Science.gov

Sample records for multipath fading channels

  1. Multicarrier chaotic communications in multipath fading channels without channel estimation

    NASA Astrophysics Data System (ADS)

    Wang, Shilian; Zhang, Zhili

    2015-01-01

    A multi-carrier chaotic shift keying(MC-CSK) communication scheme with low probability of interception(LPI) is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM) subcarrier. In each block size of M OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK) in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.

  2. Multicarrier chaotic communications in multipath fading channels without channel estimation

    SciTech Connect

    Wang, Shilian Zhang, Zhili

    2015-01-15

    A multi-carrier chaotic shift keying(MC-CSK) communication scheme with low probability of interception(LPI) is proposed in this article. We apply chaotic spreading sequences in the frequency domain, mapping a different chip of a chaotic sequence to an individual orthogonal frequency division multiplexing(OFDM) subcarrier. In each block size of $M$ OFDM symbols, we use one pilot OFDM symbol inserted time-spaced in all-frequency to transmit the reference chaotic signal and use the other M-1 OFDM symbols to transmit the information-bearing signals each spreaded by the reference chaotic signal. At the receiver, we construct a differential detector after DFT and recover the information bits from the correlations between the pilot OFDM symbol and the other M-1 OFDM symbols in each block size of M. Performance analysis and computer simulations show that the MC-CSK outperforms differential chaos shift keying(DCSK) in AWGN channels with high bandwidth efficiency for the block size of M=2 and that the MC-CSK exploits effectively the frequent diversity of the multipath channel.

  3. Frequency-selective fading statistics of shallow-water acoustic communication channel with a few multipaths

    NASA Astrophysics Data System (ADS)

    Bae, Minja; Park, Jihyun; Kim, Jongju; Xue, Dandan; Park, Kyu-Chil; Yoon, Jong Rak

    2016-07-01

    The bit error rate of an underwater acoustic communication system is related to multipath fading statistics, which determine the signal-to-noise ratio. The amplitude and delay of each path depend on sea surface roughness, propagation medium properties, and source-to-receiver range as a function of frequency. Therefore, received signals will show frequency-dependent fading. A shallow-water acoustic communication channel generally shows a few strong multipaths that interfere with each other and the resulting interference affects the fading statistics model. In this study, frequency-selective fading statistics are modeled on the basis of the phasor representation of the complex path amplitude. The fading statistics distribution is parameterized by the frequency-dependent constructive or destructive interference of multipaths. At a 16 m depth with a muddy bottom, a wave height of 0.2 m, and source-to-receiver ranges of 100 and 400 m, fading statistics tend to show a Rayleigh distribution at a destructive interference frequency, but a Rice distribution at a constructive interference frequency. The theoretical fading statistics well matched the experimental ones.

  4. Moments Of Microdiversity EGC Receivers And Macrodiversity SC Receiver Output Signal Over Gamma Shadowed Nakagami-m Multipath Fading Channel

    NASA Astrophysics Data System (ADS)

    Djordjević, Nebojša; Jaksić, Branimir S.; Matović, Ana; Matović, Marija; Smilić, Marko

    2015-11-01

    A system with macrodiversity selection combining (SC) receiver and for microdiversity equal gain combining (EGC) receivers is considered. Received signal is subjected, simultaneously to multipath fading and shadowing, resulting in signal envelope and signal power variation. Closed form expressions for moments of macrodiversity SC receiver output signal envelope are calculated. Numerical expressions are plotted to present the influences of Gamma shadowing severity and Nakagami-m severity on moments of proposed system output signal.

  5. Model Based Prediction of Uplink Multi-Path Fading Channel Response for Pre-Equalization in Mobile MC-CDMA Systems

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, Gagik; Naito, Katsuhiro; Mori, Kazuo; Kobayashi, Hideo

    Multi-carrier code division multiple access (MC-CDMA) has been considered as one of the promising techniques for the next generation of mobile communication systems because of its efficient bandwidth usage, robustness to the multi-path fading and simple channel-sharing scheme. However, MC-CDMA cannot be employed in the uplink communication where the transmitted signal from each user propagates through the different multi-path fading channel, and the received signals are no longer orthogonal at the base station. As a result, bit error rate (BER) performance in the uplink MC-CDMA communication would be strongly degraded due to the occurrence of multi-user interference (MUI). To solve the MUI problem in the uplink MC-CDMA, the pre-equalization method was proposed in which the uplink signal is pre-equalized at the user terminal by using the channel response estimated from the downlink. Although the pre-equalization method is very effective for the stationary uplink channel with fixed users, it is hard to be employed in the time varying fading channel with mobile users, because there is a big difference in the channel responses between downlink and uplink. For the efficient MUI compensation, each user terminal would be required to predict the future channel conditions based on the current observation. This paper proposes a method for model based uplink channel response prediction by employing the spectral decomposition of the downlink channel impulse response. Computer simulation results show that the proposed method can achieve the accurate prediction of channel response for mobile users during the uplink transmission and allows the effective MUI compensation.

  6. Fade margin calculation for channels impaired by Rician fading

    NASA Technical Reports Server (NTRS)

    Davarian, F.

    1985-01-01

    Excess path loss due to multipath severely restricts the performance of power limited mobile networks such as those using satellite-aided links. To reduce multipath related losses, the higher elevation angle of the spacecraft can be exploited by utilizing mobile antennas which reduce the strength of the multipath reflections in favor of the line-of-sight signal. The presence of a strong and stable path in a fading link will change the envelope statistics of the received waveform from Rayleigh to a more favorable Rician distribution. It is determined that the excess path loss, or fade margin, of a Rician channel when coherent detection of binary phase shift keying (BPSK) or quaternary phase shift keying (QPSK) signals is considered. The results are presented parametrically such that they can be applied to a wide range of propagation characteristics from heavy fading to nonfading situations. Furthermore, similar results are also given for the case where only limited coverage is provided.

  7. Measurement of multipath delay profile in land mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Arakaki, Yoshiya; Wakana, Hiromitsu; Suzuki, Ryutaro

    1993-01-01

    Mobile satellite communication channel has been evaluated mainly with fading statistics of signal. When bandwidth of transmitting signal becomes wider, frequency selectivity of fading becomes a significant factor of the channel. Channel characteristics, not only signal variation but multipath delay spread should be evaluated. A multipath measurement system is proposed and developed for mobile satellite applications. With this system and ETS-V satellite, multipath delay profiles are measured in various environments including Tokyo metropolis and Sapporo city at 1.5 GHz. Results show that the maximum excess delay is within 1 microsec and the maximum delay spread is 0.2 microsecs at elevation angles of 40 to 47 degrees. In wideband signal transmission of about 1 MHz and more, designers should consider the effect of selective fading due to the multipath of land mobile satellite channel.

  8. Fading channel issues in system engineering

    NASA Astrophysics Data System (ADS)

    Stein, Seymour

    1987-02-01

    The character of multipath-induced propagational fading is reviewed, along with the interpretations underlying use of the Rayleigh fading model to describe the process statistics. The relationship between this model and contemporary laboratory fading simulators is also outlined. The effects of the fading upon data communications are described, along with the techniques of modulation, diversity, coding, and adaptive equalization used in modern modem designs for operation over such channels. Finally, the system engineering problems are discussed of attempting to provide quantitative estimates of long-term link or network performance that takes into account the longer term channel variabilities.

  9. Antifade sonar employs acoustic field diversity to recover signals from multipath fading

    NASA Astrophysics Data System (ADS)

    Lubman, David

    1996-04-01

    Co-located pressure and particle motion (PM) hydrophones together with four-channel diversity combiners may be used to recover signals from multipath fading. Multipath fading is important in both shallow and deep water propagation and can be an important source of signal loss. The acoustic field diversity concept arises from the notion of conservation of signal energy and the observation that in rooms at least, the total acoustic energy density is the sum of potential energy (scalar field-sound pressure) and kinetic energy (vector field-sound PM) portions. One pressure hydrophone determines acoustic potential energy density at a point. In principle, three PM sensors (displacement, velocity, or acceleration) directed along orthogonal axes describe the kinetic energy density at a point. For a single plane wave, the time-averaged potential and kinetic field energies are identical everywhere. In multipath interference, however, potential and kinetic field energies at a point are partitioned unequally, depending mainly on relative signal phases. Thus, when pressure signals are in deep fade, abundant kinetic field signal energy may be available at that location. Performance benefits require a degree of uncorrelated fading between channels. The expectation of nearly uncorrelated fading is motivated from room theory. Performance benefits for sonar limited by independent Rayleigh fading are suggested by analogy to antifade radio. Average SNR can be improved by several decibels, holding time on target is multiplied manifold, and the bit error rate for data communication is reduced substantially.

  10. Antifade sonar employs acoustic field diversity to recover signals from multipath fading

    SciTech Connect

    Lubman, D.

    1996-04-01

    Co-located pressure and particle motion (PM) hydrophones together with four-channel diversity combiners may be used to recover signals from multipath fading. Multipath fading is important in both shallow and deep water propagation and can be an important source of signal loss. The acoustic field diversity concept arises from the notion of conservation of signal energy and the observation that in rooms at least, the total acoustic energy density is the sum of potential energy (scalar field-sound pressure) and kinetic energy (vector field-sound PM) portions. One pressure hydrophone determines acoustic potential energy density at a point. In principle, three PM sensors (displacement, velocity, or acceleration) directed along orthogonal axes describe the kinetic energy density at a point. For a single plane wave, the time-averaged potential and kinetic field energies are identical everywhere. In multipath interference, however, potential and kinetic field energies at a point are partitioned unequally, depending mainly on relative signal phases. Thus, when pressure signals are in deep fade, abundant kinetic field signal energy may be available at that location. Performance benefits require a degree of uncorrelated fading between channels. The expectation of nearly uncorrelated fading is motivated from room theory. Performance benefits for sonar limited by independent Rayleigh fading are suggested by analogy to antifade radio. Average SNR can be improved by several decibels, holding time on target is multiplied manifold, and the bit error rate for data communication is reduced substantially. {copyright} {ital 1996 American Institute of Physics.}

  11. Fading channel simulator

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.

    1991-12-31

    This invention relates to high frequency (HF) radio signal propagation through fading channels and, more particularly, to simulation of fading channels in order to characterize HF radio system performance in transmitting and receiving signals through such fading channels. Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  12. Fading channel simulator

    DOEpatents

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  13. Ultrasonic simulation of MSBLS multipath fading for orbiter landing configuration

    NASA Technical Reports Server (NTRS)

    Hayre, H. S.

    1978-01-01

    The on-shuttle antenna pattern of the MSBLS receiver, and the azimuth and elevation beamwidths were simulated by their corresponding ultrasonic transducer beams. The scanning rate for the azimuth and elevation beams was 1.75 degrees/second. The results were adjusted for full-scale maximum sinusoidal scan rates of 691 and 377 deg/sec for AZ and EL respectively. The rain drops were simulated by air bubbles, with a similar size distribution, in water. The rain volume was created along a part of the propagation path, and not on the runway, because it was found difficult to avoid an accumulation of bubbles on the runway surface and surroundings simulated by the model surface. Multipath fading from the ground, and its possible degrading effect on the orbiter received beam shape and the associated landing guidance parameters is discussed.

  14. Dual-pilot tone calibration technique. [to reduce multipath fading effects at mobile satellite link receiver

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K.

    1986-01-01

    Pilot-based calibration techniques are used to reduce the effects of multipath fading in mobile satellite receivers. One of the more recent of these techniques, namely the tone calibration technique (TCT), suggests transmitting double sideband modulation with the pilot tone located at the center of its spectrum where the amplitude and phase characteristics of the channel are most stable. To 'make room' for the pilot in the presence of the Doppler shift, the equivalent low-pass data sidebands must be shaped so as to have zero response in the neighborhood of dc. Other techniques such as transparent tone-in-band (TTIB) similarly 'notch out' a hole in the center of the data spectrum for location of the pilot. An alternate possibility which is at the same time much more bandwidth efficient than TCT is a dual-pilot tone calibration technique (DPTCT) that symmetrically locates a pair of pilots outside the data spectrum near the band edges of the channel. The operation and performance of DPTCT are analyzed, and its effectiveness is compared to that of the single tone TCT technique.

  15. A tone-aided dual vestigial sideband system for digital communications on fading channels

    NASA Technical Reports Server (NTRS)

    Hladik, Stephen M.; Saulnier, Gary J.; Rafferty, William

    1989-01-01

    A spectrally efficient tone-aided dual vestigial sideband (TA/DVSB) system for digital data communications on fading channels is presented and described analytically. This PSK (phase-shift-keying) system incorporates a feed-forward, tone-aided demodulation technique to compensate for Doppler frequency shift and channel- induced, multipath fading. In contrast to other tone-in-band-type systems, receiver synchronization is derived from the complete data VSBs. Simulation results for the Rician fading channel are presented. These results demonstrate the receiver's ability to mitigate performance degradation due to fading and to obtain proper data carrier synchronization, suggesting that the proposed TA/DVSB system has promise for this application. Simulated BER (bit-error rate) data indicate that the TA/DVSB system effectively alleviates the channel distortions of the land mobile satellite application.

  16. Wideband signal detection using a Nyquist folding analog-to-information receiver in multipath fading environment

    NASA Astrophysics Data System (ADS)

    Odejide, Olusegun; Annamalai, Annamalai; Akujuobi, Cajetan

    2010-04-01

    The need to efficiently and effectively monitor the frequency spectrum for identification of unoccupied bands is essential in communication systems such as Cognitive Radio (CR), battlefield communications, etc. The Nyquist Folding Analog-to-Information Receiver (NYFR) which is based on the theory of Compressed Sensing has been proposed recently to address this problem in a sparse environment. Although, typical CS techniques, involve random projections followed by a computationally intensive signal reconstruction process, the methods used in NYFR does not requires the laborious l1 minimization algorithm. The NYFR performs analog compression via a non-uniform sampling process that induces a chirp-like modulation on each received signal. Signal parameters can simply be determined by using timefrequency analysis techniques without full signal reconstruction. This paper revisits the detection problem of using NYFR for information recovery for appropriate frequency detection when the original signal in the presence of both the additive white Gaussian noise and Rice multipath fading. An automatic detection algorithm was also developed to determine the detected frequency parameters without looking at the FFT spectrogram plot.

  17. Multipath fading analysis of telemetry signals power fluctuations from Universitetsky microsatellite

    NASA Astrophysics Data System (ADS)

    Shakhparonov, Vladimir; Millán Adán, Espinoza; Vicente Vivas, Esaú

    2012-03-01

    The article deals with the results of the fading fluctuations analysis for telemetry signals in the 2 m and 70 cm bands from the first Moscow State University microsatellite better known as "Universitetsky". Radio telemetry signals were received from the microsatellite for around 2 years, collecting and recording the power signal data of almost 7500 satellite overpasses. The received signals from about 2300 satellite overpasses had a very low signal to noise ratio (SNR) that caused high transmission losses. The rest of the signals had a SNR high enough to complete the transmission without losses. The main objective of this paper was to find the fading fluctuations caused both by diffusion and by the presence of Gaussian and non Gaussian noise in telemetry signal power data. The purpose was both to characterize the communication channel as well as to elaborate solutions both to improve the communication quality as well as to identify no homogeneous zones in the ionosphere environment. The signal power analysis was based in the observation of statistical characteristics from different power signal components, in particular the components influenced by diffusion and non Gaussian noise. The employed methodology follows the next steps: removing the power signal envelope; taking away the Gaussian noise; obtaining the statistical characteristics from non Gaussian noise, Gaussian noise and envelope; finally identifying the LOS and NLOS signal fading components. For this purpose, the wavelet technique was used to perform the signal decomposition. In particular, the discrete wavelet transform DWT was utilized to carry out the signal de-noising. Then, the results were statistically treated in order to obtain a diffusion index for Rician fading, which are associated with fading in atmosphere and ionosphere layers. In this way the communications channel among satellite and ground station was characterized and a BER parameter was obtained for every satellite overpass, which

  18. Resource-Efficient Fusion over Fading and Non-Fading Reporting Channels for Cooperative Spectrum Sensing

    PubMed Central

    Guimarães, Dayan Adionel; Aquino, Guilherme Pedro

    2015-01-01

    Recently, a novel resource-efficient technique for the reporting channel transmissions in cooperative spectrum sensing was proposed. In this technique, secondary users are allowed to simultaneously send their local decisions to the fusion center, saving time and frequency resources. Expressions for the probabilities of detection and false alarm for the unitary-gain AWGN reporting channels were derived, while simulation results were given for both the AWGN and Rayleigh fading channels. Here, we provide an expression that is applicable to AWGN channels with different real-valued gains and to time-varying real-valued gains. A simple suboptimum receiver is proposed for the general complex-valued fading and non-fading channels, with an improved performance in the low signal-to-noise ratio condition. Numerical results are shown for both the AWGN and Rayleigh fading reporting channels, demonstrating the accuracy of the derived expressions and the attractive performance of the proposed receiver. PMID:25602264

  19. GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties

    NASA Technical Reports Server (NTRS)

    Kavak, Adnan; Xu, Guang-Han; Vogel, Wolfhard J.

    1996-01-01

    In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, GPS receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.

  20. GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties

    NASA Technical Reports Server (NTRS)

    Kavak, Adnan; Xu, Guanghan; Vogel, W. J.

    1996-01-01

    In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, global positioning system (GPS) receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.

  1. Performance analysis of replication ALOHA for fading mobile communications channels

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee; Clare, Loren P.

    1986-01-01

    This paper describes an ALOHA random access protocol for fading communications channels. A two-state Markov model is used for the channel error process to account for the channel fading memory. The ALOHA protocol is modified to send multiple contiguous copies of a message at each transmission attempt. Both pure and slotted ALOHA channels are considered. The analysis is applicable to fading environments where the channel memory is short compared to the propagation delay. It is shown that smaller delay may be achieved using replications and, in noisy conditions, can also improve throughput.

  2. Wireless Fading Channel Models: From Classical to Stochastic Differential Equations

    SciTech Connect

    Olama, Mohammed M; Djouadi, Seddik M; Charalambous, Prof. Charalambos

    2010-01-01

    The wireless communications channel constitutes the basic physical link between the transmitter and the receiver antennas. Its modeling has been and continues to be a tantalizing issue, while being one of the most fundamental components based on which transmitters and receivers are designed and optimized. The ultimate performance limits of any communication system are determined by the channel it operates in. Realistic channel models are thus of utmost importance for system design and testing. In addition to exponential power path-loss, wireless channels suffer from stochastic short term fading (STF) due to multipath, and stochastic long term fading (LTF) due to shadowing depending on the geographical area. STF corresponds to severe signal envelope fluctuations, and occurs in densely built-up areas filled with lots of objects like buildings, vehicles, etc. On the other hand, LTF corresponds to less severe mean signal envelope fluctuations, and occurs in sparsely populated or suburban areas. In general, LTF and STF are considered as superimposed and may be treated separately. Ossanna was the pioneer to characterize the statistical properties of the signal received by a mobile user, in terms of interference of incident and reflected waves. His model was better suited for describing fading occurring mainly in suburban areas (LTF environments). It is described by the average power loss due to distance and power loss due to reflection of signals from surfaces, which when measured in dB's give rise to normal distributions, and this implies that the channel attenuation coefficient is log-normally distributed. Furthermore, in mobile communications, the LTF channel models are also characterized by their special correlation characteristics which have been reported. Clarke introduced the first comprehensive scattering model describing STF occurring mainly in urban areas. An easy way to simulate Clarke's model using a computer simulation is described. This model was later

  3. Trellis coded modulation for transmission over fading mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K. (Inventor); Divasalar, Dariush (Inventor)

    1990-01-01

    The combination of trellis coding and multiple phase-shift keyed (MPSK) signaling with asymmetry (nonuniform spacing) to the signal set is disclosed with regard to its suitability for a fading mobile satellite communication channel. For MPSK signaling, introducing nonuniformity in the phase spacing between signal points provides an improvement in performance over that achievable with trellis codes symmetric MPSK signaling, all this without increasing the average or peak power, or changing the bandwidth constraints imposed on the system. Block interleaving may be used to reduce error and pilot tone(s) may be used for improving the error correction performance of the trellis decoder in the presence of channel fading.

  4. The design of trellis codes for fading channels

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Simon, Marvin K.

    1987-01-01

    The appropriate criterion for optimum trellis coded modulation design on the additive white Gaussian noise channel is maximization of the free Euclidean distance. When trellis coded modulation is used on a Rician fading channel with interleaving/deinterleaving, the design of the code for optimum performance is guided by other factors, in particular the length of the shortest error event path, and the product of branch distances (possibly normalized by the Euclidean distance of the path) along that path. Although maximum free distance (d sub free) is still an important consideration, it plays a less significant role the more severe the fading is on the channel. These considerations lead to the definition of a new distance measure for optimization of trellis codes transmitted over Rician fading channels. If no interleaving/deinterleaving is used, then once again the design of the trellis code is guided by maximizing d sub free. It is also shown that allowing for multiple symbols per trellis branch, i.e., multiple trellis coded modulation (MTCM), provides an additional degree of freedom for designing a code to meet the above optimization criteria on the fading channel. It is here where the MTCM technique exploits its full potential.

  5. Microwave photonics for space-time compression of ultrabroadband signals through multipath wireless channels.

    PubMed

    Dezfooliyan, Amir; Weiner, Andrew M

    2013-12-01

    We employed photonic radio frequency (RF) arbitrary waveform generation to demonstrate space-time compression of ultrabroadband wireless signals through highly scattering multipath channels. To the best of our knowledge, this is the first experimental report that explores an RF-photonic transmitter to both characterize channel dispersions in real wireless environments and generate predistorted waveforms to achieve focusing through the multipath channels. Our experiments span a three octave frequency range of 2-18 GHz, nearly an order of magnitude beyond the ~2 GHz instantaneous bandwidth reported in previous spatiotemporal focusing experiments relying on electronic waveform generators. PMID:24281479

  6. Navigation Signal Disturbances by Multipath Propagation - Scaled Measurements with a Universal Channel Sounder Architecture

    NASA Astrophysics Data System (ADS)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg

    2015-11-01

    The performance of navigation systems is always reduced by unwanted multipath propagation. This is especially of practical importance for airborne navigation systems like the instrument landing system (ILS) or the VHF omni directional radio range (VOR). Nevertheless, the quantitative analysis of corresponding, potentially harmful multipath propagation disturbances is very difficult due to the large parameter space. Experimentally difficulties arise due to very expensive, real scale measurement campaigns and numerical simulation techniques still have shortcomings which are briefly discussed. In this contribution a new universal approach is introduced on how to measure very flexibly multipath propagation effects for arbitrary navigation systems using a channel sounder architecture in a scaled measurement environment. Two relevant scenarios of multipath propagation and the impact on navigation signals are presented. The first describes disturbances of the ILS due to large taxiing aircraft. The other example shows the influence of rotating wind turbines on the VOR.

  7. Convolutional fountain distribution over fading wireless channels

    NASA Astrophysics Data System (ADS)

    Usman, Mohammed

    2012-08-01

    Mobile broadband has opened the possibility of a rich variety of services to end users. Broadcast/multicast of multimedia data is one such service which can be used to deliver multimedia to multiple users economically. However, the radio channel poses serious challenges due to its time-varying properties, resulting in each user experiencing different channel characteristics, independent of other users. Conventional methods of achieving reliability in communication, such as automatic repeat request and forward error correction do not scale well in a broadcast/multicast scenario over radio channels. Fountain codes, being rateless and information additive, overcome these problems. Although the design of fountain codes makes it possible to generate an infinite sequence of encoded symbols, the erroneous nature of radio channels mandates the need for protecting the fountain-encoded symbols, so that the transmission is feasible. In this article, the performance of fountain codes in combination with convolutional codes, when used over radio channels, is presented. An investigation of various parameters, such as goodput, delay and buffer size requirements, pertaining to the performance of fountain codes in a multimedia broadcast/multicast environment is presented. Finally, a strategy for the use of 'convolutional fountain' over radio channels is also presented.

  8. Fade-Free Mobile Communication

    NASA Technical Reports Server (NTRS)

    Stevenson, C. R.

    1986-01-01

    Scheme for mobile communication reduces multipath fading and interference between adjacent channels. Proposed communication system lends itself to almost completely digital implementation, eliminating costly and bulky crystal filters. Scheme suitable for satellite-aided or terrestrial mobile communication, including cellular mobile telephony, at frequencies in 150-to-900-MHz range.

  9. UWB Localization for NLOS under Indoor Multipath Channel: Scheme and TOA Estimation

    NASA Astrophysics Data System (ADS)

    Xiao, Zhu; Yi, Ke-Chu; Tian, Bin; Wang, Yong-Chao

    This letter proposes a UWB signaling localization scheme for indoor multipath channel. It demonstrates that the proposed method does not require LOS path (LP) and is suitable for severe non line-of-sight (NLOS) condition. A low-complexity TOA estimation algorithm, the strongest path (SP) detection by convolution, is designed, which is easier to implement than the LP detection since it dispenses with the process of threshold setting. Experiments under NLOS channels in IEEE.802.15.4a are conducted and the localization influences due to the algorithm parameters are discussed. The results prove the feasibility of the proposed localization scheme under the indoor multipath NLOS environment.

  10. Evaluations of SSC Diversity Receiver over EGK Fading Channels

    NASA Astrophysics Data System (ADS)

    Anastasov, Jelena A.; Djordjevic, Goran T.; Panic, Stefan R.; Stefanovic, Mihajlo C.

    2014-09-01

    In this paper, a detailed performance analysis of switch-and-stay combining receivers over non identical distributed extended generalized K fading channels is presented. The analysis has been performed in both noise and interference-limited environments (the level of interference or noise is ignored, respectively). The expressions for the output signal-to-noise (SNR) and signal-to-interference (SIR) probability density function and cumulative distribution function, in a form of Fox's H functions, are presented. Based on this, analytical expressions for evaluating the moments, outage probability, average bit error rate and average channel capacity are derived. The influence of fading and shadowing phenomena, as well as the influence of unbalanced input SNR/SIR on the most important performance metrics is obtained. Presented numerical results are confirmed by Monte Carlo simulations.

  11. Scalable video transmission over Rayleigh fading channels using LDPC codes

    NASA Astrophysics Data System (ADS)

    Bansal, Manu; Kondi, Lisimachos P.

    2005-03-01

    In this paper, we investigate an important problem of efficiently utilizing the available resources for video transmission over wireless channels while maintaining a good decoded video quality and resilience to channel impairments. Our system consists of the video codec based on 3-D set partitioning in hierarchical trees (3-D SPIHT) algorithm and employs two different schemes using low-density parity check (LDPC) codes for channel error protection. The first method uses the serial concatenation of the constant-rate LDPC code and rate-compatible punctured convolutional (RCPC) codes. Cyclic redundancy check (CRC) is used to detect transmission errors. In the other scheme, we use the product code structure consisting of a constant rate LDPC/CRC code across the rows of the `blocks' of source data and an erasure-correction systematic Reed-Solomon (RS) code as the column code. In both the schemes introduced here, we use fixed-length source packets protected with unequal forward error correction coding ensuring a strictly decreasing protection across the bitstream. A Rayleigh flat-fading channel with additive white Gaussian noise (AWGN) is modeled for the transmission. The rate-distortion optimization algorithm is developed and carried out for the selection of source coding and channel coding rates using Lagrangian optimization. The experimental results demonstrate the effectiveness of this system under different wireless channel conditions and both the proposed methods (LDPC+RCPC/CRC and RS+LDPC/CRC) outperform the more conventional schemes such as those employing RCPC/CRC.

  12. Experimental Assessment of Different Receiver Structures for Underwater Acoustic Communications over Multipath Channels

    PubMed Central

    Zhang, Guosong; Hovem, Jens M.; Dong, Hefeng

    2012-01-01

    Underwater communication channels are often complicated, and in particular multipath propagation may cause intersymbol interference (ISI). This paper addresses how to remove ISI, and evaluates the performance of three different receiver structures and their implementations. Using real data collected in a high-frequency (10–14 kHz) field experiment, the receiver structures are evaluated by off-line data processing. The three structures are multichannel decision feedback equalizer (DFE), passive time reversal receiver (passive-phase conjugation (PPC) with a single channel DFE), and the joint PPC with multichannel DFE. In sparse channels, dominant arrivals represent the channel information, and the matching pursuit (MP) algorithm which exploits the channel sparseness has been investigated for PPC processing. In the assessment, it is found that: (1) it is advantageous to obtain spatial gain using the adaptive multichannel combining scheme; and (2) the MP algorithm improves the performance of communications using PPC processing. PMID:22438755

  13. Cross channel dependency requirements of the multi-path redundant avionics suite

    NASA Astrophysics Data System (ADS)

    Martin, Fred; Adams, Darryl

    Requirements for cross channel dependencies in the multipath redundant avionics suite (MPRAS) architecture are described. MPRAS is a data synchronous avionics architecture for space launch vehicle applications. The MPRAS cross channel data link (CCDL) provides the mechanism, required by data synchronous architectures, to exchange data and maintain synchronization among redundant channels. MPRAS architectural requirements impose a variety of characteristics for cross channel dependencies which make traditional CCDL solutions unacceptable for MPRAS target applications. The MPRAS CCDL requirements have led to a CCDL design which maintains resilience to faults, does not introduce large cross channel bandwidth reductions, and meets the other established MPRAS CCDL requirements. A review of fault-tolerant system principles applicable to CCDL issues is presented as well as a top-level functional description of the MPRAS CCDL design.

