Science.gov

Sample records for multiobjective rbfnns optimization

  1. Constrained Multiobjective Biogeography Optimization Algorithm

    PubMed Central

    Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping

    2014-01-01

    Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591

  2. Constrained multiobjective biogeography optimization algorithm.

    PubMed

    Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping

    2014-01-01

    Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591

  3. Multiobjective optimization approach: thermal food processing.

    PubMed

    Abakarov, A; Sushkov, Y; Almonacid, S; Simpson, R

    2009-01-01

    The objective of this study was to utilize a multiobjective optimization technique for the thermal sterilization of packaged foods. The multiobjective optimization approach used in this study is based on the optimization of well-known aggregating functions by an adaptive random search algorithm. The applicability of the proposed approach was illustrated by solving widely used multiobjective test problems taken from the literature. The numerical results obtained for the multiobjective test problems and for the thermal processing problem show that the proposed approach can be effectively used for solving multiobjective optimization problems arising in the food engineering field. PMID:20492109

  4. Multiobjective optimization of temporal processes.

    PubMed

    Song, Zhe; Kusiak, Andrew

    2010-06-01

    This paper presents a dynamic predictive-optimization framework of a nonlinear temporal process. Data-mining (DM) and evolutionary strategy algorithms are integrated in the framework for solving the optimization model. DM algorithms learn dynamic equations from the process data. An evolutionary strategy algorithm is then applied to solve the optimization problem guided by the knowledge extracted by the DM algorithm. The concept presented in this paper is illustrated with the data from a power plant, where the goal is to maximize the boiler efficiency and minimize the limestone consumption. This multiobjective optimization problem can be either transformed into a single-objective optimization problem through preference aggregation approaches or into a Pareto-optimal optimization problem. The computational results have shown the effectiveness of the proposed optimization framework. PMID:19900853

  5. Combinatorial Multiobjective Optimization Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Martin. Eric T.

    2002-01-01

    The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.

  6. Multiobjective Optimization Of An Extremal Evolution Model

    NASA Astrophysics Data System (ADS)

    Elettreby, Mohamed Fathey

    2005-05-01

    We propose a two-dimensional model for a co-evolving ecosystem that generalizes the extremal coupled map lattice model. The model takes into account the concept of multiobjective optimization. We find that the system is self-organized into a critical state. The distribution of avalanche sizes follows a power law.

  7. Multiobjective optimization techniques for structural design

    NASA Technical Reports Server (NTRS)

    Rao, S. S.

    1984-01-01

    The multiobjective programming techniques are important in the design of complex structural systems whose quality depends generally on a number of different and often conflicting objective functions which cannot be combined into a single design objective. The applicability of multiobjective optimization techniques is studied with reference to simple design problems. Specifically, the parameter optimization of a cantilever beam with a tip mass and a three-degree-of-freedom vabration isolation system and the trajectory optimization of a cantilever beam are considered. The solutions of these multicriteria design problems are attempted by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It has been observed that the game theory approach required the maximum computational effort, but it yielded better optimum solutions with proper balance of the various objective functions in all the cases.

  8. Piezoelectric transducer design via multiobjective optimization.

    PubMed

    Fu, B; Hemsel, T; Wallaschek, J

    2006-12-22

    The design of piezoelectric transducers is usually based on single-objective optimization only. In most practical applications of piezoelectric transducers, however, there exist multiple design objectives that often are contradictory to each other by their very nature. It is impossible to find a solution at which each objective function gets its optimal value simultaneously. Our design approach is to first find a set of Pareto-optimal solutions, which can be considered to be best compromises among multiple design objectives. Among these Pareto-optimal solutions, the designer can then select the one solution which he considers to be the best one. In this paper we investigate the optimal design of a Langevin transducer. The design problem is formulated mathematically as a constrained multiobjective optimization problem. The maximum vibration amplitude and the minimum electrical input power are considered as optimization objectives. Design variables involve continuous variables (dimensions of the transducer) and discrete variables (the number of piezoelectric rings and material types). In order to formulate the optimization problem, the behavior of piezoelectric transducers is modeled using the transfer matrix method based on analytical models. Multiobjective evolutionary algorithms are applied in the optimization process and a set of Pareto-optimal designs is calculated. The optimized results are analyzed and the preferred design is determined. PMID:16814826

  9. Flower pollination algorithm: A novel approach for multiobjective optimization

    NASA Astrophysics Data System (ADS)

    Yang, Xin-She; Karamanoglu, Mehmet; He, Xingshi

    2014-09-01

    Multiobjective design optimization problems require multiobjective optimization techniques to solve, and it is often very challenging to obtain high-quality Pareto fronts accurately. In this article, the recently developed flower pollination algorithm (FPA) is extended to solve multiobjective optimization problems. The proposed method is used to solve a set of multiobjective test functions and two bi-objective design benchmarks, and a comparison of the proposed algorithm with other algorithms has been made, which shows that the FPA is efficient with a good convergence rate. Finally, the importance for further parametric studies and theoretical analysis is highlighted and discussed.

  10. An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.

    PubMed

    Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed

    2015-10-01

    Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front. PMID:25373137

  11. An Algorithmic Framework for Multiobjective Optimization

    PubMed Central

    Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.

    2013-01-01

    Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795

  12. An algorithmic framework for multiobjective optimization.

    PubMed

    Ganesan, T; Elamvazuthi, I; Shaari, Ku Zilati Ku; Vasant, P

    2013-01-01

    Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795

  13. Aircraft design for mission performance using nonlinear multiobjective optimization methods

    NASA Technical Reports Server (NTRS)

    Dovi, Augustine R.; Wrenn, Gregory A.

    1990-01-01

    A new technique which converts a constrained optimization problem to an unconstrained one where conflicting figures of merit may be simultaneously considered was combined with a complex mission analysis system. The method is compared with existing single and multiobjective optimization methods. A primary benefit from this new method for multiobjective optimization is the elimination of separate optimizations for each objective, which is required by some optimization methods. A typical wide body transport aircraft is used for the comparative studies.

  14. Multiobjective optimization in integrated photonics design.

    PubMed

    Gagnon, Denis; Dumont, Joey; Dubé, Louis J

    2013-07-01

    We propose the use of the parallel tabu search algorithm (PTS) to solve combinatorial inverse design problems in integrated photonics. To assess the potential of this algorithm, we consider the problem of beam shaping using a two-dimensional arrangement of dielectric scatterers. The performance of PTS is compared to one of the most widely used optimization algorithms in photonics design, the genetic algorithm (GA). We find that PTS can produce comparable or better solutions than the GA, while requiring less computation time and fewer adjustable parameters. For the coherent beam shaping problem as a case study, we demonstrate how PTS can tackle multiobjective optimization problems and represent a robust and efficient alternative to GA. PMID:23811870

  15. Integrative systems modeling and multi-objective optimization

    EPA Science Inventory

    This presentation presents a number of algorithms, tools, and methods for utilizing multi-objective optimization within integrated systems modeling frameworks. We first present innovative methods using a genetic algorithm to optimally calibrate the VELMA and SWAT ecohydrological ...

  16. Multiobjective process optimization of a power unit

    SciTech Connect

    Garduno-Ramirez, R.; Lee, K.Y.

    1999-11-01

    Recent years have witnessed an increased participation of fossil fuel power units (FFPU) in wide-range load-following duties in order to match current power demand patterns and to deal with uncertain economic contexts. This mode of operation imposes high physical stress on the main components and leads to conflicting operational and control situations, since most power units were designed to operate most efficiently at constant rated conditions. The needs for extended periods without maintenance and replacement, compliance with stringent emission regulations and efficient operation requirements, call for the development of effective plant wide optimization and control methods and systems. Supervisory control, as an interface between the feedback control loops and the economic dispatch and unit commitment systems at upper control layers in power systems, could certainly play a key role in this regard. This paper presents a systematic procedure to generate optimal set-points for the feedback control loops in a FFPU from a given unit load demand profile. The method is flexible enough to accommodate any number of set-points. Also, the optimization procedure is formulated as a multiobjective optimization problem for which the form and number of the objective functions, as well as their preferences, may be modified as required. This approach facilitates adaptation to different operating policies and the realization of performance trade-off analyses.

  17. Optimal multiobjective design of digital filters using spiral optimization technique.

    PubMed

    Ouadi, Abderrahmane; Bentarzi, Hamid; Recioui, Abdelmadjid

    2013-01-01

    The multiobjective design of digital filters using spiral optimization technique is considered in this paper. This new optimization tool is a metaheuristic technique inspired by the dynamics of spirals. It is characterized by its robustness, immunity to local optima trapping, relative fast convergence and ease of implementation. The objectives of filter design include matching some desired frequency response while having minimum linear phase; hence, reducing the time response. The results demonstrate that the proposed problem solving approach blended with the use of the spiral optimization technique produced filters which fulfill the desired characteristics and are of practical use. PMID:24083108

  18. Optimal design of plasmonic waveguide using multiobjective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jung, Jaehoon

    2016-01-01

    An approach for multiobjective optimal design of a plasmonic waveguide is presented. We use a multiobjective extension of a genetic algorithm to find the Pareto-optimal geometries. The design variables are the geometrical parameters of the waveguide. The objective functions are chosen as the figure of merit defined as the ratio between the propagation distance and effective mode size and the normalized coupling length between adjacent waveguides at the telecom wavelength of 1550 nm.

  19. Multiobjective Optimization Using a Pareto Differential Evolution Approach

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Differential Evolution is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. In this paper, the Differential Evolution algorithm is extended to multiobjective optimization problems by using a Pareto-based approach. The algorithm performs well when applied to several test optimization problems from the literature.

  20. Fuzzy multiobjective models for optimal operation of a hydropower system

    NASA Astrophysics Data System (ADS)

    Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.

    2013-06-01

    Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.

  1. Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization

    PubMed Central

    Maccari, Giuseppe; Di Luca, Mariagrazia; Nifosí, Riccardo; Cardarelli, Francesco; Signore, Giovanni; Boccardi, Claudia; Bifone, Angelo

    2013-01-01

    Antimicrobial peptides (AMPs) are an abundant and wide class of molecules produced by many tissues and cell types in a variety of mammals, plant and animal species. Linear alpha-helical antimicrobial peptides are among the most widespread membrane-disruptive AMPs in nature, representing a particularly successful structural arrangement in innate defense. Recently, AMPs have received increasing attention as potential therapeutic agents, owing to their broad activity spectrum and their reduced tendency to induce resistance. The introduction of non-natural amino acids will be a key requisite in order to contrast host resistance and increase compound's life. In this work, the possibility to design novel AMP sequences with non-natural amino acids was achieved through a flexible computational approach, based on chemophysical profiles of peptide sequences. Quantitative structure-activity relationship (QSAR) descriptors were employed to code each peptide and train two statistical models in order to account for structural and functional properties of alpha-helical amphipathic AMPs. These models were then used as fitness functions for a multi-objective evolutional algorithm, together with a set of constraints for the design of a series of candidate AMPs. Two ab-initio natural peptides were synthesized and experimentally validated for antimicrobial activity, together with a series of control peptides. Furthermore, a well-known Cecropin-Mellitin alpha helical antimicrobial hybrid (CM18) was optimized by shortening its amino acid sequence while maintaining its activity and a peptide with non-natural amino acids was designed and tested, demonstrating the higher activity achievable with artificial residues. PMID:24039565

  2. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    PubMed Central

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  3. Multi-objective nested algorithms for optimal reservoir operation

    NASA Astrophysics Data System (ADS)

    Delipetrev, Blagoj; Solomatine, Dimitri

    2016-04-01

    The optimal reservoir operation is in general a multi-objective problem, meaning that multiple objectives are to be considered at the same time. For solving multi-objective optimization problems there exist a large number of optimization algorithms - which result in a generation of a Pareto set of optimal solutions (typically containing a large number of them), or more precisely, its approximation. At the same time, due to the complexity and computational costs of solving full-fledge multi-objective optimization problems some authors use a simplified approach which is generically called "scalarization". Scalarization transforms the multi-objective optimization problem to a single-objective optimization problem (or several of them), for example by (a) single objective aggregated weighted functions, or (b) formulating some objectives as constraints. We are using the approach (a). A user can decide how many multi-objective single search solutions will generate, depending on the practical problem at hand and by choosing a particular number of the weight vectors that are used to weigh the objectives. It is not guaranteed that these solutions are Pareto optimal, but they can be treated as a reasonably good and practically useful approximation of a Pareto set, albeit small. It has to be mentioned that the weighted-sum approach has its known shortcomings because the linear scalar weights will fail to find Pareto-optimal policies that lie in the concave region of the Pareto front. In this context the considered approach is implemented as follows: there are m sets of weights {w1i, …wni} (i starts from 1 to m), and n objectives applied to single objective aggregated weighted sum functions of nested dynamic programming (nDP), nested stochastic dynamic programming (nSDP) and nested reinforcement learning (nRL). By employing the multi-objective optimization by a sequence of single-objective optimization searches approach, these algorithms acquire the multi-objective properties

  4. Design of high speed proprotors using multiobjective optimization techniques

    NASA Technical Reports Server (NTRS)

    Mccarthy, Thomas R.; Chattopadhyay, Aditi

    1992-01-01

    An integrated, multiobjective optimization procedure is developed for the design of high speed proprotors with the coupling of aerodynamic, dynamic, aeroelastic, and structural criteria. The objectives are to maximize propulsive efficiency in high speed cruise and rotor figure of merit in hover. Constraints are imposed on rotor blade aeroelastic stability in cruise and on total blade weight. Two different multiobjective formulation procedures, the Min summation of beta and the K-S function approaches are used to formulate the two-objective optimization problems.

  5. Evolutionary multiobjective query workload optimization of Cloud data warehouses.

    PubMed

    Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan

    2014-01-01

    With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048

  6. Evolutionary Multiobjective Query Workload Optimization of Cloud Data Warehouses

    PubMed Central

    Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan

    2014-01-01

    With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048

  7. Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Oyama, Akira; Liou, Meng-Sing

    2001-01-01

    A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.

  8. Multiobjective hyper heuristic scheme for system design and optimization

    NASA Astrophysics Data System (ADS)

    Rafique, Amer Farhan

    2012-11-01

    As system design is becoming more and more multifaceted, integrated, and complex, the traditional single objective optimization trends of optimal design are becoming less and less efficient and effective. Single objective optimization methods present a unique optimal solution whereas multiobjective methods present pareto front. The foremost intent is to predict a reasonable distributed pareto-optimal solution set independent of the problem instance through multiobjective scheme. Other objective of application of intended approach is to improve the worthiness of outputs of the complex engineering system design process at the conceptual design phase. The process is automated in order to provide the system designer with the leverage of the possibility of studying and analyzing a large multiple of possible solutions in a short time. This article presents Multiobjective Hyper Heuristic Optimization Scheme based on low level meta-heuristics developed for the application in engineering system design. Herein, we present a stochastic function to manage meta-heuristics (low-level) to augment surety of global optimum solution. Generic Algorithm, Simulated Annealing and Swarm Intelligence are used as low-level meta-heuristics in this study. Performance of the proposed scheme is investigated through a comprehensive empirical analysis yielding acceptable results. One of the primary motives for performing multiobjective optimization is that the current engineering systems require simultaneous optimization of conflicting and multiple. Random decision making makes the implementation of this scheme attractive and easy. Injecting feasible solutions significantly alters the search direction and also adds diversity of population resulting in accomplishment of pre-defined goals set in the proposed scheme.

  9. Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.

  10. Efficient multiobjective optimization scheme for large scale structures

    NASA Astrophysics Data System (ADS)

    Grandhi, Ramana V.; Bharatram, Geetha; Venkayya, V. B.

    1992-09-01

    This paper presents a multiobjective optimization algorithm for an efficient design of large scale structures. The algorithm is based on generalized compound scaling techniques to reach the intersection of multiple functions. Multiple objective functions are treated similar to behavior constraints. Thus, any number of objectives can be handled in the formulation. Pseudo targets on objectives are generated at each iteration in computing the scale factors. The algorithm develops a partial Pareto set. This method is computationally efficient due to the fact that it does not solve many single objective optimization problems in reaching the Pareto set. The computational efficiency is compared with other multiobjective optimization methods, such as the weighting method and the global criterion method. Trusses, plate, and wing structure design cases with stress and frequency considerations are presented to demonstrate the effectiveness of the method.

  11. MULTIOBJECTIVE OPTIMIZATION POWER GENERATION SYSTEMS INVOLVING CHEMICAL LOOPING COMBUSTION

    SciTech Connect

    Juan M. Salazar; Urmila M. Diwekar; Stephen E. Zitney

    2009-01-01

    Integrated Gasification Combined Cycle (IGCC) system using coal gasification is an important approach for future energy options. This work focuses on understading the system operation and optimizing it in the presence of uncertain operating conditions using ASPEN Plus and CAPE-OPEN compliant stochastic simulation and multiobjective optimization capabilities developed by Vishwamitra Research Institute. The feasible operating surface for the IGCC system is generated and deterministic multiobjective optimization is performed. Since the feasible operating space is highly non-convex, heuristics based techniques that do not require gradient information are used to generate the Pareto surface. Accurate CFD models are simultaneously developed for the gasifier and chemical looping combustion system to characterize and quantify the process uncertainty in the ASPEN model.

  12. Enhanced Multiobjective Optimization Technique for Comprehensive Aerospace Design. Part A

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John N.

    1997-01-01

    A multidisciplinary design optimization procedure which couples formal multiobjectives based techniques and complex analysis procedures (such as computational fluid dynamics (CFD) codes) developed. The procedure has been demonstrated on a specific high speed flow application involving aerodynamics and acoustics (sonic boom minimization). In order to account for multiple design objectives arising from complex performance requirements, multiobjective formulation techniques are used to formulate the optimization problem. Techniques to enhance the existing Kreisselmeier-Steinhauser (K-S) function multiobjective formulation approach have been developed. The K-S function procedure used in the proposed work transforms a constrained multiple objective functions problem into an unconstrained problem which then is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Weight factors are introduced during the transformation process to each objective function. This enhanced procedure will provide the designer the capability to emphasize specific design objectives during the optimization process. The demonstration of the procedure utilizes a computational Fluid dynamics (CFD) code which solves the three-dimensional parabolized Navier-Stokes (PNS) equations for the flow field along with an appropriate sonic boom evaluation procedure thus introducing both aerodynamic performance as well as sonic boom as the design objectives to be optimized simultaneously. Sensitivity analysis is performed using a discrete differentiation approach. An approximation technique has been used within the optimizer to improve the overall computational efficiency of the procedure in order to make it suitable for design applications in an industrial setting.

  13. A Multiobjective Optimization Framework for Stochastic Control of Complex Systems

    SciTech Connect

    Malikopoulos, Andreas; Maroulas, Vasileios; Xiong, Professor Jie

    2015-01-01

    This paper addresses the problem of minimizing the long-run expected average cost of a complex system consisting of subsystems that interact with each other and the environment. We treat the stochastic control problem as a multiobjective optimization problem of the one-stage expected costs of the subsystems, and we show that the control policy yielding the Pareto optimal solution is an optimal control policy that minimizes the average cost criterion for the entire system. For practical situations with constraints consistent to those we study here, our results imply that the Pareto control policy may be of value in deriving online an optimal control policy in complex systems.

  14. Hybridization of decomposition and local search for multiobjective optimization.

    PubMed

    Ke, Liangjun; Zhang, Qingfu; Battiti, Roberto

    2014-10-01

    Combining ideas from evolutionary algorithms, decomposition approaches, and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: memetic algorithm based on decomposition (MOMAD). It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MOMAD evolves three populations: 1) population P(L) for recording the current solution to each subproblem; 2) population P(P) for storing starting solutions for Pareto local search; and 3) an external population P(E) for maintaining all the nondominated solutions found so far during the search. A problem-specific single objective heuristic can be applied to these subproblems to initialize the three populations. At each generation, a Pareto local search method is first applied to search a neighborhood of each solution in P(P) to update P(L) and P(E). Then a single objective local search is applied to each perturbed solution in P(L) for improving P(L) and P(E), and reinitializing P(P). The procedure is repeated until a stopping condition is met. MOMAD provides a generic hybrid multiobjective algorithmic framework in which problem specific knowledge, well developed single objective local search and heuristics and Pareto local search methods can be hybridized. It is a population based iterative method and thus an anytime algorithm. Extensive experiments have been conducted in this paper to study MOMAD and compare it with some other state-of-the-art algorithms on the multiobjective traveling salesman problem and the multiobjective knapsack problem. The experimental results show that our proposed algorithm outperforms or performs similarly to the best so far heuristics on these two problems. PMID:25222724

  15. Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm

    PubMed Central

    Svečko, Rajko

    2014-01-01

    This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749

  16. Mechanical-Acoustic Multi-Objective Optimization of Honeycomb Plate

    NASA Astrophysics Data System (ADS)

    Li, Wang-Ying; Yang, Xiong-Wei; Li, Yue-Ming

    At present, optimal design against noise caused by vibrating structures is often formulated with the objective of minimizing sound power or sound pressure. In this paper, a mechanical and acoustic multi-objective optimization method is proposed aimed at minimizing static, dynamic and acoustic response of a honeycomb sandwich panel under given mass constraint. The multi-objective is defined as a weighted sum of static deflection, vibration response and sound power from the norm method. The static and dynamic responses are calculated using FEM and sound power radiated by structures is calculated using discrete Rayleigh integral. The sensitivities of static, dynamic and acoustic response are formulated to improve efficiency by the adjoint method. Numerical examples on the honeycomb plate are considered, which indicate that the proposed method can improve acoustical property without weakening mechanical property.

  17. A multiobjective memetic algorithm based on particle swarm optimization.

    PubMed

    Liu, Dasheng; Tan, K C; Goh, C K; Ho, W K

    2007-02-01

    In this paper, a new memetic algorithm (MA) for multiobjective (MO) optimization is proposed, which combines the global search ability of particle swarm optimization with a synchronous local search heuristic for directed local fine-tuning. A new particle updating strategy is proposed based upon the concept of fuzzy global-best to deal with the problem of premature convergence and diversity maintenance within the swarm. The proposed features are examined to show their individual and combined effects in MO optimization. The comparative study shows the effectiveness of the proposed MA, which produces solution sets that are highly competitive in terms of convergence, diversity, and distribution. PMID:17278557

  18. Multiobjective sensitivity analysis and optimization of distributed hydrologic model MOBIDIC

    NASA Astrophysics Data System (ADS)

    Yang, J.; Castelli, F.; Chen, Y.

    2014-10-01

    Calibration of distributed hydrologic models usually involves how to deal with the large number of distributed parameters and optimization problems with multiple but often conflicting objectives that arise in a natural fashion. This study presents a multiobjective sensitivity and optimization approach to handle these problems for the MOBIDIC (MOdello di Bilancio Idrologico DIstribuito e Continuo) distributed hydrologic model, which combines two sensitivity analysis techniques (the Morris method and the state-dependent parameter (SDP) method) with multiobjective optimization (MOO) approach ɛ-NSGAII (Non-dominated Sorting Genetic Algorithm-II). This approach was implemented to calibrate MOBIDIC with its application to the Davidson watershed, North Carolina, with three objective functions, i.e., the standardized root mean square error (SRMSE) of logarithmic transformed discharge, the water balance index, and the mean absolute error of the logarithmic transformed flow duration curve, and its results were compared with those of a single objective optimization (SOO) with the traditional Nelder-Mead simplex algorithm used in MOBIDIC by taking the objective function as the Euclidean norm of these three objectives. Results show that (1) the two sensitivity analysis techniques are effective and efficient for determining the sensitive processes and insensitive parameters: surface runoff and evaporation are very sensitive processes to all three objective functions, while groundwater recession and soil hydraulic conductivity are not sensitive and were excluded in the optimization. (2) Both MOO and SOO lead to acceptable simulations; e.g., for MOO, the average Nash-Sutcliffe value is 0.75 in the calibration period and 0.70 in the validation period. (3) Evaporation and surface runoff show similar importance for watershed water balance, while the contribution of baseflow can be ignored. (4) Compared to SOO, which was dependent on the initial starting location, MOO provides more

  19. Multi-objective optimization of chromatographic rare earth element separation.

    PubMed

    Knutson, Hans-Kristian; Holmqvist, Anders; Nilsson, Bernt

    2015-10-16

    The importance of rare earth elements in modern technological industry grows, and as a result the interest for developing separation processes increases. This work is a part of developing chromatography as a rare earth element processing method. Process optimization is an important step in process development, and there are several competing objectives that need to be considered in a chromatographic separation process. Most studies are limited to evaluating the two competing objectives productivity and yield, and studies of scenarios with tri-objective optimizations are scarce. Tri-objective optimizations are much needed when evaluating the chromatographic separation of rare earth elements due to the importance of product pool concentration along with productivity and yield as process objectives. In this work, a multi-objective optimization strategy considering productivity, yield and pool concentration is proposed. This was carried out in the frame of a model based optimization study on a batch chromatography separation of the rare earth elements samarium, europium and gadolinium. The findings from the multi-objective optimization were used to provide with a general strategy for achieving desirable operation points, resulting in a productivity ranging between 0.61 and 0.75 kgEu/mcolumn(3), h(-1) and a pool concentration between 0.52 and 0.79 kgEu/m(3), while maintaining a purity above 99% and never falling below an 80% yield for the main target component europium. PMID:26375205

  20. Estimation of subsurface geomodels by multi-objective stochastic optimization

    NASA Astrophysics Data System (ADS)

    Emami Niri, Mohammad; Lumley, David E.

    2016-06-01

    We present a new method to estimate subsurface geomodels using a multi-objective stochastic search technique that allows a variety of direct and indirect measurements to simultaneously constrain the earth model. Inherent uncertainties and noise in real data measurements may result in conflicting geological and geophysical datasets for a given area; a realistic earth model can then only be produced by combining the datasets in a defined optimal manner. One approach to solving this problem is by joint inversion of the various geological and/or geophysical datasets, and estimating an optimal model by optimizing a weighted linear combination of several separate objective functions which compare simulated and observed datasets. In the present work, we consider the joint inversion of multiple datasets for geomodel estimation, as a multi-objective optimization problem in which separate objective functions for each subset of the observed data are defined, followed by an unweighted simultaneous stochastic optimization to find the set of best compromise model solutions that fits the defined objectives, along the so-called "Pareto front". We demonstrate that geostatistically constrained initializations of the algorithm improves convergence speed and produces superior geomodel solutions. We apply our method to a 3D reservoir lithofacies model estimation problem which is constrained by a set of geological and geophysical data measurements and attributes, and assess the sensitivity of the resulting geomodels to changes in the parameters of the stochastic optimization algorithm and the presence of realistic seismic noise conditions.

