Science.gov

Sample records for multipass beam breakup

  1. Multipass Beam Breakup in Energy Recovery Linacs

    SciTech Connect

    Eduard Pozdeyev; Christopher Tennant; Joseph Bisognano; M Sawamura; R. Hajima; T.I. Smith

    2005-03-19

    This paper is a compilation of several presentations on multipass beam breakup (BBU) in energy recovery linacs (ERL) given at the 32nd Advanced ICFA Beam Workshop on ERLs. The goal of this paper is to summarize the progress achieved in analytical, numerical, and experimental studies of the instability and outline available and proposed BBU mitigation techniques. In this paper, a simplified theory of multipass BBU in recirculating linacs is presented. Several BBU suppression techniques and their working principles are discussed. The paper presents an overview of available BBU codes. Results of experimental studies of multipass BBU at the Jefferson Laboratory (JLab) FEL Upgrade are described.

  2. A Cure for Multipass Beam Breakup in Recirculating Linacs

    SciTech Connect

    Byung C. Yunn

    2004-07-02

    We investigate a method to control the multipass dipole beam breakup instability in a recirculating linac including energy recovery. Effectiveness of an external feedback system for such a goal is shown clearly in a simplified model. We also verify the theoretical result with a simulation study.

  3. A METHOD TO CONTROL MULTIPASS BEAM BREAKUP IN RECIRCULATING LINACS

    SciTech Connect

    Byung Yunn

    2003-05-01

    We investigate a method to control the multipass dipole beam breakup instability in a recirculating linac including energy recovery. Effectiveness of an external feedback system for such a goal is shown clearly in a simplified model. We also verify the theoretical result with a simulation study.

  4. Regenerative multi-pass beam breakup in two dimensions

    SciTech Connect

    Eduard Pozdeyev

    2004-12-01

    In this paper, a formula, describing a threshold of the regenerative multi-pass Beam Breakup (BBU) for a single dipole higher order mode with arbitrary polarization in a two-pass accelerator with a general-form, 4x4 recirculation matrix, is derived. Also a new two-dimensional BBU code is introduced. To illustrate specifics of the BBU in two dimensions, the formula is used to calculate the threshold in several cases including two-dimensional uncoupled optics, reflecting optics, and rotating optics. The analytical results are compared to results of simulation obtained with the new code. At the end of the paper, a mathematical relation between transfer matrices between cavities of the accelerating structure and recirculation matrices for each cavity, which must be satisfied in order to successfully suppress the BBU by reflection or rotation in several cavities, is presented.

  5. Multipass beam breakup in the CEBAF (Continuous Electron Beam Accelerator Facility) superconducting linac

    SciTech Connect

    Bisognano, J.J.; Krafft, G.A.

    1986-06-02

    Multipass beam breakup can severely limit current in superconducting linear accelerators due to the inherently high Q's of transverse deflecting modes of the rf cavities. The success of higher-order-mode damping in increasing threshold currents for the 4-pass CEBAF SRF linac design is investigated with computer modeling. This simulation is shown to be in agreement with theoretical analyses which have successfully described beam breakup in the Stanford superconducting, recirculating linac. Numerical evaluation of an analytic treatment by Gluckstern of multipass beam breakup with distributed cavities is also found to be consistent with the computer model. Application of the simulation to the design array of 400 five-cell CEBAF/Cornell cavities with measured higher-order-mode damping indicates that the beam breakup threshold current is at least an order of magnitude above the CEBAF design current of 200 ..mu..A.

  6. Studies of multipass beam breakup and energy recovery using the CEBAF injector linac

    SciTech Connect

    Sereno, N.S.; Cardman, L.S.; Krafft, G.A.; Sinclair, C.K.; Bisognano, J.J.

    1993-06-01

    Beam breakup (BBU) instabilities in superconducting linacs are a significant issue due to the potentially high Q values of the cavity higher order modes (HOMs). The CEBAF accelerator, which employs high CW current and 5-pass recirculation through two superconducting linacs, poses unique instability problems. An experimental investigation of multipass BBU along with energy recovery has been completed using a single recirculation through the CEBAF injector linac. Experimental results are compared with computer simulation of multipass BBU.

  7. Experimental Investigation of Multibunch, Multipass Beam Breakup in the Jefferson Laboratory Free Electron Laser Upgrade Driver

    SciTech Connect

    Christopher Tennant; David Douglas; Kevin Jordan; Nikolitsa Merminga; Eduard Pozdeyev; Haipeng Wang; Todd I. Smith; Stefan Simrock; Ivan Bazarov; Georg Hoffstaetter

    2006-03-24

    In recirculating accelerators, and in particular energy recovery linacs (ERLs), the maximum current can be limited by multipass, multibunch beam breakup (BBU), which occurs when the electron beam interacts with the higher-order modes (HOMs) of an accelerating cavity on the accelerating pass and again on the energy recovering pass. This effect is of particular concern in the design of modern high average current energy recovery accelerators utilizing superconducting RF technology. Experimental characterization and observations of the instability at the Jefferson Laboratory 10 kW Free Electron Laser (FEL) are presented. Measurements of the threshold current for the instability are made under a variety of beam conditions and compared to the predictions of several BBU simulation codes. This represents the first time in which the codes have been experimentally benchmarked. With BBU posing a threat to high current beam operation in the FEL Driver, several suppression schemes were developed.

  8. Suppression of Multipass, Multibunch Beam Breakup in Two Pass Recirculating Accelerators

    SciTech Connect

    Christopher Tennant; David Douglas; Kevin Jordan; Nikolitsa Merminga; Edvard Pozdeyev; Todd Smith

    2004-08-01

    Beam Breakup (BBU) occurs in all accelerators at sufficiently high currents. In recirculating accelerators, such as the energy recovery linacs used for high power FELs, the maximum current has historically been limited by multipass, multibunch BBU, a form that occurs when the electron beam interacts with the higher-order modes (HOMs) of an accelerating cavity on one pass and then again on the second pass. This effect is of particular concern in the designs of modern high average current energy recovery accelerators utilizing superconducting technology. In such two pass machines rotation of the betatron planes by 90a, first proposed by Smith and Rand in 1980 [1], should significantly increase the threshold current of the multibunch BBU. Using a newly developed two-dimensional tracking code, we study the effect of optical suppression techniques on the threshold current of the JLAB FEL Upgrade. We examine several optical rotator schemes and evaluate their performance in terms of the instability threshold current increase.

  9. First Observations and Suppression of Multipass, Multibunch Beam Breakup in the Jefferson Laboratory FEL Upgrade

    SciTech Connect

    Christopher D. Tennant; David R. Douglas; Kevin C. Jordan; Nikolitsa Merminga; Eduard G. Pozdeyev; Kevin B. Beard; Todd I. Smith

    2005-01-01

    It is well known that the multipass, multibunch beam breakup (BBU) instability imposes a potentially severe limitation to the average current that can be accelerated in an energy recovery linac (ERL). Simulation results for Jefferson Lab's FEL Upgrade Driver are presented which predict the occurrence of BBU below the nominal operating current of the machine. In agreement with simulation, BBU was observed and preliminary measurements to identify the higher-order mode (HOM) causing the instability are shown. In addition, measurements performed to experimentally determine the threshold current are described. Using a newly developed two-dimensional BBU simulation code, we study the effect of optical suppression techniques, first proposed by Rand and Smith in 1980 [1], on the threshold current of the FEL. Specifically we consider the effect of (1) reflecting the betatron planes about 45 degrees and (2) rotating the betatron planes by 90 degrees. In two pass recirculators, a 90 degrees rotation significantly increases the threshold current of BBU. The successful installation of a five skew-quadrupole reflector in the backleg of the FEL has been shown to be effective at suppressing the instability and comments on preliminary operational experience will be given.

  10. Calculating Beam Breakup in Superconducting Linear Accelerators

    SciTech Connect

    Geoffrey Krafft; Joseph Bisognano; Sharon Laubach

    1990-02-09

    As the intensity of a particle beam passing through a linear accelerator is raised, interactions between particles play an increasingly prominent role in determining the overall dynamics of the beam. These many body effects, known collectively as beam breakup, tend to degrade the quality of the transported beam, and hence they must be calculated to accurately predict the evolution of the beam as it traverses the accelerator. Several codes which compute various collective effects have been developed and used to simulate the dynamics of beams passing through superconducting accelerator structures. All the codes use the same basic algorithm: the beam is tracked through elements giving the focusing forces on the particles, and at the appropriate locations in the linac, localized forces are impressed on the particles which model the electromagnetic interactions. Here, a difficulty is that the usual ''Coulomb'' interaction between particles is changed by the electromagnetic environment of the accelerator. By such calculations it has been shown that recirculating linear accelerators such as the one being built at the Continuous Electron Beam Accelerator Facility (CEBAF) should remain stable against multipass beam breakup instability as long as the average current does not exceed about 20 mA, that the beam quality at CEBAF will be degraded when the single bunch charge approaches 10{sup 9} electrons, and that the beam quality of superconducting linacs that are optimized for high current transport begins to decrease at around 10{sup 10} electrons per bunch. The latter result is of interest to individuals who would use superconducting linacs as beam sources for free electron lasers or for superconducting colliders for high energy physics research.

  11. Beam breakup in superconducting recirculating linacs

    SciTech Connect

    Joseph J. Bisognano

    1988-05-01

    The performance and operational flexibility of superconducting recirculating linacs can be limited by a variety of collective phenomena which are grouped under the name beam breakup. In this note the various beam breakup phenomena found in recirculating superconducting radio frequency linacs are described and appraised relative to beam performance.

  12. Beam Breakup Effects in Dielectric Based Accelerators

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Power, J. G.; Gai, W.

    2009-01-22

    The dynamics of the beam in structure-based wakefield accelerators leads to beam stability issues not ordinarily found in other machines. In particular, the high current drive beam in an efficient wakefield accelerator loses a large fraction of its energy in the decelerator structure, resulting in physical emittance growth, increased energy spread, and the possibility of head-tail instability for an off axis beam, all of which can lead to severe reduction of beam intensity. Beam breakup (BBU) effects resulting from parasitic wakefields provide a potentially serious limitation to the performance of dielectric structure based wakefield accelerators as well. We report on experimental and numerical investigation of BBU and its mitigation. The experimental program focuses on BBU measurements at the AWA facility in a number of high gradient and high transformer ratio wakefield devices. New pickup-based beam diagnostics will provide methods for studying parasitic wakefields that are currently unavailable. The numerical part of this research is based on a particle-Green's function beam breakup code we are developing that allows rapid, efficient simulation of beam breakup effects in advanced linear accelerators. The goal of this work is to be able to compare the results of detailed experimental measurements with the accurate numerical results and to design an external FODO channel for the control of the beam in the presence of strong transverse wakefields.

  13. The Beam Break-Up Numerical Simulator

    SciTech Connect

    Travish, G.A.

    1989-11-01

    Beam Break-Up (BBU) is a severe constraint in accelerator design, limiting beam current and quality. The control of BBU has become the focus of much research in the design of the next generation collider, recirculating and linear induction accelerators and advanced accelerators. Determining the effect on BBU of modifications to cavities, the focusing elements or the beam is frequently beyond the ability of current analytic models. A computer code was written to address this problem. The Beam Break-Up Numerical Simulator (BBUNS) was designed to numerically solve for beam break-up (BBU) due to an arbitrary transverse wakefield. BBUNS was developed to be as user friendly as possible on the Cray computer series. The user is able to control all aspects of input and output by using a single command file. In addition, the wakefield is specified by the user and read in as a table. The program can model energy variations along and within the beam, focusing magnetic field profiles can be specified, and the graphical output can be tailored. In this note we discuss BBUNS, its structure and application. Included are detailed instructions, examples and a sample session of BBUNS. This program is available for distribution. 50 refs., 18 figs., 5 tabs.

  14. Beam overlapping in a multipass Ti:sapphire amplifier based on a parabolic mirror

    NASA Astrophysics Data System (ADS)

    Yang, Shengyi

    2005-06-01

    According to laser beam transporting in a multipass Ti:sapphire amplifier based on a parabolic mirror, the influential factors to induce astigmatism are analyzed. The beam waists of the laser beam transporting in the multipass amplifier are calculated by ABCD law in sagittal and tangential planes, respectively, and are compared with each other. Our analyses of these influential factors provide valuable data to optimize this design of multipass Ti:sapphire amplifier, and our experimental results of getting Gaussian beam from such a kind of amplifier confirmed our theoretical analyses.

  15. Methods for Measuring and Controlling Beam Breakup in High Current ERLS

    SciTech Connect

    Christ Tennant; Kevin Jordan; E. Pozdeyev; Robert Rimmer; Haipeng Wang; Stefen Simrock

    2004-08-01

    It is well known that high current Energy Recovery Linacs (ERL) utilizing superconducting cavities are susceptible to a regenerative type of beam breakup (BBU). The BBU instability is caused by the high impedance transverse deflecting higher-order modes (HOMs) of the cavities. This multipass, multibunch instability has been observed at Jefferson Laboratory's FEL Upgrade driver. Some preliminary measurements are presented. To combat the harmful effects of a particularly dangerous mode, two methods of directly damping HOMs through the cavity HOM couplers were demonstrated. In an effort to suppress the BBU in the presence of multiple, dangerous HOMs, a conceptual design for an injector beam-based transverse feedback system has been developed. By implementing beam-based feedback, the threshold for instability can be increased substantially.

  16. Tools to Predict Beam Breakup in Recirculating Linacs

    SciTech Connect

    Kevin Beard; Nikolitsa Merminga; Byung Yunn

    2003-05-01

    An important limitation on the maximum beam current in a recirculating linac is due to beam breakup caused by higher order modes (HOM) excited in the RF cavities. A HOM delivers a transverse kick to a beam bunch, the bunch on the next pass can then drive the HOM and cause it to grow until the beam is lost. Two codes, MATBBU1 and TDBBU2, have been written to estimate the threshold current for a set of HOMs and accelerator optics. The relative merits and limitations of each is discussed in detail.

  17. Beam breakup calculations for the second axis of DARHT

    SciTech Connect

    Fawley, William M.; Chen, Y.-J.; Houck, T.L.

    1999-08-20

    The accelerator for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility will produce a 4-kA, 20-MeV, 2-{micro}s output electron beam with a design goal of less than 1000 {pi} mm-mrad normalized transverse emittance and less than 0.5-mm beam centroid motion. In order to meet this goal, the beam transport must have excellent optics and the beam breakup instability (BBU) must be limited in growth. Using a number of simulation codes such as AMOS and BREAKUP, we have modeled the transverse impedances of the DARHT-II accelerator cells and the electron beam response to different transverse excitations such as injector RF noise, magnetic dipole fields arising from the 90-degree bend between the cathode stalk and insulator column, and downstream solenoid alignment errors. The very low Q ({approx}2) predicted for the most important TM dipole modes has prompted us to extend the BREAKUP code to be able to use the dipole wakefields calculated by AMOS in addition to the most usual discrete frequency BBU mode model. We present results for the predicted BBU growth and the empirical sensitivity to various machine parameters.

  18. Radial electron-beam-breakup transit-time oscillator

    SciTech Connect

    Mostrom, M.A.; Kwan, T.J.T.

    1995-01-01

    A new radially-driven electron-beam-breakup transit-time oscillator has been investigated analytically and through computer simulation as a compact low-impedance high-power microwave generator. In a 1MV, 50kA device 35cm in radius and 15cm long, with no external magnetic field, 5GW of extracted power and a growth rate of 0.26/ns have been observed. Theoretical maximum efficiencies are several times higher.

  19. Cumulative Beam Breakup in Linear Accelerators with Arbitrary Beam Current Profile

    SciTech Connect

    Jean Delayen

    2003-06-01

    An analytical formalism for the solution of cumulative beam breakup in linear accelerators with arbitrary time dependence of beam current is presented, and a closed-form expression for the time and position dependence of the transverse displacement is obtained. It is applied to the behavior of single bunches and to the steady state and transient behavior of dc beams and beams composed of point-like and finite length bunches. This formalism is also applied to the problem of cumulative beam breakup in the presence of random displacement of cavities and focusing elements, and a general solution is presented.

  20. Cumulative beam breakup in radio-frequency linacs

    SciTech Connect

    Bohn, C.L.; Delayen, J.R.

    1990-01-01

    An analytic model of cumulative beam breakup has been developed which is applicable to both low-velocity ion and high-energy electron linear accelerators. The model includes arbitrary velocity, acceleration, focusing, initial conditions, beam-cavity resonances, and variable cavity geometry and spacing along the accelerator. The model involves a continuum approximation'' in which the transverse kicks in momentum imparted by the cavities are smoothed over the length of the linac. The resulting equation of transverse motion is solved via the WKBJ method. Specific examples are discussed which correspond to limiting cases of the solution. 16 refs.

  1. Beam Breakup Studies for New Cryo-Unit

    SciTech Connect

    S. Ahmed, I. Shin, R. Kazimi, F. Marhauser ,F. Hannon ,G. Krafft ,B. Yunn ,A. Hofler

    2011-03-01

    In this paper, we report the numerical simulations of cumulative beam breakup studies for a new cryo-unit for booster design at Jefferson lab. The system consists of two 1-cell and one 7-cell superconducting RF cavities. Combining two 1-cell into a 2-cell together with a 7-cell is also an option. Simulations have been performed using the 2-dimensional time-domain code. The 1-cell+1-cell+7-cell combination confirms beam stability, however, the arrangement 2-cell+7-cell shows instability.

  2. Radial electron-beam-breakup transit-time oscillator

    DOEpatents

    Kwan, Thomas J. T.; Mostrom, Michael A.

    1998-01-01

    A radial electron-beam-breakup transit-time oscillator (RBTO) provides a compact high power microwave generator. The RBTO includes a coaxial vacuum transmission line having an outer conductor and an inner conductor. The inner conductor defines an annular cavity with dimensions effective to support an electromagnetic field in a TEM.sub.00m mode. A radial field emission cathode is formed on the outer conductor for providing an electron beam directed toward the annular cavity electrode. Microwave energy is then extracted from the annular cavity electrode.

  3. Beam Dynamics Simulation Platform and Studies of Beam Breakup in Dielectric Wakefield Structures

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Gai, W.

    2010-11-04

    A particle-Green's function beam dynamics code (BBU-3000) to study beam breakup effects is incorporated into a parallel computing framework based on the Boinc software environment, and supports both task farming on a heterogeneous cluster and local grid computing. User access to the platform is through a web browser.

  4. Beam Dynamics Simulation Platform and Studies of Beam Breakup in Dielectric Wakefield Structures

    NASA Astrophysics Data System (ADS)

    Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Gai, W.

    2010-11-01

    A particle-Green's function beam dynamics code (BBU-3000) to study beam breakup effects is incorporated into a parallel computing framework based on the Boinc software environment, and supports both task farming on a heterogeneous cluster and local grid computing. User access to the platform is through a web browser.

  5. Suppression of parasitics and pencil beams in the high-gain National Ignition Facility multipass preamplifier

    NASA Astrophysics Data System (ADS)

    Moran, Bryan D.; Dane, C. Brent; Crane, John K.; Martinez, Mikael D.; Penko, Frank A.; Hackel, Lloyd A.

    1998-06-01

    The multi-pass amplifier (MPA) is the last subsystem of the NIF preamplifier, which feeds the main amplification stages of the NIF beamline. The MPA is based on a flashlamp pumped 5-cm diameter by 48 cm long Nd:glass rod amplifier operated at a single pass small signal gain of 15 to 17. The MPA is an off-axis multi-pass image relayed system, which uses two gain isolating image relaying telescopes and passive polarization switching using a Faraday rotator to output the pulse. We describe the MPA system, techniques used to avoid parasitic oscillation at high gain, and suppression of pencil beams. The system is used to generate a well- conditioned 22-joule output from one millijoule input. The output pulse requirements include 22 joules in a square, flat topped beam, and with near field spatial contrast of <5% RMS, square pulse temporal distortion <2.3, and an RMS energy stability of <3%. All of these requirements have been exceeded. The largest impediment to successful operation was overcoming parasitic oscillation. Sources of oscillation could be generally divided into two categories: those due to birefringence, which compromised the polarization contrast of the system; and those due to unwanted reflections from optical surfaces. Baffling in the vacuum spatial filters helps to control the system sensitivity to unwanted stray reflections from flat AR coated surfaces. Stress birefringence in the rather large glass volume of the rod (942 cm3) and the four vacuum loaded lenses are significant, as each of these elements is double passed between each polarizing beam splitter pass. This lowers the polarization contrast of the system, which can prevent the system from operating at sufficient gain. Careful analysis and layout of the MPA architecture has allowed us to address the challenges posed by a system small signal gain of approximately equals 33000 and with an output pulse of as high as 27 joules.

  6. Beam break-up estimates for the ERL at BNL

    SciTech Connect

    Ben-Zvi, I.; Calaga, R.; Hahn, H.; Hammons, L.; Johnson, E.; Kayran, D.; Litvinenko, V.; Kewisch, J.; Xu, W.

    2010-05-23

    A prototype Ampere-class superconducting energy recovery linac (ERL) is under advanced construction at BNL. The ERL facility is comprised of a five-cell SC Linac plus a half-cell SC photo-injector RF electron gun, both operating at 703.75 MHz. The facility is designed for either a high-current mode of operation up to 0.5 A at 703.75 MHz or a high-bunch-charge mode of 5 nC at 10 MHz bunch frequency. The R&D facility serves a test bed for an envisioned electron-hadron collider, eRHIC. The high-current, high-charge operating parameters make effective higher-order-mode (HOM) damping mandatory, and requires the determination of HOM tolerances for a cavity upgrade. The niobium cavity has been tested at superconducting temperatures and has provided measured quality factors (Q) for a large number of modes. These numbers were used for the estimate of the beam breakup instability (BBU). The facility will be assembled with a highly flexible lattice covering a vast operational parameter space for verification of the estimates and to serve as a test bed for the concepts directed at future projects.

  7. Study of the beam breakup mode in linear induction accelerators for heavy ions

    SciTech Connect

    Chattopadhyay, S.; Faltens, A.; Smith, L.

    1981-03-01

    A simple theoretical study and numerical estimate is presented for the transverse amplitude growth of a nonrelativistic heavy ion beam in an induction linac, as envisaged for use in commercial power plants, due to the nonregenerative coherent beam breakup mode. An equivalent electrical circuit has been used to represent the accelerating induction modules. Our calculation shows that for the parameters of interest, the beam breakup amplitude for a heavy ion beam grows extremely slowly in the time scales of interest, to magnitudes insignificant for transport purposes. It is concluded that the coherent beam breakup mode does not pose any serious threat to the stability of a high current (kA) heavy ion beam in an induction linac.

  8. Sparking limits, cavity loading, and beam breakup instability associated with high-current rf linacs

    SciTech Connect

    Faehl, R.J.; Lemons, D.S.; Thode, L.E.

    1982-01-01

    The limitations on high-current rf linacs due to gap sparking, cavity loading, and the beam breakup instability are studied. It appears possible to achieve cavity accelerating gradients as high as 35 MV/m without sparking. Furthermore, a linear analysis, as well as self-consistent particle simulations of a multipulsed 10 kA beam, indicated that only a negligible small fraction of energy is radiated into nonfundamental cavity modes. Finally, the beam breakup instability is analyzed and found to be able to magnify initial radial perturbations by a factor of no more than about 20 during the beam transit time through a 1 GeV accelerator.

  9. Correcting the beam centroid motion in an induction accelerator and reducing the beam breakup instability

    NASA Astrophysics Data System (ADS)

    Coleman, J. E.; Ekdahl, C. A.; Moir, D. C.; Sullivan, G. W.; Crawford, M. T.

    2014-09-01

    Axial beam centroid and beam breakup (BBU) measurements were conducted on an 80 ns FWHM, intense relativistic electron bunch with an injected energy of 3.8 MV and current of 2.9 kA. The intense relativistic electron bunch is accelerated and transported through a nested solenoid and ferrite induction core lattice consisting of 64 elements, exiting the accelerator with a nominal energy of 19.8 MeV. The principal objective of these experiments is to quantify the coupling of the beam centroid motion to the BBU instability and validate the theory of this coupling for the first time. Time resolved centroid measurements indicate a reduction in the BBU amplitude, ⟨ξ⟩, of 19% and a reduction in the BBU growth rate (Γ) of 4% by reducing beam centroid misalignments ˜50% throughout the accelerator. An investigation into the contribution of the misaligned elements is made. An alignment algorithm is presented in addition to a qualitative comparison of experimental and calculated results which include axial beam centroid oscillations, BBU amplitude, and growth with different dipole steering.

  10. Cumulative beam breakup in linear accelerators with time-dependent parameters

    SciTech Connect

    Jean Delayen

    2004-10-01

    A formalism presented in a previous paper for the analysis of cumulative beam breakup (BBU) with arbitrary time dependence of the beam current and with misalignment of the cavities and focusing elements [J. R. Delayen, Phys. Rev. ST Accel. Beams 6, 084402 (2003)] is extended to include time dependence of the focusing and coupling between the beam and the dipole modes. Such time dependence, which could result from an energy chirp imposed on the beam or from rf focusing, is known to be effective in reducing BBU-induced instabilities and emittance growth. The analytical results are presented and applied to practical accelerator configurations and compared to numerical simulations.

  11. Design and optimization of a highly efficient optical multipass system for γ-ray beam production from electron laser beam Compton scattering

    NASA Astrophysics Data System (ADS)

    Dupraz, K.; Cassou, K.; Delerue, N.; Fichot, P.; Martens, A.; Stocchi, A.; Variola, A.; Zomer, F.; Courjaud, A.; Mottay, E.; Druon, F.; Gatti, G.; Ghigo, A.; Hovsepian, T.; Riou, J. Y.; Wang, F.; Mueller, A. C.; Palumbo, L.; Serafini, L.; Tomassini, P.

    2014-03-01

    A new kind of nonresonant optical recirculator, dedicated to the production of γ rays by means of Compton backscattering, is described. This novel instrument, inspired by optical multipass systems, has its design focused on high flux and very small spectral bandwidth of the γ-ray beam. It has been developed to fulfill the project specifications of the European Extreme Light Infrastructure "Nuclear Pillar," i.e., the Gamma Beam System. Our system allows a single high power laser pulse to recirculate 32 times synchronized on the radio frequency driving accelerating cavities for the electron beam. Namely, the polarization of the laser beam and crossing angle between laser and electrons are preserved all along the 32 passes. Moreover, optical aberrations are kept at a negligible level. The general tools developed for designing, optimizing, and aligning the system are described. A detailed simulation demonstrates the high efficiency of the device.

  12. Comparison of axial and radial electron beam-breakup transit-time oscillators

    SciTech Connect

    Kwan, T.J.T.; Mostrom, M.A.

    1995-08-01

    Comparison of two configurations of a novel high-power microwave generator is presented in this article. Coupling the beam-breakup instability with the transit-time effect of the electron beam in the cavity, rapid energy exchange between the electrons and cavity modes can occur. The dominant cavity modes in the axial and radial configurations are different but their growth rates are comparable. We found that the radial configuration can have a beam impedance less than 10 {Omega} and therefore more suitable for low-voltage and high power operation. Good agreements have been obtained between linear theory and simulation for both configurations.

  13. A Beam Breakup Instability in a Recirculating Linac Caused by a Quadrupole Mode

    SciTech Connect

    Byung Yunn

    2003-05-01

    Following the successful demonstration of energy recovery in a recirculating linac with superconducting cavities at the Jefferson Lab FEL[1], several ambitious electron accelerator projects have recently been proposed or are in study for either a light source or a collider based on this novel technology. These projects all intend to utilize a high quality linac electron beam generated with an average beam current typically in the range of 100's of mA. As is well known, a recirculating linac suffers from a beam breakup instability of a regenerative type caused by a Higher Order Mode (HOM) in an accelerating cavity, which can have a very high Q (quality factor) when superconducting. The instability can degrade the beam quality significantly. We investigate one such beam breakup instability in a recirculating linac that could arise as a result of high Q quadrupole modes excited in the cavity. In a simple model we derive a relation which allows one to deduce the upper limit on tolerable Q ....

  14. Characterization of a tunable quasi-monoenergetic neutron beam from deuteron breakup

    NASA Astrophysics Data System (ADS)

    Bleuel, D. L.; McMahan, M. A.; Ahle, L.; Barquest, B. R.; Cerny, J.; Heilbronn, L. H.; Jewett, C. C.