  14. Separable concatenated codes with iterative map decoding for Rician fading channels

    NASA Technical Reports Server (NTRS)

    Lodge, J. H.; Young, R. J.

    1993-01-01

    Very efficient signalling in radio channels requires the design of very powerful codes having special structure suitable for practical decoding schemes. In this paper, powerful codes are obtained by combining comparatively simple convolutional codes to form multi-tiered 'separable' convolutional codes. The decoding of these codes, using separable symbol-by-symbol maximum a posteriori (MAP) 'filters', is described. It is known that this approach yields impressive results in non-fading additive white Gaussian noise channels. Interleaving is an inherent part of the code construction, and consequently, these codes are well suited for fading channel communications. Here, simulation results for communications over Rician fading channels are presented to support this claim.

  15. Multipath Separation-Direction of Arrival (MS-DOA) with Genetic Search Algorithm for HF channels

    NASA Astrophysics Data System (ADS)

    Arikan, Feza; Koroglu, Ozan; Fidan, Serdar; Arikan, Orhan; Guldogan, Mehmet B.

    2009-09-01

    Direction-of-Arrival (DOA) defines the estimation of arrival angles of an electromagnetic wave impinging on a set of sensors. For dispersive and time-varying HF channels, where the propagating wave also suffers from the multipath phenomena, estimation of DOA is a very challenging problem. Multipath Separation-Direction of Arrival (MS-DOA), that is developed to estimate both the arrival angles in elevation and azimuth and the incoming signals at the output of the reference antenna with very high accuracy, proves itself as a strong alternative in DOA estimation for HF channels. In MS-DOA, a linear system of equations is formed using the coefficients of the basis vector for the array output vector, the incoming signal vector and the array manifold. The angles of arrival in elevation and azimuth are obtained as the maximizers of the sum of the magnitude squares of the projection of the signal coefficients on the column space of the array manifold. In this study, alternative Genetic Search Algorithms (GA) for the maximizers of the projection sum are investigated using simulated and experimental ionospheric channel data. It is observed that GA combined with MS-DOA is a powerful alternative in online DOA estimation and can be further developed according to the channel characteristics of a specific HF link.

  16. Estimation of FBMC/OQAM fading channels using dual Kalman filters.

    PubMed

    Aldababseh, Mahmoud; Jamoos, Ali

    2014-01-01

    We address the problem of estimating time-varying fading channels in filter bank multicarrier (FBMC/OQAM) wireless systems based on pilot symbols. The standard solution to this problem is the least square (LS) estimator or the minimum mean square error (MMSE) estimator with possible adaptive implementation using recursive least square (RLS) algorithm or least mean square (LMS) algorithm. However, these adaptive filters cannot well-exploit fading channel statistics. To take advantage of fading channel statistics, the time evolution of the fading channel is modeled by an autoregressive process and tracked by Kalman filter. Nevertheless, this requires the autoregressive parameters which are usually unknown. Thus, we propose to jointly estimate the FBMC/OQAM fading channels and their autoregressive parameters based on dual optimal Kalman filters. Once the fading channel coefficients at pilot symbol positions are estimated by the proposed method, the fading channel coefficients at data symbol positions are then estimated by using some interpolation methods such as linear, spline, or low-pass interpolation. The comparative simulation study we carried out with existing techniques confirms the effectiveness of the proposed method. PMID:24701181

  17. Estimation of FBMC/OQAM Fading Channels Using Dual Kalman Filters

    PubMed Central

    Aldababseh, Mahmoud

    2014-01-01

    We address the problem of estimating time-varying fading channels in filter bank multicarrier (FBMC/OQAM) wireless systems based on pilot symbols. The standard solution to this problem is the least square (LS) estimator or the minimum mean square error (MMSE) estimator with possible adaptive implementation using recursive least square (RLS) algorithm or least mean square (LMS) algorithm. However, these adaptive filters cannot well-exploit fading channel statistics. To take advantage of fading channel statistics, the time evolution of the fading channel is modeled by an autoregressive process and tracked by Kalman filter. Nevertheless, this requires the autoregressive parameters which are usually unknown. Thus, we propose to jointly estimate the FBMC/OQAM fading channels and their autoregressive parameters based on dual optimal Kalman filters. Once the fading channel coefficients at pilot symbol positions are estimated by the proposed method, the fading channel coefficients at data symbol positions are then estimated by using some interpolation methods such as linear, spline, or low-pass interpolation. The comparative simulation study we carried out with existing techniques confirms the effectiveness of the proposed method. PMID:24701181

  18. The performance of trellis coded multilevel DPSK on a fading mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K.; Divsalar, Dariush

    1987-01-01

    The performance of trellis coded multilevel differential phase-shift-keying (MDPSK) over Rician and Rayleigh fading channels is discussed. For operation at L-Band, this signalling technique leads to a more robust system than the coherent system with dual pilot tone calibration previously proposed for UHF. The results are obtained using a combination of analysis and simulation. The analysis shows that the design criterion for trellis codes to be operated on fading channels with interleaving/deinterleaving is no longer free Euclidean distance. The correct design criterion for optimizing bit error probability of trellis coded MDPSK over fading channels will be presented along with examples illustrating its application.

  19. An improved proportionate normalized least-mean-square algorithm for broadband multipath channel estimation.

    PubMed

    Li, Yingsong; Hamamura, Masanori

    2014-01-01

    To make use of the sparsity property of broadband multipath wireless communication channels, we mathematically propose an l p -norm-constrained proportionate normalized least-mean-square (LP-PNLMS) sparse channel estimation algorithm. A general l p -norm is weighted by the gain matrix and is incorporated into the cost function of the proportionate normalized least-mean-square (PNLMS) algorithm. This integration is equivalent to adding a zero attractor to the iterations, by which the convergence speed and steady-state performance of the inactive taps are significantly improved. Our simulation results demonstrate that the proposed algorithm can effectively improve the estimation performance of the PNLMS-based algorithm for sparse channel estimation applications. PMID:24782663

  20. An Improved Proportionate Normalized Least-Mean-Square Algorithm for Broadband Multipath Channel Estimation

    PubMed Central

    2014-01-01

    To make use of the sparsity property of broadband multipath wireless communication channels, we mathematically propose an lp-norm-constrained proportionate normalized least-mean-square (LP-PNLMS) sparse channel estimation algorithm. A general lp-norm is weighted by the gain matrix and is incorporated into the cost function of the proportionate normalized least-mean-square (PNLMS) algorithm. This integration is equivalent to adding a zero attractor to the iterations, by which the convergence speed and steady-state performance of the inactive taps are significantly improved. Our simulation results demonstrate that the proposed algorithm can effectively improve the estimation performance of the PNLMS-based algorithm for sparse channel estimation applications. PMID:24782663

  1. Joint Symbol Timing and CFO Estimation for OFDM/OQAM Systems in Multipath Channels

    NASA Astrophysics Data System (ADS)

    Fusco, Tilde; Petrella, Angelo; Tanda, Mario

    2009-12-01

    The problem of data-aided synchronization for orthogonal frequency division multiplexing (OFDM) systems based on offset quadrature amplitude modulation (OQAM) in multipath channels is considered. In particular, the joint maximum-likelihood (ML) estimator for carrier-frequency offset (CFO), amplitudes, phases, and delays, exploiting a short known preamble, is derived. The ML estimators for phases and amplitudes are in closed form. Moreover, under the assumption that the CFO is sufficiently small, a closed form approximate ML (AML) CFO estimator is obtained. By exploiting the obtained closed form solutions a cost function whose peaks provide an estimate of the delays is derived. In particular, the symbol timing (i.e., the delay of the first multipath component) is obtained by considering the smallest estimated delay. The performance of the proposed joint AML estimator is assessed via computer simulations and compared with that achieved by the joint AML estimator designed for AWGN channel and that achieved by a previously derived joint estimator for OFDM systems.

  2. An algorithm for generating nonuniformly space correlated samples for simulating a nonselective Rayleigh fading channel

    NASA Astrophysics Data System (ADS)

    Shein, Norman P.

    A nonselective Rayleigh fading channel model using a time-variant complex multiplier z(t) is considered. Performing a Monte Carlo simulation of this channel requires samples of z(t) with appropriate correlation (fading power spectrum). For an important f-4 spectrum, there is a simple digital implementation that generates uniformly spaced samples. However, many communications systems have faded signals which appear only intermittently at the receiver. Nonuniformly spaced samples are better suited to a simulation of this situation. The author presents an algorithm for efficiently generating nonuniformly spaced correlated samples which have a specified f-4 power spectrum.

  3. Performance of DPSK with convolutional encoding on time-varying fading channels

    NASA Technical Reports Server (NTRS)

    Mui, S. Y.; Modestino, J. W.

    1977-01-01

    The bit error probability performance of a differentially-coherent phase-shift keyed (DPSK) modem with convolutional encoding and Viterbi decoding on time-varying fading channels is examined. Both the Rician and the lognormal channels are considered. Bit error probability upper bounds on fully-interleaved (zero-memory) fading channels are derived and substantiated by computer simulation. It is shown that the resulting coded system performance is a relatively insensitive function of the choice of channel model provided that the channel parameters are related according to the correspondence developed as part of this paper. Finally, a comparison of DPSK with a number of other modulation strategies is provided.

  4. Fading Losses on the LCRD Free-Space Optical Link Due to Channel Turbulence

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Piazzolla, Sabino; Hamkins, Jon

    2013-01-01

    The Laser Communications Relay Demonstration (LCRD) will implement an optical communications link between a pair of Earth terminals via an Earth-orbiting satellite relay. Clear air turbulence over the communication paths will cause random fluctuations, or fading, in the received signal irradiance. In this paper we characterize losses due to fading caused by clear air turbulence. We illustrate the performance of a representative relay link, utilizing a channel interleaver and error-correction-code to mitigate fading, and provide a method to quickly determine the link performance.

  5. Channel fading for mobile satellite communications using spread spectrum signaling and TDRSS

    NASA Technical Reports Server (NTRS)

    Jenkins, Jeffrey D.; Fan, Yiping; Osborne, William P.

    1995-01-01

    This paper will present some preliminary results from a propagation experiment which employed NASA's TDRSS and an 8 MHz chip rate spread spectrum signal. Channel fade statistics were measured and analyzed in 21 representative geographical locations covering urban/suburban, open plain, and forested areas. Cumulative distribution Functions (CDF's) of 12 individual locations are presented and classified based on location. Representative CDF's from each of these three types of terrain are summarized. These results are discussed, and the fade depths exceeded 10 percent of the time in three types of environments are tabulated. The spread spectrum fade statistics for tree-lined roads are compared with the Empirical Roadside Shadowing Model.

  6. BER Performance of Downlink MC-CDMA with ORC in Nakagami-m Fading Channel

    NASA Astrophysics Data System (ADS)

    Lee, Yusung; Kim, Namshik; Park, Hyuncheol

    In this letter, we derive an exact bit error rate (BER) expression for downlink multi-carrier code division multiple access (MC-CDMA) systems with orthogonal restoring combining (ORC) in Nakagami-m fading channel. A simple approximated expression is also provided. For uncoded and coded MC-CDMA systems, the BER expressions are calculated based on the moment generating function (MGF) of the combined fading random variable. The derived analytic expressions are verified by simulation results.

  7. Performance of quasi-optimum digital FM demodulators for fading channels

    NASA Technical Reports Server (NTRS)

    Dharamsi, M. T.; Gupta, S. C.

    1975-01-01

    This paper deals with the problem of digital demodulation of FM signals transmitted over Rayleigh and Rician fading channels. The Rayleigh and Rician fading channels are represented by two quadrature multiplicative nonzero mean white Gaussian processes in addition to an additive zero-mean white Gaussian noise. Quasi-optimum digital baseband demodulation algorithms using various nonlinear estimation techniques are derived. The digital demodulator structures are then simulated on a digital computer for an FM system with first order message spectrum for various values of the parameters for Rayleigh and Rician channels.

  8. Second order statistics of selection combining receiver over κ-μ fading channels subject to co-channel interferences

    NASA Astrophysics Data System (ADS)

    Stefanović, Mihajlo; Panić, Stefan R.; Stefanović, DušAn; Nikolić, Bojana; Cvetković, Aleksandra

    2012-12-01

    Radio propagation performances in interference-limited faded environment are studied in this paper. Selection combining (SC) based on signal-to-interference ratio (SIR) overκ-μfading channels is performed. Probability density function (PDF) and cumulative distribution function (CDF) of the received SIR are determined. Based on the results obtained for PDF and CDF, infinite-series expressions are derived for the output level crossing rate (LCR) and average fade duration (AFD). These second order statistical measures are regarded as necessary for supporting technical documentation in every radio communication link design. Influences of various system parameters such as fading severity and the number of co-channel interferences affecting these measures are graphically presented and discussed.

  9. Detection performance of cooperative spectrum sensing with hard decision fusion in fading channels

    NASA Astrophysics Data System (ADS)

    Nallagonda, S.; Chandra, A.; Roy, S. D.; Kundu, S.; Kukolev, P.; Prokes, A.

    2016-02-01

    In this paper, we investigate the detection performance of cooperative spectrum sensing (CSS) using energy detector in several fading scenarios. The fading environments comprise relatively less-studied Hoyt and Weibull channels in addition to the conventional Rayleigh, Rician, Nakagami-m and log-normal shadowing channels. We have presented an analytical framework for evaluating different probabilities related to spectrum sensing, i.e. missed detection, false alarm and total error due to both of them, for all the fading/shadowing models mentioned. The major theoretical contribution is, however, the derivation of closed-form expressions for probability of detection. Based on our developed framework, we present performance results of CSS under various hard decision fusion strategies such as OR rule, AND rule and Majority rule. Effects of sensing channel signal-to-noise ratio, detection threshold, fusion rules, number of cooperating cognitive radios (CRs) and fading/shadowing parameters on the sensing performance have been illustrated. The performance improvement achieved with CSS over a single CR-based sensing is depicted in terms of total error probability. Further, an optimal threshold that minimises total error probability has been indicated for all the fading/shadowing channels.

  10. Performance of convolutional codes on fading channels typical of planetary entry missions

    NASA Technical Reports Server (NTRS)

    Modestino, J. W.; Mui, S. Y.; Reale, T. J.

    1974-01-01

    The performance of convolutional codes in fading channels typical of the planetary entry channel is examined in detail. The signal fading is due primarily to turbulent atmospheric scattering of the RF signal transmitted from an entry probe through a planetary atmosphere. Short constraint length convolutional codes are considered in conjunction with binary phase-shift keyed modulation and Viterbi maximum likelihood decoding, and for longer constraint length codes sequential decoding utilizing both the Fano and Zigangirov-Jelinek (ZJ) algorithms are considered. Careful consideration is given to the modeling of the channel in terms of a few meaningful parameters which can be correlated closely with theoretical propagation studies. For short constraint length codes the bit error probability performance was investigated as a function of E sub b/N sub o parameterized by the fading channel parameters. For longer constraint length codes the effect was examined of the fading channel parameters on the computational requirements of both the Fano and ZJ algorithms. The effects of simple block interleaving in combatting the memory of the channel is explored, using the analytic approach or digital computer simulation.

  11. BER Performance for Downlink MC-CDMA Systems over Rician Fading Channels

    NASA Astrophysics Data System (ADS)

    Hou, Zhihua; Dubey, Vimal K.

    2005-12-01

    We consider downlink multicarrier code-division multiple-access (MC-CDMA) systems using binary phase-shift keying (BPSK) modulation scheme and maximal ratio combining (MRC) in frequency-selective Rician fading channels. A time-domain method to obtain bit error rate (BER) by calculating moment generating function (MGF) of the decision variable for a tapped-delay-line channel model is proposed. This method does not require any assumption regarding the statistical or spectral distribution of multiple access interference (MAI), and it is also not necessary to assume that the fading encountered by the subcarriers is independent of each other. The analytical formula is also verified by simulations.

  12. Trellis coded modulation for 4800-9600 bps transmission over a fading mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Simon, M. K.

    1986-01-01

    The combination of trellis coding and multiple phase-shift-keyed (MPSK) signalling with the addition of asymmetry to the signal set is discussed with regard to its suitability as a modulation/coding scheme for the fading mobile satellite channel. For MPSK, introducing nonuniformity (asymmetry) into the spacing between signal points in the constellation buys a further improvement in performance over that achievable with trellis coded symmetric MPSK, all this without increasing average or peak power, or changing the bandwidth constraints imposed on the system. Whereas previous contributions have considered the performance of trellis coded modulation transmitted over an additive white Gaussian noise (AWGN) channel, the emphasis in the paper is on the performance of trellis coded MPSK in the fading environment. The results will be obtained by using a combination of analysis and simulation. It will be assumed that the effect of the fading on the phase of the received signal is fully compensated for either by tracking it with some form of phase-locked loop or with pilot tone calibration techniques. Thus, results will reflect only the degradation due to the effect of the fading on the amplitude of the received signal. Also, we shall consider only the case where interleaving/deinterleaving is employed to further combat the fading. This allows for considerable simplification of the analysis and is of great practical interest. Finally, the impact of the availability of channel state information on average bit error probability performance is assessed.

  13. Comparasion of Energy Detection in Cognitive Radio over different fading channels

    NASA Astrophysics Data System (ADS)

    Buttar, Simar

    2012-07-01

    With the advance of wireless communications, the problem of bandwidth scarcity has become more prominent. Cognitive radio technology has come out as a way to solve this problem by allowing the unlicensed users to use the licensed bands opportunistically. To sense the existence of licensed users, many spectrum sensing techniques have been devised. In this paper, energy detection and cyclic prefix is used for spectrum sensing.The comparison of ROC curves has been done for various wireless fading channels using squaring and cubingoperation,the improvement has gone as high as up to 0.6 times for AWGN channel and 0.4 times for Rayleigh channel as we go from squaring to cubing operation in an energy detector. Closed form expressions for Probability of detection for AWGN and Rayleigh channels are described.Nakagami fading channel shows worst results .

  14. Bounds on the error performance of coding for nonindependent Rician-fading channels

    NASA Astrophysics Data System (ADS)

    Gagnon, Francois; Haccoun, David

    1992-02-01

    New upper bounds on the error performance of coded systems for Rician channels are presented. The fading channels need not be fully interleaved to obtain meaningful performance results. These bounds hold for coherent, differentially coherent and noncoherent demodulation of binary signals. They provide a useful analytical approach to the evaluation of the error performance of convolutional or block coding and they may be generalized to M-ary signals and trellis modulation. The approach allows for complex bounds using the fine structure of the code, for simpler bounds similar to those on memoryless channels and finally for a random coding bound using the cutoff rate of the channel. The analysis thus permits a step by step evaluation of coded error performances for Rician-fading channels.

  15. Adaptive Channel-Tracking Method and Equalization for MC-CDMA Systems over Rapidly Fading Channel under Colored Noise

    NASA Astrophysics Data System (ADS)

    Yang, Chang-Yi; Chen, Bor-Sen

    2010-12-01

    A recursive maximum-likelihood (RML) algorithm for channel estimation under rapidly fading channel and colored noise in a multicarrier code-division multiple-access (MC-CDMA) system is proposed in this paper. A moving-average model with exogenous input (MAX) is given to describe the transmission channel and colored noise. Based on the pseudoregression method, the proposed RML algorithm can simultaneously estimate the parameters of channel and colored noise. Following the estimation results, these parameters can be used to enhance the minimum mean-square error (MMSE) equalizer. Considering high-speed mobile stations, a one-step linear trend predictor is added to improve symbol detection. Simulation results indicate that the proposed RML estimator can track the channel more precisely than the conventional estimator. Meanwhile, the performance of the proposed enhanced MMSE equalizer is robust to the rapidly Rayleigh fading channel under colored noise in the MC-CDMA systems.

  16. A free-space optical terminal for fading channels

    NASA Astrophysics Data System (ADS)

    Williams, T.; Murphy, R. J.; Walther, F.; Volpicelli, A.; Wilcox, B.; Crucioli, D.

    2009-08-01

    This paper describes a lasercom terminal using spatial diversity to mitigate fading caused by atmospheric scintillation. Multiple receive apertures are separated sufficiently to capture statistically independent samples of the incoming beam. The received optical signals are tracked individually, photo-detected, and summed electrically, with measured diversity gain. The terminal consists of COTS components. It was used in successful demonstrations over a 5.4km ground-ground link from June through September 2008, during which it experienced a wide temperature range. Design overview and hardware realization are presented. This work was sponsored by the Department of Defense, RRCO DDR&E, under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

  17. Performance of a Coded Non-Square Quadrature Amplitude Modulation Scheme over Fading Channels

    NASA Astrophysics Data System (ADS)

    Li, L.; Divsalar, D.; Dolinar, S.

    2004-02-01

    It is shown that a non-square (NS) 2^(2n+1)-ary quadrature amplitude modulation (QAM) can be decomposed into a single-parity-check (SPC) block encoder and a memoryless modulator with independent in-phase (I) and quadrature (Q) symbol mapping. When NS-2^(2n+1)-QAM is concatenated with a forward-error-correcting (FEC) code, iterative demodulation and decoding of the FEC code and the inherent SPC code of NS-2^(2n+1)-QAM exploits the modulation's inherent memory and its independent I- and Q-channel mapping and demapping. The capacity and the bit-/symbol-error-rate (BER/SER) performance of coded and uncoded NS-2^(2n+1)-QAM systems are given for both additive white Gaussian noise (AWGN) channels and Rayleigh fading channels and are compared to those of other conventional 2^(2n+1)-ary systems. Simulation results show that, with iterative demodulation and decoding, coded NS-8QAM outperforms three conventional 8-ary systems by at least 0.65 dB on AWGN channels and by at least 0.57 dB on Rayleigh fading channels at BER = 10^(-5), when the FEC code is a concatenation of (15,11) Hamming codes with rate-1 accumulator codes, while coded NS-32QAM outperforms standard 32QAM by about 0.45 dB on AWGN channels and by about 0.27 dB on Rayleigh fading channels.

  18. Receiver Diversity Combining Using Evolutionary Algorithms in Rayleigh Fading Channel

    PubMed Central

    Akbari, Mohsen; Manesh, Mohsen Riahi

    2014-01-01

    In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods. PMID:25045725

  19. Performance analysis of the ALOHA protocol with replication in a fading channel for the Mobile Satellite Experiment

    NASA Technical Reports Server (NTRS)

    Clare, L. P.; Yan, T.-Y.

    1985-01-01

    The analysis of the ALOHA random access protocol for communications channels with fading is presented. The protocol is modified to send multiple contiguous copies of a message at each transmission attempt. Both pure and slotted ALOHA channels are considered. A general two state model is used for the channel error process to account for the channel fading memory. It is shown that greater throughput and smaller delay may be achieved using repetitions. The model is applied to the analysis of the delay-throughput performance in a fading mobile communications environment. Numerical results are given for NASA's Mobile Satellite Experiment.

  20. Robustness of predictive sensor network routing in fading channels

    NASA Astrophysics Data System (ADS)

    Muraleedharan, Rajani; Osadciw, Lisa A.

    2005-06-01

    Sensors have varied constraints, which make the network challenging for communicating with peers. In this paper, an extension, to the physical layer of the previous predictive sensor network model using the ant system is proposed. The tiny and low-cost sensor nodes are made of RF wireless links, where the states of the nodes vary with respect to time and environment. The ant system is a learning algorithm, that can be used to solve any NP hard communication problem and possesses characteristics such as robustness and versatility. The ant system possesses unique features that keep the network functional by detecting weak links and re-routing the agents. The swarm agents are distributed along the network, where the agent communicates with its neighbors (agents) by means of pheromone deposition and tabu list. The transition probability in the ant system includes an objective function, which is influenced by the poset weights. The poset weights on each of the orthogonal communication parameters greatly affects the decisions made by ant system. The agents carry updated information of its previous nodes, which helps in monitoring the strength of the communication links. Through simulation, comparison between DSSS-BPSK and Bluetooth-GFSK signals are shown. This paper demonstrates the robustness of the model under slow/fast fading, and energy loss at node during transmission. Implementation of this algorithm should be able to handle hostile environmental conditions and human tampering of data. The performance of the network is evaluated based on accuracy and response time of the agents within the network.

  1. Threshold crossing rate and average non-fade duration in a Rayleigh-fading channel with multiple interferers

    NASA Astrophysics Data System (ADS)

    Linnartz, Jean-Paul M. G.; Prasad, Ramjee

    1989-12-01

    A sum of n incoherent Rayleigh-fading narrowband signals is described as a joint interference signal with Nakagami fading. Extending the theory of mobile fading for a single signal, expressions for the rate of crossing a prescribed C/I-ratio and the resulting average nonfade duration are derived. Results suggest that, if the interference is due to many components, only the bandwidth of the fading of the desired signal plays an important role in these statistics. The results are useful for evaluations of packet radio networks, paging systems, and other interference-limited mobile radio systems.

  2. On the performance analysis of SSC diversity system over η-μ fading channels

    NASA Astrophysics Data System (ADS)

    Khatalin, Sari

    2016-06-01

    In this paper, we study key performance measures of dual-branch switch-and-stay combining (SSC) system operating in ? fading environment. Specifically, analytical expressions for the kth order moment, average signal-to-noise ratio, amount of fading and outage probability are obtained for an SSC system operating over ? fading channels. Expressions of the average bit error rate (BER) for coherent detection and non-coherent detection were also derived with SSC for various modulation schemes. The BER expressions for the coherent detection case were derived using the moment generating function-based approach. Some of the final expressions are presented in the form of infinite series. Therefore, those series are truncated and upper bounds are derived for truncation errors. Expressions to determine the optimum adaptive switching thresholds are also presented. Corresponding results for Nakagami-q and Nakagami-m fading are derived in this paper as special cases. Numerical results are provided to demonstrate the applications of the new results.

  3. Multiple trellis coded modulation (MTCM) performance on a fading mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K.; Divsalar, Dariush

    1987-01-01

    The author recently introduced the notion of multiple trellis coding, in which more than one channel symbol per trellis branch is transmitted. He showed that on the ideal additive white Gaussian noise (AWGN) channel, the combination of multiple trellis coding with M-ary modulation yields a performance gain with symmetric signal sets comparable to and in some cases better than that previously achieved only with signal constellation asymmetry. The combination of conventional trellis coding with multiple phase-shift-keyed (MPSK) signaling has recently been shown by the author to be a well-suited modulation/coding scheme for transmission over the fading mobile satellite channel. In particular, a rate 2/3 coded 8-PSK scheme operating at 4800 b/s is currently under development for use in NASA's Mobile Satellite Experiment (MSAT-X). The author applies the multiple trellis-coded modulation technique in the same fading mobile satellite environment, extending the analysis results previously found for its performance over the AWGN channel to the MSAT-X channel.

  4. Capacity of Cognitive Radio with Partial Channel Distribution Information in Rayleigh Fading Environments

    NASA Astrophysics Data System (ADS)

    Xu, D.; Li, Q.

    2015-11-01

    This paper investigates the capacity of the secondary user (SU) in a cognitive radio (CR) network in Rayleigh fading environments. Different from existing works where perfect channel state information (CSI) or channel distribution information (CDI) of the interference link from the SU to the primary user (PU) is assumed to be available, this paper assumes that only partial CDI is available. Specifically, we assume the distribution parameter is unknown and estimated from a set of channel gain samples. With such partial CDI, closed-form expressions for the ergodic and outage capacities of the SU are obtained under the transmit power and the interference outage constraints. It is shown that the capacity with partial CDI is not degraded compared to that with perfect CDI if the interference outage constraint is loose. It is also shown that the capacity can be significantly improved by increasing the number of channel gain samples.

  5. Measurement of satellite PCS fading using GPS

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1995-01-01

    A six-channel commercial GPS receiver with a custom-made 40 deg tilted, rotating antenna has been assembled to make fade measurements for personal satellite communications. The system can measure up to two times per minute fades of up to 15 dB in the direction of each tracked satellite from 10 to 90 deg elevation. Photographic fisheye lens images were used to categorize the fade data obtained in several test locations according to fade states of clear, shadowed, or blocked. Multipath effects in the form of annular rings can be observed when most of the sky is clear. Tree fading by a Pecan exceeding 3.5 dB and 12 dB at 50 to 10 percent probability, respectively, compared with median fades of 7.5 dB measured earlier and the discrepancy is attributed to the change in ratio when measuring over an area as opposed to along a line. Data acquired inside buildings revealed 'rf-leaky' ceilings. Satellite diversity gain in a shadowed environment exceeded 6 dB at the 10 percent probability.