  1. Multiobjective genetic approach for optimal control of photoinduced processes

    SciTech Connect

    Bonacina, Luigi; Extermann, Jerome; Rondi, Ariana; Wolf, Jean-Pierre; Boutou, Veronique

    2007-08-15

    We have applied a multiobjective genetic algorithm to the optimization of multiphoton-excited fluorescence. Our study shows the advantages that this approach can offer to experiments based on adaptive shaping of femtosecond pulses. The algorithm outperforms single-objective optimizations, being totally independent from the bias of user defined parameters and giving simultaneous access to a large set of feasible solutions. The global inspection of their ensemble represents a powerful support to unravel the connections between pulse spectral field features and excitation dynamics of the sample.

  2. Multi-objective optimization for deepwater dynamic umbilical installation analysis

    NASA Astrophysics Data System (ADS)

    Yang, HeZhen; Wang, AiJun; Li, HuaJun

    2012-08-01

    We suggest a method of multi-objective optimization based on approximation model for dynamic umbilical installation. The optimization aims to find out the most cost effective size, quantity and location of buoyancy modules for umbilical installation while maintaining structural safety. The approximation model is constructed by the design of experiment (DOE) sampling and is utilized to solve the problem of time-consuming analyses. The non-linear dynamic analyses considering environmental loadings are executed on these sample points from DOE. Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed to obtain the Pareto solution set through an evolutionary optimization process. Intuitionist fuzzy set theory is applied for selecting the best compromise solution from Pareto set. The optimization results indicate this optimization strategy with approximation model and multiple attribute decision-making method is valid, and provide the optimal deployment method for deepwater dynamic umbilical buoyancy modules.

  3. Multidisciplinary design optimization using multiobjective formulation techniques

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Pagaldipti, Narayanan S.

    1995-01-01

    This report addresses the development of a multidisciplinary optimization procedure using an efficient semi-analytical sensitivity analysis technique and multilevel decomposition for the design of aerospace vehicles. A semi-analytical sensitivity analysis procedure is developed for calculating computational grid sensitivities and aerodynamic design sensitivities. Accuracy and efficiency of the sensitivity analysis procedure is established through comparison of the results with those obtained using a finite difference technique. The developed sensitivity analysis technique are then used within a multidisciplinary optimization procedure for designing aerospace vehicles. The optimization problem, with the integration of aerodynamics and structures, is decomposed into two levels. Optimization is performed for improved aerodynamic performance at the first level and improved structural performance at the second level. Aerodynamic analysis is performed by solving the three-dimensional parabolized Navier Stokes equations. A nonlinear programming technique and an approximate analysis procedure are used for optimization. The proceduredeveloped is applied to design the wing of a high speed aircraft. Results obtained show significant improvements in the aircraft aerodynamic and structural performance when compared to a reference or baseline configuration. The use of the semi-analytical sensitivity technique provides significant computational savings.

  4. Particle Swarm and Ant Colony Approaches in Multiobjective Optimization

    NASA Astrophysics Data System (ADS)

    Rao, S. S.

    2010-10-01

    The social behavior of groups of birds, ants, insects and fish has been used to develop evolutionary algorithms known as swarm intelligence techniques for solving optimization problems. This work presents the development of strategies for the application of two of the popular swarm intelligence techniques, namely the particle swarm and ant colony methods, for the solution of multiobjective optimization problems. In a multiobjective optimization problem, the objectives exhibit a conflicting nature and hence no design vector can minimize all the objectives simultaneously. The concept of Pareto-optimal solution is used in finding a compromise solution. A modified cooperative game theory approach, in which each objective is associated with a different player, is used in this work. The applicability and computational efficiencies of the proposed techniques are demonstrated through several illustrative examples involving unconstrained and constrained problems with single and multiple objectives and continuous and mixed design variables. The present methodologies are expected to be useful for the solution of a variety of practical continuous and mixed optimization problems involving single or multiple objectives with or without constraints.

  5. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2004-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  6. Multi-objective optimization of aerostructures inspired by nature

    NASA Astrophysics Data System (ADS)

    Kearney, Adam C.

    The focus of this doctoral work is on the optimization of aircraft wing structures. The optimization was performed against the shape, size and topology of simple aircraft wing designs. A simple morphing wing actuator optimization is performed as well as a wing panel buckling topology optimization. This is done with biologically-inspired mathematical systems including a map L-system, a multi-objective genetic algorithm, and cellular structures represented by Voronoi diagrams. As with most aircraft optimizations, both studies aim to minimize the total weight of a wing while simultaneously meeting stiffness and strength requirements. Optimization is performed with the scripts developed in MATLAB as well as through the use of finite element codes, NASTRAN and LS-Dyna. The intent of this methodology is to develop unique designs inspired by nature and optimized through natural selection. The optimal designs are those with minimal weight as well as additional requirements specific to the problems. The designs and methodology have the potential to be of use in determining minimum weight designs in aircraft structures. A literature review of optimization techniques, methodology and method validation, and optimization comparisons is presented. The buckling panel optimization considered here also includes composite buckling failure and manufacturing assumptions for composite panels. The panels are optimized for mass and strength by controlling the laminate stacking sequence, stiffener size, and topology. The morphing wing is optimized for actuator loading and redundancy.

  7. Applications of fuzzy theories to multi-objective system optimization

    NASA Technical Reports Server (NTRS)

    Rao, S. S.; Dhingra, A. K.

    1991-01-01

    Most of the computer aided design techniques developed so far deal with the optimization of a single objective function over the feasible design space. However, there often exist several engineering design problems which require a simultaneous consideration of several objective functions. This work presents several techniques of multiobjective optimization. In addition, a new formulation, based on fuzzy theories, is also introduced for the solution of multiobjective system optimization problems. The fuzzy formulation is useful in dealing with systems which are described imprecisely using fuzzy terms such as, 'sufficiently large', 'very strong', or 'satisfactory'. The proposed theory translates the imprecise linguistic statements and multiple objectives into equivalent crisp mathematical statements using fuzzy logic. The effectiveness of all the methodologies and theories presented is illustrated by formulating and solving two different engineering design problems. The first one involves the flight trajectory optimization and the main rotor design of helicopters. The second one is concerned with the integrated kinematic-dynamic synthesis of planar mechanisms. The use and effectiveness of nonlinear membership functions in fuzzy formulation is also demonstrated. The numerical results indicate that the fuzzy formulation could yield results which are qualitatively different from those provided by the crisp formulation. It is felt that the fuzzy formulation will handle real life design problems on a more rational basis.

  8. PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning

    SciTech Connect

    Fiege, Jason; McCurdy, Boyd; Potrebko, Peter; Champion, Heather; Cull, Andrew

    2011-09-15

    Purpose: In radiation therapy treatment planning, the clinical objectives of uniform high dose to the planning target volume (PTV) and low dose to the organs-at-risk (OARs) are invariably in conflict, often requiring compromises to be made between them when selecting the best treatment plan for a particular patient. In this work, the authors introduce Pareto-Aware Radiotherapy Evolutionary Treatment Optimization (pareto), a multiobjective optimization tool to solve for beam angles and fluence patterns in intensity-modulated radiation therapy (IMRT) treatment planning. Methods: pareto is built around a powerful multiobjective genetic algorithm (GA), which allows us to treat the problem of IMRT treatment plan optimization as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. We have employed a simple parameterized beam fluence representation with a realistic dose calculation approach, incorporating patient scatter effects, to demonstrate feasibility of the proposed approach on two phantoms. The first phantom is a simple cylindrical phantom containing a target surrounded by three OARs, while the second phantom is more complex and represents a paraspinal patient. Results: pareto results in a large database of Pareto nondominated solutions that represent the necessary trade-offs between objectives. The solution quality was examined for several PTV and OAR fitness functions. The combination of a conformity-based PTV fitness function and a dose-volume histogram (DVH) or equivalent uniform dose (EUD) -based fitness function for the OAR produced relatively uniform and conformal PTV doses, with well-spaced beams. A penalty function added to the fitness functions eliminates hotspots. Comparison of resulting DVHs to those from treatment plans developed with a single-objective fluence optimizer (from a commercial treatment planning system) showed good correlation. Results also indicated that pareto shows

  9. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2005-01-01

    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  10. A hierarchical evolutionary algorithm for multiobjective optimization in IMRT

    PubMed Central

    Holdsworth, Clay; Kim, Minsun; Liao, Jay; Phillips, Mark H.

    2010-01-01

    Purpose: The current inverse planning methods for intensity modulated radiation therapy (IMRT) are limited because they are not designed to explore the trade-offs between the competing objectives of tumor and normal tissues. The goal was to develop an efficient multiobjective optimization algorithm that was flexible enough to handle any form of objective function and that resulted in a set of Pareto optimal plans. Methods: A hierarchical evolutionary multiobjective algorithm designed to quickly generate a small diverse Pareto optimal set of IMRT plans that meet all clinical constraints and reflect the optimal trade-offs in any radiation therapy plan was developed. The top level of the hierarchical algorithm is a multiobjective evolutionary algorithm (MOEA). The genes of the individuals generated in the MOEA are the parameters that define the penalty function minimized during an accelerated deterministic IMRT optimization that represents the bottom level of the hierarchy. The MOEA incorporates clinical criteria to restrict the search space through protocol objectives and then uses Pareto optimality among the fitness objectives to select individuals. The population size is not fixed, but a specialized niche effect, domination advantage, is used to control the population and plan diversity. The number of fitness objectives is kept to a minimum for greater selective pressure, but the number of genes is expanded for flexibility that allows a better approximation of the Pareto front. Results: The MOEA improvements were evaluated for two example prostate cases with one target and two organs at risk (OARs). The population of plans generated by the modified MOEA was closer to the Pareto front than populations of plans generated using a standard genetic algorithm package. Statistical significance of the method was established by compiling the results of 25 multiobjective optimizations using each method. From these sets of 12–15 plans, any random plan selected from a MOEA

  11. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    EPA Science Inventory

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  12. An Enhanced Multi-Objective Optimization Technique for Comprehensive Aerospace Design

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John N.

    2000-01-01

    An enhanced multiobjective formulation technique, capable of emphasizing specific objective functions during the optimization process, has been demonstrated on a complex multidisciplinary design application. The Kreisselmeier-Steinhauser (K-S) function approach, which has been used successfully in a variety of multiobjective optimization problems, has been modified using weight factors which enables the designer to emphasize specific design objectives during the optimization process. The technique has been implemented in two distinctively different problems. The first is a classical three bar truss problem and the second is a high-speed aircraft (a doubly swept wing-body configuration) application in which the multiobjective optimization procedure simultaneously minimizes the sonic boom and the drag-to-lift ratio (C(sub D)/C(sub L)) of the aircraft while maintaining the lift coefficient within prescribed limits. The results are compared with those of an equally weighted K-S multiobjective optimization. Results demonstrate the effectiveness of the enhanced multiobjective optimization procedure.

  13. Constrained Multiobjective Optimization Algorithm Based on Immune System Model.

    PubMed

    Qian, Shuqu; Ye, Yongqiang; Jiang, Bin; Wang, Jianhong

    2016-09-01

    An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The feasible nondominated individuals focus on exploring the nondominated front through clone and hypermutation based on a proposed affinity design approach, while the infeasible/dominated individuals are exploited and improved via the simulated binary crossover and polynomial mutation operations. And then, to accelerate the convergence of the proposed algorithm, a transformation technique is applied to the combined population of the above two offspring populations. Finally, a crowded-comparison strategy is used to create the next generation population. In numerical experiments, a series of benchmark constrained multiobjective optimization problems are considered to evaluate the performance of the proposed algorithm and it is also compared to several state-of-art algorithms in terms of the inverted generational distance and hypervolume indicators. The results indicate that the new method achieves competitive performance and even statistically significant better results than previous algorithms do on most of the benchmark suite. PMID:26285230

  14. Pricing Resources in LTE Networks through Multiobjective Optimization

    PubMed Central

    Lai, Yung-Liang; Jiang, Jehn-Ruey

    2014-01-01

    The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid “user churn,” which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution. PMID:24526889

  15. Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.

  16. Pricing resources in LTE networks through multiobjective optimization.

    PubMed

    Lai, Yung-Liang; Jiang, Jehn-Ruey

    2014-01-01

    The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid "user churn," which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution. PMID:24526889

  17. Effective multi-objective optimization with the coral reefs optimization algorithm

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.; Pastor-Sánchez, A.; Portilla-Figueras, J. A.; Prieto, L.

    2016-06-01

    In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor.

  18. A Multiobjective Optimal Design of a Hybrid Power Source System for a Railway Vehicle

    NASA Astrophysics Data System (ADS)

    Ogawa, Tomoyuki; Wakao, Shinji; Kondo, Keiichiro

    In this paper, we study an optimal design for a hybrid power source railway vehicle as an alternative to diesel railway vehicles. The hybrid power source railway vehicle is assumed to be composed of the fuel cell and the electric double layer capacitor. We apply the multiobjective optimization based on the genetic algorithm for the vehicle design, aiming at reduction of both initial cost and energy consumption. The pareto optimal solutions are obtained using the multiobjective optimization. First we develop a simulation model of the hybrid power source railway vehicle and its electric power control methods. Next we derive the pareto optimal solutions as a result of the multiobjective optimization. Finally, we categorize the pareto optimal solutions to some groups, which enables us to elucidate characteristics of the pareto optimal solutions. Consequently, using the multiobjective optimization approach we effectively comprehend the problem characteristics and can obtain the plural valuable solutions.

  19. Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control

    NASA Technical Reports Server (NTRS)

    Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.

    2015-01-01

    The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.

  20. Lexicographic multi-objective optimization of thermoacoustic refrigerator's stack

    NASA Astrophysics Data System (ADS)

    Tartibu, L. K.; Sun, B.; Kaunda, M. A. E.

    2015-05-01

    This work develops a novel mathematical programming model to optimize the performance of a simple thermoacoustic refrigerator (TAR). This study aims to optimize the geometric parameters namely the stack position, the stack length, the blockage ratio and the plate spacing involved in designing TARs. System parameters and constraints that capture the underlying thermoacoustic dynamics have been used to define the models. The cooling load, the coefficient of performance and the acoustic power loss have been used to measure the performance of the device. The optimization task is formulated as a three-criterion nonlinear programming problem with discontinuous derivatives (DNLP). Since we optimize multiple objectives simultaneously, each objective component has been given a weighting factor to provide appropriate user-defined emphasis. A practical example is given to illustrate the approach. We have determined a design statement of a stack describing how the geometrical parameters describing would change if emphasis is given to one objective in particular. We also considered optimization of multiple objectives components simultaneously and identify global optimal solutions describing the stack geometry using a lexicographic multi-objective optimization scheme. Additionally, this approach illustrates the difference between a design for maximum cooling and best coefficient of performance of a simple TAR.

  1. Application of multi-objective nonlinear optimization technique for coordinated ramp-metering

    SciTech Connect

    Haj Salem, Habib; Farhi, Nadir; Lebacque, Jean Patrick E-mail: nadir.frahi@ifsttar.fr

    2015-03-10

    This paper aims at developing a multi-objective nonlinear optimization algorithm applied to coordinated motorway ramp metering. The multi-objective function includes two components: traffic and safety. Off-line simulation studies were performed on A4 France Motorway including 4 on-ramps.

  2. Multi-objective optimization of combined Brayton and inverse Brayton cycles using advanced optimization algorithms

    NASA Astrophysics Data System (ADS)

    Venkata Rao, R.; Patel, Vivek

    2012-08-01

    This study explores the use of teaching-learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms for determining the optimum operating conditions of combined Brayton and inverse Brayton cycles. Maximization of thermal efficiency and specific work of the system are considered as the objective functions and are treated simultaneously for multi-objective optimization. Upper cycle pressure ratio and bottom cycle expansion pressure of the system are considered as design variables for the multi-objective optimization. An application example is presented to demonstrate the effectiveness and accuracy of the proposed algorithms. The results of optimization using the proposed algorithms are validated by comparing with those obtained by using the genetic algorithm (GA) and particle swarm optimization (PSO) on the same example. Improvement in the results is obtained by the proposed algorithms. The results of effect of variation of the algorithm parameters on the convergence and fitness values of the objective functions are reported.

  3. Multi-objective optimal dispatch of distributed energy resources

    NASA Astrophysics Data System (ADS)

    Longe, Ayomide

    This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability.

  4. Multiobjective decision theory for computational optimization in radiation therapy.

    PubMed

    Yu, Y

    1997-09-01

    Machine-guided iterative optimization in radiation oncology requires ordinal or cardinal ranking of competing treatment plans. When the clinical objectives are multifaceted and incommensurable, the ranking formalism must take into account the decision maker's tradeoff strategies in a multidimensional decision space. To capture the decision processes in treatment planning, a multiobjective decision-theoretic scheme is formulated. Ranking among a group of candidate plans is based on a generalized distance metric. A dynamic metric weighting function is defined based on the state energy of the decision system, which is assumed to undergo thermodynamic cooling with iteration time. The decision maker is required to specify a baseline ranking of the objectives, which is taken to be the ground state of the decision system. This decision-theoretic formalism was applied to idealized cases in stereotactic radiosurgery and prostatic implantation, using the genetic algorithm as the optimization engine. The optimization pathways and the outcome at limited horizons indicated that the combined scheme of decision-theoretic steering and iterative optimization was robust and produced treatment plans consistent with the user's expectation. The effect of treatment uncertainties was simulated using imperfect objectives; however, certain recurring plans could be identified as optimized baseline solutions. Overall, the present formalism provides a realistic alternative to complete utility assessment or human-guided exploration of the efficient solution set. PMID:9304573

  5. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob; Vavrina, Matthew; Ghosh, Alexander

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed and in some cases the final destination. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very diserable. This work presents such as an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.

  6. Metabolic engineering with multi-objective optimization of kinetic models.

    PubMed

    Villaverde, Alejandro F; Bongard, Sophia; Mauch, Klaus; Balsa-Canto, Eva; Banga, Julio R

    2016-03-20

    Kinetic models have a great potential for metabolic engineering applications. They can be used for testing which genetic and regulatory modifications can increase the production of metabolites of interest, while simultaneously monitoring other key functions of the host organism. This work presents a methodology for increasing productivity in biotechnological processes exploiting dynamic models. It uses multi-objective dynamic optimization to identify the combination of targets (enzymatic modifications) and the degree of up- or down-regulation that must be performed in order to optimize a set of pre-defined performance metrics subject to process constraints. The capabilities of the approach are demonstrated on a realistic and computationally challenging application: a large-scale metabolic model of Chinese Hamster Ovary cells (CHO), which are used for antibody production in a fed-batch process. The proposed methodology manages to provide a sustained and robust growth in CHO cells, increasing productivity while simultaneously increasing biomass production, product titer, and keeping the concentrations of lactate and ammonia at low values. The approach presented here can be used for optimizing metabolic models by finding the best combination of targets and their optimal level of up/down-regulation. Furthermore, it can accommodate additional trade-offs and constraints with great flexibility. PMID:26826510

  7. Product quality multi-objective optimization of fluidized bed dryers

    SciTech Connect

    Krokida, M.K.; Kiranoudis, C.T.

    2000-01-01

    Design of fluidized bed dryers constitutes a mathematical programming problem involving the evaluation of appropriate structural and operational process variables so that total annual plant cost involved is optimized. The increasing need for dehydrated products of the highest quality, imposes the development of new criteria that, together with cost, determine the design rules for drying processes. Quality of dehydrated products is a complex resultant of properties characterizing the final products, where the most important one is color. Color is determined as a three-parameter resultant, whose values for products undergone drying should deviate from the corresponding ones of natural products, as little as possible. In this case, product quality dryer design is a complex multi-objective optimization problem, involving the color deviation vector as an objective function and as constraints the ones deriving from the process mathematical model. The mathematical model of the dryer was developed and the fundamental color deterioration laws were determined for the drying process. Non-preference multi-criteria optimization methods were used and the Pareto-optimal set of efficient solutions was evaluated. An example covering the drying of sliced potato was included to demonstrate the performance of the design procedure, as well as the effectiveness of the proposed approach.

  8. Solving nonlinear equality constrained multiobjective optimization problems using neural networks.

    PubMed

    Mestari, Mohammed; Benzirar, Mohammed; Saber, Nadia; Khouil, Meryem

    2015-10-01

    This paper develops a neural network architecture and a new processing method for solving in real time, the nonlinear equality constrained multiobjective optimization problem (NECMOP), where several nonlinear objective functions must be optimized in a conflicting situation. In this processing method, the NECMOP is converted to an equivalent scalar optimization problem (SOP). The SOP is then decomposed into several-separable subproblems processable in parallel and in a reasonable time by multiplexing switched capacitor circuits. The approach which we propose makes use of a decomposition-coordination principle that allows nonlinearity to be treated at a local level and where coordination is achieved through the use of Lagrange multipliers. The modularity and the regularity of the neural networks architecture herein proposed make it suitable for very large scale integration implementation. An application to the resolution of a physical problem is given to show that the approach used here possesses some advantages of the point of algorithmic view, and provides processes of resolution often simpler than the usual techniques. PMID:25647664

  9. Multi-Objective Optimization of an In situ Bioremediation Technology to Treat Perchlorate-Contaminated Groundwater

    EPA Science Inventory

    The presentation shows how a multi-objective optimization method is integrated into a transport simulator (MT3D) for estimating parameters and cost of in-situ bioremediation technology to treat perchlorate-contaminated groundwater.

  10. Objective reduction in evolutionary multiobjective optimization: theory and applications.

    PubMed

    Brockhoff, Dimo; Zitzler, Eckart

    2009-01-01

    Many-objective problems represent a major challenge in the field of evolutionary multiobjective optimization--in terms of search efficiency, computational cost, decision making, visualization, and so on. This leads to various research questions, in particular whether certain objectives can be omitted in order to overcome or at least diminish the difficulties that arise when many, that is, more than three, objective functions are involved. This study addresses this question from different perspectives. First, we investigate how adding or omitting objectives affects the problem characteristics and propose a general notion of conflict between objective sets as a theoretical foundation for objective reduction. Second, we present both exact and heuristic algorithms to systematically reduce the number of objectives, while preserving as much as possible of the dominance structure of the underlying optimization problem. Third, we demonstrate the usefulness of the proposed objective reduction method in the context of both decision making and search for a radar waveform application as well as for well-known test functions. PMID:19413486

  11. A multiobjective optimization framework for multicontaminant industrial water network design.

    PubMed

    Boix, Marianne; Montastruc, Ludovic; Pibouleau, Luc; Azzaro-Pantel, Catherine; Domenech, Serge

    2011-07-01

    The optimal design of multicontaminant industrial water networks according to several objectives is carried out in this paper. The general formulation of the water allocation problem (WAP) is given as a set of nonlinear equations with binary variables representing the presence of interconnections in the network. For optimization purposes, three antagonist objectives are considered: F(1), the freshwater flow-rate at the network entrance, F(2), the water flow-rate at inlet of regeneration units, and F(3), the number of interconnections in the network. The multiobjective problem is solved via a lexicographic strategy, where a mixed-integer nonlinear programming (MINLP) procedure is used at each step. The approach is illustrated by a numerical example taken from the literature involving five processes, one regeneration unit and three contaminants. The set of potential network solutions is provided in the form of a Pareto front. Finally, the strategy for choosing the best network solution among those given by Pareto fronts is presented. This Multiple Criteria Decision Making (MCDM) problem is tackled by means of two approaches: a classical TOPSIS analysis is first implemented and then an innovative strategy based on the global equivalent cost (GEC) in freshwater that turns out to be more efficient for choosing a good network according to a practical point of view. PMID:21435775

  12. Development of Multiobjective Optimization Techniques for Sonic Boom Minimization

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.

    1996-01-01

    A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously

  13. Multiobjective genetic algorithm conjunctive use optimization for production, cost, and energy with dynamic return flow

    NASA Astrophysics Data System (ADS)

    Peralta, Richard C.; Forghani, Ali; Fayad, Hala

    2014-04-01

    Many real water resources optimization problems involve conflicting objectives for which the main goal is to find a set of optimal solutions on, or near to the Pareto front. E-constraint and weighting multiobjective optimization techniques have shortcomings, especially as the number of objectives increases. Multiobjective Genetic Algorithms (MGA) have been previously proposed to overcome these difficulties. Here, an MGA derives a set of optimal solutions for multiobjective multiuser conjunctive use of reservoir, stream, and (un)confined groundwater resources. The proposed methodology is applied to a hydraulically and economically nonlinear system in which all significant flows, including stream-aquifer-reservoir-diversion-return flow interactions, are simulated and optimized simultaneously for multiple periods. Neural networks represent constrained state variables. The addressed objectives that can be optimized simultaneously in the coupled simulation-optimization model are: (1) maximizing water provided from sources, (2) maximizing hydropower production, and (3) minimizing operation costs of transporting water from sources to destinations. Results show the efficiency of multiobjective genetic algorithms for generating Pareto optimal sets for complex nonlinear multiobjective optimization problems.

  14. In-Core Fuel Management with Biased Multiobjective Function Optimization

    SciTech Connect

    Shatilla, Youssef A.; Little, David C.; Penkrot, Jack A.; Holland, Richard Andrew

    2000-06-15

    The capability of biased multiobjective function optimization has been added to the Westinghouse Electric Company's (Westinghouse's) Advanced Loading Pattern Search code (ALPS). The search process, given a user-defined set of design constraints, proceeds to minimize a global parameter called the total value associated with constraints compliance (VACC), an importance-weighted measure of the deviation from limit and/or margin target. The search process takes into consideration two equally important user-defined factors while minimizing the VACC, namely, the relative importance of each constraint with respect to the others and the optimization of each constraint according to its own objective function. Hence, trading off margin-to-design limits from where it is abundantly available to where it is badly needed can now be accomplished. Two practical methods are provided to the user for input of constraints and associated objective functions. One consists of establishing design limits based on traditional core design parameters such as assembly/pin burnup, power, or reactivity. The second method allows the user to write a program, or script, to define a logic not possible through ordinary means. This method of script writing was made possible through the application resident compiler feature of the technical user language integration processor (tulip), developed at Westinghouse. For the optimization problems studied, ALPS not only produced candidate loading patterns (LPs) that met all of the conflicting design constraints, but in cases where the design appeared to be over constrained gave a wide range of LPs that came very close to meeting all the constraints based on the associated objective functions.

  15. Multiobjective Optimization for Model Selection in Kernel Methods in Regression

    PubMed Central

    You, Di; Benitez-Quiroz, C. Fabian; Martinez, Aleix M.

