-dominated sorting to solve multi-objective problem, the two improved exact algorithms saves computation time greatly. Several numerical simulation experiments are performed to show the performance improvement brought by the two proposed exact algorithms. PMID:27390649

  5. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework

    PubMed Central

    Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing

    2015-01-01

    Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840

  6. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework.

    PubMed

    Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing

    2015-01-01

    Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840

  7. Saving Resources with Plagues in Genetic Algorithms

    SciTech Connect

    de Vega, F F; Cantu-Paz, E; Lopez, J I; Manzano, T

    2004-06-15

    The population size of genetic algorithms (GAs) affects the quality of the solutions and the time required to find them. While progress has been made in estimating the population sizes required to reach a desired solution quality for certain problems, in practice the sizing of populations is still usually performed by trial and error. These trials might lead to find a population that is large enough to reach a satisfactory solution, but there may still be opportunities to optimize the computational cost by reducing the size of the population. This paper presents a technique called plague that periodically removes a number of individuals from the population as the GA executes. Recently, the usefulness of the plague has been demonstrated for genetic programming. The objective of this paper is to extend the study of plagues to genetic algorithms. We experiment with deceptive trap functions, a tunable difficult problem for GAs, and the experiments show that plagues can save computational time while maintaining solution quality and reliability.

  8. Binary Bees Algorithm - bioinspiration from the foraging mechanism of honeybees to optimize a multiobjective multidimensional assignment problem

    NASA Astrophysics Data System (ADS)

    Xu, Shuo; Ji, Ze; Truong Pham, Duc; Yu, Fan

    2011-11-01

    The simultaneous mission assignment and home allocation for hospital service robots studied is a Multidimensional Assignment Problem (MAP) with multiobjectives and multiconstraints. A population-based metaheuristic, the Binary Bees Algorithm (BBA), is proposed to optimize this NP-hard problem. Inspired by the foraging mechanism of honeybees, the BBA's most important feature is an explicit functional partitioning between global search and local search for exploration and exploitation, respectively. Its key parts consist of adaptive global search, three-step elitism selection (constraint handling, non-dominated solutions selection, and diversity preservation), and elites-centred local search within a Hamming neighbourhood. Two comparative experiments were conducted to investigate its single objective optimization, optimization effectiveness (indexed by the S-metric and C-metric) and optimization efficiency (indexed by computational burden and CPU time) in detail. The BBA outperformed its competitors in almost all the quantitative indices. Hence, the above overall scheme, and particularly the searching history-adapted global search strategy was validated.

  9. Improving the Performance of Highly Constrained Water Resource Systems using Multiobjective Evolutionary Algorithms and RiverWare

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2015-12-01

    Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.

  10. Using a genetic algorithm to solve fluid-flow problems

    SciTech Connect

    Pryor, R.J. )

    1990-06-01

    Genetic algorithms are based on the mechanics of the natural selection and natural genetics processes. These algorithms are finding increasing application to a wide variety of engineering optimization and machine learning problems. In this paper, the authors demonstrate the use of a genetic algorithm to solve fluid flow problems. Specifically, the authors use the algorithm to solve the one-dimensional flow equations for a pipe.

  11. Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories

    NASA Technical Reports Server (NTRS)

    Burchett, Bradley T.

    2003-01-01

    The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.

  12. Comparison of genetic algorithms with conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.

    1972-01-01

    Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.

  13. Gross parameters prediction of a granular-attached biomass reactor by means of multi-objective genetic-designed artificial neural networks: touristic pressure management case.

    PubMed

    Del Moro, G; Barca, E; De Sanctis, M; Mascolo, G; Di Iaconi, C

    2016-03-01

    The Artificial Neural Networks by Multi-objective Genetic Algorithms (ANN-MOGA) model has been applied to gross parameters data of a Sequencing Batch Biofilter Granular Reactor (SBBGR) with the aim of providing an effective tool for predicting the fluctuations coming from touristic pressure. Six independent multivariate models, which were able to predict the dynamics of raw chemical oxygen demand (COD), soluble chemical oxygen demand (CODsol), total suspended solid (TSS), total nitrogen (TN), ammoniacal nitrogen (N-NH4 (+)) and total phosphorus (Ptot), were developed. The ANN-MOGA software application has shown to be suitable for addressing the SBBGR reactor modelling. The R (2) found are very good, with values equal to 0.94, 0.92, 0.88, 0.88, 0.98 and 0.91 for COD, CODsol, N-NH4 (+), TN, Ptot and TSS, respectively. A comparison was made between SBBGR and traditional activated sludge treatment plant modelling. The results showed the better performance of the ANN-MOGA application with respect to a wide selection of scientific literature cases. PMID:26573316