  6. Measurement of satellite PCS fading using GPS

    NASA Astrophysics Data System (ADS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1995-08-01

    A six-channel commercial GPS receiver with a custom-made 40 deg tilted, rotating antenna has been assembled to make fade measurements for personal satellite communications. The system can measure up to two times per minute fades of up to 15 dB in the direction of each tracked satellite from 10 to 90 deg elevation. Photographic fisheye lens images were used to categorize the fade data obtained in several test locations according to fade states of clear, shadowed, or blocked. Multipath effects in the form of annular rings can be observed when most of the sky is clear. Tree fading by a Pecan exceeding 3.5 dB and 12 dB at 50 to 10 percent probability, respectively, compared with median fades of 7.5 dB measured earlier and the discrepancy is attributed to the change in ratio when measuring over an area as opposed to along a line. Data acquired inside buildings revealed 'rf-leaky' ceilings. Satellite diversity gain in a shadowed environment exceeded 6 dB at the 10 percent probability.

  7. A V-BLAST Detector Based on Modified Householder QRD over the Spatially Correlated Fading Channel

    NASA Astrophysics Data System (ADS)

    Jing, Xiaorong; Zhou, Zhengzhong; Zhang, Tianqi

    We propose a feasible V-BLAST detector based on modified Householder QRD (M-H-QRD) over spatially correlated fading channel, which can almost match the performance of the V-BLAST algorithm with much lower complexity and better numerical stability. Compared to the sorted QRD (S-QRD) detector, the proposed detector requires a smaller minimum word-length to reach the same value of error floor for fixed-point (FP) numerical precision despite no significant performance difference for floating-point machine precision. All these advantages make it attractive when implemented using FP arithmetic.

  8. A technical solution to fadings in tactical satellite digital transmissions

    NASA Astrophysics Data System (ADS)

    Losquardo, G.; Lorenzoni, A.

    1984-10-01

    Tactical satellite communication systems may provide service to high performance aircrafts employing antennas with relatively wide beamwidths. Unfortunately, the fading and multipath phenomena could strongly influence the capability of point to point data transmission. In order to overcome the problem of the design of a coding/mo-demodulation structure, and to determine the actual link margin, an analysis and a simulation of a multipath channel has been performed. The performance gains that are achieved with the use of a suitably wide bandwidth modulation and with three different theoretical fading models are shown. The problem of the bandwidth spreading has been related to the aircraft height and to the geometry of the multipath model. A solution to the problem of multiplexing of several wideband signals, over a repeater bandwidth, proposed and the performances of a receiver, based on a FFT spectra analyzer, are illustrated. The simulation to the problem of multiplexing of several wideband signals, over a repeater bandwidth, was proposed and the performance of a receiver, based on a FFT spectra analyzer, are illustrated. The simulation results confirm that, the FFT based receiver allows the soft decision demodulation of one or several simultaneous channels, with performances that are very close to the ones given by the optimal receiver for orthogonal codewords; moreover, the FFT solves, elegantly, the problem of Doppler shifts even in presence of fadings and with the capability to track the satellite signal even for maneuvering aircraft.

  9. Diversity technique for DAPSK signal over the frequency-selective fading channel

    NASA Astrophysics Data System (ADS)

    Lee, Jong Y.; Chung, Young M.; Lee, Sang U.

    2001-10-01

    In this paper, a maximal ratio combining (MRC) and weighted maximal ratio combining (WMRC) diversity receiver are proposed. The MRC receiver makes a decision at each branch based on the minimum distance criterion. The performance of the MRC receiver is analyzed on the frequency-selective Rayleigh and Rician fading channels, in terms of the union bound for bit error probability. In addition, the WMRC receiver, which assigns weighting factors to the decision variable at each branch, based on the optimum decision boundaries, is proposed. The performance of the WMRC is investigated through the computer simulation and compared with those of MRC and equal gain combining (EGC). From the results, it is found that the performances of the WMRC and MRC are better than those of EGC on both the frequency-selective Rayleigh and Rician fading channels and performance improvements over the EGC are noticeable when the number of diversity branches is large as long as the root mean square (rms) delay is smaller than or equal to 10% of the symbol period.

  10. Asymptotic Performance Analysis of STBCs from Coordinate Interleaved Orthogonal Designs in Shadowed Rayleigh Fading Channels

    NASA Astrophysics Data System (ADS)

    Yoon, Chanho; Lee, Hoojin; Kang, Joonhyuk

    In this letter, we provide an asymptotic error rate performance evaluation of space-time block codes from coordinate interleaved orthogonal designs (STBCs-CIODs), especially in shadowed Rayleigh fading channels. By evaluating a simplified probability density function (PDF) of Rayleigh and Rayleigh-lognormal channels affecting the STBC-CIOD system, we derive an accurate closed-form approximation for the tight upper and lower bounds on the symbol error rate (SER). We show that shadowing asymptotically affects coding gain only, and conclude that an increase in diversity order under shadowing causes slower convergence to asymptotic bound due to the relatively larger loss of coding gain. By comparing the derived formulas and Monte-Carlo simulations, we validate the accuracy of the theoretical results.

  11. Performance Characterization of a Hybrid Satellite-Terrestrial System with Co-Channel Interference over Generalized Fading Channels.

    PubMed

    Javed, Umer; He, Di; Liu, Peilin

    2016-01-01

    The transmission of signals in a hybrid satellite-terrestrial system (HSTS) in the presence of co-channel interference (CCI) is considered in this study. Specifically, we examine the problem of amplify-and-forward (AF)-based relaying in a hybrid satellite-terrestrial link, where the relay node is operating in the presence of a dominant co-channel interferer. It is assumed that direct connection between a source node (satellite) and a destination node (terrestrial receiver) is not available due to masking by obstacles in the surrounding. The destination node is only able to receive signals from the satellite with the help of a relay node located at the ground. In the proposed HSTS, the satellite-relay channel follows the shadowed Rice fading; and the channels of interferer-relay and relay-destination links experience generalized Nakagami-m fading. For the considered AF-based HSTS, we first develop the analytical expression for the moment generating function (MGF) of the overall output signal-to-interference-plus-noise ratio (SINR). Then, based on the derived exact MGF, we derive novel expressions for the average symbol error rate (SER) of the considered HSTS for the following digital modulation techniques: M-ary phase shift keying (M-PSK), M-ary quadrature amplitude modulation (M-QAM) and M-ary pulse amplitude modulation (M-PAM). To significantly reduce the computational complexity for utility in system-level simulations, simple analytical approximation for the exact SER in the high signal-to-noise ratio (SNR) regime is presented to provide key insights. Finally, numerical results and the corresponding analysis are presented to demonstrate the effectiveness of the developed performance evaluation framework and to view the impact of CCI on the considered HSTS under varying channel conditions and with different modulation schemes. PMID:27527182

  12. Sensing Coverage Prediction for Wireless Sensor Networks in Shadowed and Multipath Environment

    PubMed Central

    Kumar, Sushil; Lobiyal, D. K.

    2013-01-01

    Sensing coverage problem in wireless sensor networks is a measure of quality of service (QoS). Coverage refers to how well a sensing field is monitored or tracked by the sensors. Aim of the paper is to have a priori estimate for number of sensors to be deployed in a harsh environment to achieve desired coverage. We have proposed a new sensing channel model that considers combined impact of shadowing fading and multipath effects. A mathematical model for calculating coverage probability in the presence of multipath fading combined with shadowing is derived based on received signal strength (RSS). Further, the coverage probability derivations obtained using Rayleigh fading and lognormal shadowing fading are validated by node deployment using Poisson distribution. A comparative study between our proposed sensing channel model and different existing sensing models for the network coverage has also been presented. Our proposed sensing model is more suitable for realistic environment since it determines the optimum number of sensors required for desirable coverage in fading conditions. PMID:24250271

  13. Precise SER Analysis and Performance Results of OSTBC MIMO-OFDM Systems over Uncorrelated Nakagami-m Fading Channels

    NASA Astrophysics Data System (ADS)

    Ahmad Ansari, Ejaz; Rajatheva, Nandana

    Although the topic of multiple-input multiple-output (MIMO) based orthogonal frequency division multiplexing (OFDM) over different fading channels is well investigated, its closed form symbol error rate (SER) expressions and performance results employing orthogonal space time block codes (OSTBCs) over uncorrelated frequency-selective Nakagami-m fading channels are still not available. The closed form expressions are extremely useful for evaluating system's performance without carrying out time consuming simulations. Similarly, the performance results are also quite beneficial for determining the system's performance in the sense that many practical wireless standards extensively employ MIMO-OFDM systems in conjunction with M-ary quadrature amplitude modulation (M-QAM) constellation. This paper thus, derives exact closed form expressions for the SER of M-ary Gray-coded one and two dimensional constellations when an OSTBC is employed and Nt transmit antennas are selected for transmission over frequency-selective Nakagami-m fading channels. For this purpose, first an exact closed-form of average SER expression of OSTBC based MIMO-OFDM system for M-ary phase shift keying (M-PSK) using traditional probability density function (PDF) approach is derived. We then compute exact closed form average SER expressions for M-ary pulse amplitude modulation (M-PAM) and M-QAM schemes by utilizing this generalized result. These expressions are valid over both frequency-flat and frequency-selective Nakagami-m fading MIMO channels and can easily be evaluated without using any numerical integration methods. We also show that average SER of MIMO-OFDM system using OSTBC in case of frequency-selective Rayleigh fading channels remains independent to the number of taps, L of that fading channel and the performance of the same system for two-tap un-correlated Rayleigh and Nakagami-m fading channels is better than that of the correlated one. Moreover, Monte Carlo simulation of MIMO-OFDM system

  14. Trellis coded modulation for 4800-9600 bits/s transmission over a fading mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Simon, Marvin K.

    1987-01-01

    The combination of trellis coding and multiple phase-shift-keyed (MPSK) signaling with the addition of asymmetry to the signal set is discussed with regard to its suitability as a modulation/coding scheme for the fading mobile satellite channel. For MPSK, introducing nonuniformity (asymmetry) into the spacing between signal points in the constellation buys a further improvement in performance over that achievable with trellis coded symmetric MPSK, all this without increasing average or peak power, or changing the bandwidth constraints imposed on the system. Whereas previous contributions have considered the performance of trellis coded modulation transmitted over an additive white Gaussian noise (AWGN) channel, the emphasis in the paper is on the performance of trellis coded MPSK in the fading environment. The results will be obtained by using a combination of analysis and simulation. It will be assumed that the effect of the fading on the phase of the received signal is fully compensated for either by tracking it with some form of phase-locked loop or with pilot tone calibration techniques. Thus, results will reflect only the degradation due to the effect of the fading on the amplitude of the received signal. Also, we shall consider only the case where interleaving/deinterleaving is employed to further combat the fading. This allows for considerable simplification of the analysis and is of great practical interest. Finally, the impact of the availability of channel state information on average bit error probability performance is assessed.

  15. SER performance analysis of MPPM FSO system with three decision thresholds over exponentiated Weibull fading channels

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Yang, Bensheng; Guo, Lixin; Shang, Tao

    2015-11-01

    In this work, the symbol error rate (SER) performance of the multiple pulse position modulation (MPPM) based free-space optical communication (FSO) system with three different decision thresholds, fixed decision threshold (FDT), optimized decision threshold (ODT) and dynamic decision threshold (DDT) over exponentiated Weibull (EW) fading channels has been investigated in detail. The effects of aperture averaging on each decision threshold under weak-to-strong turbulence conditions are further studied and compared. The closed-form SER expressions for three thresholds derived with the help of generalized Gauss-Laguerre quadrature rule are verified by the Monte Carlo simulations. This work is helpful for the design of receivers for FSO communication systems.

  16. Multilevel Concatenated Block Modulation Codes for the Frequency Non-selective Rayleigh Fading Channel

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Rhee, Dojun

    1996-01-01

    This paper is concerned with construction of multilevel concatenated block modulation codes using a multi-level concatenation scheme for the frequency non-selective Rayleigh fading channel. In the construction of multilevel concatenated modulation code, block modulation codes are used as the inner codes. Various types of codes (block or convolutional, binary or nonbinary) are being considered as the outer codes. In particular, we focus on the special case for which Reed-Solomon (RS) codes are used as the outer codes. For this special case, a systematic algebraic technique for constructing q-level concatenated block modulation codes is proposed. Codes have been constructed for certain specific values of q and compared with the single-level concatenated block modulation codes using the same inner codes. A multilevel closest coset decoding scheme for these codes is proposed.

  17. Acoustic echo cancellation for full-duplex voice transmission on fading channels

    NASA Technical Reports Server (NTRS)

    Park, Sangil; Messer, Dion D.

    1990-01-01

    This paper discusses the implementation of an adaptive acoustic echo canceler for a hands-free cellular phone operating on a fading channel. The adaptive lattice structure, which is particularly known for faster convergence relative to the conventional tapped-delay-line (TDL) structure, is used in the initialization stage. After convergence, the lattice coefficients are converted into the coefficients for the TDL structure which can accommodate a larger number of taps in real-time operation due to its computational simplicity. The conversion method of the TDL coefficients from the lattice coefficients is derived and the DSP56001 assembly code for the lattice and TDL structure is included, as well as simulation results and the schematic diagram for the hardware implementation.

  18. A Power-Efficient Clustering Protocol for Coal Mine Face Monitoring with Wireless Sensor Networks Under Channel Fading Conditions.

    PubMed

    Ren, Peng; Qian, Jiansheng

    2016-01-01

    This study proposes a novel power-efficient and anti-fading clustering based on a cross-layer that is specific to the time-varying fading characteristics of channels in the monitoring of coal mine faces with wireless sensor networks. The number of active sensor nodes and a sliding window are set up such that the optimal number of cluster heads (CHs) is selected in each round. Based on a stable expected number of CHs, we explore the channel efficiency between nodes and the base station by using a probe frame and the joint surplus energy in assessing the CH selection. Moreover, the sending power of a node in different periods is regulated by the signal fade margin method. The simulation results demonstrate that compared with several common algorithms, the power-efficient and fading-aware clustering with a cross-layer (PEAFC-CL) protocol features a stable network topology and adaptability under signal time-varying fading, which effectively prolongs the lifetime of the network and reduces network packet loss, thus making it more applicable to the complex and variable environment characteristic of a coal mine face. PMID:27338380

  19. A Power-Efficient Clustering Protocol for Coal Mine Face Monitoring with Wireless Sensor Networks Under Channel Fading Conditions

    PubMed Central

    Ren, Peng; Qian, Jiansheng

    2016-01-01

    This study proposes a novel power-efficient and anti-fading clustering based on a cross-layer that is specific to the time-varying fading characteristics of channels in the monitoring of coal mine faces with wireless sensor networks. The number of active sensor nodes and a sliding window are set up such that the optimal number of cluster heads (CHs) is selected in each round. Based on a stable expected number of CHs, we explore the channel efficiency between nodes and the base station by using a probe frame and the joint surplus energy in assessing the CH selection. Moreover, the sending power of a node in different periods is regulated by the signal fade margin method. The simulation results demonstrate that compared with several common algorithms, the power-efficient and fading-aware clustering with a cross-layer (PEAFC-CL) protocol features a stable network topology and adaptability under signal time-varying fading, which effectively prolongs the lifetime of the network and reduces network packet loss, thus making it more applicable to the complex and variable environment characteristic of a coal mine face. PMID:27338380

  20. Wide-band packet radio for multipath environments

    NASA Astrophysics Data System (ADS)

    Fischer, Jeffrey H.; Cafarella, John H.; Bouman, Charles A.; Flynn, Gerard T.; Dolat, Victor S.

    1988-05-01

    A direct-sequence spread-spectrum packet radio is described that has versatile signal-processing and local-control capabilities designed to support the functions required of a robust mobile communications network. Noteworthy capabilities include eleven selectable data rates with accurate range measurements in a fading multipath channel. The radio uses a hybrid analog/digital signal processor and nonrepeating spreading codes for suppression of intersymbol interference and jamming. It incorporates two sets of monolithic surface-acoustic-wave convolvers as programmable matched filters with time-bandwidth products of 64 and 2000. The analog matched filters are coupled with binary postprocessing for the functions of detection, RAKE demodulation, and ranging measurements over a wide multipath spread. The data rate can be varied in response to channel conditions from 1.45 Mb/s down to 44 b/s with an almost ideal tradeoff in signal-processing gain from 18 dB up to 61 dB prior to multipath combining.

  1. Improving the performance of continuous variable quantum key distribution using fading effects of free-space channel

    NASA Astrophysics Data System (ADS)

    Zhang, Zeyu; Zhu, Chengrui; He, Guangqiang

    2015-08-01

    Quantum key distribution can be used to share secret keys with information-theoretic security between two legitimate partners for secure communication. In the case of satellite communication, free-space channel is the only way to transmit information, thus research on its properties is of great significance to quantum cryptographic communication. In this paper, we thoroughly analyze the influence of free-space channel fading effects on continuous variable quantum key distribution and for the first time prove that random distribution (such as Rayleigh distribution, Rice distribution and et al.) of free-space channel fading coefficients can be used to increase secret information rates and improve system stability against excess noises. Our results offer academic reference for practical applications of ground-space and space-space quantum communication and global quantum communication network.

  2. Adaptive Zero-Padding OFDM over Frequency-Selective Multipath Channels

    NASA Astrophysics Data System (ADS)

    Wang, Neng; Blostein, Steven D.

    2004-12-01

    We present a novel bandwidth (BW) efficient orthogonal frequency division multiplexing (OFDM) scheme with adaptive zero-padding (AZP-OFDM) for wireless transmission. Redundancy issues in OFDM based on cyclic prefix (CP), zero-padding (ZP), as well as no guard interval (NGI) systems are analyzed. A novel system design criterion based on the channel matrix condition is studied and applied to the design of an AZP-OFDM system. Simulation results have shown that the proposed AZP-OFDM offers performance similar to that of CP-OFDM, complexity similar to that of ZP-OFDM, with BW efficiency higher than that of both CP- and ZP-OFDM in channels with small to moderate delay spread. In channels with large delay spread, AZP scheme adaptively maintains high performance at the expense of BW efficiency. Essentially, AZP-OFDM offers a more flexible tradeoff between symbol recovery, BW efficiency, and complexity.

  3. Analysis of fading in the propagation channel for the ORCA laser communication system

    NASA Astrophysics Data System (ADS)

    Sauer, Paul R.; Phillips, Ronald L.; Andrews, Larry C.; Wayne, David T.; Leclerc, Troy T.

    2011-06-01

    Irradiance data were collected over an air-to-ground path using several different sized receiving apertures. The data were collected from the Optical RF Communications Adjunct (ORCA) tracking beacon. The receiver system consisted of three telescopes of sizes 51 mm, 137 mm, and 272 mm. Probability of fade, number of fades per second, and mean fade time was computed for various intensity levels for irradiance data collected on all three telescopes. These measured statistics are compared to fading models derived from lognormal and gamma-gamma probability density function (PDF) models. Discussion is centered on the viability of these models under various conditions and on the presence of aero-optic effects. The gamma-gamma and lognormal model are found to be insufficient to model all fading statistics.

  4. Bit Error Rate Analysis for MC-CDMA Systems in Nakagami-[InlineEquation not available: see fulltext.] Fading Channels

    NASA Astrophysics Data System (ADS)

    Li, Zexian; Latva-aho, Matti

    2004-12-01

    Multicarrier code division multiple access (MC-CDMA) is a promising technique that combines orthogonal frequency division multiplexing (OFDM) with CDMA. In this paper, based on an alternative expression for the[InlineEquation not available: see fulltext.]-function, characteristic function and Gaussian approximation, we present a new practical technique for determining the bit error rate (BER) of multiuser MC-CDMA systems in frequency-selective Nakagami-[InlineEquation not available: see fulltext.] fading channels. The results are applicable to systems employing coherent demodulation with maximal ratio combining (MRC) or equal gain combining (EGC). The analysis assumes that different subcarriers experience independent fading channels, which are not necessarily identically distributed. The final average BER is expressed in the form of a single finite range integral and an integrand composed of tabulated functions which can be easily computed numerically. The accuracy of the proposed approach is demonstrated with computer simulations.

  5. A new technique for direction of arrival estimation for ionospheric multipath channels

    NASA Astrophysics Data System (ADS)

    Guldogan, Mehmet B.; Arıkan, Orhan; Arıkan, Feza

    2009-09-01

    A novel array signal processing technique is proposed to estimate HF channel parameters including number of paths, their respective direction of arrivals (DOA), delays, Doppler shifts and amplitudes. The proposed technique utilizes the Cross Ambiguity Function (CAF), hence, called as the CAF-DF technique. The CAF-DF technique iteratively processes the array output data and provides reliable estimates for DOA, delay, Doppler shift and amplitude corresponding to each impinging HF propagated wave onto an antenna array. Obtained results for both real and simulated data at different signal to noise ratio (SNR) values indicate the superior performance of the proposed technique over the well known MUltiple SIgnal Classification (MUSIC) technique.

  6. Multidimensional Trellis Coded Phase Modulation Using a Multilevel Concatenation Approach. Part 2; Codes for AWGN and Fading Channels

    NASA Technical Reports Server (NTRS)

    Rajpal, Sandeep; Rhee, DoJun; Lin, Shu

    1997-01-01

    In this paper, we will use the construction technique proposed in to construct multidimensional trellis coded modulation (TCM) codes for both the additive white Gaussian noise (AWGN) and the fading channels. Analytical performance bounds and simulation results show that these codes perform very well and achieve significant coding gains over uncoded reference modulation systems. In addition, the proposed technique can be used to construct codes which have a performance/decoding complexity advantage over the codes listed in literature.

  7. QAM multi-path characterization due to ocean scattering

    SciTech Connect

    Petersen, T. L.; Bracht, R. R.; Pasquale, R. V.; Dimsdle, J.; Swanson, R.

    2002-01-01

    A series of RF channel flight characterization tests are to be run, in early March, to benchmark high speed, 16QAM multi-path performance over the ocean surface. The modulation format being tested is a 16 differential phase, absolute amplitude, two level polar quadrature amplitude modulation. The bit rate is 100 Megabits per second. This transmitted signal will be generated in a burst mode, being on for 40 microseconds once every 40 milliseconds. An aircraft will radiate the RF test signal at 5 different altitudes. The aircraft will make two inward flights at each altitude with vertical and horizontal polarization respectively. Receivers are to be placed in two different locations using circular antenna polarization. One receiver will be placed at an altitude of 230 feet above the ocean surface, and the other on a boat with the antenna placed just up off of the ocean surface. Data is to be collected over multiple wavelength changes in the difference between the line of sight and the reflected multi-path ray. The real time signal strength variation is to be recorded as well. Analysis of the resulting data will show flat fading and frequency selective fading effects. The test is run over two different days to provide for some variation in sea state conditions. This resulting information will help quantify the effectiveness of this novel modulation scheme for missile telemetry end event data applications.

  8. Ultrasonic Digital Communication System for a Steel Wall Multipath Channel: Methods and Results

    SciTech Connect

    TL Murphy

    2006-02-16

    As of the development of this thesis, no commercially available products have been identified for the digital communication of instrumented data across a thick ({approx} 6 n.) steel wall using ultrasound. The specific goal of the current research is to investigate the application of methods for digital communication of instrumented data (i.e., temperature, voltage, etc.) across the wall of a steel pressure vessel. The acoustic transmission of data using ultrasonic transducers prevents the need to breach the wall of such a pressure vessel which could ultimately affect its safety or lifespan, or void the homogeneity of an experiment under test. Actual digital communication paradigms are introduced and implemented for the successful dissemination of data across such a wall utilizing solely an acoustic ultrasonic link. The first, dubbed the ''single-hop'' configuration, can communicate bursts of digital data one-way across the wall using the Differential Binary Phase-Shift Keying (DBPSK) modulation technique as fast as 500 bps. The second, dubbed the ''double-hop'' configuration, transmits a carrier into the vessel, modulates it, and retransmits it externally. Using a pulsed carrier with Pulse Amplitude Modulation (PAM), this technique can communicate digital data as fast as 500 bps. Using a CW carrier, Least Mean-Squared (LMS) adaptive interference suppression, and DBPSK, this method can communicate data as fast as 5 kbps. A third technique, dubbed the ''reflected-power'' configuration, communicates digital data by modulating a pulsed carrier by varying the acoustic impedance at the internal transducer-wall interface. The paradigms of the latter two configurations are believed to be unique. All modulation methods are based on the premise that the wall cannot be breached in any way and can therefore be viably implemented with power delivered wirelessly through the acoustic channel using ultrasound. Methods, results, and considerations for future research are discussed

  9. Blind synchronization of the OFDM signals in multipath channels on the basis of the time and frequency protection intervals

    NASA Astrophysics Data System (ADS)

    Bochkov, G. N.; Gorokhov, K. V.; Kolobkov, A. V.

    2013-08-01

    New methods of symbol-timing and carrier-frequency blind synchronization of an OFDM-signal receiver are developed and studied. They generalize the well-known methods which use either the protection interval in time in the cyclic prefix form or the protection interval with respect to frequency in the form of virtual subcarriers, and are based on their joint application. To reduce the computational complexity, approximate algorithms which are based on the approximation of the optimal rules, but, according to the study results, have almost the same characteristics of parameter-estimation accuracy and the reception bit-error-rate performance are proposed. It is shown that in terms of the parameter-estimation accuracy and the reception bit-error-rate performance, the proposed methods are superior to the well-known methods of synchronization by the cyclic prefix and the virtual subcarriers in the two-path Rayleigh-fading channel. For incoherent systems with the differential phase shift keying variants, using such methods makes it possible to rule out the necessity of accurate synchronization and, due to insignificant redundancy of the system band and the cyclic prefix length, closely approach the reception bit-error-rate performance for perfect synchronization.

  10. Diversity detection in non-Gaussian noise employing the generalized approach to signal processing in noise with fading diversity channels

    NASA Astrophysics Data System (ADS)

    Tuzlukov, Vyacheslav

    2011-06-01

    In this paper, we consider the problem of M-ary signal detection based on the generalized approach to signal processing (GASP) in noise over a single-input multiple-output (SIMO) channel affected by frequency-dispersive Rayleigh distributed fading and corrupted by additive non-Gaussian noise modeled as spherically invariant random process. We derive both the optimum generalized detector (GD) structure based on GASP and a suboptimal reduced-complexity GD applying the low energy coherence approach jointly with the GASP in noise. Both GD structures are independent of the actual noise statistics. We also carry out a performance analysis of both GDs and compare with the conventional receivers. The performance analysis is carried out with reference to the case that the channel is affected by a frequency-selective fading and for a binary frequency-shift keying (BFSK) signaling format. The results obtained through both a Chernoff-bounding technique and Monte Carlo simulations reveal that the adoption of diversity also represents a suitable means to restore performance in the presence of dispersive fading and impulsive non-Gaussian noise. It is also shown that the suboptimal GD incurs a limited loss with respect to the optimum GD and this loss is less in comparison with the conventional receiver.

  11. Performance analysis of precoding-based asymmetrically clipped optical orthogonal frequency division multiplexing wireless system in additive white Gaussian noise and indoor multipath channel

    NASA Astrophysics Data System (ADS)

    Ranjha, Bilal; Zhou, Zhou; Kavehrad, Mohsen

    2014-08-01

    We have compared the bit error rate (BER) performance of precoding-based asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) and pulse amplitude modulated discrete multitone (PAM-DMT) optical wireless (OW) systems in additive white Gaussian noise (AWGN) and indoor multipath frequency selective channel. Simulation and analytical results show that precoding schemes such as discrete Fourier transform, discrete cosine transform, and Zadoff-Chu sequences do not affect the performance of the OW systems in the AWGN channel while they do reduce the peak-to-average power ratio (PAPR) of the OFDM output signal. However, in a multipath indoor channel, using zero forcing frequency domain equalization precoding-based systems give better BER performance than their conventional counterparts. With additional clipping to further reduce the PAPR, precoding-based systems also show better BER performance compared to nonprecoded systems when clipped relative to the peak of nonprecoded systems. Therefore, precoding-based ACO-OFDM and PAM-DMT systems offer better BER performance, zero signaling overhead, and low PAPR compared to conventional systems.

  12. Forward error correction and spatial diversity techniques for high-data-rate MILSATCOM over a slow-fading, nuclear-disturbed channel

    NASA Astrophysics Data System (ADS)

    Paul, Heywood I.; Meader, Charles B.; Lyons, Daniel A.; Ayers, David R.

    Forward error correction (FEC) and spatial diversity techniques are considered for improving the reliability of high-data-rate military satellite communication (MILSATCOM) over a slow-fading, nuclear-disturbed channel. Slow fading, which occurs when the channel decorrelation time is much greater than the transmitted symbol interval, is characterized by deep fades and, without special precautions, long bursts of errors over high-data-rate communication links. Using the widely accepted Defense Nuclear Agency (DNA) nuclear-scintillated channel model, the authors derive performance tradeoffs among required interleaver storage, FEC, spatial diversity, and link signal-to-noise ratio for differential binary phase shift keying (DBPSK) in the slow-fading environment. Spatial diversity is found to yield impressive gains without the large memory storage and transmission relay requirements associated with interleaving.