    2016-01-01

    Regression plays a major role in many scientific and engineering problems. The goal of regression is to learn the unknown underlying function from a set of sample vectors with known outcomes. In recent years, kernel methods in regression have facilitated the estimation of nonlinear functions. However, two major (interconnected) problems remain open. The first problem is given by the bias-vs-variance trade-off. If the model used to estimate the underlying function is too flexible (i.e., high model complexity), the variance will be very large. If the model is fixed (i.e., low complexity), the bias will be large. The second problem is to define an approach for selecting the appropriate parameters of the kernel function. To address these two problems, this paper derives a new smoothing kernel criterion, which measures the roughness of the estimated function as a measure of model complexity. Then, we use multiobjective optimization to derive a criterion for selecting the parameters of that kernel. The goal of this criterion is to find a trade-off between the bias and the variance of the learned function. That is, the goal is to increase the model fit while keeping the model complexity in check. We provide extensive experimental evaluations using a variety of problems in machine learning, pattern recognition and computer vision. The results demonstrate that the proposed approach yields smaller estimation errors as compared to methods in the state of the art. PMID:25291740

  16. Improving quantitative structure-activity relationships through multiobjective optimization.

    PubMed

    Nicolotti, Orazio; Giangreco, Ilenia; Miscioscia, Teresa Fabiola; Carotti, Angelo

    2009-10-01

    A multiobjective optimization algorithm was proposed for the automated integration of structure- and ligand-based molecular design. Driven by a genetic algorithm, the herein proposed approach enabled the detection of a number of trade-off QSAR models accounting simultaneously for two independent objectives. The first was biased toward best regressions among docking scores and biological affinities; the second minimized the atom displacements from a properly established crystal-based binding topology. Based on the concept of dominance, 3D QSAR equivalent models profiled the Pareto frontier and were, thus, designated as nondominated solutions of the search space. K-means clustering was, then, operated to select a representative subset of the available trade-off models. These were effectively subjected to GRID/GOLPE analyses for quantitatively featuring molecular determinants of ligand binding affinity. More specifically, it was demonstrated that a) diverse binding conformations occurred on the basis of the ligand ability to profitably contact different part of protein binding site; b) enzyme selectivity was better approached and interpreted by combining diverse equivalent models; and c) trade-off models were successful and even better than docking virtual screening, in retrieving at high sensitivity active hits from a large pool of chemically similar decoys. The approach was tested on a large series, very well-known to QSAR practitioners, of 3-amidinophenylalanine inhibitors of thrombin and trypsin, two serine proteases having rather different biological actions despite a high sequence similarity. PMID:19785453

  17. Multiobjective optimization for model selection in kernel methods in regression.

    PubMed

    You, Di; Benitez-Quiroz, Carlos Fabian; Martinez, Aleix M

    2014-10-01

    Regression plays a major role in many scientific and engineering problems. The goal of regression is to learn the unknown underlying function from a set of sample vectors with known outcomes. In recent years, kernel methods in regression have facilitated the estimation of nonlinear functions. However, two major (interconnected) problems remain open. The first problem is given by the bias-versus-variance tradeoff. If the model used to estimate the underlying function is too flexible (i.e., high model complexity), the variance will be very large. If the model is fixed (i.e., low complexity), the bias will be large. The second problem is to define an approach for selecting the appropriate parameters of the kernel function. To address these two problems, this paper derives a new smoothing kernel criterion, which measures the roughness of the estimated function as a measure of model complexity. Then, we use multiobjective optimization to derive a criterion for selecting the parameters of that kernel. The goal of this criterion is to find a tradeoff between the bias and the variance of the learned function. That is, the goal is to increase the model fit while keeping the model complexity in check. We provide extensive experimental evaluations using a variety of problems in machine learning, pattern recognition, and computer vision. The results demonstrate that the proposed approach yields smaller estimation errors as compared with methods in the state of the art. PMID:25291740

  18. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.

    2014-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. Because low-thrust trajectory design is tightly coupled with systems design, power and propulsion characteristics must be chosen as well. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often may thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on hypothetical mission to the main asteroid belt and to Deimos.

  19. Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning

    NASA Technical Reports Server (NTRS)

    Englander, Jacob

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. Because low-thrust trajectory design is tightly coupled with systems design, power and propulsion characteristics must be chosen as well. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The methods is demonstrated on hypothetical mission to the main asteroid belt and to Deimos.

  20. A new multi-objective particle swarm optimizer using empirical movement and diversified search strategies

    NASA Astrophysics Data System (ADS)

    Fan, Shu-Kai S.; Chang, Ju-Ming; Chuang, Yu-Chiang

    2015-06-01

    Most real-world optimization problems involve the optimization task of more than a single objective function and, therefore, require a great amount of computational effort as the solution procedure is designed to anchor multiple compromised optimal solutions. Abundant multi-objective evolutionary algorithms (MOEAs) for multi-objective optimization have appeared in the literature over the past two decades. In this article, a new proposal by means of particle swarm optimization is addressed for solving multi-objective optimization problems. The proposed algorithm is constructed based on the concept of Pareto dominance, taking both the diversified search and empirical movement strategies into account. The proposed particle swarm MOEA with these two strategies is thus dubbed the empirical-movement diversified-search multi-objective particle swarm optimizer (EMDS-MOPSO). Its performance is assessed in terms of a suite of standard benchmark functions taken from the literature and compared to other four state-of-the-art MOEAs. The computational results demonstrate that the proposed algorithm shows great promise in solving multi-objective optimization problems.

  1. Improved multi-objective ant colony optimization algorithm and its application in complex reasoning

    NASA Astrophysics Data System (ADS)

    Wang, Xinqing; Zhao, Yang; Wang, Dong; Zhu, Huijie; Zhang, Qing

    2013-09-01

    The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and

  2. Geophysical Inversion With Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin

    2016-04-01

    We are investigating the use of Pareto multi-objective global optimization (PMOGO) methods to solve numerically complicated geophysical inverse problems. PMOGO methods can be applied to highly nonlinear inverse problems, to those where derivatives are discontinuous or simply not obtainable, and to those were multiple minima exist in the problem space. PMOGO methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. This allows a more complete assessment of the possibilities and provides opportunities to calculate statistics regarding the likelihood of particular model features. We are applying PMOGO methods to four classes of inverse problems. The first are discrete-body problems where the inversion determines values of several parameters that define the location, orientation, size and physical properties of an anomalous body represented by a simple shape, for example a sphere, ellipsoid, cylinder or cuboid. A PMOGO approach can determine not only the optimal shape parameters for the anomalous body but also the optimal shape itself. Furthermore, when one expects several anomalous bodies in the subsurface, a PMOGO inversion approach can determine an optimal number of parameterized bodies. The second class of inverse problems are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The third class of problems are lithological inversions, which are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the fourth class, surface geometry inversions, we consider a fundamentally different type of problem in which a model comprises wireframe surfaces representing contacts between rock units. The physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. Surface geometry inversion can be

  3. Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels

    NASA Technical Reports Server (NTRS)

    Coffee, Thomas M.; Anderson, Rodney L.; Lo, Martin W.

    2011-01-01

    We introduce a computational method to design efficient low-energy trajectories by extracting initial solutions from dynamical channels formed by invariant manifolds, and improving these solutions through variational optimal control. We consider trajectories connecting two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method leverages dynamical channels to generate a range of solutions, and approximates the areto front for impulse and time of flight through a multiobjective optimization of these solutions based on primer vector theory. We demonstrate the application of our method to a libration orbit transfer in the Earth-Moon system.

  4. Optimal design of multichannel fiber Bragg grating filters using Pareto multi-objective optimization algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Liu, Tundong; Jiang, Hao

    2016-01-01

    A Pareto-based multi-objective optimization approach is proposed to design multichannel FBG filters. Instead of defining a single optimal objective, the proposed method establishes the multi-objective model by taking two design objectives into account, which are minimizing the maximum index modulation and minimizing the mean dispersion error. To address this optimization problem, we develop a two-stage evolutionary computation approach integrating an elitist non-dominated sorting genetic algorithm (NSGA-II) and technique for order preference by similarity to ideal solution (TOPSIS). NSGA-II is utilized to search for the candidate solutions in terms of both objectives. The obtained results are provided as Pareto front. Subsequently, the best compromise solution is determined by the TOPSIS method from the Pareto front according to the decision maker's preference. The design results show that the proposed approach yields a remarkable reduction of the maximum index modulation and the performance of dispersion spectra of the designed filter can be optimized simultaneously.

  5. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework

    PubMed Central

    Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing

    2015-01-01

    Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840

  6. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework.

    PubMed

    Guan, Xiangmin; Zhang, Xuejun; Zhu, Yanbo; Sun, Dengfeng; Lei, Jiaxing

    2015-01-01

    Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840

  7. An improved version of the multiple trajectory search for real value multi-objective optimization problems

    NASA Astrophysics Data System (ADS)

    Chen, Chun; Tseng, Lin-Yu

    2014-10-01

    Multi-objective optimization is widely used in science, engineering and business. In this article, an improved version of the multiple trajectory search (MTS) called MTS2 is presented and successfully applied to real-value multi-objective optimization problems. In the first step, MTS2 generates M initial solutions distributed over the solution space. These solutions are called seeds. Some seeds with good objective values are selected as foreground seeds. Then, MTS2 chooses a suitable region search method for each foreground seed according to the landscape of the neighbourhood of the seed. During the search, MTS2 focuses its search on some promising areas specified by the foreground seeds. The performance of MTS2 was examined by applying it to solve the benchmark problems provided by the Competition of Performance Assessment of Constrained/Bound Constrained Multi-Objective Optimization Algorithms held at the 2009 IEEE Congress on Evolutionary Computation.

  8. An Investigation of Generalized Differential Evolution Metaheuristic for Multiobjective Optimal Crop-Mix Planning Decision

    PubMed Central

    Olugbara, Oludayo

    2014-01-01

    This paper presents an annual multiobjective crop-mix planning as a problem of concurrent maximization of net profit and maximization of crop production to determine an optimal cropping pattern. The optimal crop production in a particular planting season is a crucial decision making task from the perspectives of economic management and sustainable agriculture. A multiobjective optimal crop-mix problem is formulated and solved using the generalized differential evolution 3 (GDE3) metaheuristic to generate a globally optimal solution. The performance of the GDE3 metaheuristic is investigated by comparing its results with the results obtained using epsilon constrained and nondominated sorting genetic algorithms—being two representatives of state-of-the-art in evolutionary optimization. The performance metrics of additive epsilon, generational distance, inverted generational distance, and spacing are considered to establish the comparability. In addition, a graphical comparison with respect to the true Pareto front for the multiobjective optimal crop-mix planning problem is presented. Empirical results generally show GDE3 to be a viable alternative tool for solving a multiobjective optimal crop-mix planning problem. PMID:24883369

  9. PSO-based multiobjective optimization with dynamic population size and adaptive local archives.

    PubMed

    Leong, Wen-Fung; Yen, Gary G

    2008-10-01

    Recently, various multiobjective particle swarm optimization (MOPSO) algorithms have been developed to efficiently and effectively solve multiobjective optimization problems. However, the existing MOPSO designs generally adopt a notion to "estimate" a fixed population size sufficiently to explore the search space without incurring excessive computational complexity. To address the issue, this paper proposes the integration of a dynamic population strategy within the multiple-swarm MOPSO. The proposed algorithm is named dynamic population multiple-swarm MOPSO. An additional feature, adaptive local archives, is designed to improve the diversity within each swarm. Performance metrics and benchmark test functions are used to examine the performance of the proposed algorithm compared with that of five selected MOPSOs and two selected multiobjective evolutionary algorithms. In addition, the computational cost of the proposed algorithm is quantified and compared with that of the selected MOPSOs. The proposed algorithm shows competitive results with improved diversity and convergence and demands less computational cost. PMID:18784011

  10. Modeling and Optimization of the Multiobjective Stochastic Joint Replenishment and Delivery Problem under Supply Chain Environment

    PubMed Central

    Dun, Cai-xia

    2013-01-01

    As a practical inventory and transportation problem, it is important to synthesize several objectives for the joint replenishment and delivery (JRD) decision. In this paper, a new multiobjective stochastic JRD (MSJRD) of the one-warehouse and n-retailer systems considering the balance of service level and total cost simultaneously is proposed. The goal of this problem is to decide the reasonable replenishment interval, safety stock factor, and traveling routing. Secondly, two approaches are designed to handle this complex multi-objective optimization problem. Linear programming (LP) approach converts the multi-objective to single objective, while a multi-objective evolution algorithm (MOEA) solves a multi-objective problem directly. Thirdly, three intelligent optimization algorithms, differential evolution algorithm (DE), hybrid DE (HDE), and genetic algorithm (GA), are utilized in LP-based and MOEA-based approaches. Results of the MSJRD with LP-based and MOEA-based approaches are compared by a contrastive numerical example. To analyses the nondominated solution of MOEA, a metric is also used to measure the distribution of the last generation solution. Results show that HDE outperforms DE and GA whenever LP or MOEA is adopted. PMID:24302880

  11. Assessing Activity Pattern Similarity with Multidimensional Sequence Alignment based on a Multiobjective Optimization Evolutionary Algorithm

    PubMed Central

    Kwan, Mei-Po; Xiao, Ningchuan; Ding, Guoxiang

    2015-01-01

    Due to the complexity and multidimensional characteristics of human activities, assessing the similarity of human activity patterns and classifying individuals with similar patterns remains highly challenging. This paper presents a new and unique methodology for evaluating the similarity among individual activity patterns. It conceptualizes multidimensional sequence alignment (MDSA) as a multiobjective optimization problem, and solves this problem with an evolutionary algorithm. The study utilizes sequence alignment to code multiple facets of human activities into multidimensional sequences, and to treat similarity assessment as a multiobjective optimization problem that aims to minimize the alignment cost for all dimensions simultaneously. A multiobjective optimization evolutionary algorithm (MOEA) is used to generate a diverse set of optimal or near-optimal alignment solutions. Evolutionary operators are specifically designed for this problem, and a local search method also is incorporated to improve the search ability of the algorithm. We demonstrate the effectiveness of our method by comparing it with a popular existing method called ClustalG using a set of 50 sequences. The results indicate that our method outperforms the existing method for most of our selected cases. The multiobjective evolutionary algorithm presented in this paper provides an effective approach for assessing activity pattern similarity, and a foundation for identifying distinctive groups of individuals with similar activity patterns. PMID:26190858

  12. Improving multi-objective reservoir operation optimization with sensitivity-informed dimension reduction

    NASA Astrophysics Data System (ADS)

    Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.

    2015-08-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.

  13. Peptide identification via constrained multi-objective optimization: Pareto-based genetic algorithms

    SciTech Connect

    Malard, Joel M.; Heredia-Langner, Alejandro; Cannon, William R.; Mooney, Ryan W.; Baxter, Douglas J.

    2005-12-10

    Automatic data-base independent peptide identification from collision-induced dissociation tandem mass spectrometry data is made difficult by large plateaus in the fitness landscapes of scoring functions and the fuzzy nature of the constraints that is due to noise in the data. Two different scoring functions are combined into a parallel multi-objective optimization framework.

  14. Improving multi-objective reservoir operation optimization with sensitivity-informed problem decomposition

    NASA Astrophysics Data System (ADS)

    Chu, J. G.; Zhang, C.; Fu, G. T.; Li, Y.; Zhou, H. C.

    2015-04-01

    This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce the computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed problem decomposition dramatically reduces the computational demands required for attaining high quality approximations of optimal tradeoff relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed problem decomposition and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform problem decomposition when solving the complex multi-objective reservoir operation problems.

  15. Multi-Objective Bidding Strategy for Genco Using Non-Dominated Sorting Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Saksinchai, Apinat; Boonchuay, Chanwit; Ongsakul, Weerakorn

    2010-06-01

    This paper proposes a multi-objective bidding strategy for a generation company (GenCo) in uniform price spot market using non-dominated sorting particle swarm optimization (NSPSO). Instead of using a tradeoff technique, NSPSO is introduced to solve the multi-objective strategic bidding problem considering expected profit maximization and risk (profit variation) minimization. Monte Carlo simulation is employed to simulate rivals' bidding behavior. Test results indicate that the proposed approach can provide the efficient non-dominated solution front effectively. In addition, it can be used as a decision making tool for a GenCo compromising between expected profit and price risk in spot market.

  16. Grey Relational Analyses for Multi-Objective Optimization of Turning S45C Carbon Steel

    NASA Astrophysics Data System (ADS)

    Shah, A. H. A.; Azmi, A. I.; Khalil, A. N. M.

    2016-02-01

    The optimization of performance characteristics in turning process can be achieved through selection of proper machining parameters. It is well known that many researchers have successfully reported the optimization of single performance characteristic. Nevertheless, the multi-objective optimization can be difficult and challenging to be studied due to its complexity in analysis. This is because an improvement of one performance characteristic may lead to degradation of other performance characteristic. As a result, the study of multi-objective optimization in CNC turning of S45C carbon steel has been attempted in this paper through Taguchi and Grey Relational Analysis (GRA) method. Through this methodology, the multiple performance characteristics, namely; surface roughness, material removal rate (MRR), tool wear, and power consumption; can be optimized simultaneously. It appears from the experimental results that the multiple performance characteristics in CNC turning was achieved and improved through the methodology employed.

  17. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation

    PubMed Central

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783

  18. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    PubMed

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783

  19. Evaluation of multi-algorithm optimization approach in multi-objective rainfall-runoff calibration

    NASA Astrophysics Data System (ADS)

    Shafii, M.; de Smedt, F.

    2009-04-01

    Calibration of rainfall-runoff models is one of the issues in which hydrologists have been interested over past decades. Because of the multi-objective nature of rainfall-runoff calibration, and due to advances in computational power, population-based optimization techniques are becoming increasingly popular to be applied for multi-objective calibration schemes. Over past recent years, such methods have shown to be powerful search methods for this purpose, especially when there are a large number of calibration parameters. However, application of these methods is always criticised based on the fact that it is not possible to develop a single algorithm which is always efficient for different problems. Therefore, more recent efforts have been focused towards development of simultaneous multiple optimization algorithms to overcome this drawback. This paper involves one of the most recent population-based multi-algorithm approaches, named AMALGAM, for application to multi-objective rainfall-runoff calibration in a distributed hydrological model, WetSpa. This algorithm merges the strengths of different optimization algorithms and it, thus, has proven to be more efficient than other methods. In order to evaluate this issue, comparison between results of this paper and those previously reported using a normal multi-objective evolutionary algorithm would be the next step of this study.

  20. Multi-objective parameter optimization of common land model using adaptive surrogate modelling

    NASA Astrophysics Data System (ADS)

    Gong, W.; Duan, Q.; Li, J.; Wang, C.; Di, Z.; Dai, Y.; Ye, A.; Miao, C.

    2014-06-01

    Parameter specification usually has significant influence on the performance of land surface models (LSMs). However, estimating the parameters properly is a challenging task due to the following reasons: (1) LSMs usually have too many adjustable parameters (20-100 or even more), leading to the curse of dimensionality in the parameter input space; (2) LSMs usually have many output variables involving water/energy/carbon cycles, so that calibrating LSMs is actually a multi-objective optimization problem; (3) regional LSMs are expensive to run, while conventional multi-objective optimization methods needs a huge number of model runs (typically 105~106). It makes parameter optimization computationally prohibitive. An uncertainty qualification framework was developed to meet the aforementioned challenges: (1) use parameter screening to reduce the number of adjustable parameters; (2) use surrogate models to emulate the response of dynamic models to the variation of adjustable parameters; (3) use an adaptive strategy to promote the efficiency of surrogate modeling based optimization; (4) use a weighting function to transfer multi-objective optimization to single objective optimization. In this study, we demonstrate the uncertainty quantification framework on a single column case study of a land surface model - Common Land Model (CoLM) and evaluate the effectiveness and efficiency of the proposed framework. The result indicated that this framework can achieve optimal parameter set using totally 411 model runs, and worth to be extended to other large complex dynamic models, such as regional land surface models, atmospheric models and climate models.

  1. Dynamic multiobjective optimization algorithm based on average distance linear prediction model.

    PubMed

    Li, Zhiyong; Chen, Hengyong; Xie, Zhaoxin; Chen, Chao; Sallam, Ahmed

    2014-01-01

    Many real-world optimization problems involve objectives, constraints, and parameters which constantly change with time. Optimization in a changing environment is a challenging task, especially when multiple objectives are required to be optimized simultaneously. Nowadays the common way to solve dynamic multiobjective optimization problems (DMOPs) is to utilize history information to guide future search, but there is no common successful method to solve different DMOPs. In this paper, we define a kind of dynamic multiobjectives problem with translational Paretooptimal set (DMOP-TPS) and propose a new prediction model named ADLM for solving DMOP-TPS. We have tested and compared the proposed prediction model (ADLM) with three traditional prediction models on several classic DMOP-TPS test problems. The simulation results show that our proposed prediction model outperforms other prediction models for DMOP-TPS. PMID:24616625

  2. Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector.

    PubMed

    Mayer, Alexandre; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier

    2014-10-20

    We present a multi-objective genetic algorithm we developed for the optimization of a flat-plate solar thermal collector. This collector consists of a waffle-shaped Al substrate with NiCrOx cermet and SnO(2) anti-reflection conformal coatings. Optimal geometrical parameters are determined in order to (i) maximize the solar absorptance α and (ii) minimize the thermal emittance ε. The multi-objective genetic algorithm eventually provides a whole set of Pareto-optimal solutions for the optimization of α and ε, which turn out to be competitive with record values found in the literature. In particular, a solution that enables α = 97.8% and ε = 4.8% was found. PMID:25607321

  3. Optimized sound diffusers based on sonic crystals using a multiobjective evolutionary algorithm.

    PubMed

    Redondo, J; Sánchez-Pérez, J V; Blasco, X; Herrero, J M; Vorländer, M

    2016-05-01

    Sonic crystals have been demonstrated to be good candidates to substitute for conventional diffusers in order to overcome the need for extremely thick structures when low frequencies have to be scattered, however, their performance is limited to a narrow band. In this work, multiobjective evolutionary algorithms are used to extend the bandwidth to the whole low frequency range. The results show that diffusion can be significantly increased. Several cost functions are considered in the paper, on the one hand to illustrate the flexibility of the optimization and on the other hand to demonstrate the problems associated with the use of certain cost functions. A study of the robustness of the optimized diffusers is also presented, introducing a parameter that can help to choose among the best candidates. Finally, the advantages of the use of multiobjective optimization in comparison with conventional optimizations are discussed. PMID:27250173

  4. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants

    PubMed Central

    Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  5. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    PubMed

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  6. Multiobjective optimization with a modified simulated annealing algorithm for external beam radiotherapy treatment planning

    SciTech Connect

    Aubry, Jean-Francois; Beaulieu, Frederic; Sevigny, Caroline; Beaulieu, Luc; Tremblay, Daniel

    2006-12-15

    Inverse planning in external beam radiotherapy often requires a scalar objective function that incorporates importance factors to mimic the planner's preferences between conflicting objectives. Defining those importance factors is not straightforward, and frequently leads to an iterative process in which the importance factors become variables of the optimization problem. In order to avoid this drawback of inverse planning, optimization using algorithms more suited to multiobjective optimization, such as evolutionary algorithms, has been suggested. However, much inverse planning software, including one based on simulated annealing developed at our institution, does not include multiobjective-oriented algorithms. This work investigates the performance of a modified simulated annealing algorithm used to drive aperture-based intensity-modulated radiotherapy inverse planning software in a multiobjective optimization framework. For a few test cases involving gastric cancer patients, the use of this new algorithm leads to an increase in optimization speed of a little more than a factor of 2 over a conventional simulated annealing algorithm, while giving a close approximation of the solutions produced by a standard simulated annealing. A simple graphical user interface designed to facilitate the decision-making process that follows an optimization is also presented.

  7. Multidisciplinary design optimization of vehicle instrument panel based on multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Wu, Guangqiang

    2013-03-01

    Typical multidisciplinary design optimization(MDO) has gradually been proposed to balance performances of lightweight, noise, vibration and harshness(NVH) and safety for instrument panel(IP) structure in the automotive development. Nevertheless, plastic constitutive relation of Polypropylene(PP) under different strain rates, has not been taken into consideration in current reliability-based and collaborative IP MDO design. In this paper, based on tensile test under different strain rates, the constitutive relation of Polypropylene material is studied. Impact simulation tests for head and knee bolster are carried out to meet the regulation of FMVSS 201 and FMVSS 208, respectively. NVH analysis is performed to obtain mainly the natural frequencies and corresponding mode shapes, while the crashworthiness analysis is employed to examine the crash behavior of IP structure. With the consideration of lightweight, NVH, head and knee bolster impact performance, design of experiment(DOE), response surface model(RSM), and collaborative optimization(CO) are applied to realize the determined and reliability-based optimizations, respectively. Furthermore, based on multi-objective genetic algorithm(MOGA), the optimal Pareto sets are completed to solve the multi-objective optimization(MOO) problem. The proposed research ensures the smoothness of Pareto set, enhances the ability of engineers to make a comprehensive decision about multi-objectives and choose the optimal design, and improves the quality and efficiency of MDO.

  8. A tabu search evalutionary algorithm for multiobjective optimization: Application to a bi-criterion aircraft structural reliability problem

    NASA Astrophysics Data System (ADS)

    Long, Kim Chenming

    Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this

  9. Weak bus-oriented optimal multi-objective VAR planning

    SciTech Connect

    Chen, Y.L.

    1996-11-01

    This paper presents a weak bus-oriented criterion to determine the candidate buses for installing new VAR sources in the VAR planning problem. First, an efficient method, using a voltage collapse proximity indicator, is described for identifying weak buses. Then appropriate VAR planning in those weak buses can enhance the system security margin, in particular, to prevent voltage collapse. Next, the goal attainment (GA) method based on the Simulated Annealing (SA) approach is applied to solving general multi-objective VAR planning problems by assuming that the decisionmaker (DM) has goals for each of the objective functions. The presented method can both obtain a better final solution and reduce the solution space. Results of application of the proposed method to the AEP-14 bus system as well as to a large, actual-size system are also presented.

  10. Multiobjective biogeography based optimization algorithm with decomposition for community detection in dynamic networks

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Liu, Yanheng; Li, Bin; Sun, Geng

    2015-10-01

    Identifying community structures in static network misses the opportunity to capture the evolutionary patterns. So community detection in dynamic network has attracted many researchers. In this paper, a multiobjective biogeography based optimization algorithm with decomposition (MBBOD) is proposed to solve community detection problem in dynamic networks. In the proposed algorithm, the decomposition mechanism is adopted to optimize two evaluation objectives named modularity and normalized mutual information simultaneously, which measure the quality of the community partitions and temporal cost respectively. A novel sorting strategy for multiobjective biogeography based optimization is presented for comparing quality of habitats to get species counts. In addition, problem-specific migration and mutation model are introduced to improve the effectiveness of the new algorithm. Experimental results both on synthetic and real networks demonstrate that our algorithm is effective and promising, and it can detect communities more accurately in dynamic networks compared with DYNMOGA and FaceNet.

  11. Multi-objective optimization by a new hybridized method: applications to random mechanical systems

    NASA Astrophysics Data System (ADS)

    Zidani, H.; Pagnacco, E.; Sampaio, R.; Ellaia, R.; Souza de Cursi, J. E.