    2007-08-01

    A neutron irradiation facility is being developed at the 88-inch cyclotron at Lawrence Berkeley National Laboratory for the purposes of measuring neutron reaction cross sections on radioactive targets and for radiation effects testing. Applications are of benefit to stockpile stewardship, nuclear astrophysics, next generation advanced fuel reactors and cosmic radiation biology and electronics in space. The facility will supply a tunable, quasi-monoenergetic neutron beam in the range of 10-30 MeV or a white neutron source, produced by deuteron breakup reactions on thin and thick targets, respectively. Because the deuteron breakup reaction has not been well studied at intermediate incident deuteron energies, above the target Coulomb barrier and below 56 MeV, a detailed characterization was necessary of the neutron spectra produced by thin targets. Neutron time-of-flight (TOF) methods have been used to measure the neutron spectra produced on thin targets of low-Z (titanium) and high-Z (tantalum) materials at incident deuteron energies of 20 MeV and 29 MeV at 0°. Breakup neutrons at both energies from low-Z targets appear to peak at roughly half of the available kinetic energy, while neutrons from high-Z interactions peak somewhat lower in energy, owing to the increased proton energy due to breakup within the Coulomb field. Furthermore, neutron spectra appear narrower for high-Z targets. These centroids are consistent with recent preliminary proton energy measurements using silicon telescope detectors conducted at LBNL, though there is a notable discrepancy with spectral widths. Prospects for producing a tunable, quasi-monoenergetic neutron facility of 106-108 n/cm2/s at LBNL are promising.

  15. Recirculating Beam Breakup Study for the 12 GeV Upgrade at Jefferson Lab

    SciTech Connect

    Ilkyoung Shin, Todd Satogata, Shahid Ahmed, Slawomir Bogacz, Mircea Stirbet, Haipeng Wang, Yan Wang, Byung Yunn, Ryan Bodenstein

    2012-07-01

    Two new high gradient C100 cryomodules with a total of 16 new cavities were installed at the end of the CEBAF south linac during the 2011 summer shutdown as part of the 12-GeV upgrade project at Jefferson Lab. We surveyed the higher order modes (HOMs) of these cavities in the Jefferson Lab cryomodule test facility and CEBAF tunnel. We then studied recirculating beam breakup (BBU) in November 2011 to evaluate CEBAF low energy performance, measure transport optics, and evaluate BBU thresholds due to these HOMs. This paper discusses the experiment setup, cavity measurements, machine setup, optics measurements, and lower bounds on BBU thresholds by new cryomodules.

  16. Population of Metastable States in Stable Hafnium and Ytterbium Nuclei via Beam Break-up

    SciTech Connect

    Malwela, T.; Ntshangase, S.S.; Shirinda, O.; Bark, R.A.; Gueorguieva, E.; Lawrie, J.J.; Mullins, S.M.; Murray, S.H.T.; Sharpey-Schafer, J.F.; Gal, J.; Kalinka, G.; Krasznahorkay, A.; Molnar, J.; Nyako, B.M.; Timar, J.; Zolnai, L.; Hlatshwayo, T.; Juhasz, K.; Komati, F.S.; Scheurer, J.N.

    2005-11-21

    The ''Chessboard'' section of the DIAMANT charged-particle array has been coupled with the AFRODITE {gamma}-ray spectrometer at the iThemba Laboratory for Accelerator Based Sciences. Charged-particle-{gamma}-ray coincidence data were recorded during the bombardment of a 176Yb target with a 13C beam at an energy of 90 MeV. The purpose of the investigation was to study the population of metastable states in hafium nuclei via incomplete fusion reactions in which the beam breaks up due to its {alpha}-cluster character. Of note was the observation of the band based on the K{pi} = 16+, T1/2 = 31 year isomer in 178Hf to its 19+ member. Also, decays from the high-K isomeric states in 174Yb and 176Yb. which were populated via 3{alpha}xn channels, indicative of complete break-up of the 13C beam.

  17. Initial measurements of beam breakup instability in the advanced test accelerator

    SciTech Connect

    Chong, Y.P.; Caporaso, G.J.; Struve, K.W.

    1985-05-13

    This paper reports the measurements of beam breakup (BBU) instability performed on the Advanced Test Accelerator (ATA) up to the end of February, 1984. The main objective was to produce a high current usable electron beam at the ATA output. A well-known instability is BBU which arises from the accelerator cavity modes interacting with the electron beam. The dominant mode is TM/sub 130/ at a frequency of approximately 785 MHz. It couples most strongly to the beam motion and has been observed to grow in the Experimental Test Accelerator (ETA) which has only eight accelerator cavities. ATA has one hundred and seventy cavities and, therefore, the growth of BBU is expected to be more severe. In this paper, BBU measurements are reported for ATA with beam currents of 4 to 7 kA. Analysis showed that the growth of the instability with propagation distance was as expected for the lower currents. However, the high-current data showed an apparent higher growth rate than expected. An explanation for this anomaly is given in terms of a ''corkscrew'' excitation. The injector BBU noise level for a field emission brush cathode was found to be an order of magnitude lower than for a cold plasma discharge cathode. These injector rf amplitudes agree very well with values obtained using the method of differenced B sub solar loops.

  18. Increasing the intensity of an induction accelerator and reduction of the beam breakup instability

    NASA Astrophysics Data System (ADS)

    Coleman, J. E.; Moir, D. C.; Ekdahl, C. A.; Johnson, J. B.; McCuistian, B. T.; Sullivan, G. W.; Crawford, M. T.

    2014-03-01

    A 7 cm cathode has been deployed for use on a 3.8 MV, 80 ns (FWHM) Blumlein, to increase the extracted electron current from the nominal 1.7 to 2.9 kA. The intense relativistic electron bunch is accelerated and transported through a nested solenoid and ferrite induction core lattice consisting of 64 elements, exiting the accelerator with a nominal energy of 19.8 MeV. The principal objective of these experiments is to quantify the space-charge limitations on the beam quality, its coupling with the beam breakup (BBU) instability, and provide an independent validation of the BBU theory in a higher current regime, I >2 kA. Time resolved centroid measurements indicate a reduction in BBU >10× with simply a 50% increase in the average B-field used to transport the beam through the accelerator. A qualitative comparison of experimental and calculated results are presented, which include time resolved current density distributions, radial BBU amplitude relative to the calculated beam envelope, and frequency analyzed BBU amplitude with different accelerator lattice tunes.

  19. Sequential three-body breakup of a CO 2 + beam

    NASA Astrophysics Data System (ADS)

    Rajput, Jyoti; Ablikim, U.; Zohrabi, M.; Jochim, Bethany; Berry, Ben; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2016-05-01

    The dissociative double ionization of a CO2+beam leading to the three-body fragmentation channel C+ + O+ + O+ can have its origin in either a sequential or concerted process. In case of the sequential mechanism, the first step is a two-body breakup into CO2+ + O+, followed by a second step wherein CO2+ further fragments into C+ + O+. The rotation of the CO2+ formed during the first step has been used to discriminate between the sequential and non-sequential mechanisms in experiments which employ multi-coincidence momentum imaging techniques for detecting recoil fragments. We propose a novel way to look at this discriminating feature in terms of the angle of rotation of the CO2+ intermediate. We will also discuss the implications on the measured momentum distribution of detecting indistinguishable fragments in a coincidence measurement. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. BJ was also supported by DOE-SCGF (DE-AC05-06OR23100).

  20. Numerical analysis and experimental investigation of beam quality of SBS compressor with multipass Nd:YAG amplifier

    NASA Astrophysics Data System (ADS)

    Buzelis, Rytis; Dement'ev, Alexander S.; Kosenko, E.; Murauskas, E.; Ciegis, R.; Kairyte, G.

    1996-04-01

    The results of the numerical simulation of the laser beam quality changes after propagation through the passive and active optical systems with the linear and nonlinear aberrations are presented. The new algorithm for the calculation of the phase conjugation by steady-state SBS is developed. It is found that the parameter M2 of the Stokes beam in the saturation regime is often nearly the same as that of the pump beam. The generation of short (approximately 1.5 nsec) pulses with energies exceeding 4 mJ has been obtained using passive Q-switching of the short (approximately 10 cm) resonator of Nd:YAG laser by GSGG:Cr,Nd crystals. After SBS-compression the pulses with approximately 120 psec duration and with energies of approximately 1 mJ have been obtained. Four-pass Nd:YAG amplifier amplifies the pulses to the energies approximately 500 mJ with the duration of pulses of approximately 170 psec. Experimentally obtained results are in good agreement with the mathematical modelling of short pulse generation and amplification.

  1. Improved multipass optics for diode laser spectroscopy

    SciTech Connect

    Hu, T.A.; Chappell, E.L.; Munley, J.T.; Sharpe, S.W. )

    1993-12-01

    Feedback between optical elements can be a major source of noise when trying to attain high sensitivity in infrared absorption experiments. We find that a conventional White-cell optical arrangement introduces etaloning fringes that modulate the peak-to-peak amplitude of our signals by 1 part in 16 666, a fractional change of 6[times]10[sup [minus]5]. Although relatively small, this noise'' is systematic and adds coherently with averaging, obscuring interesting absorption features. An easily constructed multipass optical system suited for performing high-resolution infrared spectroscopy in molecular beams is described. The design is based on a variation of the White cell and has been optimized for use with lead salt diode lasers. One of the key components in the improved design is the addition of an oscillating mirror for spoiling optical feedback generated by laser scatter and/or poor mode coupling of the laser to the multipass optics.

  2. Laser multipass system with interior cell configuration

    SciTech Connect

    Borysow, Jacek; Kostinski, Alexander; Fink, Manfred

    2011-10-20

    We ask whether it is possible to restore a multipass system alignment after a gas cell is inserted in the central region. Indeed, it is possible, and we report on a remarkably simple rearrangement of a laser multipass system, composed of two spherical mirrors and a gas cell with flat windows in the middle. For example, for a window of thickness d and refractive index of n, adjusting the mirror separation by approx. 2d(1-1n) is sufficient to preserve the laser beam alignment and tracing. This expression is in agreement with ray-tracing computations and our laboratory experiment. Insofar as our solution corrects for spherical aberrations, it may also find applications in microscopy.

  3. Laser multipass system with interior cell configuration.

    PubMed

    Borysow, Jacek; Kostinski, Alexander; Fink, Manfred

    2011-10-20

    We ask whether it is possible to restore a multipass system alignment after a gas cell is inserted in the central region. Indeed, it is possible, and we report on a remarkably simple rearrangement of a laser multipass system, composed of two spherical mirrors and a gas cell with flat windows in the middle. For example, for a window of thickness d and refractive index of n, adjusting the mirror separation by ≈2d(1-1/n) is sufficient to preserve the laser beam alignment and tracing. This expression is in agreement with ray-tracing computations and our laboratory experiment. Insofar as our solution corrects for spherical aberrations, it may also find applications in microscopy. PMID:22015409

  4. Multipass optical parametric amplifier

    SciTech Connect

    Jeys, T.H.

    1996-08-01

    A compact, low-threshold, multipass optical parametric amplifier has been developed for the conversion of short-pulse (360-ps) 1064-nm Nd:YAG laser radiation into eye-safe 1572-nm radiation for laser ranging and radar applications. The amplifier had a threshold pump power of as low as 45{mu}J, and at three to four times this threshold pump power the amplifier converted 30{percent} of the input 1064-nm radiation into 1572-nm output radiation. {copyright} {ital 1996 Optical Society of America.}

  5. The Breakup

    ERIC Educational Resources Information Center

    Lum, Lydia

    2011-01-01

    This article reports on the breakup between Texas Southmost College (TSC) and the upper-division University of Texas at Brownsville (UTB). The split marks the official end of an unusual 20-year partnership between TSC and the University of Texas System that, for the first time, ushered four-year university education into overwhelmingly Latino…

  6. Experimental study of multipass copper vapour laser amplifiers

    SciTech Connect

    Karpukhin, Vyacheslav T; Malikov, Mikhail M

    2008-12-31

    Repetitively pulsed multipass copper vapour amplifiers are studied experimentally. A considerable increase in the peak power of laser pulses was achieved by using a special scheme of the amplifier. It is found that the main reasons preventing an increase in the peak power during many passages of the beam are the competitive development of lasing from spontaneous seeds in a parasitic resonator formed by the fold mirrors of a multipass amplifier, a decrease in the amplification during the last passages, and an increase in the pulse width at the amplifier output. (lasers. amplifiers)

  7. Multipass Steering Protocols at Jefferson Lab

    SciTech Connect

    Ryan Bodenstein; Michael Tiefenback

    2007-06-22

    The CEBAF recirculating accelerator consists of two CW superconducting RF linacs, through which an electron beam is accelerated for up to 5 passes. Focusing and steering elements affect each pass differently, requiring a multipass steering protocol to correct the orbits. Perturbations include lens misalignments (including long-term ground motion), BPM offsets, and focusing and steering from RF fields inside the cavities. A previous treatment of this problem assumed all perturbations were localized at the quadrupoles and the absence of x-y coupling. Having analyzed the problem and characterized the solutions, we developed an empirical iterative protocol to compare against previous results in the presence of skew fields and cross-plane coupling. We plan to characterize static and acceleration-dependent components of the beam line perturbations to allow systematic and rapid configuration of the accelerator at different linac energy gains.

  8. Fiber optic coupled multipass gas minicell, design assembly thereof

    DOEpatents

    Bond, Tiziana C.; Bora, Mihail; Engel, Michael A.; McCarrick, James F.; Moran, Bryan D.

    2016-01-12

    A method directs a gas of interest into a minicell and uses an emitting laser to produce laser emission light that is directed into the minicell and onto the gas of interest. The laser emission light is reflected within the cell to make multipasses through the gas of interest. After the multipasses through the gas of interest the laser light is analyzed to produces gas spectroscopy data. The minicell receives the gas of interest and a transmitting optic connected to the minicell that directs a beam into the minicell and onto the gas of interest. A receiving optic connected to the minicell receives the beam from the gas of interest and directs the beam to an analyzer that produces gas spectroscopy data.

  9. Off-axis multipass amplifier as a large aperture driver stage for fusion lasers.

    PubMed

    Murray, J E; Downs, D C; Hunt, J T; Hermes, G L; Warren, W E

    1981-03-01

    A multipass amplifier configuration is described which has potential as a large aperture, high gain driver stage for fusion laser systems. We avoid the present limitations of large aperture switches by using an off-angle geometry that does not require an optical switch. The saturated gain characteristics of this multipass amplifier are optimized numerically. Three potential problems are investigated experimentally, self-lasing, output beam quality, and amplified spontaneous emission output. The results indicate comparable cost for comparable performance to a linear chain, with some operational advantage for the multipass driver stage. PMID:20309212

  10. Optics correction for the multi-pass FFAG ERL machine eRHIC

    SciTech Connect

    Liu, C.; Brooks, S.; Litvinenko, V.; Minty, M.; Ptitsyn, V.; Trbojevic, D.

    2015-05-03

    Gradient errors in the multi-pass Fixed Field Alternating Gradient (FFAG) Energy Recovery Linac (ERL) machine, eRHIC, distort the beam orbit and therefore cause emittance increase. The localization and correction of gradient errors are essential for an effective orbit correction and emittance preservation. In this report, the methodology and simulation of optics correction for the multi-pass FFAG ERL machine eRHIC will be presented.

  11. Compact multipass optical cell for laser spectroscopy.

    PubMed

    Tuzson, Béla; Mangold, Markus; Looser, Herbert; Manninen, Albert; Emmenegger, Lukas

    2013-02-01

    A multipass cell (MPC) design for laser absorption spectroscopy is presented. The development of this new type of optical cell was driven by stringent criteria for compactness, robustness, low volume, and ease of use in optical systems. A single piece of reflective toroidal surface forms a near-concentric cavity with a volume of merely 40 cm(3). Contrary to traditional MPCs, this design allows for flexible path-length adjustments by simply changing the aiming angle of the laser beam at the entrance window. Two effective optical path lengths of 2.2 and 4.1 m were chosen to demonstrate the cell's suitability for high-precision isotope ratio measurements of CO(2) at 1% and ambient mixing ratio levels. PMID:23381403

  12. Thin-disk laser multi-pass amplifier

    NASA Astrophysics Data System (ADS)

    Schuhmann, K.; Ahmed, M. A.; Antognini, A.; Graf, T.; Hänsch, T. W.; Kirch, K.; Kottmann, F.; Pohl, R.; Taqqu, D.; Voss, A.; Weichelt, B.

    2015-02-01

    In the context of the Lamb shift measurement in muonic helium [1,2,3,4] we developed a thin-disk laser composed of a Q-switched oscillator and a multi-pass amplifier delivering pulses of 150 mJ at a pulse duration of 100 ns. Its peculiar requirements are stochastic trigger and short delay time (< 500 ns) between trigger and optical output [5]. The concept of the thin-disk laser allows for energy and power scaling with high efficiency. However the single pass gain is small (about 1.2). Hence a multi-pass scheme with precise mode matching for large beam waists (w = 2 mm) is required. Instead of using the standard 4f design, we have developed a multi-pass amplifier with a beam propagation insensitive to thermal lens effects and misalignments. The beam propagation is equivalent to multiple roundtrips in an optically stable resonator. To support the propagation we used an array of 2 x 8 individually adjustable plane mirrors. Astigmatism has been minimized by a compact mirror placement. Precise alignment of the kinematic array was realized using our own mirror mount design. A small signal gain of 5 for 8 passes at a pump power of 400 W was reached. The laser was running for more than 3 months without the need of realignment. Pointing stability studies is also reported here.

  13. Transversely Excited Multipass Photoacoustic Cell Using Electromechanical Film as Microphone

    PubMed Central

    Saarela, Jaakko; Sand, Johan; Sorvajärvi, Tapio; Manninen, Albert; Toivonen, Juha

    2010-01-01

    A novel multipass photoacoustic cell with five stacked electromechanical films as a microphone has been constructed, tested and characterized. The photoacoustic cell is an open rectangular structure with two steel plates facing each other. The longitudinal acoustic resonances are excited transversely in an optical multipass configuration. A detection limit of 22 ppb (10−9) was achieved for flowing NO2 in N2 at normal pressure by using the maximum of 70 laser beams between the resonator plates. The corresponding minimum detectable absorption and the normalized noise-equivalent absorption coefficients were 2.2 × 10−7 cm−1 and 3.2 × 10−9 cm−1WHz−1/2, respectively. PMID:22219662

  14. Surviving Atmospheric Spacecraft Breakup

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; Conley, Catharine A.

    2003-01-01

    In essence, to survival a spacecraft breakup an animal must not experience a lethal event. Much as with surviving aircraft breakup, dissipation of lethal forces via breakup of the craft around the organism is likely to greatly increase the odds of survival. As spacecraft can travel higher and faster than aircraft, it is often assumed that spacecraft breakup is not a survivable event. Similarly, the belief that aircraft breakup or crashes are not survivable events is still prevalent in the general population. As those of us involved in search and rescue know, it is possible to survive both aircraft breakup and crashes. Here we make the first report of an animal, C. elegans, surviving atmospheric breakup of the spacecraft supporting it and discuss both the lethal events these animals had to escape and the implications implied for search and rescue following spacecraft breakup.

  15. Satellite Breakup Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Leleux, Darrin P.; Smith, Jason T.

    2006-01-01

    Many satellite breakups occur as a result of an explosion of stored energy on-board spacecraft or rocket-bodies. These breakups generate a cloud of tens or possibly hundreds of thousands of debris fragments which may pose a transient elevated threat to spaceflight crews and vehicles. Satellite breakups pose a unique threat because the majority of the debris fragments are too small to be tracked from the ground. The United States Human Spaceflight Program is currently implementing a risk mitigation strategy that includes modeling breakup events, establishing action thresholds, and prescribing corresponding mitigation actions in response to satellite breakups.

  16. Surviving atmospheric spacecraft breakup

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nathaniel J.; McLamb, William

    2005-01-01

    Spacecraft travel higher and faster than aircraft, making breakup potentially less survivable. As with aircraft breakup, the dissipation of lethal forces via spacecraft breakup around an organism is likely to greatly increase the odds of survival. By employing a knowledge of space and aviation physiology, comparative physiology, and search-and-rescue techniques, we were able to correctly predict and execute the recovery of live animals following the breakup of the space shuttle Columbia. In this study, we make what is, to our knowledge, the first report of an animal, Caenorhabditis elegans, surviving the atmospheric breakup of the spacecraft that was supporting it and discuss both the lethal events these animals had to escape and the implications for search and rescue following spacecraft breakup.

  17. Deghosting in multipassive acoustic sensors

    NASA Astrophysics Data System (ADS)

    Yang, Rong; Ng, Gee Wah

    2004-04-01

    In this paper, we describe a deghosting algorithm in multiple passive acoustic sensor environment. In a passive acoustic sensor system, a target is detected by its bearing to the sensor, and the target location is obtained from triangulation of bearings on different sensors. However, in multi-passive sensor and multi-target scenario, triangulation is difficult. This is because multi-target triangulation results in a number of ghost targets being generated. In order to remove the triangulating ghosts, the deghosting technique is essential to distinguish the true targets from the ghost targets. We suggest a deghosting algorithm by applying Bayes" theorem and the likelihood function on the acoustic signals. A probability related to acoustic signal on each triangulating point is recursively computed and updated at every time stamp or frame. The triangulating point will be classified as a true target, once its probability exceeds a predefined threshold. Furthermore, acoustic signal has propagation delay. The situation yields the triangulating location biased to the bearing of the nearest sensor. In our algorithm, the propagation delay problem is solved by matching the histories of bearing tracks, and yields the unbiased location that has similar emitting times for the sensors contributing to the triangulation point. The emitting times can be derived from detecting times and propagation delays. Performance result is presented on simulation data.

  18. Testing a new multipass laser architecture on beamlet

    SciTech Connect

    Vann, C.S.; Laniesse, F.; Patton, H.G.

    1996-06-01

    The authors completed proof-of-principle tests on Beamlet for a new multipass laser architecture that is the baseline design for the French Megajoule laser and a backup concept for the U.S. National Ignition Facility (NIF) laser. These proposed laser facilities for Inertial Confinement Fusion (ICF) research are described in their respective Conceptual Design Reports. The lasers are designed to deliver 1.8 MJ and 500 TW of 0.35-{mu}m light onto a fusion target using 240 independent beams for the Megajoule laser and 192 beams for the NIF laser. Both lasers use flash-lamp pumped glass amplifiers and have approximately 38-cm square output beams. However, there are significant differences in their architecture. This article describes those differences, and their significance.

  19. Atmospheric breakup of meteoroids

    NASA Astrophysics Data System (ADS)

    El-Dasher, Bassem; Swift, Damian; Remington, Bruce; Mulford, Roberta; Milathianaki, Despina; Chen, Laura; Eakins, Daniel

    2013-06-01

    When meteoroids enter a planetary atmosphere, breakup is governed by the Rayleigh-Taylor instability, mitigated by the strength of the meteoritic material. Particle sizes in the breakup cascade depend on the perturbation length scales exhibiting growth. The physics of meteoroid entry is thus related closely to experiments where strength at high pressure is inferred from the Rayleigh-Taylor growth of perturbations. There are significant discrepancies between predicted and observed breakup altitudes of meteoroids, which in turn reduce the accuracy of assessments of the impact threat from asteroids. Simulations, validated by laboratory experiments of instability growth, can play a role in understanding the breakup of meteoroids and thus the threat from asteroids. Continuum dynamics simulations provide more rigorous stress distribution than are usually used in breakup analyses, and can be used to calibrate compact expressions describing the breakup conditions. We have measured the strength of samples from Fe-rich meteorites using indentation and shock-loading experiments, and found them to be significantly stronger than was previously realized. This, together with the more accurate stress analysis, removes the altitude discrepancy for Fe-rich meteorites. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. A cryogenic circulating advective multi-pass absorption cell

    NASA Astrophysics Data System (ADS)

    Stockett, M. H.; Lawler, J. E.

    2012-03-01

    A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 107 cm-3. A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.

  1. A cryogenic circulating advective multi-pass absorption cell

    SciTech Connect

    Stockett, M. H.; Lawler, J. E.

    2012-03-15

    A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 10{sup 7} cm{sup -3}. A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena.

  2. A cryogenic circulating advective multi-pass absorption cell.

    PubMed

    Stockett, M H; Lawler, J E

    2012-03-01

    A novel absorption cell has been developed to enable a spectroscopic survey of a broad range of polycyclic aromatic hydrocarbons (PAH) under astrophysically relevant conditions and utilizing a synchrotron radiation continuum to test the still controversial hypothesis that these molecules or their ions could be carriers of the diffuse interstellar bands. The cryogenic circulating advective multi-pass absorption cell resembles a wind tunnel; molecules evaporated from a crucible or injected using a custom gas feedthrough are entrained in a laminar flow of cryogenically cooled buffer gas and advected into the path of the synchrotron beam. This system includes a multi-pass optical White cell enabling absorption path lengths of hundreds of meters and a detection sensitivity to molecular densities on the order of 10(7) cm(-3). A capacitively coupled radio frequency dielectric barrier discharge provides ionized and metastable buffer gas atoms for ionizing the candidate molecules via charge exchange and the Penning effect. Stronger than expected clustering of PAH molecules has slowed efforts to record gas phase PAH spectra at cryogenic temperatures, though such clusters may play a role in other interstellar phenomena. PMID:22462957

  3. Multi-pass light amplifier

    NASA Technical Reports Server (NTRS)

    Plaessmann, Henry (Inventor); Grossman, William M. (Inventor)

    1997-01-01

    A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A confocal resonator or White Cell resonator is provided, including two or three curvilinearly shaped mirrors facing each other along a resonator axis and an optical gain medium positioned on the resonator axis between the mirrors (confocal resonator) or adjacent to one of the mirrors (White Cell). In a first embodiment, two mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. The optical gain medium may be solid-state, liquid or gaseous medium and may be pumped longitudinally or transversely. In a second embodiment, first and second mirrors face a third mirror in a White Cell configuration, and the optical gain medium is positioned at or adjacent to one of the mirrors. Defocusing means and optical gain medium cooling means are optionally provided with either embodiment, to controllably defocus the light beam, to cool the optical gain medium and to suppress thermal lensing in the gain medium.

  4. Description of Jet Breakup

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1996-01-01

    In this article we review recent results on the breakup of cylindrical jets of a Newtonian fluid. Capillary forces provide the main driving mechanism and our interest is in the description of the flow as the jet pinches to form drops. The approach is to describe such topological singularities by constructing local (in time and space) similarity solutions from the governing equations. This is described for breakup according to the Euler, Stokes or Navier-Stokes equations. It is found that slender jet theories can be applied when viscosity is present, but for inviscid jets the local shape of the jet at breakup is most likely of a non-slender geometry. Systems of one-dimensional models of the governing equations are solved numerically in order to illustrate these differences.

  5. Coulomb Breakup Problem

    SciTech Connect

    Kadyrov, A. S.; Bray, I.; Stelbovics, A. T.; Mukhamedzhanov, A. M.

    2008-12-05

    We formulate scattering theory in the framework of a surface-integral approach utilizing analytically known asymptotic forms of the three-body wave functions. This formulation is valid for both short-range and Coulombic potentials. The post and prior forms of the breakup amplitude are derived without any reference to renormalization procedures.

  6. Multi-pass light amplifier

    NASA Technical Reports Server (NTRS)

    Plaessmann, Henry (Inventor); Grossman, William M. (Inventor); Olson, Todd E. (Inventor)

    1996-01-01

    A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A resonator or a White Cell cavity is provided, including two or more mirrors (planar or curvilinearly shaped) facing each other along a resonator axis and an optical gain medium positioned on a resonator axis between the mirrors or adjacent to one of the mirrors. In a first embodiment, two curvilinear mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. A second embodiment uses two curvilinear mirrors and one planar mirror, with a gain medium positioned in the optical path between each curvilinear mirror and the planar mirror. A third embodiment uses two curvilinear mirrors and two planar mirrors, with a gain medium positioned adjacent to a planar mirror. A fourth embodiment uses a curvilinear mirror and three planar mirrors, with a gain medium positioned adjacent to a planar mirror. A fourth embodiment uses four planar mirrors and a focusing lens system, with a gain medium positioned between the four mirrors. A fifth embodiment uses first and second planar mirrors, a focusing lens system and a third mirror that may be planar or curvilinear, with a gain medium positioned adjacent to the third mirror. A sixth embodiment uses two planar mirrors and a curvilinear mirror and a fourth mirror that may be planar or curvilinear, with a gain medium positioned adjacent to the fourth mirror. In a seventh embodiment, first and second mirrors face a third

  7. Modeling of drop breakup in the bag breakup regime

    NASA Astrophysics Data System (ADS)

    Wang, C.; Chang, S.; Wu, H.; Xu, J.

    2014-04-01

    Several analytic models for predicting the drop deformation and breakup have been developed over the last three decades, but modeling drop breakup in the bag-type regime is less reported. In this Letter, a breakup model has been proposed to predict the drop deformation length and breakup time in the bag-type breakup regime in a more accurate manner. In the present model, the drop deformation which is approximately as the displacement of the centre of mass (c. m.) along the axis located at the centre of the drop, and the movement of c. m. is obtained by solving the pressure balance equation. The effects of the drop deformation on the drop external aerodynamic force are considered in this model. Drop breakup occurs when the deformation length reaches the maximum value and the maximum deformation length is a function of Weber number. The performance and applicability of the proposed breakup model are tested against the published experimental data.