  13. Bit error rate performance of pi/4-DQPSK in a frequency-selective fast Rayleigh fading channel

    NASA Technical Reports Server (NTRS)

    Liu, Chia-Liang; Feher, Kamilo

    1991-01-01

    The bit error rate (BER) performance of pi/4-differential quadrature phase shift keying (DQPSK) modems in cellular mobile communication systems is derived and analyzed. The system is modeled as a frequency-selective fast Rayleigh fading channel corrupted by additive white Gaussian noise (AWGN) and co-channel interference (CCI). The probability density function of the phase difference between two consecutive symbols of M-ary differential phase shift keying (DPSK) signals is first derived. In M-ary DPSK systems, the information is completely contained in this phase difference. For pi/4-DQPSK, the BER is derived in a closed form and calculated directly. Numerical results show that for the 24 kBd (48 kb/s) pi/4-DQPSK operated at a carrier frequency of 850 MHz and C/I less than 20 dB, the BER will be dominated by CCI if the vehicular speed is below 100 mi/h. In this derivation, frequency-selective fading is modeled by two independent Rayleigh signal paths. Only one co-channel is assumed in this derivation. The results obtained are also shown to be valid for discriminator detection of M-ary DPSK signals.

  14. Performance Analysis of Error Probabilities for Arbitrary 2-D Signaling with I/Q Unbalances over Nakagami-m Fading Channels

    NASA Astrophysics Data System (ADS)

    Lee, Jaeyoon; Yoon, Dongweon; Park, Sang Kyu

    Recently, we provided closed-form expressions involving two-dimensional (2-D) joint Gaussian Q-function for the symbol error rate (SER) and bit error rate (BER) of an arbitrary 2-D signal with I/Q unbalances over an additive white Gaussian noise (AWGN) channel [1]. In this letter, we extend the expressions to Nakagami-m fading channels. Using Craig representation of the 2-D joint Gaussian Q-function, we derive an exact and general expression for the error probabilities of arbitrary 2-D signaling with I/Q phase and amplitude unbalances over Nakagami-m fading channels.

  15. Effects of non-uniform windowing in a Rician-fading channel and simulation of adaptive automatic repeat request protocols

    NASA Astrophysics Data System (ADS)

    Kmiecik, Chris G.

    1990-06-01

    Two aspects of digital communication were investigated. In the first part, a Fast Fourier Transformation (FFT) based, M-ary frequency shift keying (FSK) receiver in a Rician-fading channel was analyzed to determine the benefits of non-uniform windowing of sampled received data. When a frequency offset occurs, non-uniform windowing provided better FFT magnitude separation. The improved dynamic range was balanced against a loss in detectability due to signal attenuation. With large frequency offset, the improved magnitude separation outweighed the loss in detectability. An analysis was carried out to determine what frequency deviation is necessary for non-uniform windowing to out-perform uniform windowing in a slow Rician-fading channel. Having established typical values of probability of bit errors, the second part of this thesis looked at improving throughput in a digital communications network by applying adaptive automatic repeat request (ARQ) protocols. The results of simulations of adaptive ARQ protocols with variable frame lengths is presented. By varying the frame length, improved throughput performance through all bit error rates was achieved.

  16. System for Processing Coded OFDM Under Doppler and Fading

    NASA Technical Reports Server (NTRS)

    Tsou, Haiping; Darden, Scott; Lee, Dennis; Yan, Tsun-Yee

    2005-01-01

    An advanced communication system has been proposed for transmitting and receiving coded digital data conveyed as a form of quadrature amplitude modulation (QAM) on orthogonal frequency-division multiplexing (OFDM) signals in the presence of such adverse propagation-channel effects as large dynamic Doppler shifts and frequency-selective multipath fading. Such adverse channel effects are typical of data communications between mobile units or between mobile and stationary units (e.g., telemetric transmissions from aircraft to ground stations). The proposed system incorporates novel signal processing techniques intended to reduce the losses associated with adverse channel effects while maintaining compatibility with the high-speed physical layer specifications defined for wireless local area networks (LANs) as the standard 802.11a of the Institute of Electrical and Electronics Engineers (IEEE 802.11a). OFDM is a multi-carrier modulation technique that is widely used for wireless transmission of data in LANs and in metropolitan area networks (MANs). OFDM has been adopted in IEEE 802.11a and some other industry standards because it affords robust performance under frequency-selective fading. However, its intrinsic frequency-diversity feature is highly sensitive to synchronization errors; this sensitivity poses a challenge to preserve coherence between the component subcarriers of an OFDM system in order to avoid intercarrier interference in the presence of large dynamic Doppler shifts as well as frequency-selective fading. As a result, heretofore, the use of OFDM has been limited primarily to applications involving small or zero Doppler shifts. The proposed system includes a digital coherent OFDM communication system that would utilize enhanced 802.1la-compatible signal-processing algorithms to overcome effects of frequency-selective fading and large dynamic Doppler shifts. The overall transceiver design would implement a two-frequency-channel architecture (see figure

  17. Performance of single and dual-polarized optically preamplified M-ary PPM systems with finite extinction ratios over FSO fading channels

    NASA Astrophysics Data System (ADS)

    Landolsi, Taha; Elrefaie, Aly F.

    2016-05-01

    M-ary pulse position modulation (PPM) systems have been considered in free-space optical (FSO) communications, optical fiber links, and passive optical networks. In this paper, we study the error performance of direct-detection optically preamplified M-ary PPM systems over slowly fading FSO channels. The study considers the combined effects on the probability of bit error, Pb, of channel fading with a given scintillation index, σp2, the transmitter finite extinction ratio, r, and the preamplifier spontaneous emission (ASE) noise. We provide results for both single and dual-polarized systems with symbol sizes M ∈ { 2, 4, …, 1024 } at Pb =10-4 and Pb =10-9. The fading models considered in this study are the exponential, log-normal, and gamma-gamma channels. For single-polarized systems with infinite extinction ratios, we provide closed-form expressions for the bit error probabilities for the three channel models. For the dual-polarized systems we compute them numerically. The results indicate that gamma-gamma fading imposes a more severe penalty than the log-normal case. In this study, the power penalty at Pb =10-9 ranges between 1.8 and 14 dB for the log-normal channel, whereas it ranges between 2.2 and 30.7 dB for the gamma-gamma channel. The study also demonstrates that the power penalty due to the combined effects of transmitter finite r and channel fading is the sum of the penalty due to fading alone and the penalty due to a finite r alone, and that the power penalty for dual-polarized systems is about 0.4 dB larger than single-polarized ones.

  18. SER Performance of Enhanced Spatial Multiplexing Codes with ZF/MRC Receiver in Time-Varying Rayleigh Fading Channels

    PubMed Central

    Lee, In-Ho

    2014-01-01

    We propose enhanced spatial multiplexing codes (E-SMCs) to enable various encoding rates. The symbol error rate (SER) performance of the E-SMC is investigated when zero-forcing (ZF) and maximal-ratio combining (MRC) techniques are used at a receiver. The proposed E-SMC allows a transmitted symbol to be repeated over time to achieve further diversity gain at the cost of the encoding rate. With the spatial correlation between transmit antennas, SER equations for M-ary QAM and PSK constellations are derived by using a moment generating function (MGF) approximation of a signal-to-noise ratio (SNR), based on the assumption of independent zero-forced SNRs. Analytic and simulated results are compared for time-varying and spatially correlated Rayleigh fading channels that are modelled as first-order Markovian channels. Furthermore, we can find an optimal block length for the E-SMC that meets a required SER. PMID:25114969

  19. SER performance of enhanced spatial multiplexing codes with ZF/MRC receiver in time-varying Rayleigh fading channels.

    PubMed

    Lee, In-Ho

    2014-01-01

    We propose enhanced spatial multiplexing codes (E-SMCs) to enable various encoding rates. The symbol error rate (SER) performance of the E-SMC is investigated when zero-forcing (ZF) and maximal-ratio combining (MRC) techniques are used at a receiver. The proposed E-SMC allows a transmitted symbol to be repeated over time to achieve further diversity gain at the cost of the encoding rate. With the spatial correlation between transmit antennas, SER equations for M-ary QAM and PSK constellations are derived by using a moment generating function (MGF) approximation of a signal-to-noise ratio (SNR), based on the assumption of independent zero-forced SNRs. Analytic and simulated results are compared for time-varying and spatially correlated Rayleigh fading channels that are modelled as first-order Markovian channels. Furthermore, we can find an optimal block length for the E-SMC that meets a required SER. PMID:25114969

  20. Analytic Nakagami fading parameter estimation in dependent noise channel using copula

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Mohammad Hossein; Amindavar, Hamidreza; Ritcey, James A.

    2013-12-01

    In this paper, the probability density function (PDF) estimation is introduced in the framework of estimating the Nakagami fading parameter. This approach provides an analytic procedure for finding the fading parameter. Using the copula theory, an accurate PDF estimate is obtained even when the desired signal is corrupted in a noisy environment. In the real world, the noise samples could be highly dependent on the main signal. Copula-based models are a general set of statistical models defined for any multivariate random variable. Thus, they depict the statistical behavior of a received signal including two dependent terms, representative of the desired signal and noise. Previous works in the Nakagami parameter determination have mainly examined estimation based on either a noiseless sample model or an independent trivial noisy one. In this paper, we consider a more comprehensive situation about the noise destruction and our investigation is done in low signal-to-noise ratios. The parametric bootstrap method approves the accuracy of the analytically estimated PDF, and simulation results show that the new estimator has superior performance over conventional estimators.

  1. Overview of techniques for mitigation of fading and shadowing in the direct broadcast satellite radio environment

    NASA Technical Reports Server (NTRS)

    Bell, David; Gevargiz, John; Vaisnys, Arvydas; Julian, David

    1995-01-01

    The DBS radio propagation environment is divided into three sub-environments, indoor, rural-suburban mobile and urban mobile. Indoor propagation effects are in a large part determined by construction material. Non-metallic materials afford direct, albeit attenuated penetration of the satellite signal with a minimum of multipath signal scattering. Signal penetration into structures using significant metallic materials is often indirect, through openings such as doors and windows and propagation will involve significant multipath components. Even so, delay spread in many situations is on the order of 10's of nanoseconds resulting in relatively flat fading. Thus frequency diversity techniques such as Orthogonal Frequency Division Multiplex (OFDM) and Code Division Multiple Access (CDMA) or equalization techniques do not realize their intended performance enhancement. Antenna diversity, directivity and placement are key mitigation techniques for the indoor environment. In the Rural-Suburban mobile environment with elevation angles greater than 20 deg, multipath components from the satellite signal are 15-20 dB below the line-of-sight signal level and often originate from nearby reflectors. Thus shadowing is the dominant signal impairment and fading effects are again found to be relatively flat for a large fading margin. Because receiver motion induces rapid variations in the signal level, temporal diversity techniques such as interleaving, channel coding and retransmission can be used to combat short intermittent fading events. Antenna diversity and directivity techniques are again useful in this environment. Finally, in the Urban mobile environment, slower vehicle speeds and blockage by buildings causes signal fades that are too long and too deep to combat with signal margin or time diversity. Land-based signal boosters are needed to fill in the coverage gaps of the satellite only broadcast scheme. On frequency boosters are suggested to conserve bandwidth yet these

  2. Performance Analysis and Power Allocation for Amplify-and-Forward Cooperative Networks over Nakagami-m Fading Channels

    NASA Astrophysics Data System (ADS)

    Fang, Zhaoxi; Bao, Xiaojing; Li, Liangbin; Wang, Zongxin

    In this paper, we consider a dual-hop wireless cooperative network with amplify-and-forward (AF) relaying. The output signal-to-noise ratio (SNR) at the destination of the AF cooperative networks is in the form of the sum of harmonic mean of the source-relay channel SNR and the relay-destination channel SNR. Instead of deriving the exact probability density function (PDF) of the output SNR, we study the series expansion of this PDF around zero. This result is then applied to evaluate the performance of the AF cooperative systems over Nakagami-m fading channels, and closed-form high-SNR approximations of the average symbol error rate (SER) and the outage probability are derived. Next, we investigate the optimal power allocation (OPA) among the source node and the relays to minimize the approximate SER as well as the outage probability. It is shown that the optimal power allocation depends on the channel mparameters and the ratio of the source-relay channel gain to the relay-destination gain. In addition to the optimal power allocation, we also propose a low complexity sub-optimal power allocation (SubOPA) scheme. The performance improvement with optimal and sub-optimal power allocation is analyzed and validated by numeric results. It is shown that equal power allocation is near optimal when the relays are close to the source, while significant performance improvement is observed by both the optimal and sub-optimal power allocation schemes when the relays are close to the destination.

  3. Performance of concatenated Reed-Solomon trellis-coded modulation over Rician fading channels

    NASA Technical Reports Server (NTRS)

    Moher, Michael L.; Lodge, John H.

    1990-01-01

    A concatenated coding scheme for providing very reliable data over mobile-satellite channels at power levels similar to those used for vocoded speech is described. The outer code is a shorter Reed-Solomon code which provides error detection as well as error correction capabilities. The inner code is a 1-D 8-state trellis code applied independently to both the inphase and quadrature channels. To achieve the full error correction potential of this inner code, the code symbols are multiplexed with a pilot sequence which is used to provide dynamic channel estimation and coherent detection. The implementation structure of this scheme is discussed and its performance is estimated.

  4. Adaptive Resource Allocation for the PB/MC-CDMA System in Frequency Selective Fading Channels

    NASA Astrophysics Data System (ADS)

    Lee, Kyujin; Lee, Kyesan

    We propose Adaptive Resource Allocation for the Partial Block MC-CDMA (ARA-PB/MC-CDMA) system. The ARA-PB/MC-CDMA system aims to improve total throughput performance and frequency efficiency across various channel conditions. It adaptively changes the number of blocks to improve the throughput performance and frequency efficiency according to the Signal to Interference Ratio (SIR). Therefore, the proposed system supports various Quality of Service (QoS) requirements for various SIR values.

  5. Blind, high-resolution, space-time separation of multipaths in an ionospheric propagation

    NASA Astrophysics Data System (ADS)

    Chenu-Tournier, M.; Larzabal, P.; Barbot, J. P.; Grouffaud, J.; Ferreol, A.

    2000-01-01

    The ionospheric radio electrical transmissions have multiple paths due to the inhomogeneity of the propagation medium, that is, the ionospheric layers. Tactical applications such as radiolocation and radiocommunications systems need blind, high-resolution identification of multipath channels. This work concerns the separation of the ionospheric paths and is based on recent work done on blind deconvolution which can estimate the impulse responses of a propagation channel. In this way, on the basis of a parametric model of the paths, we propose a blind, spatiotemporal identification of the propagation channel. The parameters that characterize the propagation model are the directions of arrivals (DOA) θ, time delays τ, and complex gains α (also called fading). We propose an algorithm that can both estimate the multipath parameters and test them on real life data. This new method needs fewer snapshots than other methods recently proposed, and thus can monitor more quickly varying channels. Moreover, compared to recent work we have relaxed the problem of making successive estimates of the impulse responses. The proposed method can also identify more paths than the number of sensors. An extension of the algorithm will be presented by including polarization diversity and thus increases the resolution. The proposed methods are illustrated on experimental data.

  6. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels.

    PubMed

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-01-01

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source's radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks. PMID:26927119

  7. Entanglement generation via non-Gaussian transfer over atmospheric fading channels

    NASA Astrophysics Data System (ADS)

    Hosseinidehaj, Nedasadat; Malaney, Robert

    2015-12-01

    In this work we probe the usefulness of non-Gaussian entangled states as a resource for quantum communication through atmospheric channels. We outline the initial conditions in which non-Gaussian state transfer leads to enhanced entanglement transfer relative to that obtainable via Gaussian state transfer. However, we conclude that in (anticipated) operational scenarios—where most of the non-Gaussian states to be transferred over the air are created just in time via photonic subtraction, addition, or replacement from incoming Gaussian states—the entanglement-generation rate between stations via non-Gaussian state transfer will be substantially less than that created by direct Gaussian state transfer. The role of postselection, distillation, and quantum memory in altering this conclusion is discussed, and comparison with entanglement rates produced via single-photon technologies is provided. Our results suggest that in the near term entangled Gaussian states, squeezed beyond some modest level, offer the most attractive proposition for the distribution of entanglement through high-loss atmospheric channels. The implications of our results for entanglement-based quantum key distribution to low-Earth orbit are presented.

  8. Fade durations in satellite-path mobile radio propagation

    NASA Technical Reports Server (NTRS)

    Schmier, Robert G.; Bostian, Charles W.

    1986-01-01

    Fades on satellite to land mobile radio links are caused by several factors, the most important of which are multipath propagation and vegetative shadowing. Designers of vehicular satellite communications systems require information about the statistics of fade durations in order to overcome or compensate for the fades. Except for a few limiting cases, only the mean fade duration can be determined analytically, and all other statistics must be obtained experimentally or via simulation. This report describes and presents results from a computer program developed at Virginia Tech to simulate satellite path propagation of a mobile station in a rural area. It generates rapidly-fading and slowly-fading signals by separate processes that yield correct cumulative signal distributions and then combines these to simulate the overall signal. This is then analyzed to yield the statistics of fade duration.

  9. Dose response, radiation sensitivity and signal fading of p-channel MOSFETs (RADFETs) irradiated up to 50 Gy with ⁶⁰Co.

    PubMed

    Pejović, Milić M

    2015-10-01

    This paper reports response of p-channel MOSFETs (RADFETs) to (60)Co gamma radiation in the 10-50 Gy dose range and signal fading (room temperature annealing) for 100 days after irradiation. RADFETs with three different thicknesses of the gate oxide layer were used. Irradiations were performed at gate biases ranging from 0 to 5 V. Threshold voltage shift was monitored during the irradiations and the subsequent fading. The dependence of the threshold voltage shift on the radiation dose is linear for the RADFETs with 100 nm- and 400 nm-thick gate oxide layers irradiated under the gate biases ranging from 1.25 to 5 V. Also, an exponential dependence of the radiation sensitivity on the gate bias during irradiation was found. The signal fades at room temperature without a gate bias. The results demonstrate that these RADFETs are suitable as sensors of gamma radiation. The threshold voltage shift of the RADFETs with 400 nm- and 1 μm-thick gate oxide layers decreases significantly during the first day after irradiation, which, unfortunately, makes these devices incapable of holding dosimetric information for long periods of time. PMID:26142808

  10. Fading In

    ERIC Educational Resources Information Center

    Nader, Karim; Wang, Szu-Han

    2006-01-01

    Patient H.M. can form new memories and maintain them for a few seconds before they fade away. From a neurobiological perspective, this amnesia is usually attributed to the absence of memory consolidation, that is, memory storage. An alternative view holds that this impairment reflects that the memory is present but cannot be retrieved. This debate…

  11. Fading Skies

    ERIC Educational Resources Information Center

    Sio, Betsy Menson

    2009-01-01

    A sky fading from blue to white to red at the horizon, and water darkening from light to midnight blue. Strong diagonals slashing through the image, drawing a viewer's eyes deeper into the picture, and delicate trees poised to convey a sense of beauty. These are the fascinating strengths of the ukiyo-e woodblock prints of Japanese artist Ando…

  12. The land mobile satellite communication channel - Recording, statistics, and channel model

    NASA Astrophysics Data System (ADS)

    Lutz, Erich; Cygan, Daniel; Dippold, Michael; Dolainsky, Frank; Papke, Wolfgang

    1991-05-01

    The communication channel between the MARECS satellite at 26 deg W and a cruising van was measured and recorded in European areas exhibiting satellite elevations from 13 to 43 deg. Different environments and mobile antennas were tested. Results of an extensive statistical evaluation include spectra of the fading amplitude, probability density, and distribution of the received signal power as well as the percentage of time for fade and nonfade periods. Based on the physical phenomena of multipath fading and signal shadowing, an analog model of the land mobile satellite channel which can readily be used for software and hardware fading simulation is developed. The most important parameter of this model is the time-share of shadowing, A, ranging from less than 1 percent on southern highways to 89 percent in the city of Stockholm. The Rice factor, c, which characterizes the channel during unshadowed periods, can vary from 3.9 to 18.1 dB. For analytical purposes, the land mobile satellite channel can be represented by a digital two-state Gilbert-Elliott model. For DPSK (differential phase-shift keying) modulation with a 10-dB signal-to-noise ratio in the satellite link, the mean bit error probability in the unshadowed channel state is typically in the range of 0.0001-0.01, while it is around 0.3 in the shadowed channel state. With regard to data transmission, block error probability density, error gap distribution, and block error probability are discussed.

  13. The Maritime satellite communication channel - Channel model, performance of modulation and coding

    NASA Astrophysics Data System (ADS)

    Hagenauer, Joachim; Dolainsky, Frank; Lutz, Erich; Papke, Wolfgang; Schweikert, Robert

    1987-05-01

    Toward the year 2000, maritime satellite communications using the INMARSAT system will employ a second and third generation of satellites and new ship earth stations (SES). The new SES standards will use very small antennas with gains between 0 and 15 dBi. At the lower end of SES there will be no antenna stabilization. The communication channel for such small stations is described by a model including multipath fading, Doppler shift, and noise. The results of an extensive measurement program were used to determine the parameters of the channel model, which depend on antenna type and elevation angle. Analytical calculations as well as synthetic and stored channel hardware simulations have been sued to determine the performance of several modulation schemes. A complete data link using PSK modems with AFC/Costas loop, interleaving, and FEC codecs at 1.2 kbits/s, was built up around a hardware maritime channel simulator to study the performance of data transmission on the small SES maritime channel. Theoretical and measured results are given for interleaved Viterbi decoding with channel state information and Reed-Solomon codes. The measurements show that with interleaved FEC schemes, the required E(b)/N(o) for a BER of 0.00001 is in the range of 9-15 dB, and the effects of multipath fading are almost compensated for.

  14. Multipath analysis diffraction calculations

    NASA Technical Reports Server (NTRS)

    Statham, Richard B.

    1996-01-01

    This report describes extensions of the Kirchhoff diffraction equation to higher edge terms and discusses their suitability to model diffraction multipath effects of a small satellite structure. When receiving signals, at a satellite, from the Global Positioning System (GPS), reflected signals from the satellite structure result in multipath errors in the determination of the satellite position. Multipath error can be caused by diffraction of the reflected signals and a method of calculating this diffraction is required when using a facet model of the satellite. Several aspects of the Kirchhoff equation are discussed and numerical examples, in the near and far fields, are shown. The vector form of the extended Kirchhoff equation, by adding the Larmor-Tedone and Kottler edge terms, is given as a mathematical model in an appendix. The Kirchhoff equation was investigated as being easily implemented and of good accuracy in the basic form, especially in phase determination. The basic Kirchhoff can be extended for higher accuracy if desired. A brief discussion of the method of moments and the geometric theory of diffraction is included, but seems to offer no clear advantage in implementation over the Kirchhoff for facet models.

  15. RBF multiuser detector with channel estimation capability in a synchronous MC-CDMA system.

    PubMed

    Ko, K; Choi, S; Kang, C; Hong, D

    2001-01-01

    The authors propose a multiuser detector with channel estimation capability using a radial basis function (RBF) network in a synchronous multicarrier-code division multiple access (MC-CDMA) system. The authors propose to connect an RBF network to the frequency domain to effectively utilize the frequency diversity. Simulations were performed over frequency-selective and multi-path fading channels. These simulations confirmed that the proposed receiver can be used both for the channel estimation and as a multi-user receiver, thus permitting an increase in the number of active users. PMID:18249987

  16. A Short Note on the Derivation of the Atmospheric Transfer Function for a Communications Channel and its Connection to Associated Propagation Parameters

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2004-01-01

    The systems engineering description of a wideband communications channel is provided which is based upon the fundamental propagation aspects of the problem. In particular, the well known time variant description of a channel is formulated from the basic multiple scattering processes that occur in a random propagation medium. Such a connection is required if optimal processing methods are to be applied to mitigate the deleterious random fading and multipathing of the channel. An example is given which demonstrates how the effective bandwidth of the channel is diminished due to atmospheric propagation impairments.

  17. Multipath calibration in GPS pseudorange measurements

    NASA Technical Reports Server (NTRS)

    Kee, Changdon (Inventor); Parkinson, Bradford W. (Inventor)

    1998-01-01

    Novel techniques are disclosed for eliminating multipath errors, including mean bias errors, in pseudorange measurements made by conventional global positioning system receivers. By correlating the multipath signals of different satellites at their cross-over points in the sky, multipath mean bias errors are effectively eliminated. By then taking advantage of the geometrical dependence of multipath, a linear combination of spherical harmonics are fit to the satellite multipath data to create a hemispherical model of the multipath. This calibration model can then be used to compensate for multipath in subsequent measurements and thereby obtain GPS positioning to centimeter accuracy.

  18. ACTS Rain Fade Compensation

    NASA Technical Reports Server (NTRS)

    Coney, Thom A.

    1996-01-01

    Performance status of the Adaptive Rain Fade Compensation includes: (1) The rain fade protocol is functional detecting fades, providing an additional 10 dB of margin and seamless transitions to and from coded operation; (2) The stabilization of the link margins and the optimization of rain fade decision thresholds has resulted in improved BER performance; (3) Characterization of the fade compensation algorithm is ongoing.

  19. GPS Multipath in Urban Environments

    NASA Astrophysics Data System (ADS)

    Bilich, A.; Sella, G.

    2008-12-01

    Multipath, where a GNSS signal arrives by more than one path, is considered one of the last unmodeled errors remaining in GNSS. Multipath is of great concern because the additional path length traveled by the incoming signal biases the satellite-receiver range and therefore determination of position. Siting a GNSS station in an urban area, in the immediate vicinity of large reflecting objects such as rooftops, buildings, asphalt and concrete parking lots, grassy fields, and chainlink fences, is both a multipath nightmare and a necessary evil. We note that continuously-operating GNSS stations are becoming increasingly common in urban areas, which makes sense as these stations are often installed in support of civil infrastructure (e.g. departments of transportation, strong motion monitoring of buildings in earthquake-prone areas, surveying networks). Urban stations are well represented in geodetic networks such as the CORS (United States) and GeoNet (Japan) networks, with more stations likely to be installed in the coming years. What sources and types of urban multipath are the most detrimental to geodetic GPS positioning? Which reflecting objects are assumed to be a major source of multipath error, but the GPS data show otherwise? Are certain reflecting environments worse for specific applications, i.e. kinematic vs. static positioning? If forced to install a GNSS station in a highly reflective environment, is it possible to rank objects for their multipath severity? To answer these questions, we provide multipath examples taken from continuously- operating GNSS stations sited in urban environments. We concentrate on some of the most common obstacles and reflecting objects for urban sites - rooftops, parking lots, and fences. We analyze the multipath signature of these objects as manifested in the GPS phase, pseudorange, and signal-to-noise ratio (SNR) observables, and also examine multipath impacts on the precision and accuracy of GPS-derived positions.

  20. Joint Channel Estimation and Signal Detection for the OFDM System Without Cyclic Prefix Over Doubly-Selective Channels

    NASA Astrophysics Data System (ADS)

    Song, Lijun; Lei, Xia; Jin, Maozhu; Lv, Zhihan

    2015-12-01

    In the high-speed railway wireless communication, a joint channel estimation and signal detection algorithm is proposed for the orthogonal frequency division multiplexing (OFDM) system without cyclic prefix in the doubly-selective fading channels. Our proposed method first combines the basis expansion model (BEM) and the inter symbol interference (ISI) cancellation to overcome the situation that exists with the fast time-varying channel and the normalized maximum multipath channel exceeding the length of the cyclic prefix (CP). At first, the channel estimation and signal detection can be approximated without considering the ISI. Then, the channel parameters and signal detection are updated through ISI cancellation and circular convolution reconstruction from the frequency domain. The simulations show the algorithm can improve the performance of channel estimation and signal detection.

  1. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels

    PubMed Central

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-01-01

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source’s radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks. PMID:26927119

  2. Indoor radio channel modeling and mitigation of fading effects using linear and circular polarized antennas in combination for smart home system at 868 MHz

    NASA Astrophysics Data System (ADS)

    Wunderlich, S.; Welpot, M.; Gaspard, I.

    2014-11-01

    The markets for smart home products and services are expected to grow over the next years, driven by the increasing demands of homeowners considering energy monitoring, management, environmental controls and security. Many of these new systems will be installed in existing homes and offices and therefore using radio based systems for cost reduction. A drawback of radio based systems in indoor environments are fading effects which lead to a high variance of the received signal strength and thereby to a difficult predictability of the encountered path loss of the various communication links. For that reason it is necessary to derive a statistical path loss model which can be used to plan a reliable and cost effective radio network. This paper presents the results of a measurement campaign, which was performed in six buildings to deduce realistic radio channel models for a high variety of indoor radio propagation scenarios in the short range devices (SRD) band at 868 MHz. Furthermore, a potential concept to reduce the variance of the received signal strength using a circular polarized (CP) patch antenna in combination with a linear polarized antenna in an one-to-one communication link is presented.