    2013-08-01

    In this article two linear problems with random Gaussian loading are transformed into multi-objective optimization problems. The first problem is the design of a pillar geometry with respect to a compressive random load process. The second problem is the design of a truss structure with respect to a vertical random load process for several frequency bands. A new algorithm, motivated by the Pincus representation formula hybridized with the Nelder-Mead algorithm, is proposed to solve the two multi-objective optimization problems. To generate the Pareto curve, the normal boundary intersection method is used to produce a series of constrained single-objective optimizations. The second problem, depending on the frequency band of excitation, can have as Pareto curve a single point, a standard Pareto curve, or a discontinuous Pareto curve, a fact that has been reported here for the first time in the literature, to the best of the authors' knowledge.

  12. Multi-objective optimization of enzyme manipulations in metabolic networks considering resilience effects

    PubMed Central

    2011-01-01

    Background Improving the synthesis rate of desired metabolites in metabolic systems is one of the main tasks in metabolic engineering. In the last decade, metabolic engineering approaches based on the mathematical optimization have been used extensively for the analysis and manipulation of metabolic networks. Experimental evidence shows that mutants reflect resilience phenomena against gene alterations. Although researchers have published many studies on the design of metabolic systems based on kinetic models and optimization strategies, almost no studies discuss the multi-objective optimization problem for enzyme manipulations in metabolic networks considering resilience phenomenon. Results This study proposes a generalized fuzzy multi-objective optimization approach to formulate the enzyme intervention problem for metabolic networks considering resilience phenomena and cell viability. This approach is a general framework that can be applied to any metabolic networks to investigate the influence of resilience phenomena on gene intervention strategies and maximum target synthesis rates. This study evaluates the performance of the proposed approach by applying it to two metabolic systems: S. cerevisiae and E. coli. Results show that the maximum synthesis rates of target products by genetic interventions are always over-estimated in metabolic networks that do not consider the resilience effects. Conclusions Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. The proposed generalized fuzzy multi-objective optimization approach has the potential to be a good and practical framework in the design of metabolic networks. PMID:21929795

  13. Multi-objective optimization to predict muscle tensions in a pinch function using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bensghaier, Amani; Romdhane, Lotfi; Benouezdou, Fethi

    2012-03-01

    This work is focused on the determination of the thumb and the index finger muscle tensions in a tip pinch task. A biomechanical model of the musculoskeletal system of the thumb and the index finger is developed. Due to the assumptions made in carrying out the biomechanical model, the formulated force analysis problem is indeterminate leading to an infinite number of solutions. Thus, constrained single and multi-objective optimization methodologies are used in order to explore the muscular redundancy and to predict optimal muscle tension distributions. Various models are investigated using the optimization process. The basic criteria to minimize are the sum of the muscle stresses, the sum of individual muscle tensions and the maximum muscle stress. The multi-objective optimization is solved using a Pareto genetic algorithm to obtain non-dominated solutions, defined as the set of optimal distributions of muscle tensions. The results show the advantage of the multi-objective formulation over the single objective one. The obtained solutions are compared to those available in the literature demonstrating the effectiveness of our approach in the analysis of the fingers musculoskeletal systems when predicting muscle tensions.

  14. Multi-objective optimization of a parallel ankle rehabilitation robot using modified differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Congzhe; Fang, Yuefa; Guo, Sheng

    2015-07-01

    Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.

  15. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm

    PubMed Central

    Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio

    2016-01-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners. PMID:26778301

  16. An integrated control/structure design method using multi-objective optimization

    NASA Technical Reports Server (NTRS)

    Gupta, Sandeep; Joshi, Suresh M.

    1991-01-01

    The benefits are demonstrated of a multiobjective optimization based control structure integrated design methodology. An application of the proposed CSI methodology to the integrated design of the Spacecraft COntrol Lab Experiment (SCOLE) configuration is presented. Integrated design resulted in reducing both the control performance measure and the mass. Thus, better overall performance is achieved through integrated design optimization. The mutliobjective optimization approach used provides Pareto optimal solutions by unconstrained minimization of a differentiable KS function. Furthermore, adjusting the parameters gives insight into the trade-offs involved between different objectives.

  17. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio

    2016-02-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.

  18. A Generalized Decision Framework Using Multi-objective Optimization for Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Basdekas, L.; Stewart, N.; Triana, E.

    2013-12-01

    Colorado Springs Utilities (CSU) is currently engaged in an Integrated Water Resource Plan (IWRP) to address the complex planning scenarios, across multiple time scales, currently faced by CSU. The modeling framework developed for the IWRP uses a flexible data-centered Decision Support System (DSS) with a MODSIM-based modeling system to represent the operation of the current CSU raw water system coupled with a state-of-the-art multi-objective optimization algorithm. Three basic components are required for the framework, which can be implemented for planning horizons ranging from seasonal to interdecadal. First, a water resources system model is required that is capable of reasonable system simulation to resolve performance metrics at the appropriate temporal and spatial scales of interest. The system model should be an existing simulation model, or one developed during the planning process with stakeholders, so that 'buy-in' has already been achieved. Second, a hydrologic scenario tool(s) capable of generating a range of plausible inflows for the planning period of interest is required. This may include paleo informed or climate change informed sequences. Third, a multi-objective optimization model that can be wrapped around the system simulation model is required. The new generation of multi-objective optimization models do not require parameterization which greatly reduces problem complexity. Bridging the gap between research and practice will be evident as we use a case study from CSU's planning process to demonstrate this framework with specific competing water management objectives. Careful formulation of objective functions, choice of decision variables, and system constraints will be discussed. Rather than treating results as theoretically Pareto optimal in a planning process, we use the powerful multi-objective optimization models as tools to more efficiently and effectively move out of the inferior decision space. The use of this framework will help CSU

  19. A computer package for optimal multi-objective VAR planning in large scale power systems

    SciTech Connect

    Chiang, H.D. . School of Electrical Engineering); Liu, C.C.; Chen, Y.L. . Dept. of Electrical Engineering); Hsiao, Y.T.

    1994-05-01

    This paper presents a simulated annealing based computer package for multi-objective, VAR planning in large scale power systems - SAMVAR. This computer package has three distinct features. First, the optimal VAR planning is reformulated as a constrained, multi-objective, non-differentiable optimization problem. The new formulation considers four different objective functions related to system investment, system operational efficiency, system security and system service quality. The new formulation also takes into consideration load, operation and contingency constraints. Second, it allows both the objective functions and equality and inequality constraints to be non-differentiable; making the problem formulation more realistic. Third, the package employs a two-stage solution algorithm based on an extended simulated annealing technique and the [var epsilon]-constraint method. The first-stage of the solution algorithm uses an extended simulated annealing technique to find a global, non-inferior solution. The results obtained from the first stage provide a basis for planners to prioritize the objective functions such that a primary objective function is chosen and tradeoff tolerances for the other objective functions are set. The primary objective function and the trade-off tolerances are then used to transform the constrained multi-objective optimization problem into a single-objective optimization problem with more constraints by employing the [var epsilon]-constraint method. The second-stage uses the simulated annealing technique to find the global optimal solution. A salient feature of SAMVAR is that it allows planners to find an acceptable, global non-inferior solution for the VAR problem. Simulation results indicate that SAMVAR has the ability to handle the multi-objective VAR planning problem and meet with the planner's requirements.

  20. Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems.

    PubMed

    Kurek, Wojciech; Ostfeld, Avi

    2013-01-30

    A multi-objective methodology utilizing the Strength Pareto Evolutionary Algorithm (SPEA2) linked to EPANET for trading-off pumping costs, water quality, and tanks sizing of water distribution systems is developed and demonstrated. The model integrates variable speed pumps for modeling the pumps operation, two water quality objectives (one based on chlorine disinfectant concentrations and one on water age), and tanks sizing cost which are assumed to vary with location and diameter. The water distribution system is subject to extended period simulations, variable energy tariffs, Kirchhoff's laws 1 and 2 for continuity of flow and pressure, tanks water level closure constraints, and storage-reliability requirements. EPANET Example 3 is employed for demonstrating the methodology on two multi-objective models, which differ in the imposed water quality objective (i.e., either with disinfectant or water age considerations). Three-fold Pareto optimal fronts are presented. Sensitivity analysis on the storage-reliability constraint, its influence on pumping cost, water quality, and tank sizing are explored. The contribution of this study is in tailoring design (tank sizing), pumps operational costs, water quality of two types, and reliability through residual storage requirements, in a single multi-objective framework. The model was found to be stable in generating multi-objective three-fold Pareto fronts, while producing explainable engineering outcomes. The model can be used as a decision tool for both pumps operation, water quality, required storage for reliability considerations, and tank sizing decision-making. PMID:23262407

  1. A comparative study of three simulation optimization algorithms for solving high dimensional multi-objective optimization problems in water resources

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wöhling, Thomas; de Play, Michael

    2010-05-01

    Some real-world optimization problems in water resources have a high-dimensional space of decision variables and more than one objective function. In this work, we compare three general-purpose, multi-objective simulation optimization algorithms, namely NSGA-II, AMALGAM, and CMA-ES-MO when solving three real case Multi-objective Optimization Problems (MOPs): (i) a high-dimensional soil hydraulic parameter estimation problem; (ii) a multipurpose multi-reservoir operation problem; and (iii) a scheduling problem in deficit irrigation. We analyze the behaviour of the three algorithms on these test problems considering their formulations ranging from 40 up to 120 decision variables and 2 to 4 objectives. The computational effort required by each algorithm in order to reach the true Pareto front is also analyzed.

  2. Data-based robust multiobjective optimization of interconnected processes: energy efficiency case study in papermaking.

    PubMed

    Afshar, Puya; Brown, Martin; Maciejowski, Jan; Wang, Hong

    2011-12-01

    Reducing energy consumption is a major challenge for "energy-intensive" industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of "optimized" operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method. PMID:22147299

  3. Multi-objective parameter optimization of common land model using adaptive surrogate modeling

    NASA Astrophysics Data System (ADS)

    Gong, W.; Duan, Q.; Li, J.; Wang, C.; Di, Z.; Dai, Y.; Ye, A.; Miao, C.

    2015-05-01

    Parameter specification usually has significant influence on the performance of land surface models (LSMs). However, estimating the parameters properly is a challenging task due to the following reasons: (1) LSMs usually have too many adjustable parameters (20 to 100 or even more), leading to the curse of dimensionality in the parameter input space; (2) LSMs usually have many output variables involving water/energy/carbon cycles, so that calibrating LSMs is actually a multi-objective optimization problem; (3) Regional LSMs are expensive to run, while conventional multi-objective optimization methods need a large number of model runs (typically ~105-106). It makes parameter optimization computationally prohibitive. An uncertainty quantification framework was developed to meet the aforementioned challenges, which include the following steps: (1) using parameter screening to reduce the number of adjustable parameters, (2) using surrogate models to emulate the responses of dynamic models to the variation of adjustable parameters, (3) using an adaptive strategy to improve the efficiency of surrogate modeling-based optimization; (4) using a weighting function to transfer multi-objective optimization to single-objective optimization. In this study, we demonstrate the uncertainty quantification framework on a single column application of a LSM - the Common Land Model (CoLM), and evaluate the effectiveness and efficiency of the proposed framework. The result indicate that this framework can efficiently achieve optimal parameters in a more effective way. Moreover, this result implies the possibility of calibrating other large complex dynamic models, such as regional-scale LSMs, atmospheric models and climate models.

  4. A new multiobjective performance criterion used in PID tuning optimization algorithms.

    PubMed

    Sahib, Mouayad A; Ahmed, Bestoun S

    2016-01-01

    In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions. PMID:26843978

  5. A new multiobjective performance criterion used in PID tuning optimization algorithms

    PubMed Central

    Sahib, Mouayad A.; Ahmed, Bestoun S.

    2015-01-01

    In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions. PMID:26843978

  6. Optimal Design of Groundwater Remediation Problems under Uncertainty Using Probabilistic Multi-objective Evolutionary Technique

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Wu, J.

    2011-12-01

    The previous work in the field of multi-objective optimization under uncertainty has concerned with the probabilistic multi-objective algorithm itself, how to effectively evaluate an estimate of uncertain objectives and identify a set of reliable Pareto optimal solutions. However, the design of a robust and reliable groundwater remediation system encounters major difficulties owing to the inherent uncertainty of hydrogeological parameters such as hydraulic conductivity (K). Thus, we need to make reduction of uncertainty associated with the site characteristics of the contaminated aquifers. In this study, we first use the Sequential Gaussian Simulation (SGSIM) to generate 1000 conditional realizations of lnK based on the sampled conditioning data acquired by field test. It is worthwhile to note that the cost for field test often weighs heavily upon the remediation cost and must thus be taken into account in the tradeoff between the solution reliability and remedial cost optimality. In this situation, we perform Monte Carlo simulation to make an uncertainty analysis of lnK realizations associated with the different number of conditioning data points. The results indicate that the uncertainty of the site characteristics and the contaminant concentration output from transport model is decreasing and then tends toward stabilization with the increase of conditioning data. This study presents a probabilistic multi-objective evolutionary algorithm (PMOEA) that integrates noisy genetic algorithm (NGA) and probabilistic multi-objective genetic algorithm (MOGA). The evident difference between deterministic MOGA and probabilistic MOGA is the use of probabilistic Pareto domination ranking and niche technique to ensure that each solution found is most reliable and robust. The proposed algorithm is then evaluated through a synthetic pump-and-treat (PAT) groundwater remediation test case. The 1000 lnK realizations generated by SGSIM with appropriate number of conditioning data (30

  7. Multi-objective optimization of a continuous bio-dissimilation process of glycerol to 1, 3-propanediol.

    PubMed

    Xu, Gongxian; Liu, Ying; Gao, Qunwang

    2016-02-10

    This paper deals with multi-objective optimization of continuous bio-dissimilation process of glycerol to 1, 3-propanediol. In order to maximize the production rate of 1, 3-propanediol, maximize the conversion rate of glycerol to 1, 3-propanediol, maximize the conversion rate of glycerol, and minimize the concentration of by-product ethanol, we first propose six new multi-objective optimization models that can simultaneously optimize any two of the four objectives above. Then these multi-objective optimization problems are solved by using the weighted-sum and normal-boundary intersection methods respectively. Both the Pareto filter algorithm and removal criteria are used to remove those non-Pareto optimal points obtained by the normal-boundary intersection method. The results show that the normal-boundary intersection method can successfully obtain the approximate Pareto optimal sets of all the proposed multi-objective optimization problems, while the weighted-sum approach cannot achieve the overall Pareto optimal solutions of some multi-objective problems. PMID:26704728

  8. Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    NASA Astrophysics Data System (ADS)

    WöHling, Thomas; Vrugt, Jasper A.

    2008-12-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multiobjective optimization and Bayesian model averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multiobjective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM and used to generate four different model ensembles. These ensembles are postprocessed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multiobjective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  9. Nonlinear bioheat transfer models and multi-objective numerical optimization of the cryosurgery operations

    NASA Astrophysics Data System (ADS)

    Kudryashov, Nikolay A.; Shilnikov, Kirill E.

    2016-06-01

    Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumor tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.

  10. Multi-objective evolutionary optimization for greywater reuse in municipal sewer systems.

    PubMed

    Penn, Roni; Friedler, Eran; Ostfeld, Avi

    2013-10-01

    Sustainable design and implementation of greywater reuse (GWR) has to achieve an optimum compromise between costs and potable water demand reduction. Studies show that GWR is an efficient tool for reducing potable water demand. This study presents a multi-objective optimization model for estimating the optimal distribution of different types of GWR homes in an existing municipal sewer system. Six types of GWR homes were examined. The model constrains the momentary wastewater (WW) velocity in the sewer pipes (which is responsible for solids movement). The objective functions in the optimization model are the total WW flow at the outlet of the neighborhoods sewer system and the cost of the on-site GWR treatment system. The optimization routing was achieved by an evolutionary multi-objective optimization coupled with hydrodynamic simulations of a representative sewer system of a neighborhood located at the coast of Israel. The two non-dominated best solutions selected were the ones having either the smallest WW flow discharged at the outlet of the neighborhood sewer system or the lowest daily cost. In both solutions most of the GWR types chosen were the types resulting with the smallest water usage. This lead to only a small difference between the two best solutions, regarding the diurnal patterns of the WW flows at the outlet of the neighborhood sewer system. However, in the upstream link a substantial difference was depicted between the diurnal patterns. This difference occurred since to the upstream links only few homes, implementing the same type of GWR, discharge their WW, and in each solution a different type of GWR was implemented in these upstream homes. To the best of our knowledge this is the first multi-objective optimization model aimed at quantitatively trading off the cost of local/onsite GW spatially distributed reuse treatments, and the total amount of WW flow discharged into the municipal sewer system under unsteady flow conditions. PMID:23932104

  11. Multiobjective sensitivity analysis and optimization of a distributed hydrologic model MOBIDIC

    NASA Astrophysics Data System (ADS)

    Yang, J.; Castelli, F.; Chen, Y.

    2014-03-01

    Calibration of distributed hydrologic models usually involves how to deal with the large number of distributed parameters and optimization problems with multiple but often conflicting objectives which arise in a natural fashion. This study presents a multiobjective sensitivity and optimization approach to handle these problems for a distributed hydrologic model MOBIDIC, which combines two sensitivity analysis techniques (Morris method and State Dependent Parameter method) with a multiobjective optimization (MOO) approach ϵ-NSGAII. This approach was implemented to calibrate MOBIDIC with its application to the Davidson watershed, North Carolina with three objective functions, i.e., standardized root mean square error of logarithmic transformed discharge, water balance index, and mean absolute error of logarithmic transformed flow duration curve, and its results were compared with those with a single objective optimization (SOO) with the traditional Nelder-Mead Simplex algorithm used in MOBIDIC by taking the objective function as the Euclidean norm of these three objectives. Results show: (1) the two sensitivity analysis techniques are effective and efficient to determine the sensitive processes and insensitive parameters: surface runoff and evaporation are very sensitive processes to all three objective functions, while groundwater recession and soil hydraulic conductivity are not sensitive and were excluded in the optimization; (2) both MOO and SOO lead to acceptable simulations, e.g., for MOO, average Nash-Sutcliffe is 0.75 in the calibration period and 0.70 in the validation period; (3) evaporation and surface runoff shows similar importance to watershed water balance while the contribution of baseflow can be ignored; (4) compared to SOO which was dependent of initial starting location, MOO provides more insight on parameter sensitivity and conflicting characteristics of these objective functions. Multiobjective sensitivity analysis and optimization

  12. Optimal design of groundwater remediation system using a probabilistic multi-objective fast harmony search algorithm under uncertainty

    NASA Astrophysics Data System (ADS)

    Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun

    2014-11-01

    This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation systems under uncertainty associated with the hydraulic conductivity (K) of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic sorting technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient K data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal design of groundwater remediation systems for a two-dimensional hypothetical test problem and a three-dimensional Indiana field application involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the mass remaining in the aquifer at the end of the operational period, whereby the pump-and-treat (PAT) technology is used to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology. Comprehensive analysis indicates that the proposed PMOFHS can find Pareto-optimal solutions with low variability and high reliability and is a potentially effective tool for optimizing multi-objective groundwater remediation problems under uncertainty.

  13. Multiobjective Optimization Design of a Fractional Order PID Controller for a Gun Control System

    PubMed Central

    Chen, Jilin; Wang, Li; Xu, Shiqing; Hou, Yuanlong

    2013-01-01

    Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method. PMID:23766721

  14. Gradient-based multiobjective optimization using a distance constraint technique and point replacement

    NASA Astrophysics Data System (ADS)

    Sato, Yuki; Izui, Kazuhiro; Yamada, Takayuki; Nishiwaki, Shinji

    2016-07-01

    This paper proposes techniques to improve the diversity of the searching points during the optimization process in an Aggregative Gradient-based Multiobjective Optimization (AGMO) method, so that well-distributed Pareto solutions are obtained. First to be discussed is a distance constraint technique, applied among searching points in the objective space when updating design variables, that maintains a minimum distance between the points. Next, a scheme is introduced that deals with updated points that violate the distance constraint, by deleting the offending points and introducing new points in areas of the objective space where searching points are sparsely distributed. Finally, the proposed method is applied to example problems to illustrate its effectiveness.

  15. Optimal Solutions of Multiproduct Batch Chemical Process Using Multiobjective Genetic Algorithm with Expert Decision System

    PubMed Central

    Mokeddem, Diab; Khellaf, Abdelhafid

    2009-01-01

    Optimal design problem are widely known by their multiple performance measures that are often competing with each other. In this paper, an optimal multiproduct batch chemical plant design is presented. The design is firstly formulated as a multiobjective optimization problem, to be solved using the well suited non dominating sorting genetic algorithm (NSGA-II). The NSGA-II have capability to achieve fine tuning of variables in determining a set of non dominating solutions distributed along the Pareto front in a single run of the algorithm. The NSGA-II ability to identify a set of optimal solutions provides the decision-maker DM with a complete picture of the optimal solution space to gain better and appropriate choices. Then an outranking with PROMETHEE II helps the decision-maker to finalize the selection of a best compromise. The effectiveness of NSGA-II method with multiojective optimization problem is illustrated through two carefully referenced examples. PMID:19543537

  16. Multi-objective evolutionary optimization design of vehicle magnetorheological fluid damper

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Wang, Yang; Gao, Fang

    2007-07-01

    Structure design and parameters selection are crucial steps in developing magnetorheological fluid (MRF) damper for vehicle semi-active suspension system. Most traditional methods for deciding structure parameters by experiential expressions are unilateral and imprecise. In this paper, a multiobjective evolutionary optimization approach will be used to solve the optimization design problem. Based on Bingham fluid models, a structure design for MRF damper with shearing valve mode is completed for vehicle suspension. To reduce the dynamic response time and to enlarge the range the controllable damping force are taken as the optimization objectives. Three crucial parameters, including gap width, effective axial pole length and coil turns number are taken as optimization variables, a hybrid evolutionary algorithm combining particle swarm optimization (PSO) and crossover is employed to search for the Pareto solutions, According to the optimized results, a new type MRF damper design is accomplished for a pickup truck suspension system. The proposed method and analysis present a beneficial reference for MRF damper design.

  17. Multi-objective trajectory optimization for the space exploration vehicle

    NASA Astrophysics Data System (ADS)

    Qin, Xiaoli; Xiao, Zhen

    2016-07-01

    The research determines temperature-constrained optimal trajectory for the space exploration vehicle by developing an optimal control formulation and solving it using a variable order quadrature collocation method with a Non-linear Programming(NLP) solver. The vehicle is assumed to be the space reconnaissance aircraft that has specified takeoff/landing locations, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom aircraft model is adapted from previous work and includes flight dynamics, and thermal constraints.Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and exploration of space targets. In addition, the vehicle models include the environmental models(gravity and atmosphere). How these models are appropriately employed is key to gaining confidence in the results and conclusions of the research. Optimal trajectories are developed using several performance costs in the optimal control formation,minimum time,minimum time with control penalties,and maximum distance.The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for large-scale space exloration.

  18. Multi-objective Optimization of the Mississippi Headwaters Reservoir System

    NASA Astrophysics Data System (ADS)

    Faber, B. A.; Harou, J. J.

    2006-12-01

    The Hydrologic Engineering Center (HEC) of the U.S. Army Corps of Engineers is participating in a re- operation study of the Mississippi Headwaters reservoir system. The study, termed ROPE (Reservoir Operation Plan Evaluation), will develop a new operation policy for the reservoir system in a Shared Vision Planning effort. The current operating plan is 40 years old and does not account for the diverse objectives of the system altered by increased development and resource awareness. Functions of the six-reservoir system include flood damage reduction, recreation, fish and wildlife habitat considerations, tribal resources, water quality, water supply, erosion and sedimentation control, and hydropower production. Experience has shown that a modeling approach using both optimization, which makes decisions based on their value to objectives, and simulation, which makes decisions that follow operating instructions or rules, is an effective way to improve or develop new operating policies. HEC's role in this study was to develop a multi- objective optimization model of the system using HEC-PRM (Prescriptive Reservoir Model), a generalized computer program that performs multi-period deterministic network-flow optimization of reservoir systems. The optimization model's purpose is to enable stakeholders and decision makers to select appropriate tradeoffs between objectives, and have these tradeoffs reflected in proposed rules. Initial single-objective optimizations allow stakeholders to verify that the penalty functions developed by experts accurately represent their interests. Once penalty functions are confirmed, trade-off curves between pairs of system objectives are developed, and stakeholders and decision makers choose a desired balance between the two objectives. These chosen balance points are maintained in optimizations that consider all objectives. Finally, optimal system decisions are studied to infer operating patterns that embody the chosen tradeoffs. The

  19. Multi-objective optimization in spatial planning: Improving the effectiveness of multi-objective evolutionary algorithms (non-dominated sorting genetic algorithm II)

    NASA Astrophysics Data System (ADS)

    Karakostas, Spiros

    2015-05-01

    The multi-objective nature of most spatial planning initiatives and the numerous constraints that are introduced in the planning process by decision makers, stakeholders, etc., synthesize a complex spatial planning context in which the concept of solid and meaningful optimization is a unique challenge. This article investigates new approaches to enhance the effectiveness of multi-objective evolutionary algorithms (MOEAs) via the adoption of a well-known metaheuristic: the non-dominated sorting genetic algorithm II (NSGA-II). In particular, the contribution of a sophisticated crossover operator coupled with an enhanced initialization heuristic is evaluated against a series of metrics measuring the effectiveness of MOEAs. Encouraging results emerge for both the convergence rate of the evolutionary optimization process and the occupation of valuable regions of the objective space by non-dominated solutions, facilitating the work of spatial planners and decision makers. Based on the promising behaviour of both heuristics, topics for further research are proposed to improve their effectiveness.

  20. Dynamic biclustering of microarray data by multi-objective immune optimization

    PubMed Central

    2011-01-01

    Abstract Background Newly microarray technologies yield large-scale datasets. The microarray datasets are usually presented in 2D matrices, where rows represent genes and columns represent experimental conditions. Systematic analysis of those datasets provides the increasing amount of information, which is urgently needed in the post-genomic era. Biclustering, which is a technique developed to allow simultaneous clustering of rows and columns of a dataset, might be useful to extract more accurate information from those datasets. Biclustering requires the optimization of two conflicting objectives (residue and volume), and a multi-objective artificial immune system capable of performing a multi-population search. As a heuristic search technique, artificial immune systems (AISs) can be considered a new computational paradigm inspired by the immunological system of vertebrates and designed to solve a wide range of optimization problems. During biclustering several objectives in conflict with each other have to be optimized simultaneously, so multi-objective optimization model is suitable for solving biclustering problem. Results Based on dynamic population, this paper proposes a novel dynamic multi-objective immune optimization biclustering (DMOIOB) algorithm to mine coherent patterns from microarray data. Experimental results on two common and public datasets of gene expression profiles show that our approach can effectively find significant localized structures related to sets of genes that show consistent expression patterns across subsets of experimental conditions. The mined patterns present a significant biological relevance in terms of related biological processes, components and molecular functions in a species-independent manner. Conclusions The proposed DMOIOB algorithm is an efficient tool to analyze large microarray datasets. It achieves a good diversity and rapid convergence. PMID:21989068

  1. Multi-objective optimization of microcavity OLEDs with DBR mirror

    NASA Astrophysics Data System (ADS)

    Lu, Albert W.; Chan, J.; Ng, Alan Man Ching; Djurišić, A. B.; Rakić, A. D.