  8. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    DOEpatents

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  9. Breakup branches of Borromean beryllium-9

    SciTech Connect

    Smith, R. Freer, M.; Wheldon, C.; Curtis, N.; Ashwood, N. I.; Barr, M.; Kokalova, Tz.; Malcolm, J. D.; Ziman, V. A.; Almaraz-Calderon, S.; Aprahamian, A.; Bucher, B.; Couder, M.; Fang, X.; Jung, F.; Lu, W.; Roberts, A.; Tan, W. P.; Copp, P.; Lesher, S. R.; and others

    2015-10-15

    The breakup reaction {sup 9}Be({sup 4}He, 3α)n was measured using an array of four double-sided silicon strip detectors at beam energies of 22 and 26 MeV. Excited states in {sup 9}Be up to 12 MeV were populated and reconstructed through the measurement of the charged reaction products. It is proposed that limits on the spins and parities of the states can be derived from the way that they decay. Various breakup paths for excited states in {sup 9}Be have been explored including the {sup 8}Be{sub g.s.} + n, {sup 8}Be{sub 2{sup +}} + n and {sup 5}He{sub g.s.} + {sup 4}He channels. By imposing the condition that the breakup proceeded via the {sup 8}Be ground state, clean excitation spectra for {sup 9}Be were reconstructed. The remaining two breakup channels were found to possess strongly-overlapping kinematic signatures and more sophisticated methods (referenced) are required to completely disentangle these other possibilities. Emphasis is placed on the development of the experimental analysis and the usefulness of Monte-Carlo simulations for this purpose.

  10. Breakup branches of Borromean beryllium-9

    NASA Astrophysics Data System (ADS)

    Smith, R.; Freer, M.; Wheldon, C.; Curtis, N.; Almaraz-Calderon, S.; Aprahamian, A.; Ashwood, N. I.; Barr, M.; Bucher, B.; Copp, P.; Couder, M.; Fang, X.; Goldring, G.; Jung, F.; Kokalova, Tz.; Lesher, S. R.; Lu, W.; Malcolm, J. D.; Roberts, A.; Tan, W. P.; Ziman, V. A.

    2015-10-01

    The breakup reaction 9Be(4He, 3α)n was measured using an array of four double-sided silicon strip detectors at beam energies of 22 and 26 MeV. Excited states in 9Be up to 12 MeV were populated and reconstructed through the measurement of the charged reaction products. It is proposed that limits on the spins and parities of the states can be derived from the way that they decay. Various breakup paths for excited states in 9Be have been explored including the 8Beg.s. + n, 8Be2+ + n and 5Heg.s. + 4He channels. By imposing the condition that the breakup proceeded via the 8Be ground state, clean excitation spectra for 9Be were reconstructed. The remaining two breakup channels were found to possess strongly-overlapping kinematic signatures and more sophisticated methods (referenced) are required to completely disentangle these other possibilities. Emphasis is placed on the development of the experimental analysis and the usefulness of Monte-Carlo simulations for this purpose.

  11. Asymptotic and near-target direct breakup of 6Li and 7Li

    NASA Astrophysics Data System (ADS)

    Kalkal, Sunil; Simpson, E. C.; Luong, D. H.; Cook, K. J.; Dasgupta, M.; Hinde, D. J.; Carter, I. P.; Jeung, D. Y.; Mohanto, G.; Palshetkar, C. S.; Prasad, E.; Rafferty, D. C.; Simenel, C.; Vo-Phuoc, K.; Williams, E.; Gasques, L. R.; Gomes, P. R. S.; Linares, R.

    2016-04-01

    Background: Li,76 and 9Be are weakly bound against breakup into their cluster constituents. Breakup location is important for determining the role of breakup in above-barrier complete fusion suppression. Recent works have pointed out that experimental observables can be used to separate near-target and asymptotic breakup. Purpose: Our purpose is to distinguish near-target and asymptotic direct breakup of Li,76 in reactions with nuclei in different mass regions. Method: Charged particle coincidence measurements are carried out with pulsed Li,76 beams on 58Ni and 64Zn targets at sub-barrier energies and compared with previous measurements using 208Pb and 209Bi targets. A detector array providing a large angular coverage is used, along with time-of-flight information to give definitive particle identification of the direct breakup fragments. Results: In interactions of 6Li with 58Ni and 64Zn, direct breakup occurs only asymptotically far away from the target. However, in interactions with 208Pb and 209Bi, near-target breakup occurs in addition to asymptotic breakup. Direct breakup of 7Li into α -t is not observed in interactions with 58Ni and 64Zn. However, near-target dominated direct breakup was observed in measurements with 208Pb and 209Bi. A modified version of the Monte Carlo classical trajectory model code platypus, which explicitly takes into account lifetimes associated with unbound states, is used to simulate sub-barrier breakup reactions. Conclusions: Near-target breakup in interactions with Li,76 is an important mechanism only for the heavy targets 208Pb and 209Bi. There is insignificant near-target direct breakup of 6Li and no direct breakup of 7Li in reactions with 58Ni and 64Zn. Therefore, direct breakup is unlikely to suppress the above-barrier fusion cross section in reactions of Li,76 with 58Ni and 64Zn nuclei.

  12. Multipass relativistic high-order-harmonic generation for intense attosecond pulses

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew R.; Mikhailova, Julia M.

    2016-02-01

    We demonstrate that the total reflected field produced by the interaction of a moderately relativistic laser with dense plasma is itself an efficient driver of high-order-harmonic generation. A system of two or more successive interactions of an incident laser beam on solid targets may therefore be an experimentally realizable method of optimizing conversion of laser energy to high-order harmonics. Particle-in-cell simulations suggest that attosecond pulse intensity may be increased by up to four orders of magnitude in a multipass system, with decreased duration of the attosecond pulse train. We discuss high-order-harmonic wave-form engineering for enhanced attosecond pulse generation with an electron trajectory model, present the behavior of multipass systems over a range of parameters, and offer possible routes towards experimental implementation of a two-pass system.

  13. Multipass optical device and process for gas and analyte determination

    DOEpatents

    Bernacki, Bruce E.

    2011-01-25

    A torus multipass optical device and method are described that provide for trace level determination of gases and gas-phase analytes. The torus device includes an optical cavity defined by at least one ring mirror. The mirror delivers optical power in at least a radial and axial direction and propagates light in a multipass optical path of a predefined path length.

  14. Defocusing Techniques for Multi-pass Laser Welding of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Karhu, Miikka; Kujanpää, Veli

    This study introduces an experimental work carried out in multi-pass laser welding with cold filler wire and laser-arc hybrid welding of thick section austenitic stainless steel. As it has been demonstrated earlier, hybrid and cold wire welding with a keyhole-mode can offer very efficient way to produce multi-pass welds in narrow gap thick section joints. However, when multi-pass welding is applied to one pass per layer method without e.g. scanning or defocusing, the used groove width needs to be very narrow in order to ensure the proper melting of groove side walls and thus to avoid lack of fusion/cold-run defects. As a consequence of the narrow groove, particularly in thick section joints, the accessibility of an arc torch or a wire nozzle into the very bottom of a groove in root pass welding can be considerably restricted. In an alternative approach described in this paper, a power density of a laser beam spot was purposely dispersed by using a defocusing technique. In groove filling experiments, a power density of defocused laser beam was kept in the range, which led the welding process towards to conduction limited regime and thus enabled to achieve broader weld cross-sections. The object was to study the feasibility of defocusing as a way to fill and bridge wider groove geometries than what can be welded with focused keyhole-mode welding with filler addition. The paper covers the results of multi-pass welding of up to 60 mm thick joints with single side preparations.

  15. Density measurement of particles in rf silane plasmas by the multipass laser extinction method

    SciTech Connect

    Seon, C. R.; Choe, W.; Park, H. Y.; Kim, Junghee; Park, S.; Seong, D. J.; Shin, Y. H.

    2007-12-17

    Measurement of the time evolution of the particle number density was investigated in rf silane plasmas by using the multipass laser extinction method. A He-Ne laser beam underwent multiple reflections on one horizontal plane of the plasma. The extinction signal increased in proportion to the beam pass numbers. A 10{sup 11} cm{sup -3} density of 8 nm radius particles was measured at 10 s in a 32 mTorr and 50 W discharge using nine passes. The primary particle density was obtained by comparing the measured particle sizes with the calculated sizes from the light extinction signals and the Brownian free molecule coagulation model.

  16. An auroral breakup mechanism

    NASA Technical Reports Server (NTRS)

    Maggs, J. E.

    1973-01-01

    A purely growing electrostatic drift instability driven by the electron temperature gradient at the inner edge of the plasma sheet can grow for large enough values of the temperature gradient. The parallel electric field associated with the instability is localized near the magnetic equator. The growth of the drift instability leads to enhanced whistler noise and increased electron pitch angle diffusion. If the current limit is exceeded in the ionosphere while the parallel electric field of the drift instability exists along the field line, rapid electron precipitation (the auroral breakup) can result.

  17. JEMMRLA - Electron Model of a Muon RLA with Multi-pass Arcs

    SciTech Connect

    Bogacz, Slawomir Alex; Krafft, Geoffrey A.; Morozov, Vasiliy S.; Roblin, Yves R.

    2013-06-01

    We propose a demonstration experiment for a new concept of a 'dogbone' RLA with multi-pass return arcs -- JEMMRLA (Jlab Electron Model of Muon RLA). Such an RLA with linear-field multi-pass arcs was introduced for rapid acceleration of muons for the next generation of Muon Facilities. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Here we describe a test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected in the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available 1.5 GHz. The hardware requirements are not very demanding making it straightforward to implement. Such an RLA may have applications going beyond muon acceleration: in medical isotope production, radiation cancer therapy and homeland security.

  18. Subfemtotesla scalar atomic magnetometry using multipass cells.

    PubMed

    Sheng, D; Li, S; Dural, N; Romalis, M V

    2013-04-19

    Scalar atomic magnetometers have many attractive features but their sensitivity has been relatively poor. We describe a Rb scalar gradiometer using two multipass optical cells. We use a pump-probe measurement scheme to suppress spin-exchange relaxation and two probe pulses to find the spin precession zero crossing times with a resolution of 1 psec. We realize a magnetic field sensitivity of 0.54 fT/Hz(1/2), which improves by an order of magnitude the best scalar magnetometer sensitivity and exceeds, for example, the quantum limit set by the spin-exchange collisions for a scalar magnetometer with the same measurement volume operating in a continuous regime. PMID:23679590

  19. Subfemtotesla Scalar Atomic Magnetometry Using Multipass Cells

    NASA Astrophysics Data System (ADS)

    Sheng, D.; Li, S.; Dural, N.; Romalis, M. V.

    2013-04-01

    Scalar atomic magnetometers have many attractive features but their sensitivity has been relatively poor. We describe a Rb scalar gradiometer using two multipass optical cells. We use a pump-probe measurement scheme to suppress spin-exchange relaxation and two probe pulses to find the spin precession zero crossing times with a resolution of 1 psec. We realize a magnetic field sensitivity of 0.54fT/Hz1/2, which improves by an order of magnitude the best scalar magnetometer sensitivity and exceeds, for example, the quantum limit set by the spin-exchange collisions for a scalar magnetometer with the same measurement volume operating in a continuous regime.

  20. Faraday rotation spectroscopy in multi-pass atomic vapor cells

    NASA Astrophysics Data System (ADS)

    Li, Shuguang; Vachaspati, Pranjal; Dural, Nezih; Romalis, Michael

    2011-05-01

    Many important applications of atomic vapors, such as quantum measurements, light storage experiments, and atomic magnetometers benefit from large optical depth of the atomic ensemble. We explore multi-pass cells using cylindrical mirrors with a hole for the entrance and exit of the laser beam to achieve very high optical depth while sampling a large number of atoms. Such cells are much less sensitive to mirror quality and alignment compared to optical cavities and do not require laser frequency locking, mode matching or power coupling matching. Cells with more than 100 passes have been fabricated using internal high-reflectivity mirrors. We have performed paramagnetic Faraday rotation measurements on Rb vapor and have observed atomic rotation angles in excess of 60 radians. Quantum spin noise from unpolarized atomic vapor has also been observed with a high signal-to-noise ratio. This system also exhibits non-linear spin relaxation due to spin-exchange collisions, opening the possibility of using spin-squeezing techniques to improve long-term sensitivity of frequency measurements. We will report on the development of a scalar atomic magnetometer using such spin-squeezing techniques.

  1. Breakup Reactions of Neutron Drip Line Nuclei Near N=20

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    2011-09-01

    Coulomb breakup at intermediate energies is a useful experimental tool for investigating the microscopic structure of neutron drip-line nuclei. Here, results from the inclusive Coulomb breakup experiment of 31Ne on a lead target at RIBF(RI Beam Factory) at RIKEN are presented. The experiment was performed as one of day-one campaign experiments at RIBF, using a 48Ca primary beam at 345 MeV/nucleon. A unique feature of a halo nucleus is the enhanced electric dipole strength of the order of 1 W.u.(Weisskopf unit) at very low excitation energies around 1 MeV (soft E1 excitation). Owing to high sensitivity of the Coulomb breakup to the soft E1 excitation, a measurement of inclusive Coulomb breakup cross section can be used to identify the halo structure of a certain drip-line nucleus. We have indeed observed a strong enhancement of the Coulomb breakup cross section of 540(70) mb for 31Ne on Pb at 230 MeV/nucleon, nearly as high as that for the known halo nucleus 19C, thereby giving evidence of the halo structure in 31Ne. The finding of a new halo structure for such a heavy system, compared to the known halo nuclei, is the first step for the understanding of halo phenomena along the neutron drip line towards heavier nuclei. We discuss also the change of shell structure in 31Ne, as a nucleus in the island of inversion.

  2. Electro-optic harmonic conversion switch for large-aperture multipass laser systems

    SciTech Connect

    Henesian, M.A.; Goldhar, J.; Haas, R.A.

    1984-08-01

    The authors have demonstrated electro-optically tuned second-harmonic generation using Type I KDP inside a plasma-electrode discharge cell. An axial voltage of +/- 52 kV is required to switch a 1.064-..mu..m beam by conversion to 0.53 ..mu..m, in agreement with theory. Electro-optically tuned harmonic generation may be combined with a recently developed transparent plasma electrode to produce a large-aperture switch for multipass laser systems. 7 references, 4 figures, 1 table.

  3. Design and simulation of a biconic multipass absorption cell for the frequency stabilization of the reference seeder laser in IPDA lidar.

    PubMed

    Mu, Yongji; Du, Juan; Yang, Zhongguo; Sun, Yanguang; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2016-09-01

    The design process and simulation method of a multipass absorption cell used for the frequency stabilization of the reference seeder laser in integrated path differential absorption (IPDA) lidar are presented. On the basis of the fundamental theory of the Herriott multipass cell comprising two spherical mirrors, the initial parameters of the multipass cell, which has an optical path greater than 10 m and consists of two biconic mirrors, were calculated. More than 30 light spots were distributed on each mirror, and the distance between adjacent spots was mostly optimized to greater than six times the beam waist. After optimization, the simulated transmittance spectrum and associated differential signal were obtained. The interference induced by surface scattering was also simulated, and its influence on the differential signal was analyzed. A correspondence between the simulated results and the testing data was observed. PMID:27607288

  4. Generalized design of a zero-geometric-loss, astigmatism-free, modified four-objective multipass matrix system.

    PubMed

    Guo, Yin; Sun, LiQun; Yang, Zheng; Liu, Zilong

    2016-02-20

    During this study we constructed a generalized parametric modified four-objective multipass matrix system (MMS). We used an optical system comprising four asymmetrical spherical mirrors to improve the alignment process. The use of a paraxial equation for the design of the front transfer optics yielded the initial condition for modeling our MMS. We performed a ray tracing simulation to calculate the significant aberration of the system (astigmatism). Based on the calculated meridional and sagittal focus positions, the complementary focusing mirror was easily designed to provide an output beam free of astigmatism. We have presented an example of a 108-transit multipass system (5×7 matrix arrangement) with a relatively larger numerical aperture source (xenon light source). The whole system exhibits zero theoretical geometrical loss when simulated with Zemax software. The MMS construction strategy described in this study provides an anastigmatic output beam and the generalized approach to design a controllable matrix spot pattern on the field mirrors. Asymmetrical reflective mirrors aid in aligning the whole system with high efficiency. With the generalized design strategy in terms of optics configuration and asymmetrical fabrication method in this paper, other kinds of multipass matrix system coupled with different sources and detector systems also can be achieved. PMID:26906598

  5. Multipass haemodialysis: a novel dialysis modality

    PubMed Central

    Heaf, James Goya; Axelsen, Mette; Pedersen, Robert Smith

    2013-01-01

    Introduction Most home haemodialysis (HD) modalities are limited to home use since they are based on a single-pass (SP) technique, which requires preparation of large amounts of dialysate. We present a new dialysis method, which requires minimal dialysate volumes, continuously recycled during treatment [multipass HD (MPHD)]. Theoretical calculations suggest that MPHD performed six times weekly for 8 h/night, using a dialysate bath containing 50% of the calculated body water, will achieve urea clearances equivalent to conventional HD 4 h thrice weekly, and a substantial clearance of higher middle molecules. Methods Ten stable HD patients were dialyzed for 4 h using standard SPHD (dialysate flow 500 mL/min). Used dialysate was collected. One week later, an 8-h MPHD was performed. The dialysate volume was 50% of the calculated water volume, the dialysate inflow 500 mL/min−0.5 × ultrafiltration/min and the outflow 500 mL/min + 0.5 × ultrafiltration/min. Elimination rates of urea, creatinine, uric acid, phosphate and β2-microglobulin (B2M) and dialysate saturation were determined hourly. Results Three hours of MPHD removed 49, 54, 50, 51 and 57%, respectively, of the amounts of urea, creatinine, uric acid, phosphate and B2M that were removed by 4 h conventional HD. The corresponding figures after 8 h MPHD were 63, 78, 74, 78 and 111%. Conclusions Clearance of small molecules using MPHD 6 × 8 h/week will exceed traditional HD 3 × 4 h/week. Similarly, clearance of large molecules will significantly exceed traditional HD and HD 5 × 2.5 h/week. This modality will increase patients' freedom of movement compared with traditional home HD. The new method can also be used in the intensive care unit and for automated peritoneal dialysis. PMID:23136214

  6. Design of the polarization multi-pass Thomson scattering system

    SciTech Connect

    Yasuhara, R.; Yamada, I.; Kawahata, K.; Funaba, H.; Yoshikawa, M.; Morimoto, M.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T.; Minami, T.

    2012-10-15

    A novel configuration of the multi-pass Thomson scattering (TS) system is proposed to improve the time resolution and accuracy of electron temperature measurements by use of a polarization control technique. This configuration can realize a perfect coaxial multi-passing at each pass, and the number of round trips is not limited by the optical configuration. To confirm the feasibility of the new method, we installed this system in the GAMMA 10 plasma system. As a result, the integrated scattering signal of the double-pass configuration is about two times larger than that of the single-pass configuration. These results are in good agreement with the design.

  7. Fusion and Breakup of Weakly Bound Nuclei

    SciTech Connect

    Gomes, P. R. S.; Lubian, J.; Padron, I.; Crema, E.; Chamon, L. C.; Hussein, M. S.; Canto, L. F.

    2006-08-14

    We discuss the influence of the breakup process of weakly bound nuclei on the fusion cross section. The complete fusion for heavy targets is found to be suppressed due to the incomplete fusion following the breakup, whereas this effect is negligible for light targets. The total fusion cross sections for stable projectiles are not affected by the breakup process, whereas it is suppressed for halo projectiles. The non capture breakup is the dominant process at sub-barrier energies.

  8. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The

  9. Breakup Reactions and Exclusive Measurements in the {sup 6,7}Li+{sup 144}Sm Systems

    SciTech Connect

    Heimann, D. Martinez; Pacheco, A. J.; Arazi, A.; Figueira, J. M.; Negri, A. E.; Capurro, O. A.; Carnelli, P.; Fimiani, L.; Grinberg, P.; Marti, G. V.; Testoni, J. E.; Monteiro, D. S.; Marta, H. D.

    2009-06-03

    The breakup of the projectile-like nuclei in reactions induced by 30 MeV {sup 6}Li and {sup 7}Li beams on a {sup 144}Sm target have been measured through the coincident detection of the in-plane emitted light particles. The primary ion that undergoes breakup has been identified and the physically meaningful variables that characterize the reaction have been obtained on a purely experimental basis. Distributions have been obtained for both the binary emission angle and for the breakup emission angle in the reference frame of the breakup products.

  10. Multipass cell based on confocal mirrors for sensitive broadband laser spectroscopy in the near infrared.

    PubMed

    Mohamed, T; Zhu, F; Chen, S; Strohaber, J; Kolomenskii, A A; Bengali, A A; Schuessler, H A

    2013-10-10

    We report on broadband absorption spectroscopy in the near IR using a multipass cell design based on highly reflecting mirrors in a confocal arrangement having the particular aim of achieving long optical paths. We demonstrate a path length of 314 m in a cell consisting of two sets of highly reflecting mirrors with identical focal length, spaced 0.5 m apart. The multipass cell covers this path length in a relatively small volume of 1.25 l with the light beam sampling the whole volume. In a first application, the absorption spectra of the greenhouse gases CO(2), CH(4), and CO were measured. In these measurements we used a femtosecond fiber laser with a broadband spectral range spanning the near IR from 1.5 to 1.7 μm. The absorption spectra show a high signal-to-noise ratio, from which we derive a sensitivity limit of 6 ppmv for methane observed in a mixture with air. PMID:24217732

  11. Far off-resonance laser frequency stabilization using multipass cells in Faraday rotation spectroscopy.

    PubMed

    Quan, Wei; Li, Yang; Li, Rujie; Shang, Huining; Fang, Zishan; Qin, Jie; Wan, Shuangai

    2016-04-01

    We propose a far off-resonance laser frequency stabilization method by using multipass cells in Rb Faraday rotation spectroscopy. Based on the detuning equation, if multipass cells with several meters optical path length are used in the conventional Faraday spectroscopy, the detuning of the lock point can be extended much further from the alkali metal resonance. A plate beam splitter was used to generate two different Faraday signals at the same time. The transmitted optical path length was L=50  mm and the reflected optical path length was 2L=100  mm. When the optical path length doubled, the detuning of the lock points moved further away from the atomic resonance. The temperature dependence of the detuning of the lock point was also analyzed. A temperature-insensitive lock point was found near resonance when the cell temperature was between 110°C and 130°C. We achieved an rms fluctuation of 0.9 MHz/23 h at a detuning of 0.5 GHz. A frequency drift of 16 MHz/h at a detuning of -5.6  GHz and 4 MHz/h at a detuning of -5.2  GHz were also obtained for the transmitted and reflected light Faraday signal. PMID:27139650

  12. Electron Model Of A Dogbone RLA With Multi-Pass Arcs

    SciTech Connect

    Beard, Kevin B.; Roblin, Yves R.; Morozov, Vasiliy; Bogacz, Slawomir Alex; Krafft, Geoffrey A.

    2012-09-01

    The design of a dogbone Recirculated Linear Accelerator, RLA, with linear-field multi-pass arcs was earlier developed [1] for accelerating muons in a Neutrino Factory and a Muon Collider. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Such an RLA may have applications going beyond muon acceleration. This paper describes a possible straightforward test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected at the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to the frequency readily available at CEBAF: 1.5 GHz. The footprint of a complete RLA fits in an area of 25 by 7 m. The scheme utilizes only fixed magnetic fields including injection and extraction. The hardware requirements are not very demanding, making it straightforward to implement

  13. LHeC ERL Design and Beam-dynamics Issues

    SciTech Connect

    S.A. Bogacz, I. Shin, D. Schulte, F. Zimmermann

    2011-09-01

    We discuss machine and beam parameter choices for a Linac-Ring option of the Large Hadron electron Collider (LHeC) based on the LHC. With the total wall-plug power limited to 100 MW and a target current of about 6 mA the desired luminosity of 1033 cm-2 s-1 can be reached, providing one exploits unique features of the Energy Recovery Linac (ERL). Here, we describe the overall layout of such ERL complex located on the LHC site. We present an optimized multi-pass linac optics enabling operation of the proposed 3-pass Recirculating Linear Accelerator (RLA) in the Energy Recovery mode. We also describe emittance preserving return arc optics architecture; including layout and optics of the arc switch-yard. Furthermore, we discuss importance of collective effects such as: beam breakup in the RLA, as well as ion accumulation, with design-integrated mitigation measures, and the electron-beam disruption in collision. Finally, a few open questions are highlighted.

  14. Multipass: A Learning Strategy for Improving Reading Comprehension.

    ERIC Educational Resources Information Center

    Schumaker, Jean B.; And Others

    Multipass, a complex learning strategy designed to enable a student to gain information from textbook chapters, was taught to eight learning disabled adolescents. The instructional procedures involved a 10 step process including such procedures as describing the steps of the strategy, modeling the strategy, and student practice to criterion in…

  15. Isomer ratio measurements as a probe of the dynamics of breakup and incomplete fusion

    SciTech Connect

    Gasques, L. R.; Dasgupta, M.; Hinde, D. J.; Peatey, T.; Diaz-Torres, A.; Newton, J. O.

    2006-12-15

    The incomplete fusion mechanism following breakup of {sup 6,7}Li and {sup 9}Be projectiles incident on targets of {sup 209}Bi and {sup 208}Pb is investigated through isomer ratio measurements for the {sup 212}At and {sup 211}Po products. The phenomenological analysis presented in this paper indicates that incomplete fusion brings relatively more angular momentum into the system than equivalent reactions with a direct beam of the fused fragment. This is attributed to the trajectories of breakup fragments. Calculations with a 3D classical trajectory model support this. Isomer ratio measurements for incomplete fusion reactions can provide a test of new theoretical models of breakup and fusion.

  16. Use of Multipass Recirculation and Energy Recovery In CW SRF X-FEL Driver Accelerators

    SciTech Connect

    Douglas, David; Akers, Walt; Benson, Stephen V.; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Ellingsworth, Forrest; Evtushenko, Pavel; Fisk, Sally; Gould, Christopher; Gubeli, Joseph; Hannon, Fay; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Klopf, John; Kortze, J.; Legg, Robert; Li, Rui; Marchlik, Matthew; Moore, Steven W.; Neil, George; Powers, Thomas; Sexton, Daniel; Shin, Ilkyoung; Shinn, Michelle D.; Tennant, Christopher; Terzic, Balsa; Walker, Richard; Williams, Gwyn P.; Wilson, G.; Zhang, Shukui

    2010-08-01

    We discuss the use of multipass recirculation and energy recovery in CW SRF drivers for short wavelength FELs. Benefits include cost management (through reduced system footprint, required RF and SRF hardware, and associated infrastructure - including high power beam dumps and cryogenic systems), ease in radiation control (low drive beam exhaust energy), ability to accelerate and deliver multiple beams of differing energy to multiple FELs, and opportunity for seamless integration of multistage bunch length compression into the longitudinal matching scenario. Issues include all those associated with ERLs compounded by the challenge of generating and preserving the CW electron drive beam brightness required by short wavelength FELs. We thus consider the impact of space charge, BBU and other environmental wakes and impedances, ISR and CSR, potential for microbunching, intra-beam and beam-residual gas scattering, ion effects, RF transients, and halo, as well as the effect of traditional design, fabrication, installation and operational errors (lattice aberrations, alignment, powering, field quality). Context for the discussion is provided by JLAMP, the proposed VUV/X-ray upgrade to the existing Jefferson Lab FEL.

  17. Studies in molten chloroaluminates: I. Multipass spectroelectrochemistry; II. Spectroscopic and electrochemical investigations of iridium carbonyls

    SciTech Connect

    Harward, B.L.

    1985-12-01

    The multipass technique is introduced as an optical enhancement method for thin-layer spectroelectrochemistry. In this approach, the light beam is redirected through an optically transparent electrode (OTE) several times by an external mirror assembly. This arrangement is achieved using a low power continuum source which allows simultaneous multiwavelength measurements. The gain in optical sensitivity is directly related to the number of passes through the cell and has a practical limit of three to five. Initial evaluation with an aqueous test system yielded results which agree well with theory. The enhancement is not dependent upon electrode reflectivity and, therefore, the method may be applied to studies in highly corrosive media. Studies of the oxidation of sulfur and the reduction of niobium pentachloride in molten chloroaluminates are presented to demonstrate the utility of ths technique for investigations in such media. 203 refs., 51 figs., 15 tabs.

  18. Multipass diode-pumped solid-state optical amplifier

    NASA Technical Reports Server (NTRS)

    Plaessmann, Henry; Re, Sean A.; Alonis, Joseph J.; Vecht, David L.; Grossman, William M.

    1993-01-01

    A new diode-pumped solid-state multipass amplifier produced 38-dB small-signal gain at 1.047 micron in Nd:YLF with 1.6-W pump power and 37 percent extraction efficiency near saturation. The amplifier had a 1:1 confocally reimaging multipass design that generated both high gain and high efficiency. The same amplifier design with 13 W of pump power was tested with Nd:YAG at 1.064 micron, which gave 38-dB small-signal gain and 3.2 W of output power, and with Nd:YVO4, also at 1.064 micron, which gave greater than 50-dB small-signal gain and 4.3 W of output power.