  14. Fuzzy controller design by parallel genetic algorithms

    NASA Astrophysics Data System (ADS)

    Mondelli, G.; Castellano, G.; Attolico, Giovanni; Distante, Arcangelo

    1998-03-01

    Designing a fuzzy system involves defining membership functions and constructing rules. Carrying out these two steps manually often results in a poorly performing system. Genetic Algorithms (GAs) has proved to be a useful tool for designing optimal fuzzy controller. In order to increase the efficiency and effectiveness of their application, parallel GAs (PAGs), evolving synchronously several populations with different balances between exploration and exploitation, have been implemented using a SIMD machine (APE100/Quadrics). The parameters to be identified are coded in such a way that the algorithm implicitly provides a compact fuzzy controller, by finding only necessary rules and removing useless inputs from them. Early results, working on a fuzzy controller implementing the wall-following task for a real vehicle as a test case, provided better fitness values in less generations with respect to previous experiments made using a sequential implementation of GAs.

  15. Genetic algorithm for disassembly process planning

    NASA Astrophysics Data System (ADS)

    Kongar, Elif; Gupta, Surendra M.

    2002-02-01

    When a product reaches its end of life, there are several options available for processing it including reuse, remanufacturing, recycling, and disposing (the least desirable option). In almost all cases, a certain level of disassembly may be necessary. Thus, finding an optimal (or near optimal) disassembly sequence is crucial to increasing the efficiency of the process. Disassembly operations are labor intensive, can be costly, have unique characteristics and cannot be considered as reverse of assembly operations. Since the complexity of determining the best disassembly sequence increases with the increase in the number of parts of the product, it is extremely crucial that an efficient methodology for disassembly process planning be developed. In this paper, we present a genetic algorithm for disassembly process planning. A case example is considered to demonstrate the functionality of the algorithm.

  16. Dominant takeover regimes for genetic algorithms

    NASA Technical Reports Server (NTRS)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    The genetic algorithm (GA) is a machine-based optimization routine which connects evolutionary learning to natural genetic laws. The present work addresses the problem of obtaining the dominant takeover regimes in the GA dynamics. Estimated GA run times are computed for slow and fast convergence in the limits of high and low fitness ratios. Using Euler's device for obtaining partial sums in closed forms, the result relaxes the previously held requirements for long time limits. Analytical solution reveal that appropriately accelerated regimes can mark the ascendancy of the most fit solution. In virtually all cases, the weak (logarithmic) dependence of convergence time on problem size demonstrates the potential for the GA to solve large N-P complete problems.

  17. Designing conducting polymers using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Giro, R.; Cyrillo, M.; Galvão, D. S.

    2002-11-01

    We have developed a new methodology to design conducting polymers with pre-specified properties. The methodology is based on the use of genetic algorithms (GAs) coupled to Negative Factor Counting technique. We present the results for a case study of polyanilines, one of the most important families of conducting polymers. The methodology proved to be able of generating automatic solutions for the problem of determining the optimum relative concentration for binary and ternary disordered polyaniline alloys exhibiting metallic properties. The methodology is completely general and can be used to design new classes of materials.

  18. Modeling of Nonlinear Systems using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Hayashi, Kayoko; Yamamoto, Toru; Kawada, Kazuo

    In this paper, a newly modeling system by using Genetic Algorithm (GA) is proposed. The GA is an evolutionary computational method that simulates the mechanisms of heredity or evolution of living things, and it is utilized in optimization and in searching for optimized solutions. Most process systems have nonlinearities, so it is necessary to anticipate exactly such systems. However, it is difficult to make a suitable model for nonlinear systems, because most nonlinear systems have a complex structure. Therefore the newly proposed method of modeling for nonlinear systems uses GA. Then, according to the newly proposed scheme, the optimal structure and parameters of the nonlinear model are automatically generated.

  19. Genetic algorithms for modelling and optimisation

    NASA Astrophysics Data System (ADS)

    McCall, John

    2005-12-01

    Genetic algorithms (GAs) are a heuristic search and optimisation technique inspired by natural evolution. They have been successfully applied to a wide range of real-world problems of significant complexity. This paper is intended as an introduction to GAs aimed at immunologists and mathematicians interested in immunology. We describe how to construct a GA and the main strands of GA theory before speculatively identifying possible applications of GAs to the study of immunology. An illustrative example of using a GA for a medical optimal control problem is provided. The paper also includes a brief account of the related area of artificial immune systems.