    2007-02-01

    In this work, the emission efficiency and spectral shift with respect to viewing angle were optimized by optimizing the design of the multi-layer top mirror of a microcavity OLED device. We first established criteria for the emission side mirror in order to optimize light intensity and spectral shift with viewing angle. Then we designed mirror using metallic and dielectric layers based on the target defined. The electroluminescence emission spectra of a microcavity OLED consisting of widely used organic materials, N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq 3) as emitting and electron transporting layer was then calculated. Silver was used as the anode and back reflection mirror for the microcavity OLED. The simulation was performed for both the conventional LiF/Al cathode/top mirror and the optimized 5-layered top mirror. Our results indicate that by following the design procedure outlined, we simultaneously optimize the device for better light intensity and spectral shift with viewing angle.

  2. Multi-objective aerodynamic shape optimization of small livestock trailers

    NASA Astrophysics Data System (ADS)

    Gilkeson, C. A.; Toropov, V. V.; Thompson, H. M.; Wilson, M. C. T.; Foxley, N. A.; Gaskell, P. H.

    2013-11-01

    This article presents a formal optimization study of the design of small livestock trailers, within which the majority of animals are transported to market in the UK. The benefits of employing a headboard fairing to reduce aerodynamic drag without compromising the ventilation of the animals' microclimate are investigated using a multi-stage process involving computational fluid dynamics (CFD), optimal Latin hypercube (OLH) design of experiments (DoE) and moving least squares (MLS) metamodels. Fairings are parameterized in terms of three design variables and CFD solutions are obtained at 50 permutations of design variables. Both global and local search methods are employed to locate the global minimum from metamodels of the objective functions and a Pareto front is generated. The importance of carefully selecting an objective function is demonstrated and optimal fairing designs, offering drag reductions in excess of 5% without compromising animal ventilation, are presented.

  3. A niched Pareto tabu search for multi-objective optimal design of groundwater remediation systems

    NASA Astrophysics Data System (ADS)

    Yang, Yun; Wu, Jianfeng; Sun, Xiaomin; Wu, Jichun; Zheng, Chunmiao

    2013-05-01

    This study presents a new multi-objective optimization method, the niched Pareto tabu search (NPTS), for optimal design of groundwater remediation systems. The proposed NPTS is then coupled with the commonly used flow and transport code, MODFLOW and MT3DMS, to search for the near Pareto-optimal tradeoffs of groundwater remediation strategies. The difference between the proposed NPTS and the existing multiple objective tabu search (MOTS) lies in the use of the niche selection strategy and fitness archiving to maintain the diversity of the optimal solutions along the Pareto front and avoid repetitive calculations of the objective functions associated with the flow and transport model. Sensitivity analysis of the NPTS parameters is evaluated through a synthetic pump-and-treat remediation application involving two conflicting objectives, minimizations of both remediation cost and contaminant mass remaining in the aquifer. Moreover, the proposed NPTS is applied to a large-scale pump-and-treat groundwater remediation system of the field site at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts, involving minimizations of both total pumping rates and contaminant mass remaining in the aquifer. Additional comparison of the results based on the NPTS with those obtained from other two methods, namely the single objective tabu search (SOTS) and the nondominated sorting genetic algorithm II (NSGA-II), further indicates that the proposed NPTS has desirable computation efficiency, stability, and robustness and is a promising tool for optimizing the multi-objective design of groundwater remediation systems.

  4. Multi-Objective Optimization and Multi-Model Analysis of Watershed Management Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Shoemaker, C. A.; Akhtar, T.; Woodbury, J.

    2010-12-01

    Watershed Management planning can be assisted by the use of models that can incorporate the effect of management practices on hydrology and pollution transport under the effects of stochastic weather, including weather patterns influenced by climate change. However, such analysis is based usually on only one model (a set of equations) and the calibration of the model’s parameters to data. In this analysis we will discuss the use of two new multiobjective optimization methods for the incorporation of multiple criteria into choice of calibrated parameter values. One of these multiobjective methods (using radial basis functions) has been developed by our group, and a second new method from another group is based on Kriging. In addition we will compare these two new methods to the results obtained by the older (and widely used) NSGA-II multi-objective method on watershed models. We have developed two models and applied them to a large (1200 km2) northeastern watershed. The first model is based on SWAT2005, and the second model replaces SWAT’s Hortonian hydrology with variable source area (VSA) hydrology. In actuality a watershed’s flow paths can be expected to vary between Hortonian and VSA hydrology under different weather conditions. We present a multi-model analysis using Bayesian Model Averaging of these two types of models to obtain an improved estimate of the effects of alternative phosphorous management practices on long term sustainability of water quality in the watershed under a wide range of weather scenarios.

  5. An Evolutionary Algorithm with Double-Level Archives for Multiobjective Optimization.

    PubMed

    Chen, Ni; Chen, Wei-Neng; Gong, Yue-Jiao; Zhan, Zhi-Hui; Zhang, Jun; Li, Yun; Tan, Yu-Song

    2015-09-01

    Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problem-level and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed. PMID:25343775

  6. Multi-objective optimization in the individual diets

    NASA Astrophysics Data System (ADS)

    Nedeva, Cvetana; Baeva, Silvia

    2015-11-01

    The aim of this paper is to find an optimal individual diet that 1st. Gives all necessary ingredients with proper weighs and 2nd. Limits included unhealthy substances. Real data for some people are used and the problems are solved.

  7. Multi-Objective Optimization of Green EDM: An Integrated Theory

    NASA Astrophysics Data System (ADS)

    Jagadish; Ray, A.

    2015-01-01

    Electrical Discharge Machining (EDM) generates toxic substances, results in serious occupational health, and environmental issues, which influence the process parameters of EDM. These process parameters are multi-response parameters. The aim of this research is to solve the multi-response optimization problems and selection of optimum process parameters of green EDM using an integrated methodology comprising of entropy and Grey Relational Analysis (GRA). In this work, initially, an experiment was performed using Taguchi experimental technique. Thereafter, Entropy-GRA has been used to convert the multi-response parameters into single response parameter. Finally, the ranking of the parameter decides the best experimental set up and optimizes the input process parameters. In this work, Entropy method has been used to extract the precise value of each of the output parameters, which influences the gray relational grades for finding the optimal experimental set up. The justification of optimal input process parameters has been made using Analysis of Variance (ANOVA) analysis. An attempt has been made to compare the proposed methodology with the Fuzzy-TOPSIS and Taguchi-VIKOR methodology. The numerical result shows that the optimum process parameters are peak current (4.5 A), pulse duration (261 μs), dielectric level (80 mm) and flushing pressure (0.3 kg/cm2).

  8. Fatigue design of a cellular phone folder using regression model-based multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Kim, Young Gyun; Lee, Jongsoo

    2016-08-01

    In a folding cellular phone, the folding device is repeatedly opened and closed by the user, which eventually results in fatigue damage, particularly to the front of the folder. Hence, it is important to improve the safety and endurance of the folder while also reducing its weight. This article presents an optimal design for the folder front that maximizes its fatigue endurance while minimizing its thickness. Design data for analysis and optimization were obtained experimentally using a test jig. Multi-objective optimization was carried out using a nonlinear regression model. Three regression methods were employed: back-propagation neural networks, logistic regression and support vector machines. The AdaBoost ensemble technique was also used to improve the approximation. Two-objective Pareto-optimal solutions were identified using the non-dominated sorting genetic algorithm (NSGA-II). Finally, a numerically optimized solution was validated against experimental product data, in terms of both fatigue endurance and thickness index.

  9. Determination of an optimal control strategy for drug administration in tumor treatment using multi-objective optimization differential evolution.

    PubMed

    Lobato, Fran Sérgio; Machado, Vinicius Silvério; Steffen, Valder

    2016-07-01

    The mathematical modeling of physical and biologic systems represents an interesting alternative to study the behavior of these phenomena. In this context, the development of mathematical models to simulate the dynamic behavior of tumors is configured as an important theme in the current days. Among the advantages resulting from using these models is their application to optimization and inverse problem approaches. Traditionally, the formulated Optimal Control Problem (OCP) has the objective of minimizing the size of tumor cells by the end of the treatment. In this case an important aspect is not considered, namely, the optimal concentrations of drugs may affect the patients' health significantly. In this sense, the present work has the objective of obtaining an optimal protocol for drug administration to patients with cancer, through the minimization of both the cancerous cells concentration and the prescribed drug concentration. The resolution of this multi-objective problem is obtained through the Multi-objective Optimization Differential Evolution (MODE) algorithm. The Pareto's Curve obtained supplies a set of optimal protocols from which an optimal strategy for drug administration can be chosen, according to a given criterion. PMID:27265048

  10. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    NASA Astrophysics Data System (ADS)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2016-07-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  11. Multi-objective optimization in WEDM of D3 tool steel using integrated approach of Taguchi method & Grey relational analysis

    NASA Astrophysics Data System (ADS)

    Shivade, Anand S.; Shinde, Vasudev D.

    2014-09-01

    In this paper, wire electrical discharge machining of D3 tool steel is studied. Influence of pulse-on time, pulse-off time, peak current and wire speed are investigated for MRR, dimensional deviation, gap current and machining time, during intricate machining of D3 tool steel. Taguchi method is used for single characteristics optimization and to optimize all four process parameters simultaneously, Grey relational analysis (GRA) is employed along with Taguchi method. Through GRA, grey relational grade is used as a performance index to determine the optimal setting of process parameters for multi-objective characteristics. Analysis of variance (ANOVA) shows that the peak current is the most significant parameters affecting on multi-objective characteristics. Confirmatory results, proves the potential of GRA to optimize process parameters successfully for multi-objective characteristics.

  12. Memetic Algorithm-Based Multi-Objective Coverage Optimization for Wireless Sensor Networks

    PubMed Central

    Chen, Zhi; Li, Shuai; Yue, Wenjing

    2014-01-01

    Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms. PMID:25360579

  13. A genetic algorithm based multi-objective shape optimization scheme for cementless femoral implant.

    PubMed

    Chanda, Souptick; Gupta, Sanjay; Kumar Pratihar, Dilip

    2015-03-01

    The shape and geometry of femoral implant influence implant-induced periprosthetic bone resorption and implant-bone interface stresses, which are potential causes of aseptic loosening in cementless total hip arthroplasty (THA). Development of a shape optimization scheme is necessary to achieve a trade-off between these two conflicting objectives. The objective of this study was to develop a novel multi-objective custom-based shape optimization scheme for cementless femoral implant by integrating finite element (FE) analysis and a multi-objective genetic algorithm (GA). The FE model of a proximal femur was based on a subject-specific CT-scan dataset. Eighteen parameters describing the nature of four key sections of the implant were identified as design variables. Two objective functions, one based on implant-bone interface failure criterion, and the other based on resorbed proximal bone mass fraction (BMF), were formulated. The results predicted by the two objective functions were found to be contradictory; a reduction in the proximal bone resorption was accompanied by a greater chance of interface failure. The resorbed proximal BMF was found to be between 23% and 27% for the trade-off geometries as compared to ∼39% for a generic implant. Moreover, the overall chances of interface failure have been minimized for the optimal designs, compared to the generic implant. The adaptive bone remodeling was also found to be minimal for the optimally designed implants and, further with remodeling, the chances of interface debonding increased only marginally. PMID:25392855

  14. Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management

    NASA Astrophysics Data System (ADS)

    Kourakos, George; Mantoglou, Aristotelis

    2013-02-01

    SummaryThe demand for fresh water in coastal areas and islands can be very high due to increased local needs and tourism. A multi-objective optimization methodology is developed, involving minimization of economic and environmental costs while satisfying water demand. The methodology considers desalinization of pumped water and injection of treated water into the aquifer. Variable density aquifer models are computationally intractable when integrated in optimization algorithms. In order to alleviate this problem, a multi-objective optimization algorithm is developed combining surrogate models based on Modular Neural Networks [MOSA(MNNs)]. The surrogate models are trained adaptively during optimization based on a genetic algorithm. In the crossover step, each pair of parents generates a pool of offspring which are evaluated using the fast surrogate model. Then, the most promising offspring are evaluated using the exact numerical model. This procedure eliminates errors in Pareto solution due to imprecise predictions of the surrogate model. The method has important advancements compared to previous methods such as precise evaluation of the Pareto set and alleviation of propagation of errors due to surrogate model approximations. The method is applied to an aquifer in the Greek island of Santorini. The results show that the new MOSA(MNN) algorithm offers significant reduction in computational time compared to previous methods (in the case study it requires only 5% of the time required by other methods). Further, the Pareto solution is better than the solution obtained by alternative algorithms.

  15. Memetic algorithm-based multi-objective coverage optimization for wireless sensor networks.

    PubMed

    Chen, Zhi; Li, Shuai; Yue, Wenjing

    2014-01-01

    Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms. PMID:25360579

  16. Application of multiobjective optimization to scheduling capacity expansion of urban water resource systems

    NASA Astrophysics Data System (ADS)

    Mortazavi-Naeini, Mohammad; Kuczera, George; Cui, Lijie

    2014-06-01

    Significant population increase in urban areas is likely to result in a deterioration of drought security and level of service provided by urban water resource systems. One way to cope with this is to optimally schedule the expansion of system resources. However, the high capital costs and environmental impacts associated with expanding or building major water infrastructure warrant the investigation of scheduling system operational options such as reservoir operating rules, demand reduction policies, and drought contingency plans, as a way of delaying or avoiding the expansion of water supply infrastructure. Traditionally, minimizing cost has been considered the primary objective in scheduling capacity expansion problems. In this paper, we consider some of the drawbacks of this approach. It is shown that there is no guarantee that the social burden of coping with drought emergencies is shared equitably across planning stages. In addition, it is shown that previous approaches do not adequately exploit the benefits of joint optimization of operational and infrastructure options and do not adequately address the need for the high level of drought security expected for urban systems. To address these shortcomings, a new multiobjective optimization approach to scheduling capacity expansion in an urban water resource system is presented and illustrated in a case study involving the bulk water supply system for Canberra. The results show that the multiobjective approach can address the temporal equity issue of sharing the burden of drought emergencies and that joint optimization of operational and infrastructure options can provide solutions superior to those just involving infrastructure options.

  17. Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul

    2005-01-01

    An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.

  18. Design of silicone rubber according to requirements based on the multi-objective optimization of chemical reactions

    SciTech Connect

    Jia Yuxi; Sun Sheng; Liu Lili; Mu Yue; An Lijia

    2004-08-16

    The explicit expression between composition and mechanical properties of silicone rubber was derived from the physics of polymer elasticity, the implicit expression among material composition, reaction conditions and reaction efficiency was obtained from chemical thermodynamics and kinetics, and then an implicit multi-objective optimization model was constructed. Genetic algorithm was applied to optimize material composition and reaction conditions, and the finite element method of cross-linking reaction processes was used to solve multi-objective functions, on the basis of which a new optimization methodology of cross-linking reaction processes was established. Using this methodology, rubber materials can be designed according to pre-specified requirements.

  19. Multiobjective optimal unit sizing of hybrid power generation systems utilizing photovoltaic and wind energy

    SciTech Connect

    Yokoyama, Ryohei; Ito, Koichi . Dept. of Energy Systems Engineering); Yuasa, Yoshiro . Technical Research Center)

    1994-11-01

    A deterministic approach to optimal unit sizing is presented for hybrid power generation systems utilizing photovoltaic and wind energy. Device capacities and electric contract demand are determined so as to minimize the annual total cost and annual energy consumption from the viewpoints of economy and energy saving or reduction in NO[sub x] and CO[sub 2] emission, respectively. This optimization problem is considered as a multiobjective one, and a discrete set of Pareto optimal solutions is derived numerically by using the weighting method. Two systems interconnected with the electric power grid are investigated: one has the option of reverse electricity flow into the grid, and the other has no option. By carrying out some case studies, the tradeoff relationships between the two objectives as well as the optimal values of device capacities are clarified. The influence of electricity deficit on unit sizing is also investigated.

  20. Multi-Objective Optimal Design of Switch Reluctance Motors Using Adaptive Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Rashidi, Mehran; Rashidi, Farzan

    In this paper a design methodology based on multi objective genetic algorithm (MOGA) is presented to design the switched reluctance motors with multiple conflicting objectives such as efficiency, power factor, full load torque, and full load current, specified dimension, weight of cooper and iron and also manufacturing cost. The optimally designed motor is compared with an industrial motor having the same ratings. Results verify that the proposed method gives better performance for the multi-objective optimization problems. The results of optimal design show the reduction in the specified dimension, weight and manufacturing cost, and the improvement in the power factor, full load torque, and efficiency of the motor.A major advantage of the method is its quite short response time in obtaining the optimal design.

  1. A performance-oriented power transformer design methodology using multi-objective evolutionary optimization.

    PubMed

    Adly, Amr A; Abd-El-Hafiz, Salwa K

    2015-05-01

    Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper. PMID:26257939

  2. Design of vibration isolation systems using multiobjective optimization techniques

    NASA Technical Reports Server (NTRS)

    Rao, S. S.

    1984-01-01

    The design of vibration isolation systems is considered using multicriteria optimization techniques. The integrated values of the square of the force transmitted to the main mass and the square of the relative displacement between the main mass and the base are taken as the performance indices. The design of a three degrees-of-freedom isolation system with an exponentially decaying type of base disturbance is considered for illustration. Numerical results are obtained using the global criterion, utility function, bounded objective, lexicographic, goal programming, goal attainment and game theory methods. It is found that the game theory approach is superior in finding a better optimum solution with proper balance of the various objective functions.

  3. Multi-Objective Optimization for Alumina Laser Sintering Process

    NASA Astrophysics Data System (ADS)

    Fayed, E. M.; Elmesalamy, A. S.; Sobih, M.; Elshaer, Y.

    2016-09-01

    Selective laser sintering processes has become one of the most popular additive manufacturing processes due to its flexibility in creation of complex components. This process has many interacting parameters, which have a significant influence on the process output. In this work, high purity alumina is sintered through a pulsed Nd:YAG laser sintering process. The aim of this work is to understand the effect of relevant sintering process parameters (laser power and laser scanning speed) on the quality of the sintered layer (layer surface roughness, layer thickness and vector/line width, and density). Design of experiments and statistical modeling techniques are employed to optimize the process control factors and to establish a relationship between these factors and output responses. Model results have been verified through experimental work and show reasonable prediction of process responses within the limits of sintering parameters.

  4. Large-Scale Multi-Objective Optimization for the Management of Seawater Intrusion, Santa Barbara, CA

    NASA Astrophysics Data System (ADS)

    Stanko, Z. P.; Nishikawa, T.; Paulinski, S. R.

    2015-12-01

    The City of Santa Barbara, located in coastal southern California, is concerned that excessive groundwater pumping will lead to chloride (Cl) contamination of its groundwater system from seawater intrusion (SWI). In addition, the city wishes to estimate the effect of continued pumping on the groundwater basin under a variety of initial and climatic conditions. A SEAWAT-based groundwater-flow and solute-transport model of the Santa Barbara groundwater basin was optimized to produce optimal pumping schedules assuming 5 different scenarios. Borg, a multi-objective genetic algorithm, was coupled with the SEAWAT model to identify optimal management strategies. The optimization problems were formulated as multi-objective so that the tradeoffs between maximizing pumping, minimizing SWI, and minimizing drawdowns can be examined by the city. Decisions can then be made on a pumping schedule in light of current preferences and climatic conditions. Borg was used to produce Pareto optimal results for all 5 scenarios, which vary in their initial conditions (high water levels, low water levels, or current basin state), simulated climate (normal or drought conditions), and problem formulation (objective equations and decision-variable aggregation). Results show mostly well-defined Pareto surfaces with a few singularities. Furthermore, the results identify the precise pumping schedule per well that was suitable given the desired restriction on drawdown and Cl concentrations. A system of decision-making is then possible based on various observations of the basin's hydrologic states and climatic trends without having to run any further optimizations. In addition, an assessment of selected Pareto-optimal solutions was analyzed with sensitivity information using the simulation model alone. A wide range of possible groundwater pumping scenarios is available and depends heavily on the future climate scenarios and the Pareto-optimal solution selected while managing the pumping wells.

  5. Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems.

    PubMed

    Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel

    2013-06-01

    Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency. PMID:23193246

  6. A multiobjective optimization approach to the operation and investment of the national energy and transportation systems

    NASA Astrophysics Data System (ADS)

    Ibanez, Eduardo

    Most U.S. energy usage is for electricity production and vehicle transportation, two interdependent infrastructures. The strength and number of the interdependencies will increase rapidly as hybrid electric transportation systems, including plug-in hybrid electric vehicles and hybrid electric trains, become more prominent. There are several new energy supply technologies reaching maturity, accelerated by public concern over global warming. The National Energy and Transportation Planning Tool (NETPLAN) is the implementation of the long-term investment and operation model for the transportation and energy networks. An evolutionary approach with underlying fast linear optimization are in place to determine the solutions with the best investment portfolios in terms of cost, resiliency and sustainability, i.e., the solutions that form the Pareto front. The popular NSGA-II algorithm is used as the base for the multiobjective optimization and metrics are developed for to evaluate the energy and transportation portfolios. An integrating approach to resiliency is presented, allowing the evaluation of high-consequence events, like hurricanes or widespread blackouts. A scheme to parallelize the multiobjective solver is presented, along with a decomposition method for the cost minimization program. The modular and data-driven design of the software is presented. The modeling tool is applied in a numerical example to optimize the national investment in energy and transportation in the next 40 years.

  7. Fuzzy mixed assembly line sequencing and scheduling optimization model using multiobjective dynamic fuzzy GA.

    PubMed

    Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari

    2014-01-01

    A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962

  8. Multiobjective adaptive surrogate modeling-based optimization for parameter estimation of large, complex geophysical models

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Duan, Qingyun; Li, Jianduo; Wang, Chen; Di, Zhenhua; Ye, Aizhong; Miao, Chiyuan; Dai, Yongjiu

    2016-03-01

    Parameter specification is an important source of uncertainty in large, complex geophysical models. These models generally have multiple model outputs that require multiobjective optimization algorithms. Although such algorithms have long been available, they usually require a large number of model runs and are therefore computationally expensive for large, complex dynamic models. In this paper, a multiobjective adaptive surrogate modeling-based optimization (MO-ASMO) algorithm is introduced that aims to reduce computational cost while maintaining optimization effectiveness. Geophysical dynamic models usually have a prior parameterization scheme derived from the physical processes involved, and our goal is to improve all of the objectives by parameter calibration. In this study, we developed a method for directing the search processes toward the region that can improve all of the objectives simultaneously. We tested the MO-ASMO algorithm against NSGA-II and SUMO with 13 test functions and a land surface model - the Common Land Model (CoLM). The results demonstrated the effectiveness and efficiency of MO-ASMO.

  9. Fuzzy Mixed Assembly Line Sequencing and Scheduling Optimization Model Using Multiobjective Dynamic Fuzzy GA

    PubMed Central

    Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari

    2014-01-01

    A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962

  10. A multi-objective optimization framework to model 3D river and landscape evolution processes

    NASA Astrophysics Data System (ADS)

    Bizzi, Simone; Castelletti, Andrea; Cominola, Andrea; Mason, Emanuele; Paik, Kyungrock

    2013-04-01

    Water and sediment interactions shape hillslopes, regulate soil erosion and sedimentation, and organize river networks. Landscape evolution and river organization occur at various spatial and temporal scale and the understanding and modelling of them is highly complex. The idea of a least action principle governing river networks evolution has been proposed many times as a simpler approach among the ones existing in the literature. These theories assume that river networks, as observed in nature, self-organize and act on soil transportation in order to satisfy a particular "optimality" criterion. Accordingly, river and landscape weathering can be simulated by solving an optimization problem, where the choice of the criterion to be optimized becomes the initial assumption. The comparison between natural river networks and optimized ones verifies the correctness of this initial assumption. Yet, various criteria have been proposed in literature and there is no consensus on which is better able to explain river network features observed in nature like network branching and river bed profile: each one is able to reproduce some river features through simplified modelling of the natural processes, but it fails to characterize the whole complexity (3D and its dynamic) of the natural processes. Some of the criteria formulated in the literature partly conflict: the reason is that their formulation rely on mathematical and theoretical simplifications of the natural system that are suitable for specific spatial and temporal scale but fails to represent the whole processes characterizing landscape evolution. In an attempt to address some of these scientific questions, we tested the suitability of using a multi-objective optimization framework to describe river and landscape evolution in a 3D spatial domain. A synthetic landscape is used to this purpose. Multiple, alternative river network evolutions, corresponding to as many tradeoffs between the different and partly

  11. Multiobjective optimization for Groundwater Nitrate Pollution Control. Application to El Salobral-Los Llanos aquifer (Spain).

    NASA Astrophysics Data System (ADS)

    Llopis-Albert, C.; Peña-Haro, S.; Pulido-Velazquez, M.; Molina, J.