  19. A topological and conformational stability alphabet for multipass membrane proteins.

    PubMed

    Feng, Xiang; Barth, Patrick

    2016-03-01

    Multipass membrane proteins perform critical signal transduction and transport across membranes. How transmembrane helix (TMH) sequences encode the topology and conformational flexibility regulating these functions remains poorly understood. Here we describe a comprehensive analysis of the sequence-structure relationships at multiple interacting TMHs from all membrane proteins with structures in the Protein Data Bank (PDB). We found that membrane proteins can be deconstructed in interacting TMH trimer units, which mostly fold into six distinct structural classes of topologies and conformations. Each class is enriched in recurrent sequence motifs from functionally unrelated proteins, revealing unforeseen consensus and evolutionary conserved networks of stabilizing interhelical contacts. Interacting TMHs' topology and local protein conformational flexibility were remarkably well predicted in a blinded fashion from the identified binding-hotspot motifs. Our results reveal universal sequence-structure principles governing the complex anatomy and plasticity of multipass membrane proteins that may guide de novo structure prediction, design, and studies of folding and dynamics. PMID:26780406

  20. Orbital debris from upper-stage breakup

    NASA Technical Reports Server (NTRS)

    Loftus, Joseph P., Jr. (Editor)

    1989-01-01

    The present conference on the effects of launch vehicle upper-stage breakup on the orbital debris scenario discusses an analysis of the SPOT 1 Ariane third stage, the explosive fragmentation of orbiting propellant tanks, albedo estimates for debris, Ariane-related debris in deep-space orbit, and the relationship of hypervelocity impacts to upper-stage breakups. Also discussed are the prospects for and the economics of the future removal of orbital debris, collision probabilities in GEO, current operational practices for Delta second stage breakup prevention, breakup-precluding modifications to the Ariane third stage, and the safing of the H-1 second stage after spacecraft separation.

  1. Novel focal point multipass cell for absorption spectroscopy on small sized atmospheric pressure plasmas.

    PubMed

    Winter, Jörn; Hänel, Mattis; Reuter, Stephan

    2016-04-01

    A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90(∘) off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s5) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions. PMID:27131664

  2. A proposed multipass laser system for free-free electron scattering experiments

    NASA Astrophysics Data System (ADS)

    Kim, B. N.; Weaver, C. M.; Martin, N. L. S.; Deharak, B. A.

    2016-05-01

    We propose to use a multipass laser system to increase the data-taking rate of our laser-assited electron scattering experiments. The scheme will be similar to that used by other workers. The basic idea is that there will be an ``injection mode'' where vertically polarized light from the laser passes straight through an appropriately oriented beamsplitter cube, and then passes through an activated Pockels cell (not yet purchased) which rotates the polarization to horizontal. The laser beam passes through the interaction region for the first time, and is reflected by a plane mirror. The laser beam will then be in the ``trapped mode'' where the reflected laser beam is then deflected through 90° by the beamsplitter cube. It will be reflected back by a second mirror for the return journey, and will repeat this cycle ad infinitum. We are carrying out a feasibility study for a round trip of approximately 50 feet. In the absence of a working Pockels cell, λ / 4 plates are used to create 50% of the beam with the appropriate polarization on each cycle. This work was supported by the National Science Foundation under Grants Nos. PHY-0855040 (NLSM), PHY-1402899 (BAdH).

  3. Novel focal point multipass cell for absorption spectroscopy on small sized atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Winter, Jörn; Hänel, Mattis; Reuter, Stephan

    2016-04-01

    A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90∘ off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s5) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions.

  4. Development of a Submillimeter Multipass Spectrometer for the Study of Molecular Ions

    NASA Astrophysics Data System (ADS)

    Carroll, A.; Rocher, B.; Laas, J. C.; Deprince, B. A.; Hays, B.; Weaver, S. L. Widicus; Lang, S.

    2012-06-01

    We have developed a multipass spectrometer for the submillimeter spectral region that is being used to study molecular ions through gas phase spectroscopy. The optical configuration is based on the design of Perry and coworkers that was implemented in the optical regime. To our knowledge, this is the first implementation of this optical configuration at long wavelengths. The setup involves two nearly concentric spherical mirrors that focus the multiple beam passes into a small area, or ``waist'', in the middle of the sample chamber. A supersonic molecular beam is coupled to the setup so that the molecular beam crosses the optical path at the waist. Initial studies have focused on neutral test molecules to probe the physical properties of the molecular beam under various arrangements of the molecular source relative to the optical path. Current studies focus on coupling a plasma discharge source to the setup to enable the study of molecular ions. Here we present the design of this instrument, compare the spectrometer capabilities to a traditional single pass spectrometer, and discuss the results of initial spectroscopic studies.

  5. Elastic breakup cross sections of well-bound nucleons

    NASA Astrophysics Data System (ADS)

    Wimmer, K.; Bazin, D.; Gade, A.; Tostevin, J. A.; Baugher, T.; Chajecki, Z.; Coupland, D.; Famiano, M. A.; Ghosh, T. K.; Grinyer, G. F.; Howard, M. E.; Kilburn, M.; Lynch, W. G.; Manning, B.; Meierbachtol, K.; Quarterman, P.; Ratkiewicz, A.; Sanetullaev, A.; Showalter, R. H.; Stroberg, S. R.; Tsang, M. B.; Weisshaar, D.; Winkelbauer, J.; Winkler, R.; Youngs, M.

    2014-12-01

    The 9Be(28Mg,27Na ) one-proton removal reaction with a large proton separation energy of Sp(28Mg ) =16.79 MeV is studied at intermediate beam energy. Coincidences of the bound 27Na residues with protons and other light charged particles are measured. These data are analyzed to determine the percentage contributions to the proton removal cross section from the elastic and inelastic nucleon removal mechanisms. These deduced contributions are compared with the eikonal reaction model predictions and with the previously measured data for reactions involving the removal of more weakly bound protons from lighter nuclei. The role of transitions of the proton between different bound single-particle configurations upon the elastic breakup cross section is also quantified in this well-bound case. The measured and calculated elastic breakup fractions are found to be in good agreement.

  6. Experimental signatures for distinguishing breakup fusion and transfer in {sup 7}Li+{sup 165}Ho

    SciTech Connect

    Tripathi, V.; Navin, A.; Mahata, K.; Ramachandran, K.; Shrivastava, A.; Chatterjee, A.; Kailas, S.; Nanal, V.; Pillay, R.G.

    2005-07-01

    Reactions involving weakly bound nuclei of {sup 7}Li show large yields of {alpha} particles that have their origin in elastic breakup, breakup followed by fusion, or triton transfer. The latter two processes, breakup fusion and transfer, have similar characteristics and produce the same residual fragments. We report here results of exclusive measurements of charged particles and characteristic {gamma} rays from the heavy residues in the {sup 7}Li+{sup 165}Ho system at 42 MeV (E/V{sub b}{approx_equal}1.6) to look for experimental signatures to differentiate between transfer and breakup fusion. Such a distinction is essential for a better theoretical understanding of both the fusion process and direct reactions involving weakly bound stable and unstable beams.

  7. Antimisting fuel breakup and flammability

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Fleeter, R.; Sarohia, V.

    1983-01-01

    The breakup behavior and flammability of antimisting turbine fuels subjected to aerodynamic shear are investigated. Fuels tested were Jet A containing 0.3% FM-9 polymer at various levels of degradation ranging from virgin AMK to neat Jet A. The misting behavior of the fuels was quantified by droplet size distribution measurements. A technique based on high resolution laser photography and digital image processing of photographic records for rapid determination of droplet size distribution was developed. The flammability of flowing droplet-air mixtures was quantified by direct measurements of temperature rise in a flame established in the wake of a continuous ignition source. The temperature rise measurements were correlated with droplet size measurements. The flame anchoring phenomenon associated with the breakup of a liquid fuel in the wake of bluff body was shown to be important in the context of a survivable crash scenario. A pass/fail criterion for flammability testing of antimisting fuels, based on this flame-anchoring phenomenon, was proposed. The role of various ignition sources and their intensity in ignition and post-ignition behavior of antimisting fuels was also investigated.

  8. Multipass apparatus for molten salt spectroelectrochemical experiments

    SciTech Connect

    Harward, B.L.; Klatt, L.N.; Mamantov, G.

    1985-07-01

    Although various spectroelectrochemical methods have been applied to studies in molten salt media, the development of techniques and apparatus to improve the optical sensitivity of such measurements is nonexistent. The corrosive nature, moisture sensitivity, and elevated temperatures associated with molten salts often preclude the use of sophisticated optical systems and fragile cell components. A simple apparatus is described for enhancement of the optical signal in molten salt spectroelectrochemical experiments. In this method, the optical beam is redirected through an OTE (optically transparent electrode) several times by a mirror assembly positioned outside the thin-layer cell. The gain in optical sensitivity is defined as the ratio of the response for n passes to that for a single pass. 29 references, 4 figures.

  9. SCALED ELECTRON MODEL OF A DOGBONE MUON RLA WITH MULTI-PASS ARCS

    SciTech Connect

    Kevin Beard, Rolland Johnson, Vasiliy Morozov, Yves Roblin, Andrew Hutton, Geoffrey Krafft, Slawomir Bogacz

    2012-07-01

    The design of a dogbone RLA with linear-field multi-pass arcs was earlier developed for accelerating muons in a Neutrino Factory and a Muon Collider. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Such an RLA may have applications going beyond muon acceleration. This paper describes a possible straightforward test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected at the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available at CEBAF 1.5 GHz. The footprint of a complete RLA fits in an area of 25 by 7 m. The scheme utilizes only fixed magnetic fields including injection and extraction. The hardware requirements are not very demanding, making it straightforward to implement. In this report, we have shown first of all that measuring the energy spectrum of the fast neutrons in the liquid scintillators allows one to distinguish the two chemical forms of plutonium. In addition, combining this information with the Feynman 2-neutron and 3-neutron correlations allows one to extract the {alpha}-ratio without explicitly knowing the multiplication. Given the {alpha}-ratio one can then extract the multiplication as well as the {sup 239}Pu and {sup 240}Pu masses directly from the moment equations.

  10. Exclusive breakup measurements for {sup 9}Be

    SciTech Connect

    Fulton, B.R.; Cowin, R.L.; Woolliscroft, R.J.; Clarke, N.M.; Donadille, L.; Freer, M.; Leask, P.J.; Singer, S.M.; Nicoli, M.P.; Benoit, B.; Hanappe, F.; Ninane, A.; Orr, N.A.; Tillier, J.; Stuttge, L.

    2004-10-01

    The first exclusive breakup measurements for the nucleus {sup 9}Be are presented. Breakup via several discrete states is observed following scattering off {sup 12}C and {sup 208}Pb. The results support the prediction of a recent microscopic cluster calculation for a strong n+{sup 8}Be(2{sup +}) state component in the second excited state.

  11. Deformation and secondary breakup of drops

    NASA Astrophysics Data System (ADS)

    Hsiang, L.-P.; Faeth, G. M.

    1993-01-01

    Drop properties during and after secondary breakup in the bag, multimode and shear breakup regimes were observed for shock wave initiated disturbances in air at normal temperature and pressure. Test liquids included water, n-heptane, ethyl alcohol and glycerol mixtures to yield Weber numbers of 15-600. Ohnesorge numbers of 0.0025-0.039, liquid/gas density ratios of 579-985 and Reynolds numbers of 1060-15080. Measurements included pulsed shadowgraphy and double-pulsed holography to find drop sizes and velocities after breakup. Drop size distributions after breakup satisfied Simmons' universal root normal distribution in all three breakup regimes, after removing the core (or drop-forming) drop from the drop population for shear breakup. The size and velocity of the core drop after shear breakup then was correlated successfully based on the observation that the end of drop stripping corresponded to a constant Eotvos number. The relative velocities of the drop liquid were significantly reduced during secondary breakup, due both to large drag coefficients during the drop deformation stage and reduced relaxation times of smaller drops. These effects were correlated successfully based on a simplified phenomenological theory.

  12. Droplet Breakup in Expansion-contraction Microchannels

    NASA Astrophysics Data System (ADS)

    Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu

    2016-02-01

    We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices.

  13. Droplet Breakup in Expansion-contraction Microchannels.

    PubMed

    Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu

    2016-01-01

    We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices. PMID:26899018

  14. Droplet Breakup in Expansion-contraction Microchannels

    PubMed Central

    Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu

    2016-01-01

    We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices. PMID:26899018

  15. Sparsity-driven autofocus for multipass SAR tomography

    NASA Astrophysics Data System (ADS)

    Muirhead, F.; Mulgrew, B.; Woodhouse, I. H.; Greig, D.

    2015-10-01

    Synthetic aperture radar (SAR) systems produce high resolution, two dimensional imaging of areas of environmental interest. SAR interferometry and tomography enables these techniques to extend to three dimensional imaging by exploiting multiple SAR images with diversity in space and time. These techniques require accurate phase information over multiple images as the data is extremely sensitive to deviations from the reference track, therefore to enable interferometry and tomography an accurate autofocus solution is required. This paper investigates phase errors resulting from navigational uncertainties in multipass spotlight SAR imaging and uses techniques from the field of compressive sensing to achieve an autofocus solution. The proposed algorithm builds on previous autofocus work by expanding it to the multipass case and jointly recovers phase errors for all images simultaneously, making it extremely useful for interferometry and tomography techniques. The algorithm described uses pixels that are stable in all SAR images to gain an autofocus solution as these are the pixels that are the focus for analysis using tomography. This is unlike conventional autofocus, which just works on an image-by-image basis. The tools of compressive sensing can be used to concurrently select pixels for bright image elements that are stable and coherent over all images, as these pixels are sparse in the image domain, and calculate the phase errors present in each pass. Using the multipass data after autofocus, height distributions for scatterers in single pixels are determined for simulated forest scenes at X-band. The performance of the autofocus algorithm is examined through numerical simulations and is also applied to real data collected from Selex ES's airborne, X-band, experimental SAR system. The experimental results demonstrate that the algorithm effectively achieves an autofocus solution. By finding the vertical distribution of two scatterers in a single pixel over

  16. Compact, multipass, single transverse mode CO/sub 2/ laser

    SciTech Connect

    Xin, J.G.; Hall, D.R.

    1987-08-17

    We report the design and basic operating characteristics of a co-axial radio-frequency discharge carbon dioxide laser which employs a multipass Herriott cell folding system within a linear resonator. A continuous wave laser power output of 65 W was obtained from a device 35 cm in length in a high-quality TEM/sub 00/ mode without gas flow. The characteristics of transverse rf discharges and the image rotation properties of such resonators indicate that this approach may be scalable to provide much higher laser powers with excellent transverse mode properties.

  17. The Transverse Linac Optics Design in Multi-pass ERL

    SciTech Connect

    Hao, Y.; Kewisch, J.; Litvinenko,V.; Pozdeyev, E.; Ptitsyn, V.; Trbojevic, D.; Tsoupas, N.

    2010-05-23

    In this paper, we analyzed the linac optics design requirement for a multi-pass energy recovery linac (ERL) for arbitrary number of linacs. A set of general formula of constrains for the 2-D transverse matrix is derived to ensure design optics acceptance matching throughout the entire accelerating and decelerating process. Meanwhile, the rest free parameters can be adjusted for fulfilling other requirements or optimization purpose. As an example, we design the linac optics for the future MeRHIC (Medium Energy eRHIC) project and show the optimization for small {beta} function.

  18. Study of transfer and breakup reactions with the plastic box

    SciTech Connect

    Stokstad, R.G.; Albiston, C.R.; Bantel, M.; Chan, Y.; Countryman, P.J.; Gazes, S.; Harvey, B.G.; Homeyer, H.; Murphy, M.J.; Tserruya, I.

    1984-12-01

    The study of transfer reactions with heavy-ion projectiles is complicated by the frequent presence of three or more nuclei in the final state. One prolific source of three-body reactions is the production of a primary ejectile in an excited state above a particle threshold. A subset of transfer reactions, viz., those producing ejectiles in bound states, can be identified experimentally. This has been accomplished with a 4..pi.. detector constructed of one-millimeter-thick scintillator paddles of dimension 20 cm x 20 cm. The paddles are arranged in the form of a cube centered around the target with small entrance and exit apertures for the beam and the projectile-like fragments, (PLF). The detection of a light particle (e.g., a proton or an alpha particle) in coincidence with a PLF indicates a breakup reaction. The absence of any such coincidence indicates a reaction in which all the charge lost by the projectile was transferred to the target. With this technique we have studied the transfer and breakup reactions induced by 220 and 341 MeV /sup 20/Ne ions on a gold target. Ejectiles from Li to Ne have been measured at several scattering angles. The absolute cross sections, angular distributions and energy spectra for the transfer and breakup reactions are presented. Relatively large cross sections are observed for the complete transfer of up to seven units of charge (i.e., a nitrogen nucleus). The relatively large probabilities for ejectiles to be produced in particle-bound states suggest that on the average, most of the excitation energy in a collision resides in the heavy fragment when mass is transferred from the lighter to the heavier fragment. The gross features and trends in the energy spectra for transfer and breakup reactions are similar. 20 references.

  19. Fibre laser cutting of CFRP thin sheets by multi-passes scan technique

    NASA Astrophysics Data System (ADS)

    Leone, C.; Genna, S.; Tagliaferri, V.

    2014-02-01

    In the present work, the employment of multi-passes laser scan technique in cutting of CFRP thin sheets is investigated using a 30 W MOPA Q-switched pulsed Yb:YAG fibre laser. In this technique a laser beam, moved by a galvanometric mirrors system is used to groove the material surface. The absence of cutting head and assistance gas, as well as the low pulse energy only allow to remove small amounts of material in a single beam travel scan. Therefore, the through cut can be obtained by repeating the beam travel more than once. The main advantages of this technique are represented by the low cost of the equipment, compared to a traditional CNC, and the possibility to cut small and complex shapes due to the very narrow beam spot. The aim of this paper is to determine how the process performs in terms of effective cutting speed, kerf geometry and Heat Affected Zone (HAZ) extent. Experimental tests were carried out at the maximum average power, by changing the laser beam scan speed and pulse power. Two experimental testing series were performed. First, for each process condition, the number of repetitions required to obtain a through cut and the effective cutting speeds were determined. Then, cutting tests were executed using the same process parameters and the number of repetitions required to completely cut the laminate. On the obtained samples, kerf geometry and HAZ extent were measured by optical microscopy. The experimental results pointed out that the effective cutting speed depends on scanning speed and pulse power, whereas the kerf geometry is mainly affected by scanning speed and the HAZ extent is influenced by scanning speed as well as pulse power.

  20. Feasibility study of multi-pass respiratory-gated helical tomotherapy of a moving target via binary MLC closure

    NASA Astrophysics Data System (ADS)

    Kim, Bryan; Chen, Jeff; Kron, Tomas; Battista, Jerry

    2010-11-01

    Gated radiotherapy of lung lesions is particularly complex for helical tomotherapy, due to the simultaneous motions of its three subsystems (gantry, couch and collimator). We propose a new way to implement gating for helical tomotherapy, namely multi-pass respiratory gating. In this method, gating is achieved by delivering only the beam projections that occur within a respiratory gating window, while blocking the rest of the beam projections by fully closing all collimator leaves. Due to the continuous couch motion, the planned beam projections must be delivered over multiple passes of radiation deliveries. After each pass, the patient couch is reset to its starting position, and the treatment recommences at a different phase of tumour motion to 'fill in' the previously blocked beam projections. The gating process may be repeated until the plan dose is delivered (full gating), or halted after a certain number of passes, with the entire remaining dose delivered in a final pass without gating (partial gating). The feasibility of the full gating approach was first tested for sinusoidal target motion, through experimental measurements with film and computer simulation. The optimal gating parameters for full and partial gating methods were then determined for various fractionation schemes through computer simulation, using a patient respiratory waveform. For sinusoidal motion, the PTV dose deviations of -29 to 5% observed without gating were reduced to range from -1 to 3% for a single fraction, with a 4 pass full gating. For a patient waveform, partial gating required fewer passes than full gating for all fractionation schemes. For a single fraction, the maximum allowed residual motion was only 4 mm, requiring large numbers of passes for both full (12) and partial (7 + 1) gating methods. The number of required passes decreased significantly for 3 and 30 fractions, allowing residual motion up to 7 mm. Overall, the multi-pass gating technique was shown to be a promising

  1. Feasibility study of multi-pass respiratory-gated helical tomotherapy of a moving target via binary MLC closure.

    PubMed

    Kim, Bryan; Chen, Jeff; Kron, Tomas; Battista, Jerry

    2010-11-21

    Gated radiotherapy of lung lesions is particularly complex for helical tomotherapy, due to the simultaneous motions of its three subsystems (gantry, couch and collimator). We propose a new way to implement gating for helical tomotherapy, namely multi-pass respiratory gating. In this method, gating is achieved by delivering only the beam projections that occur within a respiratory gating window, while blocking the rest of the beam projections by fully closing all collimator leaves. Due to the continuous couch motion, the planned beam projections must be delivered over multiple passes of radiation deliveries. After each pass, the patient couch is reset to its starting position, and the treatment recommences at a different phase of tumour motion to 'fill in' the previously blocked beam projections. The gating process may be repeated until the plan dose is delivered (full gating), or halted after a certain number of passes, with the entire remaining dose delivered in a final pass without gating (partial gating). The feasibility of the full gating approach was first tested for sinusoidal target motion, through experimental measurements with film and computer simulation. The optimal gating parameters for full and partial gating methods were then determined for various fractionation schemes through computer simulation, using a patient respiratory waveform. For sinusoidal motion, the PTV dose deviations of -29 to 5% observed without gating were reduced to range from -1 to 3% for a single fraction, with a 4 pass full gating. For a patient waveform, partial gating required fewer passes than full gating for all fractionation schemes. For a single fraction, the maximum allowed residual motion was only 4 mm, requiring large numbers of passes for both full (12) and partial (7 + 1) gating methods. The number of required passes decreased significantly for 3 and 30 fractions, allowing residual motion up to 7 mm. Overall, the multi-pass gating technique was shown to be a promising

  2. Intrusive Thoughts: A Primary Variable in Breakup Distress

    ERIC Educational Resources Information Center

    Field, Tiffany; Diego, Miguel; Pelaez, Martha; Deeds, Osvelia; Delgado, Jeannette

    2013-01-01

    University students who were high versus low on breakup distress scores were given self-report measures to assess their intrusive thoughts about the romantic breakup and their somatic symptoms that followed the breakup as well as their extracurricular activities and social support that might alleviate their breakup distress. In a regression…

  3. Negative Emotions and Behaviors are Markers of Breakup Distress

    ERIC Educational Resources Information Center

    Field, Tiffany; Diego, Miguel; Pelaez, Martha; Deeds, Osvelia; Delgado, Jeanette

    2013-01-01

    Method: University students who experienced a recent romantic breakup were given several self-report measures and were then divided into high versus low breakup distress groups. Results: The high breakup distress versus the low breakup distress groups had higher scores on negative emotions scales including depression, anxiety and anger and…

  4. First results of electron temperature measurements by the use of multi-pass Thomson scattering system in GAMMA 10

    SciTech Connect

    Yoshikawa, M. Nagasu, K.; Shimamura, Y.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T.; Ichimura, M.; Yasuhara, R.; Yamada, I.; Funaba, H.; Kawahata, K.; Minami, T.

    2014-11-15

    A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.

  5. Electrostatic breakup in a misty plasma.

    PubMed

    Coppins, M

    2010-02-12

    A misty plasma is defined as a plasma containing small liquid droplets. In such a system, the droplets will undergo total electrostatic breakup if their charge exceeds the well-known Rayleigh limit. This imposes a minimum size on the droplets. Electrostatic breakup is a significant mechanism limiting droplet survival in a wide range of plasma applications, including plasma-enhanced chemical vapor deposition and fusion tokamaks. PMID:20366826

  6. Electrostatic Breakup in a Misty Plasma

    SciTech Connect

    Coppins, M.

    2010-02-12

    A misty plasma is defined as a plasma containing small liquid droplets. In such a system, the droplets will undergo total electrostatic breakup if their charge exceeds the well-known Rayleigh limit. This imposes a minimum size on the droplets. Electrostatic breakup is a significant mechanism limiting droplet survival in a wide range of plasma applications, including plasma-enhanced chemical vapor deposition and fusion tokamaks.

  7. Supercontinent Breakup and the Deep Earth

    NASA Astrophysics Data System (ADS)

    Torsvik, T. H.

    2014-12-01

    As many as five supercontinents have been proposed and the deep Earth probably holds the key to understand their breakup. The African and Pacific large low shear-wave velocity provinces (LLSVPs) have been stable for the entire Phanerozoic and possibly much longer. Their edges are the dominant source of deep plumes which travel from the base of the mantle to the surface where episodic large igneous province (LIP) activity has punctuated plate tectonics by creating and modifying plate boundaries. Pangea, the best-documented supercontinent, formed at the end of the Carboniferous (320 Ma) by fusing Gondwana and Laurussia. The Panjal Traps (289 Ma) probably assisted in an early Pangea breakup phase (opening of the Neotethys) but the most important phase of breakup started when the Central Atlantic Ocean opened at around 195 Ma. Perhaps not coincidentally, the region where the Atlantic spreading started was preceded by the emplacement of the Central Atlantic Magmatic Province (201 Ma), one of the largest LIPs. The Karoo LIP (183 Ma) heralded the Jurassic breakup of Pangea (separation of East and West Gondwana) whereas Paraná-Etendeka LIP activity (134 Ma) preceded South Atlantic break-up by a few million years. The North Atlantic realm experienced prolonged Late Palaeozoic to Cenozoic extension and sedimentary basin formation but the final Early Eocene break-up occurred shortly after a massive episode of volcanism and LIP formation (North Atlantic Igneous Province, 62 Ma) as in most Pangea breakup examples. All LIPs assisting Pangea breakup were sourced by plumes from the margin of the African LLSVP.

  8. Air induced breakup of drops.

    NASA Astrophysics Data System (ADS)

    Han, Jaehoon; Tryggvason, Gretar

    1997-11-01

    The deformation and breakup of drops subject to both sudden and gradual acceleration is examined by axisymmetric inviscid and full numerical simulations. In the full simulations, the Navier Stokes equations are solved for the fluid inside and outside of the drop by a Front Tracking/Finite Difference Method. In the limit of small density stratification, inviscid simulations show the formation of a toroidal drop for small surface tension and the formation of skirts as the surface tension is increased. The viscous computations show a similar transition plus a RbagS break up for a relatively high surface tension, but not high enough so that the drop reaches a steady state deformation. The RbagS break up mode appears when the drop slows down due to viscous dissipation after most of its fluid has accumulated in the rim, forming a torous connected by a thin film. A RbagS is formed when the rim starts to fall faster than the film. The various break up modes, as a function of the Ohnesorge and Weber (or Eotvos) numbers as well as property ratios is discussed. Supported by AFOSR.

  9. On the breakup of viscous liquid threads

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1995-01-01

    A one-dimensional model evolution equation is used to describe the nonlinear dynamics that can lead to the breakup of a cylindrical thread of Newtonian fluid when capillary forces drive the motion. The model is derived from the Stokes equations by use of rational asymptotic expansions and under a slender jet approximation. The equations are solved numerically and the jet radius is found to vanish after a finite time yielding breakup. The slender jet approximation is valid throughout the evolution leading to pinching. The model admits self-similar pinching solutions which yield symmetric shapes at breakup. These solutions are shown to be the ones selected by the initial boundary value problem, for general initial conditions. Further more, the terminal state of the model equation is shown to be identical to that predicted by a theory which looks for singular pinching solutions directly from the Stokes equations without invoking the slender jet approximation throughout the evolution. It is shown quantitatively, therefore, that the one-dimensional model gives a consistent terminal state with the jet shape being locally symmetric at breakup. The asymptotic expansion scheme is also extended to include unsteady and inerticial forces in the momentum equations to derive an evolution system modelling the breakup of Navier-Stokes jets. The model is employed in extensive simulations to compute breakup times for different initial conditions; satellite drop formation is also supported by the model and the dependence of satellite drop volumes on initial conditions is studied.

  10. Exclusive Measurements of Breakup Reactions in the {sup 7}Li+{sup 144}Sm System

    SciTech Connect

    Heimann, D. Martinez; Pacheco, A. J.; Arazi, A.; Figueira, J. M.; Negri, A.; Capurro, O. A.; Carnelli, P.; Fimiani, L.; Grinberg, P.; Marti, G. V.; Testoni, J. E.; Monteiro, D. S.; Marta, H. D.

    2009-03-04

    Breakup reactions induced by a 30 MeV {sup 7}Li beam on a {sup 144}Sm target were measured through the coincident detection of the light particles emitted in the reaction plane. The emphasis of the measurements and data analysis was placed in the complete characterization of the reaction by means of the identification of the breakup products and the experimental extraction of the physically relevant magnitudes. The coincident yield of the emitted light particles was compared with the results of kinematical calculations that were done assuming different distributions for these magnitudes and taking into account the geometric response of the detection system. The results of this comparison indicate in all cases a clear dominance of a process compatible with the breakup of {sup 6}Li through the 3{sup +} resonant state at 2.186 MeV following one-neutron transfer from the projectile to the target, over the breakup of the projectile itself. Relative cross sections as a function of the emission angle of the {sup 6}Li and the in-plane anisotropy of the subsequent emission of breakup products were extracted from the data.