  3. Comparative study on the performance of power and bandwidth efficient modulations in LMSS under fading and interference

    NASA Technical Reports Server (NTRS)

    Liu, Jian; Kim, Junghwan; Kwatra, S. C.; Stevens, Grady H.

    1991-01-01

    Aspects of error performance of various power and bandwidth efficient modulations for the land mobile satellite systems (LMSS) were investigated under multipath fading and interferences by using Monte-Carlo simulation. A differential detection for 16QAM (quadrature amplitude modulation) was proposed to cope with Ricean fading and Doppler shift. Computer simulation results show that the performance of 16QAM with differential detection is as good as that of 16PSK with coherent detection and 3 dB better than that of 16PSK with differential detection, although it degrades by about 4.5 dB as compared to 16QAM with coherent detection under an additive white Gaussian noise (AWGN) channel. For the nonlinear channels, 16QAM with modified signal constellations is introduced and analyzed. The simulation results show that the modified 16QAM exhibits a gain of 2.5 dB over 16PSK under traveling-wave tube nonlinearity, and about 4 dB gain over 16PSK at the bit error rate of 10 exp -5 under AWGN. Computer simulation results for modified 16 QAM under cochannel interference and adjacent-channel interference are also presented.

  4. A study of land mobile satellite service multipath effects using SATLAB software

    NASA Technical Reports Server (NTRS)

    Campbell, Richard L.

    1991-01-01

    A software package is proposed that uses the known properties of signals received in multipath environments along with the mathematical relationships between signal characteristics to explore the effects of antenna pattern, vehicle velocity, shadowing of the direct wave, distributions of scatters around the moving vehicle and levels of scattered signals on the received complex envelope, fade rates and fade duration, Doppler spectrum, signal arrival angle spectrum, and spatial correlation. The data base may be either actual measured received signals entered as ASCII flat files or data synthesized using a built in model. An example illustrates the effect of using different antennas to receive signals in the same environment.

  5. Multipath noise reduction spread spectrum signals

    NASA Technical Reports Server (NTRS)

    Meehan, Thomas K. (Inventor)

    1994-01-01

    The concepts of early-prompt delay tracking, multipath correction of early-prompt delay tracking from correlation shape, and carrier phase multipath correction are addressed. In early-prompt delay tracking, since multipath is always delayed with respect to the direct signals, the system derives phase and pseudorange observables from earlier correlation lags. In multipath correction of early-prompt delay tracking from correlation shape, the system looks for relative variations of amplitude across the code correlation function that do not match the predicted multipath-free code cross-correlation shape. The system then uses deviations from the multipath-free shape to infer the magnitude of multipath, and to generate corrections pseudorange observables. In carrier phase multipath correction, the system looks for variations of phase among plural early and prompt lags. The system uses the measured phase variations, along with the general principle that the multipath errors are larger for later lags, to infer the presence of multipath, and to generate corrections for carrier-phase observables.

  6. Adaptive rain fade compensation

    NASA Technical Reports Server (NTRS)

    Rautio, J. C.

    1980-01-01

    A large available margin must be provided for satellite communications systems operating near 20 GHz, which occasionally experience fades due to rain attenuation. It is proposed that this margin may be achieved in high-capacity FDMA satellites by dynamically providing a large margin to those links which are experiencing deep fades, while maintaining a small fade margin on all others. Single-beam SCPC operation and multiple-beam, satellite-switched FDMA systems are described, and the optimization of the dynamic FDMA links in a severely fading environment is investigated. A solution is derived which takes into account: (1) transponder intermodulation distortion, (2) cochannel and cross-polarization antenna interference, and (3) rain fade characteristics. The sample system configuration presented shows that such systems reach availability levels approaching 0.9999 at Ka-Band.

  7. Fade measurements at L-band and UHF in mountainous terrain for land mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1988-01-01

    Fading results related to land mobile satellite communications at L-band (1502 MHz) and UHF (870 MHz) are described. These results were derived from an experiment performed in a series of canyon passes in the Boulder, Colorado region of the US. The experimental configuration involved a helicopter as the source platform, which maintained a relatively fixed geometry with a mobile van containing the receiver and data-acquisition system. An unobstructed line of sight between the radiating sources and the receiving van was, for the most part, also maintained. In this configuration, the dominant mechanism causing signal fading (or enhancement) is a result of multipath. The resulting fade distributions demonstrated that at the 1 percent and 5 percent levels, 5.5- and 2.6-dB fades were on the average exceeded at L-band and 4.8- and 2.4-dB at UHF, respectively, for a path elevation angle of 45 deg. The canyon results as compared with previous roadside-tree-shadowing results demonstrate that the deciding factor dictating fade margin for future land mobile satellite systems is tree shadowing rather than fades caused by multipath.

  8. FMCW channel sounder with digital processing for measuring the coherence of wideband HF radio links

    NASA Astrophysics Data System (ADS)

    Salous, S.

    1986-08-01

    Multipath propagation, and in particular, the interference between the ordinary and the extraordinary waves, places a fundamental constraint on the performance of wideband HF skywave radio links. Furthermore, the dispersive nature of ionospheric propagation causes phase nonlinearity and hence distortion of narrow pulses. In this paper, an FMCW wideband sounder built for the purposes of characterizing the channel is described. Spectral analysis of the audio output of the sounder via the FFT algorithm is shown to permit measurement of thef amplitude/frequency function, the polarization bandwidth, the fade rate, the fade depth and the distortion of a narrow pulse, all for a desired isolated ionospheric propagation mode. The sounder was used to collect data over an oblique path in the UK. The results of applying the FFT processing technique to the experimental data are presented.

  9. Modeling, Real-Time Estimation, and Identification of UWB Indoor Wireless Channels

    DOE PAGESBeta

    Olama, Mohammed M.; Djouadi, Seddik M.; Li, Yanyan; Fathy, Aly

    2013-01-01

    Stochastic differential equations (SDEs) are used to model ultrawideband (UWB) indoor wireless channels. We show that the impulse responses for time-varying indoor wireless channels can be approximated in a mean-square sense as close as desired by impulse responses that can be realized by SDEs. The state variables represent the inphase and quadrature components of the UWB channel. The expected maximization and extended Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Both resolvable and nonresolvable multipath received signals are considered and represented as small-scaled Nakagami fading. Themore » proposed models together with the estimation algorithm are tested using UWB indoor measurement data demonstrating the method’s viability and the results are presented.« less

  10. Modeling, Real-Time Estimation, and Identification of UWB Indoor Wireless Channels

    SciTech Connect

    Olama, Mohammed M; Djouadi, Seddik M; Li, Yanyan; Fathy, Aly

    2013-01-01

    In this paper, stochastic differential equations (SDEs) are used to model ultrawideband (UWB) indoor wireless channels. We show that the impulse responses for time-varying indoor wireless channels can be approximated in a mean square sense as close as desired by impulse responses that can be realized by SDEs. The state variables represent the inphase and quadrature components of the UWB channel. The expected maximization and extended Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Both resolvable and non-resolvable multipath received signals are considered and represented as small-scaled Nakagami fading. The proposed models together with the estimation algorithm are tested using UWB indoor measurement data demonstrating the method s viability and the results are presented.

  11. Performance of RS codes in lognormally shadowed Rician channels

    NASA Astrophysics Data System (ADS)

    Trabelsi, Chokri; Yongacoglu, Abbas

    The performance of Reed-Solomon (RS) codes with binary phase shift keying transmission is determined for a class of fading models for land mobile satellite communications. The fading model has the structure of a Rician model except that the line-of-sight component is subjected to a lognormal transformation. By exploiting the statistical characteristics of the multipath fading and shadowing, an effective coding/interleaving scheme is proposed.

  12. Mitigation of multipath effect in GNSS short baseline positioning by the multipath hemispherical map

    NASA Astrophysics Data System (ADS)

    Dong, D.; Wang, M.; Chen, W.; Zeng, Z.; Song, L.; Zhang, Q.; Cai, M.; Cheng, Y.; Lv, J.

    2016-03-01

    Multipath is one major error source in high-accuracy GNSS positioning. Various hardware and software approaches are developed to mitigate the multipath effect. Among them the MHM (multipath hemispherical map) and sidereal filtering (SF)/advanced SF (ASF) approaches utilize the spatiotemporal repeatability of multipath effect under static environment, hence they can be implemented to generate multipath correction model for real-time GNSS data processing. We focus on the spatial-temporal repeatability-based MHM and SF/ASF approaches and compare their performances for multipath reduction. Comparisons indicate that both MHM and ASF approaches perform well with residual variance reduction (50 %) for short span (next 5 days) and maintains roughly 45 % reduction level for longer span (next 6-25 days). The ASF model is more suitable for high frequency multipath reduction, such as high-rate GNSS applications. The MHM model is easier to implement for real-time multipath mitigation when the overall multipath regime is medium to low frequency.

  13. Reduction of multipath effect through a critical scattering zone in microcell environments

    NASA Astrophysics Data System (ADS)

    Miranda, C. A. L.; Rosales, D. H. C.

    2005-12-01

    In this work, we investigate a critical region (CR) in microcell elliptical environments, an area between the mobile and the base station (BS) containing multipaths whose angles and times of arrival possess the acceptable angle and delay spreads of the channel. The focus of the paper is to estimate the theoretical rates of multipath reduction expected from the CR. These rates illustrate the convenience of adjusting or not the antenna's beamwidth (aperture) according to the angle spread. Also, to confirm the model's results; the angle and time of arrival statistics deduced from the elliptical model are validated through simulation. Results closely agree with theoretical values expected from the model.

  14. Codeless GPS Applications to Multi-Path: CGAMP

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.; Miller, R. B.; Jenkins, D.; Lemmon, J.; Gold, K.; Schreiner, W.; Snyder, G.

    1990-01-01

    Cordless Global Positioning System (GPS) Applications to Multi-Path (CGAMP) is meeting the challenge of exploiting the L-band signals from the Global Positioning System (GPS) satellites for the measurement of the impulse response of radio transmission channels over space-Earth paths. This approach was originally suggested by E. K. Smith and has been pursued by J. Lemmon, without an affordable implementation being identifiable. In addition to the high cost of a suitable P code correlating GPS receiver, there is also the major impediment of the often announced Department of Defense policy of selective availability/anti-spoof (SA/AS) that clouds reliable access to the wideband (20 MHz) P channel of the GPS signals without cryptographic access. A technique proposed by MacDoran utilizes codeless methods for exploiting the P channel signals implemented by the use of a pair of antennas and cross correlation signal detection.

  15. Performance analysis of relay-aided free-space optical communication system over gamma-gamma fading channels with pointing errors

    NASA Astrophysics Data System (ADS)

    Fu, Hui-hua; Wang, Ping; Wang, Ran-ran; Liu, Xiao-xia; Guo, Li-xin; Yang, Yin-tang

    2016-07-01

    The average bit error rate ( ABER) performance of a decode-and-forward (DF) based relay-assisted free-space optical (FSO) communication system over gamma-gamma distribution channels considering the pointing errors is studied. With the help of Meijer's G-function, the probability density function (PDF) and cumulative distribution function (CDF) of the aggregated channel model are derived on the basis of the best path selection scheme. The analytical ABER expression is achieved and the system performance is then investigated with the influence of pointing errors, turbulence strengths and structure parameters. Monte Carlo (MC) simulation is also provided to confirm the analytical ABER expression.

  16. BOC(n,n) signal multipath mitigation using MEDLL technology

    NASA Astrophysics Data System (ADS)

    Su, Xuan; Zhang, Yanmei; Su, Lianqing; Guo, Haichao

    2015-11-01

    For satellite navigation and positioning receivers are susceptible to the influence of the multipath, this paper used multipath estimating delay lock loop (MEDLL) technology for BOC (n, n) multipath signal tracking. Through the analysis of multipath signal model, it is concluded that all the multipath signal can be expressed by its amplitude, phase and delay. Then in odor to get the accurate direct signal, this paper applied MEDLL algorithm to estimate the received signal. Finally, the simulation show that this algorithm can realize multipath signal track demodulation and accurate data demodulation under a low signal noise ratio environment (SNR= -20db).

  17. Tempel Fades into Night

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Quick Time Movie for PIA02140 Tempel Fades into Night

    This movie is made up of images taken by Deep Impact's flyby spacecraft after it turned around to capture last shots of a receding comet Tempel 1. Earlier, the mission's probe had smashed into the surface of Tempel 1, kicking up the fan-shaped plume of dust seen here behind the comet. These pictures were taken by the flyby craft's high-resolution camera over a period beginning 50 minutes after impact, and ending about 12 hours after impact. Impact occurred at 10:52 p.m. Pacific time, July 3, 2005.

  18. Multipath-assisted multitarget tracking with reflection point uncertainty

    NASA Astrophysics Data System (ADS)

    Subramaniam, M.; Tharmarasa, R.; McDonald, M.; Kirubarajan, T.

    2010-04-01

    In this paper, the previous work multipath-assisted multitarget tracking using multiframe assignment is extended to the case where there are uncertainties in multipath reflection points at the receiver. An algorithm is proposed for initiating and tracking multiple targets using multiple transmitters and receivers. This algorithm is capable of exploiting multipath target returns from distinct and unknown propagation modes. When multipath returns are not utilized appropriately within the tracker, (e.g., discarded as clutter or incorporated with incorrect propagation mode assumption) the potential information in the multipath returns is lost. In real scenarios, it is more appropriate to assume that the locations of the reflection points/surfaces are not accurately known. Integrating multipath information into the tracker by correctly identifying the multipath mode and identifying the reflection point can help improve the accuracy of tracking. The challenge in improving tracking results using multipath measurements is the fusion of direct and multipath measurements from the common target when the multipath-reflection mode is unknown. The problem becomes even more challenging with false alarms and missed detections. We propose an algorithm to track the target with uncertainty in multipath reflection points/surface using the multiframe assignment technique. Simulation results are presented to show the effectiveness of the proposed algorithm on a ground target tracking problem.

  19. Optimization of MLS receivers for multipath environments

    NASA Technical Reports Server (NTRS)

    Mcalpine, G. A.; Highfill, J. H., III; Irwin, S. H.; Padgett, J. E.

    1975-01-01

    A receiver is designed for aircraft (A/C), which, as a component of the proposed Microwave Landing System (MLS), is capable of optimal performance in the multipath environments found in air terminal areas. Topics discussed include: the angle-tracking problem of the MLS receiver; signal modeling; preliminary approaches to optimal design; suboptimal design; and simulation study.

  20. Multi-path peristaltic pump

    NASA Technical Reports Server (NTRS)

    Chandler, Joseph A. (Inventor)

    1986-01-01

    The instant invention is directed to a peristaltic pump for critical laboratory or hospital applications requiring precise flow rates over an extended period of time. Within the cylindrical barrel pump housing is a single-piece, molded, elastometric, cylindrical liner with a multiplicity of flattened helical channels created therein from one end of the liner to the other. Three cylindrical rollers rotate about the center axis of the pump around the inside surface of the liner selectively compressing the liner, and hence the helical channels between the rollers and the barrel housing, creating a pumping action by forcing trapped fluid in the helical channels axially from one end of the liner to the opposite end. The novelty of the invention appears to lie in the provision of the special liner with multiple helical channels as the pumping chamber, rather than the standard single elastomeric tubing which is squeezed repeatedly by rollers to move the liquid through a typical peristaltic pump. Large, repeated deflections on the standard tubing causes a permanent set in the tubing, thus either changing the flow rate, or requiring a new section of tubing to be positioned in the pump head. Further, this configuration minimizes the amount of outflow pulsation which is characteristic of a typical single tubing peristaltic pump.

  1. Detection of multipath effect using a self-pumped optical phase-conjugate filter.

    PubMed

    Li, Y; Ha, B; Eichmann, G; Kanterakis, E G; Caviris, N P

    1991-05-15

    A new optical Fourier domain filtering scheme that combines the conventional optical space-invariant linear filtering with a self-pumped nonlinear-optical phase-conjugation technique is proposed. The new method is used for a real-time detection and channel evaluation of the multipath information needed in radar, sonar, and communication signal-processing applications. Preliminary experimental demonstrations are included. PMID:19774056

  2. Modeling of Doppler frequency shift in multipath radiochannels

    NASA Astrophysics Data System (ADS)

    Penzin, Maksim; Iyin, Nikolay

    2016-06-01

    We discuss the modeling of propagation of a quasi-monochromatic radio signal, represented by a coherent pulse sequence, in a non-stationary multipath radio channel. In such a channel, signal propagation results in the observed frequency shift for each ray (Doppler effect). The modeling is based on the assumption that during propagation of a single pulse a channel can be considered stationary. A phase change in the channel transfer function is shown to cause the observed frequency shift in the received signal. Thus, instead of measuring the Doppler frequency shift, we can measure the rate of change in the mean phase of one pulse relative to another. The modeling is carried out within the framework of the method of normal waves. The method enables us to model the dynamics of the electromagnetic field at a given point with the required accuracy. The modeling reveals that a local change in ionospheric conditions more severely affects the rays whose reflection region is in the area where the changes occur.

  3. Multistatic short range imaging with multipath signals

    NASA Astrophysics Data System (ADS)

    Gumbmann, Frank; Ahmed, Sherif S.

    2014-10-01

    Active imaging systems in the millimeter wave region have proven to offer good results for security applications. Especially a coherent signal detection results in a high dynamic range. Several techniques and systems were published in the last years. The drawback of an active illumination of the measurement object is the effect of shading and poor illuminated areas due to specular reflections from smooth surfaces. The visibility of an object depends on its surface roughness and its relative positioning to the imaging sensor. Especially in personnel screening, the human skin behaves as a smooth mirror for millimeter waves. This paper describes the incorporation of multipath signals in the imaging process to enhance the illumination properties of active imaging systems. The proposed multipath concept is demonstrated with an active multistatic imaging system working from 70 to 80 GHz for security applications.

  4. Performance analysis of a finite radon transform in OFDM system under different channel models

    SciTech Connect

    Dawood, Sameer A.; Anuar, M. S.; Fayadh, Rashid A.; Malek, F.; Abdullah, Farrah Salwani

    2015-05-15

    In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resulted in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system.

  5. A New Synthetic Aperture Sonar Design with Multipath Mitigation

    NASA Astrophysics Data System (ADS)

    Pinto, Marc; Bellettini, Andrea; Wang, Lian Sheng; Munk, Peter; Myers, Vincent; Pautet, Lucie

    2004-11-01

    Sonar performance in shallow water is severely degraded by multipath which reduces image contrast and degrades the performance of interferometric processing. This is an important limitation for high resolution applications such as minehunting, where target recognition exploits chiefly the shape and size of the target shadow. Experimental data showing the nature and importance of the multipath is presented together with a new sonar design, optimized to achieve a high level of multipath rejection at large range to water depth ratio.

  6. Impact of Multipath Reflections on the Performance of Indoor Visible Light Positioning Systems

    NASA Astrophysics Data System (ADS)

    Gu, Wenjun; Aminikashani, Mohammadreza; Deng, Peng; Kavehrad, Mohsen

    2016-05-01

    Visible light communication (VLC) using light-emitting-diodes (LEDs) has been a popular research area recently. VLC can provide a practical solution for indoor positioning. In this paper, the impact of multipath reflections on indoor VLC positioning is investigated, considering a complex indoor environment with walls, floor and ceiling. For the proposed positioning system, an LED bulb is the transmitter and a photo-diode (PD) is the receiver to detect received signal strength (RSS) information. Combined deterministic and modified Monte Carlo (CDMMC) method is applied to compute the impulse response of the optical channel. Since power attenuation is applied to calculate the distance between the transmitter and receiver, the received power from each reflection order is analyzed. Finally, the positioning errors are estimated for all the locations over the room and compared with the previous works where no reflections considered. Three calibration approaches are proposed to decrease the effect of multipath reflections.

  7. Earth-space links and fade-duration statistics

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz

    1995-01-01

    In recent years, fade-duration statistics have been the subject of several experimental investigations. A good knowledge of the fade-duration distribution is important for the assessment of a satellite communication system's channel dynamics: What is a typical link outage duration? How often do link outages exceeding a given duration occur? Unfortunately there is yet no model that can universally answer the above questions. The available field measurements mainly come from temperate climatic zones and only from a few sites. Furthermore, the available statistics are also limited in the choice of frequency and path elevation angle. Yet, much can be learned from the available information. For example, we now know that the fade-duration distribution is approximately lognormal. Under certain conditions, we can even determine the median and other percentiles of the distribution. This paper reviews the available data obtained by several experimenters in different parts of the world. Areas of emphasis are mobile and fixed satellite links. Fades in mobile links are due to roadside-tree shadowing, whereas fades in fixed links are due to rain attenuation.

  8. Earth-Space Links and Fade-Duration Statistics

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz

    1996-01-01

    In recent years, fade-duration statistics have been the subject of several experimental investigations. A good knowledge of the fade-duration distribution is important for the assessment of a satellite communication system's channel dynamics: What is a typical link outage duration? How often do link outages exceeding a given duration occur? Unfortunately there is yet no model that can universally answer the above questions. The available field measurements mainly come from temperate climatic zones and only from a few sites. Furthermore, the available statistics are also limited in the choice of frequency and path elevation angle. Yet, much can be learned from the available information. For example, we now know that the fade-duration distribution is approximately lognormal. Under certain conditions, we can even determine the median and other percentiles of the distribution. This paper reviews the available data obtained by several experimenters in different parts of the world. Areas of emphasis are mobile and fixed satellite links. Fades in mobile links are due to roadside-tree shadowing, whereas fades in fixed links are due to rain attenuation.

  9. Analysis of Multipath Pixels in SAR Images

    NASA Astrophysics Data System (ADS)

    Zhao, J. W.; Wu, J. C.; Ding, X. L.; Zhang, L.; Hu, F. M.

    2016-06-01

    As the received radar signal is the sum of signal contributions overlaid in one single pixel regardless of the travel path, the multipath effect should be seriously tackled as the multiple bounce returns are added to direct scatter echoes which leads to ghost scatters. Most of the existing solution towards the multipath is to recover the signal propagation path. To facilitate the signal propagation simulation process, plenty of aspects such as sensor parameters, the geometry of the objects (shape, location, orientation, mutual position between adjacent buildings) and the physical parameters of the surface (roughness, correlation length, permittivity)which determine the strength of radar signal backscattered to the SAR sensor should be given in previous. However, it's not practical to obtain the highly detailed object model in unfamiliar area by field survey as it's a laborious work and time-consuming. In this paper, SAR imaging simulation based on RaySAR is conducted at first aiming at basic understanding of multipath effects and for further comparison. Besides of the pre-imaging simulation, the product of the after-imaging, which refers to radar images is also taken into consideration. Both Cosmo-SkyMed ascending and descending SAR images of Lupu Bridge in Shanghai are used for the experiment. As a result, the reflectivity map and signal distribution map of different bounce level are simulated and validated by 3D real model. The statistic indexes such as the phase stability, mean amplitude, amplitude dispersion, coherence and mean-sigma ratio in case of layover are analyzed with combination of the RaySAR output.

  10. Processing In A GPS Receiver To Reduce Multipath Errors

    NASA Technical Reports Server (NTRS)

    Meehan, Thomas K.

    1994-01-01

    Four techniques of ancillary real-time digital processing of signals in Global Positioning System, GPS, receiver introduced reducing effects of multipath propagation of signals on position estimates produced by receiver. Multipath range errors halved. Applied in addition to other signal-processing techniques and to other techniques designing as receiving antenna to make it insensitive to reflections of GPS signals from nearby objects.

  11. Optimization of MLS receivers for multipath environments

    NASA Technical Reports Server (NTRS)

    Mcalpine, G. A.; Highfill, J. H., III

    1979-01-01

    The angle tracking problems in microwave landing system receivers along with a receiver design capable of optimal performance in the multipath environments found in air terminal areas were studied. Included were various theoretical and evaluative studies like: (1) signal model development; (2) derivation of optimal receiver structures; and (3) development and use of computer simulations for receiver algorithm evaluation. The development of an experimental receiver for flight testing is presented. An overview of the work and summary of principal results and conclusions are reported.

  12. Performance of FH/BFSK with generalized fading in worst case partial-band Gaussian interference

    NASA Astrophysics Data System (ADS)

    Crepeau, Paul J.

    1990-06-01

    For frequency-hopped (noncoherent) binary frequency shift keying (FH/BFSK) on a worst-case partial-band Gaussian interference channel, the bit error probability results are well known for the extreme cases where the signal is either nonfading or Rayleigh fading. In this work, the region between these extremes is filled in by considering the general Nakagami-m fading model. The worst-case partial-band Gaussian interference results are given by a one-parameter family which for m goes to infinity gives the Viterbi-Jacobs nonfading result, and for m = 1 gives the Rayleigh fading result. In the latter case, a broadband interference strategy is optimal. Thus, the Nakagami-m results provide a smooth one-parameter bridge between the Viterbi-Jacobs channel and the Rayleigh fading channel. The results show that the worst-case interference fraction rho increases as the fading variance increases, up to Rayleigh fading. Any fading less severe than Rayleigh, however slight the departure from Rayleigh, requires a partial-band strategy for sufficiently large Eb/NI.

  13. Mitigation of multipath in DGPS ground reference stations

    NASA Technical Reports Server (NTRS)

    Braasch, Michael S.; Van Graas, Frank

    1992-01-01

    Multipath represents one of the most serious threats to accuracy in Differential GPS (DGPS). The theoretical foundations of multipath are presented and several multipath mitigation techniques are reviewed. Special emphasis is placed on signal diffraction methods. Reflections enter peaks and nulls in the distorted antenna pattern in a random manner. This, coupled with the oscillations in relative phase (with respect to the direct signal), results in a multipath error signature which is noise-like. Since it is noise-like, it may be significantly reduced by averaging the code phase measurements against the more stable carrier-phase measurements. Exploitation of this effect to reduce multipath error represents a significant increase in accuracy for real time DGPS. Experiments have been performed which verify these conclusions.

  14. Perceptual Fading without Retinal Adaptation

    ERIC Educational Resources Information Center

    Hsieh, Po-Jang; Colas, Jaron T.

    2012-01-01

    A retinally stabilized object readily undergoes perceptual fading and disappears from consciousness. This startling phenomenon is commonly believed to arise from local bottom-up sensory adaptation to edge information that occurs early in the visual pathway, such as in the lateral geniculate nucleus of the thalamus or retinal ganglion cells. Here…

  15. A review of fade detection techniques

    NASA Technical Reports Server (NTRS)

    Pergal, F. J.

    1990-01-01

    Several proposed propagation fade detection techniques are reviewed in light of general requirements presented for beacon fade characterization. The discussion includes an analysis of phase lock versus frequency lock beacon tracking loops and of excess noise injection type radiometers. The Advanced Communications Technology Satellite (ACTS) beacon fade detection schemes proposed by the Communications Satellite Corporation and the Jet Propulsion Laboratory are examined along with the fade detection technique used by Harris in the Advanced Communications Technology Satellite (ACTS) low burst rate (LBR) terminal.

  16. The dynamics of rain-induced fades

    NASA Technical Reports Server (NTRS)

    Sweeney, Dennis G.; Bostian, Charles W.

    1992-01-01

    The dynamics of rain-induced fades on satellite radio links is studied by evaluating the rate at which the first Fresnel zone volume fills with rain. A compact expression for the fade slope on a terrestrial path is derived which shows that once the rain rate is specified, fade slope is very sensitive to differences in rain velocity. Thus, there is no unique relationship between fade slope and rain rate.

  17. FPGA implementation of dynamic channel assignment algorithm for cognitive wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Martínez, Daniela M.; Andrade, Ángel G.

    2015-07-01

    The reliability of wireless sensor networks (WSNs) in industrial applications can be thwarted due to multipath fading, noise generated by industrial equipment or heavy machinery and particularly by the interference generated from other wireless devices operating in the same spectrum band. Recently, cognitive WSNs (CWSNs) were proposed to improve the performance and reliability of WSNs in highly interfered and noisy environments. In this class of WSN, the nodes are spectrum aware, that is, they monitor the radio spectrum to find channels available for data transmission and dynamically assign and reassign nodes to low-interference condition channels. In this work, we present the implementation of a channel assignment algorithm in a field-programmable gate array, which dynamically assigns channels to sensor nodes based on the interference and noise levels experimented in the network. From the results obtained from the performance evaluation of the CWSN when the channel assignment algorithm is considered, it is possible to identify how many channels should be available in the network in order to achieve a desired percentage of successful transmissions, subject to constraints on the signal-to-interference plus noise ratio on each active link.

  18. Effects of fade distribution on a mobile satellite downlink and uplink performance in a frequency reuse cellular configuration

    NASA Technical Reports Server (NTRS)

    Boutin, Karl; Lecours, Michel; Pelletier, Marcel; Delisle, Gilles Y.