    2012-04-01

    Water quality management is complex due to the inter-relations between socio-political, environmental and economic constraints and objectives. In order to choose an appropriate policy to reduce nitrate pollution in groundwater it is necessary to consider different objectives, often in conflict. In this paper, a hydro-economic modeling framework, based on a non-linear optimization(CONOPT) technique, which embeds simulation of groundwater mass transport through concentration response matrices, is used to study optimal policies for groundwater nitrate pollution control under different objectives and constraints. Three objectives were considered: recovery time (for meeting the environmental standards, as required by the EU Water Framework Directive and Groundwater Directive), maximum nitrate concentration in groundwater, and net benefits in agriculture. Another criterion was added: the reliability of meeting the nitrate concentration standards. The approach allows deriving the trade-offs between the reliability of meeting the standard, the net benefits from agricultural production and the recovery time. Two different policies were considered: spatially distributed fertilizer standards or quotas (obtained through multi-objective optimization) and fertilizer prices. The multi-objective analysis allows to compare the achievement of the different policies, Pareto fronts (or efficiency frontiers) and tradeoffs for the set of mutually conflicting objectives. The constraint method is applied to generate the set of non-dominated solutions. The multi-objective framework can be used to design groundwater management policies taking into consideration different stakeholders' interests (e.g., policy makers, agricultures or environmental groups). The methodology was applied to the El Salobral-Los Llanos aquifer in Spain. Over the past 30 years the area has undertaken a significant socioeconomic development, mainly due to the intensive groundwater use for irrigated crops, which has

  12. A multiobjective discrete stochastic optimization approach to shared aquifer management: Methodology and application

    NASA Astrophysics Data System (ADS)

    Siegfried, Tobias; Kinzelbach, Wolfgang

    2006-02-01

    Negative effects from groundwater mining are observed globally. They threaten future supply locally. Especially in semiarid to arid regions, where aquifers are the sole freshwater resource, this is problematic and can lead to an excessive rise of provision costs. Proper resource management in such environments is crucial. In many instances, however, aquifers are common property resources. In such cases and depending on resource characteristics and the nature of competing uses, their management is inherently multiobjective, and benefits from cooperative management are likely to be substantial. This paper presents a methodology for the determination of optimal, cooperative allocation policies in multiobjective aquifer management problems. Our model couples a finite difference aquifer model with an economic model that accounts for water provision costs. Discounted temporal installation and pumping and conveyance costs determine the vector-valued objective function. Each of the objectives characterizes the individual present costs over a given time horizon that the corresponding decision makers wish to minimize. Constraint handling is implemented by the option of moving wells. A multiobjective evolutionary algorithm is coupled to the management model so as to approximate cooperative tradeoff policies on the Pareto surface. These solutions can be ranked against existing, noncooperative status quo strategies. Consequently, the simulation-optimization model is applied to the northwest Sahara aquifer system which is used noncooperatively as a resource by Algeria, Tunisia, and Libya. We find that significant capital gains can be achieved by the establishment of intelligent pump scheduling. Since each country could benefit, a strong incentive toward the implementation of such cooperative strategies exists.

  13. Swarm intelligence for multi-objective optimization of synthesis gas production

    NASA Astrophysics Data System (ADS)

    Ganesan, T.; Vasant, P.; Elamvazuthi, I.; Ku Shaari, Ku Zilati

    2012-11-01

    In the chemical industry, the production of methanol, ammonia, hydrogen and higher hydrocarbons require synthesis gas (or syn gas). The main three syn gas production methods are carbon dioxide reforming (CRM), steam reforming (SRM) and partial-oxidation of methane (POM). In this work, multi-objective (MO) optimization of the combined CRM and POM was carried out. The empirical model and the MO problem formulation for this combined process were obtained from previous works. The central objectives considered in this problem are methane conversion, carbon monoxide selectivity and the hydrogen to carbon monoxide ratio. The MO nature of the problem was tackled using the Normal Boundary Intersection (NBI) method. Two techniques (Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO)) were then applied in conjunction with the NBI method. The performance of the two algorithms and the quality of the solutions were gauged by using two performance metrics. Comparative studies and results analysis were then carried out on the optimization results.

  14. A hybrid multi-objective evolutionary algorithm for optimal groundwater management under variable density conditions

    NASA Astrophysics Data System (ADS)

    Wu, J.; Yang, Y.; Wu, J.

    2011-12-01

    In this study, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to neighborhood step size. The NPTSGA is developed on the thought of integrating genetic algorithm (GA) with a TS based MOEA, niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arose from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA can balance the tradeoff between the intensification of nondomination and the diversification of near Pareto-optimal solutions and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.

  15. Identification of mutated driver pathways in cancer using a multi-objective optimization model.

    PubMed

    Zheng, Chun-Hou; Yang, Wu; Chong, Yan-Wen; Xia, Jun-Feng

    2016-05-01

    New-generation high-throughput technologies, including next-generation sequencing technology, have been extensively applied to solve biological problems. As a result, large cancer genomics projects such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium are producing large amount of rich and diverse data in multiple cancer types. The identification of mutated driver genes and driver pathways from these data is a significant challenge. Genome aberrations in cancer cells can be divided into two types: random 'passenger mutation' and functional 'driver mutation'. In this paper, we introduced a Multi-objective Optimization model based on a Genetic Algorithm (MOGA) to solve the maximum weight submatrix problem, which can be employed to identify driver genes and driver pathways promoting cancer proliferation. The maximum weight submatrix problem defined to find mutated driver pathways is based on two specific properties, i.e., high coverage and high exclusivity. The multi-objective optimization model can adjust the trade-off between high coverage and high exclusivity. We proposed an integrative model by combining gene expression data and mutation data to improve the performance of the MOGA algorithm in a biological context. PMID:26995027

  16. Long Series Multi-objectives Optimal Operation of Water And Sediment Regulation

    NASA Astrophysics Data System (ADS)

    Bai, T.; Jin, W.

    2015-12-01

    Secondary suspended river in Inner Mongolia reaches have formed and the security of reach and ecological health of the river are threatened. Therefore, researches on water-sediment regulation by cascade reservoirs are urgent and necessary. Under this emergency background, multi-objectives water and sediment regulation are studied in this paper. Firstly, multi-objective optimal operation models of Longyangxia and Liujiaxia cascade reservoirs are established. Secondly, based on constraints handling and feasible search space techniques, the Non-dominated Sorting Genetic Algorithm (NSGA-II) is greatly improved to solve the model. Thirdly, four different scenarios are set. It is demonstrated that: (1) scatter diagrams of perato front are obtained to show optimal solutions of power generation maximization, sediment maximization and the global equilibrium solutions between the two; (2) the potentiality of water-sediment regulation by Longyangxia and Liujiaxia cascade reservoirs are analyzed; (3) with the increasing water supply in future, conflict between water supply and water-sediment regulation occurred, and the sustainability of water and sediment regulation will confront with negative influences for decreasing transferable water in cascade reservoirs; (4) the transfer project has less benefit for water-sediment regulation. The research results have an important practical significance and application on water-sediment regulation by cascade reservoirs in the Upper Yellow River, to construct water and sediment control system in the whole Yellow River basin.

  17. Development of a pump-turbine runner based on multiobjective optimization

    NASA Astrophysics Data System (ADS)

    Xuhe, W.; Baoshan, Z.; Lei, T.; Jie, Z.; Shuliang, C.

    2014-03-01

    As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses.

  18. A Self-adaptive Evolutionary Algorithm for Multi-objective Optimization

    NASA Astrophysics Data System (ADS)

    Cao, Ruifen; Li, Guoli; Wu, Yican

    Evolutionary algorithm has gained a worldwide popularity among multi-objective optimization. The paper proposes a self-adaptive evolutionary algorithm (called SEA) for multi-objective optimization. In the SEA, the probability of crossover and mutation,P c and P m , are varied depending on the fitness values of the solutions. Fitness assignment of SEA realizes the twin goals of maintaining diversity in the population and guiding the population to the true Pareto Front; fitness value of individual not only depends on improved density estimation but also depends on non-dominated rank. The density estimation can keep diversity in all instances including when scalars of all objectives are much different from each other. SEA is compared against the Non-dominated Sorting Genetic Algorithm (NSGA-II) on a set of test problems introduced by the MOEA community. Simulated results show that SEA is as effective as NSGA-II in most of test functions, but when scalar of objectives are much different from each other, SEA has better distribution of non-dominated solutions.

  19. Ecologically and economically conscious design of the injected pultrusion process via multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Srinivasagupta, Deepak; Kardos, John L.

    2004-05-01

    Injected pultrusion (IP) is an environmentally benign continuous process for low-cost manufacture of prismatic polymer composites. IP has been of recent regulatory interest as an option to achieve significant vapour emissions reduction. This work describes the design of the IP process with multiple design objectives. In our previous work (Srinivasagupta D et al 2003 J. Compos. Mater. at press), an algorithm for economic design using a validated three-dimensional physical model of the IP process was developed, subject to controllability considerations. In this work, this algorithm was used in a multi-objective optimization approach to simultaneously meet economic, quality related, and environmental objectives. The retrofit design of a bench-scale set-up was considered, and the concept of exergy loss in the process, as well as in vapour emission, was introduced. The multi-objective approach was able to determine the optimal values of the processing parameters such as heating zone temperatures and resin injection pressure, as well as the equipment specifications (die dimensions, heater, puller and pump ratings) that satisfy the various objectives in a weighted sense, and result in enhanced throughput rates. The economic objective did not coincide with the environmental objective, and a compromise became necessary. It was seen that most of the exergy loss is in the conversion of electric power into process heating. Vapour exergy loss was observed to be negligible for the most part.

  20. Evolutionary algorithms for multi-objective optimization: fuzzy preference aggregation and multisexual EAs

    NASA Astrophysics Data System (ADS)

    Bonissone, Stefano R.

    2001-11-01

    There are many approaches to solving multi-objective optimization problems using evolutionary algorithms. We need to select methods for representing and aggregating preferences, as well as choosing strategies for searching in multi-dimensional objective spaces. First we suggest the use of linguistic variables to represent preferences and the use of fuzzy rule systems to implement tradeoff aggregations. After a review of alternatives EA methods for multi-objective optimizations, we explore the use of multi-sexual genetic algorithms (MSGA). In using a MSGA, we need to modify certain parts of the GAs, namely the selection and crossover operations. The selection operator groups solutions according to their gender tag to prepare them for crossover. The crossover is modified by appending a gender tag at the end of the chromosome. We use single and double point crossovers. We determine the gender of the offspring by the amount of genetic material provided by each parent. The parent that contributed the most to the creation of a specific offspring determines the gender that the offspring will inherit. This is still a work in progress, and in the conclusion we examine many future extensions and experiments.

  1. Deep Space Network Scheduling Using Multi-Objective Optimization with Uncertainty

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    2008-01-01

    We have developed a novel technique to incorporate uncertainty modeling within an evolutionary algorithm approach to multi-objective scheduling, with the goal of identifying a Pareto frontier (tradeoff curve) that recognizes the likelihood of events that can impact the schedule outcome. Our approach is particularly applicable to the generation of multiobjective optimized robust schedules, where objectives are assigned a service level, for example that we require an objective value to be greater than or equal to X with Y% confidence. We have demonstrated that such an approach can, for example, minimize scheduling on less reliable resources, based solely on a resource reliability model and not on any ad hoc heuristics. We have also investigated an alternative method of optimizing for robustness, in which we add to the set of objectives a failure risk objective to minimize. We compare the advantages and disadvantages of these two approaches. Future plans for further developing this technology include its application to space-based observatory scheduling problems.

  2. Multiobjective optimization in quantitative structure-activity relationships: deriving accurate and interpretable QSARs.

    PubMed

    Nicolotti, Orazio; Gillet, Valerie J; Fleming, Peter J; Green, Darren V S

    2002-11-01

    Deriving quantitative structure-activity relationship (QSAR) models that are accurate, reliable, and easily interpretable is a difficult task. In this study, two new methods have been developed that aim to find useful QSAR models that represent an appropriate balance between model accuracy and complexity. Both methods are based on genetic programming (GP). The first method, referred to as genetic QSAR (or GPQSAR), uses a penalty function to control model complexity. GPQSAR is designed to derive a single linear model that represents an appropriate balance between the variance and the number of descriptors selected for the model. The second method, referred to as multiobjective genetic QSAR (MoQSAR), is based on multiobjective GP and represents a new way of thinking of QSAR. Specifically, QSAR is considered as a multiobjective optimization problem that comprises a number of competitive objectives. Typical objectives include model fitting, the total number of terms, and the occurrence of nonlinear terms. MoQSAR results in a family of equivalent QSAR models where each QSAR represents a different tradeoff in the objectives. A practical consideration often overlooked in QSAR studies is the need for the model to promote an understanding of the biochemical response under investigation. To accomplish this, chemically intuitive descriptors are needed but do not always give rise to statistically robust models. This problem is addressed by the addition of a further objective, called chemical desirability, that aims to reward models that consist of descriptors that are easily interpretable by chemists. GPQSAR and MoQSAR have been tested on various data sets including the Selwood data set and two different solubility data sets. The study demonstrates that the MoQSAR method is able to find models that are at least as good as models derived using standard statistical approaches and also yields models that allow a medicinal chemist to trade statistical robustness for chemical

  3. Computational fluid dynamics and interactive multiobjective optimization in the development of low-emission industrial boilers

    NASA Astrophysics Data System (ADS)

    Saario, A.; Oksanen, A.

    2008-09-01

    A CFD-based model is applied to study emission formation in a bubbling fluidized bed boiler burning biomass. After the model is validated to a certain extent, it is used for optimization. There are nine design variables (nine distinct NH3 injections in the selective non-catalytic reduction process) and two objective functions (which minimize NO and NH3 emissions in flue gas). The multiobjective optimization problem is solved using the reference-point method involving an achievement scalarizing function. The interactive reference-point method is applied to generate Pareto optimal solutions. Two inherently different optimization algorithms, viz. a genetic algorithm and Powell's conjugate-direction method, are applied in the solution of the resulting optimization problem. It is shown that optimization connected with CFD is a promising design tool for combustion optimization. The strengths and weaknesses of the proposed approach and of the methods applied are discussed from the point of view of a complex real-world optimization problem.

  4. Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Severino, Bernardo; Gana, Felipe; Palma-Behnke, Rodrigo; Estévez, Pablo A.; Calderón-Muñoz, Williams R.; Orchard, Marcos E.; Reyes, Jorge; Cortés, Marcelo

    2014-12-01

    Lithium-battery energy storage systems (LiBESS) are increasingly being used on electric mobility and stationary applications. Despite its increasing use and improvements of the technology there are still challenges associated with cost reduction, increasing lifetime and capacity, and higher safety. A correct battery thermal management system (BTMS) design is critical to achieve these goals. In this paper, a general framework for obtaining optimal BTMS designs is proposed. Due to the trade-off between the BTMS's design goals and the complex modeling of thermal response inside the battery pack, this paper proposes to solve this problem using a novel Multi-Objective Particle Swarm Optimization (MOPSO) approach. A theoretical case of a module with 6 cells and a real case of a pack used in a Solar Race Car are presented. The results show the capabilities of the proposal methodology, in which improved designs for battery packs are obtained.

  5. Comparison of various ternary simulated moving bed separation schemes by multi-objective optimization.

    PubMed

    Agrawal, Gaurav; Kawajiri, Yoshiaki

    2012-05-18

    Over the past decade, many modifications have been proposed in simulated moving bed (SMB) chromatography in order to effectively separate a binary mixture. However, the separation of multi-component mixtures using SMB is still one of the major challenges. In addition, the performance of SMB system highly depends on its operating conditions. Our study address this issue by formulating a multi-objective optimization problem that maximizes the productivity and purity of intermediate eluting component at the same time. A number of optimized isocractic ternary SMB operating schemes are compared both in terms of productivity and amount of desorbent to feed ratio. Furthermore, we propose a generalized full cycle (GFC) formulation based on superstructure formulation encompassing numerous operating schemes proposed in the literature. We also demonstrate that this approach has a potential to find the best ternary separation strategy among various alternatives. PMID:22498352

  6. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    SciTech Connect

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres; Kober, Vitaly; Trujillo, Leonardo

    2014-10-23

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, for a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.

  7. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    DOE PAGESBeta

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres; Kober, Vitaly; Trujillo, Leonardo

    2014-10-23

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less

  8. Prediction of protein-protein interaction network using a multi-objective optimization approach.

    PubMed

    Chowdhury, Archana; Rakshit, Pratyusha; Konar, Amit

    2016-06-01

    Protein-Protein Interactions (PPIs) are very important as they coordinate almost all cellular processes. This paper attempts to formulate PPI prediction problem in a multi-objective optimization framework. The scoring functions for the trial solution deal with simultaneous maximization of functional similarity, strength of the domain interaction profiles, and the number of common neighbors of the proteins predicted to be interacting. The above optimization problem is solved using the proposed Firefly Algorithm with Nondominated Sorting. Experiments undertaken reveal that the proposed PPI prediction technique outperforms existing methods, including gene ontology-based Relative Specific Similarity, multi-domain-based Domain Cohesion Coupling method, domain-based Random Decision Forest method, Bagging with REP Tree, and evolutionary/swarm algorithm-based approaches, with respect to sensitivity, specificity, and F1 score. PMID:26846814

  9. Pattern recognition with composite correlation filters designed with multi-objective combinatorial optimization

    NASA Astrophysics Data System (ADS)

    Diaz-Ramirez, Victor H.; Cuevas, Andres; Kober, Vitaly; Trujillo, Leonardo; Awwal, Abdul

    2015-03-01

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Moreover, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, for a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.

  10. Multi-objective optimization of two-dimensional phoxonic crystals with multi-level substructure scheme

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Yin, J.; Zhang, H. W.; Chen, B. S.

    2016-03-01

    Phoxonic crystal (PXC) is a promising artificial periodic material for optomechanical systems and acousto-optical devices. The multi-objective topology optimization of dual phononic and photonic max relative bandgaps in a kind of two-dimensional (2D) PXC is investigated to find the regular pattern of topological configurations. In order to improve the efficiency, a multi-level substructure scheme is proposed to analyze phononic and photonic band structures, which is stable, efficient and less memory-consuming. The efficient and reliable numerical algorithm provides a powerful tool to optimize and design crystal devices. The results show that with the reduction of the relative phononic bandgap (PTBG), the central dielectric scatterer becomes smaller and the dielectric veins of cross-connections between different dielectric scatterers turn into the horizontal and vertical shape gradually. These characteristics can be of great value to the design and synthesis of new materials with different topological configurations for applications of the PXC.

  11. Multi-objective optimization approach for cost management during product design at the conceptual phase

    NASA Astrophysics Data System (ADS)

    Durga Prasad, K. G.; Venkata Subbaiah, K.; Narayana Rao, K.

    2014-03-01

    The effective cost management during the conceptual design phase of a product is essential to develop a product with minimum cost and desired quality. The integration of the methodologies of quality function deployment (QFD), value engineering (VE) and target costing (TC) could be applied to the continuous improvement of any product during product development. To optimize customer satisfaction and total cost of a product, a mathematical model is established in this paper. This model integrates QFD, VE and TC under multi-objective optimization frame work. A case study on domestic refrigerator is presented to show the performance of the proposed model. Goal programming is adopted to attain the goals of maximum customer satisfaction and minimum cost of the product.

  12. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    PubMed

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. PMID:27110990

  13. A multi-objective optimization approach accurately resolves protein domain architectures

    PubMed Central

    Bernardes, J.S.; Vieira, F.R.J.; Zaverucha, G.; Carbone, A.

    2016-01-01

    Motivation: Given a protein sequence and a number of potential domains matching it, what are the domain content and the most likely domain architecture for the sequence? This problem is of fundamental importance in protein annotation, constituting one of the main steps of all predictive annotation strategies. On the other hand, when potential domains are several and in conflict because of overlapping domain boundaries, finding a solution for the problem might become difficult. An accurate prediction of the domain architecture of a multi-domain protein provides important information for function prediction, comparative genomics and molecular evolution. Results: We developed DAMA (Domain Annotation by a Multi-objective Approach), a novel approach that identifies architectures through a multi-objective optimization algorithm combining scores of domain matches, previously observed multi-domain co-occurrence and domain overlapping. DAMA has been validated on a known benchmark dataset based on CATH structural domain assignments and on the set of Plasmodium falciparum proteins. When compared with existing tools on both datasets, it outperforms all of them. Availability and implementation: DAMA software is implemented in C++ and the source code can be found at http://www.lcqb.upmc.fr/DAMA. Contact: juliana.silva_bernardes@upmc.fr or alessandra.carbone@lip6.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26458889

  14. Multi-objective optimization of solid waste flows: environmentally sustainable strategies for municipalities.

    PubMed

    Minciardi, Riccardo; Paolucci, Massimo; Robba, Michela; Sacile, Roberto

    2008-11-01

    An approach to sustainable municipal solid waste (MSW) management is presented, with the aim of supporting the decision on the optimal flows of solid waste sent to landfill, recycling and different types of treatment plants, whose sizes are also decision variables. This problem is modeled with a non-linear, multi-objective formulation. Specifically, four objectives to be minimized have been taken into account, which are related to economic costs, unrecycled waste, sanitary landfill disposal and environmental impact (incinerator emissions). An interactive reference point procedure has been developed to support decision making; these methods are considered appropriate for multi-objective decision problems in environmental applications. In addition, interactive methods are generally preferred by decision makers as they can be directly involved in the various steps of the decision process. Some results deriving from the application of the proposed procedure are presented. The application of the procedure is exemplified by considering the interaction with two different decision makers who are assumed to be in charge of planning the MSW system in the municipality of Genova (Italy). PMID:18042369

  15. Distributed Generation Planning using Peer Enhanced Multi-objective Teaching-Learning based Optimization in Distribution Networks

    NASA Astrophysics Data System (ADS)

    Selvam, Kayalvizhi; Vinod Kumar, D. M.; Siripuram, Ramakanth

    2016-06-01

    In this paper, an optimization technique called peer enhanced teaching learning based optimization (PeTLBO) algorithm is used in multi-objective problem domain. The PeTLBO algorithm is parameter less so it reduced the computational burden. The proposed peer enhanced multi-objective based TLBO (PeMOTLBO) algorithm has been utilized to find a set of non-dominated optimal solutions [distributed generation (DG) location and sizing in distribution network]. The objectives considered are: real power loss and the voltage deviation subjected to voltage limits and maximum penetration level of DG in distribution network. Since the DG considered is capable of injecting real and reactive power to the distribution network the power factor is considered as 0.85 lead. The proposed peer enhanced multi-objective optimization technique provides different trade-off solutions in order to find the best compromise solution a fuzzy set theory approach has been used. The effectiveness of this proposed PeMOTLBO is tested on IEEE 33-bus and Indian 85-bus distribution system. The performance is validated with Pareto fronts and two performance metrics (C-metric and S-metric) by comparing with robust multi-objective technique called non-dominated sorting genetic algorithm-II and also with the basic TLBO.

  16. Multistage and multiobjective formulations of globally optimal upgradable expansions for electric power distribution systems

    NASA Astrophysics Data System (ADS)

    Vaziri Yazdi Pin, Mohammad

    practices. Single criterion optimization algorithms using mathematical programming for globally optimal solutions have been developed for three objectives of cost, reliability, and the social/environmental impacts. Additional algorithms for inclusions of upgrade and optimal load assignment possibilities have been developed. Algorithms have been developed to handle the expansion as a multiobjective decision process. Typical data from both major investor owned and major municipal utilities operating in California USA, have been utilized to implement and test the algorithms on practical test cases. Results of the case studies and associated analyses indicate that the developed algorithms also perform efficiently in solving the multistage and multiobjective expansion problem.

  17. Optimal design of groundwater remediation systems using a probabilistic multi-objective fast harmony search algorithm under uncertainty

    NASA Astrophysics Data System (ADS)

    Luo, Q.; Wu, J.; Qian, J.

    2013-12-01

    This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation system under uncertainty associated with the hydraulic conductivity of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic Pareto domination ranking and probabilistic niche technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient hydraulic conductivity data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal groundwater remediation system of a two-dimensional hypothetical test problem involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the percentage of mass remaining in the aquifer at the end of the operational period, which uses the Pump-and-Treat (PAT) technology to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is used to demonstrate the effectiveness of the proposed methodology. The MC analysis is taken to each Pareto solutions for every K realization. Then the statistical mean and the upper and lower bounds of uncertainty intervals of 95% confidence level are calculated. The MC analysis results show that all of the Pareto-optimal solutions are located between the upper and lower bounds of the MC analysis. Moreover, the root mean square errors (RMSEs) between the Pareto-optimal solutions by the PMOFHS and the average values of optimal solutions by the MC analysis are 0.0204 for the first objective and 0.0318 for the second objective, quite smaller than those RMSEs between the results by the existing probabilistic multi-objective genetic algorithm (PMOGA) and the MC analysis, 0.0384 and 0.0397, respectively. In

  18. Multiobjective topology optimization of trabecular Bone Structure in the spine and the femur: Implications for biomimcry

    NASA Astrophysics Data System (ADS)

    Elbanna, Ahmed; Peetz, Darin

    Bone is classically considered to be a self-optimizing structure in accordance with Wolff's law. However, while the structure's ability to adapt to changing stress patterns has been well documented, whether it is fully optimal for compliance is less certain (Sigmund, 2002). Given the complexity of many biological systems, it is expected that this structure serves several purposes. We present a multi-objective topology optimization formulation for trabecular bone in the human body at two locations: the vertebrae and the femur. We account for the effect of different conflicting objectives such as maximization of stiffness, maximization of surface area, and minimization of buckling susceptibility. Our formulation enables us to determine the relative role of each of these objective in optimizing the structure. Moreover, it provides an opportunity to explore what structural features have to evolve to meet a certain objective requirements that may have been absent otherwise. For example, inclusion of stability considerations introduce numerous horizontal and diagonal members in the topology in the case of human vertebrae under vertical loading. However, the stability is found to play a lesser role in the case of the femur bone optimization. Our formulation enables investigation of bone adaptation at different locations of the body as well as under different loading and boundary conditions (e.g. healthy and diseased discs for the case of the spine). We discuss the implications of our findings on developing design rules for bio-inspired and bio-mimetic architectured materials. National Science Foundation: CMMI.

  19. Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.

  20. Comparison of Evolutionary (Genetic) Algorithm and Adjoint Methods for Multi-Objective Viscous Airfoil Optimizations

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.

  1. Identification of IPMC nonlinear model via single and multi-objective optimization algorithms.

    PubMed

    Caponetto, Riccardo; Graziani, Salvatore; Pappalardo, Fulvio; Sapuppo, Francesca

    2014-03-01

    Ionic Polymer-Metal Composites (IPMCs) are electro-active polymers transforming mechanical forces into electric signals and vice versa. This paper proposes an improved electro-mechanical grey-box model for IPMC membrane working as actuator. In particular the IPMC nonlinearity has been characterized through experimentation and included within the electric model. Moreover identification of the model parameters has been performed via optimization algorithms using both single- and multi-objective formulation. Minimization was attained via the Nelder-Mead simplex and the Genetic Algorithms considering as cost functions the error between the experimental and modeled absorbed current and the error between experimental and modeled displacement. The obtained results for the different formulations have been then compared. PMID:24342273

  2. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Low-Thrust Mission Design

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.; Ghosh, Alexander R.

    2015-01-01

    Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.

  3. Multiobjective optimization in structural design with uncertain parameters and stochastic processes

    NASA Technical Reports Server (NTRS)

    Rao, S. S.

    1984-01-01

    The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.

  4. Optimization of hybrid laminated composites using the multi-objective gravitational search algorithm (MOGSA)

    NASA Astrophysics Data System (ADS)

    Hemmatian, Hossein; Fereidoon, Abdolhossein; Assareh, Ehsanolah

    2014-09-01

    The multi-objective gravitational search algorithm (MOGSA) technique is applied to hybrid laminates to achieve minimum weight and cost. The investigated laminate is made of glass-epoxy and carbon-epoxy plies to combine the economical attributes of the first with the light weight and high-stiffness properties of the second in order to make the trade-off between the cost and weight as the objective functions. The first natural flexural frequency was considered as a constraint. The results obtained using the MOGSA, including the Pareto set, optimum stacking sequences and number of plies made of either glass or carbon fibres, were compared with those using the genetic algorithm (GA) and ant colony optimization (ACO) reported in the literature. The comparisons confirmed the advantages of hybridization and showed that the MOGSA outperformed the GA and ACO in terms of the functions' value and constraint accuracy.