  11. Three-cluster breakup in deuteron-deuteron collisions: Single-scattering approximation

    NASA Astrophysics Data System (ADS)

    Deltuva, A.; Fonseca, A. C.

    2016-04-01

    We present results for the three-cluster breakup in deuteron-deuteron collisions at 130 and 270 MeV deuteron beam energy. The breakup amplitude is calculated using the first term in the Neumann series expansion of the corresponding exact four-nucleon equations. In analogy with nucleon-deuteron breakup where an equivalent approximation is compared with exact calculations, we expect this single-scattering approximation to provide a rough estimation of three-body breakup observables in quasifree configurations. We predict the nucleon-deuteron and deuteron-deuteron three-cluster breakup cross sections to be of a comparable size and thereby question the reliability of the recent experimental data [A. Ramazani-Moghaddam-Arani, Ph.D. thesis, University of Groningen, 2009; A. Ramazani-Moghaddam-Arani et al., EPJ Web Conf. 3, 04012 (2010), 10.1051/epjconf/20100304012], which are smaller by about three orders of magnitude. We also show that an equivalent single-scattering approximation provides a reasonable description of deuteron-deuteron elastic scattering at forward-scattering angles.

  12. Multipass open-path Fourier-transform infrared measurements for nonintrusive monitoring of gas turbine exhaust composition.

    PubMed

    Schäfer, Klaus; Brockmann, Klaus; Heland, Jörg; Wiesen, Peter; Jahn, Carsten; Legras, Olivier

    2005-04-10

    The detection limits for NO and NO2 in turbine exhausts by nonintrusive monitoring have to be improved. Multipass mode Fourier-transform infrared (FTIR) absorption spectrometry and use of a White mirror system were found from a sensitivity study with spectra simulations in the mid-infrared to be essential for the retrieval of NO2 abundances. A new White mirror system with a parallel infrared beam was developed and tested successfully with a commercial FTIR spectrometer in different turbine test beds. The minimum detection limits for a typical turbine plume of 50 cm in diameter are approximately 6 parts per million (ppm) for NO and 9 ppm for NO2 (as well 100 ppm for CO2 and 4 ppm for CO). PMID:15835364

  13. Development of orbital debris spacecraft breakup models

    NASA Astrophysics Data System (ADS)

    Tedeschi, William J.; Connell, John C.; McKnight, Darren S.

    1991-08-01

    The Defense Nuclear Agency has initiated an Orbital Debris Spacecraft Breakup Modeling Program to improve the accuracy and usefulness of satellite breakup models with an emphasis on collision-induced events. Empirical, semianalytic, and complex approaches are used in the modeling. Current results from the modeling effort are presented and discussed along with data from associated hypervelocity impact test programs. It is shown that major improvements in modeling have been made but that milestones must be achieved before the models will routinely provide accurate predictions for a wide range of collision scenarios.

  14. Renormalization for breakup of invariant tori

    NASA Astrophysics Data System (ADS)

    Apte, A.; Wurm, A.; Morrison, P. J.

    2005-01-01

    We present renormalization group operators for the breakup of invariant tori with winding numbers that are quadratic irrationals. We find the simple fixed points of these operators and interpret the map pairs with critical invariant tori as critical fixed points. Coordinate transformations on the space of maps relate these fixed points, and also induce conjugacies between the corresponding operators.

  15. Computational modelling of microfluidic capillary breakup phenomena

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Sprittles, James; Oliver, Jim

    2013-11-01

    Capillary breakup phenomena occur in microfluidic flows when liquid volumes divide. The fundamental process of breakup is a key factor in the functioning of a number of microfluidic devices such as 3D-Printers or Lab-on-Chip biomedical technologies. It is well known that the conventional model of breakup is singular as pinch-off is approached, but, despite this, theoretical predictions of the global flow on the millimetre-scale appear to agree well with experimental data, at least until the topological change. However, as one approaches smaller scales, where interfacial effects become more dominant, it is likely that such unphysical singularities will influence the global dynamics of the drop formation process. In this talk we develop a computational framework based on the finite element method capable of resolving diverse spatio-temporal scales for the axisymmetric breakup of a liquid jet, so that the pinch-off dynamics can be accurately captured. As well as the conventional model, we discuss the application of the interface formation model to this problem, which allows the pinch-off to be resolved singularity-free, and has already been shown to produce improved flow predictions for related ``singular'' capillary flows.

  16. Projectile deformation effects in the breakup of 37Mg

    NASA Astrophysics Data System (ADS)

    Shubhchintak; Chatterjee, R.; Shyam, R.

    2016-05-01

    We study the breakup of 37Mg on Pb at 244MeV/u with the recently developed extended theory of Coulomb breakup within the postform finite range distorted wave Born approximation that includes deformation of the projectile. Comparing our calculated cross section with the available Coulomb breakup data we determine the possible ground state configuration of 37Mg.

  17. Supercontinent break-up: Causes and consequences

    NASA Astrophysics Data System (ADS)

    Li, Z. X.

    2014-12-01

    Supercontinent break-up has most commonly been linked to plume or superplume events, and/or supercontinent thermal insulation, but precise mechanisms are yet to be worked out. Even less know is if and what roles other factors may play. Key factors likely include gravitational force due to the continental superswell driven by both the lower-mantle superplume and continental thermal insulation, mental convention driven by the superplume and individual plumes atop the superplume, assisted by thermal/magmatic weakening of the supercontinent interior (both plume heat and thermal insulation heat). In addition, circum-supercontinent slab downwelling may not only drive the formation of the antipodal superplumes (thus the break-up of the supercontinent), the likely roll-back of the subduction system would also create extension within the supercontinent, facilitating supercontinent break-up. Consequences of supercontinent break-up include long-term sea-level rise, climatic changes due to changes in ocean circulation pattern and carbon cycle, and biodiversification. It has long been demonstrated that the existence of the supercontinent Pangea corresponds to a long-term sea-level drop, whereas the break-up of the supercontinent corresponds to a long-term sea-level rise (170 m higher than it is today). A recent analysis of Neoproterozoic sedimentary facies illustrates that the time of Neoproterozoic supercontinent Rodinia corresponds to a low in the percentage of deep marine facies occurrence, whereas the time of Rodinia break-up corresponds to a significantly higher percentage of deep marine facies occurrence. The long-tern sea-level drop during supercontinent times were likely caused by both plume/superplume dynamic topography and an older mean age of the oceanic crust, whereas long-tern sea-level rise during supercontinent break-up (720-580 Ma for Rodinia and Late Jurassic-Cretaceous for Pangea) likely corresponds to an younger mean age of the oceanic crust, massive plume

  18. Multi-Pass Approach for Mobile Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Nolan, J.; Eckels, R.; Evers, M.; Singh, R.; Olsen, M. J.

    2015-08-01

    Mobile Terrestrial Laser Scanning (MTLS) has been utilised for an increasing number of corridor surveys. Current MTLS surveys require that many targets be placed along the corridor to monitor the MTLS trajectory's accuracy. These targets enable surveyors to directly evaluate the magnitude of GNSS errors at regular intervals and can also be used to adjust the trajectory to the survey control. However, this "Multi-Target" approach (MTA) is an onerous task that can significantly reduce efficiency. It also is inconvenient to the travelling public, as lanes are often blocked and traffic slowed to permit surveyors to work safely along the road corridor. This paper introduces a "Multi-Pass" approach (MPA), which minimises the number of targets required for monitoring the GNSS-controlled trajectory while still maintaining strict engineering accuracies. MPA uses the power of multiple, independent MTLS passes with different GNSS constellations to generate a "Control Polyline" from the point cloud for the corridor. The Control Polyline can be considered as a statistically valid survey measurement and be incorporated in a network adjustment to strengthen a control network by identifying outliers. Results from a test survey at the MTLS course maintained by the Oregon Department of Transportation illustrate the effectiveness of this approach.

  19. Multi-Pass Malware Sandbox Analysis with Controlled Internet Connection

    NASA Astrophysics Data System (ADS)

    Yoshioka, Katsunari; Matsumoto, Tsutomu

    Malware sandbox analysis, in which a malware sample is actually executed in a testing environment (i.e. sandbox) to observe its behavior, is one of the promising approaches to tackling the emerging threats of exploding malware. As a lot of recent malware actively communicates with remote hosts over the Internet, sandboxes should also support an Internet connection, otherwise important malware behavior may not be observed. In this paper, we propose a multi-pass sandbox analysis with a controlled Internet connection. In the proposed method, we start our analysis with an isolated sandbox and an emulated Internet that consists of a set of dummy servers and hosts that run vulnerable services, called Honeypots in the Sandbox (HitS). All outbound connections from the victim host are closely inspected to see if they could be connected to the real Internet. We iterate the above process until no new behaviors are observed. We implemented the proposed method in a completely automated fashion and evaluated it with malware samples recently captured in the wild. Using a simple containment policy that authorizes only certain application protocols, namely, HTTP, IRC, and DNS, we were able to observe a greater variety of behaviors compared with the completely isolated sandbox. Meanwhile, we confirmed that a noticeable number of IP scans, vulnerability exploitations, and DoS attacks are successfully contained in the sandbox. Additionally, a brief comparison with two existing sandbox analysis systems, Norman Sandbox and CWSandbox, are shown.

  20. Free viewpoint image generation using multi-pass dynamic programming

    NASA Astrophysics Data System (ADS)

    Fukushima, Norishige; Yendo, Tomohiro; Fujii, Toshiaki; Tanimoto, Masayuki

    2007-02-01

    Ray-Space is categorized by Image-Based Rendering (IBR), thus generated views have photo-realistic quality. While this method has the performance of high quality imaging, this needs a lot of images or cameras. The reason why that is Ray-Space requires various direction's and position's views instead of 3D depth information. In this paper, we reduce that flood of information using view-centered ray interpolation. View-centered interpolation means estimating view dependent depth value (or disparity map) at generating view-point and interpolating that of pixel values using multi-view images and depth information. The combination of depth estimation and interpolation realizes the rendering photo-realistic images effectively. Unfortunately, however, if depth estimation is week or mistake, a lot of artifacts appear in creating images. Thus powerful depth estimation method is required. When we render the free viewpoint images video, we perform the depth estimation at every frame. Thus we want to keep a lid on computing cost. Our depth estimation method is based on dynamic programming (DP). This method optimizes and solves depth images at the weak matching area with high-speed performance. But scan-line noises become appeared because of the limit of DP. So, we perform the DP multi-direction pass and sum-up the result of multi-passed DPs. Our method fulfills the low computation cost and high depth estimation performance.

  1. Entrainment instability and vertical motion as causes of stratocumulus breakup

    NASA Technical Reports Server (NTRS)

    Weaver, C. J.; Pearson, R., Jr.

    1990-01-01

    Entrainment instability is thought to be a cause of stratocumulus breakup. At the interface between the cloud and the overlying air, mixtures may form which are negatively buoyant because of cloud droplet evaporation. Quantities devised to predict breakup are obtained from aircraft observations and are tested against cloud observations from satellite. Often, the parameters indicate that breakup should occur but the clouds remain, sometimes for several days. One possible explanation for breakup is vertical motion from passing synoptic cyclones. Several cases suggest that breakup is associated with the downward vertical motion from the cold air advected behind an eastward moving cyclone.

  2. Coupled map lattice model of jet breakup

    SciTech Connect

    Minich, R W; Schwartz, A J; Baker, E L

    2001-01-25

    An alternative approach is described to evaluate the statistical nature of the breakup of shaped charge liners. Experimental data from ductile and brittle copper jets are analyzed in terms of velocity gradient, deviation of {Delta}V from linearity, R/S analysis, and the Hurst exponent within the coupled map lattice model. One-dimensional simulations containing 600 zones of equal mass and using distinctly different force-displacement curves are generated to simulate ductile and brittle behavior. A particle separates from the stretching jet when an element of material reaches the failure criterion. A simple model of a stretching rod using brittle, semi-brittle, and ductile force-displacement curves is in agreement with the experimental results for the Hurst exponent and the phase portraits and indicates that breakup is a correlated phenomenon.

  3. Ice breakup: Observations of the acoustic signal

    NASA Astrophysics Data System (ADS)

    Waddell, S. R.; Farmer, D. M.

    1988-03-01

    We describe observations of ambient sound beneath landfast ice in the Canadian Arctic Archipelago and interpret its evolution over the period June-August in terms of ice cracking and disintegration. The data were recorded on six bands between 50 and 14,500 Hz for the period April 2 to August 7, 1986, in Dolphin and Union Strait. The frequency dependence of the attenuation of sound in water allows separation of distant and local noise sources. In conjunction with satellite imagery and meteorological data, it is shown that strong signals in the acoustic time series are associated with major breakup events. The acoustic signal can provide predictive information about ice conditions and the approach of breakup.

  4. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  5. Dynamics of polymeric drop breakup in microchannels

    NASA Astrophysics Data System (ADS)

    Arratia, Paulo; Gollub, Jerry; Durian, Douglas

    2006-11-01

    The dynamics of drop formation of sheared polymeric and Newtonian fluids are investigated in a 50 μm microchannel. Inverse emulsions are obtained in a cross-like geometry by impinging a continuous oil phase (with surfactant) onto either a polymeric or a Newtonian aqueous solution. The viscosity ratio between the continuous and dispersed phases is kept close to unity, and both flow rates are varied. Solutions containing small amounts (100 ppm) of flexible polymers strongly affect the filament and drop breakup processes when compared to a Newtonian solution of similar viscosity. We find that the thinning of the filament for the Newtonian case is characterized by linear decline followed by a rapid approach to breakup. The polymeric case shows an initial Newtonian-like thinning followed by a slower, elasticity- dominated thinning. Consequently, the filament breakup time and length are considerably increased for the polymeric solutions. Also, larger primary drops and beads-on-string phenomena are found for the polymer solutions.

  6. Ice multiplication by mechanical breakup and lightning

    NASA Astrophysics Data System (ADS)

    Phillips, Vaughan; Yano, Jun-Ichi

    2016-04-01

    Laboratory studies have proven the existence of several pathways for fragmentation of ice. One of these is the rime-splintering of graupel or hail in the -3 to -8 degC region (the Hallett-Mossop process). In some clouds, however, the cloud-base is too cold for this process to be active. Instead, breakup can occur by fragmentation of ice mechanically in re-bounding collisions between crystals, snow, graupel or hail. A new theoretical formulation of this mechanical breakup process of multiplication is presented for these types of ice. A numerical scheme is derived by simulation of published laboratory experiments. The role of such breakup in clouds is quantified by 3D simulations with a cloud-resolving aerosol-cloud model with emulated bin microphysics, detailed treatment of ice morphology and 7 chemical species of aerosol. Graupel-graupel collisions are predicted to produce copious numbers of ice crystals in the cold-base convective cloud simulated over Kansas. Implications for lightning from such multiplication, also simulated numerically, are discussed.

  7. First results of electron temperature measurements by the use of multi-pass Thomson scattering system in GAMMA 10.

    PubMed

    Yoshikawa, M; Yasuhara, R; Nagasu, K; Shimamura, Y; Shima, Y; Kohagura, J; Sakamoto, M; Nakashima, Y; Imai, T; Ichimura, M; Yamada, I; Funaba, H; Kawahata, K; Minami, T

    2014-11-01

    A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system. PMID:25430214

  8. Optical rotation in excess of 100 rad generated by Rb vapor in a multipass cell

    SciTech Connect

    Li, S.; Vachaspati, P.; Sheng, D.; Dural, N.; Romalis, M. V.

    2011-12-15

    Paramagnetic Faraday rotation is a powerful technique for atom sensing widely used in quantum nondemolition measurements, fundamental symmetry tests, and other precision measurements. We demonstrate the use of a multipass optical cell for Faraday rotation spectroscopy and observe polarization rotation in excess of 100 rad from spin-polarized Rb vapor. Unlike optical cavities, multipass cells have a deterministic number of light passes and can be used to measure large optical rotations. We also observe a tenfold suppression of transverse spin relaxation when Rb atoms are placed in a coherent superposition state immune to spin-exchange collisions.

  9. Optical rotation in excess of 100 rad generated by Rb vapor in a multipass cell

    NASA Astrophysics Data System (ADS)

    Li, S.; Vachaspati, P.; Sheng, D.; Dural, N.; Romalis, M. V.

    2011-12-01

    Paramagnetic Faraday rotation is a powerful technique for atom sensing widely used in quantum nondemolition measurements, fundamental symmetry tests, and other precision measurements. We demonstrate the use of a multipass optical cell for Faraday rotation spectroscopy and observe polarization rotation in excess of 100 rad from spin-polarized Rb vapor. Unlike optical cavities, multipass cells have a deterministic number of light passes and can be used to measure large optical rotations. We also observe a tenfold suppression of transverse spin relaxation when Rb atoms are placed in a coherent superposition state immune to spin-exchange collisions.

  10. A multi-pass pumping scheme for thin disk lasers with good anti-disturbance ability.

    PubMed

    Huang, Yan; Zhu, Xiao; Zhu, Guangzhi; Shang, Jianli; Wang, Hailin; Qi, Lijun; Zhu, Changhong; Guo, Fei

    2015-02-23

    A multi-pass pumping scheme for thin disk lasers consisting of dual parabolic mirrors with conjugated relationship is presented. The anti-disturbance ability of pumping is analyzed by ray tracing method under different kinds of disturbances. Both theoretical and experiment results show that disturbances in this system won't lead to a misalignment of each pumping spot, but only the position of superposed pumping spot on disk crystal will be changed. Compared with the multi-pass pumping scheme consisting of parabolic mirror and folding prisms, this pumping scheme has a better anti-disturbance ability. PMID:25836497

  11. Development of a TW Level Cr:LiSAF Multipass Amplifier

    NASA Astrophysics Data System (ADS)

    Samad, Ricardo Elgul; Nogueira, Gesse Eduardo Calvo; Baldochi, Sonia Licia; Vieira, Nilson Dias

    2008-04-01

    We report here the operation, at 5 Hz, of a multipass flashlamp pumped Cr:LiSAF ultrashort pulse amplifier, presenting peak powers over 0.3 TW. This unusual high repetition rate was obtained by using two-flashlamp pumping scheme, aiming the minimization of the thermal load on the gain medium by the use of intracavity absorption filters. This cavity was used as a four-passes multipass amplifier in a hybrid Ti:Sapphire/Cr:LiSAF system. The maximum amplification factor was 150, and the compressed pulse duration was 60 fs.

  12. A 5 Hz flashlamp pumped Cr:LiSAF multipass amplifier for ultrashort pulses

    NASA Astrophysics Data System (ADS)

    Samad, R. E.; Nogueira, G. E. C.; Baldochi, S. L.; Vieira, N. D., Jr.

    2008-10-01

    We report here the operation, at 5 Hz, of a multipass flashlamp pumped Cr:LiSAF ultrashort pulse amplifier, presenting peak powers over 0.3 TW. This unusual high repetition rate was obtained by using a two-flashlamp pumping scheme, aiming at the minimization of the thermal load on the gain medium by the use of intracavity absorption filters. This cavity was used as a four-pass multipass amplifier in a hybrid Ti:sapphire/Cr:LiSAF system. The maximum amplification factor was 150, and the compressed pulse duration was 60 fs.

  13. Performance of a prototype for a large-aperture multipass Nd:glass laser for inertial confinement fusion

    SciTech Connect

    Van Wonterghem, B.M.; Murray, J.R.; Campbell, J.H.; Speck, D.R.; Barker, C.E.; Smith, I.C.; Browning, D.F.; Behrendt, W.C.

    1997-07-01

    The Beamlet is a single-beam prototype of future multibeam megajoule-class Nd:glass laser drivers for inertial confinement fusion. It uses a multipass main amplifier, adaptive optics, and efficient, high-fluence frequency conversion to the third harmonic. The Beamlet amplifier contains Brewster-angle glass slabs with a clear aperture of 39 cm{times}39 cm and a full-aperture plasma-electrode Pockels cell switch. It has been successfully tested over a range of pulse lengths from 1{endash}10 ns up to energies at 1.053 {mu}m of 5.8 kJ at 1 ns and 17.3 kJ at 10 ns. A 39-actuator deformable mirror corrects the beam quality to a Strehl ratio of as much as 0.4. The 1.053-{mu}m output has been converted to the third harmonic at efficiencies as high as 80{percent} and fluences as high as 8.7 J/cm{sup 2} for 3-ns pulses. {copyright} 1997 Optical Society of America

  14. Study of cluster structures in 10Be and 16C neutron-rich nuclei via break-up reactions

    NASA Astrophysics Data System (ADS)

    Dell'Aquila, D.; Acosta, L.; Amorini, F.; Andolina, R.; Auditore, L.; Berceanu, I.; Cardella, G.; Chatterjiee, M. B.; De Filippo, E.; Francalanza, L.; Gnoffo, B.; Grzeszczuk, A.; Lanzalone, G.; Lombardo, I.; Martorana, N.; Minniti, T.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Pop, A.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Rosato, E.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.

    2016-05-01

    Projectile break-up reactions induced on polyethylene (CH2) target are used in order to study the spectroscopy of 10Be and 16C nuclei. For the present experiment we used 10Be and 16C beams delivered by the FRIBs facility at INFN-LNS, and the CHIMERA 4π multi-detector. 10Be and 16C structures are studied via a relative energy analysis of break-up fragments. The 4He+6He break-up channel allowed us to study the spectroscopy of 10Be; in particular we find evidence of a new state in 10Be at 13.5 MeV excitation energy. The 16C nucleus is studied via 6He-10Be correlation; we find the fingerprint of a possible state at about 20.6 MeV

  15. Breakup locations: Intertwining effects of nuclear structure and reaction dynamics

    NASA Astrophysics Data System (ADS)

    Dasgupta, M.; Simpson, E. C.; Luong, D. H.; Kalkal, Sunil; Cook, K. J.; Carter, I. P.; Hinde, D. J.; Williams, E.

    2016-05-01

    Studies at the Australian National University aim to distinguish breakup of the projectile like-nucleus that occurs when approaching the target from that when receding from the target. Helped by breakup simulations, observables have been found that are sensitive to the breakup location, and thus to the mean-lives of unbound states; sensitivity to even sub-zeptosecond lifetime is found. These results provide insights to understand the reaction dynamics of weakly bound nuclei at near barrier energies.

  16. Experimental study of Three-Nucleon Dynamics in the dp breakup reaction

    NASA Astrophysics Data System (ADS)

    Kłos, B.; Ciepał, I.; Khatri, G.; Kistryn, S.; Kozela, A.; Magiera, A.; Parol, W.; Skwira-Chalot, I.; Stephan, E.; Szpik, K.

    2016-03-01

    An experiment to investigate the 1H(d,pp)n breakup reaction using a deuteron beam of 340, 380 and 400 MeV and the WASA detector has been performed at the Cooler Synchrotron COSY-Jülich. The main goal was a detailed study of various aspects of fewnucleon dynamics like the three nucleon force (3NF), the long-range Coulomb interaction or relativistic effects in the medium energy region. The relativistic effects and their interplay with 3NF become more important with increasing available energy in the three nucleon system. The almost 4π geometry of the WASA detector provides an unique possibility to study various aspects of dynamics. The studies of the 3N system dynamics in the breakup reaction with BINA detector are continued in the Cyclotron Center Bronowice.

  17. Recent Breakups in the Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Nesvorny, D.

    2005-08-01

    Much of what we see in the asteroid belt today is a consequence of past collisions, which shaped the size-frequency distribution of asteroids and led to their heavily-cratered surfaces. Perhaps the most remarkable features of the belt are the asteroid families [1]. An asteroid family is a group of asteroid fragments with similar orbits and spectra produced by a collisional breakup of a large parent body. More than fifty families have been identified to date in the main belt [2]. These structures, when properly analyzed, hold important clues to the interior structure of asteroids, the physics of large scale collisions, and the overall evolution of the main belt since its formation [3]. Most of the known families are very old and thus have experienced significant dynamical and collisional erosion since their formation. This makes it difficult to clearly distinguish between features produced by the original breakup and those produced by on-going processes. Recent dynamical studies, however, have identified several asteroid families that are extremely young: the Iannini, Karin and Veritas families apparently formed at <5, 5.8 and 8.3 Ma, respectively [4,5]. These families represent nearly pristine examples of ejected fragments produced by disruptive asteroid collisions, because the observed remnants of recent breakups have apparently suffered limited dynamical and collisional erosion. Here we will discuss how studies of young asteroid families help us glean insights into the physics of large scale collisions, dynamical processes that affect small bodies in the Solar System, and the surface and interior properties of asteroids. [1] Hirayama, 1918, AJ 31, 185--188. [2] Zappala et al., 2002, In Asteroids III, pp. 619-629. [3] Bottke et al., 2005, Icarus, 175, 111-140. [4] Nesvorny et al., 2002, Nature 417, 720--722. [5] Nesvorny et al., 2003, ApJ 591, 486--497.

  18. Multipass reconfiguration of the HELEN Nd:glass laser at the Atomic Weapons Establishment.

    PubMed

    Norman, Michael J; Andrew, James E; Bett, Thomas H; Clifford, Roger K; England, John E; Hopps, Nicholas W; Parker, Kenneth W; Porter, Kenneth; Stevenson, Mark

    2002-06-20

    The HELEN high-power Nd:glass laser has been rebuilt in a new multipass configuration that requires fewer components to maintain existing performance. This is expected to lead to greater system availability and reduced running costs. We describe the new design, discuss some of the key issues that had to be addressed, and present operational results. PMID:12078672

  19. Elastic Coulomb breakup of 34Na

    NASA Astrophysics Data System (ADS)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  20. Pangea formation and break-up

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond

    2013-04-01

    The Palaeozoic was dominated by the great continent Gondwana. Other continents included Laurentia and Baltica that fused (together with Avalonia), forming Laurussia after the closure of the Iapetus Ocean, making the second largest continental entity in the Silurian. By the Carboniferous at around 320 Ma, Gondwana and Laurussia amalgamated, forming Pangea that was surrounded by the Panthalassa and Paleotethys Oceans. Pangea did not include all continental crust. For example, the South and North China Blocks were not part of Pangea at any given time and also during the Early Permian phase of Pangea assembly, the Neotethys opened, and Cimmerian terranes drifted away from the NE Gondwana margin while the Paleotethys was being subducted beneath Eurasia. An additional, unresolved question is whether Siberia was fully joined to Pangea before the eruption of the Siberian Traps (251 Ma). Practically all Permian Pangea reconstructions using palaeomagnetic data result in considerable overlap between Laurussia and Gondwana, as both are straddling the equator, and thus Gondwana must be moved sideways to avoid this overlap, and at a younger time displaced dextrally to achieve the well established starting point for Pangea break-up in the Jurassic. Octupole contributions can eliminate this overlap, but just by changing the internal fits within Laurussia and correcting all detrital sedimentary poles for inclination shallowing using a use a benchmark flattening (f) value of 0.6 (unless previously corrected using either the inclination-elongation method or anisotropy of magnetic susceptibility information) lead to an almost perfect Pangea-A type fit. Pangea break-up profoundly changed our planet, and the most important phase of break-up started when the Central Atlantic Ocean opened (ca. 195 Ma). Perhaps not coincidentally, the region where the Atlantic spreading started was preceded by the emplacement of the Central Atlantic Magmatic Province, one of the largest large igneous

  1. Breakup of Liquid Sheets and Jets

    NASA Astrophysics Data System (ADS)

    Lin, S. P.

    2003-09-01

    This book is an exposition of what we know about the physics underlying the onset of instability in liquid sheets and jets. Wave motion and breakup phenomena subsequent to the onset of instability are also carefully explained. Physical concepts are established through mathematics, accurate numerical analysis and comparison of theory with experiments. Exercises are provided for students new to the subject. Researchers interested in topics ranging from transition to turbulence, hydrodynamic stability or combustion will find this book a useful resource, whether their background lies in engineering, physics, chemistry, biology, medicine or applied mathematics.

  2. Reentry Breakup Recorder: An Innovative Device for Collecting Data during Breakup of Reentering Objects

    NASA Astrophysics Data System (ADS)

    Ailor, W. H.; Weaver, M. A.

    2012-01-01

    More than 40 large, human-made, uncontrolled objects reenter the earth's atmosphere every year, and some fraction of the mass of each object survives to impact the ground or water. Some of these surviving objects are sizable and potentially hazardous. Recognizing this fact, space agencies are developing regulations and standards to limit ground hazards. Unfortunately, detailed information on how objects respond to the severe heating and loads environment is not available due to the difficulty in recording and broadcasting data during reentry and breakup. The Reentry Breakup Recorder (REBR) was developed using a different paradigm - rather than broadcasting data during the breakup event, record the data and broadcast it after the reentry has effectively ended, but before the data recorder actually impacts the Earth's surface. The paper describes how this approach minimizes the weight of the recording device and the overall cost of data recovery. The first flight tests of the REBR device were conducted in 2011; a REBR was inside the Japanese HTV2 and the European ATV-2 vehicles when they were deorbited into the Pacific Ocean. The paper presents a summary of the results of those tests and gives an overview of how future versions of REBR will revolutionize our understanding of reentry breakup and might be used to prototype "black box" systems for space transportation vehicles.