    1990-01-01

    In a mobile satellite system with a frequency reuse cellular configuration, significant co-channel interference can be experienced due to the antenna sidelobe level. The signal will be subjected not only to its own fading, but also to the effect of the varying degree of fading on co-channel interferer, and this interference will behave differently in the up and in the down link. This paper presents a quantitative evaluation of the combined effects of fades and co-channel interference on a mobile satellite link.

  19. Ultrasonic Multipath and Beamforming Clutter Reduction: A Chirp Model Approach

    PubMed Central

    Byram, Brett; Jakovljevic, Marko

    2014-01-01

    In vivo ultrasonic imaging with transducer arrays suffers from image degradation due to beamforming limitations, which includes diffraction limited beamforming as well as beamforming degradation due to tissue inhomogeneity. Additionally, based on recent studies, multipath scattering also causes significant image degradation. To reduce degradation from both sources, we propose a model-based, signal decomposition scheme. The proposed algorithm identifies spatial frequency signatures to decompose received wavefronts into their most significant scattering sources. Scattering sources originating from a region of interest are used to reconstruct decluttered wavefronts, which are beamformed into decluttered radio frequency (RF) scan lines or A-lines. To test the algorithm, ultrasound system channel data were acquired during liver scans from 8 patients. Multiple data sets were acquired from each patient, with 55 total data sets, 43 of which had identifiable hypoechoic regions on normal B-mode images. The data sets with identifiable hypoechoic regions were analyzed. The results show the decluttered B-mode images have an average improvement in contrast over normal images of 7.3±4.6 dB. The CNR changed little on average between normal and decluttered B-mode, −0.4±5.9 dB. The in vivo speckle SNR decreased; the change was −0.65±0.28. Phantom speckle SNR also decreased but only by −0.40±0.03. PMID:24569248

  20. Channel aware HARQ scheme based on LDPC codes for land mobile satellite communication system

    NASA Astrophysics Data System (ADS)

    Yang, Yongli; Zhu, Guangxi; Wang, Desheng; Wu, Lifen

    2007-11-01

    In this paper, a channel aware HARQ (CA-HARQ) scheme based on data punctured rate compatible LDPC (DP-LDPC) codes, which might satisfy the demand for bandwidth and rate in land mobile communication system, is proposed. The scheme is based on type II HARQ technique cooperated with a DP- LDPC code. In the proposed scheme, the effective rate of the LDPC code is adapted according to the channel quality information (CQI) estimated at the receiver, so as to decrease the redundancy when the channel is good and vice versa, the retransmitted blocks are combined with the previous information transmitted to achieve high probability of successful decoding. In this paper, we use a 2-bit CQI feedback scheme. Simulation results, which based on a land mobile satellite channel, show that the proposed channel aware H-ARQ scheme based on DP-LDPC codes improved the throughput by 0.4dB at low SNR compared to a pure DP-LDPC type II HARQ, and it can also be an effective solution to compensate rain attenuation and multipath fading in land mobile satellite systems.

  1. Limitations on Ku-band communications due to multipath

    NASA Technical Reports Server (NTRS)

    Lindsey, J. F.; Rudnicki, J. F.

    1977-01-01

    The earth and orbiter body reflections involving the Tracking Data Relay Satellite (TDRS)/orbiter communications link are evaluated. Recommendations address operational conditions in order to avoid critical multipath impacts, modulation preferences during acquisition, and preferred scan limit implementation.

  2. Methods and Apparatus for Reducing Multipath Signal Error Using Deconvolution

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra (Inventor); Lau, Kenneth H. (Inventor)

    1999-01-01

    A deconvolution approach to adaptive signal processing has been applied to the elimination of signal multipath errors as embodied in one preferred embodiment in a global positioning system receiver. The method and receiver of the present invention estimates then compensates for multipath effects in a comprehensive manner. Application of deconvolution, along with other adaptive identification and estimation techniques, results in completely novel GPS (Global Positioning System) receiver architecture.

  3. Fade Mitigation Techniques at Ka-Band

    NASA Technical Reports Server (NTRS)

    Dissanayake, Asoka (Editor)

    1996-01-01

    Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.

  4. Crystal Diagnostics MultiPath System™.

    PubMed

    Stumpf, Curtis H; Zhao, Weidong; Bullard, Brian; Ammons, Christine; Devlin, Karl I; Niehaus, Gary D

    2014-01-01

    The Crystal Diagnostics MultiPath System™ provides rapid detection of Escherichia coli O157 in fresh raw ground beef, raw beeftrim, and spinach. The Crystal Diagnostics system combines patented Liquid Crystal technology with antibody-coated paramagnetic microspheres to selectively capture and detect E. coli O157 in food matrixes. This is the only liquid crystal-based biosensor commercially available for the detection of pathogens. The Crystal Diagnostics system expeditiously provides the sensitivity and accuracy of the U.S. Department of Agriculture Food Safety Inspection Service (USDA-FSIS) and the U.S. Food and Drug Administration Bacteriological Analytical Manual (FDA-BAM) methods for detecting as low as one CFU of E. coli O157 per 375 g of raw ground beef and raw beef trim, or 200 g of raw spinach. An internal inclusivity validation demonstrated detection of all 50 tested strains of . coli O157. The internal and independent laboratory tests demonstrate that the method is rapid and sensitive for detecting of E. coli O157 in fresh raw ground beef, beef trim, and spinach. PMID:25632437

  5. Enchanced interference cancellation and telemetry reception in multipath environments with a single paraboic dish antenna using a focal plane array

    NASA Technical Reports Server (NTRS)

    Mukai, Ryan (Inventor); Vilnrotter, Victor A. (Inventor)

    2011-01-01

    An Advanced Focal Plane Array ("AFPA") for parabolic dish antennas that exploits spatial diversity to achieve better channel equalization performance in the presence of multipath (better than temporal equalization alone), and which is capable of receiving from two or more sources within a field-of-view in the presence of multipath. The AFPA uses a focal plane array of receiving elements plus a spatio-temporal filter that keeps information on the adaptive FIR filter weights, relative amplitudes and phases of the incoming signals, and which employs an Interference Cancelling Constant Modulus Algorithm (IC-CMA) that resolves multiple telemetry streams simultaneously from the respective aero-nautical platforms. This data is sent to an angle estimator to calculate the target's angular position, and then on to Kalman filters FOR smoothing and time series prediction. The resulting velocity and acceleration estimates from the time series data are sent to an antenna control unit (ACU) to be used for pointing control.

  6. When Does Fading Enhance Perceptual Category Learning?

    ERIC Educational Resources Information Center

    Pashler, Harold; Mozer, Michael C.

    2013-01-01

    Training that uses exaggerated versions of a stimulus discrimination (fading) has sometimes been found to enhance category learning, mostly in studies involving animals and impaired populations. However, little is known about whether and when fading facilitates learning for typical individuals. This issue was explored in 7 experiments. In…

  7. Estimating Effects of Multipath Propagation on GPS Signals

    NASA Technical Reports Server (NTRS)

    Byun, Sung; Hajj, George; Young, Lawrence

    2005-01-01

    Multipath Simulator Taking into Account Reflection and Diffraction (MUSTARD) is a computer program that simulates effects of multipath propagation on received Global Positioning System (GPS) signals. MUSTARD is a very efficient means of estimating multipath-induced position and phase errors as functions of time, given the positions and orientations of GPS satellites, the GPS receiver, and any structures near the receiver as functions of time. MUSTARD traces each signal from a GPS satellite to the receiver, accounting for all possible paths the signal can take, including all paths that include reflection and/or diffraction from surfaces of structures near the receiver and on the satellite. Reflection and diffraction are modeled by use of the geometrical theory of diffraction. The multipath signals are added to the direct signal after accounting for the gain of the receiving antenna. Then, in a simulation of a delay-lock tracking loop in the receiver, the multipath-induced range and phase errors as measured by the receiver are estimated. All of these computations are performed for both right circular polarization and left circular polarization of both the L1 (1.57542-GHz) and L2 (1.2276-GHz) GPS signals.

  8. Multipath routing in wireless sensor networks: survey and research challenges.

    PubMed

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490

  9. Performance evaluations of multipath multitarget tracking using PCRLB

    NASA Astrophysics Data System (ADS)

    Subramaniam, M.; Punithakumar, K.; Tharmarasa, R.; McDonald, M.; Kirubarajan, T.

    2011-09-01

    In this paper, we study the performance of the multipath-assisted multitarget tracking using multiframe assignment for initiating and tracking multiple targets by employing one or more transmitters and receivers. The basis of the technique is to use the posterior Cramer-Rao lower bound (PCRLB) to quantify the optimal achievable accuracy of target state estimation. When resolved multipath signals are present at the sensors, if proper measures are not taken, multiple tracks will be formed for a single target. In typical radar systems, these spurious tracks are removed from tracking, and therefore the information carried in such target return tracks are wasted. In multipath environment, in every scan the number of sensor measurements from a target is equal to the number of resolved signals received by different propagation modes. The data association becomes more complex as this is in contrary to the standard data association problem whereas the total number of sensor measurements from a target is equal to at most one. This leads to a challenging problem of fusing the direct and multipath measurements from the same target. We showed in our evaluations that incorporating multipath information improves the performance of the algorithm significantly in terms of estimation error. Simulation results are presented to show the effectiveness of the proposed method.

  10. Glistening-region model for multipath studies

    NASA Astrophysics Data System (ADS)

    Groves, Gordon W.; Chow, Winston C.

    1998-07-01

    The goal is to achieve a model of radar sea reflection with improved fidelity that is amenable to practical implementation. The geometry of reflection from a wavy surface is formulated. The sea surface is divided into two components: the smooth `chop' consisting of the longer wavelengths, and the `roughness' of the short wavelengths. Ordinary geometric reflection from the chop surface is broadened by the roughness. This same representation serves both for forward scatter and backscatter (sea clutter). The `Road-to-Happiness' approximation, in which the mean sea surface is assumed cylindrical, simplifies the reflection geometry for low-elevation targets. The effect of surface roughness is assumed to make the sea reflection coefficient depending on the `Deviation Angle' between the specular and the scattering directions. The `specular' direction is that into which energy would be reflected by a perfectly smooth facet. Assuming that the ocean waves are linear and random allows use of Gaussian statistics, greatly simplifying the formulation by allowing representation of the sea chop by three parameters. An approximation of `low waves' and retention of the sea-chop slope components only through second order provides further simplification. The simplifying assumptions make it possible to take the predicted 2D ocean wave spectrum into account in the calculation of sea-surface radar reflectivity, to provide algorithms for support of an operational system for dealing with target tracking in the presence of multipath. The product will be of use in simulated studies to evaluate different trade-offs in alternative tracking schemes, and will form the basis of a tactical system for ship defense against low flyers.

  11. Plasma sheath multipath analysis and its effect on GNSS navigation

    NASA Astrophysics Data System (ADS)

    Du, Yongxing; Xi, Xiaoli; Song, Zhongguo; Liu, Jiangfan

    2015-11-01

    When hypersonic vehicle reenters the Earth's atmosphere, the plasma sheath will be generated by its collision with ambient air that would affect global navigation satellite system (GNSS). In order to understand such effects, the transmission coefficient of the plasma sheath has been investigated using the numerical method before. But this is found to be insufficient, for besides the attenuation on the signal energy, the multipath effect between the plasma sheath and the vehicle surface is also a serious factor, which may result in errors in pseudorange measurement and carrier phase measurement of GNSS receiver and finally affect the positioning accuracy. The multipath of the plasma sheath is analyzed by finite-difference time-domain method combined with further signal processing, and a simulation platform is established to verify this effects on positioning performance. Simulation results indicate the degradation of positioning performance when these multipath signals were present, causing position error with several meters to tens of meters.

  12. Fade-resistant forward error correction method for free-space optical communications systems

    DOEpatents

    Johnson, Gary W.; Dowla, Farid U.; Ruggiero, Anthony J.

    2007-10-02

    Free-space optical (FSO) laser communication systems offer exceptionally wide-bandwidth, secure connections between platforms that cannot other wise be connected via physical means such as optical fiber or cable. However, FSO links are subject to strong channel fading due to atmospheric turbulence and beam pointing errors, limiting practical performance and reliability. We have developed a fade-tolerant architecture based on forward error correcting codes (FECs) combined with delayed, redundant, sub-channels. This redundancy is made feasible though dense wavelength division multiplexing (WDM) and/or high-order M-ary modulation. Experiments and simulations show that error-free communications is feasible even when faced with fades that are tens of milliseconds long. We describe plans for practical implementation of a complete system operating at 2.5 Gbps.

  13. When does fading enhance perceptual category learning?

    PubMed

    Pashler, Harold; Mozer, Michael C

    2013-07-01

    Training that uses exaggerated versions of a stimulus discrimination (fading) has sometimes been found to enhance category learning, mostly in studies involving animals and impaired populations. However, little is known about whether and when fading facilitates learning for typical individuals. This issue was explored in 7 experiments. In Experiments 1 and 2, observers discriminated stimuli based on a single sensory continuum (time duration and line length, respectively). Adaptive fading dramatically improved performance in training (unsurprisingly) but did not enhance learning as assessed in a final test. The same was true for nonadaptive linear fading (Experiment 3). However, when variation in length (predicting category membership) was embedded among other (category-irrelevant) variation, fading dramatically enhanced not only performance in training but also learning as assessed in a final test (Experiments 4 and 5). Fading also helped learners to acquire a color saturation discrimination amid category-irrelevant variation in hue and brightness, although this learning proved transitory after feedback was withdrawn (Experiment 7). Theoretical implications are discussed, and we argue that fading should have practical utility in naturalistic category learning tasks, which involve extremely high dimensional stimuli and many irrelevant dimensions. PMID:23421513

  14. Differential reinforcement with and without instructional fading.

    PubMed Central

    Ringdahl, Joel E; Kitsukawa, Kana; Andelman, Marc S; Call, Nathan; Winborn, Lisa; Barretto, Anjali; Reed, Gregory K

    2002-01-01

    We evaluated a differential-reinforcement-based treatment package for the reduction of problem behavior during instructional situations. Differential reinforcement of alternative behavior (DRA; compliance) was implemented across two conditions. During one condition, instructions were presented approximately once every other minute. This condition was considered the terminal goal for treatment. During the second condition, the rate of instructions was gradually increased (beginning at zero and ending when instruction rate was similar to the first condition). Results indicated that DRA with instructional fading resulted in less problem behavior than DRA without instructional fading. These results are similar to previous studies regarding the utility of instructional fading. PMID:12365743

  15. Multi-carrier Communications over Time-varying Acoustic Channels

    NASA Astrophysics Data System (ADS)

    Aval, Yashar M.

    Acoustic communication is an enabling technology for many autonomous undersea systems, such as those used for ocean monitoring, offshore oil and gas industry, aquaculture, or port security. There are three main challenges in achieving reliable high-rate underwater communication: the bandwidth of acoustic channels is extremely limited, the propagation delays are long, and the Doppler distortions are more pronounced than those found in wireless radio channels. In this dissertation we focus on assessing the fundamental limitations of acoustic communication, and designing efficient signal processing methods that cam overcome these limitations. We address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency- independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE'10). Next, we focus on achieving reliable high-rate communication over underwater acoustic channels. Specifically, we investigate orthogonal frequency division multiplexing (OFDM) as the state-of-the-art technique for dealing with frequency-selective multipath channels, and propose a class of methods that compensate for the time-variation of the underwater acoustic channel. These methods are based on multiple

  16. A design study on complexity reduced multipath mitigation

    NASA Astrophysics Data System (ADS)

    Wasenmüller, U.; Brack, T.; Groh, I.; Staudinger, E.; Sand, S.; Wehn, N.

    2012-09-01

    Global navigation satellite systems, e.g. the current GPS and the future European Galileo system, are frequently used in car navigation systems or smart phones to determine the position of a user. The calculation of the mobile position is based on the signal propagation times between the satellites and the mobile terminal. At least four time of arrival (TOA) measurements from four different satellites are required to resolve the position uniquely. Further, the satellites need to be line-of-sight to the receiver for exact position calculation. However, in an urban area, the direct path may be blocked and the resulting multipath propagation causes errors in the order of tens of meters for each measurement. and in the case of non-line-of-sight (NLOS), positive errors in the order of hundreds of meters. In this paper an advanced algorithm for multipath mitigation known as CRMM is presented. CRMM features reduced algorithmic complexity and superior performance in comparison with other state of the art multipath mitigation algorithms. Simulation results demonstrate the significant improvements in position calculation in environments with severe multipath propagation. Nevertheless, in relation to traditional algorithms an increased effort is required for real-time signal processing due to the large amount of data, which has to be processed in parallel. Based on CRMM, we performed a comprehensive design study including a design space exploration for the tracking unit hardware part, and prototype implementation for hardware complexity estimation.

  17. Effects and mitigation of multipath on GPS/Galileo

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Wang, Qing; Pan, Shuguo; He, Jun

    2007-11-01

    A conventional method to mitigate multipath errors in GNSS receivers is the strobe correlator, which achieves discriminator function shaping by combining two different narrow-correlator discriminators [1] [2]. The method performs a good performance when the difference in delays of direct and reflected signal is biggish in GPS scenario. Nevertheless, the performance of the method is not so good for Galileo scenario. The advent of the European navigation system Galileo has made it an exigent requirement to develop the receiver that can track Galileo signals as well as GPS signals. So, a better way should be groped for to mitigate both GPS and Galileo multipath errors. In the paper, a novel multipath mitigation scheme, named Early-Late Strobe Correlator (ELSC), was presented for both GPS and Galileo signals. By the Matlab simulation to the method, multipath errors could be mitigated effectively by using ELSC, especially to Galileo signals. The experiment results show that more excellent performances can be obtained by adopting ELSC presented in the paper with respected to the strobe correlator, although this will result in a more complex structure of discriminators.

  18. Response Prompting and Fading Methods: A Review.

    ERIC Educational Resources Information Center

    Demchak, MaryAnn

    1990-01-01

    Four methods for response prompting and fading are reviewed: increasing assistance, decreasing assistance, graduated guidance, and time delay. Comparative investigations involving these methods are discussed, and recommendations for practitioners and for future research are included. (Author/JDD)

  19. K/Ka-band channel characterization for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Pinck, Deborah S.; Rice, Michael D.

    1995-01-01

    Mobile satellite systems allow truly ubiquitous wireless communications to users anywhere and anytime. NASA's Advanced Communications Technology Satellite (ACTS) provides an ideal space-based platform for the measurement of K/Ka band propagation characteristics in a land mobile satellite application. Field tests conducted in Southern California during the first seven months of 1994 using JPL's ACTS Mobile Terminal (AMT) provided channel characterization data for the K/Ka-band link. A pilot tone was transmitted from a fixed station in Cleveland, Ohio through the satellite and downlinked at 20 GHz in the Southern California spot beam. The AMT was equipped with a narrow beam, high gain antenna which tracked the satellite in azimuth for a fixed elevation angle (46 degrees for this case). The field tests were conducted in three basic environments: clear line-of-sight (LOS) highways, lightly shadowed suburban, and heavily shadowed suburban. Preliminary results of these field tests indicate very little multipath for rural environments and for clear LOS links (as expected with a narrow beam antenna). Deep fades were experienced in shadowed areas, especially those where tree canopies covered the road.

  20. Simulating Rain Fade In A Communication System

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Kurt A.; Nagy, Lawrence A.; Svoboda, James K.

    1994-01-01

    Automated, computer-controlled assembly of electronic equipment developed for use in simulation testing of downlink portion of Earth/satellite microwave digital communication system. Designed to show effects upon performance of system of rain-induced fading in received signal and increases in transmitted power meant to compensate for rain-induced fading. Design of communication system improved iteratively in response to results of simulations, leading eventually to design ensuring clear, uninterrupted transmission of digital signals.

  1. Fading kitten syndrome and neonatal isoerythrolysis.

    PubMed

    Bücheler, J

    1999-07-01

    Fading kitten syndrome includes noninfectious and infectious causes for neonatal death (birth to weaning age). Noninfectious causes are mostly responsible for mortality in the first week of life and include congenital disorders, low birth weights, trauma, malnutrition, environmental causes, and neonatal isoerythroylsis. Infectious causes are more prevalent at 3-4 weeks of age. This article discusses the causes, clinical signs, and management of fading kitten syndrome. PMID:10390788

  2. Mobile satellite system fade statistics for shadowing and multipath from roadside trees at UHF and L-band

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1989-01-01

    Field tests related to planned mobile satellite systems were performed, and results that add to the existing database of propagation measurements at L-band (1.5 GHz) are described. They are considered particularly useful in that propagation effects were studied systematically, with repeated and controlled runs pertaining to different path elevation angles, road types, and path geometries defining shadowing and line-of-sight modes. In addition, simultaneous L-band and UHF measurements were performed for the purpose of establishing scaling factors applicable to previous UHF (870 MHz) results. The control of the experimental parameters was made possible by using a helicopter as the source platform and a mobile van to house the receiver.

  3. Fade-durations derived from land-mobile-satellite measurements in Australia

    NASA Technical Reports Server (NTRS)

    Hase, Yoshihiro; Vogel, Wolfhard J.; Goldhirsh, Julius

    1991-01-01

    Transmissions from the Japanese ETS-V geostationary satellite were measured at L band (1.5 GHz) in a vehicle driving on roads of southeastern Australia. The measurements were part of a program designed to characterize propagation effects due to roadside trees and terrain for mobile satellite service. It is shown that the cumulative distributions of fade and nonfade durations follow a lognormal and power law, respectively. At 1 percent probability, fades last 2-8 m, and nonfades 10-100 m, depending on the degree of shadowing. Phase fluctuations are generally small, allowing the channel characteristics to be estimated from levels only.

  4. Results of multiband (L, S, Ku band) propagation measurements and model for high elevation angle land mobile satellite channel

    NASA Technical Reports Server (NTRS)

    Parks, M. A. N.; Butt, G.; Evans, Barry G.; Richharia, M.

    1993-01-01

    Signal propagation in the land mobile satellite (LMS) service is an important consideration due to its critical impact on the overall economic and commercial viability of the system. At frequencies allocated for LMS systems, shadowing of the line-of-sight (LOS) signal as well as multipath propagation phenomena can severely impair the link availability. In particular, as most of the studies have shown, the shadowing of LOS signal causes long and deep fades in a variety of mobile environments due to the inherent nature of the channel between the satellite and a mobile. Roadside obstacles, such as buildings, trees, utility poles etc., in the immediate vicinity of a mobile and the surrounding terrain are major sources of signal shadowing in LMS links. Therefore, a proper knowledge of link degradation is essential for cost-effective planning of a satellite based mobile communication system. The results of a propagation campaign undertaken to characterize the fading nature of LMS channel at high elevation angles is presented. It was envisaged that one of the most important physical variables contributing to the amount of LOS signal shadowing is the elevation angle of the satellite. At higher elevation angles to the satellite, less obstructions in the direct satellite-to-mobile path would therefore amount to statistically better link availability. Narrowband channel measurements were carried out at three RF frequencies corresponding to L (1.3 GHz), S (2.32/2.45 GHz), and Ku (10.4 GHz) bands. The campaign itself was divided into two phases to observe the effects of seasonal variation of foliage on the roadside trees. Phase measurements were carried out in September 1991 and in April 1992. Some important aspects from the statistical analysis of the propagation data are presented.

  5. Results of multiband (L, S, Ku band) propagation measurements and model for high elevation angle land mobile satellite channel

    NASA Astrophysics Data System (ADS)

    Parks, M. A. N.; Butt, G.; Evans, Barry G.; Richharia, M.

    1993-08-01

    Signal propagation in the land mobile satellite (LMS) service is an important consideration due to its critical impact on the overall economic and commercial viability of the system. At frequencies allocated for LMS systems, shadowing of the line-of-sight (LOS) signal as well as multipath propagation phenomena can severely impair the link availability. In particular, as most of the studies have shown, the shadowing of LOS signal causes long and deep fades in a variety of mobile environments due to the inherent nature of the channel between the satellite and a mobile. Roadside obstacles, such as buildings, trees, utility poles etc., in the immediate vicinity of a mobile and the surrounding terrain are major sources of signal shadowing in LMS links. Therefore, a proper knowledge of link degradation is essential for cost-effective planning of a satellite based mobile communication system. The results of a propagation campaign undertaken to characterize the fading nature of LMS channel at high elevation angles is presented. It was envisaged that one of the most important physical variables contributing to the amount of LOS signal shadowing is the elevation angle of the satellite. At higher elevation angles to the satellite, less obstructions in the direct satellite-to-mobile path would therefore amount to statistically better link availability. Narrowband channel measurements were carried out at three RF frequencies corresponding to L (1.3 GHz), S (2.32/2.45 GHz), and Ku (10.4 GHz) bands. The campaign itself was divided into two phases to observe the effects of seasonal variation of foliage on the roadside trees. Phase measurements were carried out in September 1991 and in April 1992. Some important aspects from the statistical analysis of the propagation data are presented.

  6. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Real life experience with multipath ultrasonic gas flow meters

    SciTech Connect

    Sakariassen, R.

    1996-12-31

    Multipath ultrasonic gas flow meters are to be considered as newcomers among flow meters for large, high pressure gas flows. Although the advantages of this type of meters are many and obvious, the metering community is still hesitating to go for it mainly because of lack of experience. The objective of this paper is to present the experience of Statoil after more than six years experience with multipath ultrasonic gas flow meters. Their experience includes laboratory testing and operation in the field for a variety of designs and dimensions. This paper presents the accuracy achieved by such meters including comparison between ultrasonic meters and orifice metering systems in operation, the unique possibilities that this type of meter offers for on-line verification of performance and installation effects. Of particular interest should be noted that in the vicinity of low-noise control valves, such meters could stop functioning completely if no precautions are taken.

  8. Multipath Effects on Phase Measurements with Continuous Terahertz Waves

    NASA Astrophysics Data System (ADS)

    Cordes, A. H.; Albarracin, M. G.; Thomas, D. H.; von der Weid, J. P.

    2016-05-01

    We evaluate the effect of multipath waves on terahertz phase measurements due to multiple reflections between the transmitter antenna and the sample. We show that the phase shift introduced by the sample will be biased by a value which depends on the sample position in the terahertz path. We show how to remove the bias and use the technique in the measurement of the index of refraction of Mylar at 194.4 GHz.

  9. Multipath Routing Algorithm Applied to Cloud Data Center Services

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroshi

    Cloud data center services, such as video on demand (VoD) and sensor data monitoring, have become popular. The quality of service (QoS) between a client and a cloud data center should be assured by satisfying each service's required bandwidth and delay. Multipath traffic engineering is effective for dispersing traffic flows on a network; therefore, an improved k-shortest paths first (k-SPF) algorithm is applied to these cloud data center services to satisfy their required QoS. k-SPF can create a set of multipaths between a cloud data center and all edge routers, to which client nodes are connected, within one algorithm process. Thus, k-SPF can produce k shortest simple paths between a cloud data center and every access router faster than with conventional Yen's algorithm. By using a parameter in the algorithm, k-SPF can also impartially use links on a network and shorten the average hop-count and number of necessary MPLS labels for multiple paths that comprise a multipath.

  10. Computing Path Tables for Quickest Multipaths In Computer Networks

    SciTech Connect

    Grimmell, W.C.

    2004-12-21

    We consider the transmission of a message from a source node to a terminal node in a network with n nodes and m links where the message is divided into parts and each part is transmitted over a different path in a set of paths from the source node to the terminal node. Here each link is characterized by a bandwidth and delay. The set of paths together with their transmission rates used for the message is referred to as a multipath. We present two algorithms that produce a minimum-end-to-end message delay multipath path table that, for every message length, specifies a multipath that will achieve the minimum end-to-end delay. The algorithms also generate a function that maps the minimum end-to-end message delay to the message length. The time complexities of the algorithms are O(n{sup 2}((n{sup 2}/logn) + m)min(D{sub max}, C{sub max})) and O(nm(C{sub max} + nmin(D{sub max}, C{sub max}))) when the link delays and bandwidths are non-negative integers. Here D{sub max} and C{sub max} are respectively the maximum link delay and maximum link bandwidth and C{sub max} and D{sub max} are greater than zero.

  11. Modeling the effects of Multi-path propagation and scintillation on GPS signals

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Wilson, S. J.

    2014-12-01

    GPS signals traveling through the earth's ionosphere are affected by charged particles that often disrupt the signal and the information it carries due to "scintillation", which resembles an extra noise source on the signal. These signals are also affected by weather changes, tropospheric scattering, and absorption from objects due to multi-path propagation of the signal. These obstacles cause distortion within information and fading of the signal, which ultimately results in phase locking errors and noise in messages. In this work, we attempted to replicate the distortion that occurs in GPS signals using a signal processing simulation model. We wanted to be able to create and identify scintillated signals so we could better understand the environment that caused it to become scintillated. Then, under controlled conditions, we simulated the receiver's ability to suppress scintillation in a signal. We developed a code in MATLAB that was programmed to: 1. Create a carrier wave and then plant noise (four different frequencies) on the carrier wave, 2. Compute a Fourier transform on the four different frequencies to find the frequency content of a signal, 3. Use a filter and apply it to the Fourier transform of the four frequencies and then compute a Signal-to-noise ratio to evaluate the power (in Decibels) of the filtered signal, and 4.Plot each of these components into graphs. To test the code's validity, we used user input and data from an AM transmitter. We determined that the amplitude modulated signal or AM signal would be the best type of signal to test the accuracy of the MATLAB code due to its simplicity. This code is basic to give students the ability to change and use it to determine the environment and effects of noise on different AM signals and their carrier waves. Overall, we were able to manipulate a scenario of a noisy signal and interpret its behavior and change due to its noisy components: amplitude, frequency, and phase shift.