  5. Multi-objective optimization for hybrid fuel cells power system under uncertainty

    NASA Astrophysics Data System (ADS)

    Subramanyan, Karthik; Diwekar, Urmila M.; Goyal, Amit

    One of the major applications of fuel cells is as onsite stationary electric power plants. Several types of configurations have been hypothesized and tested for these kinds of applications at the conceptual level but hybrid power plants are one of the most efficient. These are designs that combine a fuel cell cycle with other thermodynamic cycles to provide higher efficiency. Generally, the heat rejected by the fuel cell at a higher temperature is used in a bottoming cycle to generate steam. In this work we are considering a conceptual design of a solid oxide fuel cell-proton exchange membrane (SOFC-PEM) fuel cell hybrid power plant [R. Geisbrecht, Compact Electrochemical Reformer Based on SOFC Technology, AIChE Spring National Meeting, Atlanta, GA, 2000] in which the high temperature SOFC fuel cell acts both as electricity producer and fuel reformer for the low temperature PEM fuel cell (PEMFC). The exhaust from the PEM fuel cell goes to a waste hydrogen burner and heat recovery steam generator that produces steam for further utilizations. Optimizing this conceptual design involves consideration of a number of objectives. The process should have low pollutant emissions as well as cost competitive with the existing technology. The solution of a multi-objective optimization problem is not a single solution but a complete non-dominated or Pareto set, which includes the alternatives representing potential compromise solutions among the objectives. This makes a range of choice available to decision makers and provides them with the trade-off information among the multiple objectives effectively. This paper presents the optimal trade-off design solutions or the Pareto set for this hybrid power plant through a multi-objective optimization framework. This hybrid technology is new and the system level models used for fuel cells performance have significant uncertainties in them. In this paper, we characterize these uncertainties and study the effect of these uncertainties

  6. A preference-based multi-objective model for the optimization of best management practices

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Qiu, Jiali; Wei, Guoyuan; Shen, Zhenyao

    2015-01-01

    The optimization of best management practices (BMPs) at the watershed scale is notably complex because of the social nature of decision process, which incorporates information that reflects the preferences of decision makers. In this study, a preference-based multi-objective model was designed by modifying the commonly-used Non-dominated Sorting Genetic Algorithm (NSGA-II). The reference points, achievement scalarizing functions and an indicator-based optimization principle were integrated for searching a set of preferred Pareto-optimality solutions. Pareto preference ordering was also used for reducing objective numbers in the final decision-making process. This proposed model was then tested in a typical watershed in the Three Gorges Region, China. The results indicated that more desirable solutions were generated, which reduced the burden of decision effort of watershed managers. Compare to traditional Genetic Algorithm (GA), those preferred solutions were concentrated in a narrow region close to the projection point instead of the entire Pareto-front. Based on Pareto preference ordering, the solutions with the best objective function values were often the more desirable solutions (i.e., the minimum cost solution and the minimum pollutant load solution). In the authors' view, this new model provides a useful tool for optimizing BMPs at watershed scale and is therefore of great benefit to watershed managers.

  7. System design and improvement of an emergency department using Simulation-Based Multi-Objective Optimization

    NASA Astrophysics Data System (ADS)

    Goienetxea Uriarte, A.; Ruiz Zúñiga, E.; Urenda Moris, M.; Ng, A. H. C.

    2015-05-01

    Discrete Event Simulation (DES) is nowadays widely used to support decision makers in system analysis and improvement. However, the use of simulation for improving stochastic logistic processes is not common among healthcare providers. The process of improving healthcare systems involves the necessity to deal with trade-off optimal solutions that take into consideration a multiple number of variables and objectives. Complementing DES with Multi-Objective Optimization (SMO) creates a superior base for finding these solutions and in consequence, facilitates the decision-making process. This paper presents how SMO has been applied for system improvement analysis in a Swedish Emergency Department (ED). A significant number of input variables, constraints and objectives were considered when defining the optimization problem. As a result of the project, the decision makers were provided with a range of optimal solutions which reduces considerably the length of stay and waiting times for the ED patients. SMO has proved to be an appropriate technique to support healthcare system design and improvement processes. A key factor for the success of this project has been the involvement and engagement of the stakeholders during the whole process.

  8. Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms

    NASA Astrophysics Data System (ADS)

    Lahanas, Michael; Schreibmann, Eduard; Baltas, Dimos

    2003-09-01

    We consider the behaviour of the limited memory L-BFGS algorithm as a representative constraint-free gradient-based algorithm which is used for multiobjective (MO) dose optimization for intensity modulated radiotherapy (IMRT). Using a parameter transformation, the positivity constraint problem of negative beam fluences is entirely eliminated: a feature which to date has not been fully understood by all investigators. We analyse the global convergence properties of L-BFGS by searching for the existence and the influence of possible local minima. With a fast simulated annealing (FSA) algorithm we examine whether the L-BFGS solutions are globally Pareto optimal. The three examples used in our analysis are a brain tumour, a prostate tumour and a test case with a C-shaped PTV. In 1% of the optimizations global convergence is violated. A simple mechanism practically eliminates the influence of this failure and the obtained solutions are globally optimal. A single-objective dose optimization requires less than 4 s for 5400 parameters and 40 000 sampling points. The elimination of the problem of negative beam fluences and the high computational speed permit constraint-free gradient-based optimization algorithms to be used for MO dose optimization. In this situation, a representative spectrum of possible solutions is obtained which contains information such as the trade-off between the objectives and range of dose values. Using simple decision making tools the best of all the possible solutions can be chosen. We perform an MO dose optimization for the three examples and compare the spectra of solutions, firstly using recommended critical dose values for the organs at risk and secondly, setting these dose values to zero.

  9. Coastal aquifer management based on surrogate models and multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Mantoglou, A.; Kourakos, G.

    2011-12-01

    The demand for fresh water in coastal areas and islands can be very high, especially in summer months, due to increased local needs and tourism. In order to satisfy demand, a combined management plan is proposed which involves: i) desalinization (if needed) of pumped water to a potable level using reverse osmosis and ii) injection of biologically treated waste water into the aquifer. The management plan is formulated into a multiobjective optimization framework, where simultaneous minimization of economic and environmental costs is desired; subject to a constraint to satisfy demand. The method requires modeling tools, which are able to predict the salinity levels of the aquifer in response to different alternative management scenarios. Variable density models can simulate the interaction between fresh and saltwater; however, they are computationally intractable when integrated in optimization algorithms. In order to alleviate this problem, a multi objective optimization algorithm is developed combining surrogate models based on Modular Neural Networks [MOSA(MNN)]. The surrogate models are trained adaptively during optimization based on a Genetic Algorithm. In the crossover step of the genetic algorithm, each pair of parents generates a pool of offspring. All offspring are evaluated based on the fast surrogate model. Then only the most promising offspring are evaluated based on the exact numerical model. This eliminates errors in Pareto solution due to imprecise predictions of the surrogate model. Three new criteria for selecting the most promising offspring were proposed, which improve the Pareto set and maintain the diversity of the optimum solutions. The method has important advancements compared to previous methods, e.g. alleviation of propagation of errors due to surrogate model approximations. The method is applied to a real coastal aquifer in the island of Santorini which is a very touristy island with high water demands. The results show that the algorithm

  10. A Comparative Study of Multi-Objective Optimization Algorithms for Automatic Calibration

    NASA Astrophysics Data System (ADS)

    Asadzadeh, M.; Tolson, B.; Maclean, A.

    2009-12-01

    Hydrologic model calibration is often a computationally expensive problem that aims to find a set of parameters that simulates observations. It has been shown that no single metric can comprehensively evaluate the effectiveness of the calibration. Moreover, many of the proposed metrics are conflicting (e.g., the set of parameters that achieves accurate high flow predictions is different from the set of parameters that achieves accurate low flow predictions). Conflict is even more likely when objectives are based on different fluxes and/or state variables (e.g., streamflow versus Snow Water Equivalent (SWE)). The goal of solving a multi-objective optimization problem is to approximate the tradeoff between objectives (also called the Pareto front) that represents the attained level of each metric in comparison with other metrics and hence helps to decide on the acceptable set of parameters. In this study, a variety of algorithms are applied to solve a multi-objective (MO) model calibration problem and the performance of these algorithms is compared. The calibration case study is the MESH model (a combined land surface and hydrologic model under development by Environment Canada) applied to the Reynolds Creek Experimental Watershed. MESH is calibrated against two objectives to adequately simulate the measured streamflow and SWE. The MO algorithms applied to this calibration problem include NSGAII, SPEA2 and AMALGAM. In addition, a new MO algorithm called the Pareto Archived Dynamically Dimensioned Search (PA-DDS) is also applied. PA-DDS uses DDS as a search engine and archives all the non-dominated solutions during the search. It inherits the parsimonious characteristic of DDS, so it has only one algorithm parameter which does not need tuning. This characteristic makes PA-DDS very suitable for solving multi-objective hydrologic model calibrations, since tuning the algorithm parameters in computationally intensive models is a very time consuming process. Preliminary

  11. A new optimization algorithm based on a combination of particle swarm optimization, convergence and divergence operators for single-objective and multi-objective problems

    NASA Astrophysics Data System (ADS)

    Mahmoodabadi, M. J.; Bagheri, A.; Nariman-zadeh, N.; Jamali, A.

    2012-10-01

    Particle swarm optimization (PSO) is a randomized and population-based optimization method that was inspired by the flocking behaviour of birds and human social interactions. In this work, multi-objective PSO is modified in two stages. In the first stage, PSO is combined with convergence and divergence operators. Here, this method is named CDPSO. In the second stage, to produce a set of Pareto optimal solutions which has good convergence, diversity and distribution, two mechanisms are used. In the first mechanism, a new leader selection method is defined, which uses the periodic iteration and the concept of the particle's neighbour number. This method is named periodic multi-objective algorithm. In the second mechanism, an adaptive elimination method is employed to limit the number of non-dominated solutions in the archive, which has influences on computational time, convergence and diversity of solution. Single-objective results show that CDPSO performs very well on the complex test functions in terms of solution accuracy and convergence speed. Furthermore, some benchmark functions are used to evaluate the performance of periodic multi-objective CDPSO. This analysis demonstrates that the proposed algorithm operates better in three metrics through comparison with three well-known elitist multi-objective evolutionary algorithms. Finally, the algorithm is used for Pareto optimal design of a two-degree of freedom vehicle vibration model. The conflicting objective functions are sprung mass acceleration and relative displacement between sprung mass and tyre. The feasibility and efficiency of periodic multi-objective CDPSO are assessed in comparison with multi-objective modified NSGAII.

  12. Multi-objective shape optimization of runner blade for Kaplan turbine

    NASA Astrophysics Data System (ADS)

    Semenova, A.; Chirkov, D.; Lyutov, A.; Chemy, S.; Skorospelov, V.; Pylev, I.

    2014-03-01

    Automatic runner shape optimization based on extensive CFD analysis proved to be a useful design tool in hydraulic turbomachinery. Previously the authors developed an efficient method for Francis runner optimization. It was successfully applied to the design of several runners with different specific speeds. In present work this method is extended to the task of a Kaplan runner optimization. Despite of relatively simpler blade shape, Kaplan turbines have several features, complicating the optimization problem. First, Kaplan turbines normally operate in a wide range of discharges, thus CFD analysis of each variant of the runner should be carried out for several operation points. Next, due to a high specific speed, draft tube losses have a great impact on the overall turbine efficiency, and thus should be accurately evaluated. Then, the flow in blade tip and hub clearances significantly affects the velocity profile behind the runner and draft tube behavior. All these features are accounted in the present optimization technique. Parameterization of runner blade surface using 24 geometrical parameters is described in details. For each variant of runner geometry steady state three-dimensional turbulent flow computations are carried out in the domain, including wicket gate, runner, draft tube, blade tip and hub clearances. The objectives are maximization of efficiency in best efficiency and high discharge operation points, with simultaneous minimization of cavitation area on the suction side of the blade. Multiobjective genetic algorithm is used for the solution of optimization problem, requiring the analysis of several thousands of runner variants. The method is applied to optimization of runner shape for several Kaplan turbines with different heads.

  13. Parameter Estimation of Computationally Expensive Watershed Models Through Efficient Multi-objective Optimization and Interactive Decision Analytics

    NASA Astrophysics Data System (ADS)

    Akhtar, Taimoor; Shoemaker, Christine

    2016-04-01

    Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual

  14. A multiobjective ant colony optimization approach for scheduling environmental flow management alternatives with application to the River Murray, Australia

    NASA Astrophysics Data System (ADS)

    Szemis, J. M.; Dandy, G. C.; Maier, H. R.

    2013-10-01

    In regulated river systems, such as the River Murray in Australia, the efficient use of water to preserve and restore biota in the river, wetlands, and floodplains is of concern for water managers. Available management options include the timing of river flow releases and operation of wetland flow control structures. However, the optimal scheduling of these environmental flow management alternatives is a difficult task, since there are generally multiple wetlands and floodplains with a range of species, as well as a large number of management options that need to be considered. Consequently, this problem is a multiobjective optimization problem aimed at maximizing ecological benefit while minimizing water allocations within the infrastructure constraints of the system under consideration. This paper presents a multiobjective optimization framework, which is based on a multiobjective ant colony optimization approach, for developing optimal trade-offs between water allocation and ecological benefit. The framework is applied to a reach of the River Murray in South Australia. Two studies are formulated to assess the impact of (i) upstream system flow constraints and (ii) additional regulators on this trade-off. The results indicate that unless the system flow constraints are relaxed, there is limited additional ecological benefit as allocation increases. Furthermore the use of regulators can increase ecological benefits while using less water. The results illustrate the utility of the framework since the impact of flow control infrastructure on the trade-offs between water allocation and ecological benefit can be investigated, thereby providing valuable insight to managers.

  15. Multi-Objective Optimization Design for Cooling Unit of Automotive Exhaust-Based Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Qiang, J. W.; Yu, C. G.; Deng, Y. D.; Su, C. Q.; Wang, Y. P.; Yuan, X. H.

    2016-03-01

    In order to improve the performance of cooling units for automotive thermoelectric generators, a study is carried out to optimize the cold side and the fin distributions arranged on its inner faces. Based on the experimental measurements and numerical simulations, a response surface model of different internal structures is built to analyze the heat transfer and pressure drop characteristics of fluid flow in the cooling unit. For the fin distributions, five independent variables including height, length, thickness, space and distance from walls are considered. An experimental study design incorporating the central composite design method is used to assess the influence of fin distributions on the temperature field and the pressure drop in the cooling units. The archive-based micro genetic algorithm (AMGA) is used for multi-objective optimization to analyze the sensitivity of the design variables and to build a database from which to construct the surrogate model. Finally, improvement measures are proposed for optimization of the cooling system and guidelines are provided for future research.

  16. Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Asadzadeh, Masoud; Tolson, Bryan

    2013-12-01

    Pareto archived dynamically dimensioned search (PA-DDS) is a parsimonious multi-objective optimization algorithm with only one parameter to diminish the user's effort for fine-tuning algorithm parameters. This study demonstrates that hypervolume contribution (HVC) is a very effective selection metric for PA-DDS and Monte Carlo sampling-based HVC is very effective for higher dimensional problems (five objectives in this study). PA-DDS with HVC performs comparably to algorithms commonly applied to water resources problems (ɛ-NSGAII and AMALGAM under recommended parameter values). Comparisons on the CEC09 competition show that with sufficient computational budget, PA-DDS with HVC performs comparably to 13 benchmark algorithms and shows improved relative performance as the number of objectives increases. Lastly, it is empirically demonstrated that the total optimization runtime of PA-DDS with HVC is dominated (90% or higher) by solution evaluation runtime whenever evaluation exceeds 10 seconds/solution. Therefore, optimization algorithm runtime associated with the unbounded archive of PA-DDS is negligible in solving computationally intensive problems.

  17. Seeking sustainability: multiobjective evolutionary optimization for urban wastewater reuse in China.

    PubMed

    Zhang, Wenlong; Wang, Chao; Li, Yi; Wang, Peifang; Wang, Qing; Wang, Dawei

    2014-01-21

    Sustainable design and implementation of wastewater reuse in China have to achieve an optimum compromise among water resources augmenting, pollutants reduction and economic profit. A systematic framework with a multiobjective optimization model is first developed considering the trade-offs among wastewater reuse supplies and demands, costs and profits, as well as pollutants reduction. Pareto fronts of wastewater reuse optimization for 31 provinces of China are obtained through nondominated sorting genetic algorithm trials. The control strategies for each province are selected on the basis of regional water resources and water environment status. On the national level, the control strategies of wastewater reuse scale, BOD5 reduction, and economic profit are 15.39 billion cubic meters, 176.31 kilotons, and 9.68 billion RMB Yuan, respectively. The driving forces of water resources augmenting and water pollution control play more important roles than economic profit during wastewater reuse expanding in China. According to the optimal allocations, reclaimed wastewater should be intensively used in municipal, domestic, and recreative sectors in the regions suffering from quantity-related water scarcity, while it should be focused on industrial users in the regions suffering from quality-related water scarcity. The results present a general picture of wastewater reuse for policy makers in China. PMID:24378011

  18. Particle swarm optimized multi-objective histogram equalization for image enhancement

    NASA Astrophysics Data System (ADS)

    Shanmugavadivu, P.; Balasubramanian, K.

    2014-04-01

    Histogram Equalization (HE) is a simple and effective technique for enhancing the contrast of the input image. However, it fails to preserve the brightness while enhancing the contrast due to the abrupt mean shift during the process of equalization. Many HE based methods have been developed to overcome the problem of mean shift. But, they suffered from over-enhancement. In this paper, a multi-objective HE model has been proposed in order to enhance the contrast as well as to preserve the brightness. The central idea of this technique is to first segment the histogram of the input image into two using Otsu's threshold. A set of optimized weighing constraints are formulated and applied on both the sub-images. Then, the sub-images are equalized independently and their union produces the contrast enhanced, brightness preserved output image. Here, Particle Swarm Optimization (PSO) is employed to find the optimal constraints. This technique is proved to have an edge over the other contemporary methods in terms of entropy and contrast improvement index.

  19. Heuristics for multiobjective optimization of two-sided assembly line systems.

    PubMed

    Jawahar, N; Ponnambalam, S G; Sivakumar, K; Thangadurai, V

    2014-01-01

    Products such as cars, trucks, and heavy machinery are assembled by two-sided assembly line. Assembly line balancing has significant impacts on the performance and productivity of flow line manufacturing systems and is an active research area for several decades. This paper addresses the line balancing problem of a two-sided assembly line in which the tasks are to be assigned at L side or R side or any one side (addressed as E). Two objectives, minimum number of workstations and minimum unbalance time among workstations, have been considered for balancing the assembly line. There are two approaches to solve multiobjective optimization problem: first approach combines all the objectives into a single composite function or moves all but one objective to the constraint set; second approach determines the Pareto optimal solution set. This paper proposes two heuristics to evolve optimal Pareto front for the TALBP under consideration: Enumerative Heuristic Algorithm (EHA) to handle problems of small and medium size and Simulated Annealing Algorithm (SAA) for large-sized problems. The proposed approaches are illustrated with example problems and their performances are compared with a set of test problems. PMID:24790568

  20. Multi-Objective Optimization of a Turbofan for an Advanced, Single-Aisle Transport

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Guynn, Mark D.

    2012-01-01

    Considerable interest surrounds the design of the next generation of single-aisle commercial transports in the Boeing 737 and Airbus A320 class. Aircraft designers will depend on advanced, next-generation turbofan engines to power these airplanes. The focus of this study is to apply single- and multi-objective optimization algorithms to the conceptual design of ultrahigh bypass turbofan engines for this class of aircraft, using NASA s Subsonic Fixed Wing Project metrics as multidisciplinary objectives for optimization. The independent design variables investigated include three continuous variables: sea level static thrust, wing reference area, and aerodynamic design point fan pressure ratio, and four discrete variables: overall pressure ratio, fan drive system architecture (i.e., direct- or gear-driven), bypass nozzle architecture (i.e., fixed- or variable geometry), and the high- and low-pressure compressor work split. Ramp weight, fuel burn, noise, and emissions are the parameters treated as dependent objective functions. These optimized solutions provide insight to the ultrahigh bypass engine design process and provide information to NASA program management to help guide its technology development efforts.

  1. Deriving joint optimal refill rules for cascade reservoirs with multi-objective evaluation

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Xu, Chong-Yu; Liu, Pan; Qin, Hui

    2015-05-01

    Reservoirs are one of the most efficient infrastructures for integrated water resources development and management; and play a more and more important role in flood control and conservation. Optimal refill operation before the end of flood season is a valuable and effective approach to compromise the flood control, hydropower generation and comprehensive utilization of water resources of river basins. An integrated model consisting of a flood control risk analysis module, a utilization benefits analysis module and a multi-objective evaluation module was proposed in this study to derive joint optimal refill rules for cascade reservoirs. The Jinsha River and Three Gorges cascade reservoirs in the Changjiang River basin of China are selected for a case study. Sixty-one years of observed daily runoff data from 1950 to 2010 have been used to test the model. The results indicate that the proposed model can make an effective tradeoff between flood control and utilization benefits. Joint optimal synchronous and asynchronous refill rules can generate 3.25% and 2.78% more annual average hydropower, respectively and improve the fullness storage rate without increasing flood control risk comparing with the original designed operating rules.

  2. A Multi-Objective Optimization Technique to Model the Pareto Front of Organic Dielectric Polymers

    NASA Astrophysics Data System (ADS)

    Gubernatis, J. E.; Mannodi-Kanakkithodi, A.; Ramprasad, R.; Pilania, G.; Lookman, T.

    Multi-objective optimization is an area of decision making that is concerned with mathematical optimization problems involving more than one objective simultaneously. Here we describe two new Monte Carlo methods for this type of optimization in the context of their application to the problem of designing polymers with more desirable dielectric and optical properties. We present results of applying these Monte Carlo methods to a two-objective problem (maximizing the total static band dielectric constant and energy gap) and a three objective problem (maximizing the ionic and electronic contributions to the static band dielectric constant and energy gap) of a 6-block organic polymer. Our objective functions were constructed from high throughput DFT calculations of 4-block polymers, following the method of Sharma et al., Nature Communications 5, 4845 (2014) and Mannodi-Kanakkithodi et al., Scientific Reports, submitted. Our high throughput and Monte Carlo methods of analysis extend to general N-block organic polymers. This work was supported in part by the LDRD DR program of the Los Alamos National Laboratory and in part by a Multidisciplinary University Research Initiative (MURI) Grant from the Office of Naval Research.

  3. Heuristics for Multiobjective Optimization of Two-Sided Assembly Line Systems

    PubMed Central

    Jawahar, N.; Ponnambalam, S. G.; Sivakumar, K.; Thangadurai, V.

    2014-01-01

    Products such as cars, trucks, and heavy machinery are assembled by two-sided assembly line. Assembly line balancing has significant impacts on the performance and productivity of flow line manufacturing systems and is an active research area for several decades. This paper addresses the line balancing problem of a two-sided assembly line in which the tasks are to be assigned at L side or R side or any one side (addressed as E). Two objectives, minimum number of workstations and minimum unbalance time among workstations, have been considered for balancing the assembly line. There are two approaches to solve multiobjective optimization problem: first approach combines all the objectives into a single composite function or moves all but one objective to the constraint set; second approach determines the Pareto optimal solution set. This paper proposes two heuristics to evolve optimal Pareto front for the TALBP under consideration: Enumerative Heuristic Algorithm (EHA) to handle problems of small and medium size and Simulated Annealing Algorithm (SAA) for large-sized problems. The proposed approaches are illustrated with example problems and their performances are compared with a set of test problems. PMID:24790568

  4. Investigation of trunk muscle activities during lifting using a multi-objective optimization-based model and intelligent optimization algorithms.

    PubMed

    Ghiasi, Mohammad Sadegh; Arjmand, Navid; Boroushaki, Mehrdad; Farahmand, Farzam

    2016-03-01

    A six-degree-of-freedom musculoskeletal model of the lumbar spine was developed to predict the activity of trunk muscles during light, moderate and heavy lifting tasks in standing posture. The model was formulated into a multi-objective optimization problem, minimizing the sum of the cubed muscle stresses and maximizing the spinal stability index. Two intelligent optimization algorithms, i.e., the vector evaluated particle swarm optimization (VEPSO) and nondominated sorting genetic algorithm (NSGA), were employed to solve the optimization problem. The optimal solution for each task was then found in the way that the corresponding in vivo intradiscal pressure could be reproduced. Results indicated that both algorithms predicted co-activity in the antagonistic abdominal muscles, as well as an increase in the stability index when going from the light to the heavy task. For all of the light, moderate and heavy tasks, the muscles' activities predictions of the VEPSO and the NSGA were generally consistent and in the same order of the in vivo electromyography data. The proposed methodology is thought to provide improved estimations for muscle activities by considering the spinal stability and incorporating the in vivo intradiscal pressure data. PMID:26088358

  5. Multi-objective optimization of gear forging process based on adaptive surrogate meta-models

    NASA Astrophysics Data System (ADS)

    Meng, Fanjuan; Labergere, Carl; Lafon, Pascal; Daniel, Laurent

    2013-05-01

    In forging industry, net shape or near net shape forging of gears has been the subject of considerable research effort in the last few decades. So in this paper, a multi-objective optimization methodology of net shape gear forging process design has been discussed. The study is mainly done in four parts: building parametric CAD geometry model, simulating the forging process, fitting surrogate meta-models and optimizing the process by using an advanced algorithm. In order to maximally appropriate meta-models of the real response, an adaptive meta-model based design strategy has been applied. This is a continuous process: first, bui Id a preliminary version of the meta-models after the initial simulated calculations; second, improve the accuracy and update the meta-models by adding some new representative samplings. By using this iterative strategy, the number of the initial sample points for real numerical simulations is greatly decreased and the time for the forged gear design is significantly shortened. Finally, an optimal design for an industrial application of a 27-teeth gear forging process was introduced, which includes three optimization variables and two objective functions. A 3D FE nu merical simulation model is used to realize the process and an advanced thermo-elasto-visco-plastic constitutive equation is considered to represent the material behavior. The meta-model applied for this example is kriging and the optimization algorithm is NSGA-II. At last, a relatively better Pareto optimal front (POF) is gotten with gradually improving the obtained surrogate meta-models.