  3. Relating Breakup and Incomplete Fusion of Weakly Bound Nuclei through a Classical Trajectory Model with Stochastic Breakup

    SciTech Connect

    Diaz-Torres, A.; Hinde, D. J.; Dasgupta, M.; Gasques, L. R.; Tostevin, J. A.

    2007-04-13

    A classical dynamical model that treats breakup stochastically is presented for low energy reactions of weakly bound nuclei. The three-dimensional model allows a consistent calculation of breakup, incomplete, and complete fusion cross sections. The model is assessed by comparing the breakup observables with continuum discretized coupled-channel quantum mechanical predictions, which are found to be in reasonable agreement. Through the model, it is demonstrated that the breakup probability of the projectile as a function of its distance from the target is of primary importance for understanding complete and incomplete fusion at energies near the Coulomb barrier.

  4. The cometary breakup hypothesis re-examined

    NASA Astrophysics Data System (ADS)

    La Violette, P. A.

    1987-02-01

    The theory that a Chiron-like progenitor of both Comet Encke and the Tunguska cosmic body may have fragmented beginning around 22,000 years BP and that debris from this breakup was responsible for producing the high heavy metal concentrations observed in the Late Wisconin stage polar ice is shown to be incorrectly founded. This paper reexamines the geochemical comparison which Clube and Napier (1984) make between the composition of the Tunguska cosmic body and elemental abundances previously reported for a sample of Sn-rich dust retrieved from the Wisconsin section of the Camp Century ice core. No evidence is found that would link these two sources to a common origin. Thus the hypothesis that a cometary breakup was responsible for modulating the earth's climate and perpetuating the last ice age is unfounded. On the other hand, evidence is presented indicating that debris from the Tunguska explosion may be present in a firm layer at Dome C, East Antarctica. Analysis of the geochemical data for this stratum leads to an estimate of 10 to the 6th to 10 to the 7th t for the mass of the Tunguska body, in approximate agreement with previous determinations.

  5. Breakup Effects on University Students' Perceived Academic Performance

    ERIC Educational Resources Information Center

    Field, Tiffany; Diego, Miguel; Pelaez, Martha; Deeds, Osvelia; Delgado, Jeannette

    2012-01-01

    The Problem: Problems that might be expected to affect perceived academic performance were studied in a sample of 283 university students. Results: Breakup Distress Scale scores, less time since the breakup and no new relationship contributed to 16% of the variance on perceived academic performance. Variables that were related to academic…

  6. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.

    2005-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. Two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O Rourke et al, are further extended to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. This paper describes theoretical development of the current models, called "T-blob" and "T-TAB", for primary and secondary breakup respectivety. Several assessment studies are also presented in this paper.

  7. Characterization of a Tunable Quasi-Monoenergetic Neutron Beamfrom Deuteron Breakup

    SciTech Connect

    Bleuel, D.L.; McMahan, M.A.; Ahle, L.; Barquest, B.R.; Cerny, J.; Heilbronn, L.H.; Jewett, C.C.

    2006-12-14

    A neutron irradiation facility is being developed at the88-Inch Cyclotron at Lawrence Berkeley National Laboratory for thepurposes of measuring neutron reaction cross sections on radioactivetargets and for radiation effects testing. Applications are of benefit tostockpile stewardship, nuclear astrophysics, next generation advancedfuel reactors, and cosmic radiation biology and electronics in space. Thefacility will supply a tunable, quasi-monoenergetic neutron beam in therange of 10-30 MeV or a white neutron source, produced by deuteronbreakup reactions on thin and thick targets, respectively. Because thedeuteron breakup reaction has not been well studied at intermediateincident deuteron energies, above the target Coulomb barrier and below 56MeV, a detailed characterization was necessary of the neutron spectraproduced by thin targets.Neutron time of flight (TOF) methods have beenused to measure the neutron spectra produced on thin targets of low-Z(titanium) and high-Z (tantalum) materials at incident deuteron energiesof 20 MeV and 29 MeV at 0 deg. Breakup neutrons at both energies fromlow-Z targets appear to peak at roughly half of the available kineticenergy, while neutrons from high-Z interactions peak somewhat lower inenergy, owing to the increased proton energy due to breakup within theCoulomb field. Furthermore, neutron spectra appear narrower for high-Ztargets. These centroids are consistent with recent preliminary protonenergy measurements using silicon telescope detectors conducted at LBNL,though there is a notable discrepancy with spectral widths.

  8. Impacts, tillites, and the breakup of Gondwanaland

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Marshall, John R.; Aggarwal, Hans

    1993-01-01

    Mathematical analysis demonstrates that substantial impact crater deposits should have been produced during the last 2 Gy of Earth's history. Textures of impact deposits are shown to resemble textures of tillites and diamictites of Precambrian and younger ages. The calculated thickness distribution for impact crater deposits produced during 2 Gy is similar to that of tillites and diamictites of 2 Ga or younger. We suggest, therefore, that some tillites/diamictites could be of impact origin. Extensive tillite/diamictite deposits predated continental flood basalts on the interior of Gondwanaland. Significantly, other investigators have already associated impact cratering with flood basalt volcanism and continental rifting. Thus, it is proposed that the breakup of Gondwanaland could have been initiated by crustal fracturing from impacts.

  9. Electrohydrodynamic (EHD) stimulation of jet breakup

    NASA Technical Reports Server (NTRS)

    Crowley, J. M.

    1982-01-01

    Electrohydrodynamic (EHD) excitation of liquid jets offers an alternative to piezoelectric excitation without the complex frequency response caused by piezoelectric and mechanical resonances. In an EHD exciter, an electrode near the nozzle applies an alternating Coulomb force to the jet surface, generating a disturbance which grows until a drop breaks off downstream. This interaction is modelled quite well by a linear, long wave model of the jet together with a cylindrical electric field. The breakup length, measured on a 33 micrometer jet, agrees quite well with that predicted by the theory, and increases with the square of the applied voltage, as expected. In addition, the frequency response is very smooth, with pronounced nulls occurring only at frequencies related to the time which the jet spends inside the exciter.

  10. Comment on breakup densities of hot nuclei

    NASA Astrophysics Data System (ADS)

    Viola, V. E.; Kwiatkowski, K.; Yennello, S. J.; Natowitz, J. B.

    2006-06-01

    In [V.E. Viola et al., Phys. Rev. Lett. 93 (2004) 132701, D.S. Bracken et al., Phys. Rev. C 69 (2004) 034612] the observed decrease in spectral peak energies of IMFs emitted from hot nuclei was interpreted in terms of a breakup density that decreased with increasing excitation energy. Subsequently, Raduta et al. [Ad. Raduta et al., Phys. Lett. B 623 (2005) 43] performed MMM simulations that showed decreasing spectral peaks could be obtained at constant density. In this Letter we point out that this apparent inconsistency is due to a selective comparison of theory and data that overlooks the evolution of the fragment multiplicities as a function of excitation energy.

  11. Team formation and breakup in multiagent systems

    NASA Astrophysics Data System (ADS)

    Rao, Venkatesh Guru

    The goal of this dissertation is to pose and solve problems involving team formation and breakup in two specific multiagent domains: formation travel and space-based interferometric observatories. The methodology employed comprises elements drawn from control theory, scheduling theory and artificial intelligence (AI). The original contribution of the work comprises three elements. The first contribution, the partitioned state-space approach is a technique for formulating and solving co-ordinated motion problem using calculus of variations techniques. The approach is applied to obtain optimal two-agent formation travel trajectories on graphs. The second contribution is the class of MixTeam algorithms, a class of team dispatchers that extends classical dispatching by accommodating team formation and breakup and exploration/exploitation learning. The algorithms are applied to observation scheduling and constellation geometry design for interferometric space telescopes. The use of feedback control for team scheduling is also demonstrated with these algorithms. The third contribution is the analysis of the optimality properties of greedy, or myopic, decision-making for a simple class of team dispatching problems. This analysis represents a first step towards the complete analysis of complex team schedulers such as the MixTeam algorithms. The contributions represent an extension to the literature on team dynamics in control theory. The broad conclusions that emerge from this research are that greedy or myopic decision-making strategies for teams perform well when specific parameters in the domain are weakly affected by an agent's actions, and that intelligent systems require a closer integration of domain knowledge in decision-making functions.

  12. The Mesozoic breakup of the Weddell Sea

    NASA Astrophysics Data System (ADS)

    KöNig, Matthias; Jokat, Wilfried

    2006-12-01

    A new set of rotations is presented that describes a refined model for the early opening of the Weddell Sea between South America and Antarctica and the Mesozoic breakup of Gondwana. Published high-resolution aeromagnetic data from the eastern Weddell Sea and additional track data farther west in the Weddell Sea were used to constrain the new model for the opening of the Weddell Sea. Rotation parameters derived for the South America-Antarctica spreading regime were combined with constraints on the South America-Africa and Africa-Antarctica spreading systems to calculate a refined model for the Mesozoic breakup of Gondwana. Thereafter, at the time when the north-south oriented separation between Africa and Antarctica is initiated by rifting in the Somali and Mozambique basins (˜167 Ma), stretching and extension takes place in a basin comprising continental crust of the Filchner-Ronne Shelf, the Falkland Island block and the Maurice Ewing Bank. The first true ocean floor in the Weddell Sea is formed at about 147 Ma, after rifting between the Antarctic Peninsula and southernmost South America occurred. This is about 15-20 Myr later than previously estimated. Separation between South America and Antarctica takes place at slow spreading rates (14-12 mm/yr half rate) from 147 to 122 Ma and after 122 Ma (M2) at ultraslow spreading rates (˜8 mm/yr half rate) with little change in the NNW spreading direction throughout this time. A revised age range is proposed for the formation of the Explora Wedge (150-138 Ma), which is more than 30 Myr later than previously published (˜183 Ma).

  13. Neutron-neutron quasifree scattering in nd breakup at 10 MeV

    NASA Astrophysics Data System (ADS)

    Malone, R. C.; Crowe, B.; Crowell, A. S.; Cumberbatch, L. C.; Esterline, J. H.; Fallin, B. A.; Friesen, F. Q. L.; Han, Z.; Howell, C. R.; Markoff, D.; Ticehurst, D.; Tornow, W.; Witała, H.

    2016-03-01

    The neutron-deuteron (nd) breakup reaction provides a rich environment for testing theoretical models of the neutron-neutron (nn) interaction. Current theoretical predictions based on rigorous ab-initio calculations agree well with most experimental data for this system, but there remain a few notable discrepancies. The cross section for nn quasifree (QFS) scattering is one such anomaly. Two recent experiments reported cross sections for this particular nd breakup configuration that exceed theoretical calculations by almost 20% at incident neutron energies of 26 and 25 MeV [1, 2]. The theoretical values can be brought into agreement with these results by increasing the strength of the 1S0 nn potential matrix element by roughly 10%. However, this modification of the nn effective range parameter and/or the 1S0 scattering length causes substantial charge-symmetry breaking in the nucleon-nucleon force and suggests the possibility of a weakly bound di-neutron state [3]. We are conducting new measurements of the cross section for nn QFS in nd breakup. The measurements are performed at incident neutron beam energies below 20 MeV. The neutron beam is produced via the 2H(d, n)3He reaction. The target is a deuterated plastic cylinder. Our measurements utilize time-of-flight techniques with a pulsed neutron beam and detection of the two emitted neutrons in coincidence. A description of our initial measurements at 10 MeV for a single scattering angle will be presented along with preliminary results. Also, plans for measurements at other energies with broad angular coverage will be discussed.

  14. A scalable multipass laser cavity based on injection by frequency conversion for noncollective Thomson scattering

    SciTech Connect

    Schaeffer, D. B.; Constantin, C. G.; Everson, E. T.; Van Compernolle, B.; Kugland, N. L.; Niemann, C.; Ebbers, C. A.; Glenzer, S. H.

    2010-10-15

    A scalable setup using injection by frequency conversion to establish a multipassing cavity for noncollective Thomson scattering on low density plasmas is presented. The cavity is shown to support >10 passes through the target volume with a 400% increase in energy on target versus a single-pass setup. Rayleigh scattering experiments were performed and demonstrate the viability of the cell to study low density plasmas of the order of 10{sup 12}-10{sup 13} cm{sup -3}. A high-repetition, low-energy, single-pass Thomson scattering setup was also performed on the University of California, Los Angeles Large Plasma Device and shows that the multipass cavity could have a significant advantage over the high-repetition approach due to the cavity setup's inherently higher signal per shot.

  15. A scalable multipass laser cavity based on injection by frequency conversion for noncollective Thomson scattering.

    PubMed

    Schaeffer, D B; Kugland, N L; Constantin, C G; Everson, E T; Van Compernolle, B; Ebbers, C A; Glenzer, S H; Niemann, C

    2010-10-01

    A scalable setup using injection by frequency conversion to establish a multipassing cavity for noncollective Thomson scattering on low density plasmas is presented. The cavity is shown to support >10 passes through the target volume with a 400% increase in energy on target versus a single-pass setup. Rayleigh scattering experiments were performed and demonstrate the viability of the cell to study low density plasmas of the order of 10(12)-10(13) cm(-3). A high-repetition, low-energy, single-pass Thomson scattering setup was also performed on the University of California, Los Angeles Large Plasma Device and shows that the multipass cavity could have a significant advantage over the high-repetition approach due to the cavity setup's inherently higher signal per shot. PMID:21033873

  16. Baseline Estimation Algorithm with Block Adjustment for Multi-Pass Dual-Antenna Insar

    NASA Astrophysics Data System (ADS)

    Jin, Guowang; Xiong, Xin; Xu, Qing; Gong, Zhihui; Zhou, Yang

    2016-06-01

    Baseline parameters and interferometric phase offset need to be estimated accurately, for they are key parameters in processing of InSAR (Interferometric Synthetic Aperture Radar). If adopting baseline estimation algorithm with single pass, it needs large quantities of ground control points to estimate interferometric parameters for mosaicking multiple passes dual-antenna airborne InSAR data that covers large areas. What's more, there will be great difference between heights derived from different passes due to the errors of estimated parameters. So, an estimation algorithm of interferometric parameters with block adjustment for multi-pass dual-antenna InSAR is presented to reduce the needed ground control points and height's difference between different passes. The baseline estimation experiments were done with multi-pass InSAR data obtained by Chinese dual-antenna airborne InSAR system. Although there were less ground control points, the satisfied results were obtained, as validated the proposed baseline estimation algorithm.

  17. Factors affecting the strength of multipass low-alloy steel weld metal

    NASA Technical Reports Server (NTRS)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  18. Analysis of orbital occupancy of valence neutron in {sup 15}C through Coulomb breakup reactions

    SciTech Connect

    Singh, P. E-mail: pardeep.phy@dcrustm.org

    2015-03-15

    The Coulomb breakup reactions {sup 208}Pb({sup 15}C, {sup 14}C + n){sup 208}Pb and {sup 181}Ta({sup 15}C, {sup 14}C + n){sup 181}Ta have been studied at 68 and 85 A MeV beam energies, respectively, within the framework of the eikonal approximation to investigate the orbital occupancy of valence neutron in the {sup 15}C nucleus. The outcomes of the present work favor 0{sup +} ⊗ 2s{sub 1/2} as the core-neutron coupling for the ground-state structure with 0.91 as a spectroscopic factor.

  19. Reaction-dependent spin population and evidence of breakup in {sup 18}O

    SciTech Connect

    Hojman, D.; Pacheco, A.J.; Testoni, J.E.; Davidson, J.; Davidson, M.; Cardona, M.A.; Fernandez-Niello, J.O.; Kreiner, A.J.; Arazi, A.; Capurro, O.A.; Marti, G.V.; Bazzacco, D.; Lenzi, S.M.; Lunardi, S.; Alvarez, C. Rossi; Ur, C.; Burlon, A.; Debray, M.E.; De Angelis, G.; De Poli, M.

    2006-04-15

    Angular distributions and angular correlations have been measured for the emission of one and two {alpha}-particles in the {sup 18}O+{sup 207,208}Pb,{sup 209}Bi reactions at several beam energies above the Coulomb barrier. The results rule out fusion evaporation as the main reaction mechanism for the channels involving {alpha}-particle emission and support the interpretation of the breakup of the {sup 18}O projectiles into at least {sup 14}C+{alpha} and {sup 10}Be+{sup 8}Be before fusion.

  20. Stress Engineering of Multi-pass Welds of Structural Steel to Enhance Structural Integrity

    NASA Astrophysics Data System (ADS)

    Ganguly, Supriyo; Sule, Jibrin; Yakubu, Mustapha Y.

    2016-05-01

    In multi-pass welding, the weld metal and the associated heat-affected zone are subjected to repeated thermal cycling from successive deposition of filler metals. The thermal straining results into multi-mode deformation of the weld metal which causes a variably distributed residual stress field through the thickness and across the weld of a multi-pass weldment. In addition to this, the as-welded fusion zone microstructure shows dendritic formation of grains and segregation of alloying element. This may result in formation of micro-corrosion cells and the problem would aggravate in case of highly alloyed materials. Local mechanical tensioning is an effective way of elimination of the weld tensile residual stress. It has been shown that application of cold rolling is capable not only of removing the residual stress, but depending on its magnitude it may also form beneficial compressive stress state. Multi-pass structural steel welds used as structural alloy in general engineering and structural applications. Such alloys are subjected to severe in-service degradation mechanisms e.g., corrosion and stress corrosion cracking. Welds and the locked-in residual stress in the welded area often initiate the defect which finally results in failure. In the present study, a multi-pass structural steel weld metal was first subjected to post-weld cold rolling which was followed by controlled heating by a fiber laser. Cold straining resulted in redistribution of the internal stress through the thickness and controlled laser processing helps in reforming of the grain structure. However, even with controlled laser, processing the residual stress is reinstated. Therefore, a strategy has been adopted to roll the metal post-laser processing so as to obtain a complete stress-free and recrystallized microstructure.

  1. Trends of ice breakup date in south-central Ontario

    NASA Astrophysics Data System (ADS)

    Fu, Congsheng; Yao, Huaxia

    2015-09-01

    Large-scale ice phenology studies have revealed overall patterns of later freeze, earlier breakup, and shorter duration of ice in the Northern Hemisphere. However, there have been few studies regarding the trends, including their spatial patterns, in ice phenology for individual waterbodies on a local or small regional scale, although the coherence of ice phenology has been shown to decline rapidly in the first few hundred kilometers. In this study, we extracted trends, analyzed affecting factors, and investigated relevant spatial patterns for ice breakup date time series at 10 locations with record length ≥90 years in south-central Ontario, Canada. Wavelet methods, including the multiresolution analysis (MRA) method for nonlinear trend extraction and the wavelet coherence (WTC) method for identifying the teleconnections between large-scale climate modes and ice breakup date, are proved to be effective in ice phenology analysis. Using MRA method, the overall trend of ice breakup date time series (1905-1991) varied from earlier ice breakup to later ice breakup, then to earlier breakup again from south to north in south-central Ontario. Ice breakup date is closely correlated with air temperature during certain winter/spring months, as well as the last day with snow on the ground and number of snow-on-ground days. The influences of solar activity and Pacific North American on ice breakup were comparatively uniform across south-central Ontario, while those of El Niño-Southern Oscillation, North Atlantic Oscillation, and Arctic Oscillation on ice phenology changed with distance of 50-100 km in the north-south direction.

  2. Thin-disk multipass amplifier for ultrashort laser pulses with kilowatt average output power and mJ pulse energies

    NASA Astrophysics Data System (ADS)

    Negel, Jan-Philipp; Voss, Andreas; Abdou Ahmed, Marwan; Bauer, Dominik; Sutter, Dirk; Killi, Alexander; Graf, Thomas

    2014-05-01

    We report on a Yb:YAG thin-disk multipass amplifier for ultrashort laser pulses delivering an average output power of 1.1 kW which to the best of our knowledge is the highest output power reported from such a system so far. A modified commercial TruMicro5050 laser delivers the seed pulses with an average power of 80 W at a wavelength of 1030 nm, a pulse duration of 6.5 ps and a repetition rate of 800 kHz. These pulses are amplified to 1.38 mJ of pulse energy with a duration of 7.3 ps. To achieve this, we developed a scheme in which an array of 40 plane mirrors is used to geometrically fold the seed beam over the pumped thin-disk crystal. Exploiting the incoming linear polarization, an overall number of 40 double-passes through the disk was realized by using the backpath through the amplifier with the orthogonal linear polarization state. Thermal issues on the disk were mitigated by zero-phonon line pumping at a wavelength of 969 nm directly into the upper laser level and by employing a retroreflective mirror pair. The amplifier exhibits an optical efficiency of 44 % and a slope efficiency of 46 %. The beam quality was measured to be better than M2=1.25 at all power levels. As this system can deliver high pulse energies and high average output powers at the same time without the need of a CPA technique, it can be very suitable for high productivity material processing with ultrashort laser pulses.

  3. Two-Phase Refrigerant Flow Distribution in a Multipass Evaporator with Vertical Upward Main Tube

    NASA Astrophysics Data System (ADS)

    Watanabe, Manabu; Katasuta, Masafumi

    In this article, a calculation model that enables to predict two-phaseflow distribution in a multipass evaporator is proposed. The model considers the multipass evaporator as the combination of simple elements, i. e. straight pipes and T-junctions, and utilizes the correlations to predict the pressure drop at the elements. For the T-junction, however, we have so little knowledge, especially for the small diameter T-junction, that we make some experiments to evaluate the existing correlations for the junction pressure drop. We also do not have reliable model for predicting the phase separation characteristics, so that we used the empirical equations for liquid division ratio derived in our previous papers. By this model, gas phase flow distribution to each pass is determined as it makes the pressure at the outlet of each pass equal. Calculation results well predict the previously presented experimental data that were obtained under the condition of larger quality at the header inlet. The suitableness of this model suggests that the complexity of the two-phase flow distribution in multipass tube attributes to the phase separation phenomena in dividing two-phase flow at a T-junction

  4. Multi-pass gas cell designed for VOCs analysis by infrared spectroscopy system

    NASA Astrophysics Data System (ADS)

    Wang, Junbo; Wang, Xin; Wei, Haoyun

    2015-10-01

    Volatile Organic Compounds (VOCs) emitted from chemical, petrochemical, and other industries are the most common air pollutants leading to various environmental hazards. Regulations to control the VOCs emissions have been more and more important in China, which requires specific VOCs measurement systems to take measures. Multi-components analysis system, with an infrared spectrometer, a gas handling module and a multi-pass gas cell, is one of the most effective air pollution monitoring facilities. In the VOCs analysis system, the optical multi-pass cell is required to heat to higher than 150 degree Celsius to prevent the condensation of the component gas. Besides that, the gas cell needs to be designed to have an optical path length that matches the detection sensitivity requirement with a compact geometry. In this article, a multi-pass White cell was designed for the high temperature absorption measurements in a specified geometry requirement. The Aberration theory is used to establish the model to accurately calculate the astigmatism for the reflector system. In consideration of getting the optimum output energy, the dimensions of cell geometry, object mirrors and field mirror are optimized by the ray-tracing visible simulation. Then finite element analysis was used to calculate the thermal analysis for the structure of the external and internal elements for high stability. According to the simulation, the cell designed in this paper has an optical path length of 10 meters with an internal volume of 3 liters, and has good stability between room temperature to 227 degree Celsius.

  5. The TAB method for numerical calculation of spray droplet breakup

    NASA Astrophysics Data System (ADS)

    Orourke, P. J.; Amsden, A. A.

    A short history is given of the major milestones in the development of the stochastic particle method for calculating liquid fuel sprays. The most recent advance has been the discovery of the importance of drop breakup in engine sprays. A new method, called TAB, for calculating drop breakup is presented. Some theoretical properties of the method are derived; its numerical implementation in the computer program KIVA is described; and comparisons are presented between TAB-method calculations and experiments and calculations using another breakup model.

  6. ISS Update: ATV-3 ReEntry Breakup Recorder

    NASA Video Gallery

    ISS Update Commentator Pat Ryan talks with Dr. William Ailor, Principal Investigator for the ReEntry Breakup Recorder (REBR) for The Aerospace Corporation. Ailor talks about capturing data as Europ...

  7. Investigation of the intermediate-energy deuteron breakup reaction

    SciTech Connect

    Divadeenam, M.; Ward, T.E.; Mustafa, M.G.; Udagawa, T.; Tamura, T.

    1989-01-01

    The Udagawa-Tamura formalism is employed to calculate the proton singles both in the bound and unbound regions. Both the Elastic-Breakup (EB) and the Breakup-Fusion (BF) processes are considered to calculate the doubly-differential cross section for light and intermediate mass nuclei. The calculated spectra for 25 and 56 MeV deuterons reproduce the experimental spectra very well except for the spectra at large angle and at low energies, of the outgoing particle. Contributions due to precompound and evaporation processes are estimated to supplement the spectral results based on the Elastic-Breakup and Breakup-Fusion mechanisms. An extension of the model calculations to higher deuteron energies is being made to test the (EB + BF) model limitations. 5 refs., 1 fig.

  8. Breakup of 87 MeV [sup 11]B

    SciTech Connect

    Wolfs, F.L.H.; White, C.A.; Bryan, D.C.; Freeman, C.G.; Herrick, D.M.; Kurz, K.L.; Mathews, D.H.; Perera, P.A.A.; Zanni, M.T. )

    1994-05-01

    A segmented focal plane detector has been used to study the breakup of 87 MeV [sup 11]B ions incident on a [sup 12]C target into [sup 4]He and [sup 7]Li fragments at relative energies between 0 and 4 MeV. The relative energy spectra are dominated by sequential breakup of the 9.28 MeV, 10.26+10.33 MeV, and 10.60 MeV excited states in [sup 11]B. The measured breakup yields decrease with increasing center-of-mass scattering angle, consistent with predictions made using single-step inelastic distorted wave Born approximation calculations. Applications of this technique to study the breakup of [sup 16]O at low relative energies will be discussed.

  9. Description of the four-nucleon collisions by including breakup

    NASA Astrophysics Data System (ADS)

    Lazauskas, Rimantas

    2016-03-01

    Four-nucleon reactions above the breakup threshold are described by solving Faddeev-Yakubovsky equations for the realistic nuclear Hamiltonians. Complex-scaling method is applied in order to simplify the boundary conditions.

  10. Multipass Arc Lattice Design for Recirculating Linac Muon Accelerators

    SciTech Connect

    G.M. Wang, R.P. Johnson, S.A. Bogacz, D. Trbojevic

    2009-05-01

    Recirculating linear accelerators (RLA) are the most likely means to achieve rapid acceleration of short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. A drawback of this scheme is that a separate return arc is required for each passage of the muons through the linac. In the work described here, a novel arc optics based on a Non-Scaling Fixed Field Alternating Gradient (NSFFAG) lattice is developed, which would provide sufficient momentum acceptance to allow multiple passes (two or more consecutive energies) to be transported in one string of magnets. An RLA with significantly fewer arcs will reduce the cost. We will develop the optics and technical requirements to allow the maximum number of passes by using an adjustable path length to accurately control the returned beam to synchronize with the linac RF phase.

  11. Tiny Traces of a Big Asteroid Breakup

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2004-03-01

    Ancient geologic conditions in southern Sweden were ideal to preserve meteorites that fell to Earth about half a billion years ago. Researcher Birger Schmitz (working as a visiting professor at Rice University and now at the University of Lund, Sweden) and his colleagues in Goteborg, Sweden have analyzed over 40 of these rare fossil meteorites along with relict chromite grains collected from sites in a 250,000-square-kilometer area of 480-million-year-old limestone. They attribute the abundance and wide distribution of this space debris to a meteorite influx at least one hundred times more intense than the influx today. Rather than a smorgasbord of different types, cosmochemical evidence shows that the fossil meteorites are L or LL chondrites leading the team to conclude that these meteorites and chromite grains derived from a major collision in the asteroid belt. The age of the limestone is very close to the impact age of many L chondrites suggesting that this major collision was the breakup of the L chondrite parent body, possibly the largest impact in the asteroid belt in the last few billion years.

  12. The breakup of (16)O and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    Bryan, Diane Carol

    1998-07-01

    The feasibility of using the breakup of 16O to obtain information about the 12C(/alpha,/gamma)16O radiative capture reaction has been studied in a series of experiments performed at the Nuclear Structure Research Laboratory at the University of Rochester. The 16O breakup fragments-12C and 4He-were identified using a new focal-plane detector capable of identifying these fragments down to a relative energy of 50 keV. The relative energy spectra obtained from 16O breakup on a 58Ni target are dominated by sequential breakup from 9.85 MeV, and 10.36 MeV excited states in 16O. There is also some evidence of breakup at relative energies below 1 MeV. Interpretation of this low energy yield in terms of E2 Coulomb excitation leads to a value of SE2=346 keV b at Erel=0.828 MeV after making a correction for the contribution due to nuclear breakup. This suggests that the rate of the 12C(/alpha,/gamma)16O reaction at astrophysical energies is much higher than is presently accepted, which would have an enormous impact on stellar nucleosynthesis.