  12. An improved service-aware multipath algorithm for wireless multimedia sensor networks

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Tang, Ruichun; Xu, Huimin; Liu, Yafang

    2013-03-01

    Study the multipath transmission problems of the different services in Wireless Multimedia Sensor Networks (WMSN). To further effectively utilize networks resources, the multipath mechanism and service-aware is used to improve performance of OLSR(Optimized Link State Routing). A SM-OLSR(Service-aware Multipath OLSR) algorithm is proposed. An efficiency model is introduced, then multipath is built according to the routing ID and energy efficiency. Compared with other routing algorithms, simulation results show that the algorithm can provide service support for different data.

  13. Evaluating Pseudorange Multipath at CGPS Stations Spanning Mexico

    NASA Astrophysics Data System (ADS)

    Vazquez, G.; Bennett, R. A.; Spinler, J. C.

    2013-12-01

    A research study was conducted in order to quantify and analyze the amount of pseudorange multipath at continuous Global Positioning System (CGPS) stations spanning Mexico. These CGPS stations are administered by a variety of organizations, including government agencies and public universities, and thus serve a wide range of positioning needs. Despite the diversity of the networks and their intended audiences, a core function of all of the networks is to provide a stable framework for high-precision positioning in support of diverse commercial and scientific applications. CGPS data from a large number of publicly available networks located in Mexico were studied. These include the RGNA (National Active Geodetic Network) administered by INEGI (National Institute of Statistics and Geography), the PBO network (Plate Boundary Observatory) funded by the National Science Foundation (NSF) and operated by UNAVCO (University NAVstar Consortium), the Southern California Integrated GPS Network (SCIGN), which is a collaboration effort of the United States Geological Survey (USGS), Scripps Institution of Oceanography and the Jet Propulsion Laboratory (JPL), the UNAM network, operated by the National Seismological System (SSN) and the Institute of Geophysics of the National Autonomous University of Mexico (UNAM), the Suominet Geodetic Network (SNG) and the CORS (Continuously Operating Reference Station) network, operated by the Federal Aviation Administration (FAA). A total of 54 CGPS stations were evaluated, where dual-frequency geodetic-grade receivers collected GPS data continuously during the period from 1994 to 2013. It is usually assumed that despite carefully selected locations, all CGPS stations are to some extent, affected by the presence of signal multipath. In addition, the geographic distribution of stations provides a nation-wide access to the International Terrestrial Reference Frame (ITRF). For real-time kinematic (RTK) and rapid static applications that depend on

  14. "Concreteness Fading" Promotes Transfer of Mathematical Knowledge

    ERIC Educational Resources Information Center

    McNeil, Nicole M.; Fyfe, Emily R.

    2012-01-01

    Recent studies have suggested that educators should avoid concrete instantiations when the goal is to promote transfer. However, concrete instantiations may benefit transfer in the long run, particularly if they are "faded" into more abstract instantiations. Undergraduates were randomly assigned to learn a mathematical concept in one of three…

  15. Effects of Nakagami fading on antijam performance requirements

    NASA Astrophysics Data System (ADS)

    Al-Hussaini, E. K.

    1988-02-01

    The effect of fading on antijam (AJ) performance is considered when the envelopes of both the desired signal and the jamming signal fade with a Nakagami distribution. Two cases are analyzed for conventional systems. In the first case, the fading is assumed to be slow compared with the duration of the message. In the second case, the fading is assumed to be slow compared with the symbol duration but fast compared with the message duration. For both cases numerical results are also included.

  16. New Time and Multipath Augmentations for the Global Positioning System

    NASA Astrophysics Data System (ADS)

    Pratt, John A.

    Although developed with a narrow focus in mind, use of GPS has expanded into dozens of fields in industry, science, and military applications. The purpose of the research detailed in this dissertation is an increase in the utility of GPS by improving primary applications of the constellation and expand the practicality of some secondary applications. The first portion of this disseration focuses on the development of clock estimation algorithms for a GPS aiding system called iGPS which has been designed to improve the performance of the system in challenging environments. Central to the functioning of iGPS are the Iridium communication satellites. This dissertation describes a Kalman filter for estimating Iridium satellite clock biases from GPS-like measurements at an interval of 10 s. Typical results show the current filter to be accurate to within 200 ns while always meeting the initial system specification of half a microsecond. The following chapter examines the expediency of increasing the number of terms used to represent the clock bias in the broadcast message and it is shown that the current broadcast message is sufficient. The second half of the dissertation deals with the use of GPS multipath as an environmental measurement. It is shown that reflections of GPS signals from the ground can be used to estimate several important phenological indicators relative to the vegetation surrounding the GPS antenna. Methods are developed for refining the reflected signal and preparing it for use as a vegetation index. Finally, the effect of temperature and multipath supression algorithms on the GPS multipath data is examined relative to its viability for use as previously described. It is shown that these effects are minor in the majority of the GPS sites used in this study and that the data can be adjusted to avoid temperature difficulties.

  17. Hyperbolic Position Location Estimation in the Multipath Propagation Environment

    NASA Astrophysics Data System (ADS)

    Stefański, Jacek

    The efficiency analysis a hyperbolic position location estimation in the multipath propagation environment in the wideband code division multiple access (WCDMA) interface was presented. Four, the most popular methods: Chan’s [1], Foy’s [2], Fang’s [3] and Friedlander’s [4] were considered. These algorithms enable the calculation of the geographical position of a mobile station (MS) using the time differences of arrival (TDOA) between several base stations (BS) and MS. The simulation model is outlined and simulation results are presented.

  18. Forward and Inverse Modeling of GPS Multipath for Snow Monitoring

    NASA Astrophysics Data System (ADS)

    Nievinski, Felipe Geremia

    Snowpacks provide reservoirs of freshwater, storing solid precipitation and delaying runoff to be released later in the spring and summer when it is most needed. The goal of this dissertation is to develop the technique of GPS multipath reflectometry (GPS-MR) for ground-based measurement of snow depth. The phenomenon of multipath in GPS constitutes the reception of reflected signals in conjunction with the direct signal from a satellite. As these coherent direct and reflected signals go in and out of phase, signal-to-noise ratio (SNR) exhibits peaks and troughs that can be related to land surface characteristics. In contrast to other GPS reflectometry modes, in GPS-MR the poorly separated composite signal is collected utilizing a single antenna and correlated against a single replica. SNR observations derived from the newer L2-frequency civilian GPS signal (L2C) are used, as recorded by commercial off-the-shelf receivers and geodetic-quality antennas in existing GPS sites. I developed a forward/inverse approach for modeling GPS multipath present in SNR observations. The model here is unique in that it capitalizes on known information about the antenna response and the physics of surface scattering to aid in retrieving the unknown snow conditions in the antenna surroundings. This physically-based forward model is utilized to simulate the surface and antenna coupling. The statistically-rigorous inverse model is considered in two parts. Part I (theory) explains how the snow characteristics are parameterized; the observation/parameter sensitivity; inversion errors; and parameter uncertainty, which serves to indicate the sensing footprint where the reflection originates. Part II (practice) applies the multipath model to SNR observations and validates the resulting GPS retrievals against independent in situ measurements during a 1-3 year period in three different environments---grasslands, alpine, and forested. The assessment yields a correlation of 0.98 and an RMS error

  19. Multipath effects in a Global Positioning Satellite system receiver

    NASA Technical Reports Server (NTRS)

    Mcdonald, Malcolm W.

    1992-01-01

    This study, as a part of a large continuing investigation being conducted by the Communications Systems Branch of the Information and Electronic Systems Laboratory at the Marshall Space Flight Center, was undertaken to explore the multipath response characteristics of a particular Global Positioning Satellite (GPS) receiver which was available in the laboratory at the beginning and throughout the entirety of the study, and to develop a suitable regime of experimental procedure which can be applied to other state-of-the-art GPS receivers in the larger investigation.

  20. Multi-path transportation futures study: Results from Phase 1

    SciTech Connect

    Patterson, Phil; Singh, Margaret; Plotkin, Steve; Moore, Jim

    2007-03-09

    This PowerPoint briefing provides documentation and details for Phase 1 of the Multi-Path Transportation Futures Study, which compares alternative ways to make significant reductions in oil use and carbon emissions from U.S. light vehicles to 2050. Phase I, completed in 2006, was a scoping study, aimed at identifying key analytic issues and constructing a study design. The Phase 1 analysis included an evaluation of several pathways and scenarios; however, these analyses were limited in number and scope and were designed to be preliminary.

  1. Joint deconvolution and classification with applications to passive acoustic underwater multipath.

    PubMed

    Anderson, Hyrum S; Gupta, Maya R

    2008-11-01

    This paper addresses the problem of classifying signals that have been corrupted by noise and unknown linear time-invariant (LTI) filtering such as multipath, given labeled uncorrupted training signals. A maximum a posteriori approach to the deconvolution and classification is considered, which produces estimates of the desired signal, the unknown channel, and the class label. For cases in which only a class label is needed, the classification accuracy can be improved by not committing to an estimate of the channel or signal. A variant of the quadratic discriminant analysis (QDA) classifier is proposed that probabilistically accounts for the unknown LTI filtering, and which avoids deconvolution. The proposed QDA classifier can work either directly on the signal or on features whose transformation by LTI filtering can be analyzed; as an example a classifier for subband-power features is derived. Results on simulated data and real Bowhead whale vocalizations show that jointly considering deconvolution with classification can dramatically improve classification performance over traditional methods over a range of signal-to-noise ratios. PMID:19045785

  2. Multipath Estimation in Urban Environments from Joint GNSS Receivers and LiDAR Sensors

    PubMed Central

    Ali, Khurram; Chen, Xin; Dovis, Fabio; De Castro, David; Fernández, Antonio J.

    2012-01-01

    In this paper, multipath error on Global Navigation Satellite System (GNSS) signals in urban environments is characterized with the help of Light Detection and Ranging (LiDAR) measurements. For this purpose, LiDAR equipment and Global Positioning System (GPS) receiver implementing a multipath estimating architecture were used to collect data in an urban environment. This paper demonstrates how GPS and LiDAR measurements can be jointly used to model the environment and obtain robust receivers. Multipath amplitude and delay are estimated by means of LiDAR feature extraction and multipath mitigation architecture. The results show the feasibility of integrating the information provided by LiDAR sensors and GNSS receivers for multipath mitigation. PMID:23202177

  3. Multipath estimation in urban environments from joint GNSS receivers and LiDAR sensors.

    PubMed

    Ali, Khurram; Chen, Xin; Dovis, Fabio; De Castro, David; Fernández, Antonio J

    2012-01-01

    In this paper, multipath error on Global Navigation Satellite System (GNSS) signals in urban environments is characterized with the help of Light Detection and Ranging (LiDAR) measurements. For this purpose, LiDAR equipment and Global Positioning System (GPS) receiver implementing a multipath estimating architecture were used to collect data in an urban environment. This paper demonstrates how GPS and LiDAR measurements can be jointly used to model the environment and obtain robust receivers. Multipath amplitude and delay are estimated by means of LiDAR feature extraction and multipath mitigation architecture. The results show the feasibility of integrating the information provided by LiDAR sensors and GNSS receivers for multipath mitigation. PMID:23202177

  4. Optical scintillations and fade statistics for a satellite-communication system

    NASA Astrophysics Data System (ADS)

    Andrews, L. C.; Phillips, R. L.

    1995-11-01

    Estimates of the scintillation index, fractional fade time, expected number of fades, and mean duration of fade time associated with a propagating Gaussian-beam wave are developed for uplink and downlink laser satellite-communication channels. Estimates for the spot size of the beam at the satellite or the ground or airborne receiver are also provided. Weak-fluctuation theory based on the log-normal model is applicable for intensity fluctuations near the optical axis of the beam provided that the zenith angle is not too large, generally not exceeding 60 degrees. However, there is an increase in scintillations that occurs with increasing pointing error at any zenith angle, particularly for uplink channels. Large off-axis scintillations are of particular significance because they imply that small pointing errors can cause serious degradation in the communication-channel reliability. Off-axis scintillations increase more rapidly for larger-diameter beams and, in some cases, can lead to a radial saturation effect for pointing errors less than 1 =B5rad off the optical beam axis.

  5. Optical scintillations and fade statistics for a satellite-communication system.

    PubMed

    Andrews, L C; Phillips, R L; Yu, P T

    1995-11-20

    Estimates of the scintillation index, fractional fade time, expected number of fades, and mean duration of fade time associated with a propagating Gaussian-beam wave are developed for uplink and downlink laser satellite-communication channels. Estimates for the spot size of the beam at the satellite or the ground or airborne receiver are also provided. Weak-fluctuation theory based on the log-normal model is applicable for intensity fluctuations near the optical axis of the beam provided that the zenith angle is not too large, generally not exceeding 60°. However, there is an increase in scintillations that occurs with increasing pointing error at any zenith angle, particularly for uplink channels. Large off-axis scintillations are of particular significance because they imply that small pointing errors can cause serious degradation in the communication-channel reliability. Off-axis scintillations increase more rapidly for larger-diameter beams and, in some cases, can lead to a radial saturation effect for pointing errors less than 1 µrad off the optical beam axis. PMID:21060656

  6. Monocular depth effects on perceptual fading.

    PubMed

    Hsu, Li-Chuan; Kramer, Peter; Yeh, Su-Ling

    2010-08-01

    After prolonged viewing, a static target among moving non-targets is perceived to repeatedly disappear and reappear. An uncrossed stereoscopic disparity of the target facilitates this Motion-Induced Blindness (MIB). Here we test whether monocular depth cues can affect MIB too, and whether they can also affect perceptual fading in static displays. Experiment 1 reveals an effect of interposition: more MIB when the target appears partially covered by, than when it appears to cover, its surroundings. Experiment 2 shows that the effect is indeed due to interposition and not to the target's contours. Experiment 3 induces depth with the watercolor illusion and replicates Experiment 1. Experiments 4 and 5 replicate Experiments 1 and 3 without the use of motion. Since almost any stimulus contains a monocular depth cue, we conclude that perceived depth affects perceptual fading in almost any stimulus, whether dynamic or static. PMID:20580732

  7. Analysis of the Bias on the Beidou GEO Multipath Combinations.

    PubMed

    Ning, Yafei; Yuan, Yunbin; Chai, Yanju; Huang, Yong

    2016-01-01

    The Beidou navigation satellite system is a very important sensor for positioning in the Asia-Pacific region. The Beidou inclined geosynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites have been analysed in some studies previously conducted by other researchers; this paper seeks to gain more insight regarding the geostationary earth orbit (GEO) satellites. Employing correlation analysis, Fourier transformation and wavelet decomposition, we validate whether there is a systematic bias in their multipath combinations. These biases can be observed clearly in satellites C01, C02 and C04 and have a great correlation with time series instead of elevation, being significantly different from those of the Beidou IGSO and MEO satellites. We propose a correction model to mitigate this bias based on its daily periodicity characteristic. After the model has been applied, the performance of the positioning estimations of the eight stations distributed in the Asia-Pacific region is evaluated and compared. The results show that residuals of multipath series behaves random noise; for the single point positioning (SPP) and precise point positioning (PPP) approaches, the positioning accuracy in the upward direction can be improved by 8 cm and 6 mm, respectively, and by 2 cm and 4 mm, respectively, for the horizontal component. PMID:27509503

  8. Surface wave multipath signals in near-field microwave imaging.

    PubMed

    Meaney, Paul M; Shubitidze, Fridon; Fanning, Margaret W; Kmiec, Maciej; Epstein, Neil R; Paulsen, Keith D

    2012-01-01

    Microwave imaging techniques are prone to signal corruption from unwanted multipath signals. Near-field systems are especially vulnerable because signals can scatter and reflect from structural objects within or on the boundary of the imaging zone. These issues are further exacerbated when surface waves are generated with the potential of propagating along the transmitting and receiving antenna feed lines and other low-loss paths. In this paper, we analyze the contributions of multi-path signals arising from surface wave effects. Specifically, experiments were conducted with a near-field microwave imaging array positioned at variable heights from the floor of a coupling fluid tank. Antenna arrays with different feed line lengths in the fluid were also evaluated. The results show that surface waves corrupt the received signals over the longest transmission distances across the measurement array. However, the surface wave effects can be eliminated provided the feed line lengths are sufficiently long independently of the distance of the transmitting/receiving antenna tips from the imaging tank floor. Theoretical predictions confirm the experimental observations. PMID:22566992

  9. Multipath pulse shapes in shallow water: theory and simulation.

    PubMed

    Harrison, Chris H; Nielsen, Peter L

    2007-03-01

    In shallow water propagation the steeper ray angles are weakened most by boundary losses. Regarding the sound intensity as a continuous function of angle it can be converted into a function of travel time to reveal the multipath pulse shape received from a remote source (one-way path) or a target (two-way path). The closed-form isovelocity pulse shape is extended here to the case of upward or downward refraction. The envelope of the earliest arrivals is roughly trapezoidal with a delayed peak corresponding to the slowest, near horizontal refracted paths. The tail of the pulse falls off exponentially (linearly in decibels) with a decay constant that depends only on the bottom reflection properties and water depth, irrespective of travel time, a useful property for geoacoustic inversion and for sonar design. The nontrivial analytical problem of inverting explicit functions of angle into explicit functions of time is solved by numerical interpolation. Thus exact solutions can be calculated numerically. Explicit closed-form approximations are given for one-way paths. Two-way paths are calculated by numerical convolution. Using the wave model C-SNAP in several broadband cases of interest it is demonstrated that these solutions correspond roughly to a depth average of multipath arrivals. PMID:17407872

  10. Surface Wave Multipath Signals in Near-Field Microwave Imaging

    PubMed Central

    Meaney, Paul M.; Shubitidze, Fridon; Fanning, Margaret W.; Kmiec, Maciej; Epstein, Neil R.; Paulsen, Keith D.

    2012-01-01

    Microwave imaging techniques are prone to signal corruption from unwanted multipath signals. Near-field systems are especially vulnerable because signals can scatter and reflect from structural objects within or on the boundary of the imaging zone. These issues are further exacerbated when surface waves are generated with the potential of propagating along the transmitting and receiving antenna feed lines and other low-loss paths. In this paper, we analyze the contributions of multi-path signals arising from surface wave effects. Specifically, experiments were conducted with a near-field microwave imaging array positioned at variable heights from the floor of a coupling fluid tank. Antenna arrays with different feed line lengths in the fluid were also evaluated. The results show that surface waves corrupt the received signals over the longest transmission distances across the measurement array. However, the surface wave effects can be eliminated provided the feed line lengths are sufficiently long independently of the distance of the transmitting/receiving antenna tips from the imaging tank floor. Theoretical predictions confirm the experimental observations. PMID:22566992

  11. Capacity fade of Sony 18650 cells cycled at elevated temperatures. Part II. Capacity fade analysis

    NASA Astrophysics Data System (ADS)

    Ramadass, P.; Haran, Bala; White, Ralph; Popov, Branko N.

    A complete capacity fade analysis was carried out for Sony 18650 cells cycled at elevated temperatures. The major causes of capacity loss were identified and a complete capacity fade balance was carried out to account for the total capacity loss of Li-ion battery as a function of cycle number and temperature. The three most significant parameters that cause capacity loss were loss of secondary active material (LiCoO 2/carbon) and primary active material (Li +) and the rate capability losses. Intrinsic capacity measurements for both positive and negative electrode has been used to estimate the capacity loss due to secondary active material and a charge balance gives the capacity lost due to primary active material (Li +). Capacity fade has been quantified with secondary active material loss dominating the other losses.

  12. Nonlinear Algorithms for Channel Equalization and Map Symbol Detection.

    NASA Astrophysics Data System (ADS)

    Giridhar, K.

    decision-feedback mechanism is introduced to truncate the channel memory "seen" by the MAPSD section. Also, simpler gradient-based updates for the channel estimates, and a metric pruning technique are used to further reduce the MAPSD complexity. Spatial diversity MAP combiners are developed to enhance the error rate performance and combat channel fading. As a first application of the MAPSD algorithm, dual-mode recovery techniques for TDMA (time-division multiple access) mobile radio signals are presented. Combined estimation of the symbol timing and the multipath parameters is proposed, using an auxiliary extended Kalman filter during the training cycle, and then tracking of the fading parameters is performed during the data cycle using the blind MAPSD algorithm. For the second application, a single-input receiver is employed to jointly recover cochannel narrowband signals. Assuming known channels, this two-stage joint MAPSD (JMAPSD) algorithm is compared to the optimal joint maximum likelihood sequence estimator, and to the joint decision-feedback detector. A blind MAPSD algorithm for the joint recovery of cochannel signals is also presented. Computer simulation results are provided to quantify the performance of the various algorithms proposed in this dissertation.

  13. Fading to increase heterosexual responsiveness in homosexuals1

    PubMed Central

    Barlow, David H.; Agras, W. Stewart

    1973-01-01

    Heterosexual responsiveness, measured by penile responses and reports of behavior, was strengthened in three homosexuals through a fading procedure. Using two slide projectors, colored slides of nude females were superimposed on colored slides of nude males. As the sexual response was emitted, the nude male was faded out and the nude female faded in. Heterosexual arousal decreased when the fading procedure was reversed or stopped and increased once again when fading was resumed. Homosexual arousal remained high during this experiment but had decreased in two subjects at follow-up. The results suggest that fading was responsible for altering stimulus control of sexual arousal and that aversive techniques may not be necessary in the treatment of sexual deviation. ImagesFig. 1 PMID:16795417

  14. Capacity fade in nickel cadmium and nickel hydrogen cells

    NASA Technical Reports Server (NTRS)

    Edgar, Tim; Hayden, Jeff; Pickett, David F.; Abrams-Blakemore, Bruce; Liptak, ED

    1993-01-01

    Research and operational experience with capacity fade in nickel cadmium and nickel hydrogen cells are summarized in outline form. The theoretical causes of capacity fade are reviewed and the role of cell storage, positive electrodes, and cobalt additives are addressed. Three examples of observed capacity fade are discussed: INTELSAT 5, INTELSAT 6, and an Explorer platform. Finally, prevention and recovery methods are addressed and the current status of Eagle Picher/Hughes research is discussed.

  15. Fuzzy neighborhood filters for UWB range radios in multipath environments

    NASA Astrophysics Data System (ADS)

    Cheok, Ka C.; Hudas, Gregory R.; Overholt, James L.

    2008-04-01

    An ultra-wideband (UWB) inter-radio ranging technology with measurement resolution of +/-0.5 ft and range up to 0.5 kilometer under certain FCC regulation was recently introduced. However, measurement data are extremely erroneous due to stochastic variables in the device and multipath radio wave reflections. This paper presents fuzzy logic tuned double tracking filters as a solution to remove misinformation in the data. The 1st tracker locates the overall center of the data in the presence of the large sporadic noise. A fuzzy logic admits only neighborhood data to a 2nd tracker which takes care of smaller deviation noise. The fuzzy neighborhood filter approach has been successfully applied to clean up the UWB radio ranges. Experimental results are shown.

  16. Multi-Path Transportation Futures Study. Results from Phase 1

    SciTech Connect

    Phil Patterson, Phil; Singh, Margaret; Plotkin, Steve; Moore, Jim

    2007-03-09

    Presentation reporting Phase 1 results, 3/9/2007. Projecting the future role of advanced drivetrains and fuels in the light vehicle market is inherently difficult, given the uncertainty (and likely volatility) of future oil prices, inadequate understanding of likely consumer response to new technologies, the relative infancy of several important new technologies with inevitable future changes in their performance and costs, and the importance — and uncertainty — of future government marketplace interventions (e.g., new regulatory standards or vehicle purchase incentives). The Multi-Path Transportation Futures (MP) Study has attempted to improve our understanding of this future role by examining several scenarios of vehicle costs, fuel prices, government subsidies, and other key factors. These are projections, not forecasts, in that they try to answer a series of “what if” questions without assigning probabilities to most of the basic assumptions.

  17. Observable parameters from multipath bottom reverberation in shallow water.

    PubMed

    Ainslie, Michael A

    2007-06-01

    Multipath ocean reverberation originating from the seabed in shallow isovelocity water, with particular attention to its information content in the cylindrical spreading and mode stripping regions, is considered. The reverberation is evaluated using Weston's flux integral method, both analytically with various simplifying approximations and numerically with all but one of these approximations rescinded. The functional form of the analytical solution is used to infer which physical seabed parameters can be extracted from measurements of reverberation. Coarse- and fine-grained sediments (sand and clay) are both considered. The main purpose of the numerical solutions is to check the accuracy of the analytical approximations; they also serve as a convenient surrogate for measured reverberation. PMID:17552688

  18. Improving bit error rate through multipath differential demodulation

    NASA Astrophysics Data System (ADS)

    Lize, Yannick Keith; Christen, Louis; Nuccio, Scott; Willner, Alan E.; Kashyap, Raman

    2007-02-01

    Differential phase shift keyed transmission (DPSK) is currently under serious consideration as a deployable datamodulation format for high-capacity optical communication systems due mainly to its 3 dB OSNR advantage over intensity modulation. However DPSK OSNR requirements are still 3 dB higher than its coherent counter part, PSK. Some strategies have been proposed to reduce this penalty through multichip soft detection but the improvement is limited to 0.3dB at BER 10-3. Better performance is expected from other soft-detection schemes using feedback control but the implementation is not straight forward. We present here an optical multipath error correction technique for differentially encoded modulation formats such as differential-phase-shift-keying (DPSK) and differential polarization shift keying (DPolSK) for fiber-based and free-space communication. This multipath error correction method combines optical and electronic logic gates. The scheme can easily be implemented using commercially available interferometers and high speed logic gates and does not require any data overhead therefore does not affect the effective bandwidth of the transmitted data. It is not merely compatible but also complementary to error correction codes commonly used in optical transmission systems such as forward-error-correction (FEC). The technique consists of separating the demodulation at the receiver in multiple paths. Each path consists of a Mach-Zehnder interferometer with an integer bit delay and a different delay is used in each path. Some basic logical operations follow and the three paths are compared using a simple majority vote algorithm. Receiver sensitivity is improved by 0.35 dB in simulations and 1.5 dB experimentally at BER of 10-3.

  19. Design of an anti-Rician-fading modem for mobile satellite communication systems

    NASA Technical Reports Server (NTRS)

    Kojima, Toshiharu; Ishizu, Fumio; Miyake, Makoto; Murakami, Keishi; Fujino, Tadashi

    1995-01-01

    To design a demodulator applicable to mobile satellite communication systems using differential phase shift keying modulation, we have developed key technologies including an anti-Rician-fading demodulation scheme, an initial acquisition scheme, automatic gain control (AGC), automatic frequency control (AFC), and bit timing recovery (BTR). Using these technologies, we have developed one-chip digital signal processor (DSP) modem for mobile terminal, which is compact, of light weight, and of low power consumption. Results of performance test show that the developed DSP modem achieves good performance in terms of bit error ratio in mobile satellite communication environment, i.e., Rician fading channel. It is also shown that the initial acquisition scheme acquires received signal rapidly even if the carrier-to-noise power ratio (CNR) of the received signal is considerably low.

  20. Why does consciousness fade in early sleep?

    PubMed

    Tononi, Giulio; Massimini, Marcello

    2008-01-01

    Consciousness fades during deep nonrapid eye movement (NREM) sleep early in the night, yet cortical neurons remain active, keep receiving sensory inputs, and can display patterns of synchronous activity. Why then does consciousness fade? According to the integrated information theory of consciousness, what is critical for consciousness is not firing rates, sensory input, or synchronization per se, but rather the ability of a system to integrate information. If consciousness is the capacity to integrate information, then the brain should be able to generate consciousness to the extent that it has a large repertoire of available states (information), yet it cannot be decomposed into a collection of causally independent subsystems (integration). A key prediction stemming from this hypothesis is that such ability should be greatly reduced in deep NREM sleep; the dreamless brain either breaks down into causally independent modules, shrinks its repertoire of possible responses, or both. In this article, we report the results of a series of experiments in which we employed a combination of transcranial magnetic stimulation and high-density electroencephalography (TMS/hd-EEG) to directly test this prediction in humans. Altogether, TMS/hdEEG measurements suggest that the sleeping brain, despite being active and reactive, loses its ability of entering states that are both integrated and differentiated; it either breaks down in causally independent modules, responding to TMS with a short and local activation, or it bursts into an explosive and aspecific response, producing a full-fledged slow wave. PMID:18591492

  1. T1 VSAT Fade Compensation Statistical Results

    NASA Technical Reports Server (NTRS)

    Johnson, Sandra K.; Acosta, Roberto; Ugweje, Oke

    2000-01-01

    New satellite communication systems are steadily seeking to use higher frequency bands to accommodate the requirements for additional capacity. At these higher frequencies, propagation impairments that did not significantly affect the signal at lower frequencies begin to have considerable impact. In Ka-band. the next logical commercial frequency band to be used for satellite communication, attenuation of the signal due to rain is a primary concern. An experimental satellite built by NASA, the Advanced Communication Technology Satellite (ACTS). launched in September 1993, is the first U.S. communication satellite operating in the Ka-band. In addition to higher carrier frequencies, a number of other new technologies, including on-board baseband processing. multiple beam antennas, and rain fade detection and compensation techniques, were designed into the ACTS. Verification experiments have been conducted since the launch to characterize the new technologies. The focus of this paper is to characterize the method used by the ACTS TI Very Small Aperture Terminal (TI VSAT) ground stations in detecting the presence of fade in the communication signal and to adaptively compensate for it by the addition of burst rate reduction and forward error correction. Measured data obtained from the ACTS program was used to validate the compensation technique. A software process was developed and demonstrated to statistically characterize the increased availability achieved by the compensation techniques in terms of the bit error rate time enhancement factor. Several improvements to the ACTS technique are discussed and possible implementations for future Ka band system are offered.