  20. Adaptive sensor tasking using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Shea, Peter J.; Kirk, Joe; Welchons, Dave

    2007-04-01

    Today's battlefield environment contains a large number of sensors, and sensor types, onboard multiple platforms. The set of sensor types includes SAR, EO/IR, GMTI, AMTI, HSI, MSI, and video, and for each sensor type there may be multiple sensing modalities to select from. In an attempt to maximize sensor performance, today's sensors employ either static tasking approaches or require an operator to manually change sensor tasking operations. In a highly dynamic environment this leads to a situation whereby the sensors become less effective as the sensing environments deviates from the assumed conditions. Through a Phase I SBIR effort we developed a system architecture and a common tasking approach for solving the sensor tasking problem for a multiple sensor mix. As part of our sensor tasking effort we developed a genetic algorithm based task scheduling approach and demonstrated the ability to automatically task and schedule sensors in an end-to-end closed loop simulation. Our approach allows for multiple sensors as well as system and sensor constraints. This provides a solid foundation for our future efforts including incorporation of other sensor types. This paper will describe our approach for scheduling using genetic algorithms to solve the sensor tasking problem in the presence of resource constraints and required task linkage. We will conclude with a discussion of results for a sample problem and of the path forward.

  1. Instrument design and optimization using genetic algorithms

    SciTech Connect

    Hoelzel, Robert; Bentley, Phillip M.; Fouquet, Peter

    2006-10-15

    This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of 'nonstandard' magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods.

  2. Optimisation of nonlinear motion cueing algorithm based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Asadi, Houshyar; Mohamed, Shady; Rahim Zadeh, Delpak; Nahavandi, Saeid

    2015-04-01

    Motion cueing algorithms (MCAs) are playing a significant role in driving simulators, aiming to deliver the most accurate human sensation to the simulator drivers compared with a real vehicle driver, without exceeding the physical limitations of the simulator. This paper provides the optimisation design of an MCA for a vehicle simulator, in order to find the most suitable washout algorithm parameters, while respecting all motion platform physical limitations, and minimising human perception error between real and simulator driver. One of the main limitations of the classical washout filters is that it is attuned by the worst-case scenario tuning method. This is based on trial and error, and is effected by driving and programmers experience, making this the most significant obstacle to full motion platform utilisation. This leads to inflexibility of the structure, production of false cues and makes the resulting simulator fail to suit all circumstances. In addition, the classical method does not take minimisation of human perception error and physical constraints into account. Production of motion cues and the impact of different parameters of classical washout filters on motion cues remain inaccessible for designers for this reason. The aim of this paper is to provide an optimisation method for tuning the MCA parameters, based on nonlinear filtering and genetic algorithms. This is done by taking vestibular sensation error into account between real and simulated cases, as well as main dynamic limitations, tilt coordination and correlation coefficient. Three additional compensatory linear blocks are integrated into the MCA, to be tuned in order to modify the performance of the filters successfully. The proposed optimised MCA is implemented in MATLAB/Simulink software packages. The results generated using the proposed method show increased performance in terms of human sensation, reference shape tracking and exploiting the platform more efficiently without reaching

  3. Analysis of the Multi Strategy Goal Programming for Micro-Grid Based on Dynamic ant Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Qiu, J. P.; Niu, D. X.

    Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.

  4. Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru

    The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.

  5. Multidisciplinary design optimization using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Unal, Resit

    1994-12-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared

  6. Multidisciplinary design optimization using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1994-01-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared

  7. Training product unit neural networks with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  8. The study on gear transmission multi-objective optimum design based on SQP algorithm

    NASA Astrophysics Data System (ADS)

    Li, Quancai; Qiao, Xuetao; Wu, Cuirong; Wang, Xingxing

    2011-12-01

    Gear mechanism is the most popular transmission mechanism; however, the traditional design method is complex and not accurate. Optimization design is the effective method to solve the above problems, used in gear design method. In many of the optimization software MATLAB, there are obvious advantage projects and numerical calculation. There is a single gear transmission as example, the mathematical model of gear transmission system, based on the analysis of the objective function, and on the basis of design variables and confirmation of choice restrictive conditions. The results show that the algorithm through MATLAB, the optimization designs, efficient, reliable, simple.

  9. Multi-objective decoupling algorithm for active distance control of intelligent hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Luo, Yugong; Chen, Tao; Li, Keqiang

    2015-12-01

    The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.

  10. Genetic algorithm and particle swarm optimization combined with Powell method

    NASA Astrophysics Data System (ADS)

    Bento, David; Pinho, Diana; Pereira, Ana I.; Lima, Rui

    2013-10-01

    In recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context.