  13. A new model for auroral breakup during substorms

    SciTech Connect

    Rothwell, P.L.; Block, L.P.; Falthammar, C.G.; Silevitch, M.B.

    1989-04-01

    A model for substorm breakup is developed, based on the relaxation of stretched (closed) dipolar field lines, and the formation of an incipient current wedge within a single arc structure. It is argued that the establishment of a coupled current structure within a single arc leads to a quasi-stable system; i.e., the pre-breakup regime. Perturbation of the pre-breakup structure leads to an instability criterion. It is found, consistent with observations, that narrower auroral arcs at lower L shells undergo the most explosive poleward expansion. According to this model, the precise location at which breakup occurs depends on the O/sup +/ density in the plasma sheet, the level of magnetic activity (K/sub p/), and the intensity of the substorm westward electrojet in the ionosphere. An enhancement of any of these features will cause breakup to occur at lower L shells. Comparison of our model with the Heppner-Maynard polar-cap potential model indicates that breakup is restricted to the west of the Harang discontinuity consistent with recent observations from the Viking satellite.

  14. Breakup of Droplets in an Accelerating Gas Flow

    NASA Technical Reports Server (NTRS)

    Dickerson, R. A.; Coultas, T. A.

    1966-01-01

    A study of droplet breakup phenomena by an accelerating gas flow is described. The phenomena are similar to what propellant droplets experience when exposed to accelerating combustion gas flow in a rocket engine combustion zone. Groups of several dozen droplets in the 100-10 750-micron-diameter range were injected into a flowing inert gas in a transparent rectangular nozzle. Motion photography of the behavior of the droplets at various locations in the accelerating gas flow has supplied quantitative and qualitative data on the breakup phenomena which occur under conditions similar to those found in large rocket engine combustors. A blowgun injection device, used to inject very small amounts of liquid at velocities of several hundred feet per second into a moving gas stream, is described. The injection device was used to inject small amounts of liquid RP-1 and water into the gas stream at a velocity essentially equal to the gas velocity where the group of droplets was allowed to stabilize its formation in a constant area section before entering the convergent section of the transparent nozzle. Favorable comparison with the work of previous investigators who have used nonaccelerating gas flow is found with the data obtained from this study with accelerating gas flow. The criterion for the conditions of minimum severity required to produce shear-type droplet breakup in an accelerating gas flow is found to agree well with the criterion previously established at Rocketdyne for breakup in nonaccelerating flow. An extension of the theory of capillary surface wave effects during droplet breakup is also presented. Capillary surface waves propagating in the surface of the droplet, according to classical hydrodynamical laws, are considered. The waves propagate tangentially over the surface of the droplet from the forward stagnation point to the major diameter. Consideration of the effects of relative gas velocity on the amplitude growth of these waves allows conclusions to be

  15. Hard breakup of two nucleons from the He3 nucleus

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.; Granados, Carlos

    2009-07-01

    We investigate a large angle photodisintegration of two nucleons from the He3 nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-nucleon scattering, the HRM allows the expression of the amplitude of a two-nucleon breakup reaction through the convolution of photon-quark scattering, NN hard scattering amplitude, and nuclear spectral function, which can be calculated using a nonrelativistic He3 wave function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for NN scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as s-11. Second, the s11 weighted cross section will have the shape of energy dependence similar to that of s10 weighted NN elastic scattering cross section. Also one predicts an enhancement of the pp breakup relative to the pn breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn breakup cross sections. This is due to the fact that the same-helicity pp-component is strongly suppressed in the ground state wave function of He3. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer NN breakup reactions for circularly polarized photons. For the pp breakup this asymmetry is predicted to be zero while for the pn it is close to (2)/(3).

  16. Middle-high latitude N2O distributions related to the arctic vortex breakup

    NASA Astrophysics Data System (ADS)

    Zhou, L. B.; Zou, H.; Gao, Y. Q.

    2006-03-01

    The relationship of N2O distributions with the Arctic vortex breakup is first analyzed with a probability distribution function (PDF) analysis. The N2O concentration shows different distributions between the early and late vortex breakup years. In the early breakup years, the N2O concentration shows low values and large dispersions after the vortex breakup, which is related to the inhomogeneity in the vertical advection in the middle and high latitude lower stratosphere. The horizontal diffusion coefficient (K,,) shows a larger value accordingly. In the late breakup years, the N2O concentration shows high values and more uniform distributions than in the early years after the vortex breakup, with a smaller vertical advection and K,, after the vortex breakup. It is found that the N2O distributions are largely affected by the Arctic vortex breakup time but the dynamically defined vortex breakup time is not the only factor.

  17. Morphological classification of low viscosity drop bag breakup in a continuous air jet stream

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Liu, Hai-Feng; Li, Wei-Feng; Xu, Jian-Liang

    2010-11-01

    To investigate the effect of Rayleigh-Taylor wave number in the region of maximum cross stream dimension (NRT) on drop breakup morphology, the breakup properties of accelerating low viscosity liquid drops (water and ethanol drops, diameter=1.2-6.6 mm, Weber number=10-80) were investigated using high-speed digital photography. The results of morphological analysis show a good correlation of the observed breakup type with NRT; bag breakup occurred when NRT was 1/√3 -1, bag-stamen breakup at 1-2, and dual-bag breakup at 2-3. The number of nodes in bag breakup, bag-stamen breakup, and dual-bag breakup all increased with Weber number. The experimental results are consistent with the model estimates and in good agreement with those reported in the literature.

  18. Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier.

    PubMed

    Schulz, M; Riedel, R; Willner, A; Düsterer, S; Prandolini, M J; Feldhaus, J; Faatz, B; Rossbach, J; Drescher, M; Tavella, F

    2012-02-27

    An Yb:YAG thin-disk multipass laser amplifier system was developed operating in a 10 Hz burst operation mode with 800 µs burst duration and 100 kHz intra-burst repetition rate. Methods for the suppression of parasitic amplified spontaneous emission are presented. The average output pulse energy is up to 44.5 mJ and 820 fs compressed pulse duration. The average power of 4.45 kW during the burst is the highest reported for this type of amplifier. PMID:22418308

  19. Multipass configuration to achieve high-frequency conversion in Li2B4O7 crystals

    NASA Astrophysics Data System (ADS)

    Chatterjee, Udit; Gangopadhyay, Sudipta; Ghosh, Chittaranjan; Bhar, Gopal C.

    2005-02-01

    A multipass configuration for second-harmonic generation of Nd:YAG laser radiation is demonstrated to produce, for the first time to the authors' knowledge in twin lithium tetraborate crystals, as much as 21% conversion efficiency even though the effective nonlinear coefficient of the crystal is as low as 1/6th that of KDP. Apart from crystals that have large walk-off angles, low effective nonlinear coefficients, or both, the simple experimental setup would also be quite suitable for those crystals, especially infrared crystals, that have large effective nonlinear coefficients but low laser damage thresholds.

  20. Multipass configuration to achieve high-frequency conversion in Li2B4O7 crystals.

    PubMed

    Chatterjee, Udit; Gangopadhyay, Sudipta; Ghosh, Chittaranjan; Bhar, Gopal C

    2005-02-10

    A multipass configuration for second-harmonic generation of Nd:YAG laser radiation is demonstrated to produce, for the first time to the authors' knowledge in twin lithium tetraborate crystals, as much as 21% conversion efficiency even though the effective nonlinear coefficient of the crystal is as low as 1/6th that of KDP. Apart from crystals that have large walk-off angles, low effective nonlinear coefficients, or both, the simple experimental setup would also be quite suitable for those crystals, especially infrared crystals, that have large effective nonlinear coefficients but low laser damage thresholds. PMID:15751864

  1. Drop breakup and deformation in sudden onset strong flows

    NASA Astrophysics Data System (ADS)

    Marks, Charles Raphael

    This work characterizes the deformation and breakup of a single drop subjected to a sudden onset shear flow. The drop is immersed in a second fluid (the matrix) with which it is immiscible. A cylindrical couette device is used to create a flow field which, in the absence of the drop, would constitute a close approximation of simple shear flow. The magnitude of the imposed shear rate was greater than that which would be necessary to just break the drop. The experiments conducted were limited to matrix fluid viscosities above 7Pa˙ s and shear rates below 15/s, ensuring that the flows considered were inertialess. The matrix fluid was a corn syrup solution. The drop fluids were polybutadiene, paraffin oil and silicone oil, leading to a range of interfacial tensions. At the shear rates used in these experiments the fluids used Newtonian. Viscosity ratios (drop/matrix) ranging from 0.01 to 1 were considered. Two breakup mechanisms were observed to contribute to the dispersion of the original drop. In all cases elongative end pinching, defined by this study, caused the ends of a stretching drop to break off and form daughter drops. Breakup due to elongative end pinching was always the first breakup observed. The daughter drops formed by elongative end pinching were always the largest daughter drops formed. In cases when the experimental conditions were sufficiently stronger than the critical conditions (needed to just barely break up the drop), a second type of breakup, capillary wave breakup, was also observed. Measurement of the characteristic time scales and length scales were made of each type of breakup. The lengths (a) were found to scale as capillary numbers: Ca=a mg/s. The times (t) were found to scale as strains: s=t g. A qualitative explanation for the capillary number scaling is presented and quantitatively compared to predictions based on small deformation analysis. Additionally the daughter drop size distributions resulting from drop breakup is characterized

  2. Current reduction in a pseudo-breakup event: THEMIS observations

    NASA Astrophysics Data System (ADS)

    Yao, Z. H.; Pu, Z. Y.; Owen, C. J.; Fu, S. Y.; Chu, X. N.; Liu, J.; Angelopoulos, V.; Rae, I. J.; Yue, C.; Zhou, X.-Z.; Zong, Q.-G.; Cao, X.; Shi, Q. Q.; Forsyth, C.; Du, A. M.

    2014-10-01

    Pseudo-breakup events are thought to be generated by the same physical processes as substorms. This paper reports on the cross-tail current reduction in an isolated pseudo-breakup observed by three of the THEMIS probes (THEMIS A (THA), THEMIS D (THD), and THEMIS E (THE)) on 22 March 2010. During this pseudo-breakup, several localized auroral intensifications were seen by ground-based observatories. Using the unique spatial configuration of the three THEMIS probes, we have estimated the inertial and diamagnetic currents in the near-Earth plasma sheet associated with flow braking and diversion. We found the diamagnetic current to be the major contributor to the current reduction in this pseudo-breakup event. During flow braking, the plasma pressure was reinforced, and a weak electrojet and an auroral intensification appeared. After flow braking/diversion, the electrojet was enhanced, and a new auroral intensification was seen. The peak current intensity of the electrojet estimated from ground-based magnetometers, ~0.7 × 105 A, was about 1 order of magnitude lower than that in a typical substorm. We suggest that this pseudo-breakup event involved two dynamical processes: a current-reduction associated with plasma compression ahead of the earthward flow and a current-disruption related to the flow braking/diversion. Both processes are closely connected to the fundamental interaction between fast flows, the near-Earth ambient plasma, and the magnetic field.

  3. Selective breakup of lipid vesicles under acoustic microstreaming flow

    NASA Astrophysics Data System (ADS)

    Pommella, Angelo; Garbin, Valeria

    2014-11-01

    The dynamics of lipid vesicles under small deformation in simple shear flow is well characterized: complex behaviors such as tumbling, breathing, and tank-treading are observed depending on the viscosity contrast between inner and outer fluid, vesicle excess area, membrane viscosity, and bending modulus. In contrast, phenomena upon large deformation are still poorly understood, in particular vesicle breakup. Simple shear flow geometries do not allow to reach the large stresses necessary to cause vesicle breakup. We use the acoustic microstreaming flow generated by an oscillating microbubble to study the large deformation and breakup of giant unilamellar vesicles. The deformation is governed by a capillary number based on the membrane elasticity K : Ca = ηγ˙a / K where η is the viscosity of the outer fluid, a the vesicle radius, and γ˙ the shear rate. We explore the effect of the mechanical properties of the membrane, and demonstrated selective breakup of vesicles based on the difference in membrane elasticity. The results reveal the influence of membrane mechanical properties in shear-induced vesicle breakup and the possibility to control in a quantitative way the selectivity of the process, with potential applications in biomedical technologies. The authors acknowledge funding from EU/FP7 Grant Number 618333.

  4. Breakup of {sup 11}B at low relative energies

    SciTech Connect

    Bryan, D.C.; White, C.A.; Wolfs, F.L.H.

    1993-04-01

    The authors have used the segmented focal plane detector of the Rochester Enge split-pole spectrograph to study the breakup of 87 MeV {sup 11}B ions incident on a {sup 12}C target into {sup 4}He and {sup 7}Li fragments at relative energies between 0 MeV and 4 MeV and at laboratory angles between 7.5{degrees} and 25{degrees}. The total kinetic energy spectra of the breakup fragments is dominated by elastic breakup (all reaction products are left in their ground state). The reconstructed relative energy spectra for elastic breakup are dominated by sequential breakup of {sup 11}B via the 9.27 MeV, 10.26 MeV, and 10.60 MeV excited states in {sup 11}B. The measured yields are compared with the calculated cross sections of exciting these states, using DWBA calculations and B(EL) values obtained from radiative capture measurements of {sup 4}He and {sup 7}Li.

  5. Dynamics of bubble breakup at a T junction.

    PubMed

    Lu, Yutao; Fu, Taotao; Zhu, Chunying; Ma, Youguang; Li, Huai Z

    2016-02-01

    The gas-liquid interfacial dynamics of bubble breakup in a T junction was investigated. Four regimes were observed for a bubble passing through the T junction. It was identified by the stop flow that a critical width of the bubble neck existed: if the minimum width of the bubble neck was less than the critical value, the breakup was irreversible and fast; while if the minimum width of the bubble neck was larger than the critical value, the breakup was reversible and slow. The fast breakup was driven by the surface tension and liquid inertia and is independent of the operating conditions. The minimum width of the bubble neck could be scaled with the remaining time as a power law with an exponent of 0.22 in the beginning and of 0.5 approaching the final fast pinch-off. The slow breakup was driven by the continuous phase and the gas-liquid interface was in the equilibrium stage. Before the appearance of the tunnel, the width of the depression region could be scaled with the time as a power law with an exponent of 0.75; while after that, the width of the depression was a logarithmic function with the time. PMID:26986389

  6. Dynamics of bubble breakup at a T junction

    NASA Astrophysics Data System (ADS)

    Lu, Yutao; Fu, Taotao; Zhu, Chunying; Ma, Youguang; Li, Huai Z.

    2016-02-01

    The gas-liquid interfacial dynamics of bubble breakup in a T junction was investigated. Four regimes were observed for a bubble passing through the T junction. It was identified by the stop flow that a critical width of the bubble neck existed: if the minimum width of the bubble neck was less than the critical value, the breakup was irreversible and fast; while if the minimum width of the bubble neck was larger than the critical value, the breakup was reversible and slow. The fast breakup was driven by the surface tension and liquid inertia and is independent of the operating conditions. The minimum width of the bubble neck could be scaled with the remaining time as a power law with an exponent of 0.22 in the beginning and of 0.5 approaching the final fast pinch-off. The slow breakup was driven by the continuous phase and the gas-liquid interface was in the equilibrium stage. Before the appearance of the tunnel, the width of the depression region could be scaled with the time as a power law with an exponent of 0.75; while after that, the width of the depression was a logarithmic function with the time.

  7. History of satellite break-ups in space

    NASA Technical Reports Server (NTRS)

    Gabbard, J.

    1985-01-01

    By 28 June 1961 the 1st Aerospace Control Squadron had cataloged 115 Earth orbiting satellites from data supplied by a rather diverse collection of radar and optical sensors. On 29 June 1961, the Able Star rocket of the 1961 Omicron launch exploded causing a quantum jump in the number of Earth orbiting objects. Since that time there have been 69 Earth orbiting satellites break up in space whose debris remained in orbit long enough for orbital elements to be developed. A list of the 69 breakups is provided. The debris from some of the lower altitude breakups has all decayed. Among the 69 breakups, 44 have cataloged debris remaining in orbit. As of 1 July 1982, the size of the cataloged orbiting population was exactly 4700. Forty-nine percent of these objects are fragments of the forty-four breakups. For each breakup the various orbits of its debris represent a family of orbits that are related in characteristics due to their common impulse launch. A few examples are shown of how the families are oriented in space.

  8. Designs of multipass optical configurations based on the use of a cube corner retroreflector in the interferometer

    SciTech Connect

    Wei Ruyi; Zhang Xuemin; Zhou Jinsong; Zhou Sizhong

    2011-04-20

    We describe designs of the multipass optical configurations of an interferometer with high spectral resolution with respect to 6, 12, and 24 times more optical passes than the conventional Michelson interferometer. In each design, a movable cube corner retroreflector is combined with a folding reflector group (FRG) as the interferometer's moving combination to implement the multipass optical configuration with the characteristic of surface division. Analyses reveal that when there are 12 or more optical passes, the net effect of the ray's angular deviation of the entire moving combination amounts to only the alignment error of one of the reflectors in the FRG, demonstrating the self-aligning property of the interferometer.

  9. Beam transport design for a recirculating-linac FEL driver

    SciTech Connect

    Neuffer, D.; Douglas, D.; Li, Z.; Cornacchia, M.; Garren, A.

    1996-07-01

    The beam transport system for the CEBAF Industrial FEL includes a two-pass transport of the beam with acceleration from injector to wiggler, followed by energy recovery transport from wiggler to dump. From that context, the authors discuss the general problem of multi-pass energy-recovery beam transport for FELs. Tunable, nearly-isochronous, large-momentum-acceptance transport systems are required. The entire transport must preserve beam quality, particularly in the acceleration transport to the wiggler, and have low losses throughout the entire system. Various possible designs are presented, and results of dynamic analyses are discussed.

  10. Modeling Tear Film Evaporation and Breakup with Duplex Films

    NASA Astrophysics Data System (ADS)

    Stapf, Michael; Braun, Richard; Begley, Carolyn; Driscoll, Tobin; King-Smith, Peter Ewen

    2015-11-01

    Tear film thinning, hyperosmolarity, and breakup can irritate and damage the ocular surface. Recent research hypothesizes deficiencies in the lipid layer may cause locally increased evaporation, inducing conditions for breakup. We consider a model for team film evolution incorporating two mobile fluid layers, the aqueous and lipid layers. In addition, we include the effects of salt concentration, osmosis, evaporation as modified by the lipid layer, and the polar portion of the lipid layer. Numerically solving the resulting model, we explore the conditions for tear film breakup and analyze the response of the system to changes in our parameters. Our studies indicate sufficiently fast peak values or sufficiently wide areas of evaporation promote TBU, as does diffusion of solutes. In addition, the Marangoni effect representing polar lipids dominates viscous dissipation from the non-polar lipid layer in the model. This work was supported in part by NSF grant 1412085 and NIH grant 1R01EY021794.

  11. Thermal-microstructural analysis of multipass welding of Cr/Mo steels

    SciTech Connect

    Oddy, A.S.; McDill, J.M.J.; Braid, J.E.M.

    1996-12-31

    Full weave repair techniques for Cr/Mo steels without post-weld heat treatment are the subject of many research programs. Coupled thermal-microstructural analyses could preselect candidate welding parameters and reduce the cost and time required. In multipass welds, microstructural simulations require transient reaustenization, austenite decomposition for arbitrary thermal cycles including reheating and tempering. Finite element thermal analysis of a three-layer, weaved weld and the microstructural analysis of the heat-affected zone (HAZ) are described. Significant variation is found in properties governing reaustenization, austenite grain growth, austenite decomposition and hardness. Hardness measurements vary by up to {+-}30 HV on the same sample. Alloy differences within the allowable range lead to HAZ hardness variations of 30 HV in multipass welds. Predicted HAZ hardnesses of the three-layer weld were in good agreement with measurements. The final microstructure was also in good agreement with experiment. The predicted HAZ width was slightly wider than was measured. This difference is easily accounted for by the variation reported in weld parameters.

  12. Enhancement of multi-pass 3D circular SAR images using sparse reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Ferrara, Matthew; Jackson, Julie A.; Austin, Christian

    2009-05-01

    This paper demonstrates image enhancement for wide-angle, multi-pass three-dimensional SAR applications. Without sufficient regularization, three-dimensional sparse-aperture imaging from realistic data-collection scenarios results in poor quality, low-resolution images. Sparsity-based image enhancement techniques may be used to resolve high-amplitude features in limited aspects of multi-pass imagery. Fusion of the enhanced images across multiple aspects in an approximate GLRT scheme results in a more informative view of the target. In this paper, we apply two sparse reconstruction techniques to measured data of a calibration top-hat and of a civilian vehicle observed in the AFRL publicly-released 2006 Circular SAR data set. First, we employ prominent-point autofocus in order to compensate for unknown platform motion and phase errors across multiple radar passes. Each sub-aperture of the autofocused phase history is digitally-spotlighted (spatially low-pass filtered) to eliminate contributions to the data due to features outside the region of interest, and then imaged with l1-regularized least squares and CoSaMP. The resulting sparse sub-aperture images are non-coherently combined to obtain a wide-angle, enhanced view of the target.

  13. Development of a compact multipass oxygen sensor used for gas diffusion studies in opaque media.

    PubMed

    Larsson, Jim; Mei, Liang; Lundin, Patrik; Bood, Joakim; Svanberg, Sune

    2015-11-20

    A highly scattering porous ceramic sample is employed as a miniature random-scattering multipass gas cell for monitoring of oxygen content in opaque media, that is, wood materials in the present work. Gas in scattering media absorption spectroscopy is used by employing a 760 nm near-infrared laser diode to probe the absorption of molecular oxygen enclosed in the pores of the ceramic material working as the multipass gas cell, with a porosity of 75%. A path length enhancement of approximately 26 times and a signal-to-noise ratio of about 60 were obtained for the ceramic sample used in this work. The gas sensor was then used in a case study of the gas diffusion in wood materials, namely, oak, spruce, and mahogany samples. Differences depending on whether gas diffusion was studied longitudinal or radial to the tree annual rings are demonstrated, with very little gas diffusing in the radial direction. We can also observe that the gas diffusion for the densest material-oak-had the fastest diffusion time, and mahogany, which had the lowest density, showed the slowest diffusion time. PMID:26836536

  14. Multi-pass encoding of hyperspectral imagery with spectral quality control

    NASA Astrophysics Data System (ADS)

    Wasson, Steven; Walker, William

    2015-05-01

    Multi-pass encoding is a technique employed in the field of video compression that maximizes the quality of an encoded video sequence within the constraints of a specified bit rate. This paper presents research where multi-pass encoding is extended to the field of hyperspectral image compression. Unlike video, which is primarily intended to be viewed by a human observer, hyperspectral imagery is processed by computational algorithms that generally attempt to classify the pixel spectra within the imagery. As such, these algorithms are more sensitive to distortion in the spectral dimension of the image than they are to perceptual distortion in the spatial dimension. The compression algorithm developed for this research, which uses the Karhunen-Loeve transform for spectral decorrelation followed by a modified H.264/Advanced Video Coding (AVC) encoder, maintains a user-specified spectral quality level while maximizing the compression ratio throughout the encoding process. The compression performance may be considered near-lossless in certain scenarios. For qualitative purposes, this paper presents the performance of the compression algorithm for several Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperion datasets using spectral angle as the spectral quality assessment function. Specifically, the compression performance is illustrated in the form of rate-distortion curves that plot spectral angle versus bits per pixel per band (bpppb).

  15. Generation of broadband laser by high-frequency bulk phase modulator with multipass configuration.

    PubMed

    Zhang, Peng; Jiang, Youen; Zhou, Shenlei; Fan, Wei; Li, Xuechun

    2014-12-10

    A new technique is presented for obtaining a large broadband nanosecond-laser pulse. This technique is based on multipass phase modulation of a single-frequency nanosecond-laser pulse from the integrated front-end source, and it is able to shape the temporal profile of the pulse arbitrarily, making this approach attractive for high-energy-density physical experiments in current laser fusion facilities. Two kinds of cavity configuration for multipass modulation are proposed, and the performances of both of them are discussed theoretically in detail for the first time to our knowledge. Simulation results show that the bandwidth of the generated laser pulse by this approach can achieve more than 100 nm in principle if adjustment accuracy of the time interval between contiguous passes is controlled within 0.1% of a microwave period. In our preliminary experiment, a 2 ns laser pulse with 1.35-nm bandwidth in 1053 nm is produced via this technique, which agrees well with the theoretical result. Owing to an all-solid-state structure, the energy of the pulse achieves 25 μJ. In the future, with energy compensation and spectrum filtering, this technique is expected to generate a nanosecond-laser pulse of 3 nm or above bandwidth with energy of about 100 μJ. PMID:25608064

  16. Effect of boiling regime on melt stream breakup in water

    SciTech Connect

    Spencer, B.W.; Gabor, J.D.; Cassulo, J.C.

    1986-01-01

    A study has been performed examining the breakup and mixing behavior of an initially coherent stream of high-density melt as it flows downward through water. This work has application to the quenching of molten core materials as they drain downward during a postulated severe reactor accident. The study has included examination of various models of breakup distances based upon interfacial instabilities dominated either by liquid-liquid contact or by liquid-vapor contact. A series of experiments was performed to provide a data base for assessment of the various modeling approaches. The experiments involved Wood's metal (T/sub m/ = 73/sup 0/C, rho = 9.2 g/cm/sup 3/, d/sub j/ = 20 mm) poured into a deep pool of water. The temperature of the water and wood's metal were varied to span the range from single-phase, liquid-liquid contact to the film boiling regime. Experiment results showed that breakup occurred largely as a result of the spreading and entrainment from the leading edge of the jet. However, for streams of sufficient lengths a breakup length could be discerned at which there was no longer a coherent central core of the jet to feed the leading edge region. The erosion of the vertical trailing column is by Kelvin-Helmoltz instabilities and related disengagement of droplets from the jet into the surrounding fluid. For conditions of liquid-liquid contact, the breakup length has been found to be about 20 jet diameters; when substantial vapor is produced at the interface due to heat transfer from the jet to the water, the breakup distance was found to range to as high as 50 jet diameters. The former values are close to the analytical prediction of Taylor, whereas the latter values are better predicted by the model of Epstein and Fauske.

  17. Universality for the breakup of invariant tori in Hamiltonian flows

    NASA Astrophysics Data System (ADS)

    Chandre, C.; Govin, M.; Jauslin, H. R.; Koch, H.

    1998-06-01

    In this article, we describe a new renormalization-group scheme for analyzing the breakup of invariant tori for Hamiltonian systems with two degrees of freedom. The transformation, which acts on Hamiltonians that are quadratic in the action variables, combines a rescaling of phase space and a partial elimination of irrelevant (nonresonant) frequencies. It is implemented numerically for the case applying to golden invariant tori. We find a nontrivial fixed point and compute the corresponding scaling and critical indices. If one compares flows to maps in the canonical way, our results are consistent with existing data on the breakup of golden invariant circles for area-preserving maps.

  18. On the breakup of tectonic plates by polar wandering

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1974-01-01

    The equations for the stresses in a homogeneous shell of uniform thickness caused by a shift of the axis of rotation are derived. The magnitude of these stresses reaches a maximum value of the order of 10 to the 9th power dyn/sq cm, which is sufficient for explaining a tectonic breakup. In order to deduce the fracture pattern according to which the breakup of tectonic plates can be expected the theory of plastic deformation of shells is applied. The analysis of this pattern gives an explanation of the existing boundary systems of the major tectonic plates as described by Morgan (1968), LePichon (1968) and Isacks et al. (1968).

  19. On Slater's criterion for the breakup of invariant curves

    NASA Astrophysics Data System (ADS)

    Abud, C. V.; Caldas, I. L.

    2015-07-01

    We numerically explore Slater's theorem in the context of dynamical systems to study the breakup of invariant curves. Slater's theorem states that an irrational translation over a circle returns to an arbitrary interval in at most three different recurrence times expressible by the continued fraction expansion of the related irrational number. The hypothesis considered in this paper is that Slater's theorem can be also verified in the dynamics of invariant curves. Hence, we use Slater's theorem to develop a qualitative and quantitative numerical approach to determine the breakup of invariant curves in the phase space of area-preserving maps.

  20. Recent developments in the eikonal description of the breakup of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Capel, P.; Colomer, F.; Esbensen, H.; Fukui, T.; Johnson, R. C.; Nunes, F. M.; Ogata, K.

    2016-06-01

    The study of exotic nuclear structures, such as halo nuclei, is usually performed through nuclear reactions. An accurate reaction model coupled to a realistic description of the projectile is needed to correctly interpret experimental data. In this contribution, I briefly summarise the assumptions made within the modelling of reactions involving halo nuclei. I describe briefly the Continuum-Discretised Coupled Channel method (CDCC) and the Dynamical Eikonal Approximation (DEA) in particular and present a comparison between them for the breakup of 15C on Pb at 68AMeV. I show the problem faced by the eikonal approximation at low energy and detail a correction that enables its extension down to lower beam energies. A new reaction observable is also presented. It consists of the ratio between angular distributions for two different processes, such as elastic scattering and breakup. This ratio is completely independent of the reaction mechanism and hence is more sensitive to the projectile structure than usual reaction observables, which makes it a very powerful tool to study exotic structures far from stability.