  2. Definition of multipath/RFI experiments for orbital testing with a small applications technology satellite

    NASA Technical Reports Server (NTRS)

    Birch, J. N.; French, R. H.

    1972-01-01

    An investigation was made to define experiments for collection of RFI and multipath data for application to a synchronous relay satellite/low orbiting satellite configuration. A survey of analytical models of the multipath signal was conducted. Data has been gathered concerning the existing RFI and other noise sources in various bands at VHF and UHF. Additionally, designs are presented for equipment to combat the effects of RFI and multipath: an adaptive delta mod voice system, a forward error control coder/decoder, a PN transmission system, and a wideband FM system. The performance of these systems was then evaluated. Techniques are discussed for measuring multipath and RFI. Finally, recommended data collection experiments are presented. An extensive tabulation is included of theoretical predictions of the amount of signal reflected from a rough, spherical earth.

  3. Radar multipath study for rain-on-radome experiments at the Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Staton, Leo D.

    1990-01-01

    An analytical study to determine the feasibility of a rain-on-radome experiment at the Aircraft Landing Dynamics Facility (ALDF) at the Langley Research Center is described. The experiment would measure the effects of heavy rain on the transmission of X-band weather radar signals, looking in particular for sources of anomalous attenuation. Feasibility is determined with regard to multipath signals arising from the major structural components of the ALDF. A computer program simulates the transmit and receive antennas, direct-path and multipath signals, and expected attenuation by rain. In the simulation, antenna height, signal polarization, and rainfall rate are variable parameters. The study shows that the rain-on-radome experiment is feasible with regard to multipath signals. The total received signal, taking into account multipath effects, could be measured by commercially available equipment. The study also shows that horizontally polarized signals would produce better experimental results than vertically polarized signals.

  4. Effects of Nicotine Fading and Relapse Prevention on Smoking Cessation.

    ERIC Educational Resources Information Center

    Brown, Richard A.; And Others

    1984-01-01

    Conducted a pilot study which combined nicotine-fading and relapse prevention with smokers (N=30) and compared this program to conditions where subjects (N=46) received nicotine-fading or relapse prevention only. Results showed no difference among groups in abstinence or rate at any follow-up point. (LLL)

  5. Autonomous detection of ISO fade point with color laser printers

    NASA Astrophysics Data System (ADS)

    Yan, Ni; Maggard, Eric; Fothergill, Roberta; Jessome, Renee J.; Allebach, Jan P.

    2015-01-01

    Image quality assessment is a very important field in image processing. Human observation is slow and subjective, it also requires strict environment setup for the psychological test 1. Thus developing algorithms to match desired human experiments is always in need. Many studies have focused on detecting the fading phenomenon after the materials are printed, that is to monitor the persistence of the color ink 2-4. However, fading is also a common artifact produced by printing systems when the cartridges run low. We want to develop an automatic system to monitor cartridge life and report fading defects when they appear. In this paper, we first describe a psychological experiment that studies the human perspective on printed fading pages. Then we propose an algorithm based on Color Space Projection and K-means clustering to predict the visibility of fading defects. At last, we integrate the psychological experiment result with our algorithm to give a machine learning tool that monitors cartridge life.

  6. Depression embodied: an ambiguous striving against fading.

    PubMed

    Danielsson, Louise; Rosberg, Susanne

    2015-09-01

    Although depression is associated to physical discomfort, meanings of the body in depression are rarely addressed in clinical research. Drawing on the concept of the lived body, this study explores depression as an embodied phenomenon. Using a hermeneutic phenomenological approach, the analysis of narrative-based interviews with 11 depressed adults discloses a thematic structure of an embodied process of an ambiguous striving against fading. Five subthemes elicit different dimensions of this process, interpreted as disabling or enabling: feeling estranged, feeling confined, feeling burdensome, sensing life and seeking belongingness. In relation to clinical practice, we suggest that the interdisciplinary team can focus on enhancing the enabling dimensions, for example through guided physical activities to support the patient to feel more alive, capable and connected. Moreover, we suggest that the treatment process benefits from an increased awareness of the ambiguity in the patient's struggle, acknowledging both destructive and recharging elements of the withdrawing, and the perceived conflict in-between. PMID:25251165

  7. The multipath and SNR Quality in civil code L2

    NASA Astrophysics Data System (ADS)

    Polezel, W. G.; Souza, E. M.; Monico, J. F.

    2007-12-01

    The new generation of GPS satellites, with the addition of the new L2C civil code, may provide to the users better positioning capabilities. The new code in the L2 may increase the signal robustness, improve resistance to interference, reduce tracking noise and consequently, improve accuracy and provide better positioning inside buildings and in wooded areas. The second civil frequency code will eliminate the need of using fragile semi- codeless tracking techniques currently used in connection with L2. The L2C has a different structure that allows civil and military share the same code. L2C owns two codes of different length: moderate code (CM) and long code (CL). The CM was chosen to have 10.230 chips repeated to every 20 millisecond. The CL was chosen to have 767250 chips with period of 1.5 second. The main reasons for these choices were due to excellent correlation properties. Furthermore, L2C enhances performance by having no data modulation on CL code, which improves, among others, the threshold tracking performance. Comparing the L2C acquisition with the C/A, the CM code is ten times longer than the C/A and the two components have half the total power. This is an important feature for many low-power applications. Although this signal has several advantages, some investigations about its performance are necessary, mainly about the provided accuracy under some effects, for example, multipath. Thus, this paper aims to analyze the L2C signal, as well as its quality using some parameters, such as Signal to Noise Ratio (SNR) and multipath level (MP). The experiment was realized at Sao Paulo State University UNESP in Presidente Prudente, Brazil. The data were collected by two receivers of different brands, both able to collect the L2C signal, and connected to the same antenna, thought the use of a splitter. The results showed that the MP and SNR values were better for the modernized satellites. Furthermore, the SNR values of the two receivers were similar while the

  8. A laboratory system for the investigation of rain fade compensation techniques for Ka-band satellites

    NASA Technical Reports Server (NTRS)

    Svoboda, James S.; Kachmar, Brian A.

    1993-01-01

    The design and performance of a rain fade simulation/counteraction system on a laboratory simulated 30/20 GHz, time division multiple access (TDMA) satellite communications testbed is evaluated. Severe rain attenuation of electromagnetic radiation at 30/20 GHz occurs due to the carrier wavelength approaching the water droplet size. Rain in the downlink path lowers the signal power present at the receiver, resulting in a higher number of bit errors induced in the digital ground terminal. The laboratory simulation performed at NASA Lewis Research Center uses a programmable PIN diode attenuator to simulate 20 GHz satellite downlink geographic rain fade profiles. A computer based network control system monitors the downlink power and informs the network of any power threshold violations, which then prompts the network to issue commands that temporarily increase the gain of the satellite based traveling wave tube (TWT) amplifier. After the rain subsides, the network returns the TWT to the normal energy conserving power mode. Bit error rate (BER) data taken at the receiving ground terminal serves as a measure of the severity of rain degradation, and also evaluates the extent to which the network can improve the faded channel.

  9. A Secure Cluster-Based Multipath Routing Protocol for WMSNs

    PubMed Central

    Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.

    2011-01-01

    The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption. PMID:22163854

  10. A multipath video delivery scheme over diffserv wireless LANs

    NASA Astrophysics Data System (ADS)

    Man, Hong; Li, Yang

    2004-01-01

    This paper presents a joint source coding and networking scheme for video delivery over ad hoc wireless local area networks. The objective is to improve the end-to-end video quality with the constraint of the physical network. The proposed video transport scheme effectively integrates several networking components including load-aware multipath routing, class based queuing (CBQ), and scalable (or layered) video source coding techniques. A typical progressive video coder, 3D-SPIHT, is used to generate multi-layer source data streams. The coded bitstreams are then segmented into multiple sub-streams, each with a different level of importance towards the final video reconstruction. The underlay wireless ad hoc network is designed to support service differentiation. A contention sensitive load aware routing (CSLAR) protocol is proposed. The approach is to discover multiple routes between the source and the destination, and label each route with a load value which indicates its quality of service (QoS) characteristics. The video sub-streams will be distributed among these paths according to their QoS priority. CBQ is also applied to all intermediate nodes, which gives preference to important sub-streams. Through this approach, the scalable source coding techniques are incorporated with differentiated service (DiffServ) networking techniques so that the overall system performance is effectively improved. Simulations have been conducted on the network simulator (ns-2). Both network layer performance and application layer performance are evaluated. Significant improvements over traditional ad hoc wireless network transport schemes have been observed.

  11. A secure cluster-based multipath routing protocol for WMSNs.

    PubMed

    Almalkawi, Islam T; Zapata, Manel Guerrero; Al-Karaki, Jamal N

    2011-01-01

    The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption. PMID:22163854

  12. Multipathing Via Three Parameter Common Image Gathers (CIGs) From Reverse Time Migration

    NASA Astrophysics Data System (ADS)

    Ostadhassan, M.; Zhang, X.

    2015-12-01

    A noteworthy problem for seismic exploration is effects of multipathing (both wanted or unwanted) caused by subsurface complex structures. We show that reverse time migration (RTM) combined with a unified, systematic three parameter framework that flexibly handles multipathing can be accomplished by adding one more dimension (image time) to the angle domain common image gather (ADCIG) data. RTM is widely used to generate prestack depth migration images. When using the cross-correlation image condition in 2D prestack migration in RTM, the usual practice is to sum over all the migration time steps. Thus all possible wave types and paths automatically contribute to the resulting image, including destructive wave interferences, phase shifts, and other distortions. One reason is that multipath (prismatic wave) contributions are not properly sorted and mapped in the ADCIGs. Also, multipath arrivals usually have different instantaneous attributes (amplitude, phase and frequency), and if not separated, the amplitudes and phases in the final prestack image will not stack coherently across sources. A prismatic path satisfies an image time for it's unique path; Cavalca and Lailly (2005) show that RTM images with multipaths can provide more complete target information in complex geology, as multipaths usually have different incident angles and amplitudes compared to primary reflections. If the image time slices within a cross-correlation common-source migration are saved for each image time, this three-parameter (incident angle, depth, image time) volume can be post-processed to generate separate, or composite, images of any desired subset of the migrated data. Images can by displayed for primary contributions, any combination of primary and multipath contributions (with or without artifacts), or various projections, including the conventional ADCIG (angle vs depth) plane. Examples show that signal from the true structure can be separated from artifacts caused by multiple

  13. Photonic instantaneous frequency measurement with digital output based on dispersion induced power fading functions

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Yang, Bo; Chi, Hao; Jin, Xiaofeng; Zheng, Shilie; Zhang, Xianmin

    2013-04-01

    A novel photonic approach to realize the instantaneous microwave frequency measurement with digital output is proposed and demonstrated experimentally. Based on the power fading function of a double-sideband modulated microwave signal transmitting in a dispersive fiber channel, the microwave frequency to digital code mapping can be realized in a multi-channel system where each channel is configured with a predetermined amount of dispersion. The coding process involved here is similar to that of the photonic analog-to-digital conversion. The principle of the system is discussed in detail. An experiment is carried out, in which the frequency identification with 4-bit quantization levels in 17.5 GHz measurement range is demonstrated. The measurement range and the resolution are discussed theoretically and numerically.

  14. Performance of Multiple Pulse Multiple Delay Modulated UWB Signals in a Multiple Access Indoor Wireless Channel

    SciTech Connect

    Nekoogar, F

    2003-06-12

    In this paper, the performance of a two user UWB multiple access (UWB-MA) system based on multiple-pulse multiple-delay (MPMD) modulation scheme in an indoor wireless channel is evaluated by computer simulations. The indoor multipath propagation channel model used in this study is based on the modified statistical Saleh-Valenzuela model proposed by Foerester and Li from Intel. The simulation results indicate that the multipath performance of MPMD modulated signals in a multiple access system outperforms the nonmultipath case as the number of autocorrelation function (ACF) sampling points increases for each user. This is an unusual but important result, since MPMD receiver exploits multipath phenomenon in indoor wireless channels to increase the BER performance, hence the transmission rate in a UWB-MA system.

  15. Fade detector for the FODA-TDMA access scheme

    NASA Astrophysics Data System (ADS)

    Celandroni, Nedo; Ferro, Erina; Marzoli, Antonio

    1989-05-01

    The First in first out Ordered Demand Assignment-Time Division Multiple Access (FODA-TDMA) satellite access scheme designed for simultaneous transmissions of real time data, like packetized voice and slow-scan images (stream traffic) and data coming from standard EDP applications, such as bulk data tansfer, interactive computer access, mailing, data base enquiry and updating (datagram traffic) is described. When deep fades are experienced due to rain attenuation, the system is able to counter the fade. Techniques to detect the fade are presented.

  16. Multipath impact on ground-based global positioning system range measurements: Aspects of measurement, modeling, and mitigation

    NASA Astrophysics Data System (ADS)

    Bishop, G. J.; Holland, E. A.

    1994-07-01

    Multiple mechanisms propagation paths (multipath) can be the most important error source in ground-based Global Positioning System (GPS) measurement of range to the satellites. This multipath error, arising from a combination of the direct path and reflections from objects relatively close to the receiving antenna, can at times exceed the ionospheric delay error, which the two-frequency (1228 and 1575 MHz) GPS signal format is designed to measure and correct. GPS multipath can seriously degrade Differential GPS (DGPS) navigation, geodetic measurements, ionospheric monitoring, and other GPS applications, yet the source of the problem may not be evident without the use of specialized tests. Several techniques have been proposed to reduce the effects of GPS multipath; these include: improved receiver technology, specialized antenna designs, and various modeling or filtering approaches. This paper illustrates the nature of the two-frequency GPS multipath problem with measurement data from typical ground-based installations, exhibiting variation in multipath conditions, ranging from low to quite high for the varying geometries of the available satellite tracks. Leading mitigation techniques are reviewed, with emphasis on multipath modeling. A new simple modeling approach currently being studied by Phillips Laboratory is discussed. This technique takes advantage of the daily repetition of the GPS observation geometry from a ground station to create a 'multipath template' specific to each satellite pass, and reduce multipath effects on successive days. Data is presented showing significant improvement in a severe multipath environment and contrasting the effectiveness of this approach with all-sky modeling techniques. Mitigation techniques for GPS multipath show potential to enable GPS ground-based range and ionospheric measurement to greatly reduce errors at low elevation angles, leading to improved accuracy and wider coverage area capability.

  17. BDS relative static positioning over long baseline improved by GEO multipath mitigation

    NASA Astrophysics Data System (ADS)

    Wang, Min; Chai, Hongzhou; Liu, Jun; Zeng, Anmin

    2016-02-01

    Due to the satellite and constellation deployment design, the variation pattern of multipath effect in BeiDou Navigation Satellite System (BDS) code observation is different from GPS. The amplitude of systematic multipath variation (SMV) exists in multipath combination series may exceed 0.5 m for some geostationary earth orbit (GEO) satellites, which is larger than the normal noise level of GPS code observation. After characterization of the variation pattern of BDS multipath series for BDS GEO satellites, we propose to improve the performance of relative positioning over long baseline by mitigating the SMV effect of GEO satellite. The proposed method uses the SMV extracted from multipath (MP) combination series with adaptive wavelet transform as correction for current day observation in post-processing use or as following day correction in real-time use. In addition, the Double Station Observation Processing (DSOP) method that directly uses undifferenced observation is applied for relative static positioning. Experiment results show improvement in convergence speed for both BDS only and BDS/GPS combined solution.

  18. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield.

    PubMed

    Yang, Haiyan; Yang, Xuhai; Sun, Baoqi; Su, Hang

    2016-01-01

    Code multipath is an unmanaged error source in precise global navigation satellite system (GNSS) observation processing that limits GNSS positioning accuracy. A new technique for mitigating multipath by installing a wave-absorbing shield is presented in this paper. The wave-absorbing shield was designed according to a GNSS requirement of received signals and collected measurements to achieve good performance. The wave-absorbing shield was installed at the KUN1 and SHA1 sites of the international GNSS Monitoring and Assessment System (iGMAS). Code and carrier phase measurements of three constellations were collected on the dates of the respective installations plus and minus one week. Experiments were performed in which the multipath of the measurements obtained at different elevations was mitigated to different extents after applying the wave-absorbing shield. The results of an analysis and comparison show that the multipath was mitigated by approximately 17%-36% on all available frequencies of BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), and Global Navigation Satellite System (GLONASS) satellites. The three-dimensional accuracies of BDS, GPS, and GLONASS single-point positioning (SPP) were, respectively, improved by 1.07, 0.63 and 0.49 m for the KUN1 site, and by 0.72, 0.79 and 0.73 m for the SHA1 site. Results indicate that the multipath of the original observations was mitigated by using the wave-absorbing shield. PMID:27556466

  19. Radar prediction of absolute rain fade distributions for earth-satellite paths and general methods for extrapolation of fade statistics to other locations

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1982-01-01

    The first absolute rain fade distribution method described establishes absolute fade statistics at a given site by means of a sampled radar data base. The second method extrapolates absolute fade statistics from one location to another, given simultaneously measured fade and rain rate statistics at the former. Both methods employ similar conditional fade statistic concepts and long term rain rate distributions. Probability deviations in the 2-19% range, with an 11% average, were obtained upon comparison of measured and predicted levels at given attenuations. The extrapolation of fade distributions to other locations at 28 GHz showed very good agreement with measured data at three sites located in the continental temperate region.

  20. Fading of Jupiter's South Equatorial Belt

    NASA Technical Reports Server (NTRS)

    Sola, Michael A.; Orton, Glenn; Baines, Kevin; Yanamandra-Fisher, Padma

    2011-01-01

    One of Jupiter's most dominant features, the South Equatorial Belt, has historically gone through a "fading" cycle. The usual dark, brownish clouds turn white, and after a period of time, the region returns to its normal color. Understanding this phenomenon, the latest occurring in 2010, will increase our knowledge of planetary atmospheres. Using the near infrared camera, NSFCAM2, at NASA's Infrared Telescope Facility in Hawaii, images were taken of Jupiter accompanied by data describing the circumstances of each observation. These images are then processed and reduced through an IDL program. By scanning the central meridian of the planet, graphs were produced plotting the average values across the central meridian, which are used to find variations in the region of interest. Calculations using Albert4, a FORTRAN program that calculates the upwelling reflected sunlight from a designated cloud model, can be used to determine the effects of a model atmosphere due to various absorption, scattering, and emission processes. Spectra that were produced show ammonia bands in the South Equatorial Belt. So far, we can deduce from this information that an upwelling of ammonia particles caused a cloud layer to cover up the region. Further investigations using Albert4 and other models will help us to constrain better the chemical make up of the cloud and its location in the atmosphere.

  1. Kinetics of the Fading of Phenolphthalein in Alkaline Solution.

    ERIC Educational Resources Information Center

    Nicholson, Lois

    1989-01-01

    Described is an experiment which illustrates pseudo-first-order kinetics in the fading of a common indicator in an alkaline solution. Included are background information, details of materials used, laboratory procedures, and sample results. (CW)

  2. NiH2 capacity fade during early cycling

    NASA Technical Reports Server (NTRS)

    Zagrodnik, Jeffrey P.

    1993-01-01

    Tests were conducted on nickel hydrogen batteries to determine the charge efficiency of the nickel electrode as a function of rate and temperature, cell discharge capacity, and capacity fade. Test procedures and results are presented in outline and graphic form.

  3. Direct and collateral effects of restraints and restraint fading.

    PubMed Central

    Fisher, W W; Piazza, C C; Bowman, L G; Hanley, G P; Adelinis, J D

    1997-01-01

    Mechanical restraints are commonly used to reduce the risks associated with severe self-injurious behavior (SIB), but may result in movement restriction and adverse side effects (e.g., bone demineralization). Restraint fading may provide a method for decreasing SIB while increasing movement and reducing these side effects. In the current investigation, rigid arm sleeves and restraint fading (gradually reducing the rigidity of the sleeves) were used with 3 clients who engaged in hand-to-head SIB. Restraints and fading reduced the hand-to-head SIB of all clients. However, for 1 client, the addition of a water mist procedure further reduced SIB to near-zero levels. For a 2nd client, another form of SIB developed that was not prevented by the rigid sleeves. For a 3rd client, a topography of SIB that was not physically prevented by the rigid sleeves was also reduced when restraints and fading were introduced. PMID:9103987

  4. Motion fading is driven by perceived, not actual angular velocity.

    PubMed

    Kohler, P J; Caplovitz, G P; Hsieh, P-J; Sun, J; Tse, P U

    2010-06-01

    After prolonged viewing of a slowly drifting or rotating pattern under strict fixation, the pattern appears to slow down and then momentarily stop. Here we examine the relationship between such 'motion fading' and perceived angular velocity. Using several different dot patterns that generate emergent virtual contours, we demonstrate that whenever there is a difference in the perceived angular velocity of two patterns of dots that are in fact rotating at the same angular velocity, there is also a difference in the time to undergo motion fading for those two patterns. Conversely, whenever two patterns show no difference in perceived angular velocity, even if in fact rotating at different angular velocities, we find no difference in the time to undergo motion fading. Thus, motion fading is driven by the perceived rather than actual angular velocity of a rotating stimulus. PMID:20371254

  5. An examination of ham colour fading using optical fibre methods

    NASA Astrophysics Data System (ADS)

    Sheridan, Cormac; O'Farrell, Marion; Lewis, Elfed; Flanagan, Colin; Kerry, John F.; Jackman, Nick

    2006-10-01

    Sliced ham products undergo significant discolouration and fading when placed in retail display cabinets. This is due to factors such as illumination of the display cabinet, packaging, i.e. low OTR (Oxygen Transmission Rate) or very low OTR packaging, product to headspace ratio and percentage of residual oxygen. This paper presents initial investigations into the development of a sensor to measure rate of colour fading in cured ham, in order to predict an optimum colour sell-by-date. An investigation has been carried out that shows that spectral reflections offer more reproducibility than CIE L*a*b* readings, which are, at present, most often used to measure meat colour. Self-Organising Maps were then used to classify the data into five colour fading stages, from very pink to grey. The results presented here show that this classifier could prove an effective system for determining the rate of colour fading in ham.

  6. An Automated Fading Procedure to Alter Sexual Responsiveness in Pedophiles

    ERIC Educational Resources Information Center

    Laws, D. R.; Pawlowski, A. V.

    1975-01-01

    An automated stimulus fading procedure was used to strengthen sexual responsiveness to adult stimuli in two pedophiles. The degree of responsiveness was indicated by changes in the penile response. Implications for future research are discussed. (Author)

  7. Analysis and exploitation of multipath ghosts in radar target image classification.

    PubMed

    Smith, Graeme E; Mobasseri, Bijan G

    2014-04-01

    An analysis of the relationship between multipath ghosts and the direct target image for radar imaging is presented. A multipath point spread function (PSF) is defined that allows for specular reflections in the local environment and can allow the ghost images to be localized. Analysis of the multipath PSF shows that certain ghosts can only be focused for the far field synthetic aperture radar case and not the full array case. Importantly, the ghosts are shown to be equivalent to direct target images taken from different observation angles. This equivalence suggests that exploiting the ghosts would improve target classification performance, and this improvement is demonstrated using experimental data and a naïve Bayesian classifer. The maximum performance gain achieved is 32%. PMID:24577193

  8. Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing.

    PubMed

    Duan, Li; Zhang, Peng; Tang, Ming; Wang, Ruoxu; Zhao, Zhiyong; Fu, Songnian; Gan, Lin; Zhu, Benpeng; Tong, Weijun; Liu, Deming; Shum, Perry Ping

    2016-09-01

    A compact high temperature sensor utilizing a multipath Michelson interferometer (MI) structure based on weak coupling multicore fiber (MCF) is proposed and experimentally demonstrated. The device is fabricated by program-controlled tapering the spliced region between single mode fiber (SMF) and a segment of MCF. After that, a spherical reflective structure is formed by arc-fusion splicing the end face of MCF. Theoretical analysis has been implemented for this specific multipath MI structure; beam propagation method based simulation and corresponding experiments were performed to investigate the effect of taper and spherical end face on system's performance. Benefiting from the multipath interferences and heterogeneous structure between the center core and surrounding cores of the all-solid MCF, an enhanced temperature sensitivity of 165 pm/°C up to 900°C and a high-quality interference spectrum with 25 dB fringe visibility were achieved. PMID:27607628

  9. Evaluation of Two Computational Techniques of Calculating Multipath Using Global Positioning System Carrier Phase Measurements

    NASA Technical Reports Server (NTRS)

    Gomez, Susan F.; Hood, Laura; Panneton, Robert J.; Saunders, Penny E.; Adkins, Antha; Hwu, Shian U.; Lu, Ba P.

    1996-01-01

    Two computational techniques are used to calculate differential phase errors on Global Positioning System (GPS) carrier war phase measurements due to certain multipath-producing objects. The two computational techniques are a rigorous computati electromagnetics technique called Geometric Theory of Diffraction (GTD) and the other is a simple ray tracing method. The GTD technique has been used successfully to predict microwave propagation characteristics by taking into account the dominant multipath components due to reflections and diffractions from scattering structures. The ray tracing technique only solves for reflected signals. The results from the two techniques are compared to GPS differential carrier phase ns taken on the ground using a GPS receiver in the presence of typical International Space Station (ISS) interference structures. The calculations produced using the GTD code compared to the measured results better than the ray tracing technique. The agreement was good, demonstrating that the phase errors due to multipath can be modeled and characterized using the GTD technique and characterized to a lesser fidelity using the DECAT technique. However, some discrepancies were observed. Most of the discrepancies occurred at lower devations and were either due to phase center deviations of the antenna, the background multipath environment, or the receiver itself. Selected measured and predicted differential carrier phase error results are presented and compared. Results indicate that reflections and diffractions caused by the multipath producers, located near the GPS antennas, can produce phase shifts of greater than 10 mm, and as high as 95 mm. It should be noted tl the field test configuration was meant to simulate typical ISS structures, but the two environments are not identical. The GZ and DECAT techniques have been used to calculate phase errors due to multipath o the ISS configuration to quantify the expected attitude determination errors.

  10. Blind deconvolution in multipath environments and extensions to remote source localization

    NASA Astrophysics Data System (ADS)

    Hossein Abadi, Shima

    In the ocean, the acoustic signal from a remote source recorded by an underwater hydrophone array is commonly distorted by multipath propagation. Blind deconvolution is the task of determining the source signal and the impulse response from array-recorded sounds when the source signal and the environment's impulse response are both unknown. Synthetic time reversal (STR) is a passive blind deconvolution technique that relies on generic features (rays or modes) of multipath sound propagation to accomplish two remote sensing tasks. 1) It can be used to estimate the original source signal and the source-to-array impulse responses, and 2) it can be used to localize the remote source when some information is available about the acoustic environment. The performance of STR for both tasks is considered in this thesis. For the first task, simulations and underwater experiments (CAPEx09) have shown STR to be successful for 50 millisecond chirp signals with a bandwidth of 1.5 to 4.0 kHz broadcast to source-array ranges of 100 m to 500 m in 60-m-deep water. Here STR is successful when the signal-to-noise ratio is high enough, and the receiving array has sufficient aperture and element density so that conventional delay-and-sum beamforming can be used to distinguish ray-path-arrival directions. Also, an unconventional beamforming technique (frequency-difference beamforming) that manufactures frequency differences from the recorded signals has been developed. It allows STR to be successful with sparse array measurements where conventional beamforming fails. Broadband simulations and experimental data from the focused acoustic field experiment (FAF06) have been used to determine the performance of STR when combined with frequency-difference beamforming when the array elements are nearly 40 signal-center-frequency wavelengths apart. The results are good; the cross-correlation coefficient between the source-broadcast and STR-reconstructed-signal waveforms for the simulations and