  6. Multi-objective global optimization of a butterfly valve using genetic algorithms.

    PubMed

    Corbera, Sergio; Olazagoitia, José Luis; Lozano, José Antonio

    2016-07-01

    A butterfly valve is a type of valve typically used for isolating or regulating flow where the closing mechanism takes the form of a disc. For a long time, the attention of many researchers has focused on carrying out structural (FEM) and computational fluid dynamics (CFD) analysis in order to increase the performance of this type of flow-control device. This paper proposes a novel multi-objective approach for the design optimization of a butterfly valve using advanced genetic algorithms based on Pareto dominance. Firstly, after defining the need for this study and analyzing previous papers on the subject, the initial butterfly valve is presented and the initial fluid and structural analysis are carried out. Secondly, the optimization problem is defined and the optimization strategy is presented. The design variables are identified and a parameterization model of the valve is made. Thirdly, initial design candidates are generated by DOE and design optimization using genetic algorithms is performed. In this part of the process structural and CFD analysis are calculated for each candidate simultaneously. The optimization process involves various types of software and Python scripts are needed for their interaction and the connection of all steps. Finally, a set of optimal solutions is obtained and the optimum design that provides a 65.4% stress reduction, a 5% mass reduction and a 11.3% flow increase is selected in accordance with manufacturer preferences. Validation of the results is provided by comparing experimental test results with the values obtained for the initial design. The results demonstrate the capability and potential of the proposed methodology. PMID:27056745

  7. An efficient hybrid approach for multiobjective optimization of water distribution systems

    NASA Astrophysics Data System (ADS)

    Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.

    2014-05-01

    An efficient hybrid approach for the design of water distribution systems (WDSs) with multiple objectives is described in this paper. The objectives are the minimization of the network cost and maximization of the network resilience. A self-adaptive multiobjective differential evolution (SAMODE) algorithm has been developed, in which control parameters are automatically adapted by means of evolution instead of the presetting of fine-tuned parameter values. In the proposed method, a graph algorithm is first used to decompose a looped WDS into a shortest-distance tree (T) or forest, and chords (Ω). The original two-objective optimization problem is then approximated by a series of single-objective optimization problems of the T to be solved by nonlinear programming (NLP), thereby providing an approximate Pareto optimal front for the original whole network. Finally, the solutions at the approximate front are used to seed the SAMODE algorithm to find an improved front for the original entire network. The proposed approach is compared with two other conventional full-search optimization methods (the SAMODE algorithm and the NSGA-II) that seed the initial population with purely random solutions based on three case studies: a benchmark network and two real-world networks with multiple demand loading cases. Results show that (i) the proposed NLP-SAMODE method consistently generates better-quality Pareto fronts than the full-search methods with significantly improved efficiency; and (ii) the proposed SAMODE algorithm (no parameter tuning) exhibits better performance than the NSGA-II with calibrated parameter values in efficiently offering optimal fronts.

  8. General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide.

    PubMed

    Jaramillo-Botero, Andres; Naserifar, Saber; Goddard, William A

    2014-04-01

    First-principles-based force fields prepared from large quantum mechanical data sets are now the norm in predictive molecular dynamics simulations for complex chemical processes, as opposed to force fields fitted solely from phenomenological data. In principle, the former allow improved accuracy and transferability over a wider range of molecular compositions, interactions, and environmental conditions unexplored by experiments. That is, assuming they have been optimally prepared from a diverse training set. The trade-off has been force field engines that are functionally complex, with a large number of nonbonded and bonded analytical forms that give rise to rather large parameter search spaces. To address this problem, we have developed GARFfield (genetic algorithm-based reactive force field optimizer method), a hybrid multiobjective Pareto-optimal parameter development scheme based on genetic algorithms, hill-climbing routines and conjugate-gradient minimization. To demonstrate the capabilities of GARFfield we use it to develop two very different force fields: (1) the ReaxFF reactive force field for modeling the adiabatic reactive dynamics of silicon carbide growth from an methyltrichlorosilane precursor and (2) the SiC electron force field with effective core pseudopotentials for modeling nonadiabatic dynamic phenomena with highly excited electronic states. The flexible and open architecture of GARFfield enables efficient and fast parallel optimization of parameters from quantum mechanical data sets for demanding applications like ReaxFF, electronic fast forward (or electron force field), and others including atomistic reactive charge-optimized many-body interatomic potentials, Morse, and coarse-grain force fields. PMID:26580361

  9. Multi-Objective Optimization of Heat Load and Run Time for CEBAF Linacs Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Reeves, Cody; Terzic, Balsa; Hofler, Alicia

    2014-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) consists of two linear accelerators (Linacs) connected by arcs. Within each Linac, there are 200 niobium cavities that use superconducting radio frequency (SRF) to accelerate electrons. The gradients for the cavities are selected to optimize two competing objectives: heat load (the energy required to cool the cavities) and trip rate (how often the beam turns off within an hour). This results in a multidimensional, multi-objective, nonlinear system of equations that is not readily solved by analytical methods. This study improved a genetic algorithm (GA), which applies the concept of natural selection. The primary focus was making this GA more efficient to allow for more cost-effective solutions in the same amount of computation time. Two methods used were constraining the maximum value of the ob-jectives and also utilizing previously simulated solutions as the initial generation. A third method of interest involved refining the GA by combining the two objectives into a single weighted-sum objective, which collapses the set of optimal solutions into a single point. By combining these methods, the GA can be made 128 times as effective, reducing computation time from 30 min to 12 sec. This is crucial for when a cavity must be turned off, a new solution needs to be computed quickly. This work is of particular interest since it provides an efficient algorithm that can be easily adapted to any Linac facility.

  10. The application of multi-objective optimization method for activated sludge process: a review.

    PubMed

    Dai, Hongliang; Chen, Wenliang; Lu, Xiwu

    2016-01-01

    The activated sludge process (ASP) is the most generally applied biological wastewater treatment approach. Depending on the design and specific application, activated sludge wastewater treatment plants (WWTPs) can achieve biological nitrogen (N) and phosphorus (P) removal, besides the removal of organic carbon substances. However, the effluent N and P limits are getting tighter because of increased emphasis on environmental protection, and the needs for energy conservation as well as the operational reliability. Therefore, the balance between treatment performance and cost becomes a critical issue for the operations of WWTPs, which necessitates a multi-objective optimization (MOO). Recent studies in this field have shown promise in utilizing MOO to address the multiple conflicting criteria (i.e. effluent quality, operation cost, operation stability), including studying the ASP models that are primarily responsible for the process, and developing the method of MOO in the wastewater treatment process, which facilitates better optimization of process performance. Based on a better understanding of the application of MOO for ASP, a comprehensive review is conducted to offer a clear vision of the advances, and potential areas for future research are also proposed in the field. PMID:26819377

  11. Integrating Hybrid Life Cycle Assessment with Multiobjective Optimization: A Modeling Framework.

    PubMed

    Yue, Dajun; Pandya, Shyama; You, Fengqi

    2016-02-01

    By combining life cycle assessment (LCA) with multiobjective optimization (MOO), the life cycle optimization (LCO) framework holds the promise not only to evaluate the environmental impacts for a given product but also to compare different alternatives and identify both ecologically and economically better decisions. Despite the recent methodological developments in LCA, most LCO applications are developed upon process-based LCA, which results in system boundary truncation and underestimation of the true impact. In this study, we propose a comprehensive LCO framework that seamlessly integrates MOO with integrated hybrid LCA. It quantifies both direct and indirect environmental impacts and incorporates them into the decision making process in addition to the more traditional economic criteria. The proposed LCO framework is demonstrated through an application on sustainable design of a potential bioethanol supply chain in the UK. Results indicate that the proposed hybrid LCO framework identifies a considerable amount of indirect greenhouse gas emissions (up to 58.4%) that are essentially ignored in process-based LCO. Among the biomass feedstock options considered, using woody biomass for bioethanol production would be the most preferable choice from a climate perspective, while the mixed use of wheat and wheat straw as feedstocks would be the most cost-effective one. PMID:26752618

  12. A multiobjective interval programming model for wind-hydrothermal power system dispatching using 2-step optimization algorithm.

    PubMed

    Ren, Kun; Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663

  13. A Multiobjective Interval Programming Model for Wind-Hydrothermal Power System Dispatching Using 2-Step Optimization Algorithm

    PubMed Central

    Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663

  14. Optimization of IMRT using multi-objective evolutionary algorithms with regularization: A study of complexity vs. deliverability

    NASA Astrophysics Data System (ADS)

    Tom, Brian C.

    Intensity Modulated Radiation Therapy (IMRT) has enjoyed success in the clinic by achieving dose escalation to the target while sparing nearby critical structures. For DMLC plans, regularization is introduced in order to smooth the fluence maps. In this dissertation, regularization is used to smooth the fluence profiles. Since SMLC plans have a limited number of intensity levels, smoothing is not a problem. However, in many treatment planning systems, the plans are optimized with beam weights that are continuous. Only after the optimization is complete is when the fluence maps are quantized. This dissertation will study the effects, if any, of quantizing the beam weights. In order to study both smoothing DMLC plans and the quantization of SMLC plans, a multi-objective evolutionary algorithm is employed as the optimization method. The main advantages of using these stochastic algorithms is that the beam weights can be represented either in binary or real strings. Clearly, a binary representation is suited for SMLC delivery (discrete intensity levels), while a real representation is more suited for DMLC. Further, in the case of real beam weights, multi-objective evolutionary algorithms can handle conflicting objective functions very well. In fact, regularization can be thought of as having two competing functions: to maintain fidelity to the data, and smoothing the data. The main disadvantage of regularization is the need to specify the regularization parameter, which controls how important the two objectives are relative to one another. Multi-objective evolutionary algorithms do not need such a parameter. In addition, such algorithms yield a set of solutions, each solution representing differing importance factors of the two (or more) objective functions. Multi-objective evolutionary algorithms can thus be used to study the effects of quantizing the beam weights for SMLC delivery systems as well studying how regularization can reduce the difference between the

  15. Multi-objective optimization of a conceptual model for simulating streamflow and solute concentration

    NASA Astrophysics Data System (ADS)

    Tanakamaru, H.; Tada, A.; Watanabe, K.

    2013-12-01

    This study discusses the applicability of compromise programming to multi-objective optimization of a conceptual model for simulating streamflow and solute concentration. Study area is Gojo experimental catchment of 12.82 ha located in Nara prefecture, Japan. Precipitation and streamflow data every 10 minutes from May, 2007 through April, 2011 and sodium concentration data every 15 minutes from June, 2009 through April, 2011 observed at the outlet of catchment were used here. Streamflow data were measured by a V-notch weir. Sodium concentration data (mg/l unit) were measured by the flow injection potentiometry (FIP) system using ion-selective electrodes (ISEs) and concentration data every 10 minutes were estimated by liner interpolation. Daily potential evapotranspiration estimated by Penman equation were also used. Streamflow was simulated by the Long- and Short-Term Runoff Model (LSTRM) and sodium concentration was estimated by four CQ equations of power type applied to four simulated runoff components (surface flow, interflow, subsurface flow and groundwater flow). The LSTRM consists of three storage tanks and it has 14 parameters including 3 initial storage depths to be calibrated. The CQ equation for one of runoff components has 2 parameters and 8 parameters should be calibrated. In this study, the following three parameter sets (Model A, B and C) were estimated by Root Mean Square Error (RMSE) minimizing by SCE-UA method. Model A: firstly 14 parameters of LSTRM were estimated by streamflow data and secondly 8 parameters of CQ equations were estimated by sodium concentration data. Model B: 22 parameters were estimated by using only sodium concentration data. Model C: the compromise programming (Yu, 1973; Zeleny, 1973) was applied. Firstly, the objective space which has horizontal axis of streamflow RMSE and vertical axis of concentration RMSE were set and the ideal point were plotted by streamflow RMSE of Model A and concentration RMSE of Model B. Secondly

  16. Recovery Act: Multi-Objective Optimization Approaches for the Design of Carbon Geological Sequestration Systems

    SciTech Connect

    Bau, Domenico

    2013-05-31

    The main objective of this project is to provide training opportunities for two graduate students in order to improve the human capital and skills required for implementing and deploying carbon capture and sequestration (CCS) technologies. The graduate student effort will be geared towards the formulation and implementation of an integrated simulation-optimization framework to provide a rigorous scientific support to the design CCS systems that, for any given site: (a) maximize the amount of carbon storage; (b) minimize the total cost associated with the CCS project; (c) minimize the risk of CO2 upward leakage from injected formations. The framework will stem from a combination of data obtained from geophysical investigations, a multiphase flow model, and a stochastic multi-objective optimization algorithm. The methodology will rely on a geostatistical approach to generate ensembles of scenarios of the parameters that are expected to have large sensitivities and uncertainties on the model response and thus on the risk assessment, in particular the permeability properties of the injected formation and its cap rock. The safety theme will be addressed quantitatively by including the risk of CO2 upward leakage from the injected formations as one the objectives that should be minimized in the optimization problem. The research performed under this grant is significant to academic researchers and professionals weighing the benefits, costs, and risks of CO2 sequestration. Project managers in initial planning stages of CCS projects will be able to generate optimal tradeoff surfaces and with corresponding injection plans for potential sequestration sites leading to cost efficient preliminary project planning. In addition, uncertainties concerning CCS have been researched. Uncertainty topics included Uncertainty Analysis of Continuity of Geological Confining Units using Categorical Indicator Kriging (CIK) and the Influence of Uncertain Parameters on the Leakage of CO2 to

  17. Integration of multi-objective structural optimization into cementless hip prosthesis design: Improved Austin-Moore model.

    PubMed

    Kharmanda, G

    2016-11-01

    A new strategy of multi-objective structural optimization is integrated into Austin-Moore prosthesis in order to improve its performance. The new resulting model is so-called Improved Austin-Moore. The topology optimization is considered as a conceptual design stage to sketch several kinds of hollow stems according to the daily loading cases. The shape optimization presents the detailed design stage considering several objectives. Here, A new multiplicative formulation is proposed as a performance scale in order to define the best compromise between several requirements. Numerical applications on 2D and 3D problems are carried out to show the advantages of the proposed model. PMID:27028554

  18. Optimal design activated sludge process by means of multi-objective optimization: case study in Benchmark Simulation Model 1 (BSM1).

    PubMed

    Chen, Wenliang; Yao, Chonghua; Lu, Xiwu

    2014-01-01

    Optimal design of activated sludge process (ASP) using multi-objective optimization was studied, and a benchmark process in Benchmark Simulation Model 1 (BSM1) was taken as a target process. The objectives of the study were to achieve four indexes of percentage of effluent violation (PEV), overall cost index (OCI), total volume and total suspended solids, making up four cases for comparative analysis. Models were solved by the non-dominated sorting genetic algorithm in MATLAB. Results show that: ineffective solutions can be rejected by adding constraints, and newly added objectives can affect the relationship between the existing objectives; taking Pareto solutions as process parameters, the performance indexes of PEV and OCI can be improved more than with the default process parameters of BSM1, especially for N removal and resistance against dynamic NH4(+)-N in influent. The results indicate that multi-objective optimization is a useful method for optimal design ASP. PMID:24845320

  19. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    NASA Astrophysics Data System (ADS)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  20. Multiobjective Signal Processing Optimization: The way to balance conflicting metrics in 5G systems

    NASA Astrophysics Data System (ADS)

    Bjornson, Emil; Jorswieck, Eduard Axel; Debbah, Merouane; Ottersten, Bjorn

    2014-11-01

    The evolution of cellular networks is driven by the dream of ubiquitous wireless connectivity: Any data service is instantly accessible everywhere. With each generation of cellular networks, we have moved closer to this wireless dream; first by delivering wireless access to voice communications, then by providing wireless data services, and recently by delivering a WiFi-like experience with wide-area coverage and user mobility management. The support for high data rates has been the main objective in recent years, as seen from the academic focus on sum-rate optimization and the efforts from standardization bodies to meet the peak rate requirements specified in IMT-Advanced. In contrast, a variety of metrics/objectives are put forward in the technological preparations for 5G networks: higher peak rates, improved coverage with uniform user experience, higher reliability and lower latency, better energy efficiency, lower-cost user devices and services, better scalability with number of devices, etc. These multiple objectives are coupled, often in a conflicting manner such that improvements in one objective lead to degradation in the other objectives. Hence, the design of future networks calls for new optimization tools that properly handle the existence and tradeoffs between multiple objectives. In this article, we provide a review of multi-objective optimization (MOO), which is a mathematical framework to solve design problems with multiple conflicting objectives. (...) We provide a survey of the basic definitions, properties, and algorithmic tools in MOO. This reveals how signal processing algorithms are used to visualize the inherent conflicts between 5G performance objectives, thereby allowing the network designer to understand the possible operating points and how to balance the objectives in an efficient and satisfactory way. For clarity, we provide a case study on massive MIMO.

  1. A Risk-Based Multi-Objective Optimization Concept for Early-Warning Monitoring Networks

    NASA Astrophysics Data System (ADS)

    Bode, F.; Loschko, M.; Nowak, W.

    2014-12-01

    Groundwater is a resource for drinking water and hence needs to be protected from contaminations. However, many well catchments include an inventory of known and unknown risk sources which cannot be eliminated, especially in urban regions. As matter of risk control, all these risk sources should be monitored. A one-to-one monitoring situation for each risk source would lead to a cost explosion and is even impossible for unknown risk sources. However, smart optimization concepts could help to find promising low-cost monitoring network designs.In this work we develop a concept to plan monitoring networks using multi-objective optimization. Our considered objectives are to maximize the probability of detecting all contaminations and the early warning time and to minimize the installation and operating costs of the monitoring network. A qualitative risk ranking is used to prioritize the known risk sources for monitoring. The unknown risk sources can neither be located nor ranked. Instead, we represent them by a virtual line of risk sources surrounding the production well.We classify risk sources into four different categories: severe, medium and tolerable for known risk sources and an extra category for the unknown ones. With that, early warning time and detection probability become individual objectives for each risk class. Thus, decision makers can identify monitoring networks which are valid for controlling the top risk sources, and evaluate the capabilities (or search for least-cost upgrade) to also cover moderate, tolerable and unknown risk sources. Monitoring networks which are valid for the remaining risk also cover all other risk sources but the early-warning time suffers.The data provided for the optimization algorithm are calculated in a preprocessing step by a flow and transport model. Uncertainties due to hydro(geo)logical phenomena are taken into account by Monte-Carlo simulations. To avoid numerical dispersion during the transport simulations we use the

  2. Multi-objective optimization design and experimental investigation of centrifugal fan performance

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Songling; Hu, Chenxing; Zhang, Qian

    2013-11-01

    Current studies of fan performance optimization mainly focus on two aspects: one is to improve the blade profile, and another is only to consider the influence of single impeller structural parameter on fan performance. However, there are few studies on the comprehensive effect of the key parameters such as blade number, exit stagger angle of blade and the impeller outlet width on the fan performance. The G4-73 backward centrifugal fan widely used in power plants is selected as the research object. Based on orthogonal design and BP neural network, a model for predicting the centrifugal fan performance parameters is established, and the maximum relative errors of the total pressure and efficiency are 0.974% and 0.333%, respectively. Multi-objective optimization of total pressure and efficiency of the fan is conducted with genetic algorithm, and the optimum combination of impeller structural parameters is proposed. The optimized parameters of blade number, exit stagger angle of blade and the impeller outlet width are seperately 14, 43.9°, and 21 cm. The experiments on centrifugal fan performance and noise are conducted before and after the installation of the new impeller. The experimental results show that with the new impeller, the total pressure of fan increases significantly in total range of the flow rate, and the fan efficiency is improved when the relative flow is above 75%, also the high efficiency area is broadened. Additionally, in 65% -100% relative flow, the fan noise is reduced. Under the design operating condition, total pressure and efficiency of the fan are improved by 6.91% and 0.5%, respectively. This research sheds light on the considering of comprehensive effect of impeller structrual parameters on fan performance, and a new impeller can be designed to satisfy the engineering demand such as energy-saving, noise reduction or solving air pressure insufficiency for power plants.

  3. Leukocyte Motility Models Assessed through Simulation and Multi-objective Optimization-Based Model Selection.

    PubMed

    Read, Mark N; Bailey, Jacqueline; Timmis, Jon; Chtanova, Tatyana

    2016-09-01

    The advent of two-photon microscopy now reveals unprecedented, detailed spatio-temporal data on cellular motility and interactions in vivo. Understanding cellular motility patterns is key to gaining insight into the development and possible manipulation of the immune response. Computational simulation has become an established technique for understanding immune processes and evaluating hypotheses in the context of experimental data, and there is clear scope to integrate microscopy-informed motility dynamics. However, determining which motility model best reflects in vivo motility is non-trivial: 3D motility is an intricate process requiring several metrics to characterize. This complicates model selection and parameterization, which must be performed against several metrics simultaneously. Here we evaluate Brownian motion, Lévy walk and several correlated random walks (CRWs) against the motility dynamics of neutrophils and lymph node T cells under inflammatory conditions by simultaneously considering cellular translational and turn speeds, and meandering indices. Heterogeneous cells exhibiting a continuum of inherent translational speeds and directionalities comprise both datasets, a feature significantly improving capture of in vivo motility when simulated as a CRW. Furthermore, translational and turn speeds are inversely correlated, and the corresponding CRW simulation again improves capture of our in vivo data, albeit to a lesser extent. In contrast, Brownian motion poorly reflects our data. Lévy walk is competitive in capturing some aspects of neutrophil motility, but T cell directional persistence only, therein highlighting the importance of evaluating models against several motility metrics simultaneously. This we achieve through novel application of multi-objective optimization, wherein each model is independently implemented and then parameterized to identify optimal trade-offs in performance against each metric. The resultant Pareto fronts of optimal

  4. Multi-objective design optimization of the transverse gaseous jet in supersonic flows

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Yang, Jun; Yan, Li

    2014-01-01

    The mixing process between the injectant and the supersonic crossflow is one of the important issues for the design of the scramjet engine, and the efficiency mixing has a great impact on the improvement of the combustion efficiency. A hovering vortex is formed between the separation region and the barrel shock wave, and this may be induced by the large negative density gradient. The separation region provides a good mixing area for the injectant and the subsonic boundary layer. In the current study, the transverse injection flow field with a freestream Mach number of 3.5 has been optimized by the non-dominated sorting genetic algorithm (NSGA II) coupled with the Kriging surrogate model; and the variance analysis method and the extreme difference analysis method have been employed to evaluate the values of the objective functions. The obtained results show that the jet-to-crossflow pressure ratio is the most important design variable for the transverse injection flow field, and the injectant molecular weight and the slot width should be considered for the mixing process between the injectant and the supersonic crossflow. There exists an optimal penetration height for the mixing efficiency, and its value is about 14.3 mm in the range considered in the current study. The larger penetration height provides a larger total pressure loss, and there must be a tradeoff between these two objection functions. In addition, this study demonstrates that the multi-objective design optimization method with the data mining technique can be used efficiently to explore the relationship between the design variables and the objective functions.

  5. Performance Improvement of a Return Channel in a Multistage Centrifugal Compressor Using Multiobjective Optimization.

    PubMed

    Nishida, Yoshifumi; Kobayashi, Hiromi; Nishida, Hideo; Sugimura, Kazuyuki

    2013-05-01

    The effect of the design parameters of a return channel on the performance of a multistage centrifugal compressor was numerically investigated, and the shape of the return channel was optimized using a multiobjective optimization method based on a genetic algorithm to improve the performance of the centrifugal compressor. The results of sensitivity analysis using Latin hypercube sampling suggested that the inlet-to-outlet area ratio of the return vane affected the total pressure loss in the return channel, and that the inlet-to-outlet radius ratio of the return vane affected the outlet flow angle from the return vane. Moreover, this analysis suggested that the number of return vanes affected both the loss and the flow angle at the outlet. As a result of optimization, the number of return vane was increased from 14 to 22 and the area ratio was decreased from 0.71 to 0.66. The radius ratio was also decreased from 2.1 to 2.0. Performance tests on a centrifugal compressor with two return channels (the original design and optimized design) were carried out using two-stage test apparatus. The measured flow distribution exhibited a swirl flow in the center region and a reversed swirl flow near the hub and shroud sides. The exit flow of the optimized design was more uniform than that of the original design. For the optimized design, the overall two-stage efficiency and pressure coefficient were increased by 0.7% and 1.5%, respectively. Moreover, the second-stage efficiency and pressure coefficient were respectively increased by 1.0% and 3.2%. It is considered that the increase in the second-stage efficiency was caused by the increased uniformity of the flow, and the rise in the pressure coefficient was caused by a decrease in the residual swirl flow. It was thus concluded from the numerical and experimental results that the optimized return channel improved the performance of the multistage centrifugal compressor. PMID:24891759

  6. Multi-Objective Hybrid Optimal Control for Multiple-Flyby Interplanetary Mission Design Using Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.

    2015-01-01

    Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multiobjective hybrid optimal control problem. The method is demonstrated on several real-world problems.

  7. Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty

    NASA Astrophysics Data System (ADS)

    Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun

    2016-03-01

    Optimal design of long term groundwater monitoring (LTGM) network often involves conflicting objectives and substantial uncertainty arising from insufficient hydraulic conductivity (K) data. This study develops a new multi-objective simulation-optimization model involving four objectives: minimizations of (i) the total sampling costs for monitoring contaminant plume, (ii) mass estimation error, (iii) the first moment estimation error, and (iv) the second moment estimation error of the contaminant plume, for LTGM network design problems. Then a new probabilistic Pareto genetic algorithm (PPGA) coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, is developed to search for the Pareto-optimal solutions to the multi-objective LTGM problems under uncertainty of the K-fields. The PPGA integrates the niched Pareto genetic algorithm with probabilistic Pareto sorting scheme to deal with the uncertainty of objectives caused by the uncertain K-field. Also, the elitist selection strategy, the operation library and the Pareto solution set filter are conducted to improve the diversity and reliability of Pareto-optimal solutions by the PPGA. Furthermore, the sampling strategy of noisy genetic algorithm is adopted to cope with the uncertainty of the K-fields and improve the computational efficiency of the PPGA. In particular, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology in finding Pareto-optimal sampling network designs of LTGM systems through a two-dimensional hypothetical example and a three-dimensional field application in Indiana (USA). Comprehensive analysis demonstrates that the proposed PPGA can find Pareto optimal solutions with low variability and high reliability and is a promising tool for optimizing multi-objective LTGM network designs under uncertainty.

  8. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    SciTech Connect

    Vrugt, Jasper A; Wohling, Thomas

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  9. A multi-objective optimization model for hub network design under uncertainty: An inexact rough-interval fuzzy approach

    NASA Astrophysics Data System (ADS)

    Niakan, F.; Vahdani, B.; Mohammadi, M.

    2015-12-01

    This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.

  10. Optimization of Processing Parameters in ECM of Die Tool Steel Using Nanofluid by Multiobjective Genetic Algorithm

    PubMed Central

    Sathiyamoorthy, V.; Sekar, T.; Elango, N.

    2015-01-01

    Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm3/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm3/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models. PMID:26167538