  1. Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm.

    PubMed

    Negel, Jan-Philipp; Loescher, André; Voss, Andreas; Bauer, Dominik; Sutter, Dirk; Killi, Alexander; Ahmed, Marwan Abdou; Graf, Thomas

    2015-08-10

    We report on an Yb:YAG thin-disk multipass laser amplifier delivering sub-8 ps pulses at a wavelength of 1030 nm with 1420 W of average output power and 4.7 mJ of pulse energy. The amplifier is seeded by a regenerative amplifier delivering 6.5 ps pulses with 300 kHz of repetition rate and an average power of 115 W. The optical efficiency of the multipass amplifier was measured to be 48% and the beam quality factor was better than M2 = 1.4. Furthermore we report on the external second harmonic generation from 1030 nm to 515 nm using an LBO crystal leading to an output power of 820 W with 2.7 mJ of energy per pulse. This corresponds to a conversion efficiency of 70%. Additionally, 234 W of average power were obtained at the third harmonic with a wavelength of 343 nm. PMID:26367957

  2. Breakup of three particles within the adiabatic expansion method

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Kievsky, A.; Viviani, M.

    2014-07-01

    General expressions for the breakup cross sections in the laboratory frame for 1+2 reactions are given in terms of the hyperspherical adiabatic basis. The three-body wave function is expanded in this basis and the corresponding hyperradial functions are obtained by solving a set of second order differential equations. The S matrix is computed by using two recently derived integral relations. Even though the method is shown to be well suited to describe 1+2 processes, there are particular configurations in the breakup channel (for example, those in which two particles move away close to each other in a relative zero-energy state) that need a huge number of basis states. This pathology manifests itself in the extremely slow convergence of the breakup amplitude in terms of the hyperspherical harmonic basis used to construct the adiabatic channels. To overcome this difficulty the breakup amplitude is extracted from an integral relation as well. For the sake of illustration, we consider neutron-deuteron scattering. The results are compared to the available benchmark calculations.

  3. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Family break-up. 982.315 Section 982.315 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR PUBLIC AND INDIAN HOUSING, DEPARTMENT OF HOUSING AND URBAN...

  4. Drop deformation and breakup in flows with and without shear

    NASA Astrophysics Data System (ADS)

    Kékesi, Tímea; Amberg, Gustav; Prahl Wittberg, Lisa

    2015-11-01

    The deformation and breakup of liquid drops in gaseous flows are studied numerically using the Volume of Fluid method. Fragmentation of fuel drops has a key role in combustion, determining the rate of mixing and the efficiency of the process. It is common to refer to Weber number 12 as the onset of breakup, and to define breakup mode regimes as a function of Weber number. These definitions are established for simple flows and do not take density and viscosity ratios into account. The main objective of this work is the dynamics of the drop leading to breakup. Fully developed uniform flows and flows with various shear rates are considered. A Weber number of 20, Reynolds numbers 20-200, density ratios 20-80, and viscosity ratios 0.5-50 were used. Results for uniform flows are presented in Kékesi T. et al. (2014). The final aim of the project is to extend existing atomization models for fuel sprays by accounting for density and viscosity ratios in addition to the Reynolds and Weber numbers already present in current models. Estimations for the lifetime of the drop are provided; furthermore, the history of the drag coefficient is compared for several cases. Examples of the observed phenomena and ideas for possible model modifications will be presented. This work is supported by the Swedish Research Council and the Linné FLOW Centre.

  5. Armor breakup and reformation in a degradational laboratory experiment

    NASA Astrophysics Data System (ADS)

    Orrú, Clara; Blom, Astrid; Uijttewaal, Wim S. J.

    2016-06-01

    Armor breakup and reformation was studied in a laboratory experiment using a trimodal mixture composed of a 1 mm sand fraction and two gravel fractions (6 and 10 mm). The initial bed was characterized by a stepwise downstream fining pattern (trimodal reach) and a downstream sand reach, and the experiment was conducted under conditions without sediment supply. In the initial stage of the experiment an armor formed over the trimodal reach. The formation of the armor under partial transport conditions led to an abrupt spatial transition in the bed slope and in the mean grain size of the bed surface, as such showing similar results to a previous laboratory experiment conducted with a bimodal mixture. The focus of the current analysis is to study the mechanisms of armor breakup. After an increase in flow rate the armor broke up and a new coarser armor quickly formed. The breakup initially induced a bed surface fining due to the exposure of the finer substrate, which was accompanied by a sudden increase in the sediment transport rate, followed by the formation of an armor that was coarser than the initial one. The reformation of the armor was enabled by the supply of coarse material from the upstream degrading reach and the presence of gravel in the original substrate sediment. Here armor breakup and reformation enabled slope adjustment such that the new steady state was closer to normal flow conditions.

  6. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... an occurrence of domestic violence, dating violence, or stalking as provided in 24 CFR part 5... provided in 24 CFR part 5, subpart L, and whether the abuser is still in the household. (5) Other factors... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Family break-up. 982.315...

  7. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... an occurrence of domestic violence, dating violence, or stalking as provided in 24 CFR part 5... provided in 24 CFR part 5, subpart L, and whether the abuser is still in the household. (5) Other factors... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Family break-up. 982.315...

  8. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... an occurrence of domestic violence, dating violence, or stalking as provided in 24 CFR part 5... provided in 24 CFR part 5, subpart L, and whether the abuser is still in the household. (5) Other factors... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Family break-up. 982.315...

  9. 24 CFR 982.315 - Family break-up.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... an occurrence of domestic violence, dating violence, or stalking as provided in 24 CFR part 5... provided in 24 CFR part 5, subpart L, and whether the abuser is still in the household. (5) Other factors... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Family break-up. 982.315...

  10. Breakup of New Orleans Households after Hurricane Katrina

    ERIC Educational Resources Information Center

    Rendall, Michael S.

    2011-01-01

    Theory and evidence on disaster-induced population displacement have focused on individual and population-subgroup characteristics. Less is known about impacts on households. I estimate excess incidence of household breakup resulting from Hurricane Katrina by comparing a probability sample of pre-Katrina New Orleans resident adult household heads…

  11. The role of deep subduction in supercontinent breakup

    NASA Astrophysics Data System (ADS)

    Capitanio, Fabio; Dal Zilio, Luca; Faccenda, Manuele

    2016-04-01

    The breakup of continents is a crucial stage of the episodic aggregation and dispersal of tectonic plates. In particular, the transition from a stable supercontinent to its rifting, breakup and subsequent drifting is one of the least understood aspects of plate tectonics. Over the last decades, several works have highlighted the potential role of pre-existing weaknesses or that of raising mantle plumes in assisting the localization of strain. However, to sustain large-scale divergent regime over geological time, extensional stresses are strictly required. Here we present results from 2-D thermo-mechanical numerical experiments and we show that rifting and drifting of continents result from lithospheric subduction at convergent margins, when this extends to lower mantle depths. We quantify the drag exerted by subduction-induced mantle flow along the basal surface of continental plates, comparing models where lithospheric slabs stagnate above the upper-lower mantle boundary with those where slabs penetrate into the lower mantle. When subduction is upper mantle-confined, divergent basal tractions localize at distances comparable to the effective upper mantle thickness (~500 km), causing the breakup of a microcontinent and opening of a marginal basin. Instead, when the descending lithosphere subducts deeper, extensional stresses localize at greater distances from the trench (≥ 2900 km), are higher and are sustained over a longer time. Although relatively low, basal shear stresses integrated over large plates generate tension forces that may exceed the strength of the continental lithosphere, eventually leading to breakup and opening of an intervening distal basin. The models illustrate that the mechanism leading to the formation of back-arc basins above upper mantle-confined subduction provides a viable explanation for the opening of larger basins above deeper subduction. Examples include the Atlantic Ocean formation and the South and North American plates drifting

  12. Two-photon optical pumping of NH/sub 3/ in a multipass cell

    SciTech Connect

    Bobrovskii, A.N.; Kiselev, V.P.; Kozhevnikov, A.V.; Likhanskii, V.V.; Mishchenko, V.A.; Myl'nikov, G.D.

    1983-11-01

    A multipass cell was used in optical pumping of ammonia molecules by CO/sub 2/ laser radiation. Several new lasing lines were observed in the case of two-photon optical pumping of the NH/sub 3/ molecule at wavelengths in the range 16--35 ..mu... The output power of the various lines was in the range 10--50 kW. The divergence of the resultant radiation was diffraction-limited. A theoretical study was made of the two-photon pumping process. A stable (on the frequency scale) maximum was found in the gain profile of the output radiation. It was concluded that it should be possible to increase the energy and extend the emission spectrum of an ammonia laser pumped by double-photon absorption.

  13. Microstructural Evolution During Multi-Pass Friction Stir Processing of a Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Tripathi, A.; Tewari, A.; Kanjarla, A. K.; Srinivasan, N.; Reddy, G. M.; Zhu, S. M.; Nie, J. F.; Doherty, R. D.; Samajdar, I.

    2016-05-01

    A commercial magnesium alloy was processed through multi-pass and multi-directional (unidirectional, reverse, and transverse tool movements) friction stir processing (FSP). Based on the FSP location, the dominant prior-deformation basal texture was shifted along the arc of a hypothetical ellipse. The patterns of deformation texture developments were captured by viscoplastic self-consistent modeling with appropriate velocity gradients. The simulated textures, however, had two clear deficiencies. The simulations involved shear strains of 0.8 to 1.0, significantly lower than those expected in the FSP. Even at such low shear, the simulated textures were significantly stronger. Microstructural observations also revealed the presence of ultra-fine grains with relatively weak crystallographic texture. Combinations of ultra-fine grain superplasticity followed by grain coarsening were proposed as the possible mechanism for the microstructural evolution during FSP.

  14. Quantitative measurements of CO2 and CH4 using a multipass Raman capillary cell.

    PubMed

    Pearman, William F; Carter, J Chance; Angel, S Michael; Chan, James W-J

    2008-09-01

    Raman measurements of two common gases are made using a simple multipass capillary Raman cell (MCC) coupled to an unfiltered 18 around 1 fiber-optic Raman probe. The MCC, which is fabricated by chemical deposition of silver on the inner walls of a 2 mm inner diameter glass capillary tube, gives up to 20-fold signal enhancements for nonabsorbing gases. The device is relatively small and suitable for remote and in situ Raman measurements with optical fibers. The optical behavior of the MCC is similar to previously described liquid-core waveguides and hollow metal-coated waveguides used for laser transmission, but unlike the former devices, the MCC is generally applicable to a very wide range of nonabsorbing gases. PMID:18758534

  15. Note: Multi-pass Thomson scattering measurement on the TST-2 spherical tokamak.

    PubMed

    Togashi, H; Ejiri, A; Hiratsuka, J; Nakamura, K; Takase, Y; Yamaguchi, T; Furui, H; Imamura, K; Inada, T; Kakuda, H; Nakanishi, A; Oosako, T; Shinya, T; Sonehara, M; Tsuda, S; Tsujii, N; Wakatsuki, T; Hasegawa, M; Nagashima, Y; Narihara, K; Yamada, I; Tojo, H

    2014-05-01

    In multi-pass Thomson scattering (TS) scheme, a laser pulse makes multiple round trips through the plasma, and the effective laser energy is enhanced, and we can increase the signal-to-noise ratio as a result. We have developed a coaxial optical cavity in which a laser pulse is confined, and we performed TS measurements using the coaxial cavity in tokamak plasmas for the first time. In the optical cavity, the laser energy attenuation was approximately 30% in each round trip, and we achieved a photon number gain of about 3 compared with that obtained in the first round trip. In addition, the temperature measurement accuracy was improved by accumulating the first three round trip waveforms. PMID:24880428

  16. Note: Multi-pass Thomson scattering measurement on the TST-2 spherical tokamak

    SciTech Connect

    Togashi, H. Ejiri, A.; Hiratsuka, J.; Nakamura, K.; Takase, Y.; Yamaguchi, T.; Furui, H.; Imamura, K.; Inada, T.; Kakuda, H.; Nakanishi, A.; Oosako, T.; Shinya, T.; Sonehara, M.; Tsuda, S.; Tsujii, N.; Wakatsuki, T.; Hasegawa, M.; Nagashima, Y.; Narihara, K.; and others

    2014-05-15

    In multi-pass Thomson scattering (TS) scheme, a laser pulse makes multiple round trips through the plasma, and the effective laser energy is enhanced, and we can increase the signal-to-noise ratio as a result. We have developed a coaxial optical cavity in which a laser pulse is confined, and we performed TS measurements using the coaxial cavity in tokamak plasmas for the first time. In the optical cavity, the laser energy attenuation was approximately 30% in each round trip, and we achieved a photon number gain of about 3 compared with that obtained in the first round trip. In addition, the temperature measurement accuracy was improved by accumulating the first three round trip waveforms.

  17. Numerical modelling of multi-pass solar dryer filled with granite pebbles for thermal storage enhancement

    NASA Astrophysics Data System (ADS)

    Kareem, M. W.; Habib, K.; Ruslan, M. H.

    2015-09-01

    In this paper, a theoretical modelling of a cheap solar thermal dryer for small and medium scale farmers with multi-pass approach has been investigated. Comsol Multiphysics modelling tool was employed using numerical technique. The rock particles were used to enhance the thermal storage of the drying system. The local weather data were used during the simulation while parameters and coefficients were sourced from literature. An improvement on efficiency of up to 7% was recorded with error of 10-5 when compared with the reported double pass solar collector. A fair distribution of hot air within the cabinets was also achieved. Though the modelling tool used was robust but the characterization of the system materials need to be done to improve the system accuracy and better prediction.

  18. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses

    SciTech Connect

    Kononenko, T. V.; Komlenok, M. S.; Konov, V. I.; Freitag, C.; Onuseit, V.; Weber, R.; Graf, T.

    2014-03-14

    Deep multipass cutting of bidirectional and unidirectional carbon fiber reinforced plastics (CFRP) with picosecond laser pulses was investigated in different static atmospheres as well as with the assistance of an oxygen or nitrogen gas flow. The ablation rate was determined as a function of the kerf depth and the resulting heat affected zone was measured. An assisting oxygen gas flow is found to significantly increase the cutting productivity, but only in deep kerfs where the diminished evaporative ablation due to the reduced laser fluence reaching the bottom of the kerf does not dominate the contribution of reactive etching anymore. Oxygen-supported cutting was shown to also solve the problem that occurs when cutting the CFRP parallel to the fiber orientation where a strong deformation and widening of the kerf, which temporarily slows down the process speed, is revealed to be typical for processing in standard air atmospheres.

  19. Three-body break-up in deuteron-deuteron scattering at 65 MeV/nucleon

    SciTech Connect

    Ramazani-Moghaddam-Arani, A.; Amir-Ahmadi, H. R.; Biegun, A.; Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Mardanpour, H.; Messchendorp, J. G.; Moeini, H.; Shende, S. V.; Bacher, A. D.; Bailey, C. D.; Stephenson, E. J.; Eslami-Kalantari, M.; Gasparic, I.; Kistryn, St.; Sworst, R.; Kozela, A.; Micherdzinska, A. M.; Stephan, E.

    2011-02-15

    In an experiment with a 65 MeV/nucleon polarized deuteron beam on a liquid-deuterium target at Kernfysisch Versneller Instituut, several multibody final states in deuteron-deuteron scattering were identified. For these measurements, a unique and advanced detection system, called the Big Instrument for Nuclear-polarization Analysis, was utilized. We demonstrate the feasibility of measuring vector and tensor polarization observables of the deuteron break-up reaction leading to a three-body final state. The polarization observables were determined with high precision in a nearly background-free experiment. The analysis procedure and some results are presented.

  20. Quantum cascade laser-based multipass absorption system for hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Cao, Yingchun; Sanchez, Nancy P.; Jiang, Wenzhe; Ren, Wei; Lewicki, Rafal; Jiang, Dongfang; Griffin, Robert J.; Tittel, Frank K.

    2015-01-01

    Hydrogen peroxide (H2O2) is a relevant molecular trace gas species, that is related to the oxidative capacity of the atmosphere, the production of radical species such as OH, the generation of sulfate aerosol via oxidation of S(IV) to S(VI), and the formation of acid rain. The detection of atmospheric H2O2 involves specific challenges due to its high reactivity and low concentration (ppbv to sub-ppbv level). Traditional methods for measuring atmospheric H2O2 concentration are often based on wet-chemistry methods that require a transfer from the gas- to liquid-phase for a subsequent determination by techniques such as fluorescence spectroscopy, which can lead to problems such as sampling artifacts and interference by other atmospheric constituents. A quartz-enhanced photoacoustic spectroscopy-based system for the measurement of atmospheric H2O2 with a detection limit of 75 ppb for 1-s integration time was previously reported. In this paper, an updated H2O2 detection system based on long-optical-path-length absorption spectroscopy by using a distributed feedback quantum cascade laser (DFB-QCL) will be described. A 7.73-μm CW-DFB-QCL and a thermoelectrically cooled infrared detector, optimized for a wavelength of 8 μm, are employed for theH2O2 sensor system. A commercial astigmatic Herriott multi-pass cell with an effective optical path-length of 76 m is utilized for the reported QCL multipass absorption system. Wavelength modulation spectroscopy (WMS) with second harmonic detection is used for enhancing the signal-to-noise-ratio. A minimum detection limit of 13.4 ppb is achieved with a 2 s sampling time. Based on an Allan-Werle deviation analysis the minimum detection limit can be improved to 1.5 ppb when using an averaging time of 300 s.

  1. Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium

    NASA Astrophysics Data System (ADS)

    Tikhonenko, Vladimir; Christou, Jason; Luther-Daves, Barry

    1995-11-01

    We report the generation of three-dimensional bright spatial solitary waves by the breakup of an optical vortex in a saturable self-focusing nonlinear medium. An elliptical Gaussian beam from a Ti:sapphire laser containing a singly charged on-axis vortex was passed through a nonlinear medium consisting of rubidium vapor at low concentrations. The modulational instability resulted in the formation of a pair of out-of-phase solitonlike beams, which spiraled away from each other during propagation as a result of the repulsive nature of their interaction. The rate of rotation and separation of the two soliton beams could be controlled by the parameters of the medium and the laser intensity. Numerical analysis of the propagation based on a model nonlinearity corresponding to a strongly saturated two-level system showed good quantitative agreement with the experimental data. Copyright (c) 1995 Optical Society of America

  2. Similarity between the primary and secondary air-assisted liquid jet breakup mechanisms.

    PubMed

    Wang, Yujie; Im, Kyoung-Su; Fezzaa, Kamel

    2008-04-18

    We report an ultrafast synchrotron x-ray phase-contrast imaging study of the primary breakup mechanism of a coaxial air-assisted water jet. There exist great similarities between the primary (jet) and the secondary (drop) breakup, and in the primary breakup on different length scales. A transition from a ligament- to a membrane-mediated breakup is identified around an effective Weber number We' approximately 13. This observation reveals the critical role an effective Weber number plays in determining the atomization process and strongly supports the cascade breakup model. PMID:18518113

  3. Collision, Coalescence and Breakup of Raindrops. Part I: Experimentally Established Coalescence Efficiencies and Fragment Size Distributions in Breakup.

    NASA Astrophysics Data System (ADS)

    Low, T. B.; List, Roland

    1982-07-01

    The collision, coalescence and breakup of single raindrop pairs were studied at terminal velocities and laboratory pressure (100 kPa) in 761 collision experiments (out of 14 000 attempts). Six size combinations were used with drop pair diameters of [0.18;.0.0395 cm], [0.40; 0.0395 cm], [0.44; 0.0395 cm], [0.18; 0.0715 cm], [0.18; 0.10 cm] and [0.30; 0.10 cm]. For averaging purposes the experiments were repeated over one hundred times for each pair.The new coalescence efficiencies and fragment size distributions in breakup turned out to be consistent with those of McTaggart-Cowan and List (1975b) and permitted the combination of the two data sets into a single data bank spanning essentially the entire range of raindrop sizes.The analysis addressed three main geometric shapes formed by the drops after initial contact, namely, filaments, sheets and disks, and the fragment size distributions after breakup. Significant collisional growth, i.e., coalescence, occurred only when drops <0.06 cm in diameter were struck by larger ones. An empirical equation involving collision kinetic (CKE) and surface tension energies was developed to approximate the observed coalescence efficiencies.Breakup fragment size distributions normally show two or three peaks, one close to the size of the large drop of the collision pair, one at times (for filaments) reflecting the small drop, and the third centered at sizes below the small drop diameter. At high energy collisions involving larger drops the mechanism most favorable for coalescence was the disk shape because with its high deformation it is able to dissipate the most energy either through air drag or by internal viscosity through oscillations. The lowest collision energy for breakup is required for filaments; more is needed for sheets and most for disks.

  4. Breakup characteristics of a liquid jet in subsonic crossflow

    NASA Astrophysics Data System (ADS)

    Gopala, Yogish

    This thesis describes an experimental investigation of the breakup processes involved in the formation of a spray created by a liquid jet injected into a gaseous crossflow. This work is motivated by the utilization of this method to inject fuel in combustors and afterburners of airplane engines. This study aims to develop a better understanding of the spray breakup processes and to provide better experimental inputs to improve the fidelity of numerical models. A review of the literature in this field identified the fundamental physical processes involved in the breakup of the spray and the dependence of spray properties on operating conditions. The time taken for the liquid column to break up into ligaments and droplets, the primary breakup time and the effect of injector geometry on the spray formation processes and spray properties as the key research areas in which research done so far has been inadequate. Determination of the location where the liquid column broke up was made difficult by the presence of a large number of droplets surrounding it. This study utilizes the liquid jet light guiding technique that enables accurate measurements of this location for a wide range of operating conditions. Prior to this study, the primary breakup time was thought to be a function the density ratio of the liquid and the gas, the diameter of the orifice and the air velocity. This study found that the time to breakup of the liquid column depends on the Reynolds number of the liquid jet. This suggests that the breakup of a turbulent liquid jet is influenced by both the aerodynamic breakup processes and the turbulent breakup processes. Observations of the phenomenon of the liquid jet splitting up into two or more jets were made at some operating conditions with the aid of the new visualization technique. Finally, this thesis investigates the effect of injector geometry on spray characteristics. One injector was a round edged orifice with a length to diameter ratio of 1 and a

  5. Mechanisms and systematics of breakup in reactions of {sup 9}Be at near-barrier energies

    SciTech Connect

    Rafiei, R.; Rietz, R. du; Luong, D. H.; Hinde, D. J.; Dasgupta, M.; Evers, M.; Diaz-Torres, A.

    2010-02-15

    Below-barrier no-capture breakup measurements of the weakly bound {sup 9}Be nucleus, incident on targets ranging in atomic number from 62 to 83, have been carried out using a large-area high-resolution back-angle detector array. It is shown that the three-body reconstructed reaction Q-value and relative energy of the breakup fragments together reveal the full dynamics of the breakup mechanism, identifying all physical processes that lead to the breakup of the projectile-like nucleus. Contrasting with the simple expectation of direct breakup into the most energetically favored clusters, the data show that breakup following n-transfer dominates the total breakup yield. Breakup from long-lived states in the projectile-like nucleus, which on the reaction time scale may be considered stable, has been isolated from the prompt breakup yield. It has been shown that the prompt breakup probability essentially depends on the surface separation of the interacting nuclei. The measured prompt breakup probability functions for each target have been used together with a classical trajectory model to predict the above-barrier suppression of complete fusion. The suppression factor, expressed as the fraction of incomplete fusion, is nearly independent of target charge.

  6. Core transitions in the breakup of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Summers, N. C.; Nunes, F. M.; Thompson, I. J.

    2006-03-01

    An interesting physical process has been unveiled: Dynamical core excitation during a breakup reaction of loosely bound core+N systems. These reactions are typically used to extract spectroscopic information and/or astrophysical information. A new method, the eXtended Continuum Discretized Coupled Channel (XCDCC) method, was developed to incorporate, in a consistent way and to all orders, core excitation in the bound and scattering states of the projectile, as well as dynamical excitation of the core as it interacts with the target. The model predicts cross sections to specific states of the core. It is applied to the breakup of Be11 on Be9 at 60 MeV/nucleon, and the calculated cross sections are in improved agreement with the data. The distribution of the cross section amongst the various core states is shown to depend on the reaction model used, and not simply on the ground state spectroscopic factors.

  7. Recent results of invariant torus breakup in nontwist maps

    NASA Astrophysics Data System (ADS)

    Wurm, Alexander; Fuchss, Kathrin; Morrison, P. J.

    2006-10-01

    As simple models for degenerate Hamiltonian systems, nontwist maps have been used to describe, e.g., magnetic field lines in toroidal plasma devices with reversed magnetic shear profiles. Of particular interest in these maps are the so-called shearless invariant tori which correspond to transport barries in the physical system. We investigate the breakup of shearless tori in several maps and with several different winding numbers, in order to understand the dependence of the details of the breakup on the winding number and on the symmetries of the map model. Here we report on recent results of this investigation.[1][1] K. Fuchss, A. Wurm, A. Apte, and P.J. Morrison, to appear in Chaos (2006); K. Fuchss, A. Wurm, and P.J. Morrison, preprint/submitted to PRL (2006).

  8. High Energy Break-Up of Few-Nucleon Systems

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak

    2008-03-01

    We discus recent developments in theory of high energy two-body break-up reactions of few-nucleon systems. The characteristics of these reactions are such that the hard two-body quasielastic subprocess can be clearly separated from the accompanying soft subprocesses. We discuss in details the hard rescattering model (HRM) in which hard photodisintegration develops in two stages. At first, photon knocks-out an energetic quark which rescatters subsequently with a quark of the other nucleon. The latter provides a mechanism of sharing the initial high momentum of the photon by the outgoing two nucleons. Within HRM we discuss hard break-up reactions involving 2D and 3He targets. Another development of HRM is the prediction of new helicity selection mechanism for hard two-body reactions, which was apparently confirmed in the recent JLab experiment.

  9. Dynamics of Cold-Air Pool Breakup: Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Lareau, N.; Horel, J.

    2013-12-01

    Persistent cold-air pools (CAPs) impact urban mountain valleys during the winter leading to prolonged episodes of unhealthy air quality. One associated scientific challenge is accurately forecasting the breakup of these CAPs. For example, there is often uncertainty regarding the interaction of passing weather systems with the stratification within a valley. Will the disturbance be sufficient to destroy the CAP, or will the CAP persist for many more days bringing continued elevated levels of pollution? To address these questions this study examines the dynamical processes that affect the time scale and character of CAP breakup. To do so we use idealized large eddy simulations (LES) to examine the sensitivity of CAP removal to variations in wind, topography, and stratification. The simulations are based on field observations from the Persistent Cold-Air Pool Study (PCAPS). Results indicate that the upstream terrain-flow interaction is important in controlling both the timescale and structure of the CAP breakup. For example, when the flow plunges over the confining topography it leads to enhanced turbulent mixing, CAP displacement, and shorter timescales for complete CAP removal. In contrast, when no mountain wave is present the upstream edge of the CAP remains sheltered from the wind-driven mixing and the break-up is first observed over downstream portions of the basin. Meanwhile, changes in the CAP stratification impact internal circulations that develop in response to the imposed wind forcing. These circulations have significance for the distribution of pollution within CAPs. A concise summary of these results will be presented. Snapshot from a simulation of strong winds disrupting a CAP confined between two ridges. Potential temperature (a), vertical velocity (b), and wind speed (c).

  10. Breakup modes of fluid drops in confined shear flows

    NASA Astrophysics Data System (ADS)

    Barai, Nilkamal; Mandal, Nibir

    2016-07-01

    Using a conservative level set method we investigate the deformation behavior of isolated spherical fluid drops in a fluid channel subjected to simple shear flows, accounting the following three non-dimensional parameters: (1) degree of confinement (Wc = 2a/h, where a is the drop radius and h is the channel thickness); (2) viscosity ratio between the two fluids (λ = μd/μm, where μd is the drop viscosity and μm is the matrix viscosity); and (3) capillary number (Ca). For a given Wc, a drop steadily deforms to attain a stable geometry (Taylor number and inclination of its long axis to the shear direction) when Ca < 0.3. For Ca > 0.3, the deformation behavior turns to be unsteady, leading to oscillatory variations of both its shape and orientation with progressive shear. This kind of unsteady deformation also occurs in a condition of high viscosity ratios (λ > 2). Here we present a detailed parametric analysis of the drop geometry with increasing shear as a function of Wc, Ca, and λ. Under a threshold condition, deforming drops become unstable, resulting in their breakup into smaller droplets. We recognize three principal modes of breakup: Mode I (mid-point pinching), Mode II (edge breakup), and Mode III (homogeneous breakup). Each of these modes is shown to be most effective in the specific field defined by Ca and λ. Our study also demonstrates the role of channel confinement (Wc) in controlling the transition of Mode I to III. Finally, we discuss implications of the three modes in determining characteristic drop size distributions in multiphase flows.